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Preface 

We would  like to welcome all participants of the 13th  International Society for Music  Information 
Retrieval  Conference  (ISMIR  2012)  in the São  Bento  da  Vitória Monastery, a  classified  National 
Monument at  the  very heart of old Porto. Porto  is Portugal’s  second  largest  city,  located  in  the 
estuary of the Douro River in Northern Portugal. This year's edition of the conference is organized 
by  the  Institute  for  Systems  and Computer  Engineering,  Technology  and  Science  (INESC  TEC),  in 
partnership with the Teatro Nacional de São João. 

The present volume contains the complete manuscripts of all the peer‐reviewed papers presented 
at ISMIR 2012. A total of 253 abstracts were entered in the reviewing system before the deadline, 
out of which 215 complete and well‐formatted papers entered the review process. Special care was 
taken to assemble an experienced and  interdisciplinary review panel  including people  from many 
different  institutions worldwide. As  in previous years, the reviews were double‐blinded  (i.e., both 
the authors and the reviewers were anonymous) with a two‐tier model of review committee (i.e. 
including reviewers and Program Committee members). Reviewers and PC members were able to 
bid for papers. Each paper was assigned to a PC member, who could then request the assignment 
of at least one particular reviewer for each paper. Reviewer assignments were done based on topic 
preferences, bids and PC member assignments. After the review phase, PC members and reviewers 
entered  a  (name‐disclosed)  discussion  phase  aiming  at  homogenizing  acceptance  vs.  rejection 
decisions.  This  discussion  phase,  which  did  not  provide  any  further  interaction  with  authors, 
replaced the rebuttal phase as used in past ISMIR conferences.  

Final acceptance decisions were based on 894 reviews and meta‐reviews written by 260 reviewers 
and  PC  members.  From  the  215  reviewed  papers,  95  papers  were  accepted  resulting  in  an 
acceptance rate of 44%. A set of 13 papers (from the 95 accepted) were "conditionally accepted", 
where authors were asked to make mandatory changes. These changes where again checked by PC 
members. After  this second round of revisions, all 13 papers were  finally accepted. Compared  to 
previous ISMIR conferences, the review process may have been stricter, leading to a lower overall 
acceptance rate.  In addition, slightly reducing the total number of accepted papers, compared to 
past years, led to a higher competitiveness. The table shown in the next page summarizes the ISMIR 
publication statistics over the last years. 

The mode of presentation was determined after the accept/reject decisions and has no relation to 
the quality of the papers or the number of pages allotted in the proceedings. From the 95 papers, 
30 papers were  chosen  for oral presentation based on  the  topic and broad appeal of  the work, 
whereas  65  were  chosen  for  poster  presentation.  Oral  presentations  have  a  20  minutes  slot 
(including setup and questions/answers from the audience) whereas poster presentations are done 
in 2 sessions per day, the same posters being presented  in the morning and  in the afternoon of a 
given day. Poster presenters have the opportunity (in 1 minute and 1 slide) to announce orally their 
posters during a plenary session (so‐called "poster‐craze") and "tease" the whole audience, inviting 
to a later, more personal, scientific discussion around their poster. 



 

XVII 

 

 

   Presentations  Total  Total  Total  Unique
Pages 
/ 

Authors 
/ 

U. 
Authors/

Location  Oral  Posters  Papers Pages  Authors Authors Paper  Paper  Paper 

Plymouth   19  16  35  155  68  63  4.4  1.9  1.8 

Indiana   25  16  41  222  100  86  5.4  2.4  2.1 

Paris    35  22  57  300  129  117  5.3  2.3  2.1 

Baltimore  26  24  50  209  132  111  4.2  2.6  2.2 

Barcelona   61  44  105  582  252  214  5.5  2.4  2 

London   57  57  114  697  316  233  6.1  2.8  2 

Victoria   59  36  95  397  246  198  4.2  2.6  2.1 

Vienna  62  65  127  486  361  267  3.8  2.8  2.1 

Philadelphia  24  105  105  630  296  253  6  2.8  2.4 

Kobe   38  85  123  729  375  292  5.9  3  2.4 

Utrecht  24  86  110  656  314  263  6  2.9  2.4 

Miami  36  97  133  792  395  322  6  3  2.4 

Porto  36  65  101  606  324  264  6  3.2  2.6 
 

The selected submissions are presented over a period of 3.5 days, preceded by a day of tutorials 
and followed by half a day of late‐break/demo session at an auxiliary venue. Two 3‐hours tutorials 
are presented in parallel during Monday morning, and two in parallel during the afternoon. In the 
morning, Josh McDermott, Bryan Pardo, and Zafar Rafii present a tutorial on Leveraging Repetition 
to  Parse  the  Auditory  Scene,  while  Xiao  Hu  and Yi‐Hsuan  (Eric)  Yang  deal  with  Music  Affect 
Recognition: The State‐of‐the‐art and Lessons Learned. In the afternoon, Mark D. Plumbley, Simon 
Dixon,  and  Chris  Cannam  give  a  tutorial  on  reusable  software  and  reproducibility  in  music 
informatics  research. François Pachet,  in his afternoon  tutorial, explains  the basics of  jazz, shows 
why  it  is  interesting, and gives  ISMIR attendees  insights  that  can be helpful  for designing better 
(generic and not only jazz‐focused) MIR systems. 

The  ISMIR program also  features  three distinguished keynote  speakers, on Tuesday, Wednesday 
and Thursday after 5 PM. The first keynote  is given by José C. Principe, Distinguished Professor of 
Electrical and Biomedical Engineering at the University of Florida. He will speak about self‐organized 
computational  perception  in  the  time‐frequency  domain.  The  second  keynote  is  by Maarten  de 
Rijke,  full  professor  of  Information  Processing  and  Internet  in  the  Informatics  Institute  at  the 
University of Amsterdam. He will speak about  latest trends  in  Information Retrieval research and 
possible  links  to  MIR.  The  third  keynote  is  by  Emmanuel  Bigand,  full  professor  of  Cognitive 
Psychology at the University of Burgundy  in Dijon. He will speak about cognitive stimulation with 
music and new technologies. 

On Monday at 8 PM, and Tuesday and Wednesday at 10 PM, 1‐hour concerts will be held  in the 
main venue. The aim of  the  ISMIR 2012 music program  is  two‐fold:  to encourage  the use of MIR 
techniques  in  the  creation  of  new music  and  to  explore music  that  can  suggest  novel  ideas  for 
research in the MIR field. A call for participation was issued which resulted in the submission of 59 
music pieces. From  these pieces,  the music curators Daniel Teruggi and François Pachet selected 
ten compositions which are presented in the second and third concerts. The first concert features 
works of the curators and music chairs. An extra "off‐ISMIR" concert is held, on Friday night, in the 
same venue as  the  late‐beak/demo session,  featuring compositions using MIR  technologies,  from 
young Portuguese composers. 
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On Thursday morning, the first oral session of the day is dedicated to "Looking back to the past of 
ISMIR to face the future of MIR", (i.e. the "MIRrors" session) in which 6 invited and peer‐reviewed 
papers are presented  to  reflect on  the evolution of  the MIR  field or a particular MIR  topic  since 
2000. In particular, insights on mid‐term future challenges are provided. 

On Friday morning, a  session on evaluation  initiatives  in MIR  features an  invited  talk by Gareth 
Jones, Senior Lecturer in the School of Computing at Dublin City University, and a round table with 
panelists  from  the  annual Music  Information Retrieval  Evaluation eXchange  (MIREX),  the Million 
Song Dataset Challenge and Musiclef/MediaEval. This session provides an overview of diverse MIR 
evaluation  initiatives  and  discusses  current  methodologies  in  MIR  evaluations.  The  session  is 
followed by poster presentations from diverse evaluation initiatives. 

The  last afternoon of the conference  is dedicated to the Demos/Late‐breaking (D&L) track, which 
has become a popular and integral part of ISMIR conferences. This year, however, the format of the 
D&L  is  changed,  following an  "unconference"  style:  there will not be any  formal  submission nor 
peer‐review. The D&L program  is built by participants, both before the event on an open website 
(http://ismir2012.wikispaces.com/),  and  even  during  the  conference.  Instead  of  focusing  on 
individuals reporting  in a one‐to‐many way on their personal accomplished research, D&L focuses 
on  capturing  those  informal  yet  often  insightful  and  original  ideas  that  typically  emerge  in 
collaborative settings at ISMIR (e.g. at coffee breaks, hallways, etc.). 

As for social gathering,  lunches and coffee will be served everyday from Tuesday to Friday.  ISMIR 
2012 includes in the registration fee a reception on Monday at 6 PM, a banquet on Thursday night, 
and "reasonable" amounts of Port wine drinking.  

We are very proud  to present you  the proceedings of  ISMIR 2012. The conference program was 
made possible thanks to the hard work of many people including the members of the organization, 
PC members and reviewers. Special thanks go to this year's sponsors and supporting  institutions: 
Gracenote,  Google,  Spectral  Mind,  Quaero,  the  MIReS  European  research  project,  Ableton, 
Cycling'74, the University of Porto,  its Faculty of Engineering, the Catholic University  in Porto, and 
Portugal's Culture Ministry. Last, but not  least,  ISMIR 2012 program  is possible only thanks to the 
numerous contributions of the MIR community in response to our call for participation. The biggest 
acknowledgment  therefore  goes  to  you,  the  authors,  researchers  and  participants  of  this 
conference. 

 

 

Fabien Gouyon 
Carlos Guedes 
ISMIR 2012 Conference Chairs 
 
Perfecto Herrera  
Luis Gustavo Martins  
Meinard Müller  
ISMIR 2012 Scientific Chairs 
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Keynote Talk 1 
 

José C. Principe 
Computational NeuroEngineering Laboratory, University of Florida 

 

Self‐Organized Computational Perception in the Time Frequency 
Domains 

 
 
Abstract 
 
The auditory cortex  in  the brain does effortlessly a better  job of extraction  information  from  the 
acoustic world  than  our  current  generation  of  signal  processing  algorithms.   This  talk  elucidates 
from some essential  ideas  in brain models how distributed hierarchical dynamical systems can be 
utilized to self‐organize acoustic perceptions.  The proposed architecture is based on Kalman filters 
with  hierarchically  coupled  state  models  that  stabilize  the  input  dynamics  and  provide  a 
representation  space where  sounds produced by different  instruments appear distinct, providing 
therefore  features  for  further  recognition. Another characteristic of  the methodology  is  that  it  is 
adaptive and self‐organizing, i.e. previous exposure to the acoustic input is the only requirement for 
recognition. Some examples will be provided. 
 
 
Biography 
 
Jose C. Principe is Distinguished Professor of Electrical and Biomedical Engineering at the University 
of Florida since 2002. He joined the University of Florida  in 1987, after an eight‐year appointment 
as  Professor  at  the  University  of  Aveiro,  in  Portugal.  Dr.  Principe  holds  degrees  in  electrical 
engineering  from  the University  of  Porto  (Bachelor),  Portugal, University  of  Florida  (Master  and 
Ph.D.),  USA  and  a  Laurea  Honoris  Causa  degree  from  the  Universita  Mediterranea  in  Reggio 
Calabria,  Italy. Dr. Principe  interests  lie  in nonlinear non‐Gaussian optimal  signal processing  and 
modeling and in biomedical engineering. He created in 1991 the Computational NeuroEngineering 
Laboratory  to  synergistically  focus  the  research  in  biological  information  processing models. He 
recently  received  the  Gabor  Award  from  the  International  Neural  Network  Society  for  his 
contributions.  Dr.  Principe  is  a  Fellow  of  the  IEEE,  Fellow  of  the  AIMBE,  past  President  of  the 
International Neural Network Society, and Past Editor  in Chief of  the Transactions of Biomedical 
Engineering,  as well as a  former member of  the Advisory  Science Board of  the  FDA. He holds 5 
patents and has submitted seven more. Dr. Principe was supervisory committee chair of 65 Ph.D. 
and 67 Master students, and he is author of more than 500 refereed publications (3 books, 4 edited 
books, 14 book chapters, 200 journal papers and 380 conference proceedings). 
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Keynote Talk 2 
 

Maarten de Rijke 
Intelligent Systems Lab, University of Amsterdam 

 

Current Trends in Information Retrieval 
 
 
 
Biography 
 
Maarten de Rijke is full professor of Information Processing and Internet in the Informatics Institute 
at the University of Amsterdam. He holds MSc degrees  in Philosophy and Mathematics (both cum 
laude),  and  a  PhD  in  Theoretical  Computer  Science.  He  worked  as  a  postdoc  at  CWI,  before 
becoming a Warwick Research Fellow at the University of Warwick, UK. He joined the University of 
Amsterdam  in  1998,  and  was  appointed  full  professor  in  2004.  He  leads  the  Information  and 
Language Processing Systems group, one of  the  leading academic research groups  in  information 
retrieval  in Europe. During  the most  recent  computer  science  research  assessment exercise,  the 
group  achieved maximal  scores on  all dimensions. De Rijke's  current  focus  is on  intelligent web 
information access, with projects on search and discovery for social media, vertical search engines, 
machine learning for information retrieval, semantic search and multilingual information. A Pionier 
personal  innovational  research  incentives grant  laureate  (comparable  to an advanced ERC grant), 
De Rijke has generated over 30MEuro  in project  funding. With an h‐index of 42 he has published 
over 500 papers, has published or edited over a dozen books, is editor for various journals and book 
series, and a former coordinator of retrieval evaluation tracks at TREC, CLEF and INEX (Blog, Web, 
Question answering). He  is co‐chair  for SIGIR 2013, the director of the University of Amsterdam's 
Intelligent Systems Lab (ISLA), its Information Science bachelor program and its Center for Creation, 
Content and Technology (CCCT). 
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Keynote Talk 3 
 

Emmanuel Bigand 
LEAD ‐ CNRS, Université de Bourgogne 

 

Cognitive Stimulation with Music and New Technologies 

 
 
Abstract 
 
During the last 10 years, advances in cognitive neurosciences of music have revealed the potential 
importance of music for brain and cognitive stimulation. This opens new perspectives for education 
and health. Music  is notably a powerful media that contributes to help stroke patients to recover 
cognitive  and  motor  functions.  Technologies  for  brain  and  cognitive  stimulation  lead  to  the 
development of numerous factories ("Happy Neuron", in France for example), but for now, nothing 
serious has been done with music. I will finish my talk by referring to some examples of new music 
technologies for cognitive stimulation. 
 
 
Biography 
 
Emmanuel Bigand is a full professor of Cognitive Psychology at the University of Burgundy in Dijon, 
France,  where  he  is  the  director  of  the  LEAD  lab  (Laboratory  for  Research  on  Learning  and 
Development)  since  2003. He has  received  academic degrees  in  the  three disciplines of Applied 
Mathematics  (University of Montpellier, 1984), Musicology  (University of Aix‐en‐Provence, 1987) 
and  Psychology  (Ph.D.  University  of  Paris  X,  1990),  as well  as  formal  training  as  a  professional 
classical musician  (First Contrabass Prize, Conservatoire National de Musique de Versailles). Prof. 
Bigand's  research  is  concerned with  the  cognitive  aspects  of  human  audition.  His  research  has 
notably established that, contrary to the traditional views in music education, human's aptitude for 
music can develop implicitly in the manner of language learning. Since 2007, he has been involved 
in  numerous  projects  linking  musical  listening  and  performance  to  cognitive  stimulation  and 
therapeutic  rehabilitation.  His  recent  research  has  shown  that  music  stimulation  can  boost 
linguistic performances in deaf children, and help memorization in Alzheimer patients. Prof. Bigand 
is  the  author  of more  than  70  journal  articles,  has  supervised  11  PhD  theses  and  has  been  the 
coordinator for 5 international research programs, including the ongoing ITN EBRAMUS (European 
Brain and Music) network. 
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Tutorial 1 
 
Leveraging Repetition to Parse the Auditory Scene 
 
Josh McDermott (New York University, New York, New York, USA) 
Bryan Pardo (Northwestern University, Chicago, Illinois, USA) 
Zafar Rafii (Northwestern University, Chicago, Illinois, USA) 
 
Abstract 
 
In the last year there has been a convergence of research on the role of repetition in audio parsing 
by humans and machines.  In  this  tutorial, we will discuss how  the concept of repetition can help 
bootstrap source separation and object recognition  in humans and by machine. We will begin by 
presenting  results  from  research on human  sound  segregation  that  indicate  that  repetition of  a 
sound  source provides  a neglected but powerful  cue  for  segregation. We will  then  transition  to 
related work applying  repetition  to audio  source  separation. We will  first present  the REpeating 
Pattern  Extraction  Technique  (REPET),  a  novel  approach  for  separating  a  repeating  background 
from a non‐repeating foreground  in a musical context. We will then describe extensions of REPET 
that  handle  variations  in  the  repeating  structure.  This  will  be  followed  by  a  discussion  of  the 
relationship  between  these  explicitly  repetition‐based  algorithms  to  other  separation  algorithms 
(e.g. robust PCA). 
 
Biographies 
 
Josh McDermott  is a research associate  in the Center  for Neural Science at NYU, studying sound, 
hearing, and music. He received a B.A. in Brain and Cognitive Sciences from Harvard University, an 
MPhil in Computational Neuroscience from University College London, a PhD in Brain and Cognitive 
Sciences from MIT, and postdoctoral training in psychoacoustics at the University of Minnesota. His 
research addresses sound representation and auditory scene analysis. He is interested in using the 
gap between human and machine competence to better understand biological hearing and design 
better algorithms for analyzing sound. 
 
Bryan  Pardo  is  an  associate  professor  in  the  Northwestern  University  Department  of  Electrical 
Engineering and Computer Science. He received a M. Mus. in Jazz Studies and a Ph.D. in Computer 
Science, both  from  the University of Michigan. He  is an associate editor  for  IEEE Transactions on 
Audio Speech and Language Processing. He has developed speech analysis software for the Speech 
and Hearing department of the Ohio State University, statistical software for SPSS and worked as a 
researcher for General Dynamics. 
 
Zafar  Rafii  is  a  Ph.D.  candidate  in  Electrical  Engineering  &  Computer  Science  at  Northwestern 
University. He received a Master of Science in Electrical Engineering from ENSEA in France and from 
IIT  in Chicago.  In  France, he worked as a  research engineer at Audionamix. His  current  research 
interests are centered audio analysis and include signal processing, machine learning and cognitive 
science.  
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Tutorial 2 
 
Music Affect Recognition: The State‐of‐the‐art and Lessons Learned 
 
Xiao Hu (The University of Hong Kong, Hong Kong) 
Yi‐Hsuan (Eric) Yang (Academia Sinica, Taiwan) 
 
Abstract 
 
The affective aspect  (popularly known as emotion or mood) of music  information has gained  fast 
growing attention in Music Information Retrieval (MIR) community. The recent years witnessed an 
explosive growth of studies on music affect recognition. This tutorial provides ISMIR participants an 
opportunity to learn a range of topics closely involved in affective indexing of music and to discuss 
how  findings  and methods  can  (or  cannot)  be  borrowed  from  and  applied  to  other multimedia 
information types such as speech (audio),  images (visual) and movies (audio‐visual). Topics  in this 
tutorial  include:  the most  influential psychological models of human emotion; musical, personal, 
and  situational  factors of music  listening  that  influence  the perception  and description of music 
affect; building emotion taxonomies from online music metadata and social media; best practices 
of constructing ground  truth datasets; approaches  to and  tools  for automatic affect classification 
and  regression; benchmarking and evaluation; a  sample of deployed prototyping  systems;  issues 
and challenges on affect analysis; and the common ground of affect in music, image and movies. All 
the  tools and systems covered  in  this  tutorial are open source or  freeware, and  the datasets are 
available  in transformed formats (due to the copyright of the audio and  lyrics). The format of the 
tutorial will  include  lectures,  group  discussions,  demonstration  of  sample  systems  and  technical 
results with  illustrative musical examples,  and  spontaneous  interactions between  the presenters 
and the audience.  
 
This tutorial is for general MIR researchers and students who are interested in the affective aspects 
of music information. It would also benefit designers and developers of music retrieval systems and 
services. No background in music or music processing is required. 
 
Biographies 
 
Xiao Hu is an Assistant Professor at the Library and Information Science Program at the University 
of  Denver.  She  obtained  her  PhD  in  Library  and  Information  Science  in  2010  and  Master  of 
Computer Science  in 2008  from  the University of  Illinois at Urbana‐Champaign. Dr. Hu has been 
studying music mood taxonomy and classification since 2006 and has won awards at international 
conferences.  
 
Yi‐Hsuan  Yang  is  an  Assistant  Research  Fellow  at  Academia  Sinica,  Taiwan, where  he  leads  the 
Music and Audio Computing Lab. Dr. Yang obtained his Ph.D. degree in 2010 from National Taiwan 
University. His research interests include music information retrieval, multimedia systems, machine 
learning, and affective  computing. He was awarded  the 2011  IEEE SPS Young Author Best Paper 
Award. In 2011, Dr. Yang co‐authored a book entitled Music Emotion Recognition published by CRC 
Press. 
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Tutorial 3 

 

Reusable Software and Reproducibility in Music Informatics Research 
 
Chris Cannam (Centre for Digital Music, Queen Mary University of London, UK) 
Simon Dixon (Centre for Digital Music, Queen Mary University of London, UK) 
Mark D. Plumbley (Centre for Digital Music, Queen Mary University of London, UK) 
 
Abstract 
 
The need  to develop and  reuse software  to process data  is almost universal  in music  informatics 
research. Many methods,  including most of  those published  at  ISMIR,  are developed  in  tandem 
with software implementations and some of them are too complex or too fundamentally software‐
based  to  be  reproduced  readily  from  a  published  paper  alone.  For  this  reason,  it  is  helpful  for 
sustainable research to have software and data published along with papers. In practice, however, 

non‐publication  of  code  and  data  is  still  the  norm.  In  this  tutorial we will  discuss  barriers  to 
publication of software and data and present a hands‐on session  in which attendees will explore 
tools  and methods  to  help  overcome  these  barriers.  The  tutorial will  rapidly  cover  the  use  of 
version control software, code‐hosting  facilities, aspects of  testing and provenance, and software 
licensing for publication. Examples will be drawn from the music and audio fields, and help will be 
provided by  researchers‐developers  from  the Centre  for Digital Music  (C4DM),  Luís  Figueira  and 
Steve  Welburn.  This  tutorial  will  be  of  immediate  interest  to  researchers  within  the  music 
informatics  community,  and will  be  highly  relevant  to  research  supervisors  and  research  group 
leaders with an interest in policy and guidance. 
 
Biographies 
 
Chris  Cannam  is  principal  developer  for  the  Sound  Software  project.  His work with  the  C4DM 
includes the widely used Sonic Visualiser audio analysis software. 
 
Simon Dixon leads the Music Informatics area of C4DM and the Sound Data Management Training 
project. Among other responsibilities, he is President‐elect of ISMIR. 
 
Mark D. Plumbley  is Director of C4DM. He  leads the Sound Software project and coordinates the 
EPSRC Digital Music Research Network and the ICA Research Network. 
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Supported by the EPSRC through the SoundSoftware project (http://soundsoftware.ac.uk/) and by 
JISC through the Sound Data Management Training and Sustainable Management of Digital Music 
Research Data projects (http://rdm.c4dm.eecs.qmul.ac.uk). 
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Tutorial 4 

 
Why is Jazz Interesting? 
 
François Pachet (Sony CSL, Paris) 
 
Abstract 
 
Jazz  is  a  lively music  genre which  has  long  been  a  favorite  genre  of music  for  computer music 
research. This tutorial aims at explaining the basics of jazz, show why it is interesting and give ISMIR 
attendees  insights  that can be helpful  for designing better  jazz‐focused MIR  systems.  I will  show 
that jazz is a game that is based, on first approximation, on well‐defined rules. I will describe these 
rules  in a non‐technical way, understandable by non‐jazz  specialists.  I will also cover  some more 
advanced topics such as the use of side‐slips as a reasoned mechanism to play "outside the rules". 
The tutorial uses many video and audio examples throughout. It has been presented twice already 
with great success. 
 
Biography 
 
François Pachet received his Ph.D. and Habilitation degrees from Paris 6 University (UPMC). He is a 
Civil Engineer (Ecole des Ponts and Chaussées) and was Assistant Professor in Artificial Intelligence 
and Computer Science, at Paris 6 University, until 1997. 
He  then  set up  the music  research  team at  SONY Computer  Science  Laboratory Paris, where he 
developed  the  vision  that  metadata  can  greatly  enhance  the  musical  experience  in  all  its 
dimensions,  from  listening  to  performance.  His  team  conducts  research  in  interactive  music 
listening  and performance  and musical metadata  and developed  several  innovative  technologies 
(constraint‐based  spatialization,  intelligent music  scheduling using metadata)  and  award winning 
systems (MusicSpace, PathBuilder, The Continuator for Interactive Music Improvisation, etc.). He is 
the  author  of  over  80  scientific  publications  in  the  fields  of musical metadata  and  interactive 
instruments. 
His current research focuses on creativity and content generation, as he was recently awarded an 
ERC  Advanced  Grant  to  develop  the  concepts  and  technologies  of  "flow  machines":  a  new 
generation of content generation tools that help users find and develop their own "style". 
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MIRrors 
ISMIR 2012  features a special session based on  the  idea of "looking back  to  the past of  ISMIR  to 
face the future of MIR" or “the past of Music  Information Research reflects on  its future”. As the 
session  name  indicates,  it  offers  different  types  of  reflections  on MIR, while  learning  from  past 
erRORS  to  shape  the  future of our discipline. The  session has been crafted  in  the context of  the 
European  project  MIRES  (http://www.mires.cc/),  targeted  to  elaborate  a  roadmap  for  Music 
Information Research. 
 
A special call for challenging and thought‐provocative or controversial positional papers, was made. 
We were  looking  forward  for papers  that,  for example:  i)  reflected on why a particular  topic has 
failed, is systematically not improving, and why it may be doomed to continue this way; ii) reflected  
on negative results that have, or have not, had the proper impact on MIR research; iii) traced and 
explained the evolution of a given idea through different editions of ISMIR; iv) provided a review of 
the  impact of  a particular  idea on  the MIR  community;  v) provided  a  review of  the  impact of  a 
particular  MIR  idea/topic  on  other  conferences  or  neighboring  fields  of  science;  vi)  proposed 
replication studies,  in particular showing discrepancies between commonly accepted  ideas  in  the 
MIR community and reality. 
 
Submissions followed a different schedule than the regular papers but the same rigorous and blind 
peer‐reviewing  process  that  characterizes  the  regular  track  of  ISMIR.  Six  out  of  a  total  of  eight 
submissions were  finally  selected  for  the oral  session. They  cover a broad  spectrum of essential 
topics, though there it seems to be some pressure to deal with problems raised when considering 
the human  factor  involved  in MIR  systems  (either as users or as  listeners). The accepted papers 
were made available two months before the conference in order to facilitate the right mindset and 
the preparation of questions and interaction with the authors. 
 
It  is expected that extended and  improved versions of the submitted papers plus some additional 
new  submissions  become  a  special  issue  of  the  International  Journal  of  Intelligent  Information 
Systems, to be published by August 2013.  
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Panel session on Evaluation Initiatives in MIR 
 
Chair 
Geoffroy Peeters (IRCAM, Paris) 
 
Panelists 
Brian McFee (University of California at San Diego) 
Nicola Orio (University of Padova) 
Julián Urbano (University Carlos III of Madrid) 
J. Stephen Downie (University of Illinois at Urbana‐Champaign) 
 
Invited speaker 
Gareth Jones (Dublin City University) 
 
 
The aim of this panel is to discuss the methodologies currently used in MIR evaluations and compare them 
to  the  evaluation  practices  in  other  research  fields.  For  this,  we  invited  key‐actors  of  current  MIR 
benchmarking  initiatives  (MIREX, Million‐Song‐Dataset Challenge and MusicClef/MediaEval), of MIR meta‐
evaluations and one of the key actors of IR evaluation. 
Among the potential topics to be discussed are: 

 Definition  of  the  tasks  to  be  evaluated.  What  methodology  should  be  used  to  define  the  task 
(bottom‐up  vs.  top‐down)?  For  which  purpose  should  a  task  be  evaluated:  low‐level  tasks 
(functionality‐oriented  such  as  beat,  chords)  vs.  full‐system  tasks  (use‐case‐oriented  such  as music 
recommendation systems). Specific tasks that are part of  large‐scale  international evaluations define 
de  facto  the  specific  topics  that new  contributors  to  the MIR  field will work on.  The methodology 
followed to define tasks is therefore of utmost importance. 

 Evaluation.  How  should  a  specific  task  be  evaluated? Which  data,  which  measures,  what  is  the 
reliability of the results obtained? 

 Data. How to get more data? How to deal with data availability (not only music collections, but also 
raw system outputs, judgments, annotations)? Should we go to low‐cost evaluation methodology (see 
TREC Million Query  Track  2007,  2008  and  2009)?  Currently most MIR  systems  are  concerned with 
audio‐only or symbolic‐only scenario. Multi‐modal systems (such as aggregating information from the 
audio‐content,  from  lyrics content or web mining) should allow deciding also on the  impact on  final 
user application of each technology. 

 What  is the best methodology to drive  improvements? What kind of evaluation framework (open vs 
close  evaluation)? What  could  be  improved  in  previous  evaluation  initiatives?  How  can we make 
results reproducible? How can we make MIR evaluation sustainable along time? 

 
Agenda 

Introduction 
Short overview of diverse MIR evaluation initiatives 
   . MIREX and MIREX‐Next‐Generation 
   . MillionSong Dataset Challenge 
   . MusiClef/MediaEval 
Invited Talk by Gareth Jones 
Round table on current methodologies in MIR evaluations 
MIR technologies performance in 2012 ‐ Results 
MIR technologies performance in 2012 ‐ Posters 



INFLUENCE IN EARLY ELECTRONIC DANCE MUSIC: AN AUDIO
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ABSTRACT

Audio content analysis can assist investigation of musi-
cal influence, given a corpus of date-annotated works. We
study a number of techniques which illuminate musicolog-
ical questions on genre and creative influence. By applying
machine learning tests and statistical analysis to a database
of early EDM tracks, we examine how distinct putatively
different musical genres really are, the retrospectively la-
belled Detroit techno and Chicago house being the core
case study. Further, by building predictive models based on
works from earlier years, both by a priori assumed genre
groups and by individual tracks, we examine questions of
influence, and whether Detroit techno really is a sort of
electronic future funk, and Chicago house an electronic ex-
tension of disco. We discuss the implications and prospects
for modeling musical influence.

1. INTRODUCTION

Genre is a contentious area at the best of times [1], but
an especial minefield in electronic dance music, where
producers, journalists and consumers are always eager
to promote new micro-genres [12]. As Brewster and
Broughton have written of one highly strained genre term
‘if you name a genre of music after a club which was
open for ten whole years and which was known for its
eclecticism, you’re going to run into problems of definition
pretty quickly. The word ‘garage’ is by far the most
mangled term in the whole history of music’ [4, p. 307]. 1

Electronic dance music’s origins range across African-
American music and European synth pop, against a back-
drop of increasingly affordable synthesis and sampling tech-
nology [6, 11, 15, 17, 18]. The important role through the
1980s of the US cities Chicago and Detroit as crucibles
of new club music is unassailable, though they were not
the only centres of activity (New Yorks’ frenetic hip hop
developments into electro, or the post-Moroder italo-disco
movement in Europe are also worth mentioning, as indeed
are general trends to danceable and synthesizer-laden pop

1 ‘hardcore’ is another example of a heavily overloaded genre term.
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throughout the 1980s mainstream). The cities are enshrined
in the genre names Chicago house and Detroit techno as
two foundational pillars of later electronic dance music:
they form the core of the study in this paper, though we
do not assume without investigation that they are really as
distinct as their names imply.

Even before audio content analysis investigation, there
are good reasons for a musicologist to be wary of
treating house and techno too individually in their 1980s
growth. Chicago is around a five hour drive from Detroit,
and Detroit artists often went to Chicago to sell their
records in the larger market there; Derrick May sold
Frankie Knuckles his TR-909 drum machine! The term
‘techno’ has many precedents, including track titles from
Buggles, Yellow Magic Orchestra and Kraftwerk, although
most famously used in Techno City, a 1985 Cybotron
track co-produced by Juan Atkins (the elder of Techno’s
‘Belleville Three’). The genre term was finally applied
as a differentiating stamp in 1988 for the Techno! The
New Dance Sound of Detroit compilation curated by Neil
Rushton, at Juan Atkins’ insistence on techno over Derrick
May’s ‘Detroit house.’ Nevertheless, the compilation itself
includes a ‘megamix’ at its close called Detroit is Jacking
(jacking being a standard Chicago dance term) and another
track called Share this house by Members of the House!

Detroit artists have themselves attempted to characterise
musical differences with Chicago. In the liner notes to the
Techno! compilation Derrick May writes ‘House still has
its heart in 70s disco; we dont have any of that respect for
the past, its strictly future music. We have a much greater
aptitude for experiment’ (sic) [9], and most famously, that
‘It’s like George Clinton and Kraftwerk are stuck in an el-
evator with only a sequencer to keep them company’ [9].
The hypothesis of Chicago house as an extension of disco,
and Detroit techno as a combination of electronic funk and
synth pop, will be examined herein.

Two previous studies of musical influence [5, 8] pub-
lished in ISMIR, on synth pop and sampling, have indi-
cated the benefits of data-annotated corpora in new musi-
cological investigations. Through musical similarity mea-
sures, this paper examines the use of automatic audio con-
tent analysis to establish the strength of links between his-
toric tracks and putative genre groupings. Where Bryan
and Wang [5] worked on an existing database of annota-
tions over sample-based music concerning ‘WhoSampled
who’ (http://www.whosampled.com/), Collins [8] exam-
ined audio similarity between date-annotated synth pop as



Genre Dates Num
Tracks

Duration
(mins)

Notes

Chicago House 1986-1989 31 197.7 Sourced in particular from Chicago Trax and The Original Chicago House Classics
as well as compilations including Warp10+1:Influences

Detroit Techno 1986-1989 31 186.5 Including Derrick May, early Model 500, and the Techno! compilation. No second
wave, nor Cybotron

1980s Pop 1985-1989 31 127.7 Including Michael Jackson, Madonna, Prince
Funk 1965-1978 31 118.6 Selected tracks from Parliament’s Mothership Connection, The Godfather, James

Brown, The Very Best Of... and Funk Soul Classics
Disco 1973-1980 31 112.5 Selected tracks from Anthems Disco and Disco Fever
Synth Pop 1977-1981 31 145.6 Including Kraftwerk, Human League, Gary Numan, Ultravox, Depeche Mode
Electro and Hip Hop 1980-1984 31 180.6 Some early rap, with an emphasis on the transition into electro. Includes Grandmaster

Flash and the Furious Five The Message (1982) and excerpts from The Tommy Boy
Story

Punk/Post-Punk 1977-1979 31 89.7 UK artists including Sex Pistols, UK Subs, Wire, The Cure, Gang of Four

Table 1. Overview of music corpus

part of the process of identifying influence. The latter might
be justified as the more general case and is followed here: it
is of particular import when scaling up to larger databases
of audio where annotations are impractical for musicolo-
gists. Network techniques introduced in [5] are still valu-
able in providing applicable metrics for later analysis once
similarity scores are established. However, this paper will
look at direct first generation influence rather than longer-
term networks spanning chains of multiple nodes.

The paper proceeds through section 2 detailing the
set of 248 source audio files split over eight genre
groups, and section 3 which discusses the technicalities
of the predictive models used. Section 4 explores the
separability of genre groups suggested, using machine
learning algorithms, and the Anderson Darling statistical
test to look for any rejection of the null hypothesis that
they are drawn from the same distribution. In section 5 we
apply the predictive models to examine questions of the
strength of influence of precursor work on Detroit techno,
Chicago house, and a late 80s pop control group. As well
as working with models trained on whole groups of tracks,
we also run tests for some famous individual tracks, such
as Donna Summer’s I Feel Love (1977). Finally, in section
6 we explore the implications of the experimental findings,
and broach larger questions for studies of musical influence
using MIR techniques.

2. SOURCES

Table 1 is an overview of the materials used in this study.
Eight genre groups are presented, with 31 tracks per group.
Five of these are precursor genres, movements in popular
music from the mid 1960s to the early 1980s. The three top
groupings are Chicago house, Detroit techno, and a control
group of mid- to late-1980s pop including Madonna
and Michael Jackson, coincident with an explosion in
popularity of electronic dance music in the UK. The earlier
genre groups include four important to the origins of
electronic dance music: funk, disco, synth pop and hip-
hop (particularly in its electro form). Some UK punk and
post-punk records are included as a further control. 2

2 Joy Division were specifically excluded, since their New Order
manifestation intersects with electro circa 1983.

Although the total duration of the genre groups differ,
the critical thing is the equal number of examples in
each, since tests are based on equal length excerpts from
individual tracks, or otherwise involve a normalization
for duration, such as the average log loss of a predictive
model. 1980s examples of electronic dance music tend to
involve longer tracks, where many 1960s and 1970s singles
are much closer to the three minute (or less) pop song
(short songs were also revived with punk’s throwaway
numbers); creating groups of an equal number of tracks all
balanced in duration and the number of years associated is
an unsolvable dynamic programming challenge.

There are many overlaps between these ostensibly
separate groups, such as the shift to disco via Philly soul,
the use of synthesizers by new wave acts as well as more
explicitly by synth pop groups, or the appropriation of
funk and disco backings in early rap records. 3 The a
priori use of genre groups is justified on the grounds of the
musicians’ statements themselves, such as Derrick May
cited above, who treat ‘funk’ and ‘disco’ as known areas
of musical endeavour. The groups have been constructed
from well known examples of the genres in question,
and one confound in particular avoided in construction;
synthesized electronic instrumentation in disco is not
represented in the disco group, but a few examples from
the Moroder camp are included under synth pop. Part
of our analysis shall be to consider the well-definition
of the groups, in terms of their internal consistency; as
well as considering genre based influence, we shall also
take a look at influential individual tracks later in the
paper, to avoid any claims of resting too heavily on genre
constructions.

No categorisation can be perfect, and there are some
missing early 1980s genre groups, such as European elec-
tronic body music and industrial (e.g. Liaisons Dangereuses,
Front 242) and italo-house (e.g. Klein and MBO, Alexan-
der Robotnick), and mid 1980s New York production de-
velopments (freestyle, Mantronix etc.). Manageability of
the overall study, and the greater overlap with the forma-
tion dates in Chicago and Detroit, made these categories
out of the scope of the current investigation; however, again,

3 The term ‘house’ itself floats around in 1983, for example on Rock
the House by Pressure Drop, a 1983 release on Tommy Boy.



we return to a few individual tracks rather than whole genre
groups below. Although there are some earlier prototype
Chicago house tracks, such as Jesse Saunders’ On and On
(1984), we have avoided these for some separation in date
from the precursor genres in this study; most commercially
available international Trax releases, for example, tend to
be available from 1986 at the earliest. 4

Complete track lists can be made available on researcher
request; all music was purchased.

3. PREDICTIVE MODELING

Bag of features assumptions [7] are avoided in favour of
using time series modeling to construct predictive models;
in particular, Prediction by Partial-Match (PPM) variable
order Markov models [2, 13]. The strength of prediction
of one piece or group of pieces by another is measured
by average log loss in information theoretic terms [2], as
further detailed below.

Various musical attributes of the pieces under consid-
eration are modelled, such as timbral, rhythmic and har-
monic change components. The final model combines three
core elements:

1. A model τ of timbre based on 11 features, with fea-
ture vectors accumulated by beats, vector quantised
by a k-Means classifier into symbols, and used to
train a PPM model

2. A model ι of inter-onset intervals after onset detec-
tion on polyphonic audio, using a classifier for IOI
sizes into symbols, and subsequent PPM

3. A model η of harmonic change, based on extracting
beat-wise 12TET chroma, forming the sum of differ-
ences between beats, a classification into symbols,
and PPM

For τ , a more general set of timbral descriptors was se-
lected than MFCCs, to try to reflect the character of an-
alyzed audio, without high dimensionality (which would
impact on the k-Means step). The timbral features were
perceptual loudness, sensory dissonance (using a Sethares
model [16]), two transient detection measures using the
wavelet method of [10], spectral centroid, spectral percentile
at 0.8% and 0.95% energy, zero crossing rate, spectral crest
measure, spectral slope, and a raw onset detection function
(the preprocessed signal for an onset detector). The onset
detector for the raw detection function, and for the isola-
tion of onsets for IOI detection in ι, is based on work by
Stowell [19], and is applied to polyphonic audio tracks; the
rectified complex deviation (RCD) onset detection func-
tion used here has proven reasonable for such applications.
All features were subject to normalization with respect to
corpus derived minimum and maximum values, and were
gathered in beats by averaging feature vectors. Chroma for
η were also accumulated in beats, the difference between

4 One example of a famous and influential track which was recorded
earlier but released much later is Phuture’s Acid Tracks, recorded late
1985, released 1987.

beatwise chroma vectors taken, and summed over the dif-
ference vector. This created a one-dimensional measure of
harmonic change, where the summation process avoided
issues with different absolute pitch centres in the music.

Feature vectors, IOIs and delta chroma sums were
subject to vector quantisation into 20 tokens before PPM
modeling. In order to symbolize the multidimensional
timbral feature vectors in τ , vectors extracted from the
training corpus were clustered with the unsupervised
k-Means algorithm, with k=20. As one dimensional
quantities, the IOIs in ι and harmonic change sums
in η were classified into twenty bands by histogram
equalisation [3, p.188]. A histogram for categorisation
was constructed by sorting the values into order, splitting
them by twenty equal size bands, and taking histogram bin
positions by the maximum in each band. Twenty bands
was a good compromise for a reasonable alphabet size for
the PPM, without invoking too high a dimensionality. PPM
models were then trained on the sequences in the 20 token
alphabet, using consecutive subsequences of five values at
a time. The particular model variant used here is what
Pearce and Wiggins [13] denote the PPM-AX variant.

Scoring for a given PPM model γ on novel data set X
was then calculated by

averageloglossγ(X) =
−

∑
x∈X log2 P (x|γ)
|X|

(1)

where the x are all the sequence contexts of the data to be
tested [2] Minimal scores correspond to high probability
sequences, that is, highly expected with respect to the
model. The log is critical to avoid floating point underflow
on multiplication of small probabilities. This average log
loss measure is robust to different durations of sequences
considered; in any case, we use equal length excerpts from
pieces.

In applying this to a corpus, a predictive model is
trained on a subset of pieces. The model can then be
used to examine one or more target pieces, via equation
1. In this work, the models are applied to equal size
groups of pieces, summing the model predictions within
the group to get a total score for the predictability of that
group with respect to the probabilistic model. 5 The final
scores are actually the sum of those from the three models
τ for timbre, ι for rhythm and η for harmonic change;
these three components are individually normalized before
the final sum. Whilst a given model’s predictions are
internally comparable, care must be taken in comparing
the absolute value of scores between different models; the
normalization reflects that only relative degree and order is
comparable.

All implementations used the open source SuperCol-
lider Music Information Retrieval library by the author, 6

which includes an example with the three component model
presented here. Specific client source code for the work is
available on researcher request.

5 For a common group size, we can divide by the group size without
compromising comparability, rather than taking an average over a
different number of contributing members.

6 http://www.sussex.ac.uk/Users/nc81/code.html



Probability of rejecting null hypothesis
Model Chicago Detroit Pop Funk Disco Synth Pop Electro Punk
Chicago 0.4297 0.0033 0.3879 0.2131 0.0776 0.0832 0.3986 0.2532
Detroit 0.0033 0.0023 0.0013 0.0005 0.0001 0.0004 0.0074 0.0003
Pop 0.3879 0.0013 0.4402 0.1113 0.2218 0.0283 0.2739 0.2109
Funk 0.2131 0.0005 0.1113 0.3554 0.0040 0.1224 0.1629 0.2456
Disco 0.0776 0.0001 0.2218 0.0040 0.3057 0.0003 0.0625 0.0741
Synth Pop 0.0832 0.0004 0.0283 0.1224 0.0003 0.0982 0.0671 0.0474
Electro 0.3986 0.0074 0.2739 0.1629 0.0625 0.0671 0.3366 0.1992
Punk 0.2532 0.0003 0.2109 0.2456 0.0741 0.0474 0.1992 0.4389

Table 2. Application of Anderson-Darling tests within and between genre groups. Each cell entry is the probability of rejecting the null
hypothesis that the tracks being tested together are a homogenous entity. Significant table entries are in bold, with respect to a Bonferroni
significance level for multiple comparisons.

4. MACHINE LEARNING TESTS AND
STATISTICAL TESTS OF SEPARABILITY FOR

REPRESENTATIVE FEATURE VECTORS

An initial examination was carried out on the genre groups
themselves, to see how “separable” the genre groups were
from one another with respect to the ability of machine
learning to differentiate them, and in terms of statistical
tests for their internal and paired consistency. All tests
were repeated twice, first for the timbral feature vector
detailed in section 3 for model τ , and secondly for a vector
of 11 MFCCs. Single vectors summarised single tracks;
45 seconds of feature vectors were extracted from a point
25% of the way into a given sound file, and averaged
(normalization factors had already been calculated across
the entire corpus of 248 tracks in an earlier sweep). ARFF
files were exported for tests in Weka, and arrays of data
into MATLAB for statistical tests.

For machine learning, we tested the discriminatory power
of supervised classifiers to learn the training sets (given
the genre labels 0-7), and of unsupervised clustering algo-
rithms to match these labels (the ‘classes to clusters’ evalu-
ation setting in Weka). Over 8 genres, the best scores came
from the 11 different features rather than the MFCCs, 7

but were still of low classification success. The best results
were for a k-Means clusterer (correctly classified 69 of 248
instances, 27.8%) and naive Bayes (68 of 248, 27.4%); a
range of other algorithms were investigated including neu-
ral nets and J48 decision trees. The best MFCC results
were for k-Means (correct 47, 18.95%), and naive Bayes
(correct 53, 21.4%). Examination of 2-dimensional sub-
sets of features revealed a lot of overlap between genres.
This result motivated using a more sophisticated time se-
ries modeling approach rather than average feature vectors,
and using the mixed feature vector for timbre rather than
MFCCs. With just the house and techno groups, and the
heterogenous feature vector, classification accuracy was
around 50% (at chance given two groups), with best perfor-
mance from k-Means (correctly classified 37 of 62, 60%)
and naive Bayes (34 of 62, 54.8%). For the 11 MFCCs,
nothing better than 33 out of 62 (53.2%) accuracy was ob-
served, with most algorithms performing worse than chance.

Statistical tests were also applied to the model τ feature
vector data, to look for overlap between genre groups,

7 Vectors of 40 MFCCs were also tested without any improvement in
classification scores.

and internal consistency. An Anderson-Darling test was
utilized [20], which tests the null hypothesis that all
feature data arose from the same distribution (without
assuming normality of that distribution); a significant p-
value indicates that the data is from multiple distributions.
Table 2 presents the symmetric matrix of values for
all pairwise (62 tracks at a time) and within-group (31
tracks) tests. The Detroit techno group is seen as more
heterogenous, and the null hypothesis would be rejected
if the threshold was set at 0.05% p-value. Because there
are 28 pairs and 8 individual genres = 36 tests, under the
Bonferroni correction the p-value of 0.05/36 = 0.0013889
has the statistical power to cover everything up to 0.05 and
may give a better sense of whether the Detroit techno result
is aberrant; we may keep the null hypothesis of Detroit
techno as consistent at this level. To the extent that the
probabilities point to degree of homogeneity, the Detroit
corpus is more heterogenous. The make-up of the Detroit
corpus unbalances things when paired with other groups,
whilst there seems to be a strong overlap of Chicago house
and late 80s pop (given UK No.1s by Chicago house
producers, this may not be so unexpected) as well as with
electro and funk. Nonetheless, the average feature vector
approach is quite coarse, and the predictive models are now
deployed for a finer-grained examination.

5. INVESTIGATION OF INFLUENCE THROUGH
PREDICTIVE MODELS

In this section, results are reported for the predictive scores
given to particular genre groups, and to individual tracks,
from models constructed from first genre groups, and then
some interesting precursor tracks. Section 3 describes the
model construction and algorithm for prediction scores.
Scores are normalized for a particular run of a particular
model to fall from 0 to 1, where 0 would be totally
predicted by the model at probability 1, and 1 is the least
expected observed situation. Models can be constructed
in two directions; we favour constructing a model from
an earlier historical genre or track, to predict later tracks.
There is an argument that construction in the opposite
direction would also indicate the degree of derivation
of the later work from earlier, and we report such
constructions symmetrically for the genre groups. We do
not form the fully symmetric score from a matrix plus its



Prediction Score
Model Chicago Detroit Pop Funk Disco Synth Pop Electro Punk
Chicago *0.04013* 0.81935 0.83104 0.81382 0.82633 0.7646 0.87111 0.80286
Detroit 0.7951 *0.04889* 0.8146 0.77913 0.79449 0.76644 0.861 0.75883
Pop 0.8961 0.86525 *0.04548* 0.8945 0.83403 0.85331 0.90055 0.89854
Funk 0.85148 0.85413 0.90196 *0.02236* 0.91059 0.84123 0.89624 0.91292
Disco 0.83158 0.76417 0.82118 0.8417 *0.03575* 0.76346 0.89092 0.813
Synth Pop 0.8846 0.88163 0.88508 0.87967 0.8056 *0.07829* 0.88813 0.86481
Electro 0.85575 0.85762 0.89833 0.87927 0.91642 0.82893 *0.02486* 0.87419
Punk 0.76547 0.70549 0.89158 0.91145 0.86657 0.81012 0.86613 *0.03303*

Table 3. Prediction scores of genres from models constructed for each genre. Starred italics on the diagonal correspond to the prediction
of the data used to construct a model by that model; one bold entry in each row indicates the closest other genre to the model genre.

transpose, since model construction itself is not guaranteed
to produce scores in exactly the same ranges, and the post
calculation normalization reported here, whilst helpful
for seeing links, is not uniform in comparison (even
unnormalized, differences in model construction would
question comparability; results are relative to a given
model).

Table 3 presents the asymmetric matrix of results
over the predictive models. The diagonal is italicized;
all models find their own source database most highly
predicted, as we’d expect for any sensible probabilistic
modeling. The description of Chicago house as disco with
a drum machine, and Detroit techno as future electro funk,
is only partially borne out in these figures. One aberrant
factor is the close link of Detroit techno with late 1970s
punk and post punk guitar tracks; Chicago house tracks
are also seen as closer to punk than Detroit techno on this
view. Of the three factors in the scores, the onset detection
driven IOI model is the point of similarity here; a related
density of events has an impact, as does timbre to an extent,
perhaps through some degree of sonic exploration in house
and techno instrumental tracks. Examining relative values
within rows, the links to synth pop are clear; Detroit is
closer to funk than disco, but Chicago also that way round.
From the funk model, Chicago is very marginally ahead of
Detroit, if within the third decimal place. Electro is closest
to synth pop, which is musicologically sensible; the synth
pop model finds Chicago, Detroit and late 80s pop of a
muchness in terms of potential influence.

The relative degree of influence of a seminal piece can
be investigated by creating a predictive model from it.
Table 4 compares 22 interesting tracks from the 1970s
to the early 1980s; these precursor tracks were selected
from mentions in sources on EDM history such as [11,18].
Complete individual tracks are used to form predictive
models, which are then deployed to predict the Chicago
house, Detroit techno and late 1980s pop corpuses.

Given these mainly synthesizer-flavored precedents,
Detroit makes the most whole-hearted embrace of the
technologized future, and shows the greater link to James
Brown to boot (though not Parliament, which links more to
pop, perhaps through the inclusion of Prince in that corpus
in particular). The sanity checks show some consistency,
with two versions of Planet Rock both leading to similar
results, and two runs on the same Kano track also coming
out with a similar ordering. The tests were repeated over

the whole set of songs, using a version of the predictive
model with 10 states rather than 20 per vector quantiser,
without any great divergence from the results presented
here, excepting Mothership Connection, Numbers and
Clear being assigned to techno, Magic Fly to Chicago, and
Problèmes D’Amour to pop. The greater vocal content
in Kraftwerk’s The Model may be an explanation of its
stronger link to certain elements of the Chicago house
corpus, or the link of the female vocal of I Feel Love
through to pop.

Individual tracks across the corpus of 93 can be exam-
ined, to find the most predicted and the most divergent
from a model. For instance, for Kano’s It’s A War, the
three closest were Derrick May’s Spaced Out and Nude
Photo, and Blake Baxter’s Ride Em Boy, all three from the
Detroit corpus (as we might hope for this track’s reception
history, though there are also aural links to Prince), and
the furthest away, in pop, Madonna’s Live to Tell and the
Bangles’ Eternal Flame and Hazy Shade of Winter.

6. DISCUSSION

Musical influence is a complex mechanism; the assump-
tion that strength of prediction is related to degree of influ-
ence seems reasonable, but may hide other factors, such as
indirect influence, common equipment and teaching tools
(such as music technology magazines), social currents, and
even independent co-creation of the same idea.

The audio content analysis used here cannot be claimed
to be on a par with the musicologist’s ear. On the
other hand, computer tools can point to useful currents
of inquiry, and provide an alternative stimulus to musical
historical and analytical investigation. Furthermore, it is
really worth exploring the musicological applications at an
early stage, to clarify the potential impact of such tools,
and feedback their effectiveness.

The genre groups used in this study make categorical
assumptions which can hide musical continuity. Whilst
their construction was to answer some questions of influ-
ence and overlap, the most interesting results relate more to
the scope of individual tracks. Future work may drop genre
assumptions entirely, creating a predictive model from ev-
ery individual track, to assess every other; given pairwise
similarity measures and chronological distance, multidi-
mensional scaling may give insight into structure. It may
also be productive to consider rates of change per year, by



Model Chicago Detroit Pop
Giorgio Moroder From Here To
Eternity (1977)

0.6551 0.5998 0.6562

Donna Summer I Feel Love (1977) 0.6461 0.6824 0.6346
Kraftwerk The Model (1978) 0.6659 0.6929 0.7564
Kraftwerk Numbers (1981) 0.6146 0.5761 0.5723
Kraftwerk Trans-Europe Express
(1977)

0.5419 0.4784 0.5648

Cerrone Supernature (1977) 0.9124 0.8361 0.8573
Dee D. Jackson Automatic Lover
(1978)

0.6994 0.6878 0.7077

Space Magic Fly (1977) 0.6855 0.6993 0.6753
Sylvester You Make Me Feel
(Mighty Real) (1978)

0.8448 0.7551 0.8348

Lipps Inc. Funkytown (1979) 0.7209 0.6336 0.6734
Kano It’s A War (1980) 0.5009 0.4494 0.5877
Kano It’s A War (1980) 0.5974 0.5235 0.6465
Soft Cell Tainted Love (1981) 0.8372 0.8085 0.8496
Depeche Mode Get The Balance
Right (1983)

0.7934 0.727 0.7852

Afrika Bambaataa et al. Planet
Rock (12” Vocal Version) (1982)

0.8073 0.7501 0.7697

Afrika Bambaataa et al. Planet
Rock (1982)

0.7959 0.7562 0.7701

James Brown Funky Drummer Pts.
1 and 2 (1970)

0.6383 0.5262 0.6318

Parliament Mothership Connection
(Star Child) (1975)

0.8166 0.798 0.7881

Alexander Robotnick Problèmes
D’Amour (1983)

0.6395 0.6128 0.6496

Cybotron Enter (1983) 0.707 0.6833 0.6852
Cybotron Clear (1983) 0.5503 0.5552 0.5601
Cybotron Cosmic Cars (1983) 0.65 0.6387 0.657

Table 4. Prediction of genres using models constructed from
individual tracks. The closest genre from each model is indicated
in bold.

constructing a model on one year (or on other windows of
time) and testing how predictable the next is.

A human study of similarity on this corpus would be
a useful follow-up, though one confound is the factor of
recognition; expert musicologists of EDM would recog-
nise many of the Chicago and Detroit tracks immediately,
and the corpus used here involves many famous works. Its
historical importance, however, makes it a very interesting
corpus to work on, of great musicological relevance.

In future work we may consider extending out to a
larger-scale investigation of the history of electronic music.
Alternative time series models, such as Hidden Markov
Models, could be employed, avoiding vector quantisation
simplifications, and possibly using symmetrised distance
measures such as the cross-likelihood discussed in [21].
More sophisticated statistical models of causality may also
help to stretch the machinery for modeling influence [14].

7. CONCLUSIONS

This paper presented a study of applying MIR techniques
to probe the borderline of Chicago house and Detroit
techno. More generally, we related later 1980s works
to 1960s to early 1980s precursors through a number of
methods. We saw that the house and techno genres overlap,
and are not necessarily tightly defined. Nonetheless, there
was some corroboration of Derrick May’s characterisation
of Detroit techno as futuristic in its sound world, though
less support for its separate funkiness; the disco and synth

pop heritage is a strong link to the two styles. The study
presents a template for future work over the same corpus,
as refined sound analysis models become available, and for
more general future audio-content driven examination of
musical influence.
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ABSTRACT

This paper demonstrates how association rule mining can
be applied to discover relations between two ontologies
of folk music: a genre and a region ontology. Genre–
region associations have been widely studied in folk mu-
sic research but have been neglected in music information
retrieval. We present a method of association rule min-
ing with constraints consisting of rule templates and rule
evaluation measures to identify different, musicologically
motivated, categories of genre–region associations. The
method is applied to a corpus of 1902 Basque folk tunes,
and several interesting rules and rule sets are discovered.

1. INTRODUCTION

In recent years music information retrieval (MIR) research
has increasingly turned towards folk and ethnic music and
its contexts [6, 19], and perspectives for collaboration be-
tween MIR and ethnomusicology have been outlined [22,
23]. While musicologists consider interactions between
folk music genres, their geographical distribution and mu-
sical characteristics [12, 18], MIR research has mainly fo-
cused on geographically organised folk music corpora [10,
11, 21]. A recent study on Cretan folk music extracts dis-
tinctive melodic interval patterns for genre and for area
classes, but does not link genres and areas, although the
idea of conjunctive genre–area classes is mentioned [5]. In
this paper we analyse relations between genres and regions
in a collection of Basque folk music, through association
rule mining.

Association rule mining has been developed extensively
in the wider field of knowledge discovery and data mining,
but has seen only limited attention in MIR (e.g. [4]). Work
on cultural heritage, not restricted to but also covering mu-
sic, has used association rule mining to populate a heritage
ontology with new relations between concepts: annota-
tions of heritage objects were mined and discovered associ-
ations proposed to a domain expert, who categorised them
as subclass or associative relations [13]. Our research goes
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beyond these studies by applying association rule mining
to suggest different, labelled, categories of associations.

2. TASK DESCRIPTION

The folk music collection Cancionero Vasco was origi-
nally compiled by the musicologist Padre Donostia for a
musical heritage competition in 1912 [18, article ‘Basque
Music’]. It has been digitised and curated by Fundación
Euskomedia in collaboration with musicologists at Fun-
dación Eresbil, under the auspices of the Basque Studies
Society. 1 The digitised collection contains 1902 Basque
folk songs and dances. The examples are annotated with
genre information and the location (toponym) where they
were collected. The annotation vocabulary is defined in
two ontologies: a geographical ontology of provinces, mu-
nicipalities and towns or villages, and an ontology of hier-
archically organised genres. The aim of applying associa-
tion rule mining to this collection is to discover patterns of
genres and regions co-occurring in the annotations, which
suggest that certain genres are particularly associated with
certain regions and vice versa.

A common challenge in applications of association rule
mining is to manage potentially large numbers of discov-
ered association rules and identify those rules which are
interesting to a user [14]. Genre–region relations feature
prominently in folk music research, and the musicologi-
cal interest goes beyond simple mappings: In a qualitative
analysis we examined surveys of traditional music in 25
European countries [18], extracted statements linking gen-
res and regions, grouped them according to similar mean-
ing and for each group suggest a shared interpretation to
facilitate translation into association rules (Table 1). As
these association categories are based on recurring obser-
vations in musicological reference articles, they are con-
sidered relevant to users of folk music collections. The
data mining task then is not only to discover associations
between the two ontologies of genres and regions, but to
distinguish associations of the categories listed in Table 1.

3. DATA AND METHODS

This section describes the data representation and the data
mining method for discovering genre–region associations
in the Cancionero Vasco. In order to identify association

1 http://www.euskomedia.org/cancionero



Category Example observation Interpretation

Present “survivals of calendar ritual and wedding music are
found in the Opole area”

genre present in region

Absent “the [two-part] form does not exist at all in Kosovo and
Metohija”

genre not present in region

Local “localized dances include the corridinho (Algarve)” genre present in exactly one region

Mainly “krakowiak dances [...] are found mainly in Mało-
polska”

genre over-represented in region with
respect to other regions

Dominant “the polka is the most popular dance in these regions” genre over-represented in region with
respect to other genres

Typical “the dance-song seguidillas is typical of New Castile” genre over-represented in region with
respect to other regions and genres

Hardly “the klarino style is hardly found at all on the islands” genre under-represented in region with
respect to other regions

Rare “Genres [...] such as the epic are quite rare in central
European repertories, whereas genres [...] such as the
ballad are quite common.”

genre under-represented in region with
respect to other genres

Table 1. Categories of genre–region associations, with example quotations from the New Grove [18].

rules of the different categories summarised in Table 1,
these categories are translated into association constraints
consisting of rule templates and rule evaluation measures.

3.1 Ontologies

The annotations mined in this study are standardised and
structured in two ontologies: a genre and a geographical
ontology, formalised in description logic (DL) [3, 9].

The ontology of folk music genres consists of two parts:
a set of statements G v G′ defines the genres and their
subsumption relations, e.g.

work songs v life-cycle songs

life-cycle songs v genre

state that work songs are subsumed by, i.e. more specific
than, life-cycle songs and that life-cycle songs are a genre.
The second part of the ontology is a set of assertions G(e)
where G is a genre concept and e a folk tune example:
this part formalises the genre annotations of the examples
in the Cancionero Vasco, using 31 genres. Examples are
asserted with their most specific known genre annotation,
which is not necessarily the lowest level of the subsump-
tion hierarchy. The genre counts used in the association
rule mining (Section 3.2) can be derived from the ontology
by querying for the examples instantiating a genre; here
the inference capabilities of DL allow to count examples
not only for the directly asserted genre but also for more
general, subsuming genres. Out of the 1902 examples in
the corpus 341 examples are without a genre annotation.

The geographical ontology covers Euskal Herria, the
Basque speaking areas in North-East Spain and South-West
France. The ontology is organised into the three levels
of provinces (7 toponyms), municipalities (681 toponyms)

and towns or villages (2280 toponyms). Locations are for-
malised as instances in DL, assigned to levels, e.g.

province(Lapurdi) and municipality(Azkaine).

In DL the geographical relationships are defined in terms
of spatial containment roles, e.g.

contains(Lapurdi,Azkaine)

asserts that Lapurdi (a province) contains Azkaine (a mu-
nicipality). Each folk tune example e is asserted with the
region R in which it was collected: collected(R, e). As
with the genre ontology, assertions can be made at any
level of the hierarchy and higher-level counts are inferred
based on the transitivity of the containment relation. Out
of the 1902 folk tunes in the Cancionero Vasco 272 tunes
are without a toponym annotation.

The original annotation terms for genres are Spanish or
Basque. For the presentation in this paper we give English
translations for genres. As toponyms we use the Basque,
rather than Spanish or French, names.

3.2 Association Rule Mining

Association rules are rules of the form a → b with an an-
tecedent item set a and a consequent item set b (a∩ b = ∅)
[20]. A rule a → b with confidence c states that c% of the
data records containing items a also contain items b. Rule
templates [14] define the form of a rule and specify which
items can occur in the antecedent and consequent. In this
study we mine for rules with one item in the antecedent
and one item in the consequent. Here an item can be a
genre (denoted G in the rule templates), a region (denoted
R) or the complement of a genre or region (denoted G and
R respectively).



a a

b nab nb − nab nb

b nab = na − nab nb − nab nb = n− nb
na na = n− na n

Figure 1. Contingency table for a rule a→ b.

The rule templates determine how the genre and region
of a candidate association are mapped onto a contingency
table from which a rule evaluation measure can be calcu-
lated [15]. Figure 1 presents a 2× 2 contingency table for
an association rule a → b, where a is the antecedent item,
b the consequent item, na the number of folk tunes anno-
tated with a, nb the number of folk tunes annotated with
b, nab the number of folk tunes annotated with both a and
b, and n the total number of folk tunes in the corpus. The
notation a denotes the complement of item a. For exam-
ple, with the rule template G → R, na refers to the genre
count and nb refers to the region count; nab is the number
of tunes instantiating both the genre and the region.

The evaluation measures most commonly used in as-
sociation rule mining are support (frequency of the co-
occurrence) and confidence (conditional probability of the
co-occurrence given the antecedent). These two measures,
however, are not sufficient to distinguish all association
categories of Table 1, e.g. Typical against Mainly and Dom-
inant. We thus considered further existing measures and
their properties (e.g. [8, 16]). Measures for each category
were selected in two steps. First, we defined the require-
ments for each category, given its interpretation (Table 1),
based on established measure properties:

• Asymmetric vs symmetric measures: For all categories
except Present and Typical the measure should be asym-
metric, i.e. distinguish between a→ b and b→ a.

• Increasing function with number of examples: The mea-
sures for Mainly, Dominant, Hardly and Rare should in-
crease with nab for fixed na, while the measure for Typ-
ical should increase with nab for both na and nb fixed.

• Decreasing function with number of counter-examples:
The measures for Mainly, Dominant, Hardly and Rare
should decrease with increasing nab, and thus na, for
fixed nab, while the measure for Typical should decrease
with both increasing nab and nab, and thus both na and
nb, for fixed nab.

• Sensitivity vs. insensitivity to sample size: As the mea-
sures are used to capture the relationship between a and
b, they should be insensitive to changes in nab and thus
to changes in n for fixed nab, na and nb.

Second, we determined measures that match the require-
ments. Where more than one measure meets the category
criteria, a measure is preferred in which variations of the
measure value can easily be related to values in the contin-
gency table [16]. Table 2 lists the resulting constraints for
each association category.

Category Template Measure

Present G−R support
Absent G→ R confidence (c = 1)
Local G→ R confidence (c = 1)
Mainly G→ R confidence
Dominant R→ G confidence
Typical G−R Jaccard
Hardly G→ R Sebag-Schoenauer
Rare R→ G Sebag-Schoenauer

Table 2. Constraints for the association categories.

Measure Definition

support s = nab

confidence c = nab/na

Jaccard J = nab/(na + nb − nab)
Sebag-Schoenauer S = nab/nab

Table 3. Definitions of the rule evaluation measures.

The definitions of the measures are given in Table 3.
To ensure invariance with changes in n, absolute rather
than relative support is applied for Present. For the cate-
gories describing under-representation (Hardly and Rare),
the measure of Sebag-Schoenauer was found to discrimi-
nate better than confidence: confidence accepts most infre-
quent pairs, while Sebag-Schoenauer accepts pairs that are
less frequent than comparison pairs.

During the mining, each candidate pair of a genre and
a region is evaluated against the category constraints, i.e.
the genre, region and pair counts are mapped onto na, nb
and nab according to the template, and the measure value
is calculated. Pairs are tested for all categories, and asso-
ciations can be assigned to more than one category (e.g.
Present and Mainly).

4. RESULTS

Table 4 lists selected highly ranked rules for all categories.
The p-values in Table 4 are calculated according to Fisher’s
exact test with left tail for Absent, Hardly and Rare and
right tail for all other categories [7]. The p-value mea-
sures the probability of finding at most (left tail) or at least
(right tail) the number of co-occurrences given by the pair
count, under the conditions of the genre and region counts.
To account for multiple comparisons, i.e. testing multiple
hypotheses on the same data, results are marked for both
significance level α and the Bonferroni-corrected signifi-
cance level β; it should be noted, though, that the Bonfer-
roni correction is highly conservative. Rules above the sig-
nificance level are not necessarily rejected as uninteresting
(see also [16]), rather the p-values provide additional in-
formation for interpreting discovered rules, with respect to
the distribution of genres and regions in the total corpus.



Genre (count) Region (count) Pair count Template Measure p-value

Present
life-cycle songs (477) Nafarroa (897) 259 G−R s = 259 0.00089++

Artaxuriketak (38) Nafarroa (897) 30 G−R s = 30 4.3e-05∗∗

Absent
dances (495) Hazparne (23) 0 G→ R c = 1 0.00093++

sacred songs (301) Araba (27) 0 G→ R c = 1 0.00922∗

Local
smugglers’ songs (1) Lapurdi (383) 1 G→ R c = 1 0.02321+

smugglers’ songs (1) Azkaine (61) 1 G→ R c = 1 0.03207+

Mainly
Artaxuriketak (38) Nafarroa (897) 30 G→ R c = 0.79 4.3e-05∗∗

moral songs (11) Nafarroa (897) 8 G→ R c = 0.73 0.04470+

Dominant
dances (495) Araba (27) 24 R→ G c = 0.89 7.8e-12∗∗

dances (495) Eugi (15) 13 R→ G c = 0.87 1.4e-06∗∗

Typical
Carlism songs (1) Biriatu (3) 1 G−R J = 0.33 0.00158∗

Hardly
dances (495) Atharratze (23) 1 G→ R S = 494 0.00857
life-cycle songs (477) Bizkaia (21) 2 G→ R S = 237.5 0.07232

Rare
Artaxuriketak (38) Lapurdi (383) 1 R→ G S = 382 0.01112+

moral songs (11) Nafarroa (897) 8 R→ G S = 111.13 0.98935
∗ significance level α = 0.01, ∗∗ with Bonferroni correction β = 0.0002
+ significance level α = 0.05, ++ with Bonferroni correction β = 0.001

Table 4. Examples of discovered association rules.

In all cases of Local, genres are represented by only
one example in the corpus and thus are necessarily identi-
fied as local. The occurrence of the smugglers’ song in La-
purdi could be linked to the site of Lapurdi, stretching from
the coast inland across the Pyrenees between Spain and
France: in fact, the example in the Cancionero Vasco was
collected more specifically in the municipality of Azkaine,
in the Larrun area known to have been used by smugglers;
in nearby Sara the “smugglers’ race”, celebrated in August,
has become part of 20th-century folklore [17].

5. DISCUSSION

The interest of this study lies in discovering genre–region
associations in the Cancionero Vasco which are potentially
interesting to users who browse or analyse the collection.
The association categories defined in this paper provide
additional semantics for rules as compared to traditional

association rule mining, and can help organise and under-
stand the folk music corpus. Multiple labels can further
specify an association (Example 1) and even capture dif-
ferent aspects of the same genre–region pair (Example 2):

Example 1: Not only are the corn-harvesting songs Artax-
uriketak present in Nafarroa, the Artaxuriketak examples
in the Cancionero Vasco are mainly from Nafarroa.

Example 2: Within the Cancionero Vasco moral songs are
rare in Nafarroa, i.e. under-represented with respect to
other genres in Nafarroa (8 out of 897 instances), but are
over-represented in Nafarroa with respect to their occur-
rence in other regions, i.e. they occur mainly in Nafarroa
(8 out of 11 instances).

The p-value is a symmetric measure, i.e. it does not
distinguish between e.g. rule G → R and rule R → G.
Using different rule templates with confidence or Sebag-
Schoenauer as evaluation measure, on the other hand, al-



Region (count) Pair count Category Measure p-value

Araba (27) 0 Absent c = 1 0.57771
Bizkaia (21) 0 Absent c = 1 0.65307
Gipuzkoa (175) 4 Present s = 4 0.46864
Lapurdi (383) 1 Present s = 1 0.9964

Rare S = 382 0.01112
Nafarroa-Beherea (47) 1 Present s = 1 0.61722
Nafarroa (897) 30 Present s = 30 4.3e-05

Mainly c = 0.79 4.3e-05
Zuberoa (80) 2 Present s = 2 0.48504

Table 5. Group of rules for the genre Artaxuriketak (genre count 38).

lows one to identify the asymmetric cases of over-repre-
sentation (Mainly vs. Dominant) or under-representation
(Hardly vs. Rare), which correspond to different observa-
tions in folk music surveys.

Example 3: Artaxuriketak occur mainly in Nafarroa as
compared to other regions (79% of the Artaxuriketak in-
stances in the Cancionero Vasco are from Nafarroa). On
the other hand, dances are dominant in Araba with respect
to other genres in the same region (89% of examples from
Araba are dances).

The association categories can facilitate the analysis of
groups of discovered rules. Folk music collections are of-
ten organised according to genres or regions [12], and folk
music surveys may review genres against an underlying
geographical classification [18]. For example, a summary
of folk-dance in Finland states: “Although most polska
melodies have been collected in Pohjanmaa, the dance was
known throughout the country except in the far north and
Karelia.” [18]

Example 4: The geographical distribution of Artaxurike-
tak at the level of provinces can be described in a simi-
lar way (Table 5): While most Artaxuriketak in the corpus
were collected in Nafarroa, the genre is also known in the
other provinces except – within the Cancionero Vasco – in
Araba and Bizkaia. Given the large number of instances
for Nafarroa (897 instances, 47% of the corpus) it is not
surprising that most Artaxuriketak were collected in Nafar-
roa, but the high proportion (nearly 80% of Artaxuriketak)
is statistically significant. It is interesting to note that tra-
ditionally farmers in Nafarroa have cultivated corn (maize)
while the chief crops in Araba have been cereals as well
as fruit, wine and olives [2]. For Lapurdi, surveys in the
1980s reported that nearly half of the area was dedicated to
wine (45%), followed by other crops (40%), woods (10%)
and urban or uncultivated areas (5%) [1].

Other folk music surveys follow a mainly geographical
organisation. For example, the New Grove article on tradi-
tional music in Croatia is structured according to regions;
the following statement is taken from the section on West-
ern Croatia: “This region is characterised by the tanac and
balun dances. [...] Other dances, like the polka and the

valcer, are also performed.” [18]

Example 5: Folk music in the province of Araba, accord-
ing to the Cancionero Vasco, is dominated by dances (89%
of the Araba examples are dances, p-value = 7.8e-12). Re-
lated rules, not shown in Table 4, indicate that of the other
genres only life-cycle songs were also collected in Araba
(pair count 3, Hardly, S = 158, p-value = 0.06411), and
more particularly within life-cycle songs the subgroup of
work songs (Present, s = 3, p-value = 0.02580).

6. CONCLUSIONS

In this paper we have shown how association rule mining
can be used to discover relevant relations between genres
and geographical locations of folk tunes, more specifically
how association rule mining with rule templates and eval-
uation measures can be used to identify different, musi-
cologically motivated, categories of genre–region associa-
tions. The method was applied to a collection of Basque
folk music, and example associations discussed in the con-
text of folk music research.

This research represents an original contribution to MIR
both in terms of retrieval task (discovering associations be-
tween folk music genres and their geographical distribu-
tion) and method (systematically combining rule templates
and evaluation measures to distinguish different associa-
tion categories). As a case study of interdisciplinary col-
laboration between MIR and musicology it demonstrates
how musicology can inform the task definition, method
design and discussion of results; the examples illustrate
how MIR can both support musicological observations and
stimulate further analysis.

Our work can be extended in several ways. The mining
results can support more traditional information retrieval
of music, like browsing and searching of music collections
guided by association categories or by groups of associa-
tion rules. Classification using association rules could be
explored to suggest genre and toponym annotations for un-
labelled tunes. The method could also be adapted to search
for associations between annotations and music content
classes. In addition the approach could be applied to data
in other MIR areas such as user tagging, folksonomies and
music recommendation.
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ABSTRACT

The embellishments of makam music in Turkey are an
inherent characteristic of the music rather than a separate
expressive resource, thus their understanding is essential to
characterize this music. We do a computational study, in
which we analyze audio recordings of 8 widely acknowl-
edged Turkish ney players covering the period from the
year 1920 to 2000. From the extracted fundamental fre-
quency, we manually segment and identify 327 separate
embellishments of the types vibrato and kaydırma. We an-
alyze them and characterize the behavior of two features
that help us differentiate performance styles, namely vi-
brato rate change and pitch bump. Also we compare these
embellishments with the ones used in Western classical
music. With our approach, we have an explicit and for-
malized way to understand ney embellishments, which is a
step towards the automatic characterization of makam mu-
sic in Turkey.

1. INTRODUCTION

Each music repertorie has specific characteristics that re-
quire specific analysis approaches [11]. This is clearly the
case of the makam music in Turkey and there has been very
few computational studies that focus on it.

Makam music in Turkey is mainly an oral tradition and
thus the audio recordings become a fundamental source of
information for its study [1]. For this research approach we
need well annotated large data sets, and we need to extract
the appropiate audio features from which to then perform
musically meaningful computational studies.

Among all the characteristics of makam music, the em-
bellishments are the most relevant ones, they are more than
simple expressive resources, in fact they are essentials of
the music [12]. Embellishments are not taught even named
by teachers. Their places are not marked in the score, the
choice and character of the embellishment is the freedom
of the performer. Ney is one of the oldest and most char-
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acteristic instrument of makam music in Turkey. The way
the embellishments have to be performed in the ney is not
taught and their places are not marked in the score. The
choice and character of the embellishment is very much in
the freedom of the performer and thus they are valuable
for understanding the difference between performers and
between performances.

In this paper we focus on two types of embellishments
used in ney performances, vibrato and kaydırma. This
choice is the result of interviews and discussions with well
known ney players 1 . To characterize these embellishments
we combine the use of well known features used in previ-
ous studies with our proposed audio features.

The paper is organized as follows; In Section 2 we pro-
vide a brief introduction to the makam music in Turkey and
to the ney and its performance practice. Section 3 describes
the data set used and in Section 4 we describe the features
that we have developed. We summarize and discuss our
findings in Section 5.

2. BACKGROUND

2.1 Makam Music in Turkey

Makam is a complex musical concept that cannot be de-
fined in a simple straightforward way. Moreover there are
differences between theory and practice of makams. In
theoretical terms, a given makam is described by the set of
the tones or notes that compose it, but in practice it is often
much more complex. The upper and lower extensions of a
tone in the makam may be regarded as tones belonging to
the same makam.

An important practical aspect of a Makam is the seyir,
which can be translated as the way that the performer uses
the notes or, briefly, his/her navigation. The important
notes for the seyir are; baslangic(start), and karar (deci-
sion). A possible translation would be the initial and finish
tone.

Another complex phenomenon is intervals of makams.
There is a long lasting and never ending discussion about
makams in Turkey [12], but we can say that there are more
than 17 intervals in an octave [12]. Among the different
interval systems, it is common practice to use the Holde-

1 We have interviewed with Osman Erkahveci, Orçun Güneşer, Ali Tan
and and Oğuz Mülayim.



Figure 1: Examples of Different Neys.

rian comma (Hc) as the smallest intervallic unit in makam
music in Turkey [2].

2.2 Ney

The ney is an end-blown flute which is mainly used for
makam music. It is one of the oldest and most characteris-
tic blown instrument of makam music in Turkey. From the
beginning of the 20th century a score representation which
was developed by extending the Western music is used.
However because of the extensive use of embellishments,
the written scores are far from the music that is actually
performed. Ney is taught and transmitted orally.

Ney has a real importance and solid place in Turkish
classical and religious music. Ney is made of reed, and
it is a rim-blown, oblique flute. The Turkish ney has six
finger-holes in front and a thumb-hole in back. Although
it is highly dependant on the talent and experience of the
performer, a ney can produce any pitch over a two-and-a-
half octave range or more. Nearly all Turkish neys have
a mouthpiece made of water buffalo horn, or sometimes
ivory, ebony, plastic, or a similar durable material. Also
there are different sizes of neys’, ranging from the Davud
ney (95 cm long), to the highest, Bolahenk Nısfiye ney
(52.5 cm long).

2.2.1 Ney and Its Performance Practice

Ney tradition is transmitted via master-pupil relationship in
Turkey. Written scores only represent the border lines of
the pieces. The embellishments, which are distinctly im-
portant, are never marked or even explicitely taught. The
main way to learn how to apply these embellishments is to
learn from masters via listening, which makes it very hard.
On the other hand, without embellishments makam music
is considered dry, monotonous and not deemed as accept-
able [12]. This is specially so in ney music. Although we
have not found any documents describing the techniques
used, our study shows the existance of clear patterns in the
performance of these embellishments, (Section 5).

From our interviews with experts we realized that the
naming of ney embellishments is a problem in Makam
music. The Ney players we interviewed agreed on nam-
ing frequency and amplitude modulation as Vibrato. How-
ever they all had difficulty naming the embellishment that
is widely used for connecting two consecutive notes and
that in some Makam literature is called Kaydırma 2 .

2 The literal translation can be sliding, however the purpose of this be-
havior is to give the feeling of non-edge connections all through the piece
rather than sliding between notes. Possible the most similar embellish-
ment in western music is the portamento.
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Figure 2: Example note sequence.

Performer Time (Minutes) #Embellishments
Hayri Tümer 7.75 16
Ulvi Ergüner 7.33 16
Aka Gündüz 7.12 45
Niyazi Sayın 7.66 53
Sadrettin Özçimi 11.20 66
Salih Bilgin 8.50 44
Ömer Bildik 2.33 21
Burcu Sönmez 5.50 66

Table 1: Performers with their test data.

From our inital quantitative studies we found that vi-
brato and kaydırma are the most used embellishments. We
will further explain the behaviour of both embellishments
but lets just say that the vibrato is a much more precise mu-
sical entity than kaydırma (Section 5) and that the kaydırma
includes several subsets of embellishments.

3. DATA COLLECTION

For our analysis we annotated 8 different performers from
different eras. Our set contains recordings starting from
1930’s to now. Our concern was to analyse and charac-
terise the ney embellishments rather than differentiating
among them. Since our study is one of the first about em-
bellishments in makam music, our first concern is to un-
derstand which embellishments were and are used by well
known ney performers and then characterize these embel-
lishments by using fundamental frequency analysis.

Our data set includes 58 minutes of audio and a total
number of 327 hand annotated embellishments, summa-
rized in Table 1.

Except Hayri Tümer and Ulvi Ergüner, there are around
6-8 embellishment for each minute of audio. For Hayri
Tümer and Ulvi Ergüner, embellishment per minute is be-
tween 2 to 4. One of the reason for this difference is that
these two players are the oldest ones, from 1930’s, and
that they shared a different style. However, this hypoth-
esis should be given with further studies with a much more
larger data set.

3.1 Performers

We are covering some of the most acknowledged ney play-
ers. According to our oral discussions with professional



Turkish ney players, Niyazi Sayın and Aka Gündüz Kut-
bay are considered as one of the most influential ney play-
ers of today. However because of the sudden death of
Aka Gündüz Kutbay at the age of 45, most of the recent
players are influenced by Niyazi Sayın. Through the oral
discussions with Ali Tan 3 , he stated that even in Turkish
Conservatories teachers follow the way of Niyazi Sayın.
Moreover, most of the ney players (both amateur and pro-
fessional), who even did not have a chance to study with
Niyazi Sayın, they consider themselves as students of his
by listening and studying his recordings . In our test set
Salih Bilgin and Sadrettin Özçimi are one of the most fa-
mous students of Niyazi Sayın. Burcu Sönmez is a student
of both Salih Bilgin and Niyazi Sayın. Ömer Bildik is a
student of Sadrettin Özçimi. All these ney players have the
influence of Niyazi Sayın.

In our analysis set, in order to avoid lineage bias we
also include some old ney players recordings like Hayri
Tümer, Aka Gündüz Kutbay and Ulvi Ergüner, who are
also well-known and highly respected ney players with dis-
tinct styles.

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

Hayri Tümer 

Ulvi Erguner 

Niyazi Sayın 

Aka Gündüz Kutbay 
Salih Bilgin 

Sadrettin Özçimi 

Ömer Bildik 

Burcu Sönmez 

Figure 3: Lifespan of ney performers we used for our anal-
ysis. We carefully chose these performers in order to cover
most of the recorded era of ney.

4. ANALYSIS

Our method is a combination of state of the art signal pro-
cessing techniques and empirical observations. From the
audio files, we obtain first the fundamental pitch of each
recording. After that, we analyze the annotated sections
one by one. Each embellishment is analyzed according to
the behavior of its fundamental frequency (Section 4.1).

4.1 Fundamental Frequency

To obtain a fundamental frequency estimation of each solo
ney recording, Makam Toolbox was used [1]. Makam
Toolbox uses an implementation of Yin [3] with hop size
of 10ms for fundamental frequency estimation. On the top
of the f0 implementation Makam Toolbox makes a post-
processing for octave correction.

All embellishment samples are measured in the 1/3 Hol-
derian Comma (HC) resolution. We choose this resolu-
tion because it is considered as the highest precision we
could find in theoretical pitch scale studies [1]. All mea-
surements were taken manually. For the statistical signif-
icance, all pieces vary in tempo and also chosen from dif-

3 Ali Tan is a full-time research asistant in Istanbul Technical
University Turkish Conservatory in the Ney performance department.
http://www.neyzenalitan.com/.

ferent Makams. HC is widely considered as the smallest
interval therefore we used HC in our tables.
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Figure 4: Top figure, is an example of the change in fun-
damental frequency in a vibrato. Bottom figure provides
the change in rate of Vibrato that is shown in top figure.

4.2 Vibrato

According to Tura [12], the extend of the vibrato in Makam
music in Turkey is around 1 HC. Both from oral discus-
sions and written resources [5,12], we could not obtain any
particular information about the structure of the vibrato in
ney.

For the vibrato analysis, 170 different vibratos from 8
different ney players were analyzed. Each embellishment
was analyzed one by one manually. In Table 2, the vibrato
rate is given in Hz and the extend value is given in HC
resolution. We also propose another feature for the deep
analysis of the vibrato in Ney, Vibrato Rate Change.

4.2.1 Extend

Extend value is calculated according to the change in the
mean f0 during vibrato. On the top graph of Figure 4, ex-
tend value is shown with red arrow. For the analysis, we
followed the definition of Tura [12]. In his book he defined
vibrato in makam music as the upper and lower change in
f0 in Holderian Comma. Therefore, the extend value that
is shown in top graph of Figure 4 is actually 2 times the
values that are shown in Table 2. For each vibrato of each
performer, we calculated its extend.

4.2.2 Rate

For each performer and for each vibrato, we measured the
maximum and the minimum rate values, top graph of Fig-
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Figure 5: Kaydırma pitch graphs.

ure 4. These values are reported in Table 2.

4.2.3 Rate Change

For the initial tests we applied the AR Prediction method
[10] and the Automatic Detection technique [8]. Both im-
plementations have its pros and cons. AR prediction tech-
nique was successful for detecting vibratos regions with
having more than 4-5 periods. Automatic Detection tech-
nique could detect vibratos with having less than 4-5 peri-
ods but since it is specialized for string instruments, it also
gave false positives if the player performers non-periodic
f0 deviations.

In both techniques features of the vibrato are the rate
and extend. Although we are not aiming to propose an
automatic detection algorithm, after these initial tests with
the existing algorithms, we realized that for the character-
ization of vibrato in ney, rate and extend features are not
enough.

As shown in the top graph of Figure 4, the distance be-
tween peeks decrease. Thus, as shown in the bottom graph
of Figure 4, the vibrato rate is increasing. According to our
analyses, we discovered that this increase in rate is a char-
acteristic behavior that most of the ney players apply. Vi-
brato Rate change in Table 2 is the ratio of maximum rate
versus the minimum rate for a single vibrato. Minimum
value represents the minimum rate change the performer

applied among all his/her vibratos and maximum is vice
versa.

4.3 Kaydırma

As we stated in Section 2.2.1, the main purpose of kaydırma
is to give the feeling of a smooth transition between notes.
However, after analyzing 157 different kaydırmas from 8
different performers, we discovered that its characteristic
is much more complicated than a simple transition. Differ-
ent from the possible equivalent study on string instrument,
[7], kaydırma has a distinct difference; its glide amount is
not constant. Moreover as shown in Table 3, in the glide
column in both ascending and descending kaydırmas, the
Standard Deviation σ, values are so high that, we can con-
clude that the glide amount is not predictable.

Thus, we add a new feature named pitch bump. It mod-
els the pitch deviation just before the ascending or descend-
ing transition. These features are shown in Figure 5.

4.3.1 Direction

This feature represents the movement direction of the glide.
Performers use both ascending and descending glides.

4.3.2 Glide Amount

Glide amount is the difference between the target note and
the base note in Holderian Commas. It is observed that
there is not a fixed amount of glide, Table 3. However,
we observed that most of the time during the ascending
kaydırma, the difference between the base note and the
transition note is much more higher than the descending
kaydırma.

4.3.3 Pitch Bump

As shown in Figure 5, for both ascending and descending
kaydırma, there is a lower or higher bump in the f0 just be-
fore the transition note. According our observations, this
is a characteristic movement for kaydırma. We also con-
firmed this behaviour with our oral discussions with ney
performers.

5. DISCUSSION

In this study we analyzed two distinct embellishments of
ney, vibrato and kaydırma. Both embellishments have sim-
ilar counterparts in Western classical music.

Vibrato has different characteristics for different instru-
ments. For string instruments of Western classical music,
vibrato extend ranges from 0.2 to 0.35 semitones which
corresponds to 0.9 to 1.5 HC, and for the singing voice of
Western Classical music it ranges 0.6 to 2 semitones, 2.7
to 9 HC [13].

As reported in Table 2, vibrato extend has a strong reg-
ularity among performers. If we check the mean values for
the performers, we may observe that except Hayri Tümer,
all of them either have a regularity of 1 or so close to 1.
These results match with the analyzes of Tura for the vi-
brato of makam music in Turkey [12]. Hayri Tümer is the
oldest ney player among the performers we analyzed. We



VIBRATO
Extend (HC) Rate (Hz) Rate Change

Performer # min / max µ / σ min / max min / max µ / σ
Hayri Tümer 9 0.5 / 0.7 0.57 / 0.1 1.8 / 7.6 1.3 / 2.7 1.69 / 0.58
Ulvi Ergüner 10 0.8 / 1.2 0.9 / 0.19 3.21 / 9.01 1.23 / 2 1.61 / 0.32
Aka Gündüz 31 0.7 / 1.5 1.1 / 0.2 2.8 / 6.2 1.18 / 1.96 1.49 / 0.26
Niyazi Sayın 29 0.5 / 1 0.9 / 0.15 2.6 / 6.6 1.12 / 1.94 1.41 / 0.25
Sadrettin Özçimi 31 0.8 / 1.3 0.9 / 0.21 2.7 / 5.5 1.05 / 1.94 1.38 / 0.26
Salih Bilgin 25 0.8 / 1.2 1 / 0.1 3.2 / 6.66 1.15 / 1.73 1.34 / 0.21
Ömer Bildik 14 0.5 / 1.7 0.98 / 0.14 2.7 / 4.5 1.43 / 1.8 1.57 / 0.19
Burcu Sönmez 21 0.8 / 1.4 1.1 / 0.23 1.7 / 6.2 1.19 / 2.8 1.67 / 0.39
All Performers 170 0.5 / 1.7 0.93 / 0.18 1.7 / 9.01 1.05 / 2.8 1.44 / 0.25

Table 2: Vibrato analysis table. The Extend column, min is the minimum value among all vibratos and max is the vice
versa. We also computed the mean µ, and standard-deviation σ, values for all vibratos of each performer.

KAYDIRMA
Ascending Descending

Glide Amount Pitch Bump Glide Amount Pitch Bump
Performer # min / max µ / σ min / max µ / σ min / max µ / σ min / max µ / σ

Hayri Tümer 7 12 / 23 16.5 / 5.06 1 / 7 2.75 / 3 7 / 10 9 / 1.73 1 / 3 1.67 / 1.15
Ulvi Ergüner 6 - - - 3 / 17 9.6 / 5.02 1 / 6 3.66 / 2.51
Aka Gündüz 14 7 / 35 18.6 / 13.7 1 / 2 1.1 / 0.3 1 / 7 4 / 4.24 1 / 2 1.5 / 0.7
Niyazi Sayın 24 3 / 53 19.5 / 13.8 1 / 4 1.8 / 1.13 1 / 10 4.27 / 3.23 1 / 2 1.34 / 0.53
Sadrettin Özçimi 35 5 / 59 28.7 / 20.4 1 / 3 2.17 / 0.75 1 / 12 8.25 / 2.98 1 / 4 2.46 / 1.05
Salih Bilgin 19 7 / 23 20 / 15.3 1 / 3 1.8 / 1.15 2 / 15 7.45 / 2.45 1 / 3 2.2 / 0.8
Ömer Bildik 7 10 / 18 14.7 / 12.1 1 / 8 3.7 / 1.14 3 / 15 6.2 / 3.1 1 / 3 2 / 1.1
Burcu Sönmez 45 5 /114 28 / 25.78 1 / 5 2 / 1.49 3 / 9 4.58 / 2.14 1 / 5 2.75 / 1.89

All Performers 157 3 / 114 21.87 / 17.3 1 / 8 2.13 / 1.75 1 / 17 5.67 / 3.43 1 / 6 2.51 / 1.43

Table 3: Kaydırma analysis table. µ represents the mean value and σ represents the standard deviation of all the kaydırma
excerpts.

do not have the exact dates for the recordings but we are
assuming that they were recorded between 1930 and 1950.
He is the only player that has the vibrato extend around 0.5
Holderian Coma. This distinction also can be heard in his
recordings. He has smoother and lighter vibrato compared
to all other players.

In Western music vibrato rate changes from 4-12Hz [4].
In our analyses, vibrato rate changes from 1.8 to 9Hz. If
we avoid the extremes we can say that in ney vibrato rate
changes from 2 to 7Hz. As reported in Table 2, in the Rate
column, performers have different choices.

On the contrary, the rate change feature has a strong reg-
ularity. When we analyze the mean values of rate change,
they are between 1.34 to 1.69 and the standard deviation
values are less than 0.5. This means that the vibrato rate
changes between 30% to 60% through the end of the vi-
brato. In western music, rate change is common for vio-
lin and soprano singers [9]. However, their rate change is
much less, around 15%.

In his thesis [6], Mallikarjuna described the features of
portamento. He considered portamento as a smooth tran-
sition between two notes. However different from the por-
tamento, kaydırma has different characteristics. As shown
in Table 3, in the Glide column, minimum and maximum

values vary a lot. Although mean values are close, the high
standard deviation values show that there is no regularity
for the glide amount. It can be 1 Holderian Coma or 114
Holderian Coma (around 2 octaves).

The important finding we obtain for glide amount is
that ascending kaydırma has typically much bigger glide
amount then descending kaydırma. Mean values for as-
cending kaydırma are around 16 to 28 Holderian Coma
whereas for descending kaydırma they are around 4 to 9
Holderian Comas.

The unique feature for ney kaydırma is, pitch bump. It
is common for both ascending and descending kaydırma.
Moreover, different from the glide amount, pitch bump has
the same characteristics for both ascending and descend-
ing kaydırmas. For all of the players except Hayri Tümer,
the amount of pitch bump is, for ascending 1-8 and for
descending 1-5 Holderian Comas. If we check the mean
values, for both ascending and descending it is around 1-3
Holderian Coma. Therefore we can conclude that there is
strong regularity for pitch bump for both ascending and de-
scending kaydırma. Low standard deviation values support
our observation.



6. CONCLUSION

In this paper we characterize the most commonly used em-
bellishments in ney. Our analyzes show that there are dif-
ferences between ney embellishments and their Western
equivalents. One of the important step was to characterize
these differences. We proposed two new features for this
characterization, vibrato rate change and kaydırma pitch
bump. We analyzed 327 embellishments of 8 different per-
formers from different eras of makam music in Turkey.

We believe that with our study, understanding of ney
embellishments are much more clear for both musicologi-
cal and computational studies.
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ABSTRACT 

Most existing studies on music mood classification have 
been focusing on Western music while little research has 
investigated whether mood categories, audio features, and 
classification models developed from Western music are 
applicable to non-Western music. This paper attempts to 
answer this question through a comparative study on 
English and Chinese songs. Specifically, a set of Chinese 
pop songs were annotated using an existing mood taxon-
omy developed for English songs. Six sets of audio fea-
tures commonly used on Western music (e.g., timbre, 
rhythm) were extracted from both Chinese and English 
songs, and mood classification performances based on 
these feature sets were compared. In addition, experi-
ments were conducted to test the generalizability of clas-
sification models across English and Chinese songs. Re-
sults of this study shed light on cross-cultural applicabil-
ity of research results on music mood classification. 

1. INTRODUCTION 

There have been a number of studies on music mood 
classification in the Music Information Retrieval (MIR) 
community in recent years [7][17]. However, most of ex-
isting studies have focused on Western music, in particu-
lar English songs. The two mood-related tasks in the Mu-
sic Information Retrieval Evaluation eXchange (MIREX): 
Audio Mood Classification (AMC) and Audio Tag Clas-
sification (mood tag set) have been using datasets consist-
ing of Western music [3]. Although such research activi-
ties have shown promising performances on classifying 
Western music by mood, there is little research on wheth-
er and how the mood categories and techniques applied to 
Western music can be equally well applied to non-
Western music. This study aims to bridge the gap using 
Chinese contemporary pop songs as a case of non-
Western music. In particular, three research questions are 
answered in this study:  
1) How well mood categories developed from English 

songs can be applied to Chinese songs and what are 
the differences of mood distributions among Chinese 
and English songs?  

2) Are audio features commonly used in mood classifica-
tion of Western songs applicable to Chinese songs? 

3) Can prediction models built using English songs be 
reliably applied to Chinese songs?        
Answers to these questions will further our under-

standing on cross-cultural generalizability of music mood 
categories, audio features and classification models.  

2. RELATED WORK 

2.1 Mood Categories in Western and Chinese Music 

In building datasets for evaluating mood classification 
algorithms, MIR researchers have used a variety of mood 
categories. Quite a number of studies have used four cat-
egories derived from the four quadrants of Russell’s va-
lence-arousal dimensional model [12]: contentment, de-
pression, exuberance, and anxious/frantic (or similar 
ones). It is noteworthy that these four categories have 
been used for both Western music [10][14] and non-
Western (e.g., Chinese) music [4][14].  

In the industry, online music repositories may organ-
ize music by mood. For example, allmusic.com, a large 
and influential online repository for Western popular mu-
sic, provides 182 mood labels that are applied to songs 
and albums by professional music editors. In fact, the 
mood categories used in the AMC task in MIREX (cf. 
Table 1) were based on the most popular mood labels on 
allmusic.com [3]. However, no research has been done to 
investigate whether these mood labels are suitable for 
non-Western music. In this study, we take on this chal-
lenge using Chinese pop music as a case (see Section 3).  

2.2 Mood Classification of Western Music 

Quite a number of studies have been conducted on auto-
mated mood classification on Western Music, as re-
viewed in [7][17]. Most of these studies extracted acous-
tic features from music audio files. Some studies com-
bined acoustic features with features extracted from other 
information sources such as lyrics and social tags [2][9].  
As one of the first studies comparing mood classification 
techniques on Western and non-Western music, this pa-
per focuses on acoustic features and leave it to future 
work to compare approaches using combined information 
modals.   

The classification models often used include neural 
network, k-nearest neighbor (k-NN), maximum likeli-
hood, decision tree, and support vector machines (SVM). 
Of these, SVM seems the most popular due to its reliable 
classification performance. In this study, we use SVM as 
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the classification model for all the experiments as our fo-
cus is on the generalizability of acoustic features.  

2.3 Mood Classification of Chinese Music 

There have been few studies on mood classification of 
non-Western music and they are predominately on Chi-
nese music. Hu et al. [4] and Xia et al. [15] classified 
Chinese pop songs using lyric features. Yang et al. com-
bined lyrics and audio features to classify Chinese pop 
songs [17].  It is noteworthy that all these previous stud-
ies used four or fewer mood categories (e.g., two catego-
ries were used in [15], “lighthearted” and “heavy-
hearted.”). Moreover, none of these studies compared 
Chinese music to Western music on either mood catego-
ries or mood classification techniques and performance.  

2.4 Comparison between Mood Classification on 
Western and Chinese Music 

To the best of our knowledge, [14] is the only existing 
study that evaluated the same mood classification tech-
niques on both Western and Chinese music. Wu et al. [14] 
extracted three acoustic feature sets of pitch, rhythm and 
timbre from 20 pieces of Chinese traditional instrumental 
music and 20 pieces of Western classical music. They 
used a Bayesian probabilistic structure to classify the 
moods in these pieces into four mood categories based on 
the Russell model and the results indicated better classifi-
cation performance on Western pieces. At the same time, 
the authors found “different identification about the 
moods between the Oriental and Western culture” (p.152).    

Our study differs from this prior work in the following 
aspects. First, the music we focus on is popular music 
from Western and Chinese cultures. Second, while [14] 
used four mood categories, we compare more than 30 
mood labels in terms of their distributions in Chinese and 
English songs. Third, the dataset in [14] was evidently 
too small (20 pieces in each culture) to draw reliably con-
clusions, whereas our study uses a dataset of 500 Chinese 
pieces and even more English pieces. Fourth, in addition 
to the rhythm and timbre features examined in [14], our 
study also examines dynamics, MFCCs, psychoacoustic 
and tonal features. Fifth, besides comparing classification 
performances on music in each culture, our study also 
investigates the generalizability of classification models 
built with music in one culture being applied to music in 
another culture (cf. Section 4.2). 

3. MOOD CATEGORIES IN CHINESE SONGS 

This section describes how we determine the mood cate-
gories and obtain the mood annotations of Chinese songs 
from the experts we recruited and those of English songs 
from allmusic.com. 

3.1 Allmusic.com Mood Labels and Translation 

To answer our first research question, we chose mood 
labels contained in the five mood clusters used in the 
AMC task in MIREX [3]. This is due to the following 

reasons. First, the AMC mood clusters were derived from 
the most popular mood labels on allmusic.com, one of the 
most popular sites for Western music, and thus they are 
representative to the mood of Western songs. Second, 
allmusic.com provides “top songs” for each of its mood 
labels, which empowers us to obtain English songs with 
expert-annotated mood labels. Third, the 29 mood labels 
in AMC mood clusters (see Table 1) are of finer granular-
ity than the commonly used four categories based on 
Russel’s model [12]. Previous studies based on the four 
categories were not able to discern the difference of 
mood distributions among Western and Chinese songs 
[14]. Fourth, as pointed out by music psychology re-
search [6], classical models like Russell’s may not reflect 
the social context of everyday music listening. Since 
allmusic.com serves a large quantity of listeners in real 
life, its mood labels are closer to the reality of music lis-
tening at present time.   

C1 Rowdy, rousing, confident, boisterous, passionate 

C2 Amiable/good natured, sweet, fun, rollicking, cheerful 

C3 Literate, wistful, bittersweet, autumnal, brooding, poignant

C4 Witty, humorous, whimsical, wry, campy, quirky, silly 

C5 Volatile, fiery, visceral, aggressive, tense/anxious, intense 

Table 1. Mood categories used in MIREX AMC task [3]. 

It is noteworthy that, in discussions with music experts 
(see below), seven additional labels were added in be-
cause the experts believed they might be important to 
represent moods in Chinese pop songs: “calm/peaceful,” 
“dreamy”, “encouraging,” “nostalgic,” “relaxed,” “sooth-
ing,” and “tender,” making 36 mood categories in total. 
Except for “encouraging” and “tender”, the other five la-
bels had appeared on allmusic.com at various time points 
(as allmuic.com changes its mood labels from time to 
time). 

The mood categories were translated into Chinese for 
consistent understanding among the annotators who are 
native Chinese speakers. The translation was first done 
by one of the authors who is a native Chinese speaker and 
fluent in English. The translation and the original English 
terms were then examined by three expert annotators. 
The four of them discussed several difficult cases (e.g., 
“autumnal,” “visceral”) before reaching agreements on 
the translations.  

3.2 Selection of Chinese Songs 

The Chinese pop songs were collected from an in-house 
collection which contains albums released in Taiwan, 
Hong Kong and Mainland China during the years from 
1987 to 2010. To maximize the diversity of songs, we 
selected one song from each album to be included in this 
study. Songs with non-Chinese (mostly English, some in 
Japanese) titles were eliminated because they were not in 
Chinese despite being sung by Chinese artists. This pro-
cess resulted in 500 Chinese songs.   



  
 

An excerpt of 30 seconds was extracted from each 
song, for the purposes of limiting the burden of human 
annotators and mitigating the cases where mood changes 
during the entire course of a song [7]. Using 30 second 
excerpts rather than entire songs is a common practice in 
MIR, but it remains in debate which 30 second segment 
should be chosen [17]. For the purpose of mood classifi-
cation, we decided to choose the segment with strongest 
emotion from each song. Specifically, we used a sliding 
window of 30 seconds to exhaustively extract all 30 se-
cond segments from each song, and then used a regres-
sion model to predict the valence and arousal values of 
each segment. The segment with highest (|valence|2 + 
|arousal|2) value was chosen to represent each song. 
Please note that the regression model was built on an ex-
ternal dataset of Western pop music [16], as there were 
no Chinese songs with proper valence and arousal anno-
tations that could be used to train the regression model.  

3.3 Annotation of Chinese Songs 

To ensure the quality of annotation and to reduce the var-
iance of annotations across annotators, this study adopts 
the approach of expert annotation.  

Three experts were recruited from a university in the 
United States. All of them were female, Chinese (Manda-
rin) native speakers, raised in Mainland China, majored 
in music, and fans of Chinese pop music. Table 2 shows 
their demographic and background information.  

ID Age Special-
ty 

Year in 
college 

Years in 
the US 

Freq. of listening to 
Chinese pop music 

1 23 Theory Senior 4 Several times a week
2 25 Violin Graduate 0.5 Daily 
3 25 Vocal Graduate 3 Several times a week

Table 2. Information about the experts. 

The annotation was conducted through a web-based 
survey system. Figure 1 shows the interface of annotating 
a piece. One or more mood labels could be applied to 
each music piece. This is more in accordance to the reali-
ty where a song can express multiple moods [2].  

 
Figure 1. Screenshot of the annotation interface. 

Before the annotation started, all three experts met to-
gether with one of the authors for a training session. An-
notation requirements were made clear during the session, 
including “focusing on the mood expressed by the pieces 
instead of mood induced in yourselves;” “making use of 

the lyrics but without looking them up anywhere;” “ig-
noring the order by which the mood labels are arranged.” 
Also in the training session, the experts listened to eight 
30 seconds long pieces and discussed which moods each 
piece expressed. Half of the eight pieces were English 
songs with very different moods selected from a previous 
study [16] and the other half were randomly selected 
from the Chinese pieces to be annotated. Through the 
discussion, the experts reached better agreement on musi-
cal meanings of the mood labels.     

Each piece was assigned to one expert and the three 
experts annotated 150, 200 and 150 pieces respectively. 
Using one human judge’s opinion as gold standard for 
evaluation has been verified to be effective in the domain 
of text information retrieval [13]. Admittedly, this has yet 
to be verified in MIR, which will be our future work. The 
experts reported that each song took each of them about 1 
minute to annotate and were paid for their work on an 
hourly basis.  

3.4 Mood Categories in Chinese and English songs 

A total of 2,453 mood labels were applied to the 500 
pieces, with one piece getting 1 to 13 labels. On average, 
each piece had 5 labels (standard derivation: 2.08). Each 
of the 36 mood labels were applied to 6 to 202 pieces, 
with an average of 68.14 pieces each label (standard deri-
vation: 40.85). The most popular mood labels among the 
500 Chinese songs were “tender” (202), “wistful” (164), 
and “passionate” (128). The least popular mood labels 
were “volatile” (6), “wry” (6), and “nostalgic” (8). The 
distribution of Chinese songs across mood categories is 
shown in the left panel of Figure 2.  

As comparison, we counted the number of “Top 
Songs” provided by allmusic.com for each of the mood 
labels, as shown in the right panel of Figure 2. Note that 
the numbers of Chinese songs in Figure 2 are limited to 
the songs available to us. While allmusic.com has a much 
larger song pool, they only provided up to 100 top songs 
for each mood label. Despite this, it is still clear from 
Figure 2 that there are more Chinese songs than English 
songs labeled with “relaxed,” “wistful,” “passionate,” 
“brooding,” or “rousing.” On the other hand, there are 
much fewer Chinese songs labeled with “wry,” “vola-
tile,” “humorous,” “aggressive,” and “fiery.” Such differ-
ence might reflect the differences between the Chinese 
and Western cultures: the Chinese culture tends to re-
strain the expression of feelings and Chinese people are 
more introverted compared to Western people [11]. An-
other possible reason for the absent of radical moods (e.g., 
“aggressive,” “fiery”) in Chinese songs might be that 
Chinese popular music has a shorter history comparing to 
Western one and the whole mood spectrum is yet to be 
developed. 

To further illustrate the applicability of the mood cate-
gories to Chinese songs, we also examined and compared 
the relative distance among mood categories based on the 
two datasets. The distance between a pair of mood cate-
gories was calculated based on the common songs shared 



  
 

by them. We then projected the mood labels based on 
their distances to a 2-D space using multidimensional 
scaling (MDS) for each of the two datasets, as shown in 
Figure 3. It can be found that the relative positions of 
mood labels for both sets share some similarity: “aggres-
sive,” “fiery,” “intense” and “volatile” are clustered to-
gether and away from low arousal moods such as “amia-
ble” or “wistful.” Another two clusters shared by both 
plots are also in line with common sense:  “rollicking,” 
“cheerful,” “passionate” and “rousing”; “literate,” sooth-
ing” and “bittersweet”.  

 

Figure 2. Song distribution across categories. 

The two plots in Figure 3 also differ in several ways. 
“Dreamy,” “brooding” and “cheerful” are close to one 
another in the English dataset but are separated out in the 
Chinese dataset which seems more intuitive. As another 
example, the English set puts “campy” and “witty” to-
gether with “cheerful” and “amiable” while the Chinese 
set separates them apart. This difference might be related 
to the cultural contexts. The Chinese experts interpreted 
the first two words as neutral and the last two as positive. 
However, an English native speaker said he would asso-
ciate the four terms to “fun” although the first two terms 
were more of a kind of “dark” fun. In sum, the relative 
distance among mood labels in the Chinese set, although 
somewhat different from that in the English set, seems 
agreeable with the semantic meanings of the terms. 

 
(a) Mood distance in the Chinese dataset 

 
(b) Mood distribution for the English dataset 

Figure 3. Projection of mood categories to a 2-D space. 

 From the comparisons of song distributions across 
mood categories as well as the relative distance between 
them, we can see that the mood categories used to de-
scribe English songs are generally applicable to Chinese 
songs with exceptions of radical moods such as “fiery” 
and “volatile.”   

4. CLASSIFICATION EXPERIMENTS 

To answer research questions 2 and 3, we conducted 
mood classification experiments on Chinese and English 
songs. To build a dataset of English songs, we collected 
the “Top song” lists from allmusic.com for mood labels 
used in this study and then obtained 30-second audio pre-
views from 7digital.com which boasts itself as “a leading 
digital media delivery company.” A total of 1,520 Eng-
lish song clips were collected. 

All experiments were set up as binary classifications 
for each mood category, without considering possible 
correlations between categories. Positive examples of a 
mood category are songs labelled with that category 
while negative examples are randomly selected from 
songs labelled with other categories. Positive and nega-



  
 

tive examples are balanced both in training and test sets. 
The classification is carried out by SVM, with RBF ker-
nel and the two parameters C and γ tuned. Each experi-
ment was repeated 20 times and average accuracy values 
are reported. In our evaluation, we only used the mood 
classes with more than 20 positive examples in both Chi-
nese and English datasets. Throughout the experiments, 
the datasets were split into 50% training and 50% test. 

4.1 Effectiveness of Acoustic Features 

In view of the complexity of mood perception, it is diffi-
cult to find a universal feature representation that well 
characterizes every mood. In addition, the perceptions of 
different moods in music are usually associated with dif-
ferent patterns of acoustic cues [5]. We therefore extract-
ed acoustic features that represent various perceptual di-
mensions of music listening and trained classifiers using 
features of each perceptual dimension separately. 

A total of six feature sets were examined in this study, 
as summarized in Table 3. They were extracted using the 
MIR toolbox [8] and the PsySound toolbox [1]. These 
features have been used extensively in previous work on 
mood classification [7][17].  

Feature Type Dim Description 

RMS Energy 2 The mean and standard deviation of 
root mean square energy 

PHY Rhythm 5 Fluctuation pattern and tempo [8] 

PCP Pitch 12 
Pitch class profile, the intensity of 
12 semitones of the musical octave 
in Western twelve-tone scale [8] 

TON Tonal 6 
Key clarity, musical mode (ma-
jor/minor), and harmonic change 
(e.g., chord change) [8] 

MFCC Timbre 78 
The mean and standard deviation of 
the first 13 MFCCs, delta MFCCs, 
and delta delta MFCCs 

PSY Timbre 36 

Psychoacoustic features including 
the perceptual loudness, volume, 
sharpness (dull/sharp), timbre 
width (flat/rough), spectral and to-
nal dissonance (disso-
nant/consonant) of music [1] 

Table 3. Feature representations adopted in our study. 

Figure 4(a) shows the average classification accuracy 
of the binary classification tasks on the two datasets. The 
six audio descriptors performed well in both sets and 
even better for the Chinese songs. The relative perfor-
mances among the feature sets are similar in both datasets: 
timbre descriptors performed better than energy or 
rhythm related descriptors. The fact that PCP and TON 
features worked well for Chinese songs reflects that the 
composition of contemporary Chinese pop songs is influ-
enced by the Western twelve-tone scale. In addition, we 
find that PSY performed the best for both datasets with 
an average accuracy of 74.7% and 65.8%, respectively. 
The performance differences between PSY and the first 
four features sets are significant (pair-wise t-test, p < 

0.001). This shows that the psychoacoustic features seem 
to be generally applicable to Chinese songs [1].  

It is interesting that significantly better performance 
(pair-wise t-test, p < 0.001) is obtained for Chinese songs 
than for English songs. Although both datasets were an-
notated by experts (recruited by allmusic.com and by us, 
respectively), the allmusic.com song lists contain “tier1” 
(more representative) and “tier2” (less representative) 
songs. Our inclusion of tier2 songs may have introduced 
noise to the English dataset. In contrast, all the Chinese 
songs were annotated with the same criteria. The perfor-
mance difference may also result from the fact that the 
excerpts of the Chinese songs were segments with strong 
emotion, whereas the English excerpts were provided by 
7digital which may not represent the full songs annotated 
by allmusic.com experts.  

4.2 Cross-cultural Applicability of Classifiers 

In this subsection, we report the result of using classifiers 
trained from English songs to classify Chinese songs, and 
vice versa. This set of experiments is designed to study 
the cross-cultural applicability of classification models 
which has rarely been addressed in the literature. Figure 
4(b) shows the performances across the six feature sets. 

PSY was again the best performing feature set, with 
average accuracies of 63.3% and 59.4% for Chinese and 
English test data, respectively. The performance differ-
ences between PSY and other feature sets are significant 
when Chinese songs are used as the test set (pair-wise t-
test, p < 0.001). While the performances are comparable 
to those in the literature [3][17], they are significantly 
worse than those of last experiments where training and 
testing data were drawn from the same dataset (pair-wise 
t-test, t = 5.92 for Chinese songs; t = 5.09 for English 
songs, df = 25, p < 0.001). This means the datasets in the 
two cultures have significant difference. Whenever pos-
sible, it is better to use songs in the same culture to train 
classification model. However, in cases when training 
data from the same culture as test data are not available, it 
is still an acceptable alternative to use classification mod-
els built with data in the other culture.  

Using English songs as training data to classify Chi-
nese songs performed significantly better than the other 
way around (pair-wise t-test, t = 3.70, df = 25, p = 0.001). 
This may be because there were more English songs 
making larger training sets and/or mood classification of 
Chinese songs seemed to be easier (c.f. Section 4.1). 

To further examine possible differences in acoustic 
characteristics between English and Chinese songs, we 
applied MDS to project the PSY features of the songs to a 
2-D space (Figure 5). The fact that the two datasets over-
lap to a large extent indicates that Chinese songs and 
English songs in our datasets have similar perceptual 
timbre quality (as depicted by the PSY features [1]). This 
may partially explain the fact that PSY features per-
formed well in both English and Chinese songs as well as 
the cross-cultural experiments. 



  
 

      
(a)                                                                                          (b) 

Figure 4. Average accuracy of different feature sets for mood classification of (a) intra-cultural classification using Chi-
nese and English datasets and (b) inter-cultural classification using the other set as training data.  

 
Figure 5. Visualizing PSY features of the two datasets. 

5. CONCLUSIONS AND FUTURE WORK 

This study investigates the cross-cultural applicability of 
mood categories, acoustic features and classification 
models in the case of English and Chinese songs. Results 
show that mood categories found in English songs are 
generally well applicable to Chinese songs except for 
several categories representing radical moods. It also 
seems feasible to apply feature descriptors developed for 
English songs to represent the audio content of Chinese 
songs, possibly due to the overlap of Psychoacoustic tim-
bre features in both datasets. Our cross-cultural evalua-
tion showed significant degradation of classification per-
formance compared to the result of within-culture evalua-
tion, although the absolute accuracy values are still com-
parable to the state-of-the-art in the literature.  

In future work, we will examine the cross-cultural ap-
plicability of audio features and classification models on 
individual mood categories. We also plan to explore the 
problem of predicting the valence and arousal values of 
Chinese songs and investigate whether techniques that 
worked for Western music will work for Chinese music.   
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ABSTRACT

Today, annotated MIR corpora are provided by various re-
search labs or companies, each one using its own annota-
tion methodology, concept definitions, and formats. This is
not an issue as such. However, the lack of descriptions of
the methodology used—how the corpus was actually an-
notated, and by whom—and of the annotated concepts, i.e.
what is actually described, is a problem with respect to the
sustainability, usability, and sharing of the corpora. Ex-
perience shows that it is essential to define precisely how
annotations are supplied and described. We propose here
a survey and consolidation report on the nature of the an-
notated corpora used and shared in MIR, with proposals
for the axis against which corpora can be described so to
enable effective comparison and the inherent influence this
has on tasks performed using them.

1. INTRODUCTION

The use of annotated data usually corresponds to increas-
ing performances in a field of research, as has been seen
in the cases of speech and language processing. The ac-
cessibility of novel annotated data usually corresponds to
the initiation of a number of research activities in a field.
This is the case of music genre, chord recognition, and mu-
sic structure in music information retrieval (MIR). For this
reason, annotated data can be considered to be a major is-
sue in MIR. In MIR, there is currently no dedicated in-
stitution responsible for providing music corpora compa-
rable to ELRA 1 or LDC 2 in the speech and natural lan-
guage processing (NLP) community. Instead, corpora are
provided individually by various research labs and compa-
nies. While recent years have seen a large increase in cor-
pora creation initiatives (e.g. Isophonic, SALAMI 3 , Bill-
board, and Quæro), each research lab or company uses its
own annotation methodology, concepts definition, and for-
mat. This is not a problem in and of itself, but the lack

1 http://www.elra.info/
2 http://www.ldc.upenn.edu/
3 Structural Analysis of Large Amounts of Music Information
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of descriptions of the methodology used, i.e. how the cor-
pus was actually annotated, or of the concepts annotated,
i.e. what is actually described, presents problems with re-
spect to the sustainability, usability, and sharing of cor-
pora. Therefore, it is essential to define exactly what and
how annotations of MIR corpora should be supplied and
described. We propose here an avenue to improve this
situation by defining a methodology for describing MIR
corpora and the implicit or explicit assumptions made dur-
ing their creation. It should be noted that similar initia-
tives have been taken in the speech and NLP community
to favor sharing and exchange of corpora (see for exam-
ple [1], [2] [3]) leading to descriptions close to the one
proposed here.

2. DEFINING AN ANNOTATED MIR CORPUS

In the following, by annotated corpora, we mean “musical
audio data with annotations”. Such corpora can be used
for research purposes to derive knowledge or train systems,
or for benchmarking and evaluation projects, both internal
and public, as in MIREX 4 . Creating an annotated MIR
corpus involves:

(A) choosing or creating a set of audio items (denoted by
“raw corpus” in the following),

(B) creating and/or attaching related annotations, and
(C) documenting and storing the results to ensure sus-

tainability and sharing.

While these points may seem obvious, each of them
involves making choices that in the aggregate will define
what exactly the corpus is about, what use it is for, and
what the underlying assumptions behind it are. In the fol-
lowing, we provide insights about the choices that must be
explicitly or implicitly made for each of these points, and
the implications of those choices. Figure 1 summarizes the
various aspects of the proposed description.

2.1 (A) Raw Corpus

In the case of “audio MIR,” the annotations describe au-
dio items 5 , which we denote here by the term “raw cor-
pus”, as opposed to the “annotated corpus”. The choice of
these audio items defines the domain, or musical area, for
which the results derived from the annotations—results

4 MIREX: Music Information Retrieval Evaluation eXchange
5 Whether the annotations are distributed with or without the audio

items, the following remains true.
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Figure 1. Decomposing the creation of a MIR annotated corpus into the tasks and sub-tasks involved.

from an experiment, training, or evaluation—are valid. For
example, results derived from the music genre defined for
the Tzanetakis test-set [4] do not generalize to the Million-
Song test-set. The choice of audio items also determines
the domain for which the concepts defined by the anno-
tations are valid. This is specific to the way annotation is
performed in the MIR field: while in other domains, con-
cepts are first defined, and then used for the annotation of
items, in MIR, the concepts are (in most cases) defined by
the annotations themselves. For example, “music genre”
is not defined textually, but rather is defined by its appli-
cation to a specific test-set, such as Tzanetakis or Million
Song. The same is true for “chords,” whose meaning may
differ in the context of the data to which it is applied: in
the Beatles [5], it refers to guitar chords, but when applied
to Billboard songs, it is a reduction of the overall harmonic
content. Because of this, special care must be taken when
selecting audio items for an annotated MIR corpus.

It is clear that results obtained from experiments on (i)
synthesized MIDI files, (ii) audio recorded for the purposes
of an experiment, or (iii) audio as sold by online music
services, do not have the same impact. Note that this in no
way means that one is better than the others.

To help describe the choices made so far in MIR, we
propose to distinguish between three categories:

• a11 - artificial audio items made specifically for the
purpose of representing an annotation

• a12 - real audio items recorded specifically for the
purpose of the creation of a corpus

• a13 - real audio items sampled from the real world

2.1.1 (a11) Corpus of Synthetic Items

This kind of corpus is specific to the music research com-
munity, based on the assumption that, within certain limits,
rendering a MIDI file can create a music audio signal. Ex-
amples of this are [6] for the creation of a multi-pitch esti-
mation corpus, [7] for the case of chords, and the MIREX
corpus used for key estimation.

There are several advantages to this approach. It allows
(i) having close to perfect annotations very easily, since au-

dio can be partly considered to be a direct instantiation of
the annotation; (ii) having full control over the audio ren-
dering process, such as testing the influence of instrument
changes, reverberation or delay; and (iii) rapidly creating
a large corpus. Its major drawback is the lack of realism
due to (i) the absence of interpretation by musicians; (ii)
the absence of realism due to sound variations, propaga-
tion, and capture by microphone; and (iii) the absence of
“production” as made in recording studios.

2.1.2 (a12) Corpus of Created Real Items

The second trend consists in creating specific audio items
for the purpose of research. The first corpora prepared in
this way were built for “instrument samples” research—
McGill [8] and Studio-On-Line [9]. In this case, the
annotation—pitch, instrument name, and playing mode—
is added during the recording session. Corpora for multi-
pitch, source separation, and event recognition have also
been created, such as the ENST Drum database [10], con-
taining audio and video, and the MAP database [11], using
a Yamaha disklavier for automatic pitch annotations. The
most well-known and used corpus in MIR research is such
a data set—the RWC corpus [12, 13].

The advantages of this approach are that it allows (i)
complete specification of the underlying content property,
(ii) easy creation of the annotations at the same time as the
occurrence, and (iii) distribution of the corpus with no re-
strictions, as the creator of the corpus usually owns the au-
dio copyright. The main drawback of this is again the lack
of realism of the resulting audio items—e.g., RWC is a
very valuable resource but does not sound like iTunes mu-
sic. This is partly due to the recording conditions that a lab
can afford—expensive compressors and enhancers remain
in the big production studios. Also, the music composition
used is often prototypical. All of this frequently creates a
bias when using these corpora outside of the context of the
experiment for which they were built.



2.1.3 (a13) Corpus of Sampled Real Items

The last trend corresponds to what has long been known
as “using a private music collection”. These could not be
shared, mostly due to copyright issues. Today, because of
the possibility of referencing audio items by ID (CD ref-
erence or Musicbrainz/ EchoNest/ Amazon/ 7-Digital ID),
there is a major trend toward these corpora. The main ad-
vantage of this type of corpus is that it represents exactly
the music people listen to or buy, with artistic interpretation
and professional sound production. It also allows the eval-
uation of concepts that are well-established in the literature
for their applicability to everyday music (see the case of
the “chord” concept). The major drawback of this type of
corpus is the cost of the annotations, which involve either
human annotation (by dedicated people or by crowdsourc-
ing) or data aggregation (for example, aggregating guitar-
tab collections or music-recommendation sites).

However, underlying a corpus created by sampling the
real world lies a major question: how was the sampling
done? For which reasons or purposes were the specific
music tracks selected? This is actually rarely described,
with the exception of [14], which provides an in-depth de-
scription of the sampling for the Billboard corpus. We dis-
tinguish here between four trends:

Specific-content sampling: The sampling is done in
order to highlight specific content characteristics. An ex-
ample of this is the corpus proposed by [15] for music
structure. It consists of a selection of tracks from Euro-
vision (the European Song Contest), i.e. pop songs with
a typical pop structure. Another is the corpus proposed
by [5] for chord annotation, which consists primarily of a
selection of tracks from The Beatles, essentially made of
guitar chords. While this perfectly fits the purpose of their
annotations, care must be taken with respect to the validity
of the concepts (e.g. the specific definition of structure or
chords) outside of the context of these corpora.

Popularity-oriented sampling: The sampling is done
according to what people were or are reading, listening to,
or watching the most. An example is given in [14], in
which the sampling is performed based on the Billboard
charts. However, in this case, some music genres might be
over-represented.

Uniform sampling: The sampling is done in a uniform
way according to a description grid. The dimensions of this
grid, as in our project, may represent music genre/style,
year, or country 6 . In each resulting cell of the grid, the
most popular audio items are selected. In this case, some
music styles can be over-represented.

Accessibility-oriented sampling: The last trend con-
sists in selecting items because they are freely available
(e.g. Magnatune and Internet Archive), without any other
considerations.

2.1.4 (A2) Type of Media Diffusion

Apart from the choice of the sampling process, the type of
media diffusion also needs to be decided during the process
of corpus creation. Corpora can represent isolated music

6 These meta-data can be provided, e.g. by AMG. It should be noted,
however, that the source of meta-data can create a bias.

tracks, but may also include items as diverse as music in-
side a TV/Radio audio stream (as in the corpus of [16]),
the audio part of a video clip or User-Generated-Content
videos, a live recording, a bootleg, or a DJ-remix. This im-
plies different audio qualities, and also the possible pres-
ence of interfering sounds such as speech, applause, and
the ambient atmosphere of live performances.

2.1.5 Definition of the Media Coding Properties

Finally, the audio properties also have to be described, in
terms of such variables as frequency bandwidth; the pres-
ence of drops, noise, pops, hisses or clicks (due for exam-
ple to media trans-coding from vinyl); and the number of
channels—mono, stereo, or multi-channel.

2.2 (B) Attaching Annotations to Audio Items

Although this is probably the most important aspect of an
annotated corpus, it is often the one that is least described
(except if the annotations were the subject of a dedicated
publication, as in the case of the results of a listening ex-
periment [17]). The main points to detail are the following:

• Where do the annotations come from?
• What do they represent? How are they defined?
• What is their reliability?

2.2.1 (B1) Origin of the Annotations

The central question is the origin of the annotations. We
distinguish here between four different cases:

Automatic annotations
• (b11): The annotations are obtained by the synthesis

parameters [6] (a11), as scores given during the recording
process or analysis of the individual tracks of the record-
ings [13] (a12). In this case, the generative process of the
music defines both the labels used for the annotation and
the annotation itself. Its reliability is very high.

• (b12) The annotations are obtained by aggregation
of diverse extant content. Examples of this are the Million
Song Test-Set [18] and the use of Guitar-Tab in [19]. In this
case, each annotation and its definition and reliability are
defined by its provider: Last-FM data are obtained through
crowdsourcing, Echo-Nest data are algorithm estimations,
and MusicXMatch contains official lyrics.

Manual annotations:
• (b13): The annotations are the results of an experi-

ment. In this case, the definition of the annotation is pro-
vided by the guidelines of the experiment. The reliability
of the annotation is derived from the experimental results,
either in a summarized form (e.g. two major peaks of the
tempo histogram in [17]) or from the whole set of annota-
tions, letting the user decide the way to summarize it (e.g.
perception of tempo and speed in the case of [20]).

• (b14): Crowdsourcing, in particular Games With A
Purpose (GWAP). In this case, annotations are obtained
using various game processes [21–24]. The labels used for
the annotation are either determined before the game, pro-
viding an existing frame of reference; or determined by the
users during the game, allowing free input. In both cases,
the definitions of the labels are not provided (although they



may be inferred by another gamer’s choices), but rather are
defined by the use that gamers make of them. In this con-
text, when a reliability measure of the annotation is pro-
posed, it is usually derived from the number of occurrences
of a label [24].

• (b15): Traditional manual human annotations. Ex-
amples of these are [5, 25, 26].

(b13), (b14) and (b15) are the most interesting for us
here, since they involve thinking about the definition of the
annotation concepts and the techniques for performing the
annotations and measuring their reliability. Manual anno-
tation is (very) costly, so the annotation process should en-
sure quality and reusability. In the field of natural language
processing, the authors of [27] show that “corpora that are
carefully annotated with respect to structural and linguistic
characteristics and distributed in standard formats are more
widely used than corpora that are not”.

2.2.2 (B2) Definitions

(B21) Concepts: The term annotation refers both to the
process of adding a note or a label to a flow of data
(such as audio music, speech, text or video) and to the
result of this process—the notes themselves, anchored in
the source flow. The annotations are all the more useful
to the extent that they are designed for a specific appli-
cation [28]. Depending on the final application, the la-
bels may not carry the same semantics. The semantics
may even be completely different—for example, annotat-
ing football matches with the intent of producing an auto-
matic summary [29] is very different from annotating foot-
ball matches for purposes of linguistic analysis. In speech
and natural language processing, saying that we may find
as many annotation models as there are annotation projects
is not too far from reality. In MIR, it seems that the same
concepts are always used, with different meanings that are
sometimes only implicit.

In the case of manual human annotations, the concepts
to be annotated must be defined. The absence of defini-
tion is clearly a problem for a set of tasks in MIR (beat 7 ,
chord 8 , and structure 9 , to name just a few). Recently,
efforts have been made to clarify the concepts being anno-
tated through dedicated papers or through the on-line avail-
ability of so-called “annotation guides” [15,26]. Those ef-
forts should be encouraged. It must be noted that the use
of annotation guidelines has been considered part of “best
practices” in speech and natural language processing for
some time, following the trend in this direction in corpus
linguistics [28].

(B22) Rules: Beyond the definition of the concepts be-
ing annotated, the annotations are performed using a set of
rules. This set of rules should also be described. For exam-

7 Given that beat is mostly a perceptual concept, what is the metrical
level being annotated?

8 In the case of chord annotations, what is the definition of chords? Are
we considering the perceived chord of the background accompaniment?
Do we also consider the lead vocal? Are the chords derived from the
guitar part?

9 The case of music structure is even less defined. What is a chorus? A
segment? Why could a segment not be further divided into sub-segments
or grouped into meta-segments? Considering this, the proposal made in
[30] to store the various possible annotations is worth mentioning.

ple, what is the temporal precision used for segment anno-
tations? Which type of dictionary was used for the labels?
Are there equivalences between labels? To exemplify the
difference between concept and rules used to annotate this
concept, consider an experiment in a recent project to an-
notate beat/tempo. Two different rules were used. The
first was to do annotation of beats and then infer the tempo
curve from that; the second was to adjust a tempo curve
so as to align a sequencer grid to an audio track, and then
infer beat positions. The two methods describe the same
concept, but lead to different results (data not shown).

2.2.3 (B3) Actors and Quality

(B31) Who are the annotators? Annotators may be stu-
dents or researchers, creating a corpus that will directly fit
their research, with the model of their algorithm in mind
while annotating; musicians, with a strong ability to ap-
ply the concepts with respect to detailed musical structure,
sometimes losing sight of overall perception; or everyday
people. This choice influences the way the annotation is
performed.

(B32) Reliability of the annotation? Although they
are considered to be able to generate “gold standards“, hu-
mans are not perfect annotators. The definitions of the con-
cepts to be annotated might not have been defined clearly,
they may not fit the content of a given audio file, there
might be several plausible possibilities for a particular an-
notation, or the annotator may lose concentration. The
question of the reliability of the annotation is therefore
another major issue. For this reason, it is common prac-
tice to do cross-validation of the annotations. This can be
done by applying either or both of two scenarios. In the
first scenario, an annotated track is validated or corrected
by a second annotator. In the second scenario, the same
track is annotated independently by at least two annotators.
The resulting annotations are then compared by comput-
ing the inter-annotator agreement (using the Kappa coeffi-
cient [31] or other measures 10 ). A decision is then made
whether the annotation is sufficiently reliable, or whether
it should be redone using the same definitions and rules,
or whether the definitions or rules should be modified.
In speech and natural language processing, computing the
intra-annotator agreement (agreement of an annotator with
him/herself as the project progresses) is also considered
to be good practice and allows the detection of potential
issues with the annotators [33]. This is already done in
sound perception experiments, and could be extended to
annotation projects.

Overall, the methodology used should be documented
and detailed. In speech and natural language processing,
the typical methodology includes early evaluation of the
annotation guidelines using inter-annotator agreement, the
update of these guidelines with the help of the annotators’
feedback, regular checking, continuous use of inter- and

10 It must be noted, however, that the resulting coefficient of agreement
(Cohen’s Kappa or others) is far from being wholly sufficient as a met-
ric when used in isolation, and should be accompanied by details of the
choices that were made to compute it. In this respect, the contingency ta-
ble provides more interesting information about the annotation reliability
than the inter-annotator agreement itself [32].



intra-annotator agreement and/or precision measures (go-
ing so far as the so-called “agile annotation” [34]), and a
final evaluation of the resource that has been produced.

2.2.4 (B4) Annotation Tools

Caution is necessary in selecting the appropriate annota-
tion tool, as the limitations of the tool will impact the an-
notation model. For example, there may be relations that
are impossible to annotate, or the interface may contain a
feature that is difficult to access and hence seldom used.

2.3 (C) Documenting and Storing the Results to
Ensure Sustainability and Sharing

Corpus sharing and distribution does not simply require
putting all of the audio data and annotations into an archive
file. From our point of view, it implies providing infor-
mation on all of the above-mentioned points (A* and B*).
We provide here some additional recommendations for im-
proving the distribution process.

2.3.1 (C1) Corpus Identification

Currently, most corpora in MIR research or MIREX bench-
marking have no identifier (except RWC, Isophonic, or
Million Song Test-Set). They are referred to as “the corpus
used in the publication of [reference]”. A unique identifier
should be assigned to each corpus, including versioning of
the annotations and annotation guidelines (see [35]). This
could take the form of a simple URI (example of this would
be corpus:MIR:qmul:2004:beatles:chords:version1.0) or
used the more elaborated Vocabulary of Interlinked
Datasets 11 . This would solve some ambiguity issues, such
as when a corpus is updated over time (for example the
SALAMI corpus), or when one set of annotations is re-
vised by another lab and later included in a new corpus
(for example the structure annotations of The Beatles).

2.3.2 (C2) Storage of the Created Annotations

Annotations must be sustainable. We therefore recom-
mend that the storage of the data make their semantics
explicit. Up to this point in time, many annotations of
local-in-time concepts such as beat, chord, and structure
were done in formats where the semantics is implicit in the
corpus. In particular, the so-called “.csv” or “.lab” formats
(one row for time, one row for labels) would not be sustain-
able outside of the context of a given corpus 12 . RDF (as
used by QMUL [5]) or XML (as used by [30]) seem good
choices. For the later, the MPEG-7 xml shema [36] already
proposes a full-range of description with inherent semantic
and the possibility to define new semantics using Classifi-
cation Schemes (CS). Whatever choice, the definition of
and the reference to a controlled list of labels is necessary.
It also allow to define the width of the description-space 13 .

Providing a precise reference to the audio items being
described is also crucial. Considering that recent anno-
tated corpora were distributed without audio media, this

11 http://www.w3.org/TR/void/
12 Consider the question of how a user will interpret the “1” label ten

years from now.
13 This would for example make it possible to decide whether a C-Maj

chord is really a C-Maj or a reduction of a C-Maj7+9 chord.

is clearly a major issue. Several linkage mechanisms be-
tween annotations and audio media have been proposed
so far: CD reference (as in Isophonic), Musicbrainz ID
(as in the Million Song) or the EchoNest ID, Amazon ID,
7-Digital ID. The reference should also allow referencing
time inside the files. The example of the alignment prob-
lem of the Beatles annotations to the various possible audio
instances is notorious in the MIR community. Inclusion in
the annotation of time-stamped identification, such as is
provided by audio-ID techniques, would help.

(C1) Corpus ID: corpus:MIR:AIST:RWC:2006:version1.0
(A) Raw Corpus
(A1) Definition: (a12) created real items; 315 tracks created for
the specific purpose of having a copyright-free test-set for MIR
research representative of the various genres, styles, instrumenta-
tion, vocal types (see [12] for details)
(A2) Type of media diffusion: full tracks stereo high-quality
(B) Annotations
(B1) Origin: (b11) synthetic—obtained during creation and
(b15) manual annotations
(B21) Concepts definition: only defined by the annotation rules
(B22) Annotation rules: - Standard MIDI Files (SMF) tran-
scribed by ear, - Lyrics of songs obtained during creation, - Beat/
downbeat annotated using metronome clicks of recording and
manual editing, - Melody line annotated using fundamental fre-
quency estimation on the melody track and manual editing, - Cho-
rus sections method is not indicated, - Audio synchronized MIDI
Files using the annotated beat positions
(B31) Annotators: a music college graduate with absolute pitch
(B32) Validation/ reliability: not indicated
(B4) Annotation tools: “Music Scene Labeling Editor”
(C) Documents and Storing
(C2) Audio identifier and storage: RWC-specific audio iden-
tifiers, audio files are available through audio CDs, annotations
available through archive files in CSV format

(C1) Corpus ID: corpus:MIR:LastFM:Tempo:2011:version1.0
(A) Raw Corpus
(A1) Definition: (a13) sampled real items. Sampling method:
somehow uniform—4006 tracks chosen “essentially at random”
among several thousands
(A2) Type of media diffusion: 30s extract of music items
(B) Annotations
(B1) Origin: (b13) Experiment and (b14) Crowd-Sourcing
(B21) Concepts definition: the concepts are defined by the re-
sults of the experiments, itself defined by the instructions pro-
vided to the annotators: ”tap along to each except”, ”describe
its speed on a three point scale”, compare two tracks in terms of
speed.
(B22) Annotation rules: defined by the experiment protocol
(see [20] for details)
(B31) Annotators: 2141 users of Last-FM (not all tracks are
annotated by all the annotators)
(B32) Validation/ reliability: for each track, all the annotations
are provided, it is let to the user of the corpus to compute inter-
annotator agreement
(B4) Annotation tools: Web-interface
(C) Documents and Storing
(C1) Audio identifier and storage: no audio identifiers are
provided (except the artist, album and track name); annotations
distributed as an archive file accessible through an URL, files in
TSV format (Tab Separated Values File).

Table 1. Application of the proposed description to the
corpus of [12, 13] and [20]



3. EXAMPLES OF DESCRIPTIONS

As examples of the application of the proposed description,
we illustrate in Table 1 its use for the (short) description of
two corpora [12,13] and [20]. It should be noted that these
descriptions are solely based on the information provided
with the distributed corpora and the respective publications
and should ideally be complemented and corrected by the
respective authors themselves. Based on this, a compara-
tive table of the corpora can easily be made 14 .

4. CONCLUSION

MIR should benefit from the “best practices” that have
been evolving for decades in the speech and natural lan-
guage processing communities. Among these practices,
we attempt here to provide insights into the choices cur-
rently made when creating a MIR annotated corpus, their
implications, and the resulting necessity to better describe
them when distributing an annotated corpus. We presented
them in the form of a numbered list—A*, B*, C*—to high-
light the fact that all of these choices must be described.
Considering the importance that the distribution of anno-
tated corpora will have to the development of MIR re-
search, we hope that providing this list will facilitate the
sharing and re-use of annotated corpora.
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ABSTRACT 

Real-life listening experiences contain a wide range of 
music types and genres.  We create the first model of mu-
sical mood using a data set gathered in-situ during a us-
er’s daily life. We show that while audio features, song 
lyrics and socially created tags can be used to successful-
ly model musical mood with classification accuracies 
greater than chance, adding contextual information such 
as the listener’s affective state or listening context can 
improve classification accuracy. We successfully classify 
musical arousal with a classification accuracy of 67% and 
musical valence with an accuracy of 75% when using 
both musical features and listening context. 

1. INTRODUCTION 

Musical mood – the emotion expressed by a piece of mu-
sic – is conveyed to a listener through a variety of musi-
cal cues in the form of auditory features. These auditory 
features (e.g., mode, rhythm, articulation, intensity and 
timbre of a musical track) have previously been used to 
model musical mood with fairly good classification re-
sults [1-2]. However, current high performing models of 
musical mood have two main problems: first, music is 
constrained to a single genre (usually Western classical or 
Western popular); and second, the data is collected and 
labeled in laboratory contexts. Previous work has shown 
that the data sets used in previous research modeling mu-
sical mood do not correspond to real-life listening experi-
ences in a number of ways [3]. First, people listen to mu-
sic of various genres in their daily life; second, music is 
listened to as part of social activities or in a public venue; 
third, music is attended to as a secondary activity while 
driving, working, or exercising; finally, people listen to 
music for various reasons, such as to relax, to entertain, 
or to influence emotion [3]. 
    Previous high-performing musical mood models, based 
on data from a single genre and gathered in a laboratory 
setting may fail when applied to data sets gathered in dai-
ly life. Systems implementing these previous models – 
such as music recommender systems – may also fail 
when using data collected from real-life listening experi-

ences, which may lead to negative user experiences. 
However, musical mood classifiers built on a broad data 
set, containing several genres and labeled during real-life 
activities rather than in a laboratory, may be unusable in 
real systems if they yield weak classification results.  
    To solve the problem of building good musical mood 
classifiers that are effective for real-life listening experi-
ences, we include context-sensitive features in addition to 
the previously used auditory features.  Our data set of re-
al-life listening experiences was gathered through an ex-
perience-sampling study using smartphones. Participants 
were handed phones for a period of two weeks. Phones 
would randomly poll the user about once per hour and 
ask them to fill out a survey collecting musical mood, the 
listener’s affective state and the context of the listening 
experience. Genre, title and artist were optionally cap-
tured. Previous analysis of our data set shows that real-
life listening experiences are far from the homogenous 
data sets used in current models, and cover a wide range 
of genres, artists, and songs [3]. In the present paper, we 
used our naturally-gathered data set to model musical 
mood using Bayesian networks and feature sets including 
musical features (audio features, song lyrics, socially-
created tags), the affective state of the listener, and listen-
ing context. Listening context included reason for listen-
ing, activity, location, social company, level of choice 
over the song and mental associations. 
    In this paper we make two main contributions. First, 
we successfully model musical mood from a data set 
gathered in-situ during a user’s daily life; we are the first 
to do so. Second, we show that while musical features 
(audio features, song lyrics and socially created tags) can 
successfully model musical mood with classification ac-
curacies better than chance, adding contextual infor-
mation, such as the listener’s affective state or the listen-
ing context of the musical experience, can further im-
prove classification accuracies. We successfully classify 
musical arousal with a classification accuracy of 67% and 
musical valence with an accuracy of 75% when using 
both musical features and listening context.  

2. RELATED WORK 

2.1 Affective State 
It is well documented that music can induce specific af-
fective experiences in the listener. Affective state, or the 
emotion or mood a person is experiencing, can be de-
scribed using either a categorical or dimensional ap-
proach. The categorical approach breaks emotions into 
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discrete labeled categories (e.g., happiness, fear, joy) [4]. 
In contrast, the dimensional approach, which we use in 
this paper, represents affective state using two orthogonal 
dimensions: arousal and valence [5]. Arousal can be de-
scribed as the energy or activation of an emotion. Low 
arousal corresponds to feeling sleepy or sluggish while 
high arousal corresponds to feeling frantic or excited. Va-
lence describes how positive or negative an emotion is. 
Low valence corresponds to feeling negative, sad or mel-
ancholic and high valence to feeling positive, happy or 
joyful. Most categorical emotions can be described by 
Arousal-Valence (A-V) space (e.g., angry in Figure 1). 

 
Figure 1 shows A-V space labeled with several of the 
categorical emotions. 

2.2 Musical Mood 
Musical mood, the emotion expressed by a piece of mu-
sic, is to some degree perceived consistently across dif-
ferent listeners and even different cultures. Studies by 
Juslin and Sloboda have shown that listeners of different 
musical training classify musical mood into the same cat-
egories [6]. Fritz et al. found that the Mafa natives of Af-
rica – without any exposure to Western music – catego-
rized music into the same three basic emotional catego-
ries as Westerners [7]. Musical mood is frequently meas-
ured in arousal and valence [8] and we have used this ap-
proach in this paper. It should be noted that the affective 
state induced in the listener is not necessarily the same as 
the musical mood of the music [9], [10]. For example, an 
individual who is herself feeling frustrated (i.e., mood of 
the listener) can still perceive a piece of music as calm 
(i.e., musical mood). 

2.3 Musical Mood Classification 
Musical mood can be manually categorized by the listen-
er, but researchers have also algorithmically classified 
musical mood using audio features extracted from the 
musical track. Work by Juslin [11] has identified seven 
musical features that are important in the interpretation of 
musical mood.  He asked performers to play the same 
musical scores in such a way as to express four different 
musical moods (anger, sadness, happiness and fear) and 
then had listeners rate the strength of each mood. He 
found that performers and listeners used the same fea-
tures to identify each mood, but weighted their im-
portance differently. These features are:  
• Mode: Mode refers to the key of the music. (e.g. A-) 

• Rhythm: Rhythm is the pattern of strong and weak 
beat. It can be described through speed (tempo), 
strength, and regularity of the beat. 

• Articulation: Articulation refers to the transition and 
continuity of the music. It ranges from legato (con-
nected notes) to staccato (short abrupt notes).  

• Intensity / Loudness: Intensity is a measure of chang-
es in volume.  

• Timbre / Spectrum: Timbre describes the quality of 
the sound. It is often defined in terms of features of 
the spectrum gathered from the audio signal. 

   Musical mood has previously been modeled using only 
audio features. Lu et al. classified classical music into the 
four quadrants of A-V space using a collection of audio 
features with an accuracy of 86.3% [1]. Their algorithm 
also detected places within the song where the mood 
changed. Experts labeled musical mood. Feng et al. clas-
sified Western popular music into four moods using only 
two features: tempo and articulation. They achieved a 
precision of 67% and a recall of 66% [2]. They do not 
specify how they gathered musical mood. 
    Some effort has been made to incorporate other musi-
cal context with audio features to improve classification. 
Yang et al., working with a set of Western Rock music, 
made small gains in their classification rates by adding 
lyrics to the audio features (from 80.7% to 82.8%) [12]. 
Musical mood was gathered in a laboratory study.       
Bischoff et al. integrated socially created tags with audio 
features, and while their classification rates were low due 
to problems with their ground truth data, they achieved 
better results using tags and audio features than audio fea-
tures alone [13]. Their poor results may be due to the fact 
they were using a diverse, online, data set with multiple 
genres. Musical mood was specified in this data set by 
users of the AllMusic site.   

2.4 Music Recommenders 
Many commercial music recommender systems exist 
(e.g., Last.fm, Pandora, Apple’s Genius, StereoMoods). 
In 2010, Han et al. created COMUS, a context-based mu-
sic recommender system that accounts for mood, situa-
tion and musical features [14]. Their system was limited 
to recommending music for only one listening purpose – 
to transition between emotional states – and assumed a 
prior explicit knowledge about how a specific individual 
changes their music habits depending on situation.  

3. EXPERIENCE SAMPLING SOFTWARE 

To gather an in-situ data set of musical mood and listen-
ing context, we surveyed participants using an experi-
ence-sample methodology [15]. We created an applica-
tion that ran on Android 2.1 smartphones, which generat-
ed custom surveys from XML files. Participants were 
asked to carry the phone with them at all times. While it 
would be possible to create a plug-in for an existing com-
puter media player such as iTunes, we wanted to capture 
listening experiences in all contexts. For example, some 
activities, such as exercising, do not usually occur simul-
taneously with computer use. Participants were not re-
quired to use the phone as a media player as this would 



  

 

further limit listening contexts (e.g., music playing in the 
background at a restaurant). The tradeoff is that we could 
not automatically capture song title, artist, or audio fea-
tures such as tempo. 
    The program would query the user randomly (approx-
imately hourly) by vibrating the phone. A participant 
could fill out a survey or dismiss the program by indicat-
ing they were too busy. Surveys were completed in less 
than five minutes and were filled out regardless of wheth-
er participants were listening to music. This was done to 
encourage survey completion. Participants were paid per 
number of surveys completed, between 5 and 40 CAD. 
To obtain the maximum payout, 112 surveys were re-
quired, which is roughly 8 surveys per day.  A progress 
bar in the software provided feedback about how many 
surveys had been completed. 
    Four types of information were collected: musical 
mood, affective state, musical context and listening con-
text. See Figure 2 for screenshots of the experience-
sampling application. 
     Musical Mood: Participants were asked to describe 
the musical mood of the song they were listening to using 
two five-point differential scales. They were asked to rate 
the arousal of the music by selecting one of five radio 
buttons between low arousal and high arousal. Similarly, 
they rated the valence of the music on a scale between 
sad and happy. Definitions were given to participants be-
fore the study and available from a help menu. 
    Affective State: Participants were asked to describe 
their personal arousal and valence using five-point differ-
ential scales similar to musical mood.  
     Artist, Title and Genre: Artist and title could optional-
ly be entered in free-text fields that autocompleted to pre-
viously entered answers. A genre field was provided that 
autocompleted to a list of common genres taken from 
Wikipedia, but also allowed participants to enter their 
own genre.  
    Listening Context: Participants were asked questions 
describing their current listening context. Participants se-
lected their current activity from a list (waking up, bath-
ing, exercising, working, doing homework, relaxing, eat-
ing, socializing, romantic activities, reading, going to 
sleep, driving, travelling as a passenger, shopping, danc-

ing, getting drunk, other). These activities were taken 
from [8], which lists the most common activities to occur 
in conjunction with music. Participants also selected their 
location (home, work, public place, other) and social 
company (by myself, with people I know, with people I 
do not know). Participants selected their reason for listen-
ing (to express or release emotion, to influence my emo-
tion, to relax, for enjoyment, as background sound, other) 
as well as whether or not they choose the song (yes, yes 
as part of a playlist, no). A text field was provided for 
participants to enter any terms or phrases they associated 
with the song.  

4. DATA SET GATHERED IN-SITU 

Twenty participants, (14 male) with an average age of 25, 
used the experience-sampling software for two weeks.  
    For a full description of the data set, see [3]. Here we 
summarize for the purposes of guiding the development 
of our musical mood classifiers. In total 1803 surveys 
were filled out; 610 of those surveys were completed 
when the participant was listening to music. Only the re-
sults of the music surveys are included in this paper. 
    Participants had an average arousal of 2.28 (SD=0.92) 
on our 5-pt scale (0 low, 2 neutral, 4 high) and average 
valence of 2.64 (SD=0.90). The music they were listening 
to had an average arousal of 2.64 (SD=1.05) and average 
valence of 2.66 (SD=1.14). 
     The most common activities while listening to music 
were working (37%) and relaxing  (21%). Users also lis-
tened to music while eating (6%), driving (5%), travelling 
(as a passenger)(5%), other (5%), and socializing (4%).  
Participants were by themselves 57% of the time, with 
people they knew 37% and with people they did not 
know 6%. They were at work 39% of the time, at home 
38%, in a public place 21% and in other locations 2%.  
     The most common reason for listening was to use the 
music as background sound (46%) or enjoyment (25%). 
Participants chose the song 74% of the time; 50% of the 
time it was as part of a playlist.   
     Participants entered 102 unique song genres a total of 
486 times. Genres were coded into their parent genre and 
the most common genres were pop (28%), rock (23%), 

Figure 2 shows screenshots of the experience-sampling software. Participants answered a short survey about their 
affective state, listening context and the music they were listening too.  



  

 

electronic (14%), jazz (7%), hip-hop & rap (6%), other 
(5%), modern folk (4%) and country (3%). The remain-
ing genres were classical, traditional/indigenous music, 
soundtrack, blues, easy listening and R&B.  
       Participants entered musical associations for 335 
songs. These were then coded into themes, from a list 
partially taken from [8]. Participants mostly described 
emotions (45%), lyrics or instruments (20%), imagery 
(15%), or specific people, locations or memories (7%). 
    Songs were not limited to Western genres or even the 
English language. At least 14% of the songs with artist 
and title specified were non-English; however, all partici-
pants listened to at least some English music.  

5. CLASSIFICATION FEATURES 

To create classifiers of musical mood, we included musi-
cal features used in previous work, but also added con-
text-based features from our data set. 

5.1 Musical Features 
Songs were downloaded from iTunes and other sources 
where possible using the artist and title specified. 

5.1.1 Audio Features 
Audio features describing the mode, rhythm, articulation, 
and timbre of the music were extracted using MIRtoolbox 
[16] and Matlab.   
     Mode: These features included the most probable key 
of the music as well as an estimation of whether the key 
was major or minor.  
    Rhythm: These features included an estimation of 
tempo (number of beats per minute) and pulse clarity 
(relative strength of the beat, related to how easily a lis-
tener can perceive the tempo[17]). 
    Articulation: These features included the attack slope, 
(an indicator of how aggressively a note is played) as 
well as the Average Silence Ratio (ASR)[2]. 
     Timbre: These features were taken from the audio 
spectrum and include brightness (amount of energy above 
a cutoff point in the spectrum), rolloff (the frequency 
such that 85% of total energy is contained below that fre-
quency), spectral flux (average distance between the 
spectrum of successive frames), spectral centroid (the 
frequency around which the spectrum is centered), 
MFCC (description of the sound separated into different 
bands), low energy (percentage of frames with less than 
average energy), and average sensory roughness. Sensory 
roughness corresponds to when several sounds of nearly 
the same frequency are heard, causing a “beating” phe-
nomenon. High roughness corresponds to harsher music 
with more “beating” oscillations.  

5.1.2 Lyrics 
Lyrics were downloaded from various sources using the 
artist and title. Some included mark-ups indicating non- 
word sounds or names of singers responsible for a section 
of lyrics. Only English lyrics were collected. Songs that 
were mainly English but included a few foreign words 
were included. Some songs contained notations indicat-
ing that a section was repeated (e.g., “x2”). These were 

manually removed and replaced with the repeated text. 
Lyrics were analyzed using the Linguistic Inquiry Word 
Count Tool (LIWC) [18], a textual analysis tool that pro-
vides a word count in 80 categories and the output of 
LIWC was used as the feature set.  

5.1.3 Tags 
Socially created tags from the website Last.fm were 
downloaded and analyzed using LIWC. This output was 
used as features. 

5.2 Affective Features 
This included the personal arousal and valence of the lis-
tener on a 5-point scale. 

5.3 Listening Context 
Listening context included: reason for listening, activity, 
location, social company, and level of choice over the 
song. The associations were categorized (see section 4) 
and this category was included as a feature. Associations 
were also analyzed using LIWC. 

6. MODEL RESULTS 

6.1 Feature Sets 
We used a number of feature combinations in creating 
our models, which can be summarized as three feature 
sets.  
    Musical Features: Our first feature set used audio fea-
tures, lyrical features, and tag features, as these features 
were used in previous models based on laboratory-
gathered data sets of a single genre. There were 198 dif-
ferent features in this set. 
    Musical Features + Affective Features: Our second 
feature set used all the musical features but added person-
al arousal and valence for a total of 200 different features.  
    Musical Features + Listening Context: Our third fea-
ture set combined musical features with the listening con-
text collected in our study for a total of 296 features. 

6.2 Models of Musical Mood 
Due to “in the wild” nature of the study, musical arousal 
and musical valence had an uneven distribution of re-
sponses. Participants were much more likely to indicate 
that they were listening to songs with high arousal and 
high valence. To prevent over fitting of the model due to 
class skew, musical arousal and musical valence were 
binned into two levels, low, and high. Neutral instances 
were ignored. Since only songs with song titles could be 
downloaded and audio features extracted, instances with-
out a song title were also ignored. Also, undersampling, a 
technique that selects a random number of instances to 
obtain an equal distribution, was used. This lowered the 
total number of instances from 610 to 122 when model-
ing musical arousal and 156 when modeling musical va-
lence. To avoid any effects caused by the specific set of 
random instances chosen, this process was completed five 
times, and the average accuracies of all runs are reported. 
     All models were created in Weka [19] using Bayes 
Net classifiers, Markov Estimation and tenfold cross val-
idation. We modeled musical arousal and musical valence 



  

 

separately, using each feature set. See Figure 3 for classi-
fication accuracies. 
    Musical Features: Using only musical features (audio 
features, lyrics and tags), musical arousal has a classifica-
tion accuracy of 59.5% (SD=3.1, kappa=0.1984). Musical 
valence has an accuracy of 53.0% (SD=6.8, kap-
pa=0.0604). While both models are higher than chance 
(50%), a one sample t-test shows that only musical arous-
al (t4=6.74, p<0.01) was significantly higher. However, 
the results are lower than previously reported classifica-
tion accuracies of homogenous lab-based data sets.    
    Musical Features + Affective State: When we com-
bined affective features (personal arousal and valence) 
with musical features, musical arousal has a classification 
accuracy of 60.3% (SD=4.6, kappa=0.2121). Musical va-
lence has an accuracy of 60.2% (SD=4.6, kappa=0.2074). 
Both musical arousal (t4=4.99 p<0.01) and musical va-
lence (t4=4.70, p<0.01) performed significantly better 
than chance (50%), and we achieved improved classifica-
tion accuracies of musical arousal and musical valence by 
using a combination of affective and musical features. 
    Musical Features + Listening Context: When we 
combined musical features with listening context fea-
tures, musical arousal has a classification accuracy of 
67.4% (SD=1.7, kappa=0.3437). Musical valence has an  
accuracy of 75.7% (SD=1.5, kappa=0.5133). Both musi-
cal arousal (t4=23.54, p <0.0001) and musical valence 
(t4=38.75, p<0.0001) performed significantly better than 
chance (50%), and we achieved gains in classification 
accuracy in both models over using only musical features 
or musical features and affective features combined. 

 
Figure 3 shows the classification accuracies for each 
feature set. The dotted line shows chance (50%).  

7.  DISCUSSION 

Our experience sampling study collected in-situ data that 
reflects real-life listening experiences. Unlike previous 
models, our data included multiple genres and different 
listening contexts.  
     We have shown that musical mood can be successfully 
modeled from in-situ data, although with a lower classifi-
cation accuracy than previous attempts. Adding affective 
state to the model resulted in an improvement in classifi-
cation accuracy while modeling musical valence; adding 
listening context to the model resulted in improvements 
in both musical arousal and musical valence.  Our results 
show that listening context is an important aspect of 
modeling musical mood, when using real-life data.  

7.1 Importance of Context 
It may be possible that context is important when model-
ing musical mood because participants rate musical mood 
differently depending on their context. For example, a 
user may rate the same song differently depending on 
whether they are working alone or cooking with friends. 
We cannot confirm this with our data set, as one would 
need the same songs played in a variety of listening con-
texts – in our study, songs and artists were only encoun-
tered once on average.  
    It is also possible that people listen to music with cer-
tain musical moods based on their context. For example, 
a user may generally choose to listen to music with high 
arousal when exercising and low arousal when eating 
dinner. In that case our model predicts the type of musical 
mood listeners want to listen to, based on context, which 
is useful for automatically generating playlists.  
      Similarly, participants may rate musical mood differ-
ently depending on their affective state. This is a tricky 
relationship to investigate as the music itself has a hand 
in inducing an affective state in a listener. Any correla-
tion found between musical mood and affective state does 
not show directionality of the relationship.  
       To examine the relationships between listening con-
text, musical mood, and affective state, we could provide 
users with representative samples in a music library. By 
listening to (and rating) the same song in a variety of con-
texts and affective states, the relationship between these 
three factors might be made clear.  

7.2 Limitations 
There are several limitations with our study. The first is 
that participants are unlikely to answer a survey during 
some activities (e.g., driving). Second, all categories in 
our data may not be mutually exclusive (e.g., reading 
while running on the treadmill). Third, the number of par-
ticipants and length of the study may have been too small 
to collect a fully representative sample of listening con-
text. Finally, previous studies have assumed that people 
listen to music with four emotional categories (happy, 
sad, fear, anger) [11]; however, in our study we found 
that people tended to listen to happy music. The other 
three emotions may not be equally represented when cap-
turing in-situ data [3]. 
    While a classification accuracy of 75% is much im-
proved over a random classifier, or one based on auditory 
features, a music recommender suggesting songs with the 
wrong mood a quarter of the time may result in a negative 
user experience. This can be circumvented in a few ways. 
First a music recommender can select tracks from a per-
sonal music library; users are more likely to enjoy their 
own music even if the recommendation is off. Second, a 
playlist rather than a single song could be recommended 
so that a majority of the music recommended is suitable. 
Third, combining this model with existing recommenda-
tion systems that use clustering of similar genres and art-
ists could further improve existing prediction rates. Final-
ly, we could improve the classification rates and avoid 
possible overfitting caused by the small number of in-
stances in our models by collecting a more comprehen-
sive data set. 



  

 

8. FUTURE WORK 

Based on the results of this work, we will create a con-
text-aware music recommender system. This system will 
take in the context of the listening experience and use this 
context to compile a playlist. Based on our models, the 
system will recommend a musical mood listeners are 
likely to enjoy, and will create playlists of songs with this 
specific musical mood, (based on a data set labeled from 
musical features). The system could also make sugges-
tions of songs for purchase the user might enjoy. We will 
evaluate the predictions through a user study, conducted 
in-situ, to preserve the importance of context.  
    To create the underlying model for this music recom-
mender, a larger in-situ data set will be collected. The 
study will run for a longer time period (i.e., months) with 
a larger pool of participants. Participants will receive bo-
nuses for filling out genre, title and artist and will be 
asked to provide a copy of their music library at the end 
of the study for audio feature processing. This larger, 
more comprehensive data set will help improve classifi-
cation accuracies.  

9. CONCLUSIONS 

We successfully model musical mood from a data set 
gathered in-situ during a user’s daily life. We show that 
musical features (audio features, song lyrics and socially 
created tags) can successful model musical mood with 
classification accuracies better than chance. We success-
fully classify musical arousal with a classification accura-
cy of 59% and musical valence with an accuracy of 53% 
when using only musical features on an in-situ data set. 
    Adding contextual information, such as the listener’s 
affective state or the listening context of the musical ex-
perience can further improve classification accuracies. 
We successfully classify musical arousal and musical va-
lence with a classification accuracy of 60% when using 
both musical features and affective state. We classify mu-
sical arousal with a classification accuracy of 67% and 
musical valence with an accuracy of 75% when using 
both musical features and listening context. 
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ABSTRACT

We present a system for the high-level analysis of beat-
synchronous drum patterns to be used as part of a compre-
hensive rhythmic understanding system. We use a multi-
layer neural network, which is greedily pre-trained layer-
by-layer using restriced Boltzmann machines (RBMs), in
order to model the contextual time-sequence information
of a drum pattern. For the input layer of the network, we
use a conditional RBM, which has been shown to be an ef-
fective generative model of multi-dimensional sequences.
Subsequent layers of the neural network can be pre-trained
as conditional or standard RBMs in order to learn higher-
level rhythmic features. We show that this model can be
fine-tuned in a discriminative manner to make accurate pre-
dictions about beat-measure alignment. The model gen-
eralizes well to multiple rhythmic styles due to the dis-
tributed state-space of the multi-layer neural network. In
addition, the outputs of the discriminative network can serve
as posterior probabilities over beat-alignment labels. These
posterior probabilities can be used for Viterbi decoding in
a hidden Markov model in order to maintain temporal con-
tinuity of the predicted information.

1. INTRODUCTION

Deep belief networks (DBNs) have shown promise in many
discriminative tasks, such as written digit recognition [6]
and speech recognition [8]. In addition, the generative na-
ture of DBNs makes them especially well-suited for stochas-
tic generation of images or sequences [5, 11].

In this paper, we apply DBNs to the analysis of drum
patterns. The drum pattern analysis system presented here
is to be part of a complete live drum understanding system,
which is also composed of a drum detection front-end [1]
and a low-level multi-hypothesis beat tracker. The goal
of the drum understanding system is to go beyond simple
beat tracking by providing additional high-level rhythmic
information, such as time signature or style information,
while being robust to expressive embellishments and dy-
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namic song structure, such as tempo fluctuations or time
signature changes. The pattern analysis system we present
here can help achieve these goals, not only by providing
the desired high-level information, but also by communi-
cating with the low-level beat tracker to help it correct beat
period and phase errors.

To demonstrate the effectiveness of this model, we fo-
cus on a specific discriminative task: identifying the align-
ment of beats within a measure. Measure alignment infor-
mation is particularly important to high-level drum pattern
analysis since each beat has a specific meaning depend-
ing upon the musical style. For example, song transitions
typically occur on the first beat of a measure, and in rock
music and relate styles, beats 2 and 4 typically feature an
accented snare drum back beat.

Previous work on beat-measure alignment has focused
on simple heuristic rules. In [7], Klapuri presents a beat
tracker that determines beat-measure alignment by corre-
lating multi-band onset patterns with two different back
beat measure templates. In [3], Goto addresses beat align-
ment by detecting chord change locations and by align-
ment with 8 drum pattern templates. Approaches like these
work well for the typical pop song but are ineffective when
presented with exotic rhythm styles or many types of pro-
gressive music. To deal with these situations, rather than
accruing a large list of hand-written heuristic rules, we can
automatically encode a large amount of musical knowl-
edge into the distributed state-space [2] of a deep belief
network, which we introduce in the next section.

2. DEEP BELIEF NETWORKS

2.1 The Restricted Boltzmann Machine

The deep belief network is a probabilistic multi-layer neu-
ral network composed of restricted Boltzmann machines,
or RBMs [2, 5]. The RBM, as shown in Figure 1, is a two
layer probabilistic graphical model with undirected con-
nections between visible layer units, vi, and hidden layer
units, hj . The “restricted” part of the name points to the
fact that there are no connections between units in the same
layer. This allows the conditional distribution of the units
of one layer given all the units of the other layer to be com-
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Figure 1. A restricted Boltzmann machine with N visible
units and M hidden units.

pletely factorial, i.e.

P (v|h) =
∏
i

P (vi|h) (1)

P (h|v) =
∏
j

P (hj |v) (2)

The RBM is a probabilistic energy-based model, meaning
the probability of a specific configuration of the visible and
hidden units is proportional to the negative exponentiation
of an energy function, E(v,h)

P (v,h) =
e−E(v,h)

Z
(3)

Where Z =
∑

v,h exp(−E(v,h)) is a normalizing con-
stant referred to as the partition function. Note that be-
cause Z is difficult to compute, it is typically intractable to
compute the joint distribution P (v,h).

For binary-valued visible and hidden units, the energy
function, E(v,h), can be written as:

E(v,h) = −aTv − bTh− vTWh (4)

Where a and b are vectors containing the visible and hid-
den unit biases, respectively, and W is the weight matrix
that connects the two layers.

The goal in training an RBM is to maximize the like-
lihood of the training data under the model, P (v). The
actual log-likelihood gradient is difficult to compute be-
cause it involves the intractable partition function Z; how-
ever, stochastic estimates of the gradient can be made by
drawing Gibbs samples from the joint distribution P (v,h)
using the factorial conditional distributions in (5),(6).

P (vi = 1|h) = σ̄(ai +
∑

j Wijhj) (5)

P (hj = 1|v) = σ̄(bj +
∑

iWijvi) (6)

Where σ̄(x) is the logistic sigmoid function:

σ̄(x) =
1

1 + e−x
(7)
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Figure 2. A 3-layer deep belief network comprised of 2
RBMs

The Gibbs sampling Markov chain can take quite a long
time to produce actual samples from the joint distribution,
so in practice the chain is started at a training example and
run for a small number of iterations. Using this estimate
of the log-likelihood gradient, we are instead minimizing a
quantity referred to as the contrastive divergence between
the training data and the model [2, 5]. Contrastive diver-
gence updates for the RBM parameters are shown below:

∆Wij ∝ 〈vihj〉0 − 〈vihj〉k (8)

∆ai ∝ 〈vi〉0 − 〈vi〉k (9)

∆bj ∝ 〈hj〉0 − 〈hj〉k (10)

Where 〈·〉k denotes the value of the quantity after k itera-
tions of Gibbs sampling, and for k = 0, vi is simply the
training data and hj is a sample from (6) given the training
data. Typically, these updates are performed using multiple
training examples at a time by averaging over the updates
produced by each example. This helps to smooth the learn-
ing signal and also helps take advantage of the efficiency
of larger matrix operations. As k → ∞, these updates
approach maximum likelihood learning.

2.2 Stacking RBMs

A deep belief network is formed when multiple RBMs are
stacked on top of each other as shown in Figure 2. Af-
ter training a first-level RBM using the training data, we
can perform a deterministic up-pass by setting the hidden
units to their real-valued activation probabilities using (6)
for each visible training vector. This is the same as what
is done in the up-pass in a deterministic neural network.
These deterministic hidden unit values are then used as the
visible data in a subsequent higher-level RBM, which is
also trained using contrastive divergence learning. This
RBM stacking continues until the network reaches the de-
sired depth. This greedy layer-by-layer training approach
is a useful procedure for learning a set of non-linear fea-
tures in an unsupervised manner [4], and it has been shown
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to be a beneficial pre-training procedure when followed by
discriminative backpropagation [6].

2.3 The Conditional Restricted Boltzmann Machine

The conditional restricted Boltzmann machine (CRBM)
takes the RBM a step further by adding directed connec-
tions between additional visible units, yi, and the existing
visible and hidden units, as shown in Figure 3. These ad-
ditional units can represent any type of additional informa-
tion, including visible data from the recent past. Because
of this, the CRBM is an effective generative model of time
sequence data [11]. This fact is what motivated our use of
the CRBM to model drum patterns.

The directed connections, which are represented by
weight matrices A and B, replace the bias terms, a and
b in (5),(6), with dynamic bias terms, â and b̂.

â = a +Ay (11)

b̂ = b +By (12)

Where y is a vector containing the conditioning data. This
modified RBM models the distribution P (v,h|y), and the
learning rules in (8)–(10) are unchanged except for the ad-
dition of the dynamic bias terms to the sampling expres-
sions. The learning rules for the conditional weight matri-
ces also have a familiar form:

∆Aij ∝ 〈viyj〉0 − 〈viyj〉k (13)

∆Bij ∝ 〈hiyj〉0 − 〈hiyj〉k (14)

Note that the yj above are simply the training values and
are not stochastically sampled in any way.

3. MODELLING AND ANALYZING DRUM
PATTERNS

3.1 Bounded Linear Units

Drum patterns are not simply a series of ones and zeros,
onset or no onset. Most drum patterns contain an appre-
ciable sonic difference between accented and unaccented
notes on every drum or cymbal, and it is these differences
which give drum patterns their character. In order to ef-
fectively model drum patterns using the CRBM, we must
modify the binary-valued visible units to be real-valued.
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Figure 4. Bounded linear unit activation function

There are many options for getting real-valued visible
activations out of RBMs; in fact, it has been shown that
every distribution in the exponential family is a viable can-
didate [13]. A popular choice is the Gaussian distribution
due to its familiarity and ubiquity; however, the unbound-
edness of Gaussian samples does not translate well to the
space of dynamic levels possible within a drum pattern.

In order to model the bounded nature of playing dy-
namics, we use a modified version of the rectified linear
units (RLUs) described in [9]. RLUs are constructed from
a series of binary units with identical inputs but with fixed,
increasing bias offsets. If the bias offsets are chosen appro-
priately, the expected value and variance of the number of
active units out of these N tied binary units with common
input x is:

E[v|x] = log(1 + ex)− log(1 + ex−N ) (15)

Var(v|x) = σ̄(x)− σ̄(x−N) (16)

As can be seen in Figure 4, (15) yields a sigmoidal curve
that saturates when x > N , bottoms out when x < 0, and
is approximately linear in between. In the linear region,
the variance is equal to one, so the value of N is chosen to
achieve the desired level of noisiness in the samples, and
the training data can be rescaled to the interval [0, N ]. In
this work, we have chosen N = 20, so that a value of 20
represents the loudest possible drum strike, while zero rep-
resents the absence of a drum strike. To sample from these
bounded linear units (BLUs), instead of actually sampling
from N binary units with stepped offsets, we approximate
their total output with:

P (v|x) ∼
[
N
(
E[v|x],Var(v|x)

)]N
0

(17)

where N (·) is a normal distribution with mean and vari-
ance provided by (15) and (16), and

[
·
]N
0

snaps values
outside of the interval [0, N ] to the boundaries of the in-
terval. Because these BLUs are constructed from logistic
binary units, all of the RBM learning rules from Section 2
are still valid; the only thing that changes is how we sample
from the visible BLUs.

3.2 Label Units

If bounded linear units give us a way to get drum onset
information into the network, label units are how we get
information out of the network. A standard approach to
multi-class classification with neural networks is to use a
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group of softmax output units, which assigns a value to
each of its units (each with input xi) based on the softmax
activation function shown in (18). This activation function
is convenient for classification because the activation val-
ues of the group sum to one, which allows the output values
to be interpreted as posterior class probabilities given the
input data.

Smax(xi,x) =
exi∑
j e

xj
(18)

In the realm of RBMs and deep learning, a different ap-
proach can be used which entails providing the ground
truth class labels as part of the visible data during training.
This approach has been shown to be more effective than us-
ing a separate softmax output layer in certain cases [6], and
it indeed achieves better results for our application. Instead
of adding the label units to a separate output layer, we aug-
ment the visible layer in the top-level RBM of a deep belief
network with a group of softmax label units, as shown in
Figure 5. This allows us to train the top-level RBM us-
ing the label units as visible data, by turning on only the
correct label unit during training. Once this labeled RBM
has been trained, we can compute the posterior activation
probability under the model of each of the label units given
the data, P (l|v), using (19) and (20) (see [5]):

F(v|l) =−
∑
i

v
(l)
i ai −

∑
j

log
(

1 + exp
(
x
(l)
j

))
(19)

P (l|v) =
e−F(v|l)∑
k e
−F(v|k) (20)

Where x(l)j = bj +
∑

iWijv
(l)
i , and v(l)i denotes the visible

data but with only unit l of the label unit group activated.
This calculation is tractable due to the typically small num-
ber of label units being evaluated.

3.3 Modelling Drum Patterns

In our drum pattern analysis network, we always start with
a CRBM at the first layer. This CRBM models the current
drum beat or subdivision using one BLU visible unit per
drum or cymbal. In our experiments, we use a minimal
three-drum setup: bass drum, snare drum, and hi-hat, but
this can be expanded to work with any percussion setup.
The conditioning units, yj , of the CRBM contain drum ac-
tivations from the recent past. In our experiments, y is
fed with drum activations from the most recent two mea-
sures (or 32 subdivisions given a 4/4 time signature with
sixteenth note subdivisions).

Subsequent layers use binary visible units instead of
BLUs. Intermediate layers of the DBN can be made up of
either additional CRBMs or standard RBMs, and the final
layer must have visible label units to represent the classi-
fier output. Using an intermediate-layer CRBM allows the
layer to take into account past hidden unit activations of the
layer below it, which allows it to learn higher-level time de-
pendencies. In doing so, it increases the past time context
that the top-level layer sees, since the past hidden unit acti-
vations of a first-level CRBM have been conditioned on the
past relative to themselves. In order to make a fair compar-
ison between DBNs that use different numbers of CRBM
layers, we must make sure that the top layer always has ac-
cess to the same amount of visible first-layer data from the
past.

In our experiments, we train the label units to detect the
current sixteenth note beat subdivision within the current
4/4 measure. In the next section, we give details on the
configuration and training of the various DBNs that we test
for this task.

4. TRAINING THE SYSTEM

4.1 Training Data

The dataset consists of 173 twelve-measure sequences com-
prising a total of 33,216 beat subdivisions, each of which
contains bass drum, snare drum, and hi-hat activations.
The data was collected using electronic Roland V-drums 1 ,
quantized to exact sixteenth note subdivisions, and con-
verted to a subdivision-synchronous drum activation ma-
trix.

The sequences were intended to span a sizeable, but by
no means complete, collection of popular rhythmic styles.
There is a strong rock bias, with many beats featuring a
prominent back beat; however, also included are more syn-
copated styles such as funk and drum ‘n’ bass as well as the
Brazilian styles samba and bossa nova. We use a random-
ized 70/20/10 split for training, testing, and validation data,
respectively.

4.2 DBN Configurations

We test four DBN configurations. For each of the four
network architectures, we tested multiple hidden unit con-
figurations and have chosen to present only those which
performed best on the test data for each architecture. They
are as follows:

1. 1-layer: Labeled-CRBM
3 visible data units + 16 visible label units, 100 hid-
den units, and 32 past subdivisions of context (96
conditioning units)

2. 2-layers: CRBM→ Labeled-RBM
Each with 100 hidden units. The CRBM again has a
context of 32 subdivisions.

1 http://rolandus.com



3. 2-layers: CRBM→ Labeled-CRBM
With 100 and 200 hidden units respectively. Each
CRBM has a context of 16.

4. 3-layers: CRBM→ CRBM→ Labeled-RBM
With 100, 200, and 100 hidden units respectively.
Both CRBMs have a context of 16 subdivisions.

4.3 DBN Training

Each non-labeled layer was trained using contrastive di-
vergence with k = 1 (CD-1) for 300 sweeps through the
training data with an update batch size of 100. The order
of the training data was randomized in order to smooth the
learning.

Top-level labeled layers were trained with the correct
visible label unit switched on and the other label units
switched off. We pre-trained each labeled layer using CD
with k = 1 for 150 epochs and then k was linearly in-
creased from 1 to 10 for an additional 150 epochs.

After pre-training each layer, we used discriminative
backpropagation to fine-tune the network by backpropa-
gating the cross-entropy label unit error to the lower lay-
ers [6]. Backpropagation was run for 400 epochs, but in
the end we used the model parameters which produced the
lowest cross-entropy validation error during training.

This type of training relies heavily on multiplying
large matrices, which can be done considerably faster us-
ing highly data-parallel graphics processing units (GPUs).
We use Gnumpy [12], a Python module which provides
Numpy-like 2 bindings for matrix operations on Nvidia
GPUs. Using an Nvidia Tesla C2050 GPU, training the
single-layer model (#1) took around 20 minutes, while the
3-layer model (#4) took around 30 minutes. The typical
split between pre-training time and backpropagation time
was around 60%/40%.

4.4 Viterbi Decoding

In addition to simply classifying each subdivision individ-
ually, we can take into account additional sequential con-
text by providing the label probabilities as posterior state
probabilities in a hidden Markov model (HMM) [10]. In
order to maximize coherence between successive beat sub-
division estimates, we assign a high probability of a tran-
sition to the next successive beat and give an equal divi-
sion of the remaining probability to other transitions. Since
our system is designed for live use, we use strictly causal
Viterbi decoding to estimate the current beat subdivision.

5. RESULTS

5.1 Independent Subdivision Classification

Here we present the classification results for beat-measure
alignment. The test data contains 16 beat subdivisions per
4/4 measure, so we use 16 separate label units in the train-
ing. We were concerned with the prevalence of half-note
symmetry in most back-beat-oriented drum patterns. For

2 http://numpy.org
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Figure 6. Example posteriors subdivision probabilities
from the four models and the ground truth labels. The
columns in each matrix show the posterior probability of
each label for a particular beat subdivision.

example, distinguishing between the first quarter note and
the third quarter note of many basic rock patterns is virtu-
ally impossible without additional contextual information.
Even though this phenomenon caused the majority of clas-
sification errors, the networks seemed to do well on the
whole despite it.

Table 1 shows the classification results for each model.
The single layer model was significantly outperformed by
all multi-layer models, and adding a third layer did not
seem to provide additional benefit on our test data. Exam-
ple posterior label probabilities for each model are shown
in Figure 6.

DBN Configuration Train Test
Accuracy Accuracy

L-CRBM 97.2 76.2
CRBM→L-RBM 94.9 80.8

CRBM→L-CRBM 91.0 83.7
CRBM→CRBM→L-RBM 89.6 81.1

Table 1. Subdivision classification accuracy for each net-
work configuration

5.2 With Viterbi Decoding

Now we present the classification results when using Viterbi
decoding. We were concerned there would be a tendency
for the high sequential state transition probability to in-
crease the number of classification errors in the presence
of half-note offset ambiguities; however, the decoding only
seemed to help classification. Strong half-note ambiguities
seemed to provide strong enough evidence for both alterna-
tives that the original independent classification decisions
were typically unaffected by the Viterbi decoding.

As shown in Figure 7, increasing the sequential tran-
sition probability increases the overall beat classification
accuracy; however, in a real-world application, one cannot
simply set this probability to one or else the decoder could
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Figure 8. Row 1: Example posterior probabilities. Row
2: Independent classifications. Row 3: Viterbi decoded
classifications. Row 4: Ground truth labels.

possibly be locked into an incorrect beat-measure align-
ment for the entire song. The decoder must also be allowed
to adjust its estimates when beats are purposely left out by
the drummer. Therefore, this parameter should be set with
the end use case in mind. Example viterbi decoding results
are shown in Figure 8.

6. DISCUSSION

Our results show the benefit of using a multi-layer neural
network that is pre-trained as a deep belief network for an-
alyzing drum patterns; however, it is likely that the actual
optimal network configuration will be highly dependent on
the diversity of the drum patterns in the dataset.

The results in Table 1 show an inverse relationship be-
tween training and test accuracy, which suggests overfit-
ting was occurring during backpropagation. Subsequent
work should focus on a more robust evaluation of the re-
sults using a larger dataset, cross-validation, and more at-
tention to regularization techniques. In addition, compari-
son with existing drum pattern analysis methods is neces-
sary.

Although, we do not objectively evaluate the use of these
models for generating drum patterns, it is important to note
that because the RBM is inherently a generative model,

these networks are especially well-suited to serve as stochas-
tic drum machines. Even a single labeled-CRBM works
well for this purpose, and turning on the label unit of the
desired subdivision during Gibbs sampling helps increase
the metric stability of the generated patterns.

This type of model has significant potential to be of use
in many music information retrieval and computer music
tasks. We plan to explore the ability of the model to dis-
criminate between rhythmic styles, discern between dif-
ferent time signatures, or to detect rhythmic transitions or
fills. We also plan to do a more in-depth evaluation of the
generative abilities of the model as well as to pursue meth-
ods which will allow interactive improvisation between hu-
man and computer performers.

Additional information as well as the dataset and code
used in this work will be made available at:
http://www.eecs.berkeley.edu/~ericb/
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ABSTRACT 

This work studies the effect of different score representa-
tions and the potential of n-grams in makam classification 
for traditional makam music in Turkey. While makams 
are defined with various characteristics including a dis-
tinct set of pitches, pitch hierarchy, melodic direction, 
typical phrases and typical makam transitions, such cha-
racteristics result in certain n-gram distributions which 
can be used for makam detection effectively. 13 popular 
makams, some of which are very similar to each other, 
are used in this study. Using the leave-one-out strategy, 
makam models are created statistically and tested against 
the left out music piece. Tests indicate that n-gram based 
statistical modeling and perplexity based similarity metric 
can be effectively used for makam detection. However 
the main dimension that cannot be captured is the overall 
progression which is the most unique feature for classifi-
cation of close makams that uses the same scale notes as 
well as the same tonic.  

1. INTRODUCTION 

The makam/maqam/mugam concept is very central to 
music of a very large geographical region from Balkans 
to Kazakhstan, Iran, and North Africa. Automatic classi-
fication of makam is hence very important for music in-
formation retrieval technologies though not widely stu-
died.  

Computational studies on makam music can be very 
broadly classified into two categories based on the type of 
data being processed: symbolic or audio. While some 
works such as [1], [6], [11] propose systems for makam 
recognition from audio data, works on symbolic data ap-
pear to be much more limited, probably due to lack of 
machine readable data. In [16],  Şentürk and Chordia use 
Variable-Length Markov Models (VLMM) to predict the 
melodies in the uzunhava (long tune) form, a melodic 
structure in Turkish folk music. In [2] (which is a shorter 
version of [8]), Alpkoçak  and Gedik present the first and 
only study on n-grams for makam recognition. Unfortu-
nately, due to several deficiencies, reliability of their re-

sults is questionable. The paper presents classification 
results without cross-validation, uses limited and ques-
tionable data (20 pieces for each of 10 makam where data 
is represented with 12 notes in an octave while today’s 
notation uses 24 notes in an octave). Due to such defi-
ciencies, a new work needs to be conducted exploring the 
potential of n-grams in automatic makam recognition 
from symbolic data.  Our main contributions in this study 
are: in addition to the 12-TET (Tone Equal Tempera-
ment) representation used in [2], [9], we also used data 
represented using the official theory of makam music in 
Turkey (TMMT) which uses 24 tones (unequally spaced) 
in an octave, and holding a larger database, and challeng-
ing makam sets, we were able to test the potential of n-
gram based statistical approach in makam recognition 
more reliably. We also tested makam detection perfor-
mance using comma level intervallic movements, show-
ing how this system can be used in real life applications 
using audio data only.   

In the MIR literature, makam recognition can be con-
sidered, to some level, as a key finding or a mode finding 
problem. However, there appears to be important differ-
ences between the concepts of key, mode and makam (a 
detailed discussion can be found in [3]). In the makam 
system, different makams can be constructed using the 
same set of pitches, the same set of tetrachord - penta-
chord formulation and the same tonic. Two examples are 
presented in Figure 1; the scale for makam Hüseyni and 
makam Muhayyer (top figure) and makam Uşşak and 
makam Beyati (bottom figure). Then, pitch hierarchy, 
melodic direction, typical phrases and typical makam 
transitions appear to be the discriminating features for 
makams having the same set of pitches and tonic.  

 
Figure 1. Scale used for makam Hüseyni and makam 
Muhayyer (top), makam Beyati and makam Uşşak 
 

The listed characteristics have important influences on 
the pitch-class distribution of a given piece in a given 
makam, as in the case of key or mode in Western music 
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[13]. For that reason, the processing of pitch (class) his-
tograms appears as the most common approach for com-
putational studies of makam music [8]. N-grams can be 
considered to be an extension to this approach, where dis-
tributions of fixed length note-sequences are used in addi-
tion to single note pitch distributions.  

The n-grams approach [10], from the text retrieval 
domain, have been widely used in computational studies 
on Western music. Various applications exist including 
indexing [6], query processing and music similarity com-
putation [7], [17]. This study targets filling the gap for 
makam music in Turkey in the context of makam recog-
nition. We first present the data, then details of imple-
mentation, results and discussions. 

2. DATA 

The current notation system (The Arel Theory (nota-
tion)) [4] used for TMMT  assumes 24 notes in an oc-
tave. Although highly-criticized, almost all scores being 
used today are written in that system. While a large 
number of scanned scores are available on internet, ma-
chine readable data is very limited. Recently, we have 
announced the largest symbolic database of TMMT con-
taining 1700 pieces in 155 makams [12]. Due to the 
availability at the time of the experiments, this study uses 
the following subset from [12]: 
 

Makam name Total # of Songs Total # of Notes 
Beyati 39 16,172 
Hicaz 112 45,905 
Hicazkar 48 17,950 
Hüseyni 70 28,292 
Hüzzam 63 26,842 
Kürdilihicazkar 49 20,993 
Mahur 51 22,037 
Muhayyer 51 21,718 
Nihavent 79 31,143 
Rast 83 32,636 
Saba 42 17,255 
Segah 75 26,757 
Uşşak 85 31,704 
TOTAL 847 339,404 

Table 1. Makam coverage and note statistics  

The makam selection is based on three criteria: com-
monness, similarity and having sufficient number of 
samples in the database. For a classification study, it is 
beneficial to include similar classes and study the effects 
of such similarities in the classification performance. We 
have included in our set, makam couples which are 
stated to be differing only in melodic progression namely 
Uşşak - Beyati and Muhayyer - Hüseyni [14]. These 
couples share the same set of pitches, the same tonic and 
dominant (which is considered to be the boundary of te-
trachord-pentachord division of the octave) as shown in 
Figure 1. As previous classification work on audio data 
showed, Hüseyni is also confused with Uşşak [8]. There-
fore, the set includes challenging examples of classes.  

2.1 Arel representation compared to 12-TET 

In this work we test our system with two different repre-
sentations of the symbolic data. The first one is the offi-
cial theory of TMMT [4] and the second is the well-
known 12-TET representation. The tonal space of the two 
systems are compared in Figure 2.  

 

Figure 2. Tonal spaces of the Arel Theory Notation and 
12-TET. 

 Being based on Pythagorean tuning, the 24 tones of 
Arel Theory are indeed close to 12-TET tones. While be-
ing a better representation (than 12-TET) for TMMT, 
Arel system is known to be insufficient in representing 
the practice. In this work we use the Arel Theory repre-
sentation due to its wide use and the 12-TET representa-
tion, to be able to compare our results with [2],[9].  

Arel theory uses two different but close formulations 
to represent notes and musical intervals, the first one be-
ing frequency ratios (such as 3/2, 9/8, etc.) and second 
one being the interval in integer multiples of Holdrian-
commas (obtained by equal 53 divisions of an octave). 
The second is indeed a quantized version of the first and 
is more practical in explaining accidentals of the notation 
system as in Figure 3.  

 

Figure 3. Accidentals used in the Arel Theory notation 
system 

As shown in Figure 3, a whole-tone is composed of 9 
Holdrian commas (will be referred as comma hereafter) 
in the Arel Theory system. In a machine readable format, 
it is convenient to name the notes using the comma steps 
such as B4b1, which corresponds to B4 with a flat of sin-
gle comma size, where B4b4 would have a flat of 4 
comma size. Alternatively each note can be represented 
using its distance to a reference note, for example C1, in 
commas. Such a representation makes it possible to easily 
obtain  interval sizes (by simply subtracting the values 
assigned to each note as a distance in commas to a com-
mon reference) between consecutive notes which can fur-
ther be used in modeling the progression (as in Section 
4.4).    



3.  STATISTICAL MODELING 

3.1 N-gram models 

N-grams are widely used in computational linguistics, 
probability, communication theory and computational 
biology as well as music information retrieval [6], [7], 
[17]. N-grams predict Xi based on Xi-(n-1), ..., Xi-1. In 
theory this is the information calculated by P(Xi|Xi-(n-1), 
..., Xi-1). Given sequences of a certain set, one can statis-
tically model this set by statistically counting the se-
quences that belong to it. In this study, according to the 
given note sequences that belong to the same makam, n-
grams will be used to statistically model the pitch and 
intervallic space, as well as short melodic motifs to de-
fine makams.  

The main hypothesis to be tested here is that, the short-
time melodic contour and the frequency of makam specif-
ic notes are selective features for defining makams. This 
is why n-gram models are selected for training makam 
models using the Arel Theory notation. Given a micro-
tonal notation sequence, using perplexity, the system will 
define how well the input sequence can be generated by 
the makam models in the database. The makam model 
that has the maximum similarity score is selected as the 
output of the system.  

3.2 Smoothing 

In practice, it is necessary to smooth the probability dis-
tributions by assigning non-zero probabilities to unseen 
words or n-grams. The reason is that models derived di-
rectly from the n-gram frequency counts have severe 
problems when confronted with any n-grams that have 
not been seen before which is called the "zero frequency 
problem". Different smoothing techniques are introduced 
in order to solve this problem [10].  Written-Bell smooth-
ing technique available in the SRILM toolkit is used in 
our experiments [15].  

3.3 Perplexity 

Perplexity is a metric that is widely used for compar-
ing probability distributions. The perplexity of a random 
variable X can be stated as the perplexity of the distribu-
tion over its possible values of x. Given a proposed prob-
ability model q (in our case: a makam model), evaluating 
q by asking how well it predicts a separate test sequence 
or set x1, x2, ...,xN (in our case: a microtonal note se-
quence) also drawn from p, can be performed by using 
the perplexity of the model q, defined by:   

2∑
1
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙2𝑞𝑞(𝑥𝑥𝑖𝑖)𝑁𝑁

𝑖𝑖=1   (1) 

For the test events, we can see that better models will 
assign better probability scores thus a lower perplexity 
score which means it has a better potential to compress 
that data set. The exponent is the cross entropy per defi-
nition: 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙2𝑞𝑞(𝑥𝑥)𝑥𝑥  (2) 

The cross entropy thus the perplexity is the similarity 
measure between the test input and the makam models in 
the database. For each of the makam models defined, the 
system calculates the similarity metric to evaluate which 
makam is the most similar to the input sequence given.  

4.  EXPERIMENTAL SETUP 

4.1 Leave-one-out 

The experimental setup can be found in Figure 4, explain-
ing how the leave-one-out strategy is inherited.  

 
Figure 4. The leave-one-out experimental setup 

There are 13 makam classes. Each of them has un-
equal number of music pieces. Since our approach is sta-
tistical, for each class, it is desirable to have a training set 
and a separate test set. This approach is feasible in case 
there is enough data.  Since machine-readable microtonal 
notation is very hard to find in makam music,  the "leave-
one-out" strategy will be used in this experimental setup 
in order to avoid the negative effect of unequal set sizes. 
For each iteration of the experiment, one music piece will 
be selected as the input and the leftover music pieces will 
be used for training the genuine and the imposter makam 
classes. Using a probabilistic evaluation metric (perplexi-
ty), the system will calculate a similarity measure be-
tween the input and already built makam models.  

4.2 Evaluation 

Given a note sequence, the perplexity will estimate how 
well this sequence can be statistically generated by the 
makam models in our search space. Between each of the 
makam models, and the input sequence, the system cal-
culates a similarity measure, and the makam that produc-
es the maximum similarity measure becomes the output 
of the system. The performance criteria of the experi-
mental procedure is binary, which is either a success or 
failure. The matching performance of the entire system, 
which is the accuracy (Recall), will be given as a propor-
tion of successes over the total test trials in terms of To-
tal Average (Tot-Ave) and the Weighted Average (W-
Ave).  

 

 



 

 

 

 

 

 

 

 

 

 

4.3 Tests with the Arel Theory Notation 

In information retrieval, the output of such kind of sys-
tems are evaluated given 2 different measures. Given a 
music piece, the Recall (Rcl) suggests, how many of the 
queries for each of the makams are correctly found. On 
the other hand, precision is how many of the retrieved 
makams belong to the correct reference makam class. 
Precision becomes more meaningful when there is equal 
number of test trials from each makam classes. As seen 
from Table 3, 4 makams has perfect recall rate which are 
Hicaz, Hicazkar, Kürdilihicazkar and Mahur. The ma-
kam which shows the worst performance is Beyati as the 
recall rate is 61.5% and it is confused with Uşşak, the 
most (for n=3).  

The confusion matrix also suggests that there are con-
crete similarities between these makam sets: Beyati -  
Uşşak and Hüseyni - Muhayyer. In theory these makam 
couples use exactly the same microtonal note sets as well 
as the tonics and the effect of this similarity can be prac-
tically seen in our experiments.  

Table 3 shows the change in Recall metric when the 
order of the n-grams increased from 1 to 3. Also, the last 
column shows which n-gram shows the best performance 
with respect to Recall. As seen from results, for the ma-
kam, Hicazkar, Hüseyni, Rast and Segah, increasing the 
order of n-grams from 1 to 2 or 3, improves the makam 
detection performance of the classifier. For Hicaz, 
Hüzzam, Mahur, Nihavent and Saba increasing the order 
of the n-grams did not have any positive influence. On 
the other hand, increasing N has negative effect on the 
performance of the classifier for the makams Beyati, Mu-
hayyer and Uşşak.  

There might be a number of reasons for performance 
fluctuation within different makams. The one that we be-
lieve the most important is the unequal number of notes 
for training each makam classes. Even though a smooth-
ing technique is used, the frequency of widely seen se-
quences become more dominant for makams that have 
few training samples (such as Beyati, Hüzzam, Segah and 
Uşşak), which makes these makams harder to be distin-
guished from the ones that are similar.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 3. Change in Recall w.r.t. n-gram order for data 
using the Arel Theory notation  

4.4 Tests with microtonal intervals 

Considering that the real world application of this system 
will operate with audio inputs, and it is known that a di-
rect transcription of audio to the microtonal sequence 
used above is not easy, tests on data represented as se-
quence of microtonal intervals are also applied. The in-
terval between consecutive notes are computed in com-
mas as explained in Section 2.1 This also ensures that the 
system functionality is independent of the starting note of 
the music piece, the type or the tuning of the instrument 
that plays the piece.  

 n=1 n=2 n=3 Best-N 
Beyati 64.1 56.4 61.5 1 
Hicaz 100 99.1 100 1,3 
Hicazkar 97.9 100 100 2,3 
Hüseyni 50 64.3 71.4 3 
Hüzzam 98.4 98.4 98.4 1,2,3 
Kürdilihicakar 100 100 100 1,2,3 
Mahur 100 100 100 1,2,3 
Muhayyer 80.4 68.6 68.6 1 
Nihavent 98.7 98.7 98.7 1,2,3 
Rast 74.7 92.8 91.6 2 
Saba 97.6 97.6 97.6 1,2,3 
segah 93.2 97.3 95.9 2 
Uşşak 68.2 62.4 57.6 1 
Tot-Avg 86.3 87.9 88.2 3 
W-Avg 86.4 87.4 87.8 3 

byati hicaz hczkr hsyni huzzm krdhz mahur muhyr nhvnt rast saba segah Ussak Ref Rcl. 
24 0 0 3 0 0 0 1 0 0 0 0 11 byati 61.5 
0 112 0 0 0 0 0 0 0 0 0 0 0 hicaz 100 
0 0 48 0 0 0 0 0 0 0 0 0 0 hczkr 100 
1 0 0 50 0 0 0 13 0 0 0 0 0 hsyni 71.4 
0 0 0 0 62 0 0 0 0 0 0 1 0 huzzm 98.4 
0 0 0 0 0 49 0 0 0 0 0 0 0 krdhz 100 
0 0 0 0 0 0 51 0 0 0 0 0 0 mahur 100 
2 0 0 11 0 0 0 35 0 3 0 0 0 muhyr 68.6 
0 0 0 0 0 0 0 0 78 1 0 0 0 nhvnt 98.7 
0 0 0 1 0 0 0 0 0 76 0 0 4 rast 91.6 
0 0 0 1 0 0 0 0 0 0 41 0 0 saba 97.6 
0 0 0 1 2 0 0 0 0 0 0 70 0 segah 95.9 

16 0 0 11 0 0 0 4 0 3 0 2 49 ussak 57.6 
55.8 100 100 64.1 96.9 100 100 63.6 100 91.6 100 95.9 70 Prc.  

     
   Table 2. Confusion Matrix for Arel Theory Notation (n=3) 



 
Table 4. Change in Recall w.r.t. n-gram order with data 
represented as microtonal intervals 

The basic goal in this experimental setup is to achieve 
at least a close performance to the test explained in 4.3, 
and thus the cost of losing absolute note level informa-
tion can be tested over the system performance. The ma-
kam detection performance for the microtonal represen-
tations can be seen in Table 4. 

4.5 The Baseline: 12-TET Input Tests 

Finally we evaluated the performance of our system on 
data represented using 12-TET since it is the representa-
tion used in the only available system in literature that 
does makam detection using n-grams [2], [9]. In addition 
to important differences in the implementation, modeling 
and evaluation, this study uses and compares different 
data representations, where in [2], [9] only the 12-TET 
representation is used. Since the basic strategy is building 
n-grams for both systems, we ran our experimental setup 
on the same database using the leave-one-out technique.  

Table 5 shows the results with respect to increasing n-
grams per each makam in the database. Since neither the 
evaluation nor the modeling technique is clearly ex-
plained in [2], [9], the standard modeling and smoothing 
techniques in our system was used when implementing 
the baseline (i.e. the system using the 12-TET representa-
tion).  As seen from the results, the best performing n- 
gram order is 3, similar to results gathered from Arel 
theory tests. However, the system using the Arel Theory 
notation outperforms the baseline for both the Weighted 
Average and the Total Average.  

 
Table 5. Change in Recall w.r.t. n-gram order for 12 
TET 

The overall comparison of the performance of all the 
tests can be seen in Table 6. For n=3 where the best per-
formance for all the systems were achieved, we observe 
that by using the Arel Theory notation as opposed to 12-
TET, an improvement of 3.7% is achieved. 

 
Recall n=1 n=2 n=3 

Arel Theory 86.3 87.9 88.2 
12-TET 81.7 82.8 84.5 

Delta (in commas) 58.9 77.3 80.6 

 
Table 6. Overall Performance Comparison. 

5. DISCUSSION AND CONCLUSION 

In this work, we implemented a perplexity based makam 
detection system on symbolic data of TMMT. N-gram 
based statistical makam models were built using the 
SRILM toolkit. Necessary smoothing was performed in 
order to compensate the negative effect of unequal set 
sizes.  

Experimental set up was designed using the leave-one-
out approach. For each of the test trials, one song from 

50
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70
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100

n=1 n=2 n=3
Arel Theory 12-TET Delta

 n=1 n=2 n=3 Best-N 
Beyati 56.4 64.1 59 2 
Hicaz 61.6 81.2 93.8 3 
Hicazkar 66.7 85.4 85.4 2,3 
Hüseyni 30 50 60 3 
Hüzzam 69.8 87.3 85.7 2 
Kürdilihicazkar 38.8 71.4 77.6 3 
Mahur 80.4 90.2 94.1 3 
Muhayyer 51 47.2 43.1 1 
Nihavent 70.9 92.4 97.5 3 
Rast 69.9 89.2 88 2 
Saba 97.6 97.6 97.6 1,2,3 
Segah 69.9 94.5 94.5 2,3 
Uşşak 21.2 51.8 56.5 3 
Tot-Avg 58.9 77.3 80.6 3 
W-Avg 60.3 77.1 79.4 3 

 n=1 n=2 n=3 Best-N 
Beyati 66.7 56.4 61.5 1 
Hicaz 98.2 100 100 2,3 
Hicazkar 91.7 97.9 97.9 2,3 
Hüseyni 42.9 58.6 72.9 3 
Hüzzam 98.4 98.4 98.4 1,2,3 
Kürdilihicakar 100 100 98 1,2 
Mahur 70.6 82.4 74.5 2 
Muhayyer 80.4 70.6 66.7 1 
Nihavent 97.5 97.5 97.5 1,2,3 
Rast 72.3 75.9 80.7 3 
Saba 97.6 97.6 97.6 1,2,3 
segah 75.3 84.9 89 3 
Uşşak 69.4 54.1 56.5 1 
Tot-Avg 81.7 82.8 84.5 3 
W-Avg 81.6 82.6 83.9 3 



the database was chosen as the input. The rest of the 
pieces were used for modeling the makam classes.   

Three different experimental setups were created. The 
tests with data represented using Arel Theory showed that 
the overall recall performance of the system is 88.2%. 
Increasing the order of n-grams boosted the  classification 
performance as expected. However, the effect is different 
for different makams. We observed that increasing the n-
gram order did not help when trying to distinguish ma-
kams that use the same scale such as Beyati-Uşşak and 
Muhayyer-Hüseyni. The second experimental setup was 
for a real application case, where there is no direct note 
level transcription. For this test, the data is represented as 
intervals (in commas) between consecutive notes. This 
experiment was designed to provide reference informa-
tion for research on makam detection directly from audio 
where exact note level transcription is not available. For 
audio, due to different instrumentation, and tuning, the 
only reliable information is the intervallic movement. The 
result showed that the makam detection accuracy is 
%80.6 using with n order 3. Note that, higher order n 
grams did not improve the experimental results beyond 
n=3 because of data sparsity. 

For comparison with a previous study [2], [9], both the 
data representation in [2], [9] and additional representa-
tions (Arel and interval representation) are tested and 
compared. It is observed from tests using a large dataset, 
and challenging makam couple sets, that a system using 
Arel Theory representation outperforms a system using 
the 12-TET representation on average 3.7% percent. In-
creasing the n-gram order beyond 3 did not improve the 
performance of the tests due to lack of data.  

Future work includes defining global tonal features 
that could help distinguishing makams having the same 
microtonal scale and tonic such as Uşşak - Beyati and 
Hüseyni - Muhayyer. Features related to global progres-
sion of the melody could give clues that cannot be cap-
tured by n-grams that concentrate more on local short 
length movements.  
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EVALUATING THE ONLINE CAPABILITIES OF ONSET DETECTION
METHODS
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ABSTRACT

In this paper, we evaluate various onset detection algo-
rithms in terms of their online capabilities. Most meth-
ods use some kind of normalization over time, which ren-
ders them unusable for online tasks. We modified existing
methods to enable online application and evaluated their
performance on a large dataset consisting of 27,774 an-
notated onsets. We focus particularly on the incorporated
preprocessing and peak detection methods. We show that,
with the right choice of parameters, the maximum achiev-
able performance is in the same range as that of offline
algorithms, and that preprocessing can improve the results
considerably. Furthermore, we propose a new onset detec-
tion method based on the common spectral flux and a new
peak-picking method which outperforms traditional meth-
ods both online and offline and works with audio signals
of various volume levels.

1. INTRODUCTION AND RELATED WORK

Onset detection, the task of finding musically meaningful
events in audio signals, is fundamental to many applica-
tions: Real-time applications such as automatic score fol-
lowers [7] can be enhanced by incorporating (online) onset
detectors that look for note onsets in a live performance,
while (offline) onset detection is used increasingly to im-
prove digital audio workstations with a view to event-wise
audio processing.

Many different methods of solving this task have been
proposed and evaluated over the years. Comprehensive
overviews of onset detection methods were presented by
Bello et al. in [2] and Collins in [6] (with special empha-
sis on psychoacoustically motivated methods in the latter).
Dixon proposed enhancements to several of these in [9].
All methods were evaluated in an offline setting, using a
normalization over the whole length of the signal or apply-
ing averaging techniques which require future information.

For online onset detection, only few evaluations have
been carried out: Brossier et al. [5] compared four on-
set functions based on spectral features and proposed a
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method for dynamic thresholding in online scenarios, us-
ing a dataset of 1,066 onsets for evaluation. Stowell and
Plumbley [18] proposed adaptive whitening as an improve-
ment to short-time Fourier transform (STFT) based onset
detection methods and evaluated eight detection functions
using a dataset of 9,333 onsets. Glover at al. [12] applied
linear prediction and sinusoidal modeling to online onset
detection, but used a relatively small dataset of approxi-
mately 500 onsets for evaluation.

These traditional onset detection methods usually incor-
porate only spectral and/or phase information of the sig-
nal, are easy to implement, and have modest computational
cost. In contrast, methods based on machine learning tech-
niques (e.g., neural networks in [11,15]) or on probabilistic
information (e.g., Hidden Markov models in [8]) depend
on large datasets for training and are in general computa-
tionally more demanding, which makes them unsuited for
online processing.

The onset detection process is usually divided into three
parts (as shown in Figure 1): signal preprocessing, compu-
tation of the actual onset detection function (ODF), and
peak detection.

ODF Peak detectionSignal OnsetsPreprocessing

Figure 1. Basic onset detection workflow.

There are generally two normalization steps that require
special attention in an online context: The first can be
found in the preprocessing step where many implementa-
tions normalize the audio input prior to further processing.

The second and more widespread use of normalization
is in the peak detection stage, where the whole ODF is
normalized before being processed further. An exception
to this rule are some machine learning approaches like the
neural network-based methods, since their detection func-
tion can be considered as a probability function which al-
ready has the range [0..1]. Furthermore, most offline meth-
ods use smoothing or averaging over (future) time to com-
pute dynamic thresholds for the final peak-picking.

This paper is structured as follows: We combine the
ODFs described in Section 2.2 with different preprocessing
methods from Section 2.1 and evaluate them on the dataset
described in Section 3.1 using the peak-picking method
given in Section 2.3.4. In Section 4 we discuss the results,



and we give conclusions in Section 5.

2. COMPARED METHODS

Previously, onset detection algorithms used to work di-
rectly with the time signal x(t). However, all current onset
detection algorithms use a frequency representation of the
signal. We used frames of 23 ms length (2048 samples at a
sample rate of 44.1 kHz) that are filtered with a Hann win-
dow before transfer into the frequency domain by means of
STFT. The hopsize between two consecutive frames was
set to 10 ms, which results in a frame rate of 100 frames
per second. The resulting spectrogram X(n, k) (n denot-
ing the frame and k the frequency bin number) was then
processed further by the individual preprocessing and on-
set detection algorithms.

2.1 Preprocessing

2.1.1 Filtering

Scheirer [17] stated that, in onset detection, it is advanta-
geous if the system divides the frequency range into fewer
sub-bands as done by the human auditory system. Filter-
ing has been applied by many authors (e.g. [6,14,17]), and
neural network based approaches also use filter banks to
reduce the dimensionality of the STFT spectrogram [11].

2.1.2 Logarithmic magnitude

Using the logarithmic magnitude instead of the linear re-
presentation was found to yield better results in many cases,
independently of the ODF used [11,14]. λ is a compression
parameter and was adjusted for each method separately.
Adding a constant value of 1 results in only positive val-
ues:

X log(n, k) = log(λ ·X(n, k) + 1) (1)

2.1.3 Adaptive whitening

Proposed in [18], adaptive whitening normalizes the mag-
nitudes |X(n, k)| of each frequency bin separately by past
peak values. The iterative algorithm (with r being a floor
parameter and m the memory coefficient) is given as fol-
lows:

Pn,k =

{
max(|X(n, k)|, r,m · Pn−1,k) if n ≥ 1

max(|X(n, k)|, r) otherwise

|X(n, k)| ←− |X(n, k)|
Pn,k

(2)

2.2 Onset detection functions

We have chose to omit other common methods such as
phase deviation (PD) [3], high frequency content (HFC)
[16] or rectified complex domain (RCD) [9], since they
exhibited inferior performance in our tests.

2.2.1 Spectral Flux

The spectral flux (SF) [16] describes the temporal evolu-
tion of the magnitude spectrogram by computing the dif-
ference between two consecutive short-time spectra. This
difference is determined separately for each frequency bin,
and all positive differences are then summed to yield the
detection function.

SF (n) =

k=N
2∑

k=1

H(|X(n, k)| − |X(n− 1, k)|) (3)

with H(x) = x+|x|
2 being the half-wave rectifier function.

Variants of this method use the L2-norm instead of the
L1-norm or the logarithmic magnitude [14] (cf. Section
2.1.2).

2.2.2 Weighted Phase Deviation

Another class of detection function utilizes the phase of the
signal [3, 9]. The change in the instantaneous frequency
(the second order derivative of the phase ϕ(n, k)) is an
indicator of a possible onset. In [9], an improvement to
the phase deviation ODF called weighted phase deviation
(WPD) was proposed. The WPD function weights each
frequency bin of the phase deviation function with its mag-
nitude.

WPD(n) =
2

N

k=N
2∑

k=1

|X(n, k) · ϕ′′(n, k)| (4)

2.2.3 Complex Domain

Another way to incorporate both magnitude and phase in-
formation (as in the WPD detection function) was pro-
posed in [10]. First, the expected target amplitude and
phase XT (n, k) for the current frame are estimated based
on the values of the two previous frames assuming constant
amplitude and rate of phase change. The complex domain
(CD) ODF is then defined as:

CD(n) =

k=N
2∑

k=1

|X(n, k)−XT (n, k)| (5)

2.3 Peak detection

Illustrated in Figure 2 and common to all onset detection
methods is the final thresholding and peak-picking step to
detect the onsets in the ODF. Various methods have been
proposed in the literature; we give an overview of the dif-
ferent components and modifications needed to make them
suitable for online processing.

Preprocessing Thresholding
Onset

detection
function

OnsetsPeak-picking

Figure 2. Peak detection process.



2.3.1 Preprocessing

The preprocessing stage of the peak detection process con-
sists mainly of two components: smoothing of the peaky
ODF and normalization. Both of them cannot be used in
an online scenario. Instead, moving average techniques as
outlined in Section 2.3.2 are applied to normalize the ODF
locally. To prevent detecting many false positives due to a
peaky ODF, the effect of smoothing can be approximated
by introducing a minimal distance from the last onset w5

as proposed in Section 2.3.4.

2.3.2 Thresholding

Before picking the final onsets from the ODF, thresholding
is performed to discard the non-onset peaks. Most methods
use dynamic thresholding to take into account the loudness
variations of a music piece. Mean [9], median [3,11,18] or
combinations [5, 12] are commonly used to filter the ODF.
If only information about the present or past is used, the
thresholding function is suitable for online processing.

2.3.3 Peak-picking

Two peak-picking methods are commonly used for final
detection of onsets. One selects all local maxima in the
thresholded detection function as the final onset positions.
Since detecting a local maximum requires both past and
future information, this method is only applicable to offline
processing.

The other method selects all values above the previously
calculated threshold as onsets and is also suitable for on-
line processing. The downside of this approach is its rel-
atively high false positive rate because the threshold pa-
rameter must be set to a very low level to detect the onsets
reliably.

2.3.4 Proposed peak detection

We use a modified version of the peak picking method pro-
posed in [9] to also satisfy the constraints for online onset
peak detection. A frame n is selected as an onset if the
corresponding ODF (n) fulfills the following three condi-
tions:

1. ODF (n) = max(ODF (n− w1 : n+ w2)

2. ODF (n) ≥ mean(ODF (n− w3 : n+ w4)) + δ

3. n− nlast onset > w5

where δ is a fixed threshold and w1..w5 are tunable
peak-picking parameters. For online detection, we setw2 =
w4 = 0. Our online experiments experiments showed that,
on average, onsets are detected one frame earlier than an-
notated in the dataset (using the values specified in Section
3.3). As we want to find the perceptual onset times (as an-
notated), we report the onset one frame later than detected.
Note that this does not mean that we predict the onset, it
only means that the onset can be recognized in the signal
before it is perceived.

Unlike in previous studies [5, 12, 18] we do not use the
same thresholding parameters for all ODFs. This is mainly
because some of the ODFs have fewer peaks and hence
need less averaging in the thresholding stage than others.

2.4 Neural network based methods

For reference, we compare the presented methods with two
state-of-the-art algorithms, the OnsetDetector [11] and its
online variant OnsetDetector.LL [4]:

OnsetDetector uses a bidirectional neural network which
processes the signal both in a forward and backward man-
ner, making it an offline algorithm. The algorithms showed
exceptional performance compared to other algorithms in-
dependently of the type of onsets in the audio material,
especially in its latest version tested during the MIREX
contest in 2011 [1].

OnsetDetector.LL incorporates a unidirectional neural
network to model the sequence of onsets based solely on
causal audio signal information.

Since these methods show very sharp peaks (represent-
ing the propability of an onset) at the actual onset positions,
the before mentioned peak detection method is not applied,
and a simple thresholding is used instead.

2.5 New method

We propose a new onset detection method which is based
on the spectral flux (cf. Section 2.2.1), drawing on various
other author’s ideas.

As a first step, we filter the linear magnitude spectro-
gram |X(n, k)| with a filter bank. We investigated dif-
ferent types of filter banks (Mel, Bark, Constant-Q) and
found that they all outperform the standard spectral flux.
Since they all perform approximately equally well when
using a similar number of filter bands, we chose a pseudo
Constant-Q, where the frequencies are aligned according
to the frequencies of the semitones of the western music
scale over the frequency range from 27.5 Hz to 16 kHz, but
using a fixed window length for the STFT. Overlapping
triangular filters sum all STFT bins belonging to one filter
bin (similarly to Mel filtering). The resulting filter bank
F (k, b) hasB = 82 frequency bins with b denoting the bin
number of the filter and k the bin number of the linear spec-
trogram. The filters have not been normalized, resulting in
an emphasis of the higher frequencies, similar to the HFC
method. The resulting filtered spectrogram Xfilt(n, b) is
given by:

Xfilt(n, b) = |X(n, k)| · F (k, b) (6)

Applying Equation 1 to the filtered linear magnitude spec-
trogram Xfilt(n, b) yields the logarithmic filtered spectro-
gram X log

filt(n, b). The final ODF O is then given by:

O(n) =

k=N
2∑

k=1

H
(∣∣∣X log

filt(n, b)
∣∣∣− ∣∣∣X log

filt(n− 1, b)
∣∣∣) (7)

where H is the half-wave rectifier function defined in Sec-
tion 2.2.1.

3. EXPERIMENTS

To evaluate the methods described, we conducted three ex-
periments: First, the methods were evaluated under on-
line conditions: no future information was used to decide



whether there is an onset at the current time point. Second,
the same methods were evaluated under offline conditions
(enabling prior data normalization or computing averages
that incorporate future information) to determine the max-
imum performance achievable by each method. Third, we
attenuated the volume of the audio data to an increasing
degree to test the online methods’ abilities to cope with
signals of different volume without access to normaliza-
tion.

3.1 Dataset

To evaluate the presented onset detection and peak-picking
methods we use a dataset of real world recordings.

An onset is usually defined as the exact time a note or
instrument starts sounding after being played. However,
this timing is hard to determine, and thus it is impossible
to annotate the real onset timing in complex audio record-
ings with multiple instruments, voices, and effects. Thus,
the most commonly used method for onset annotation is
marking the earliest time point at which a sound is audible
by humans. This instant cannot be defined in pure terms
(e.g., minimum increase of volume or sound pressure), but
is a rather complex mixture of various factors.

The annotation process is very time-consuming because
it is performed in multiple passes. First, onsets are an-
notated manually during slowed down playback. In the
second pass, visualization support is used to refine the on-
set positions. Spectrograms obtained with different STFT
lengths are used in combination to capture the precise tim-
ing of an onset without missing any onset due to insuf-
ficient frequency resolution. This multi-resolution proce-
dure seems to be a good approach since the best onset de-
tection algorithms also use this mechanism. If multiple
onsets are located in close vicinity, they are annotated as
multiple onsets.

The dataset contains 321 audio excerpts taken from var-
ious sources. 87 tracks were taken from the dataset used in
[11], 23 from [2], and 92 from [13]. All annotations were
manually checked and corrected to match the annotation
style outlined above. The remaining 119 files were newly
annotated and contain the vast majority of the 27,774 on-
sets of the complete set.

Although musically correct, the precise annotations (raw
onsets) do not necessarily represent human perceptions of
onsets. Thus, all onsets within 30 ms were combined into a
single one located at the arithmetic mean of the positions 1 ,
which resulted in 25,966 combined onsets used for evalu-
ation. The dataset can be roughly divided into six main
groups (Table 3.1).

3.2 Measures

For evaluation, the standard measures precision, recall, and
F-measure were used. An onset is considered to be cor-
rectly detected if there is a ground truth annotation within

1 To better predict the perceived position of an onset, psychoacoustical
knowledge must be applied. Since the masking effects involved depend
on both loudness and frequency of an onset, they are not applied here.
For the evaluation of onset detection methods as in this paper, the selected
method of combination is adequate.

Type of audio Files Raw onsets Combined
Complex mixtures 193 21,091 19,492
Pitched percussive 60 2,981 2,795
Non-pitched perc. 17 1,390 1,376
Wind instruments 25 822 820
Bowed strings 23 1,180 1,177
Vocal 3 310 306
ALL 321 27,774 25,966

Table 1. Description of the used dataset: Pitched per-
cussive (e.g., piano, guitar), non-pitched percussive (e.g.,
percussion), wind instruments (e.g., sax, trumpet), bowed
string instruments (e.g., violin, kemence), monophonic vo-
cal music and complex mixtures (e.g., jazz, pop, classical
music)

±25ms around the predicted position. This rather strict
evaluation method (also used in [11] and [6] for percus-
sive sounds) was chosen because it gives more meaningful
results - especially in online onset detection - than an eval-
uation window of ±50ms as used in [2, 9, 18].

An important factor in the evaluation is how false pos-
itives and negatives are counted. Let us assume that two
onsets are detected inside the detection window around a
single annotation. If tolerant counting is used, no false pos-
itives are counted. Every single detection is considered a
true positive, since there is an annotated onset within the
detection window. This is often referred to as merged on-
sets. If counted in a strict way, all annotated onsets can
only be matched once, i.e., two detections within the de-
tection window of a single onset are counted as one true
positive and one false positive detection.

Since many papers do not explicitly describe the crite-
ria, it must be assumed that the results were obtained with
the first method (usually yielding better results). In this
paper, we evaluated the stricter way, but with combined
annotated onsets (not to be confused with merged onsets).
The combining of onsets leads to less false negative de-
tections if the algorithm reports only a single onset where
multiple ones are annotated. Since most of the algorithms
are not capable reporting multiple consecutive onsets, this
results in a more fair comparison.

3.3 Parameter selection

The peak-picking parameters w1...w5 and the fixed thresh-
hold δ introduced in Section 2.3.3 were optimized by a grid
search over the whole set for each method separately. As
in [2, 9], we report the best performance for each method
using the optimized global parameter set. For online de-
tection (w2 = w4 = 0), the optimal values for w3 were
found to be between 4 and 12, w1 = 3, and w5 = 3. For
the offline case, w2 = 3, w4 = 1 and w5 = 0 yielded the
best results (w1 andw3 were left unchanged). The adaptive
whitening parameters m = 10 and r = 0.005 were found
to be generally good settings and were used for all ODFs
in the experiments. The compression parameter λ (Section
2.1.2) was chosen to be between 0.01 and 20. The neu-



ral networks are trained and evaluated using 8-fold cross
validation on disjoint training, validation, and test sets.

All parameters were optimized on the dataset and left
unchanged for the unnormalized penalty task.

4. RESULTS AND DISCUSSION

4.1 Comparison of different ODFs

Table 2 lists the results for all algorithms working in on-
line mode on the complete dataset using the peak detection
method described in Section 2.3.4. It shows that applica-
tion of adaptive whitening and use of a logarithmic magni-
tude both outperform the traditional methods without any
preprocessing. Both preprocessing methods compress the
magnitude and hence emphasize higher frequency bands
that are important for detecting percussive onsets. Further-
more, our proposed method (SF log filtered) clearly out-
performs all the other methods (apart from the reference
OnsetDetector.LL). In particular, it is characterized by a
high precision value due to the reduced number of false
positives compared to the other methods. We believe that
the filtering process reduces the spectrum to the most rel-
evant components for onset detection. This may facilitate
better distinction between signal changes that are arising
from an onset and spurious, non-onset-related changes.

Online algorithm % F-meas. % Prec. % Rec.
SF 74.5 76.3 72.8
SF aw 75.7 78.0 73.4
SF log 76.1 78.3 74.0
SF log filtered 80.3 88.3 73.5
CD 71.1 72.4 69.8
CD aw 75.8 76.4 75.1
CD log 74.1 77.4 71.1
WPD 69.7 68.8 70.6
WPD aw 71.4 70.8 72.0
WPD log 70.9 74.6 67.5
OnsetDetector.LL [4] 81.7 85.0 78.7

Table 2. F-measure, precision and recall of different on-
set detection algorithms using online peak-picking, where
aw denotes adaptive whitening, log denotes the use of a
logarithmic magnitude and SF log filtered is the method
proposed in Section 2.5

.

Our tests showed that - if the parameters are properly
chosen - the offline results are in the same range as the
online results 2 . We deem this is a remarkable finding
and think that the reasons for this behavior are the fol-
lowing: First, the audio tracks of the dataset have similar
volume levels, which renders the normalization step less
important. Second, when looking only at single indepen-
dent frames, it seems reasonable that frames after the cur-
rent onset frame do not carry much additional information.
However, the superior results of the offline OnsetDetec-
tor (F-measure 86.6, precision 90.6, recall 83.0 ) suggest

2 We observed an average gain in F-measure of 0.25% in offline mode

that using both past and future information contained in
the magnitude spectrogram can be valuable to detect also
the “harder” onsets (as reflected by the much higher recall
value of this method).

4.2 Unnormalized penalty

When dealing with unnormalized data, the investigated on-
set detection methods experience different levels of perfor-
mance loss. As shown in Figure 3, our proposed onset de-
tection method exhibits superior performance at all attenu-
ation levels and is only beaten by the OnsetDetector.LL,
that is unaffected by any volume changes. This shows the
power of machine learning techniques that do not depend
on predefined peak-picking threshholds. The methods us-
ing adaptive whitening score third, which seems reason-
able as these methods include an implicit normalization us-
ing past frames. Computing the difference of two adjacent
frames of the logarithmic spectrum (SF log) has the effect
of dividing the magnitude at frame n by that at frame n−1,
resulting in the relative magnitude change rather than the
absolute difference. This makes the spectral flux obtained
with logarithmic magnitudes more robust against absolute
volume changes, compared to the standard variant (SF ).

Finally, the compression parameter λ was found to in-
fluence greatly the shape of the performance curve (when
using the logarithmic magnitude spectrum), especially at
lower volume levels.
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Figure 3. Performance of the online methods at different
attenuation levels.

4.3 Remarks

In this paper, we give only results for the complete dataset.
Results for subsets (organized by audio type and author)
obtained with different detection window sizes can be found
online at http://www.cp.jku.at/people/boeck/
ISMIR2012.html.



5. CONCLUSIONS

In this paper we have evaluated various onset detection al-
gorithms in terms of their suitability for online use, focus-
ing on the preprocessing and peak detection algorithms.
We have shown that using logarithmic magnitudes or adap-
tive whitening as a preprocessing step results in improved
performance in all methods investigated. When the param-
eters for peak detection are chosen carefully, online meth-
ods can achieve results in the same range as those of offline
methods.

Further, we have introduced a new algorithm which out-
performs other preprocessing methods. It copes better with
audio signals of various volume levels, which is of major
importance for onset detection in real-time scenarios.

Apart from that, machine learning techniques like neu-
ral network based methods are much more robust against
volume changes in online scenarios and are the methods of
choice if enough training data is available.
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ABSTRACT

Content-based approaches to music retrieval are of great

relevance as they do not require any kind of manually gen-

erated annotations. In this paper, we introduce the con-

cept of structure fingerprints, which are compact descrip-

tors of the musical structure of an audio recording. Given

a recorded music performance, structure fingerprints facil-

itate the retrieval of other performances sharing the same

underlying structure. Avoiding any explicit determination

of musical structure, our fingerprints can be thought of as a

probability density function derived from a self-similarity

matrix. We show that the proposed fingerprints can be

compared by using simple Euclidean distances without

using any kind of complex warping operations required

in previous approaches. Experiments on a collection of

Chopin Mazurkas reveal that structure fingerprints facili-

tate robust and efficient content-based music retrieval. Fur-

thermore, we give a musically informed discussion that

also deepens the understanding of this popular Mazurka

dataset.

1. INTRODUCTION

The rapidly growing corpus of digitally available audio

material requires novel retrieval strategies for exploring

large collections and discovering music. One outstand-

ing instance of content-based music retrieval is query-by-

example: Given a query in the form of an audio recording

(or just a short fragment of it), the goal is to retrieve all doc-

uments from a music collection that are somehow similar

or related to the query. In this context, the notion of simi-

larity used to compare different audio recordings (or frag-

ments) is of crucial importance and largely depends on the

respective application. Typical similarity measures assess

timbral, melodic, rhythmic, or harmonic properties [2].

A further key aspect of music is its structure. Indeed,

the automatic extraction of structural information from

music recordings constitutes a central research topic within

the area of music information retrieval [10]. One goal of
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structure analysis is to split up a music recording into seg-

ments and to group these segments into musically mean-

ingful categories, such as chorus or verse. The structure

is a highly characteristic property for many musical styles.

Folk songs and children songs, for example, typically ex-

hibit a strophic form, where one tune is repeated over and

over again with changing lyrics. Popular music typically

consists of a number of repeating verses connected by a

refrain. In classical music, the structure (or musical form)

is often more complex and offers more variability.

Besides being characteristic for a certain musical style,

the structure and, in particular, the relative duration of

its elements is also a good descriptor for a specific piece

of music—irrespective of specific realizations or perfor-

mances. Furthermore, the structure is invariant to changes

in instrumentation or key and therefore allows for identi-

fying different performances of the same piece. So far,

only a few approaches exist that exploit structural similar-

ity to facilitate music retrieval [1, 4, 6, 7]. Typically, these

approaches are based on self-similarity matrices (SSMs)

which in general play an important role for analyzing mu-

sical structures [10]. For computing an SSM, an audio

recording is first transformed into a sequence of feature

vectors and then all elements of the sequence are compared

in a pairwise fashion using a local similarity measure. Re-

peating patterns in the feature sequence appear as parallel

paths in the SSM, see Figure 1a. Revealing structural prop-

erties, SSMs can in turn be used for analyzing structural

similarities of performances. To this end, one requires a

similarity measure that compares entire SSMs while be-

ing invariant to temporal variations. In [6, 7], the SSMs

are compared using a similarity measure that is based on

a two dimensional version of dynamic programming. The

approach proposed by Bello [1] is also based on SSMs,

but employs a normalized compression distance (NCD) to

assess their similarity, without requiring any alignment op-

erations. Originally proposed for comparing protein struc-

tures in bioinformatics, the NCD can be regarded as a mea-

sure of the information distance of two objects where the

Kolmogorov complexity is approximated using a standard

compression algorithm, see [1].

Inspired by the work of Bello, we describe in this pa-

per a simple yet effective approach for measuring struc-

tural similarities of music recordings. As first contribu-

tion, we introduce the concept of structure fingerprints

which are compact structural descriptors of music record-



ings. Analogous to [1, 6, 7], our fingerprints are also de-

rived from self-similarity matrices while avoiding any ex-

plicit determination of structure. Specifically, we use a bi-

variate variant of a Parzen-Rosenblatt kernel density esti-

mation method for representing a given SSM by a prob-

ability density function (pdf) [13]. This has the desired

effect of smoothing out temporal variations in the perfor-

mances. As a result, unlike previous approaches, we do not

require any complex distance measure. Instead, recordings

can be compared efficiently using, e. g., the Euclidean dis-

tance between fingerprints. As second contribution, we re-

port on extensive experiments using a large collection of

Chopin Mazurkas. In particular, we show that structure

fingerprints facilitate content-based music retrieval solely

based on structural information and exhibit a high degree

of robustness against performance variations. This makes

the presented approach particularly suited for supporting

traditional retrieval systems that assess harmonic similari-

ties [2,5,8,12]. Finally, as third contribution, we provide a

musically informed discussion of problematic pieces and

recordings which also deepens the understanding of the

Mazurka dataset.

The remainder of this paper is organized as follows. In

Section 2, we introduce our approach to computing struc-

ture fingerprints. Then, in Section 3, we describe our re-

trieval experiment and give a quantitative as well as musi-

cally informed discussion of the results. Conclusions are

given in Section 4.

2. STRUCTURE FINGERPRINTS

In this section, we introduce our strategy for computing

structure fingerprints that capture characteristics of a mu-

sical piece and, at the same time, are invariant to properties

of a specific performance. We first introduce the underly-

ing feature representation (Section 2.1) and the SSM vari-

ant (Section 2.2). In particular, we introduce various en-

hancement strategies that absorb a large degree of tempo-

ral and spectral variations. Then, in Section 2.3 we explain

in detail how the fingerprints are derived from the SSMs.

2.1 Feature Representation

We first convert a given music recording into a sequence

of chroma features, which have turned out to be a pow-

erful mid-level representation for relating harmony-based

music [1, 2, 5, 8, 10, 12]. The term chroma refers to the

elements of the set {C,C♯,D, . . . ,B} that consists of the

twelve pitch classes as used in Western music notation.

Representing the short-time energy content of the signal

relative to the pitch classes, chroma features do not only

account for the close octave relationship in harmony, but

also introduce a high degree of robustness to variations in

timbre and instrumentation [8]. Furthermore, normalizing

the features makes them invariant to dynamic variations.

In our implementation, we use a variant of chroma

features referred to as CENS 1 features [8]. As main

1 Chroma Energy Normalized Statistics features, provided by the
Chroma Toolbox www.mpi-inf.mpg.de/resources/MIR/chromatoolbox
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Figure 1: Computing structure fingerprints for an Ashkenazy
(1981) performance of Chopin’s Mazurka Op. 56 No. 1 with the
musical form A1A2BA3CA4D. (a) SSM computed from CENS
features. (b) Thresholded variant of (a) (κ = 10). (c) Path-
structure enhanced SSM (L = 12). (d) Resampled SSM S

fix

M

(M = 100). (e) Thresholded variant of (d) (κ = 10). (f) Struc-
ture fingerprints (pdf estimated from (e), ℓ = 10).

advantage, CENS features involve an additional tempo-

ral smoothing and downsampling step which leads to

an increased robustness of the features to local tempo

changes [8]. This property is crucial for obtaining struc-

ture fingerprints that are invariant to local variations in the

performances. In our implementation, the resulting feature

representation has a resolution of 1 Hz (one feature per

second), where each vector is obtained by averaging over

4 seconds of the audio.

2.2 Self-Similarity Matrix

Let X := (x1, x2, . . . , xN ) be the feature sequence con-

sisting of N normalized CENS features. Furthermore, let

s be a similarity measure that allows for comparing two

CENS vectors. In the following, we use the inner product

between the normalized CENS vectors (cosine measure,

which yields similarity values between 0 and 1). Then, a

self-similarity matrix (SSM) is obtained by comparing all

elements of X in a pairwise fashion [10]:

S(n,m) := s(xn, xm)

for n,m ∈ [1 : N ] := {1, 2, . . . , N}.

Figure 1a shows the resulting SSM for an Ashkenazy

(1981) performance of Chopin’s Mazurka Op. 56 No. 1



having the musical form A1A2BA3CA4D. The SSM re-

veals the repetitive structure (four repeating A-parts) in the

form of diagonal paths of high similarity (dark colors).

2.2.1 Path-Structure Enhancement

Musical variations often lead to fragmented path structures

of S. To alleviate this problem, various matrix enhance-

ment strategies have been proposed [1, 9, 12] with the idea

to apply a smoothing filter along the direction of the main

diagonal. This results in an emphasis of diagonal infor-

mation and a denoising of other structures, see Figure 1c.

In the presence of significant tempo differences, however,

simply smoothing along the main diagonal may smear out

important structural information. To avoid this, we use a

strategy that filters the SSM along multiple gradients as

proposed in [9]. In our experiments, we compute a simple

moving average in windows corresponding to L seconds

of audio and use five gradients covering tempo variations

of −30 to +30 %. In the following, the enhanced SSM is

again denoted as S.

2.2.2 Resampling

A high degree of local tempo differences is already ab-

sorbed by the smoothing of the CENS features and the

path-structure enhancement. Global differences in tempo

of different performances of a piece of music, however,

lead to SSMs that have different sizes. For deriving struc-

ture fingerprints that are invariant to such tempo differ-

ences, we apply the idea of [5] and introduce a simple re-

sampling step that converts the N ×N similarity matrix S

into an M × M similarity matrix S
fix

M , with M fixed to a

suitable value:

S
fix

M (n,m) := S(⌊nN
M
⌉, ⌊mN

M
⌉)

for m,n ∈ [1 : M ], where ⌊·⌉ denotes rounding to the

nearest integer. 2 Figure 1d shows an example for Sfix

M .

2.2.3 Thresholding

We finally process the SSMs by suppressing all values that

fall below a threshold. Analogous to [1,12], we choose the

threshold in a relative fashion by keeping κ% of the cells

having the highest score. The motivation for this thresh-

olding step is that only a certain amount of the cells of

the SSM are expected to encode relevant structural infor-

mation. The thresholding can then be regarded as some

kind of denoising, where only relevant paths are retained,

see Figure 1e. In the following, the resulting thresholded,

resampled, and path-structure enhanced SSM is denoted as

Ŝ
fix

M . Figure 1e also emphasizes the importance of the path-

structure enhancement, as directly applying the threshold-

ing operation on the original SSM does not lead to the de-

sired denoising effect, see Figure 1b.

2.3 Probability Density Estimation

The four repeating A-parts of our Mazurka example are

clearly revealed by Ŝ
fix

M in the form of diagonal paths, see

2 In our experiments, using linear or cubic interpolation did not lead to
any improvements.
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Figure 2: Original SSMs (top) and structure fingerprints (bot-
tom) for two performances of Chopin’s Mazurka Op. 56 No. 1.
(a) Rubinstein (1966) and (b) Kushner (1989).

Figure 1e. However, as the structural information is con-

tained in only a few cells of the thresholded SSM (in other

words, the resulting matrix is sparse), small temporal vari-

ations in performances may lead to large distances when

directly comparing these matrices in a pointwise fashion.

As a result, some kind of tolerance to temporal variations is

required in the similarity measure, as e. g., introduced by

the similarity measures based on dynamic programming

used in [6, 7] and the NCD used by Bello in [1].

Avoiding the additional complexity of such techniques,

we consider Ŝfix

M as a bivariate random sample of coordi-

nates (n,m) for n,m ∈ [1 : M ] and our goal is to esti-

mate the probability density function (pdf) producing this

SSM. 3 The underlying assumption is that the pdf corre-

sponds to the musical structure of the piece and that the

bivariate random samples we observe are affected by vari-

ations in the realization of a specific performance. Analo-

gous to [11], we employ a Parzen-Rosenblatt kernel den-

sity estimation method [13] that consist in convolving Ŝ
fix

M

with a two-dimensional Gaussian kernel of size ℓ. As a re-

sult, temporal variations in the performances are smoothed

out. The choice of the value ℓ constitutes a trade-off be-

tween fingerprint characteristic (small value) and robust-

ness to temporal variations (large value).

The resulting fingerprints (see Figure 1f) are an M×M

representation 4 of the musical structure that features a

high degree of robustness against properties of a specific

performance. Figure 2 shows two further examples of fin-

gerprints for the Mazurka Op. 56 No. 1.

3. STRUCTURE-BASED RETRIEVAL

In this section, we show how the structure fingerprints (SF)

can be used to facilitate structure-based music retrieval.

3 In the following, we use the term pdf, although for discrete random
variables, the term probability mass function would be more appropriate.

4 Note that this matrix is symmetric and only M(M + 1)/2 entries
are needed for representing the fingerprints.



Method Dist. Dataset P Sync. MAP T [sec]
Bello [1] NCD Bello 2919 No 0.767 >1000

SF KL ORG 2793 No 0.819 66.45
SF ED ORG 2793 No 0.816 0.58
SF ED MOD 2792 No 0.828 0.58
SF ED MOD 2792 Yes 0.958 0.58

Table 1: Overview of the results obtained for different methods
and datasets. Dist. denotes the distance measure used, P the num-
ber of performances in the dataset, and T the run-time in seconds
for computing P × P distances. 6 See Section 3.4 for a descrip-
tion of the dataset MOD and the column Sync. (indicating whether
synchronized fingerprints are used).

We first describe the collection of Chopin Mazurkas (Sec-

tion 3.1) and the retrieval scenario (Section 3.2). Then, we

continue with a quantitative evaluation (Section 3.3) and

give a musically informed discussion (Section 3.4).

3.1 Mazurka Collection

In our experiments, we use an audio collection comprising

many recorded performances for each of the 49 Mazurka

by Frédéric Chopin. Since different performances of a

Mazurka typically share the same structure, this collection

is a good choice for evaluating structural similarities. The

dataset was assembled by the Mazurka Project 5 and has

also been used by Bello in [1]. Note, however, that there

are differences between our dataset (denoted as ORG in the

following) and the one used in [1] (denoted as Bello). Ac-

tually, the datasets constitute a snapshot at different stages

in the assembly process of the Mazurka Project which also

results in a different number of performances (2793 for

ORG and 2919 for Bello, see Table 1).

3.2 Retrieval Scenario

Using this dataset, we evaluate our structure fingerprints

(SF) in a document-level retrieval scenario as in [1]. Given

one performance of a Mazurka as query, the goal is to re-

trieve all other performances of the same Mazurka from the

given dataset. To this end, we first compute the fingerprints

for all P performances of the dataset. Using a suitable dis-

tance measure, we then derive the P×P matrix of pairwise

distances between all performances, see Figure 6a. As the

structure fingerprints are represented as densities, a natu-

ral choice of distance measure is the Kullback-Leibler di-

vergence (KL). Additionally, in our experiments, we also

use a simple Euclidean distance (ED). Finally, we rank the

result with respect to ascending distances and express the

retrieval accuracy by means of the mean average precision

(MAP) measure as in [1, 12].

3.3 Quantitative Evaluation

First, we give a quantitative discussion of the results. Ta-

ble 1 shows overall MAP values for the different meth-

ods and datasets. In [1], Bello reported MAP = 0.767
using his approach based on the NCD. Using the param-

eters L = 10, κ = 20,M = 50, ℓ = 5 and the KL di-

vergence, our approach leads to comparable, if not even

slightly better results (MAP = 0.819). Note, however,

5 mazurka.org.uk
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Figure 3: Parameter evaluation using MOD and Euclidean dis-
tances (ED). MAP values for different values of (a) the smoothing
parameter L and threshold κ (M = 100, ℓ = 10) and (b) of the
fingerprint size M and kernel size ℓ (L = 12 sec, κ = 20).

that the results are not directly comparable due to the dif-

ferences in the datasets. The results are insofar surpris-

ing, as our approach is not only conceptually much sim-

pler, but also more explicit and, as it turns out, much more

efficient. The last column of Table 1 indicates the run-time

in seconds for computing the matrix of P×P pairwise dis-

tances. 6 Without knowing exact numbers for the NCD, our

approach using KL seems to be at least one order of mag-

nitude faster than [1]. Actually, when using the Euclidean

distance (ED) instead of KL, the run-time of our approach

can be improved significantly by two orders of magnitude

(resulting in a run-time of just 0.58 seconds for computing

all P × P distances), without any degradation of retrieval

accuracy (MAP = 0.816).

We now continue with an evaluation of different param-

eter settings using ED (using KL lead to very similar find-

ings). Figure 3a shows MAP values obtained on ORG as a

function of the temporal smoothing parameter L (in sec-

onds) and the relative threshold κ, see Section 2.2. Appro-

priate values for L constitute a trade-off between enhance-

ment capability and level of detail. For the Mazurkas, a

smoothing of 6-12 seconds seems to be reasonable, the ac-

tual choice of the parameter, however, is not crucial. For

example, fixing κ = 15, one obtains MAP = 0.815 for

L = 6 and MAP = 0.816 for L = 10. The threshold

value κ constitutes a trade-off between retaining relevant

structural information and denoising the SSMs. For the

Mazurkas, 10%-25% seems to be a good compromise for

capturing the repetitive structure. Again, the exact value

is not crucial. For example, fixing L = 6, one obtains

MAP = 0.809 for κ = 25 and MAP = 0.814 for κ = 10.

Figure 3b shows MAP values as a function of the fin-

gerprint size M for different settings of the kernel density

parameter ℓ. Interestingly, the size of the structure finger-

6 Using a vectorized MATLAB implementation of ED, a C/C++ im-
plementation of KL, and an Intel Xeon E3-1225 CPU. Run-times for the
NCD are estimated from the indicators given in [1] and own experiments.
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Figure 4: Structure fingerprints (top) and synchronized struc-
ture fingerprints (bottom) for performances of Chopin’s Mazurka
Op. 24 No. 2. (a) Merzhanov (2004) with applause at start and
end of recording. (b) Smith (1975) with silence at the end.

prints can be reduced to M = 50 or even M = 35, while

still retaining a high retrieval accuracy. The ratio of M

and ℓ, however, is of crucial importance as it constitutes

a trade-off between fingerprint characteristic and robust-

ness against temporal variations in the performances. The

settings M = 50, ℓ = 5, and M = 100, ℓ = 10, and

M = 200, ℓ = 20 yield almost identical retrieval results

(MAP = 0.816, MAP = 0.818, and MAP = 0.819,

respectively). Decreasing the size of the fingerprints, how-

ever, has the advantage of reducing the computational load.

Aside from the robustness to actual parameter settings,

our approach turned out to be rather robust to implemen-

tation details. For example, very similar results were ob-

tained by using, e. g., Cosine, Hellinger, and Battacharyya

distances between SFs. Even an alternative implementa-

tion using different chroma features as well as delay co-

ordinates and recurrence plots (instead of the enhanced

SSMs) similar to [1, 11, 12], lead to almost identical re-

sults. This also indicates that our concept is generalizable.

3.4 Musically Informed Discussion

Our fingerprint-based approach allows for detecting mu-

sically interesting phenomena and inconsistencies in the

Mazurka collection. A careful investigation of the re-

trieval results revealed three phenomena. Firstly, we dis-

covered that there are 67 recordings in the dataset that are

incorrectly assigned to one of the Mazurkas, although they

actually are performances of another Mazurka. 7 Another

recording of the collection did not correspond to any of the

Mazurkas. 8 We corrected these errors and denote the mod-

ified dataset MOD. Repeating the retrieval experiment using

the 2792 performances of MOD, the MAP value increases to

0.828, see Table 1 (fourth row).

7 A majority (51 of the 67 recordings) affects Op. 41 consisting of four
Mazurkas (No. 1 to No.4̇), where a permutation of the assigned numbers
occurs.

8 Labeled as a Rosenthal (1935) performance of Op. 50 No. 2.
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Figure 5: Structure fingerprints for four performances with dif-
fering structure of Chopin’s Mazurka Op. 68 No. 4 (L = 12,
κ = 20, ℓ = 10, M = 100). (a) Niedzielski (1931). (b) Katin
(1996). (c) Rubinstein (1952). (d) Rubinstein (1966).

Secondly, it turned out that many incorrectly retrieved

performances exhibit a long passages of applause, silence,

or spoken moderation at the beginning and/or end. Ac-

tually, such passages can be regarded as additional struc-

tural elements. As a result, the structure of these perfor-

mances does not match to the structure of the other per-

formances of the same Mazurka, see Figure 4. To quan-

tify this phenomenon, we use music synchronization tech-

niques [3, 8] for identifying musically corresponding time

positions in all versions of a Mazurka and use this infor-

mation to warp the fingerprints to a common time line. For

additional segments appearing in one performance, there

are no corresponding time positions in the other perfor-

mances. As a result, such segments are basically not re-

flected in the resulting synchronized fingerprints, see Fig-

ure 4. 9 Using synchronized fingerprints to exclude the ad-

ditional segments, we repeat our experiment using MOD and

obtain MAP = 0.958, see Table 1 (last row).

The third phenomenon detected during our experiments

are structural differences in the recordings. For instance,

some pianists do not strictly stick to the score when per-

forming a piece but omit (or sometimes even introduce)

repetitions. Obviously, these structural differences lead

to high distances as shown in Figure 6b for the Mazurka

Op. 56 No. 1, where eight of the 42 performances exhibit

a different structure. 10 The prime example for this effect

is Mazurka Op. 68 No. 4, where the last bar in the score

contains the marking D. C. dal segno senza fine. However,

there is no fine marked in the score that would tell the pi-

anist where to end. As a result, a performer may repeat

the piece as often as he or she wants. This leads to many

versions of the piece that differ significantly in structure as

also revealed by the respective pairwise distances shown

in Figure 6e. Figure 5 shows the fingerprints of four such

9 This strategy has a similar effect as using a distance measure based
on dynamic programming, as proposed in [6, 7].

10 Actually, all eight musicians omit a repetition of the A-part, leading
to the form A1BA2CA3D instead of A1A2BA3CA4D.
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Figure 6: (a) Matrix of pairwise Euclidean distances for the 2792 performances of MOD. (b) Detail of the 42 performances of Op. 56
No. 1, see also Figure 2. (c) Detail of the 66 performances of Op. 24 No. 2, see also Figure 4. (d) Detail of the 51 performances of Op. 68
No. 3. (e) Detail of the 63 performances of Op. 68 No. 4, see also Figure 5.

versions, which, obviously, cannot be retrieved by a purely

structure-based retrieval approach.

On the other hand, during our experiments we discov-

ered performances that exhibit a surprisingly low distance,

see, e. g., the squares of low distance on the main diagonal

in Figure 6d. The low distance between the performances

2697-2699 is actually known as the “Hatto effect”: record-

ings released under the name of the pianist Joyce Hatto in

1993 (2697) and 2006 (2698) that are actually time-scaled

copies of a 1988 recordings of Eugen Indjic (2699). Sim-

ilarly, some performances appear repeatedly in the dataset

as they were released multiple times. Examples for this ef-

fect are performances 2719 and 2720 (Rubinstein) as well

as 2722 and 2723 (Smidowicz).

4. CONCLUSION

The concept of structure fingerprints presented in this pa-

per allows for retrieving music recordings solely based on

structural information. Using a combination of suitable en-

hancement strategies, our approach is robust as well as ef-

ficient. Furthermore, as our experiments reveal, the results

obtained by our approach are at least comparable to state-

of-the-art approaches without relying on complex distance

measures. As further advantage of our approach, just using

Euclidean distances between fingerprints opens the pos-

sibility of exploiting efficient index-based methods such

as locality-sensitive hashing to scale the approach to even

larger datasets. We showed that our methods are suited

for systematically analyzing structural properties of entire

music collections, thus deepening the musical understand-

ing of the data. Obviously, the limits of structure-based

retrieval are reached when the assumption of global struc-

tural correspondence between performances is violated.
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ABSTRACT 

We present a system that utilizes a mid-level score repre-
sentation for aligning printed music to its audio rendition. 
The mid-level representation is designed to capture an 
approximation to the musical events present in the printed 
score. It consists of a template based note detection front-
end that seeks to detect notes without regard to musical 
duration, accidentals or the key signature. The presented 
method is designed for the commonly used grand staff 
and the approach is extendable to other types of scores. 
The image processing consists of page segmentation into 
lines followed by multiple stages that optimally orient the 
lines and establish a reference grid to be used in the note 
identification stage. Both the audio and the printed score 
are converted into compatible frequency representations. 
Alignment is performed using dynamic time warping 
with a specially designed distance measure. The insuffi-
cient pitch resolution due to the reductive nature of the 
mid-level representation is compensated by this pitch tol-
erant distance measure. Evaluation is carried out at the 
beat level using annotated scores and audio. The results 
demonstrate that the approach provides an efficient and 
practical alternative to methods that rely on symbolic 
MIDI-like information through OMR methods for align-
ment. 

1. INTRODUCTION 

Music can be represented in mainly three forms: audio, 
symbolic (such as MIDI) and printed. Historically these 
forms of data have remained disparate in archives and 
have only been associated through metadata. More re-
cently the field of music information retrieval has been 
actively exploring ways to bridge the content across their 
different forms of existence. MIR systems dealing with 
large music collections depend on basic operations such 
as searching, matching and alignment. These operations 
are required to not only work with audio or MIDI formats 
but they should be capable of handling multi-format data 
including printed and hand-written scores. Finding 

matches and similarities across representations is of inter-
est because these will pave the way to building integrated 
systems that have broad implications in research and edu-
cation.  
 Traditional libraries contain vast collections of music 
on paper as well as recorded audio but lack the fine-level 
connection between the two formats. Incorporation of 
methods that connect the different representations can 
result in applications being more capable and multi-
modal. Some applications include: score retrieval by au-
dio example; structure and harmonic analysis by audio 
input; transcription of performance parameters from au-
dio superimposed onto existing scores; score following in 
the literal sense – following the music automatically on 
the printed score.  

Audio is sonically rich but sound mixtures are hard to 
analyze and separate automatically. Symbolic data on the 
other hand represents music very efficiently at the note 
level but contains very little timbral and expressive in-
formation. The visual nature of the printed score allows 
musicians to read, experience and analyze music in dif-
ferent ways and is an indispensible part of musicians’ 
every day experience. Each representation type has its 
own advantages and by connecting them in meaningful 
ways we can achieve greater musical understanding as 
well as convenient access to many forms of representa-
tion. The different kinds of information in these represen-
tations can greatly leverage our overall understanding and 
aid us in searching with multiple perspectives. Today, 
conversion between these forms presents many challeng-
es and can be performed with varying levels of success. It 
is, however, easier to bridge collections in different forms 
through fine-grain alignment. 

In this paper, we present an approach to aligning audio 
and printed representations of music using a mid-level 
score representation. We will use the term score to denote 
the sheet or printed version throughout the paper and note 
that it is different from the usage in score following work 
where it is commonly used to depict the MIDI-like sym-
bolic sequence. The proposed mid-level representation 
enables us to capture sufficient pitch and score position 
information to guide the alignment process. Key signa-
tures and accidentals are ignored in the recognition and 
therefore a tolerant distance measure that compensates for 
this shortcoming is proposed. In the remainder of the pa-
per the next section outlines related and previous work. 
Section 3 presents the mid-level representation which is 
followed by a section in which a distance measure is de-
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fined. We finally present an evaluation of the method on 
a small set of piano music and close with concluding re-
marks. 

2. RELATED WORK 

Since the introduction of optical music recognition 
(OMR), multiple works have been carried out in mapping 
and aligning different music representations, namely, the 
music score, audio recordings and MIDI. Multiple         
approaches have been employed to build state-of-the-art 
audio-to-score alignment algorithms. Some are based on 
graphical and statistical models such as the ones in 
[3,8,16] whereas some use the Dynamic Time Warping 
(DTW) algorithm to align the sequences of features ex-
tracted from both the audio and the score as in [7,12]. 
Work done in [13] carry out a multi-pass algorithm where 
they propose a method which estimates the onset times of 
individual notes in a post processing step to obtain an ac-
curate audio-to-score alignment. Earlier works in audio-
to-score alignment such as [14] employ the DTW algo-
rithm and generate spectral approximations from the 
symbolic form in order to compute the local distance 
measures for the DTW. 

   

When audio is in the mix, chroma based representa-
tions are often used for alignment. In [9] the authors 
maintain that “chroma vectors drawn from representa-
tions using a logarithmic frequency scale are the most ef-
ficient features, and lead to a good precision, even with a 
simple alignment strategy.” Here, we not only utilize a 
chroma based representation obtained from audio analy-
sis but also create one from the score. 

In [8] Joder et al. propose a statistical model for mu-
sic-to-symbolic score alignment where a hidden state 
model uses two features: chroma vectors, to model pitch 
content of the signal and spectral flux, to model note on-
sets. The approach employed in this work claims to have 
achieved a very precise alignment with a low complexity 
compared to other DTW systems.  More recent work by 
Cont [3] discusses the use of hierarchical hidden Markov 
models for online and real-time audio-to-score alignment.   

All these works approach the problem of alignment 
based on fully-notated MIDI score. To the authors’ 
knowledge, alignment work solely based on the music 
sheet and its corresponding audio recordings without the 
use of intermediate MIDI format have not been formally 
used. Work on mapping, synchronization and identifica-
tion of the music with audio recordings has been carried 
out by [5,6,11]. In [5] the authors discuss two different 
approaches in identifying the corresponding sections of 
an audio interpretation of a musical piece given the sec-
tions of the score for the same piece. The first approach 
where it is assumed that the performance sequence is 
known uses a semi-automatic approach using synchroni-
zation whereas, the second approach where the perfor-
mance sequence is unknown uses matching techniques. 
However, OMR is used to obtain the symbolic score be-
fore employing any of the identification techniques.  

Work has also been done in aligning semi-improvised 
music with its lead sheet [4]. This is generally more diffi-
cult as the lead sheet specifies only essential elements 
such as the melody, harmony, and a basic musical form. 
This work also stems from using the symbolic data ob-
tained after the OMR techniques on the score. 

A lot of work has been focused on solving specific 
problems of the OMR such as staff line detection [1] and 
recognizing musical symbols. Recently, in [17] the au-
thors have employed template matching and grammati-
cally formulated top-down models as a means of per-

forming OMR on scanned sheet music. Since the purpose 
of this paper is precisely not to perform detailed OMR we 
refer the interested reader to two overviews of the state-
of-the-art in optical music recognition [2, 18].  

3. MID-LEVEL REPRESENTATION 

In this work we restrict our method to pieces using the 
grand staff in which a system consists of the top staff no-
tated with the treble clef and the lower staff with the bass 
clef. We have been using scanned scores from the Inter-
national Music Score Library Project (IMSLP). These 
images are particularly challenging due to the fact that 
they contain skew within the page, have different print 
styles, their original resolutions vary and they are quite 
noisy. Our purpose is to perform some basic image pro-
cessing operations on the digitized score and extract the 
relevant sections to arrive at an intermediate representa-
tion that would be useful for alignment. As a first step, 
prior to any image processing a binarization step is per-
formed using Otzu’s method [15] which optimizes the 
foreground/background classification of pixels through 
an exhaustive threshold search.    

3.1 Overall Page Structure 

The first step is to identify the overall page structure in 
terms of systems. A horizontal projection Pp is calculated 
by summing the pixel values across the page. This pro-
jection is generally a quite good representation to identi-
fy line positions in scanned scores that are reasonably 
straight. We assume that the original rotation of the 
scanned page produces a projection in which the staff 
lines are identifiable through local peaks. We can option-
ally perform an automated page rotation to correct for 
scanning errors using a procedure similar to the one de-
scribed in the next section for individual systems. The 
projection Pp is then smoothed with a truncated Gaussian 
filter with width equal to a single staff. The position of 
each staff is determined by peak picking and simultane-
ously, the positions of the top and bottom lines of each 
system are determined by finding the local peaks of the 
unsmoothed projection in the vicinity of the peaks of the 
smoothed projection. Figure 1 shows part of the original 
score at the top and the projection resulting from that im-
age below. The projection is aligned with the image of 
the two systems shown at the top. This process results in 
fairly reliable vertical position estimates of the systems 
on a single page. This segmentation is performed for all 
subsequent pages in the score for the piece in question. 



 

 
Figure 1. Top: first two systems from a scanned score. 
Bottom: horizontal projection and Gaussian smoothing 
of the top figure for locating systems in a page. 

 

3.2 Aligning Systems and Automatic Calibration 

We extract systems one by one according to their posi-
tions on a page as described above. Each system In, runs 
from C2, two ledger lines below the bottom line in the 
bass clef, to approximately E6 on the third ledger line 
above the treble clef. This image is then corrected for 
optimal rotation by fitting parabolas onto local peaks in 
the projection. The position of each line is determined by 
peak picking on the horizontal projection of the extracted 
system. We observe that the shape of the intensity distri-
bution around each peak is correlated to how well the 
system is aligned – the narrowest distribution is consid-
ered the best rotation for In which results in maximally 
horizontal staff lines. We therefore, fit a least-squares 
parabola on the points neighboring each peak that ex-
ceeds a threshold. Since the parabolas are opening 
downward we find the rotation angle θ that minimizes 
the sum of the coefficients of the second degree terms of 
the parabolas for all 10 peaks. The optimal rotation angle 
is given by 
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                  (1) 

where Ψ represents the rotation of In by θ and Θ is the 
coefficient of the second degree term in the parabola 
equation for local peak i that serves as the relative width 
estimate in the horizontal projection of the rotated image.  

For our purposes the rotation correction for each sys-
tem turns out to be quite important. We have observed 
that even systems on the same page can have different 
rotation and skew values. In order to correctly identify 
notes, an adaptive reference grid delineating the note 
ranges is required for each system. In contrast to other 
approaches, our method does not remove the staff lines 
because the templates which are taken from actual imag-
es already include parts of those lines. 

3.3 Compressing the Grand Staff 

The process of finding the optimal rotation for each sys-
tem also allows us to more accurately identify the posi-
tions of the lines. Next, we separate each system into two 
images by cutting it in half with a horizontal line that lies 
between the lowest line in the treble clef (E4) and the 
highest line in the bass clef (A3). We then merge the up-
per and lower halves of each system by multiplying 
(ORing – with pixel intensity values between 0 and 1) 
the content such that the positions of C4 in each part co-
incide. Figure 2 shows the compressed image for the first 
system given in Figure 1. Note that, for example, the 
note D4 that originally appears on the lower staff now 
has the correct position with respect to the upper staff. 
The reference grid which contains positions for the note 
boundaries is calculated from the distance between the 
top and bottom staff lines. Figure 3 shows the grid on top 
of a fragment of the rotated image. The regions between 
lines of the grid represent the C major diatonic set re-
gardless of any accidentals that are in use. 

 
Figure 2. Compressed image of first system in Figure 1. 

 
Figure 3. The reference grid for note boundaries super-
imposed on the optimally rotated image. The space be-
tween each pair of lines corresponds to a diatonic note. 

3.4 Note Identification 

The process of note identification follows a template 
matching approach. Three templates are constructed: one 
for a filled-in note head positioned between lines, one for 
a filled-in note head on a line and one for an empty note 
head. The templates are slightly larger than the oval note 
head and include a small portion of the surrounding 
lines. Their registration point is at the center of the sym-
bol and ideally should fall either on a line or midway be-
tween two lines. The only symbols of interest are the 
note heads and other symbols such as stems, accidentals, 
rests, clefs, beams etc. are not considered. Notes are 
found by convolving the optimally rotated system image 
Ψ(In,θn) separately with each of the templates Tl. The 
original templates are scaled according to the line spac-
ing of the system under consideration. The two images 
are represented with bipolar encoding (±1) for the convo-



lution. Local peaks indicate matches between a template 
and a system. We then obtain the set of all recognized 
notes by the union of notes recognized in all systems in 
the piece. 

( )[ ]U
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Here * is the 2D convolution operator and Γ[ ] is the 
function for finding local peaks. Since the note recogni-
tion is done without regard to key signature or any pre-
ceding accidentals, only the notes corresponding to white 
keys are found. This process results in a set of recog-
nized notes Q with 2-tuple elements qv=(nv, ov) each with 
a note index nv that corresponds to the bins of the 
chromagram and an onset frame (column) number ov. An 
example of the output is shown in Figure 4. 

 
Figure 4. Recognized notes from the image in Figure 2. 
The original has been lightened and ‘+’ indicates a note 
head on a line, ‘o’ between lines and ‘x’ an unfilled note 
head. 

3.5 Chroma Representation from the Score 

Before we define a distance function to establish a rela-
tionship between the audio and printed score representa-
tions we would like to find the most compatible frame 
based features that could be practically calculated from 
each form of the music. On the audio side we calculate 
an open ‘audio chromagram,’ A, using constant Q spec-
tral analysis, that is not folded into one octave. The bins 
represent logarithmically spaced frequency ranges that 
are each a semitone wide and calculated with respect to a 
reference of A4=440Hz. We then proceed to construct a 
similar feature using the notes recognized from the score 
to form the ‘score chromagram,’ S. Each recognized note 
is placed into the chromagram in the bin representing the 
note and at the corresponding frame. In addition to the 
fundamental frequency component, the note’s harmonics 
are also added with amplitude 1/h, where h is the har-
monic number and h=1..H. All components incur a fixed 
exponential decay to account for the passage of time, i.e. 
to not have the same values for the duration of the note 
and give more weight to the onset. The note model for a 
given note qv is represented by a sequence of k-element 
chroma vectors   
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where c is the decay rate and ov is the frame on which the 
note starts. The function φ(qv,h) is the index of the bin in 
the chromagram that corresponds to note qv and harmon-
ic h. The resultant score chromagram is given by the 

summation of the note events calculated for all recog-
nized notes: 
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After the summation of note spectra, a spectral weighting 
is applied to the score chromagram to match its long-term 
spectral shape with that of the audio. The weighting E is 
calculated from the audio chromagram by simply averag-
ing it across time and dividing by the maximum element. 
The operator ◦ denotes the elementwise multiplication of 
the vector E with each column of the summation that 
holds the unweighted score chromagram. Figure 5 shows 
the score chromagram for the notes of Figure 4 and the 
audio chromagram for the same fragment of music. 

 

 
Figure 5. Top: audio chromagram. Bottom: score 
chromagram obtained from recognized notes as shown 
in Figure 4. 

4. LOCAL DISTANCE AND ALIGNMENT 

The defined system would have worked if the piece be-
ing analyzed was in C major and a standard distance 
such as a Euclidean or a cosine distance was being used. 
However, due to the limitation of the front-end and its 
notational system which is based on diatonic pitch spac-
ing, these standard distance measures would become 
progressively meaningless as the keys pick up more ac-
cidentals. We therefore define a tolerant distance func-
tion between two k-element chroma vectors S (score) at 
frame i and A (audio) at frame j: 
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where bmax represents the maximum value of bi,,j. 



The alignment of the score chromagram and the audio 
chromagram is performed using DTW. The following 
step size condition constrains the slope of the warping 
path 

( ) j,ij,ij,ij,ij,i dD,D,DminD += −−−−−− 211211            (8) 
Note that vertical and horizontal moves are not allowed. 
This ensures that the two sequences move forward at ei-
ther the same frame rate or twice the other, and also that 
a single frame in one sequence does not map to multiple 
frames in the other. This preserves the monotonicity 
condition of the DTW for our purpose.   

5. EVALUATION 

We have evaluated the proposed method in various ways. 
Primarily the evaluation has concentrated on the accuracy 
of the alignment on the printed score. For this we needed 
the audio as well as the printed score to be annotated. The 
scores were taken from IMSLP’s Petrucci Library which 
is a web site that has scanned scores for which the copy-
right has expired. The audio annotations for the Chopin 
Mazurkas were taken from The Mazurka Project 
(http://www.mazurka.org.uk) in which Craig Sapp col-
lected beat-level onsets for different performances of the 
same piece. 

We calculate the alignment accuracy with respect to 
two frames of reference. The first is the score where the 
alignment error is reported as a percentage of the staff 
width. The times of all beats in the audio (given by the  
ground truth) are mapped to score positions using the 
warping path produced by the DTW algorithm. The error 
is calculated by taking the average of the absolute differ-
ences between these numbers and the beat locations in 
the score given by the ground truth. The second frame of 
reference is the audio where the alignment error is found 
in seconds. The two measures are similar in nature and 
are not meant to provide different viewpoints, rather, 
they give a good sense of the average and maximum er-
rors in the two modalities of experience: visually follow-
ing the printed score while listening to the performance. 

The following parameters were used for all scores and 
performances in the evaluation. The audio analysis was 
done with 50 percent overlapped windows of duration 50 
milliseconds. Each column in the score chromagram rep-
resents a group of pixels in the input image. The number 
of pixels in a group is calculated separately for each au-
dio file in order to make the number of score frames 
comparable to the audio frames. The decay rate, c, was 
determined empirically to be on the order of one beat as 
seen in Figure 5 but will vary from score to score depend-
ing on the density of the typesetting. Four harmonics (H) 
were used for the note model. The range of the note 
recognition was restricted to the range C2 to E6 and any 
notes beyond this range were ignored. The scores were 
scanned at 300 pixels per inch. 

Table 1 shows the list of piece/score edition/performer 
combinations tested. The second column lists the align-
ment results with respect to the audio. The average abso-

lute error and maximum error figures are given. The 
alignment error with respect to the score is given in the 
third column. The error is in pixel real distances on the 
digitized image. It shows the horizontal distance between 
the ground truth and result of the alignment as a percent-
age of the width of the score. It is reported as a percent-
age to make it independent of image resolution, however, 
by the same token, it could be affected by the number of 
measures that the publisher chose to fit in a single line. 
The same edition has been tested with different perform-
ers as well as different pieces from the same editor. In our 
tests a number of scores with heavy fonts and poor quali-
ty images did not produce acceptable alignments mainly 
due to the errors in the front-end. We observed that these 
were primarily grouped around certain publishers and that 
the template matching could be made more adaptive in 
future work to cater to even wider stylistic variations.  
 
 
Piece/ Edition 

Av (Max) Err. 
Audio (seconds) 

Av (Max) Err. 
% score width 

 
Performer 

Mazurka 30-2 
Mikuli 

0.24 ( 1.78) 
 

3.49 (28.16) Mohovich 

Mazurka 30-2 
Mikuli 

0.34 ( 2.07) 
 

4.07 (19.13) Fou 

Mazurka 30-2 
Mikuli 

0.13 ( 0.84) 
 

2.40 (13.53) Ashkenazy 

Mazurka 30-2 
Klindworth 

0.13 ( 1.27) 
 

1.53 (11.05) Mohovich 

Mazurka 30-2 
Klindworth 

0.21 ( 2.51) 
 

1.87 (14.31) Fou 

Mazurka 30-2 
Klindworth 

0.11 ( 0.89) 
 

1.65 (14.19) Ashkenazy 

Mazurka 30-2 
Scholtz 

0.18 ( 1.50) 
 

2.39 (18.41) Mohovich 

Mazurka 30-2 
Scholtz 

0.31 ( 2.17) 
 

3.46 (19.69) Fou 

Mazurka 30-2 
Scholtz 

0.12 ( 1.14) 
 

1.93 (17.04) Ashkenazy 

Mazurka 63-3 
Mikuli 

0.16 ( 1.97) 
 

1.37 (10.85) Ashkenazy 

Mazurka 63-3 
Joseffy 

0.29 ( 3.41) 
 

2.17 (23.65) Ashkenazy 

Mazurka 63-3 
Kullak 

0.29 ( 2.29) 
 

1.99 (14.77) Ashkenazy 

Mazurka 67-1 
Joseffy 

0.17 ( 1.65) 
 

2.22 (17.89) Chiu 

Mazurka 67-1 
Klindworth 

0.21 ( 1.70) 
 

2.65 (18.51) Chiu 

Mazurka 68-3 
Joseffy 

0.36 ( 1.84) 
 

4.49 (30.09) Chiu 

Table 1. Alignment errors for a number of Chopin Ma-
zurkas by different performers and various editions of 
printed scores. 

Results of the evaluation show that the method is able 
to align real-world printed scores to expressive audio per-
formances. We have evaluated the method at the beat 
level to explore the possibility of more precise alignment. 
It can be seen from the table that the average time accura-
cy is quite good. We have implemented a test application 
that displays the score position as the music is playing 
based on the alignment. The tracking can be comfortably 
followed by eye and the application allows the viewer to 
see the errors as the performance unfolds. The average 
error figures on the score side are also good. However, 



  
 

the maximum errors appear to be somewhat high. The 
reason for this seems to be the fact that when the last beat 
in a system is carried over to the next system (or a beat is 
aligned early from the next system) the calculated error 
includes the distance of the margins in between the two 
adjacent systems. Therefore, we do not think that these 
figures are as drastic as they look but appear as a delayed 
response while following.     

Approximate matching offers many advantages to the 
problem at hand. With the relatively simple mid-level 
feature and the complexity of the recognition problem 
with the given less-than-ideal historical scores, recogni-
tion errors are frequent. However, the method allows for 
graceful recovery due to two reasons. One is the tolerant 
distance measure which inherently absorbs pitch errors. 
The other is the step condition of the DTW algorithm that 
prevents one sequence from stalling for extended periods.  
This allows for catch-up after a sequence of misdetec-
tions, rests or page segmentation errors. While selecting 
the templates and their detection thresholds a balance was 
struck between false positives and false negatives. 

6. CONCLUSIONS 

We have presented a mid-level score representation for 
aligning printed music to audio. The mid-level represen-
tation allows us to bypass sophisticated OMR techniques 
used for recognition and semantic analysis. The method 
allows for alignment through use of approximate pattern 
matching between the compatible features obtained from 
audio and score representations and therefore performs 
alignment within a framework in which symbolic recog-
nition accuracy is not the primary concern. At this stage 
of the ongoing project, the model has been evaluated on 
piano music and a number of scanned scores at the beat 
level and the results are encouraging. 

Future work will concentrate on adding sectioning and 
support for repeats, timbre learning from audio mixtures 
for more accurate note modeling, adding duration and 
dynamics into the note model, and catering to clef chang-
es in the sheet. An extension of the proposed method to 
scores that employ systems other than the grand staff is of 
interest and would enable the method’s application to 
symphonic as well as ensemble music. 
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ABSTRACT

Separating the leading vocals from the musical ac-
companiment is a challenging task that appears nat-
urally in several music processing applications. Ro-
bust principal component analysis (RPCA) has been
recently employed to this problem producing very suc-
cessful results. The method decomposes the signal
into a low-rank component corresponding to the ac-
companiment with its repetitive structure, and a sparse
component corresponding to the voice with its quasi-
harmonic structure. In this paper we first introduce a
non-negative variant of RPCA, termed as robust low-
rank non-negative matrix factorization (RNMF). This
new framework better suits audio applications. We
then propose two efficient feed-forward architectures
that approximate the RPCA and RNMF with low la-
tency and a fraction of the complexity of the original
optimization method. These approximants allow in-
corporating elements of unsupervised, semi- and fully-
supervised learning into the RPCA and RNMF frame-
works. Our basic implementation shows several or-
ders of magnitude speedup compared to the exact sol-
vers with no performance degradation, and allows on-
line and faster-than-real-time processing. Evaluation
on the MIR-1K dataset demonstrates state-of-the-art
performance.

1. INTRODUCTION

The leading voice in musical pieces carries valuable
information about the song. A system capable of sep-
arating the singing voice from the music accompani-
ment can be used to facilitate a number of applications
such as music information retrieval, singer identifica-
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tion, or lyric recognition.
Separating the leading singing voice from the mu-

sical background from a monaural recording is very
challenging. Existing approaches can be classified ac-
cording to the level of supervision that they require.
Supervised approaches tend to have a model for either
the musical background, the singing voice, or both,
and in general map the mixture signals onto a feature
space where the separation is performed, e.g. [4, 11,
15, 19]. A common drawback of these methods is the
need to identify the vocal segments beforehand, typi-
cally using features such as the Mel-Frequency Cep-
strum Coefficients (MFCC). Unsupervised approaches
make basic fundamental assumptions requiring no pri-
or training or particular features. For example, in [13]
the authors tackle the separation by extracting the re-
peating background (music) from the non-repeating
foreground (voice). Most relevant for our work is the
method proposed in [9]. The authors model the repet-
itive structure of the accompaniment with a low-rank
linear model, while the singing voice is regarded as
sparse and non-repetitive. The separation is performed
using robust PCA (RPCA) [3], producing state-of-the-
art results. Common drawbacks of unsupervised ap-
proaches include the requirement to observe the whole
audio track to perform the separation and the fact that,
unlike supervised models, the obtained sources might
not follow known characteristics of the signals.

In this paper, we consider the promising results pre-
sented in [9] as a starting point. We first develop an
extension of RPCA in which the low rank model is
represented as a non-negative linear combination of
non-negative basis vectors. This is done following re-
cent results connecting non-convex optimization with
nuclear norm optimization [17,18] (further references
are given in Section 2). As with standard non-negative
matrix factorization (NMF) methods, this new model
is more appropriate to represent audio signals, being
applied to the magnitude of the spectrum. The use of
robust NMF (RNMF) is not restricted to this applica-
tion and the usage in combination with divergences
in lieu of Euclidean distances is straightforward. The
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proposed framework can also be seen as an extension
of the robustification of NMF introduced in [22]; not
only does our model consider a sparse variable ac-
counting for outliers (singing voice), but it also adds
a regularization term that minimizes the rank of the
linear model.

In Section 3 we show that the RPCA and RNMF
frameworks induce an architecture of multi-layer feed-
forward networks designed to approximate the output
of the exact optimization algorithms at a fraction of
their computational cost and with no decrease in per-
formance in our various experiments. Moreover, this
new framework allows to incorporate unsupervised,
semi- and fully-supervised learning into RPCA and
RNMF. In this way, we aim at taking the advantages
of the unsupervised methods while minimizing their
drawbacks via realistic learning. When combined with
learning as here proposed, the obtained networks pro-
duce over 1 dB improvement in the signal-to-distortion
ratio when compared to the optimization-based RPCA
(extensive experimental results are presented in Sec-
tion 4), and, after the offline learning, are computable
online and faster than real time without the need to
observe the whole audio file.

These proposed networks are closely related to the
ones introduced in [6], used to produce meaningful
audio features for music style and gender classifica-
tion [7]. These approaches are examples of recent suc-
cessful efforts in the machine learning community to
produce fast trainable (auto-)encoders of sparse fea-
tures of visual and audio signals (see [5, 16] and ref-
erences therein). While the work in this paper comes
from these ideas, it presents a fundamental difference
in the sense that the proposed networks do not com-
pute features, but perform the full separation of the
singing voice from the musical accompaniment.

2. LOW-RANK SPARSE MODELS

2.1 Robust PCA

Principal component analysis (PCA) is the most widely
used statistical technique for dimensionality reduction.
Its performance is, however, highly sensitive to the
presence of samples not following the assumed model
(subspace); even a single outlier in the data matrix can
render the estimation of the low rank component arbi-
trarily far from the true model. In [3, 21], a very el-
egant remedy was developed for this shortcoming, in
which the low rank matrix is determined as the min-
imizer of a convex program. The basic idea is to de-
compose the data matrix X as X = L + O ∈ Rm×n,
where L is a low rank matrix and O an error matrix
with a sparse number of non-zero coefficients with
arbitrarily large magnitude. RPCA can be solved by

minimizing the convex program

min
L,O
‖L‖∗ + λ ‖O‖1 s.t. X = L + O, (1)

where ‖·‖∗ denotes the matrix nuclear norm, defined
as the sum of the singular values (the convex surro-
gate of the rank), and λ is a positive scalar parameter
controlling the sparsity of the outliers. Several effi-
cient optimization algorithms have been proposed for
solving (1) as, for example, the augmented Lagrangian
approach presented in [12].

When the observations are noisy, the equality con-
straint in (1) no longer holds. The RPCA model can
be reformulated as

min
L,O
‖L‖∗ + λ ‖O‖1 s.t. ‖X− L−O‖2F ≤ ε, (2)

with ‖ · ‖F denoting the Frobenius norm, and ε a pa-
rameter controlling the approximation error [21].

2.2 Robust PCA via non-convex factorization

In this paper, we tackle the RPCA problem by solving
the unconstrained optimization problem

min
L,O

1
2
‖X− L−O‖2F + λ∗ ‖L‖∗ + λ ‖O‖1 . (3)

This formulation is equivalent to (2) in the sense that
for every ε > 0 one can find a λ∗ > 0 such that both
problems admit the same solution. The unconstrained
formulation can be efficiently optimized via proximal
methods as in [3].

In [17] it was shown that the nuclear norm of a ma-
trix can be reformulated as a penalty over all possible
factorizations,

‖L‖∗ = min
U,S

1
2
‖U‖2F +

1
2
‖S‖2F s.t. US = L, (4)

with the minimum achieved via Singular Value De-
composition (SVD) [14]. In (3), neither the rank of
L nor the level of sparsity in O are assumed known
a priori. However, in common applications, it is rea-
sonable to have a rough upper bound, rank(L) ≤ q.
Combining this with (4), we reformulate (3) as the
minimization

min
U,S,O

1
2 ‖X−US−O‖2F +

λ∗
2 (‖U‖2F + ‖S‖2F ) + λ ‖O‖1 (5)

over U ∈ Rm×q , S ∈ Rq×n, and O ∈ Rm×n. This
decomposition reveals interesting structure hidden in
the problem. The low rank component can now be
thought of as an under-complete dictionary U, with q
atoms, multiplied by a matrix S containing the corre-
sponding coefficients for each data vector in X. This
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interpretation brings the RPCA problem close to that
of matrix factorization and sparse coding.

This new factorized formulation drastically reduces
the number of optimization variables from 2nm to
nm+ q(n+m). While problem (5) is no longer con-
vex, it can be shown that any of its stationary points
satisfying ||X−US−O||22 ≤ λ∗, is an optimal solu-
tion of (5) [14]. Thus, the problem can be solved using
alternating minimization or block coordinate schemes,
without the risk of remaining stuck in a local mini-
mum. This redounds in a significant speed-up in the
optimization [18].

2.3 Robust NMF

In many applications, such as spectrogram decompo-
sitions, it desirable to find non-negative factorizations.
This is in the heart of the non-negative matrix factor-
ization paradigm . We now extend (5) to consider the
low rank and the outlier terms to be non-negative,

min
U≥0,S≥0,O≥0

1
2 ‖X−US−O‖2F +

λ∗
2 (‖U‖2F + ‖S‖2F ) + λ ‖O‖1 . (6)

This new formulation is no longer equivalent to (3).
In fact, applying (4) directly to the matrix US, we ob-
tain ÛŜ with the factors Ŝ and Û not being necessar-
ily non-negative. Adding the non-negativity constraint
produces the inequality

||US||∗ ≤
1
2

min
Ŝ≥0,Û≥0

||Û||2F + ||Ŝ||2F. (7)

Thus, the sum of the Frobenius norms of the non-
negative matrices S and U regularizes an upper bound
of the nuclear norm of their product.

Standard NMF is obtained as a particular case by
setting to zero both λ∗ and λ, while the robust ver-
sion of NMF introduced in [22] is obtained when only
λ∗ is selected as zero. In this paper we use RNMF
as stated in (6), however its extension to more general
fitting terms such as β-divergences is straightforward.
Problem (6) can be optimized using multiplicative al-
gorithms, commonly used in the NMF context.

2.4 Robust non-negative projections

Let us now assume to be given a low dimensional
model, U ∈ Rm×q , learned from some data X ≈
US + O ∈ Rm×n. A new input vector x drawn from
the same distribution as X can be decomposed into
x = Us+n+o, where Us represents the low dimen-
sional component, n is a small perturbation, and o is
a sparse outlier vector. It can be obtained via

min
s≥0,o≥0

1
2 ‖x−Us− o‖22 + λ∗

2 ‖s‖
2
2 + λ ‖o‖1 ,(8)
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Figure 1. RNMF encoder architecture with T layers.

a convex problem similar to the one of standard sparse
coding. The solution can be obtained via proximal
methods [1], which split the objective function (8) into
a smooth part (the first two terms), and a non-differen-
tiable part (the `1 norm of the outliers vector). Proxi-
mal methods iterate between a gradient descent on the
smooth function and an application of the proximal
operator (which assumes a closed form of one-sided
soft-thresholding), as detailed in Algorithm 1. This
algorithm is conceptually very similar to the popular
iterative shrinkage and thresholding algorithm (ISTA)
[2]. We do not use this algorithm as an explicit tool,
but rather as a motivation of the architecture of a feed-
forward network capable of accurately performing the
separation in real time, as discussed next.

input : Data x, dictionary U.
output: Nonnegative coefficient vector s and

nonnegative outlier vector o.
Define

H = I− 1
α

(
UTU + λ∗I UT

U (1 + λ∗)I

)
,

W = 1
α

(
UT

I

)
, and t = λ

α

(
0
1

)
.

Initialize z = 0, b = Wx.
repeat

y = max{b− t, 0}
b = b + H(y − z)
z = y

until until convergence ;
Output (o, s) = z.
Algorithm 1: RNMF given the dictionary U.

3. FAST ROBUST SPARSE MODELING

To avoid the computational complexity inherent to ex-
act sparse coding algorithms, it has been recently pro-
posed to learn non-linear regressors capable of pro-
ducing good approximations in a fixed amount of time
[6,10]. We follow these ideas to obtain encoders capa-
ble of efficiently approximating the solution of RPCA
and RNMF. 1 We first discuss the general framework
and then describe specific uses.

1 Due to space constraints, we show details only for RNMF;
RPCA can be obtained by removing the non-negativity constraints
and modifying the proximal operator.
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We aim at constructing a parametric regressor z =
(o, s) = h(x,Θ), with some set of parameters, col-
lectively denoted as Θ, capable of accurately perform-
ing the singing voice separation for a given training
sample X = {x1, . . . ,xn}. Here, each xi represents
the magnitude spectrum of a mixture of voice and mu-
sic; training samples may come from many different
singers and songs.

As in [6], we design an architecture for the en-
coders based on an exact optimization algorithm, in
this case Algorithm 1. We propose a multi-layer ar-
tificial neural networks where each layer implements
a single iteration of the algorithm, as depicted in Fig-
ure 1. The parameters of the network are the matrices
W and H and the thresholds t. 2 These encoder ar-
chitectures are continuous and almost everywhere C1
with respect to the parameters, allowing the use of
(sub)gradient descent methods for training.

We train the encoders by minimizing over X func-
tions of the form

L(Θ) =
1
|X |

∑
xi∈X

L(Θ,xi), (9)

where L(Θ,xi) is a function that measures the qual-
ity of the code zi = h(xi,Θ). Specifically, we itera-
tively select a random subset of X and then update the
network parameters as Θ ← Θ − µ∂L(Θ)

∂Θ , where µ
is a decaying step, repeating the process until conver-
gence. The decoder is just a linear operator given by a
dictionary U, see Figure 1.

Once trained, the parameters Θ and the dictionary
U are fixed, and the network is used to sequentially
process new data. The latency of both the RPCA and
RNMF networks (referred henceforth as NN RPCA
and NN RNMF, respectively) is of the order of a single
STFT frame (hundreds of milliseconds), while the ex-
act algorithms require the entire signal to be observed.

3.1 Training regimes

Training of the proposed RPCA and RNMF encoders
is possible under different regimes. We refer as su-
pervised to the setting where the training set consists
of the mixed signal xi = o∗i + l∗i , and the synchro-
nized ground truth voice and accompaniment signals
o∗i and l∗i (each vector corresponding to the magni-
tude spectrogram). In that case, we set L(Θ,xi) =
||Usi− l∗i ||22 + ||oi−o∗i ||22, with (oi, si) = h(xi,Θ).
For NN RPCA, the dictionary U is established using
SVD applied to the clean accompaniment samples, l∗i ,
while for NN RNMF, the non-negative dictionary U
is constructed running the multiplicative RNMF algo-
rithm on the training data.

2 In the network, extra flexibility is obtained by learning different
thresholds ti for each component.

Table 1. Performance on the recovered vocal track on
MIR-1K.

Method GNSDR GSNR GSAR GSIR
Ideal freq. mask 13.48 5.46 13.65 31.22
ADMoM RPCA [9] 5.00 2.38 6.68 13.76
Proximal RPCA 5.48 3.29 7.02 13.91
NN RPCA Untrained 5.30 2.66 6.80 13.00
NN RPCA Unsupervised 5.62 2.87 6.90 14.02
NN RPCA Supervised 6.38 3.18 7.22 16.47
NN RPCA Dict. update 6.42 3.19 7.23 16.57
Multiplicative RNMF 5.60 3.39 6.94 14.67
NN RNMF Untrained 1.62 0.00 5.85 5.13
NN RNMF Unsupervised 5.00 2.66 6.63 11.89
NN NMF Supervised 6.36 3.37 7.10 16.96
NN RNMF Dict. update 6.55 3.55 7.24 17.65

We refer as semi-supervised to the setting in which
isolated samples of voice and background are avail-
able, but are not synchronized (the xi are now either
the voice or the accompaniment). The training of the
network is performed in the same way as the super-
vised case, but setting to zero the missing source.

Finally, in the unsupervised setting we only have
access to mixtures as training data and the objective
L(Θ,xi) = 1

2‖xi−Usi− oi‖22 + λ∗
2 ‖si‖22 + λ‖oi‖1

is used to directly minimize the cost in (6).
Dictionary adaptation. The performance of both the
RPCA and RNMF networks can be further improved
if the dictionary U (decoder) is updated during the
training. In the unsupervised setting, for NN RPCA,
U is updated via gradient descent as before, while in
NN RNMF via the standard multiplicative update,

U ← U� YST

U(SST + λ∗I)
, (10)

where X = (x1, . . . ,xn) is the input matrix, S =
(s1, . . . , sn) is the matrix of the corresponding codes,
Y = (x1 − o1, . . . ,xn − on), and � and the fraction
denote, respectively, element-wise multiplication and
division. This update minimizes the objective in (6)
for fixed O and S, and is guaranteed to preserve the
non-negativity of U. Analogously, in the semi- and
fully-supervised scenarios, U can be updated by min-
imizing the corresponding L(Θ) using the ground-
truth music accompaniment. Again using gradient de-
scent and multiplicative updates for RPCA and RNMF
respectively.

4. EXPERIMENTAL RESULTS

Dataset. We evaluate the separation performance of
the proposed methods on the MIR-1K dataset [8], con-
taining 1000 16 kHz clips extracted from 110 Chinese
karaoke songs performed by 19 amateur singers (11
males and 8 females). Each clip duration ranges from
4 to 13 seconds, totaling about 133 minutes. We re-
served about 23 minutes of audio sang by one male
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Figure 2. Performance of the supervised NN RPCA and NN RNMF on the MIR-1K dataset for different number of layers T
(left, q fixed to 20), and values of the rank bound q (right, T fixed to 10). GNSDR of the recovered vocal track is used as the
comparison criterion. For reference, the performance of exact RPCA and RNMF is given.

and one female singers (abjones and amy) for the pur-
pose of training; the remaining 110 minutes of 17 sin-
gers were used for testing. The voice and the music
tracks were mixed linearly with equal energy.
Evaluation. As the evaluation criteria, we used the
BSS-EVAL metrics [20], which calculate the source-
to-distortion ratio (SDR), 3 the source-to-artifacts ra-
tio (SAR), and the source-to-interference ratio (SIR).
As in [9], we computed the global normalized SDR,

GNSDR =
N∑
i=1

δi(SDR(ŝ, s)− SDR(x, s)),

where ŝ and s are the corresponding original and esti-
mated voice signal, x is the mixture, δi is the relative
duration of each of the N testing pieces. Prefix “G”
indicates average sample performance,e.g. GSAR. We
also computed the signal-to-noise ratio (SNR).
Comparison of separation methods. We evaluated
the proposed NN RPCA and NN RNMF using the dif-
ferent training settings discussed in Section 3.1. In all
our examples (except when explicitly mentioned), we
used T = 10 layers and q = 20. We compare these re-
sult against three exact solvers: ADMoM RPCA solv-
ing (1) with λ = 1/

√
n (as suggested in [9]) via the

alternating direction method of multipliers [12], for
which the code from [9] was used; Proximal RPCA
solving (3) using the proximal method from [3], with
λ =

√
2nσ and λ∗ =

√
2σ with σ = 0.3 set follow-

ing [3]; and Multiplicative RNMF solving (6) using
the standard multiplicative algorithm.

In all experiments, the spectrogram of each mix-
ture was computed using a window size of 1024 and
a step size of 256 samples (at 16 KHz sampling rate).
Training was performed using 1000 safe-guarded gra-
dient descent iterations on a random subset of 10.000
spectral frames for training and the same amount of
distinct frames for cross-validation.

3 In this work the SDR is computed using the latest release of the
BSS-EVAL code. The reported values are higher (equally for all
algorithms) than the ones reported in [9], since they used the older
release of that package.

Table 1 summarizes the performance of the com-
pared methods. The best performance is achieved by
the NN RNMF with trained dictionary. The use of
the proximal RPCA algorithm allowing for inexact re-
construction of the data (thus accounting for unstruc-
tured noise) gives almost 0.5 dB improvement over
[9]. The use of unsupervised training was more suc-
cessful in the NN RPCA; however, both NN RPCA and
NN RNMF outperform ADMoM RPCA.

The complexity of the proposed systems is signif-
icantly lower to the one of exact algorithms: our un-
optimized Matlab code that uses GPU acceleration is
capable of computing the networks about 70 faster
than real time, while a preliminary implementation on
iPhone 4S is online and 6 − 7 times faster than real
time (after offline training).
Parameter selection. We also evaluated the perfor-
mance of the supervised RPCA and RNMF networks
as a function of the two principal parameters: the num-
ber of layers T and the rank bound q, see Figure 2.

Supervised learning has a dramatic effect on the
performance of the networks. With just two layers, the
RPCA network already outperforms the exact RPCA
algorithms; as a reference, an untrained network, with
the parameters W,H, and t set according to Algo-
rithm 1, requires over 15 layers to approach this per-
formance. This phenomenon is even more pronounced
in the case of RNMF. The influence of the number
of layers quickly saturates; slight oscillations in the
GNDSR are due to the randomization used at training.

In contrast, the effect of q is less dramatic. The
networks outperform the exact algorithms already for
q = 5 and the performance saturates for q ≥ 30.
This is radically different from the behavior of stan-
dard NMF approaches, in which setting the number
of columns in the non-negative factor U significantly
affects the performance. In fact, RNMF with λ∗ = 0
as [22] yields 5.60 dB GNSDR for q = 1, which drops
to 2.88 dB for q = 3 and to −2.5 dB for q = 10.
Supervised training settings. We evaluated the in-
fluence of the different training regimes on the perfor-
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Table 2. Performance of NN RNMF on the vocal trak of
Sunrise song. Audio files are available for download here

Method NSDR SNR SAR SIR
Ideal freq. mask 14.98 5.84 18.46 39.40
ADMoM RPCA [9] 1.61 2.99 11.13 6.60
Supervised (MIR-1K) 7.16 4.86 14.21 13.25
Supervised (We are in love) 7.85 5.47 15.35 13.59
Supervised (Sunrise) 10.93 5.67 16.16 19.20
Semi-supervised (We are in love) 7.35 4.69 11.39 20.01
Semi-supervised (Sunrise) 8.46 5.11 12.20 23.97

mance of the networks on Shannon Hurley’s song Sun-
rise, available from archive.org. The song was
resampled at 16 kHz and voice was artificially mixed
with the guitar accompaniment with equal energies.
Three distinct datasets were used for training the nets:
two singers from MIR-1K used in the previous experi-
ments; another Shannon Hurley’s song We are in love;
and the same Sunrise, song on which the testing was
performed (given only for comparison). Supervised
and semi-supervised regimes were used.

Table 2 summarizes the obtained results. RNMF
networks trained using mixtures from MIR-1K outper-
form [9] by nearly 5.5 dB GNSDR; training on more
singer-specific data (We are in love song) improves
this result by about 0.7 dB. ; finally, training on a mix-
ture from the same song yields over 3.5 dB improve-
ment. We conclude that training the networks on un-
related singers and accompaniments already achieves
very high performance. Semi-supervised training on
the We are in love song yields a minor improvement
over MIR-1K, and cedes 0.5 dB to the fully-supervised
training. We conclude that in the absence of synchro-
nized voice and music tracks for supervised training,
semi-supervised training still produces comparable re-
sults.

5. CONCLUSION

Marrying ideas from convex optimization with multi-
layer neural networks, we have developed efficient ar-
chitectures for real-time online single-channel sepa-
ration of singing voice from musical accompaniment.
Our approach achieves state-of-the-art results on the
MIR-1K datasets with orders of magnitude improve-
ment in runtime and latency. In future work, we are
going to extend this framework to denoising and si-
multaneous separation and speaker identification.
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ABSTRACT

Collaborative tagging has emerged as an efficient way to
semantically describe online resources shared by a com-
munity of users. However, tag descriptions present some
drawbacks such as tag scarcity or concept inconsistencies.
In these situations, tag recommendation strategies can help
users in adding meaningful tags to the resources being de-
scribed. Freesound is an online audio clip sharing site that
uses collaborative tagging to describe a collection of more
than 140,000 sound samples. In this paper we propose four
algorithm variants for tag recommendation based on tag
co-occurrence in the Freesound folksonomy. On the basis
of removing a number of tags that have to be later predicted
by the algorithms, we find that using ranks instead of raw
tag similarities produces statistically significant improve-
ments. Moreover, we show how specific strategies for se-
lecting the appropriate number of tags to be recommended
can significantly improve algorithms’ performance. These
two aspects provide insight into some of the most basic
components of tag recommendation systems, and we plan
to exploit them in future real-world deployments.

1. INTRODUCTION

Online platforms where people share user generated con-
tent have stressed the need for efficient methods to describe
and retrieve such content. Freesound [1] is an online audio
clip sharing site which clearly reflects this need. It contains
more than two million users and 140,000 user-contributed
sound samples covering a wide variety of sounds (from
field recordings and sound effects to drum loops and in-
strument samples), which have to be well described to al-
low proper retrieval.

In recent years, collaborative tagging has emerged as an
efficient way to describe online resources shared by a com-
munity of users. In collaborative tagging systems, users
describe information items by annotating them with a num-
ber of “free-form” semantically-meaningful textual labels,
called tags, that act as keywords and that can be later used
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for retrieval purposes. A collection of tags together with
their associations to content resources is commonly known
as a folksonomy.

In the majority of collaborative tagging systems, includ-
ing Freesound, users are not constrained by any particular
number of tags to assign, nor by the use of any specific
vocabulary where to pick the tags from. Therefore, de-
scriptions can be done at many different levels of detail
and accuracy. Description inconsistencies can then arise
due to the ambiguity of tag meanings, tag scarcity, the use
of personal naming conventions, typographical errors, or
even the use of different languages [2].

One strategy for trying to overcome some of these prob-
lems, and thus obtain more comprehensive and consistent
descriptions, has been the use of tag recommendation sys-
tems to help users in the tagging process. These systems
analyze the first (usually few) tags that users introduce when
describing a particular item, and quickly suggest new tags
that can also be meaningful or relevant for the item being
described. The same algorithms for tag recommendation
can be used, in an off-line mode, to extend the descriptions
of information items by analyzing their tags and automati-
cally adding new ones (what is normally called tag propa-
gation).

In this paper we present and evaluate four variants of an
algorithm for tag recommendation in Freesound. Our rec-
ommendation is based on tag semantic similarity derived
from tag co-occurrence in the Freesound folksonomy. A
novel aspect of the algorithm is a step focused on automat-
ically selecting the number of tags to recommend given
a sorted list of candidate tags. Tag propagation methods
found in related work (see below) do not perform this step,
and usually evaluate algorithms at different values of N
recommended tags. We compare our algorithm with sim-
pler versions which either always recommend a fixed num-
ber of tags, or only recommend tags that are repeated in the
list of candidates.

The rest of the paper is organized as follows. In Sec. 2
we review the related work and in Sec. 3 we briefly de-
scribe the Freesound folksonomy. Sec. 4 explains the pro-
posed algorithm for tag recommendation. Secs. 5 and 6
describe the evaluation methodology and present the ob-
tained results. In Sec. 7 we conclude the paper with a dis-
cussion about our findings and future work.



2. RELATED WORK

Collaborative tagging has been widely researched in the
last few years. Some studies focus on a general descrip-
tion of the dynamics of collaborative tagging and user be-
havior when tagging [2–5]. Other studies have looked at
the motivations that users have at the moment of tagging,
proposing then automatic tag classification methods to or-
ganize types of tags according to these motivations [6, 7].
Most of the work done in the analysis of collaborative tag-
ging systems takes as case studies well-known sites such as
Delicious (bookmark sharing), CiteULike (scientific refer-
ence sharing) and Flickr (photo sharing).

A variety of methods have been proposed for tag prop-
agation and tag recommendation, especially for the case of
image annotation. In [5] and [8], content analysis of im-
ages is used to obtain similar images and then propagate or
recommend tags from these images to the source. Instead
of using content analysis, Sigurbjörnsson and Zwol [9] pro-
pose a method for image tag recommendation based on tag
similarities derived from a folksonomy. Their approach is
similar to the one we describe in this paper, though they
use different strategies for sorting candidate tags and do
not perform a final selection of the number of tags to rec-
ommend. In [10] and [11], more complex strategies for
tag recommendation based on folksonomies are described
and evaluated with data from Delicious, BibSonony and
Last.fm (using hierarchical tag structures [10] and the Folk-
Rank ranking algorithm [11]). Again, none of these ap-
proaches performs any selection of the number of tags to
recommend.

In the field of sound and music, most of the work re-
lated with tag propagation or recommendation is not based
on folksonomy analysis, but on the extraction of content-
based audio features that can later be used to annotate songs
with labels or tags (which is more commonly known as se-
mantic annotation). Sordo [12] describes a method based
on audio content similarity for propagating tags (related
with style and mood) between acoustically similar songs.
Martı́nez et al. [13] use a similar idea for automatically
propagate tags in scarcely annotated samples of Freesound.
In [14] and [15], a different approach for automatic annota-
tion of music and sound effects is described, which is based
on using machine learning techniques to learn mappings
between tags and audio features. Due to the content-based
nature of these strategies, they are not directly comparable
to the approach we propose in this paper.

3. FREESOUND FOLKSONOMY

In Freesound, users can upload sound samples and then
describe them with as many tags as they feel appropri-
ate 1 . For building the folksonomy we use in our experi-
ments, we considered user annotations between April 2005
and September 2011. The folksonomy includes a total of
785,466 annotations that assign 30,985 unique tags (not

1 Since a recent software upgrade, Freesound requires a minimum of
three tags to annotate a sound. However, the data we analyze is prior to
the introduction of this requirement.

Figure 1: Distribution of sounds per number of tags. The
global average of tags per sound is 6.16 and the standard
deviation is 6.23.

necessarily semantically unique, but with different string
representations) to 118,620 sounds. As opposite to other
well studied collaborative tagging systems such as Deli-
cious or CiteULike, Freesound has what is called a nar-
row folksonomy [16], meaning that sound annotations are
shared among all users and therefore one single tag can
only be assigned once to a particular sound (e.g. the tag
field-recording cannot be added twice to the same
sound).

Fig. 1 shows the distribution of the number of tags per
sound in Freesound. We are particularly interested in rec-
ommending tags for the sounds that fall in the range of
[3, 15] tags (shadowed zone in Fig. 1), which are more than
80% of the total. The reason for focusing on these sounds
is that the algorithm variants we present take as input the
tags that have already been assigned to a sound. We con-
sider 3 tags as enough input information for our algorithms
to provide good recommendations. For sounds with less
tags, content-based strategies such as the ones outlined in
Sec. 2 are probably more suitable. On the other hand,
sounds with more than 15 tags are, in general, enough well
described.

Among the total number of 30,985 unique tags present
in the folksonomy, we have applied a threshold to take
only into consideration the tags that have been used at least
10 times, i.e. the tags that appear on at least 10 differ-
ent sounds. By this we assume that tags that have been
used less than 10 times are irrelevant for our purposes. In
addition, by discarding less frequent tags, we reduce the
computational complexity of the calculations described in
Sec. 4.1. After applying this threshold, we are left with
6,232 unique tags, representing 20% of the total. Nonethe-
less, 93% of all annotations associate one of these 6,232
unique tags with a sound, thus we still take into account
the vast majority of the original information.

4. PROPOSED ALGORITHM

The tag recommendation algorithm described in this paper
consists of the three steps depicted in the diagram of Fig. 3.
Variants are obtained by combining the different strategies
proposed for the second and third steps. Feeding the algo-
rithm variants with a number of inputTags, they output a
set of recommendedTags. In the following subsections
we describe each one of the depicted steps.
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Figure 3: Block diagram of the described tag recommen-
dation algorithm.

4.1 Getting candidate tags

The first step in the recommendation processes is getting a
number of candidate tags according to the set of inputTags.
For this purpose we build a tag similarity matrix based
on tag co-occurrences in sound descriptions, following the
Actor-Concept-Instance model proposed by Mika [17].
This tag similarity matrix gathers information from the
whole folksonomy and only needs to be computed once.

The Actor-Concept-Instance model proposes to repre-
sent a folksonomy F as a tripartite hypergraph H(F ) =
〈V,E〉, where vertices are given by three finite sets of ob-
jects, V = U∪T ∪R (U, T, and R denoting users, tags, and
resources, respectively), and each edge represents a tag-
resource association done by a user E = {{u, t, r}|(u, t, r)
∈ F}. We unfold this tripartite hypergraph into the bi-
partite graph TR, which reflects only the associations be-
tween tags and resources (sounds in our case). We can
represent the bipartite graph TR as a matrix D = {dij},
where dij = 1 if tag ti has been used to label resource
rj (otherwise dij = 0). We can then define the matrix
S = DD′, which corresponds to a one-mode network con-
necting tags on the basis of shared resources. Elements sij
of S indicate the number of sounds in which tags ti and
tj appear together. Therefore, the diagonal of S represents
the total number of different sounds labeled with a tag ti=j .
We then normalize S by dividing each element by√
sii
√
sjj . In this manner, we obtain the cosine similarity

measures between tags ti and tj (the cosine similarity be-

tween the i-th and the j-th rows of D). Preliminary experi-
ments using other distances such as Jaccard reported worse
results. Furthermore, cosine similarity has been widely
used in the literature and has been shown to be effective
as a semantic relatedness measure in folksonomies [18].
Fig. 2 shows a graph visualization of an excerpt of S.

Having calculated the tag similarity matrix S, we iterate
over inputTags and get, for each element i, a set of can-
didates CinputTagi . For that we select the N most similar
tags of inputTagi (i.e. the N most similar graph neigh-
bors). We keep these similarity values for further process-
ing in the following steps. In all our experiments we use
N = 100. Hence, for instance, if our algorithm is feeded
with three input tags, it will get a maximum of 300 can-
didate tags (provided that all three input tags have at least
100 neighbors). In preliminary experiments we observed
that using values of N > 100 did not alter our recommen-
dation results.

4.2 Aggregating candidate tags

The next step of our algorithm is to aggregate and sort the
obtained candidate tags into a single list Csorted. For this
purpose we propose two different strategies which are now
described.

4.2.1 Similarity-based strategy

In the first strategy we construct Csorted by aggregating all
sets of candidate tags CinputTagi into a single list Craw,
and then ordering them by their similarity values (taken
from the previous steps). As we do not want to recom-
mend tags that are already part of inputTags, we remove
any occurrences of these tags in Craw. If there are repeated
candidate tags in Craw, their similarity values are added as
a way of promoting these tags that appear in CinputTagi of
more than one input tag i. We finally normalize the similar-
ity values by dividing them by the number of inputTags
(thus maintaining values in the original range).

Figure 2: Graph visualization of the tag similarity matrix S. Edge widths represent the similarity between two tags. Node
size is a logarithmic function of the absolute tag frequency. For the sake of clarity, only edges above a certain threshold and
tags above a certain level of absolute frequency are shown.
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Figure 4: Example of the linear regression strategy for se-
lecting how many tags to recommend. The straight line
shows the linear regression of the histogram. Recom-
mended tags are those placed at the right of the point where
the linear regression crosses the y-axis.

4.2.2 Rank-based strategy

The second strategy is based on assigning a rank value to
each candidate tag. For this purpose, we sort each set of
CinputTagi and then assign rank values as:

rank(neighborn) = N − (n− 1),

where n is the position of the neighbor in CinputTagi (thus
n ranges from 1 to N ). This way, the closest tag to every
input tag will be assigned with a rank value of N . We then
perform the aggregation as we would do in the similarity-
based strategy, but using the assigned rank values as simi-
larities.

4.3 Selecting how many tags to recommend

Once we have computed Csorted (either using similarity-
based or rank-based strategies), we select how many of
these tags should be outputted as recommendedTags. Our
approach is based on the hypothesis that given the distribu-
tion of similarity or rank values in Csorted, it will be pos-
sible to determine a threshold that separates a set of mean-
ingful tags from the other candidates. That is to say, that
“good” tags for recommendation will appear as an isolated
group from the rest of the distribution. In order to auto-
matically determine this threshold, we again propose two
different strategies.

4.3.1 Linear regression strategy

The first strategy consists in calculating the least-squares
linear regression of the histogram of Csorted. The thresh-
old is set to the point where the linear regression crosses
the y-axis. Fig. 4 shows an example of using this strat-
egy with a histogram of tag similarity values. In that case
threshold is set at 0.29. Therefore, all candidate tags with
a similarity value higher than 0.29 would be outputted as
recommendedTags.

4.3.2 Statistical test strategy

The second strategy has two steps. First, we estimate the
probability density function (PDF) of Csorted. For that
purpose, we use a kernel density estimator [19]. Second,

Rank value

Figure 5: Example of the statistical test strategy for select-
ing how many tags to recommend. The curve represents
the estimated PDF of Csorted. Markers on the x-axis show
the actual positions of candidate tags. Recommended tags
are those under the shaded zone in the right.

we iteratively take consecutive samples of the PDF (start-
ing from the side where the candidates with highest rank or
similarity lay) and perform a statistical test for normality.
For that purpose we use the Anderson-Darling test [20].
The threshold is set at the point of the PDF where the test
fails for the first time (i.e.the probability of having an in-
dependent Gaussian distribution is not statistically signifi-
cant). The idea behind this process is that there will be a
set of good tags for the recommendation that will exhibit a
normal, independent distribution separated from the rest of
candidate tags. The statistical test fails when it detects de-
partures from normality, and according to our hypothesis
this happens when non-meaningful candidate tags start af-
fecting the PDF. Fig. 5 shows an example of applying this
strategy using rank values for Csorted. All tags under the
shaded zone in the right will be recommended.

5. EVALUATION METHODOLOGY

In order to compare and evaluate the efficacy of the pro-
posed variants we followed a systematic approach based
on removing a number of tags from the Freesound sound
descriptions and then trying to predict them. The advan-
tage of this approach is that it allows us to quickly evaluate
different tag recommendation methods without the need of
human input. The main drawback is that tags that could
be subjectively considered as good recommendations for a
particular sound description but that are not present in the
set of removed tags, will not count as positive results (see
Sec. 7).

We performed a 10-fold cross validation following the
methodology described in [21]. For each fold, we build
a tag similarity matrix using the subset of the folksonomy
corresponding to the training set of sounds. Then, for each
one of the sounds in the evaluation set, we remove a ran-
dom number of their tags (removedTags) and run tag rec-
ommendation methods using the tag similarity matrix de-
rived from the training set. We compute standard precision,
recall and f-measure for each evaluated sound according
to:



Method name Aggregation step Selection step
Proposed algorithm variants

RankST Rank-based Statistical test
SimST Similarity-based Statistical test
RankLR Rank-based Linear regression
SimLR Similarity-based Linear regression

Basic methods
RankFIX@K Rank-based Fixed number (K ∈ [1, 10])
SimFIX@K Similarity-based Fixed number (K ∈ [1, 10])
Repeated@R Repeated tags in Craw (R ∈ [2, 6])

Random baselines
Random (for
every method)

Random selection of tags from Craw , with the
same length as recommendedTags

Table 1: Evaluated tag recommendation methods.

precision = |recommendedTags∩removedTags|
|recommendedTags| ,

recall = |recommendedTags∩removedTags|
|removedTags| , and

fmeasure = 2 · precision·recall
precision+recall .

Table 1 shows the tag recommendation methods that
we compare. The first group of methods (Proposed al-
gorithm variants) are the four possible combinations of
aggregation and selection strategies described in Secs. 4.2
and4.3. Basic methods correspond to more basic tag rec-
ommendation methods that we used for comparison. On
the one hand, we compare with two simpler versions of
our proposed algorithm (RankFIX@K and SimFIX@K)
which skip the last step of the recommendation process
and always recommend a fixed number of K tags. We run
these methods for values of K ranging from 1 to 10. On
the other hand, we compare with an even simpler method
(Repeated@R), which only recommends tags that appear
more than R times in Craw (independently of any rank or
similarity values). We run these methods for values of R
ranging from 2 to 6. Finally, we also compute a random
baseline for each one of the previous methods by replac-
ing the set of recommendedTags with a random selec-
tion (of the same length) taken from Craw. We choose as
the general random baseline the one that gets the highest
f-measure.

6. RESULTS

Table 2 shows the results of our evaluation as described
in the previous section. The first group of results (under
the label with input tags range filter) has been obtained
by limiting the number of input tags we used to feed our
algorithms to the range of [3, 15], thus avoiding scarcely
tagged sounds. The second group of results does not apply
any restriction to the number of input tags (provided that
there is at least one input tag).

A first observation is that using the input tags range
filter produces an average increase in f-measure of 0.150
among our proposed algorithm variants (statistically sig-
nificant using pairwise Kruskal-Wallis test, p≈0). Other
methods present an average increase of 0.074 (p≈0). This
means that, as expected, our algorithm works better in the

Algorithm Precision Rrecall F-measure
With input tags range filter (83,010 sounds)

RankST 0.443 0.537 0.432
RankLR 0.394 0.564 0.419
RankFIX@2 0.395 0.466 0.391
SimLR 0.348 0.397 0.325
SimST 0.381 0.333 0.317
RankFIX@5 0.233 0.614 0.308
SimFIX@2 0.303 0.344 0.294
SimFIX@5 0.181 0.467 0.237
Repeated@3 0.177 0.679 0.236
RankFIX@10 0.136 0.696 0.212
SimFIX@10 0.111 0.566 0.173
Random 0.006 0.033 0.010

Without input tags range filter (118,620 sounds)
RankST 0.317 0.290 0.258
RankFIX@2 0.310 0.246 0.244
RankFIX@5 0.214 0.366 0.238
RankLR 0.236 0.301 0.221
SimLR 0.271 0.223 0.212
SimST 0.294 0.195 0.202
SimFIX@2 0.256 0.195 0.196
SimFIX@5 0.176 0.294 0.193
RankFIX@10 0.142 0.447 0.192
SimFIX@10 0.120 0.371 0.161
Repeated@3 0.095 0.262 0.110
Random 0.020 0.054 0.026

Table 2: Average of precision, recall and f-measure results
for the evaluated tag recommendation methods. For the
sake of readability, we only show some representative re-
sults of FIX and Repeated methods using K = 2, 5, 10 and
R = 3. Methods are ordered by f-measure.

range of [3, 15] input tags. This is due to the notable in-
crease in recall when using the input tags range filter (big-
ger than the increase in precision), suggesting that when
feeded with at least three tags, our algorithm is able to se-
lect more relevant candidates. That supports the idea that
for sounds with less tags, content-based approaches for tag
recommendation would probably be more appropriate.

We can also see that all methods using the rank-based
strategy for aggregating candidate tags always report higher
f-measure than their similarity-based counterparts. Among
the group with the input tags range filter, the average in-
crease is of 0.104 (p≈0), while in the group without the
filter the increase is of 0.033 (p≈0). That difference be-
tween both groups suggests that rank-based strategy works
better when aggregating longer sets of candidates.

Regarding the selection step of our algorithm, both us-
ing the statistical test (ST) or the linear regression (LR)
strategy significantly improves the performance with re-
spect to the basic methods. When using the input tags fil-
ter, we observe an average increase in f-measure of 0.114
and 0.111 for the ST and LR methods, respectively (p≈0).
Without using the filter the average increase is less impor-
tant, of 0.045 and 0.036 for ST and LR, respectively (p≈0).
It is surprising that methods recommending a fixed number
of two tags (FIX@2) perform quite close to their counter-
parts using ST or LR strategies (and even in some cases
scoring higher when not using the input tags range filer).
This might be due to the fact that the average number of
removed tags among all the experiments is 2.5. There-



Sound id Input tags Removed tags Recommended tags F-measure
8780 analog, glitch, warped lofi noise, electronic 0.0
124021 newspaper, reading, paper, page, news read magazine 0.0

38006 hit, glass, oneshot percussion
singlehit, singlebeat, single, tap,
hits, house, percussion, place,
thuds, drum, plock

0.17

54374 spring, nightingale, nature, bird field-recording, birdsong, binaural birds, field-recording, forest, birdsong 0.5
78282 metal, medium-loud, interaction impact impact, wood 0.67

Table 3: Example of tag recommendations using the method RankST. Corresponding sounds can be listened at the follow-
ing url: http://www.freesound.org/search?q=[Sound id].

fore, precision errors are minimized when recommending
that amount of tags. Moreover, the good performance of
FIX@2 reflects the effectiveness of the aggregation strate-
gies, that successfully promote the most relevant tags on
the first positions. On the other hand, ST and LR strategies
perform generally better while at the same time recom-
mending more tags (average of 3.16 and 4.6 respectively).
This suggests that the selection step is able to choose, for
each sound, the appropriate number of tags to recommend.
Overall, the method that reports the highest f-measure is
RankST (both with and without the input tags filter), and
all our proposed algorithm variants perform much better
than the random baseline.

7. CONCLUSION AND FUTURE WORK

In this paper we have described and evaluated four algo-
rithm variants for tag recommendation based on the Free-
sound folksonomy. We have found that using a ranking
instead of raw tag similarity values for sorting a list of can-
didate tags produces significantly better recommendations.
The most novel aspect of the described algorithm is a step
focused in automatically selecting the number of tags to
recommend from a sorted list of candidate tags. The two
strategies proposed for this step (statistical test and linear
regression) have proved to be effective and statistically sig-
nificantly increase the performance of the algorithm.

Although the systematic evaluation we have conducted
allowed us to compare the different tag recommendation
methods using a lot of sounds, the results in terms of f-
measure are probably much worse than what a user-based
evaluation could have reported. To exemplify this obser-
vation, Table 3 shows a few examples of tag recommenda-
tions performed using the RankST method (the one with
the highest f-measure). We have marked in bold the tags
that are considered good recommendations under our eval-
uation framework. Notice that many of the recommended
tags which are not in italics could also be judged as mean-
ingful recommendations if we listen to the sounds. In fu-
ture work we would like to perform some user-based evalu-
ation. Additionally, we plan to further improve our tag rec-
ommendation algorithm by introducing more tag-specific
information such as characterizations of tag relevance, se-
mantic category or usage context. Finally, we also plan to
include our tag recommendation system in future deploy-
ments of Freesound.
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ABSTRACT

This paper presents novel probabilistic models that can be
used to estimate multiple fundamental frequencies (F0s)
from polyphonic audio signals. These models are nonpara-
metric Bayesian extensions of nonnegative matrix factor-
ization (NMF) based on the source-filter paradigm, and in
them an amplitude or power spectrogram is decomposed
as the product of two kinds of spectral atoms (sources and
filters) and time-varying gains of source-filter pairs. In this
study we model musical instruments as autoregressive sys-
tems that combine two types of sources—periodic signals
(comb-shaped densities) and white noise (flat density)—
with all-pole filters representing resonance characteristics.
One of the main problems with such composite autore-
gressive models (CARMs) is that the numbers of sources
and filters should be given in advance. To solve this prob-
lem, we propose nonparametric Bayesian models based on
gamma processes and efficient variational and multiplica-
tive learning algorithms. These infinite CARMs (iCARMs)
can discover appropriate numbers of sources and filters in
a data-driven manner. We report the experimental results
of multipitch analysis on the MAPS piano database.

1. INTRODUCTION

Multiple fundamental frequency estimation (a.k.a. multip-
itch analysis) is the basis of various kinds of music content
analysis. Recently, nonnegative matrix factorization (NMF)
has gained a lot of popularity [1–13]. The standard NMF
approximates an amplitude or power spectrogram (nonneg-
ative matrix) as the product of two nonnegative matrices,
one of which is a compact set of spectral bases and the
other of which is a set of the corresponding time-varying
gains [15, 16]. Such low-rank approximation is well justi-
fied by the fact that each musical piece consists of only lim-
ited kinds of sounds that repeatedly appear. In addition, a
practical advantage of NMF is that the bases and gains can
be alternately optimized by using efficient iterative algo-
rithms called multiplicative update (MU) rules. The stan-
dard NMF, however, has three fundamental limitations:

1. The spectral bases are time-invariant, and only their
gains vary over time. A large number of independent
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Figure 1. Overview of composite autoregressive models:
The combinatorial products of I sources and J filters yield
IJ spectral bases, which are activated according to the cor-
responding time-varying gains at each frame. We take the
infinite limit as both I and J diverge to infinity.

bases are needed to fully represent the timbral vari-
ations of instrument spectra (e.g., envelopes) even if
these spectra share the same fundamental frequency
(F0). Such an unconstrained increase of model com-
plexity is likely to result in optimization algorithms
easily getting stuck in bad local optima.

2. A post-processing step for estimating the F0s from
individual bases is required because the F0s are not
parameterized for representing the spectral bases. If
the shapes of spectral bases are unconstrained, the
resulting bases often deviate from natural harmonic
spectra. This makes F0 estimation difficult and we
need to judge the existence of an F0.

3. The number of bases (model complexity) should be
carefully specified in advance because it has a strong
impact on the decomposition results. Note that this
limitation is closely related to the first. A naive solu-
tion is to exhaustively test all possible complexities
and find an optimal value, but such model selection
is often computationally impractical.

As noted above, unconstrained NMF is too flexible for a
set of musically-meaningful bases to be induced automati-
cally. Although these limitations have partially been dealt
with in previous studies [1–13], no study has overcome all
of them simultaneously in a principled manner.

In this paper we propose infinite composite autoregres-
sive models (iCARMs) (Fig. 1) developed for fusing the
following techniques into a unified Bayesian framework:

1. Source-filter factorization (inspired by [1])
We further factorize the spectral bases as the combi-
natorial products of sources and all-pole filters. This



idea originates in the autoregressive (AR) modeling
of speech signals: various vowels can be generated
by changing the shape of the vocal tract (filter) while
keeping the same F0 (source). This factorization en-
ables us to represent a wide variety of instrumental
sounds in terms of two separate aspects (timbre and
F0) with reasonable complexity.

2. Harmonicity modeling (inspired by [7] and [9])
We represent each source as a comb-shaped function
that uses an F0 parameter for representing equally-
spanned harmonic partials of the same weight. Since
such sources are multiplied by acoustically-inspired
AR filters, the relative weights of partials of the bases
are constrained to take realistic values as natural har-
monic sounds. In addition, we can directly optimize
the values of the F0s jointly with decomposition.
As proposed in [7, 14], we additionally introduce a
special source representing white noise (flat density).
This enables us to deal with percussive and transient
sounds having widely distributed spectra. Their tim-
bres (envelopes) are characterized by AR filters.

3. Bayesian nonparametrics (inspired by [12])
We build nonparametric Bayesian models that can
automatically adjust the numbers of sources and fil-
ters needed to factorize a given spectrogram. Rather
than these numbers being specified, the infinite limit
of the conventional source-filter NMF [1] is taken as
the numbers of sources and filters diverge to infinity.
We perform sparse learning by introducing infinite-
dimensional priors in such a way that only limited
numbers of sources and filters are actually activated.

To optimize the iCARMs, we propose a new class of itera-
tive algorithms that integrates a variational Bayesian (VB)
technique with standard MU rules [8, 9].

The rest of this paper is organized as follows: Section 2
discusses the positioning of this study. Section 3 presents
the iCARMs. Section 4 describes the evaluation. Section 5
concludes the paper with a mention of future work.

2. RELATED WORK
This section introduces two machine-learning (ML) tech-
niques, i.e., NMF and Bayesian nonparametrics.

2.1 Nonnegative Matrix Factorization
NMF is a powerful tool for sparse decomposition of non-
negative matrix data [15]. It was first used for representing
face images as linear combinations of a compact set of ba-
sis images corresponding to “local parts” such as eyes and
noses. Such parts-based sparse representation is sponta-
neously induced by the nonnegativity constraint that allows
only summation of basis images. Therefore, NMF fits nat-
urally into audio spectrogram decomposition because the
energy of harmonic sounds is concentrated at the discrete
frequencies of harmonic partials.

2.1.1 Optimization Criteria

To perform NMF, we need some criterion for evaluating
the “goodness-of-fit” of reconstructed data (linear combi-
nations of spectral bases) to observed data (a spectrogram).

Method Divergence Sources # Filters #
Kameoka [1] IS - I AR J

Badeau [2] IS H I MA J
Durrieu [3] IS (H) I - J

Virtanen [4] KL - I - J
Carabias-Orti [5] KL H I - J

Heittola [6] KL - I∗ - J
Yasuraoka [7] KL H + N I∗ AR J
Hennequin [8] Beta (0.5) - I ARMA J∗

Proposed KL or IS H + N ∞ AR ∞
(H: harmonic sources, N: noise source, -: others, ∗: varying over time)

Table 1. Several variants of source-filter NMF

As shown in Table 1, for example, Kullback-Leibler (KL)
[15] and Itakura-Saito (IS) [16] divergences have been used
intensively. Some studies used beta divergence [17], which
includes KL and IS divergences as special cases.

In the context of audio modeling, although IS-NMF is
justified in theory (see [16] and Section 3.2.1), KL-NMF
often yields better results in a maximum likelihood estima-
tion setting. One main reason is that the nonconvexity of IS
divergence makes it difficult for gradient-descent-type op-
timization algorithms to find global optima. Note that no
comparative tests have been conducted under a Bayesian
estimation setting. In this paper we formulate two kinds of
iCARMs, i.e., KL-iCARM and IS-iCARM.

2.1.2 Source-Filter Factorization

One extension is obtained with the source-filter paradigm,
as listed in Table1. Kameoka and Kashino [1], for example,
originally proposed the idea of the composite autoregres-
sive model (CARM) using fixed numbers of unconstrained
sources and autoregressive (AR) filters (all-pole transfer
functions). Although similar models were devised by some
researchers [3–5], filters were not acoustically constrained.
Badeau et al. [2] used moving-average (MA) filters (all-
zero transfer functions) with harmonic sources.

Some NMF variants allow sources or filters to vary over
time to richly capture temporal variations of spectral bases
at the cost of increasing complexity. Heittola et al. [6] and
Yasuraoka and Okuno [7] used time-varying sources while
a fixed number of filters was shared over time. Hennequin
et al. [8], on the other hand, used time-varying ARMA fil-
ters that could be estimated by efficient MU rules.

2.1.3 Harmonicity Modeling

Another extension is based on harmonicity constraints on
spectral bases or sources. For example, Vincent et al. [10]
and Bertin et al. [11] assumed each basis as a weighted
sum of narrowband template spectra consisting of a few
adjacent harmonic partials. In the source-filter paradigm,
Badeau et al. [2] represented each source as a binary vector
whose elements are determined by independent Bernoulli
trials, where particular elements corresponding to harmonic
partials are more likely to take the value of 1. Yasuraoka
and Okuno [7] and Hennequin et al. [9] represented each
source as a parametric function based on a (weighted) sum
of atomic functions (e.g., Gaussian functions) correspond-
ing to harmonic partials. Carabias-Orti et al. [5] proposed
to further factorize a set of partials’ weights as a weighted
sum of several patterns. Efficient MU rules for estimating
the parameters of the function were proposed in [5, 9].



A key feature of [7] is to consider an additional source
having a flat density. This idea was inspired by the speech
production mechanism. Excitation signals produced by vo-
cal cords are roughly categorized into periodic signals (har-
monic comb-shaped spectra) and white noise (flat spectra).
These signals are then articulated by the vocal tract whose
resonance characteristics can be represented by AR filters.
This assumption is widely accepted as reasonable to some
extent for music signal modeling. In this study we model
this generative process in a Bayesian framework.

2.2 Bayesian Nonparametrics
Another emerging ML technique is Bayesian nonparamet-
rics [18], which is a generalization of the classical Bayesian
technique. In the typical Bayesian framework, we put prior
distributions on unknown random variables of interests and
then, given observed data, estimate a posterior distribution
over those variables. However, this framework cannot be
used for determining model complexities (the numbers of
sources and filters in this study) because these complexi-
ties are simply treated as hyperparameters. We thus have to
use an expensive grid search for combinatorial model se-
lection. Bayesian nonparametrics enables us to treat model
complexities as random variables and estimate their opti-
mal values jointly with posterior computation.

Bayesian modeling is being used in music signal analy-
sis, and Bayesian extensions of NMF [19] have been used
with great success for audio decomposition (source separa-
tion). An especially important breakthrough was recently
made by Hoffman et al. [12]. They proposed a nonpara-
metric Bayesian extension called the gamma-process NMF
(GaP-NMF) that in theory allows an observed spectrogram
to contain an infinite number of bases. A limited effective
number of bases can be obtained by using an efficient vari-
ational inference algorithm. This extension is the basis of
a more elaborate model that can consider infinite kinds of
temporal variations of each basis [13].

3. PROPOSED MODELS

This section presents new nonparametric Bayesian models
called infinite composite autoregressive models (iCARMs).
The essential concept of these models is inspired by a com-
posite autoregressive model (CARM) [1] that decomposes
a power spectrogram into fixed numbers of sources and AR
filters by using IS divergence as an optimization criterion.
We formulate another CARM that decomposes an ampli-
tude spectrogram by using KL divergence. To enforce har-
monicity we explicitly represent each source—except for a
single source that has a flat spectral density (white noise)—
as a parametric comb-shaped function as proposed in [7].
Finally, both KL-CARM and IS-CARM are extended to in
theory contain infinite numbers of sources and filters by
using gamma processes as suggested in [12].

3.1 Overall Framework
We first define mathematical symbols as shown in Table 2.
Let X be an M ×N complex-valued spectrogram, where
M is the number of frequency bins and N is the number
of frames. Let I be the number of sources and J be the

M Number of frequency bins
N Number of frames
I Number of sources (diverges to infinity)
J Number of filters (diverges to infinity)

Xmn Amplitude (power) at m-th bin and n-th frame
Ymn Reconstructed value at m-th bin and n-th frame
θi Global gain of i-th source
φj Global gain of j-th filter

Wim Amplitude (power) of i-th source at m-th bin
Ajm Gain of j-th filter at m-th bin
Hijn Gain of i-th source & j-th filter pair at n-th frame

Table 2. Definition of mathematical symbols

number of filters, which are assumed to go to infinity. Let
the lower-case letters m, n, i, and j indicate the indices.

In this paper we aim to factorize a nonnegative rep-
resentation of X (amplitude or power spectrogram) into
three kinds of “factors” W , A, and H as follows:

|Xmn| or |Xmn|2 ≈
I,J→∞∑

i,j

θiφjWimAjmHijn (1)

where Wim, Ajm, and Hijn respectively indicate the am-
plitude (power) of the i-th source at the m-th bin, the gain
of the j-th filter at the m-th bin, and the gain of the i-th
source and j-th filter pair at the n-th frame. In addition,
two kinds of variables, θi and φj , are introduced to respec-
tively indicate the global gain of the i-th source and the
global gain of j-th filter over all N frames. Even when I
and J diverge to infinity, finite numbers of the elements of
θ and φ are expected to be substantially greater than zero
while all other elements are negligibly small. This makes it
possible for the “effective” numbers of sources and filters,
I+ and J+, to be estimated in a data-driven manner.

Our goal is, given the spectrogram X , to compute a pos-
terior distribution p(θ,φ,H |X;W ,A) over random vari-
ables and estimate parameters that represent W andA. We
will discuss concrete forms of priors p(θ), p(φ), p(H),
likelihood p(X|θ,φ,H ;W ,A), and parametric functions
of W and A according to KL or IS divergence.

3.2 Mathematical Formulation
We explain the different formulations of iCARMs based on
KL and IS divergences.

3.2.1 Observation Likelihoods for X

We use KL or IS divergence as an optimization criterion.
Let Ymn be

∑
ij Y

ij
mn, where Y ij

mn = θiφjWimAjmHijn.
We aim to optimize Ymn such that the KL or IS divergence
between Xmn and Ymn is minimized, as shown in Eq.(1).
This is known to be equivalent to maximum likelihood esti-
mation of a Poisson or exponential distribution having Ymn

as its parameter, given an observation Xmn [16]. We here
introduce a complex-valued latent variable Xij

mn that indi-
cates the contribution of the i-th source and j-th filter pair
in Xmn such that Xmn =

∑
ij X

ij
mn is satisfied.

The KL-iCARM is based on an amplitude-additivity as-
sumption; i.e., |Xmn| =

∑
ij |Xij

mn|. This is obviously in-
correct but is useful in practice. If |Xij

mn| ∼ Poisson(Y ij
mn),

the reproductive property of the Poisson distribution leads
to |Xmn| ∼ Poisson(

∑
ij Y

ij
mn), which means

|Xmn|∼Poisson (Ymn) (2)



The IS-iCARM is based on a complex-domain additivity
assumption (see Section 3.2.5). If Xij

mn ∼ Nc(0, Y
ij
mn),

the reproductive property of the complex Gaussian leads
to Xmn ∼ Nc(0,

∑
ij Y

ij
mn). This assumption, however,

may be violated when the sources are not stationary Gaus-
sian noise (see Section 3.2.4). We nonetheless assume

|Xmn|2∼Exponential (Ymn) (3)

3.2.2 Gamma Process Priors on θ and φ

We put gamma process (GaP) priors on infinite-dimensional
vectors θ and φ. More specifically, we introduce indepen-
dent gamma priors on elements of θ and φ as follows:

θi ∼ Gamma
(α
I
, α

)
, φj ∼ Gamma

( γ

J
, γ

)
(4)

As the truncation level I diverges to infinity, the vector θ
approximates an infinite sequence drawn from a GaP with
shape parameter α. It is proven that the effective number
of elements, I+, such that θi > ε for some number ε > 0
is almost surely finite. If we set I to be sufficiently larger
than α, we can expect that only a few of the I elements of θ
will be substantially greater than zero. This condensation
property enables sparse learning in an infinite space. The
same reasoning can be applied to the GaP on φ.

3.2.3 Gamma Chain Priors on H

To impose smooth transitions on H , we put a gamma chain
prior [20] on a temporal sequence of gains of each source-
filter pair. More specifically, Hij is modeled as follows:

Hij1 ∼ Gamma (β, β/d)

Gijn ∼ Gamma (β, βHijn−1)

Hijn ∼ Gamma (β, βGijn) (5)

where β is a hyperparameter that controls the strength of
the priors (degree of smoothness) and Gijn is an auxiliary
variable that imposes a positive correlation between tem-
porally adjacent gains Hijn−1 and Hijn ( Eprior[Gijn] =
H−1

ijn−1 and Eprior[Hijn] = G−1
ijn ). Marginalizing Gijn

out, we obtain a positively correlated Markovian transition
kernel as p(Hijn|Hijn−1) =

Γ(2β)
2Γ(β)

(Hijn−1Hijn)
β

(Hijn−1+Hijn)2β
H−1

ijn.

3.2.4 Comb-shaped Functions for W

We represent each harmonic source W i as a comb-shaped
function that is the sum of H Gaussian functions, where H
is the number of harmonic partials. Specifically,

Wim =
H∑

h=1

exp

(
− (m− hμi)

2

2σ2

)
(6)

where μi indicates F01 and σ indicates an energy diffusion
around the frequencies of partials. Note that only the last
source is reserved as white noise, i.e., WIm = 1.

3.2.5 All-pole Transfer Functions for A

We assume each basis signal xij ≡ {xij
t }2Mt=1 in a frame to

be represented as a P -order AR process as follows:

xij
t = −

P∑
p=1

ajpx
ij
t−p + sit (7)

1 When the value of F0 is given by μ̃i [Hz], μi = μ̃i/(r/2M) [bins],
where r is a sampling rate and 2M is a window size of frequency analysis.

where si ≡ {sit}2Mt=1 is a signal of the i-th source and
aj ≡ {aj0, · · · , ajp}T is a coefficient vector of the j-th filter
(aj0 = 1). Let wi ≡ {wi

t}2Mt=1 be the autocorrelation of si

and {Wim}2Mm=1 be a complex (amplitude) spectrum den-
sity obtained by discrete Fourier transform (DFT) of wi.
Let {Xij

m}2Mm=1 be a complex spectrum density obtained by
DFT of xij . If the source signal si is a stationary Gaussian
noise, each Xij

m is independently distributed as a complex
GaussianNc(0,Σ

ij
m), where Σij

m = WimAjm and

Ajm =
1∣∣∣∑P

p=0 a
j
pe−2π m

2M pi
∣∣∣2 =

1

aT
j Umaj

(8)

Um is a (P +1)× (P +1) Toeplitz matrix with [Um]pq =
cos(2π m

2M (p − q)). This means that |Xij
m|2 is distributed

as an exponential distribution having WimAjm as its scale
parameter. In other words, maximum likelihood estimation
of aj for xij is equivalent to minimizing the IS divergence
between {|Xij

m|2}Mm=1 and {WimAjm}Mm=1
2 .

In the iCARMs based on KL and IS divergences, the
above discussion leads to the following formulations:

AKL
jm =

√
1

aT
j Umaj

or AIS
jm =

1

aT
j Umaj

(9)

A reason for taking the “root” in the KL-iCARM is that we
assume an “amplitude” spectrogram as observed data.

3.3 Variational and Multiplicative Optimization
The posterior over random variables p(θ,φ,H |X;W ,A)
and W and A (parameters μ, σ, and a) are determined
such that the log-evidence log p(X;W ,A) is maximized.
Since this cannot be analytically computed, we use an ap-
proximate method called variational Bayes (VB), which re-
stricts the posterior to a factorized form given by

q(θ,φ,H) =
∏
i

q(θi)
∏
j

q(φj)
∏
ijn

q(Hijn) (10)

and iteratively updates this form by monotonically increas-
ing a lower bound3 of the log-evidence, L, given by

log p(X;W ,A) ≥ E[log p(X|θ,φ,H;W ,A)]

+ E[log p(θ)] + E[log p(φ)] + E[log p(H)]

− E[log q(θ)]− E[log q(φ)]− E[log q(H)] ≡ L (11)

The iterative update rules are
q(θ) ∝ exp(Eq(φ,H)[log p(X, θ,φ,H ;W ,A)])

q(φ) ∝ exp(Eq(θ,H)[log p(X, θ,φ,H;W ,A)])

q(H) ∝ exp(Eq(θ,φ)[log p(X, θ,φ,H ;W ,A)]) (12)

To optimize W and A (μ, σ, and a), we use multiplica-
tive update (MU) rules inspired by [8, 9]. A general rule is
obtained from the partial derivative of a “cost” function,
e.g.,−L. For example, if we can write the derivative as the
difference of two positive terms, i.e., −∂L

∂μi
= Gμi

−Fμi
, an

update rule for μi is given by μi ← μi× Fμi

Gμi
. Note that μi

becomes constant if the derivative is zero, and is updated in
the opposite direction of the derivative. We omit detailed
derivations and only describe update rules below.

2 In linear predictive coding (LPC), the source signal si is generally
limited to white noise (Wim = 1). This is a conventional assumption.

3 More specifically, a further lower bound of L should be computed.



3.3.1 Variational Updates for KL-iCARM

The variational posterior of each random variable is set to
be the same family as its prior distribution as follows:

q(θi) = Gamma(aθi , b
θ
i ), q(φj) = Gamma(aφj , b

φ
j )

q(Hijn) = Gamma(aHijn, b
H
ijn) (13)

The variational parameters are given by

aθi =
α

I
+
∑

mnj |Xmn|λmnij

bθi = α+
∑

mnj E[φjWimAjmHijn]

aφj =
γ

J
+
∑

mni |Xmn|λmnij

bφj = γ +
∑

mni E[θiWimAjmHijn]

aHijn = 2β +
∑

m |Xmn|λmnij (14)

bHijn = βE[Gijn+Gijn+1] +
∑

m E[θiφjWimAjm]

where λmnij is an auxiliary variable given by
λmnij ∝ exp(E[log(θiφjWimAjmHijn)]) (15)

3.3.2 Variational Updates for IS-iCARM

As proposed in [12], the variational posterior of each vari-
able is given by a generalized inverse-Gaussian (GIG) dis-
tribution (see the Appendix) as follows:

q(θi) = GIG(aθi , b
θ
i , c

θ
i ), q(φj) = GIG(aφj , b

φ
j , c

φ
j )

q(Hijn) = GIG(aHijn, b
H
ijn, c

H
ijn) (16)

The variational parameters are given by

aθi =
α

I
, bθi = α+

∑
mnj

E[φjWimAjmHijn]
ξmn

cθi =
∑

mnj |Xmn|2η2mnijE
[

1
φjWimAjmHijn

]
aφj =

γ

J
, bφj = γ +

∑
mni

E[θiWimAjmHijn]
ξmn

cφj =
∑

mni |Xmn|2η2mnijE
[

1
θiWimAjmHijn

]
aHijn = 2β, cHijn =

∑
m |Xmn|2η2mnijE

[
1

θiφjWimAjm

]
bHijn = βE[Gijn+Gijn+1] +

∑
m

E[θiφjWimAjm]
ξmn

(17)

where ηmnij and ξmn are auxiliary variables given by
ηmnij ∝ E[ 1

θiφjWimAjmHijn
]−1 s.t.

∑
ij ηmnij = 1

ξmn =
∑

ij E[θiφjWimAjmHijn] (18)

3.3.3 Multiplicative Updates for KL- and IS-iCARMs

The MU rules for μ, σ, and a are given by μi ← G−1
μi

Fμi
μi,

σ2 ← G−1
σ2 Fσ2σ2, and aj ← G−1

aj
F ajaj , where

Fμi
=

∑
mnjh h(mV F

mnij + hμiV
G
mnij) exp

(− (m−hμi)
2

2σ2

)
Gμi

=
∑

mnjh h(mV G
mnij + hμiV

F
mnij) exp

(− (m−hμi)
2

2σ2

)
Fσ2 =

∑
mnijh V

F
mnij(m− hμi)

2 exp
(− (m−hμi)

2

2σ2

)
Gσ2 =

∑
mnijh V

G
mnij(m− hμi)

2 exp
(− (m−hμi)

2

2σ2

)
F KL

aj
=

∑
mni θiφjWimHijnA

3
jmUm

GKL
aj

=
∑

mni |Xmn|λmnijA
2
jmUm

F IS
aj

=
∑

mni
E[θiφjWimHijn]

ξmn
A2

jmUm

GIS
aj

=
∑

mni |Xmn|2η2mnijE
[

1
θiφjWimHijn

]
Um (19)

V F
mnij and V G

mnij are given by V F
mnij = E[θiφjAjmHijn]

and V G
mnij = |Xmn|λmnijW

−1
im in the KL-iCARM. On

the other hand, V F
mnij =

E[θiφjAjmHijn]
ξmn

and V G
mnij =

|Xmn|2η2mnijE
[

1
θiφjW 2

imAjmHijn

]
in the IS-iCARM.

4. EVALUATION

We report comparative experiments that were conducted to
evaluate the performance of the iCARMs based on KL and
IS divergences as multipitch analyzers.

4.1 Experimental Conditions
We used thirty pieces of “ENSTDkCl” subset included in
the MAPS piano database [21]. We truncated each piece to
30 s as in [5,11] and converted the original CD-quality sig-
nals into monaural signals sampled at 16 [kHz]. The spec-
trograms were obtained with short-time Fourier transform
(STFT) with a window size of 2048 samples and a shifting
interval of 10 [ms], i.e., M = 1024 and N = 3000. The
amplitude or power spectrogram of each piece was scaled
such that 1

MN

∑
mn |Xmn| = 1 or maxmn |Xmn|2 = 1.

The hyperparameters were specified as I = 88+1, J = 10,
α=1, β = γ = 0.1, H = 20, P = 4, and d=Eemp[|Xmn|]
or Eemp[|Xmn|2]. Although J = 10 was too small to accu-
rately approximate the GaP, it was sufficiently large in our
experiments because the audio signals contain only piano
sounds. We initialized {μi}88i=1 as the frequencies corre-
sponding to the 88 keys of the standard piano. The other
parameters were initialized randomly.

Multiple F0s were detected at each frame in a threshold-
ing process. If the gain of the i-th source,

∑
j θiφjHijn,

was larger than the threshold, we judged that the n-th frame
includes an F0 indicated by μi. The threshold was globally
determined such that the frame-level precision and recall
rates were balanced to yield the best average F-measure.

4.2 Experimental Results
We first tested our models on toy data obtained by extract-
ing the first 4.9 s (490 frames) of the piece “alb se2,” which
contains five different F0s and a polyphony level that in-
creases one by one up to five (D4, +C#4, +C4, +A3, +F#3).
As shown in Fig. 2, the KL-iCARM could successfully dis-
cover the correct number of sources (five harmonic sources
+ one white-noise source) in a data-driven manner. In addi-
tion, we could separate X into harmonic and noise compo-
nents by computing E[Y i

mn] =
∑

j E[θiφjWimAjmHijn],
which represents the component of the i-th source at the
m-th bin and n-th frame.

As shown in Fig. 3, on the other hand, the IS-iCARM
overestimated the numbers of sources and filters and made
many octave errors (half-F0 errors). One reason is that IS
divergence permits a reconstructed power to exceed an ob-
served power with a smaller penalty. It is therefore difficult
to reduce false alarms of harmonic partials.

We then used the 30 pieces for evaluation. The KL- and
IS-iCARMs achieved the frame-level F-measures of 48.4%
and 35.1% respectively. Although these preliminary results
were not really impressive compared with the state-of-the-
art results [5,11], we consider our framework to be promis-
ing because of its elegant nature of sparse learning over an
infinite space. A main limitation of the KL-iCARM is that
we still need to resort a thresholding process for temporal
gains although limited numbers of sources and filters can
be obtained by using GaPs. One solution would be to intro-
duce binary latent variables that indicate note existences.



Observation X Reconstruction Y

Harmonic components in Y Noise components in Y

Global gains of sources E[θ]

Unnecessary sources with

sufficienly small gains

D4

C#4

C4A3
F#3

Global gains of filters E[φ]

Unnecessary filters with
vanishingly small gains

Effective AR filters in A

Figure 2. Decomposition results obtained by KL-iCARM

5. CONCLUSION
We presented nonparametric Bayesian models called infi-
nite composite autoregressive models (iCARMs) that de-
compose an observed spectrogram into three kinds of fac-
tors, i.e., sources, filters, and time-varying gains of source-
filter pairs. The experimental results showed that appropri-
ate numbers of sources and filters can be discovered in a
data-driven manner by using gamma processes for sparse
learning. To improve the accuracy of multipitch analysis,
we are considering the use of log-frequency spectrograms
obtained by constant-Q or wavelet transform. We also plan
to use these models for “timbre-based” source separation
by distinguishing different resonance characteristics of in-
strument and vocal sounds by AR filters.
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ABSTRACT

This paper addresses the problem of demixing profession-
ally produced music, i.e., recovering the musical source
signals that compose a (2-channel stereo) commercial mix
signal. Inspired by previous studies using MIDI synthe-
sized or hummed signals as external references, we pro-
pose to use the multitrack signals of a cover interpretation
to guide the separation process with a relevant initializa-
tion. This process is carried out within the framework of
the multichannel convolutive NMF model and associated
EM/MU estimation algorithms. Although subject to the
limitations of the convolutive assumption, our experiments
confirm the potential of using multitrack cover signals for
source separation of commercial music.

1. INTRODUCTION

In this paper, we address the problem of source separa-
tion within the framework of professionally-produced (2-
channel stereo) music signals. This task consists of recov-
ering the individual signals produced by the different in-
struments and voices that compose the mix signal. This
would offer new perspectives for music active listening,
editing and post-production from usual stereo formats (e.g.,
5.1 upmixing), whereas those features are currently roughly
limited to multitrack formats, in which a very limited num-
ber of original commercial songs are distributed.

Demixing professionally produced music (PPM) is par-
ticularly difficult for several reasons [11, 12, 17]. Firstly,
the mix signals are generally underdetermined, i.e., there
are more sources than mix channels. Secondly, some sour-
ces do not follow the point source assumption that is often
implicit in the (convolutive) source separation models of
the signal processing literature. Also, some sources can
be panned in the same direction, convolved with large re-
verberation, or processed with artificial audio effects that
are more or less easy to take into account in a separa-
tion framework. PPM separation is thus an ill-posed prob-
lem and separation methods have evolved from blind to in-
formed source separation (ISS), i.e., methods that exploit
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some “grounded” additional information on the source/mix
signals and mix process. For example, the methods in
[1,4,5,8,20] exploit the musical score of the instrument to
extract sources, either directly or through MIDI signal syn-
thesis. In user-guided approaches, the listener can assist
the separation process in different ways, e.g., by humming
the source to be extracted [16], or by providing informa-
tion on the sources direction [19] or temporal activity [12].
An extreme form of ISS can be found in [6, 9, 10, 14, 15]
and in the Spatial Audio Object Coding (SAOC) technol-
ogy recently standardized by MPEG [3]: here, the source
signals themselves are used for separation, which makes
sense only in a coder-decoder configuration.

In the present paper, we remain in the usual configura-
tion where the original multitrack signals are not available,
although we keep the latter spirit of using source signals to
help the demixing process: we propose to use cover mul-
titrack signals for this task. This idea is settled on several
facts. Firstly, a cover song can be quite different from the
original for the sake of artistic challenge. But very interest-
ingly, for some applications/markets a cover song is on the
contrary intended to be as close as possible to the original
song: instruments composition and color, song structure
(chorus, verses, solos), and artists interpretation (includ-
ing the voices) are then closely fitted to the original source
signals, hence having a potential for source separation of
original mixes. Remarkably, it happens that multitracks of
such "mimic" covers are relatively easy to find on the mar-
ket for a large set of famous pop songs. In fact, they are
much easier to obtain than original multitracks. This is be-
cause the music industry is very reluctant to release orig-
inal works while it authorizes the licensed production of
mimic multitracks on a large scale. In the present study, we
will use such multitracks provided by iKlax Media which
is a partner of the DReaM project. 1 iKlax Media pro-
duces software solutions for music active listening and has
licensed the exploitation of a very large set of cover mul-
titracks of popular songs. Therefore, this work involves a
sizeable artistic and commercial stake. Note that similar
material can be obtained from several other companies.

We set the cover-informed source separation principle
within the currently very popular framework of separation
methods based on a local time-frequency (TF) complex
Gaussian model combined with a non-negative matrix fac-
torization (NMF) model for the source variances [7,11,13].

1 This research is partly funded by the French National Research
Agency (ANR) – Grant CONTINT 09-CORD-006.



Iterative NMF algorithms for source modeling and separa-
tion have shown to be very sensitive to initialization. We
turn this weakness into strength within the following two-
step process in the same spirit as the work carried out on
signals synthesized from MIDI scores in, e.g., [8] or by
humming in [16]. First, source-wise NMF modeling is ap-
plied on the cover multitrack, and the result is assumed
to be a suitable initialization of the NMF parameters of the
original sources (that were used to produce the commercial
mix signal). Starting from those initial values, the NMF
process is then refined by applying to the mix the convo-
lutive multichannel NMF model of [11]. This latter model
provides both refined estimation of the source-within-mix
(aka source images) NMF parameters and source separa-
tion using Wiener filters built from those parameters.

The paper is organized as follows. In Sections 2 and 3,
we respectively present the models and method employed.
In Sections 4 and 5, we present the experiments we con-
ducted to assess the proposed method, and in Section 6,
we address some general perspectives.

2. FRAMEWORK: THE CONVOLUTIVE
MULTICHANNEL NMF MODEL

2.1 Mixing Model

Following the framework of [11], the PPM multichannel
mix signal x(t) is modeled as a convolutive noisy mixture
of J source signals sj(t). Using the short-time Fourier
transform (STFT), the mix signal is approximated in the
TF domain as:

xfn = Afsfn + bfn, (1)

where xfn = [x1,fn, . . . , xI,fn]
T is the vector of complex-

valued STFT coefficients of the mix signal, sfn = [s1,fn,
. . . , sJ,fn]

T is the vector of complex-valued STFT coeffi-
cients of the sources, bfn = [b1,fn, . . . , bI,fn]

T is a zero-
mean Gaussian residual noise, Af = [a1,f , . . . ,aJ,f ] is
the frequency-dependent mixing matrix of size I×J (aj,f

is the mixing vector for source j), f ∈ [0, F −1] is the fre-
quency bin index and n ∈ [0, N − 1] is the time frame in-
dex. This approach implies standard narrowband assump-
tion (i.e., the time-domain mixing filters are shorter than
the STFT window size).

2.2 Source model

Each source sj,fn is modeled as the sum of Kj latent com-
ponents ck,fn, k ∈ Kj , i.e.,

sj,fn =
∑
k∈Kj

ck,fn, (2)

where {Kj}j is a non-trivial partition of {1, . . . ,K}, K ≥
J (Kj is thus the cardinal ofKj). Each component ck,fn is
assumed to follow a zero-mean proper complex Gaussian
distribution of variance wfkhkn, where wfk, hkn ∈ R+,
i.e., ck,fn ∼ Nc(0, wfkhkn). The components are as-
sumed to be mutually independent and individually inde-

pendent across frequency and time, so that we have:

sj,fn ∼ Nc(0,
∑
k∈Kj

wfkhkn). (3)

This source model corresponds to the popular non-negative
matrix factorization (NMF) model as applied to the source
power spectrogram |Sj |2 = {|sj,fn|2}fn:

|Sj |2 'WjHj , (4)

with non-negative matrices Wj = {wfk}f,k∈Kj of size
F × Kj and Hj = {hkn}k∈Kj ,n of size Kj × N . The
columns of Wj are generally referred to as spectral pat-
tern vectors, and the rows of Hj are referred to as tempo-
ral activation vectors. NMF is largely used in audio source
separation since it appropriately models a large range of
musical sounds by providing harmonic patterns as well as
non-harmonic ones (e.g., subband noise).

2.3 Parameter estimation and source separation

In the source modeling context, the NMF parameters of a
given source signal can be obtained from the observation
of its power spectrogram using Expectation-Maximization
(EM) iterative algorithms [7]. In [11], this has been gener-
alized to the joint estimation of the J sets of NMF source
parameters and I × J × F mixing filters parameters from
the observation of the mix signal power spectrogram. More
precisely, two algorithms were proposed in [11]. An EM
algorithm consists of maximizing the exact joint likelihood
of the multichannel data, whereas a multiplicative updates
(MU) algorithm, maximizes the sum of individual chan-
nel log-likelihood. If the former better exploits the inter-
channel dependencies and gives better separation results, 2

the latter has a lower computation cost. Those algorithms
will not be described in the present paper, the reader is re-
ferred to [11] for technical details.

Once all the parameters are estimated, the source sig-
nals (or their spatial images yj,fn = aj,fsj,fn) are esti-
mated using spatial Wiener filtering of the mix signal:

ŝfn = Σs,fnAH
f Σ−1x,fnxfn, (5)

where Σs,fn is the (estimated) covariance matrix of the
source signals, and Σx,fn = AfΣs,fnAH

f + Σb,f is the
(estimated) covariance matrix of the mix signal.

3. PROPOSED COVER-INFORMED SEPARATION
TECHNIQUE

3.1 Cover-based initialization

It is well-known that NMF decomposition algorithms are
highly dependent on the initialization. In fact, the NMF
model does not guarantee the convergence to a global min-
imum but only to a local minimum of the cost function,
making a suitable initialization crucial for the separation
performance. In the present study, we have at our disposal

2 When point source and convolutive mixing assumptions are verified.



the 2-channel stereo multitrack cover of each song to sepa-
rate, and the basic principle is to use the cover source tracks
to provide relevant initialization for the joint multichannel
decomposition. Therefore, the NMF algorithms mentioned
in Section 2 are applied on PPM within the following con-
figuration. A first multichannel NMF decomposition is run
on each stereo source of the cover multitrack (with ran-
dom initialization). Thus, we obtain a modeled version of
each cover source signal in the form of three matrices per
source: Wcover

j , Hcover
j and Acover

j = {acoverij,f }i∈[1,2],f .
The results are ordered according to:

Wmix
init = [Wcover

1 . . .Wcover
J ] (6)

Hmix
init =

 Hcover
1
...

Hcover
J

 (7)

Amix
init = [Acover

1 . . .Acover
J ] (8)

Then, (6), (7), and (8) are used as an initialization for a sec-
ond convolutive stereo NMF decomposition run on the mix
signal as in [11]. During this second phase, the spectral
pattern vectors and time activation vectors learned from
the cover source tracks are expected to evolve to match
the ones corresponding to the signals used to produce the
commercial mix, while the resulting mixing vectors are ex-
pected to fairly model the mix process.

3.2 Pre-processing: time alignment of the cover tracks

One main difference between two versions of the same mu-
sic piece is often the temporal misalignment due to both
tempo variation (global misalignment) and musical inter-
pretation (local misalignments). In a general manner, time
misalignment can corrupt the separation performances if
the spectral pattern vectors used for initialization are not
aligned with the spectral patterns of the sources within the
mix. In the present framework, this problem is expected to
be limited by the intrinsic automatic matching of temporal
activity vectors within the multichannel NMF decomposi-
tion algorithm. However, the better the initial alignment,
the better the initialization process and thus expected final
result. Therefore, we limit this problem by resynchroniz-
ing the cover tracks with the mix signal, in the same spirit
as the MIDI score-to-audio alignment of [5] or the Dy-
namic Time Warping (DTW) applied on synthesized sig-
nals in [8]. In the present study, this task is performed at
quarter-note accuracy using the Beat Detective tool from
the professional audio editing software Avid ProTools R©.
This step allows minimizing synchronization error down
to less than a few TF frames, which is in most cases below
the synchronization error limit of 200 ms observed in [5].
In-depth study of desynchronization on source separation
is kept for future works.

3.3 Exploiting the temporal structure of source signals

In order to further improve the results, we follow a user-
guided approach as in [12]. The coefficients of matrix H

are zeroed when the source is not active in the mix, ex-
ploiting audio markers of silence zones in the cover source
tracks. As there still may be some residual misalignment
between the commercial song and the cover after the pre-
processing, we relax these constraints to 3 frames before
and after the active zone. When using the MU algorithm,
the zeroed coefficients remain at zero. When using the EM
algorithm, the update rules do not allow the coefficients of
H to be strictly null, hence, we set these coefficients to the
eps value in our Matlab R© implementation. Observations
confirm that these coefficients remain small throughout all
the decomposition.

3.4 Summarizing the novelty of the proposed study

While our process is similar in spirit to several existing
studies, e.g., [5,8,16], our contribution to the field involves:

• the use of cover multitrack signals instead of hum-
med or MIDI-synthesis source signals. Our cover
signals are expected to provide a more faithful image
of the original source signals in the PPM context.

• a stereo NMF framework instead of a mono one. The
multichannel framework is expected to exploit spa-
tial information in the demixing process (as far as
the convolutive model is a fair approximation of the
mixing process). It provides optimal spatial Wiener
filters for the separation, as opposed to the {esti-
mated magnitude + mix phase} resynthesis of [8] or
the (monochannel) soft masks of [16].

• a synchronization pre-process relying on tempo and
musical interpretation instead of, e.g., frame-wise
DTW. This is completed with the exploitation of the
sources temporal activity for the initialization of H.

4. EXPERIMENTS

4.1 Data and experimental settings

Assessing the performances of source separation on true
professionally-produced music data is challenging since
the original multitrack signals are necessary to perform ob-
jective evaluation but they are seldom available. Therefore,
we considered the following data and methodology. The
proposed separation algorithm was applied on a series of 4
well-known pop-music songs for which we have the stereo
commercial mix signal and two different stereo multitrack
covers (see Table 2). The first multitrack cover C1 was
provided by iKlax Media, and the second one C2 has been
downloaded from the commercial website of another com-
pany. We present two testing configurations:

• Setting 1: This setting is used to derive objective
measures (see below). C1 is considered as the “orig-
inal multitrack”, and used to make a stereo remix of
the song which is used as the target mix to be sepa-
rated. This remix has been processed by a qualified
sound engineer with a 10-year background in music



Tracks duration 30 s
Number of channels I=2
Sampling Rate 32 kHz
STFT frame size 2048
STFT overlap 50 %
Number of iterations 500
Number of NMF components 12 or 50

Table 1: Experimental settings

production, using Avid ProTools R©. 3 C2 is consid-
ered as the cover version and is used to separate the
target mix made with C1.

• Setting 2: The original commercial mix is separated
using C1 as the cover. This setting is used for sub-
jective evaluation in real-world configuration.

The covers are usually composed of 8 tracks which are
quite faithful to the commercial song content as explained
in the introduction. For simplicity we merged the tracks
to obtain 4 to 6 source signals. 4 All signals are resam-
pled at 32kHz, since source separation above 16kHz has
very poor influence on the quality of separated signals and
this enables to reduce computations. The experiments are
carried out on 30s excerpts of each song.

It is difficult to evaluate the proposed method in refer-
ence to existing source separation methods since the cover
information is very specific. However, in order to have
a reference, we also applied the algorithm with a partial
initialization: the spectral patterns W are here initialized
with the cover spectral patterns, whereas the time activa-
tion vectors H are randomly initialized (vs. NMF initial-
ization in the full cover-informed configuration). This en-
ables to i) separate the contribution of cover temporal in-
formation, and ii) simulate a configuration where a dictio-
nary of spectral bases is provided by an external database
of instruments and voices. This was performed for both
EM and MU algorithms. The main technical experimental
parameters are summarized in Table 1.

4.2 Separation measures

To assess the separation performances in Setting 1, we
computed the signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR), signal-to-artifact ratio (SAR) and
source image-to-spatial distortion ratio (ISR) defined in
[18]. We also calculated the input SIR (SIRin) defined as
the ratio between the power of the considered source and

3 The source images are here the processed version of C1 just before
final summation, hence we do not consider post-summation (non-linear)
processing. The consideration of such processing in ISS, as in, e.g., [17],
is part of our current efforts.

4 The gathering was made according to coherent musical sense and
panning, e.g., grouping two electric guitars with the same panning in a
single track. It is necessary to have the same number of tracks between
an original version and its cover. Furthermore, original and cover sources
should share approximately the same spatial position (e.g., a cover ver-
sion of a left panned instrument should not be right panned!)

Title Tracks Track names
I Will Survive 6 Bass, Brass, Drums,

ElecGuitar, Strings, Vocal.
Pride and Joy 4 Bass, Drums, ElecGuitar, Vocal.
Rocket Man 6 Bass, Choirs, Drums,

Others, Piano, Vocal.
Walk this Way 5 Bass, Drums, ElecGuitar1,

ElecGuitar2, Vocal.

Table 2: Experimental dataset

Method SDR ISR SIR SAR
EM Winit 0,04 3,51 -1,96 4,82

EM Cover-based 2.45 6.58 4.00 5.38
EM Improvement 2,41 3,08 5,97 0,56

MU Winit -0,98 3,58 -1,14 3,40
MU Cover-based 1.38 6.83 5.04 2.95
MU Improvement 2,36 3,24 6,18 -0,45

Table 3: Average source separation performance for 4
PPM mixtures of 4 to 6 sources (dB).

the power of all the other sources in the mix to be sepa-
rated. We consider this criterion because all sources do not
contribute to the mix with the same power. Hence, a source
with high SIRin is easier to extract than a source with a low
SIRin, and SIRin is used to characterize this difficulty.

5. RESULTS

5.1 Objective evaluation

Let us first consider the results obtained with Setting 1.
The results averaged across all sources and songs are pro-
vided in Table 3. The maximal average separation perfor-
mance is obtained with the EM cover-informed algorithm
with SDR = 2.45dB and SIR = 4.00dB. This corresponds
to a source enhancement of SDR − SIRin = 10.05dB and
SIR−SIRin = 11.60dB, with the average global SIRin being
equal to −7.60dB. These results show that the overall pro-
cess leads to fairly good source reconstruction and rejec-
tion of competing sources. Figure 1a illustrates the separa-
tion performances in terms of the difference SDR − SIRin

for the song “I will survive”. The separation is very satisfy-
ing for tracks with sparse temporal activity such as Brass.
The Strings track, for which the point source assumption
is less relevant, obtains correct results, but tends to spread
over other sources images such as Bass. Finally, when
cover tracks musically differ from their original sources,
the separation performance decreases. This is illustrated
with the Electric Guitar (EGtr) and Bass tracks, which do
not fully match the original interpretation.

Let us now discuss the cover informed EM and MU
methods in relation to the initialization of spectral bases
only, referred to as Winit. The cover-based EM algorithm
provides a notable average SDR improvement of 2.41dB



over EM with Winit initialization, and a quite large im-
provement in terms of SIR (+5.97dB), hence a much better
interference rejection. The cover-based MU algorithm also
outperforms the MU Winit configuration to the same extent
(e.g., +2.36dB SDR and +6.18dB SIR improvement). This
reveals the ability of the method to exploit not only spectral
but also temporal information provided by covers.

Note that both cover-based and Winit EM methods out-
perform the corresponding MU methods in terms of SDR.
However, it is difficult to claim for clear-cut EM’s better
use of the inter-channel mutual information, since EM is
slightly lower than MU for SIR (approx. 4dB vs. 5dB
for the cover-informed method). In fact, the multichannel
framework can take advantage of both spectral and spatial
information for source extraction, but this depends on the
source properties and mixing configuration. In the song
“Walk this way”, which detailed results are given in Figure
1b, all sources but the Electric Guitar 1 (Egtr1) are panned
at the center of the stereo mixture. Thus, the SDR− SIRin

obtained for Egtr1 reaches 20.32dB, as the algorithm re-
lies strongly on spatial information to improve the separa-
tion. On the other hand, the estimated Vocal track in “I
will survive” is well separated (+8.57dB SDR− SIRin for
the cover-informed EM) despite being centered and coinci-
dent to other tracks such as Bass, Drums and Electric Gui-
tar (EGtr). In this case, the proposed multichannel NMF
framework seems to allow separation of spatially coinci-
dent sources with distinct spectral patterns. Depending
on the song, some sources obtain better SDR results with
the MU algorithm. For example, in “Walk this way”, the
SDR − SIRin for the Drums track increased from 6.59dB
with the EM method to 9.74dB with the MU method. As
pointed out in [11], the point source assumption certainly
does not hold in this case. The different elements of the
drums are distributed between both stereo channels and the
source image cannot be modeled efficiently as a convolu-
tion of a single point source. By discarding a large part of
the inter-channel information, the MU algorithm gives bet-
ter results in this case. Preliminary tests using a monochan-
nel NMF version of the entire algorithm (monochannel
separation using monochannel initialization, as in, e.g., [8,
16]), even show slightly better results for the Drums track,
confirming the irrelevancy of the point source convolutive
model in this case.

Finally, it can be mentioned that the number of NMF
components per source Kj does not influence significantly
the SDR and SIR values, although we perceive a slight im-
provement during subjective evaluation for Kj = 50. 5

5.2 Discussion

Informal listening tests on the excerpts from Setting 2 con-
firm the previous results and show the potential of cover-
informed methods for commercial mix signal separation. 6

Our method gives encouraging results on PPM when point

5 Assessing the optimal number of components for each source is a
challenging problem left for future work.

6 Examples of original and separated signals are available at
http://www.gipsa-lab.grenoble-inp.fr/∼laurent.girin/demo/ismir2012.html.
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Figure 1: Separation results

source and convolutive assumptions are respected. For in-
stance, the vocals are in most cases suitably separated, with
only long reverberation interferences. As expected, the
quality of the mix separation relies on the quality and faith-
fulness of the cover. A good point is that when original and
cover interpretations are well matched, the separated sig-
nal sounds closer to the original than to the cover, revealing
the ability of the adapted Wiener filters to well preserve the
original information.

Comparative experiments with spectral basis initializa-
tion only (Winit) confirm the importance of the temporal in-
formation provided by covers, Although this has not been
tested formally, the cover-to-mix alignment of Section 3.2
was shown by informal tests to also contribute to good sep-
aration performances.

6. CONCLUSION

The results obtained by plugging the cover-informed source
separation concept in the framework of [11] show that both
spectral and temporal information provided by cover sig-
nals can be exploited for source separation. This study in-
dicates the interest (and necessity) of using high-quality
covers. In this case, the separation process may better take
into consideration the music production subtleties, com-
pared to MIDI- or hummed-informed techniques.

Part of the results show the limitations of the convo-
lutive mixing model in the case of PPM. This is the case
for sources that cannot be modeled efficiently as a point
source convolved on each channel with a linear filter, such
as large instruments (e.g., drums and piano). Also, some



tracks such as vocals make use of reverberation times much
higher than our analysis frame. As a result, most of the vo-
cals reverberation is not properly separated. The present
study and model also do not consider the possible nonlin-
ear processes applied during the mixing process.

Therefore, further research directions include the use of
more general models for both sources and spatial process-
ing. For instance, we plan to test the full-rank spatial co-
variance model of [2], within the very recently proposed
general framework of [13] which also enables more spe-
cific source modeling, still in the NMF framework (e.g.,
source-filter models). Within such general model, sources
actually composed of several instruments (e.g., drums) may
be spectrally and spatially decomposed more efficiently
and thus better separated.
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ABSTRACT

Since important musical features are mutually depen-
dent, their relations should be analyzed simultaneously.
Their Bayesian analysis is particularly important to re-
veal their statistical relation. As the first step for a uni-
fied music content analyzer, we focus on the harmonic
and temporal structures of the wavelet spectrogram ob-
tained from harmonic sounds. In this paper, we present
a new Bayesian multipitch analyzer, called Bayesian non-
negative harmonic-temporal factorization (BNHTF). BN-
HTF models the harmonic and temporal structures sepa-
rately based on Gaussian mixture model. The input signal
is assumed to contain a finite number of harmonic sounds.
Each harmonic sound is assumed to emit a large num-
ber of sound quanta over the time-log-frequency domain.
The observation probability is expressed as the product
of two Gaussian mixtures. The number of quanta is cal-
culated in the ε-neighborhood of each grid point on the
spectrogram. BNHTF integrates latent harmonic alloca-
tion (LHA) and nonnegative matrix factorization (NMF) to
estimate both the observation probability and the number
of quanta. The model is optimized by newly designed de-
terministic procedures with several approximations for the
variational Bayesian inference. Results of experiments on
multipitch estimation with 40 musical pieces showed that
BNHTF outperforms the conventional method by 0.018 in
terms of F-measure on average.

1. INTRODUCTION

Multipitch estimation [5, 7, 10, 19] is one of the most fun-
damental techniques of music information retrieval (MIR)
because the temporal pattern of pitch strongly expresses
the content of musical pieces, especially in Western mu-
sic. It is useful for a wide range of applications, including
content-based music search [2], musical instrument identi-
fication [9], and chord recognition [15].

One promising technique in multipitch analysis is to
assume a probabilistic generative model of musical sig-
nals and then perform pattern matching between the model
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Figure 1. Illustration of Bayesian nonnegative harmonic-
temporal factorization. Basis and activation matrices are
explicitly modeled using Gaussian mixtures.

and recorded signals using EM algorithm. Variational
Bayesian methods are particularly valuable because they
can flexibly model the probabilistic relation between the
occurrence pattern of pitch and many important musical
aspects, including harmonic structure, musical instrument,
musical structure [11], chord, onset, and emotion [8]. Our
goal is to formulate a music analyzer that estimates the re-
lation between all such latent variables. At present, latent
harmonic allocation (LHA) is the most suitable candidate
for further extensions.

The most important features in an observed wavelet
spectrogram are the harmonic and temporal structures.
These structures are mutually dependent and should there-
fore be analyzed simultaneously. Conventionally, LHA de-
fines the volume of a sound at a time frame as the relative
coefficient to the total volume of that time frame. As a re-
sult, there is no explicit variable that describes the actual
volume of each sound. This makes it difficult to enhance
the model so that it considers the temporal envelope of the
sounds.

In this paper, we present a new method that explicitly
models the volume of each harmonic sound using a time
series of Poisson distributions and its harmonic and tem-
poral structure using mixtures of Gaussians. This is illus-
trated in Figure 1. Here, the observed spectrogram is in-
terpreted as a histogram of a large number of statistically
independent particles. This interpretation corresponds to



the integration of LHA and Bayesian NMF [3], because
both of them assumes the spectrogram as a histogram. In
our model, the number of observations at each time-log-
frequency point is calculated in an ε-neighborhood of the
point. To do this, we integrate the probabilistic density
functions (pdfs) of harmonic structures around the f -th fre-
quency bin, with a quite small amount of a band of width
εF. For the temporal structure, we introduce a similar as-
sumption using εT. The objective is to fit the generative
model of BNHTF to the standard formulation of NMF.
The variational posterior distributions are approximately
conjugate, when we take the limit εF, εT → 0. The for-
mulation strategy is similar to those formerly obtained by
Ochiai [12, 13]. Ours seem to deliver a more concrete in-
terpretation of the generative process, rather than their con-
struction which depends on the direct use of Dirac delta
function.

Our method can also be viewed as a Bayesian NMF-
based method with adaptive harmonic basis. This method
should be quite valuable for many researchers, because
such a model has been searched for long years [1, 14, 18].
As the proposed method is a variation of NMF, our method
can easily be extended further by using recent improve-
ments of NMF.

2. CONVENTIONAL METHODS

2.1 Harmonic Clustering

The spectral envelope of harmonic sound has several peaks
at its fundamental frequency and the overtone frequencies.
This structure, known as harmonic structure, can be ap-
proximated by using a mixture of Gaussians. In this paper,
we call this approach harmonic clustering. Harmonic clus-
tering methods represent the wavelet spectrum of each har-
monic sound as a probabilistic density function described
by a mixture of Gaussians. PreFEst [5], harmonic temporal
clustering (HTC) [7], and LHA [19] are notable examples
of harmonic clustering.

The mathematical representation is as follows. Let x be
the log-frequency, µk be the logarithm of the fundamental
frequency of the k-th harmonic sound, and λk be the preci-
sion of the Gaussian components. Moreover, let M be the
number of harmonic partials considered in the model. The
relative weight of each harmonic partial is indicated using
ηk = [ηk1, · · · , ηkM ]. Following this, the k-th harmonic
sound is represented as:

pk(x|ηk, µk, λk) =
M∑

m=1

ηkmN (x|µk + om, λ−1
k ), (1)

where N denotes normal distribution and om denotes the
relative position of the m-th overtone component on the
log-frequency axis. To retain the versatility of the model,
in most cases, om is set so that the model represents com-
pletely harmonic sounds. The relationship between the log
and linear frequency scales is defined as:

flog = 1200(log2 f − log2 440 + 4.75). (2)

2.2 Latent Harmonic Allocation

Latent harmonic allocation (LHA) is a variational
Bayesian method of harmonic clustering that represents
each time frame spectrum of the observed spectrogram us-
ing a mixture of harmonic sound models. The observed
spectrum is interpreted as a histogram of numerous sound
quanta that are generated by the observation model. The
t-th time frame spectrum is represented as a linear com-
bination of K harmonic sounds with mixing coefficients
πt = [πt1 · · ·πtK ]. The emission probability of a sound
quantum is described as:

pt(x|π, η, µ, λ) =
K∑

k=1

πtkpk(x|ηk, µk, λk). (3)

Let xtf be the value of the wavelet spectrogram at the
t-th time frame and the f -th frequency bin. The over-
all observation probability of the t-th time frame Xt =
[xt1, · · · , xtF ] is described as:

pt(Xt|π, η, µ, λ)

=
F∏

f=1

(∑
km

πtkηkmN (xf |µk + om, λ−1
k )

)xtf

, (4)

where xf denotes the log-frequency of the f -th frequency
bin.

The volume of the k-th sound at the t-th time frame is
implicitly determined by πtk, which describes the relative
weight of the k-th sound in the time frame. Because the to-
tal volume of each time frame differs between the frames,
it can be difficult to discuss the temporal envelope of πtk.
To solve this problem, we explicitly model the volume us-
ing a time series of Poisson distributions, which is similar
to the construction of Bayesian NMF.

2.3 Bayesian Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a promising in-
formation retrieval method that factorizes the observed ma-
trix of size N × M into two matrices of size N × K and
K ×M . Naturally, we set K � N and M . In music anal-
ysis, NMF is often applied to an STFT or a wavelet spec-
trogram. The two matrices are learned by minimizing a
cost function, D(X||UH), where X = {xtf} denotes the
observed spectrogram and U = {uk

t } and H = {hk
f} de-

notes the factorized matrices. The cost function is usually
customized for specific objectives [1, 4, 14, 17]. Following
this, xtf is approximated as:

xtf ≈
K∑

k=1

hk
fuk

t . (5)

As in LHA, the index k stands for the specific spectral pat-
tern. This pattern is described by the vector [hk

1 , · · · , hk
F ].

The volume of the k-th basis in the t-th time frame is de-
noted by uk

t . H is often called the basis matrix, and U is
called the activation matrix.

Cemgil [3] proposed a full Bayesian inference of NMF,
in which the joint posterior probability of latent variables



p(S,H,U|X) is estimated. Here, S denotes the set of K
separated spectrograms. The likelihoods and prior distri-
butions are written as:

p(xtf |s[k]
tf ) = δ(xtf −

K∑
k=1

sk
tf ), (6)

p(sk
tf |hk

f , uk
t ) = P(sk

tf |hk
fuk

t ), (7)

p(hk
f ) = Gam(hk

f |a0, b0), (8)

p(uk
t ) = Gam(uk

t |a0, b0), (9)

where sk
tf denotes the observation of k-th sound. Here-

after, a square bracket indicates a set over the index vari-
able, δ denotes delta function, P denotes Poisson distri-
bution, and Gam denotes Gamma distribution. The prior
distributions of hk

f and uk
t are the conjugate priors, where

a0, b0 are the hyperparameters of the distributions. A vari-
ational EM algorithm is obtained based on a mean-field
approximation, p(S,H,U|X) ≈ q(S)q(H)q(U).

The main drawback of NMF is its inability to model
spectral and temporal continuity using Gaussian mixtures.
Though one can say that template-based approach can
model these continuities, in that case, we cannot update
the envelope of basis and activation matrices adaptively.
Many methods have been proposed to solve this problem
[1,14,16,18], but these methods are difficult to extend fur-
ther because they do not estimate Gaussian mixture densi-
ties based on variational Bayes.

3. SIGNAL MODEL

In this section, we describe how to integrate the two
promising methods: LHA and NMF. At first, we describe
our idea by introducing the spectral continuity. In these
methods, the wavelet spectrogram is interpreted as a his-
togram of sound quanta. Here, the volume of each sound
is interpreted as the number of quanta. The number is de-
termined from a Poisson distribution for each time frame.
Next, the distribution of sound quanta is determined from
a mixture of Gaussians. In the next subsection, we de-
scribe a straightforward observation model. This model is
not suitable for the estimation, so we introduce several ap-
proximations afterward to formulate a VB-EM algorithm.

3.1 Generative Model

The volume of the k-th sound at the t-th time frame is
drawn from a Poisson distribution P(Sk

t |uk
t ), similar to

NMF. Next, we draw the number of observations of the m-
th harmonic partial of the k-th sound following a multino-
mial distribution. The relative weight of each component
is determined by ηkm.

p(Sk
t ) = P(Sk

t |uk
t ) (10)

p(Sk[m]
t ) = M(Sk[m]

t |Sk
t , ηk[m]) (11)

Here, M denotes multinomial distribution.
Next, we draw a set of observed particles: Xkm

t =
[xkm

t1 , · · · , xkm
tSkm

t
]. The value of each particle follows the

Gaussian distribution of the corresponding the m-th har-
monic partial. The likelihood of the observation is written
as:

p(xkm
tn |µk, λk) = N (xkm

tn |µk + om, λ−1
k ), (12)

p(Xkm
t |Skm

t , µk, λk) =
Skm

t∏
n=1

N (xkm
tn |µk + om, λ−1

k ).

(13)

To generate the spectrogram of each harmonic partial,
we assume the number of particles observed in spectro-
grams as a histogram of particles that have a value error in
the range of εF/2. This corresponds with our transforma-
tion of the continuous probabilistic density functions into
discrete probabilistic mass functions.

xkm
tf = #{n|xf − εF/2 ≤ xkm

tn ≤ xf + εF/2} (14)

xkm
t¬ = Skm

t −
F∑

f=1

xkm
tf (15)

r̂km
f =

∫ xf +εF/2

xf−εF/2

N (x|µk + om, λ−1
k )dx (16)

p(xkm
t[f ], x

km
t¬ ) = M(xkm

t[f ], x
km
t¬ |Skm

t , r̂km
[f ] , r̂km

¬ ) (17)

Here, # denotes the number of elements in the set, xkm
tf de-

notes the number of particles allocated the f -th frequency
bin, xkm

t¬ denotes the number of particles which are not
allocated any frequency bin, and r̂km

f denotes the relative
weight of each frequency bin. Further, r̂km

f is approxi-
mated as:

r̂km
f ≈ εFN (xf |µk + om, λ−1

k ). (18)

We denote the right hand of the equation rkm
f . Finally, the

observed spectrogram is obtained as a summation of the all
harmonic components.

xtf =
∑
km

xkm
tf (19)

3.2 Approximations

For the above formulations are not appropriate for
Bayesian estimation, we introduce the following approx-
imation. The main objective is to marginalize the volume
variables Sk

t and Skm
t . To do this, we inspect the following

characteristics of Poisson distribution.
Poisson distribution gives the probability of n event

observations in a unit time when the average occurrence
interval is λ−1. Next, we consider to distribute the
observations into K classes, following the distribution:
M(n[k]|n, p[k])P(n|λ). The marginal probability of each
class of the multinomial distribution follows a binomial
distribution, so p(nk|n, pk) = Bin(nk|n, pk). Further,
we assume that p(nk|pk, λ) = P(nk|pkλ) because the
event of the k-th class occurs in an average time interval
of (pkλ)−1. In the following section, we formulate a VB-
EM algorithm based on this observation model.



4. BAYESIAN NONNEGATIVE HARMONIC
FACTORIZATION

In this section, we describe the formulation of our model
and the update procedures of Bayesian nonnegative har-
monic factorization (BNHF). The probabilistic mass func-
tion of the intermediate spectrogram of the m-th harmonic
partial and the k-th harmonic sound is first described.
The spectrogram is generated following the activation uk

t ,
which is the relative weight of each harmonic partial ηkm.
The prior distributions are selected to imitate LHA and
NMF. This is formulated as follows.

p(skm
tf |uk

t , ηk, µk, λk)

≈ P(skm
tf |εFuk

t ηkmN (xf |µk + om, λ−1
k )) (20)

p(uk
t ) = Gam(uk

t |a0, b0) (21)

p(ηk) = Dir(ηk|α0
m) ∝

M∏
m=1

η
α0

m−1
km (22)

p(µk, λk) = N (µk|m0, (β0λk)−1)W(λk|w0, ν0) (23)

Here, W denotes Wishart distribution and a0, b0, α0
m, m0,

β0, w0, and ν0 are the hyperparameters. The prior dis-
tributions are not conjugate, and thus the analytic varia-
tional Bayesian inference of the posterior distributions is
intractable. Instead, we will follow a limit that εF → 0.
Under this condition, the posterior distributions are written
in an approximately conjugate form. First, we assume the
following factorization.

q(S, u, η, µ, λ) = q(S)
∏
tk

q(uk
t )

K∏
k=1

{q(ηk)q(µk, λk)}

(24)

This is known as mean-field approximation.

4.1 VB-E Step

During the VB-E step, we calculate the temporal estima-
tion of separated source spectrogram skm

tf .

ln q∗(s[km]
tf ) = ln(X|S) + E[p(S|u, η, µ, λ)]

= ln δ(xtf −
∑
km

skm
tf ) + E[lnuk

t + ln ηkm

+ lnN (xf |µk + om, λ−1
k )] (25)

Hereafter, all constant variables that do not affect the in-
ference are omitted. The optimal posterior distribution is a
multinomial distribution.

q(s[km]
tf ) = M(s[km]

tf |xtf , γ
[km]
tf ) (26)

ln γ̃km
tf = E[lnuk

t + ln ηkm + lnN (xf |µk + om, λ−1
k )]
(27)

γkm
tf =

γ̃km
tf∑

k′m′ γ̃k′m′
tf

(28)

Here, M denotes multinomial distribution.

4.2 VB-M Step

During the VB-M step, we update the posterior distribu-
tions of uk

t , ηkm, µk, and λk. For example, we describe
the Bayesian estimation of uk

t in detail. The logarithm of
the optimal posterior distribution is written as:

ln q∗(uk
t ) = ES [ln p(S|u, η, µ, λ)] + ln p(uk

t )

=
∑
fm

E[skm
tf ] ln uk

t + (a0 − 1) lnuk
t

−
∑
fm

εFuk
t ηkmN (xf |µk + om, λ−1

k ). (29)

Taking the limit εF → 0, we obtain the following update:

q∗(uk
t ) ≈ Gam(uk

t |ak
t , b0),where (30)

ak
t = a0 +

∑
fm

E[skm
tf ]. (31)

The same is true for ηkm, µk, and λk: the optimal pos-
terior distributions have the conjugate form when we take
the limit εF → 0. The approximated posterior distributions
are written as:

q∗(ηk) ≈ Dir(ηk|αk), (32)

q∗(µk, λk)≈ N (µk|mk, (βkλk)−1)W(λk|wk, νk), (33)

where the posterior hyperparameters are written as:

αkm = α0
m +

∑
tf

E[skm
tf ], (34)

mk =
m0β0 +

∑
tfm E[skm

tf ](xf − om)

β0 +
∑

tfm E[skm
tf ]

, (35)

βk = β0 +
∑
tfm

E[skm
tf ], (36)

w−1
k = w−1

0 + β0m
2
0 +

∑
tfm

E[skm
tf ](xf − om)2 − βkm2

k,

(37)

νk = ν0 +
∑
tf

E[skm
tf ]. (38)

The update equation of BNHF is quite similar to that of
LHA, and these two methods had exactly the same result in
our experiment. The difference is that our model explicitly
models the volume of each sound, which makes it easier
to consider the temporal continuity. This is described in
more detail in the next section. We can also formulate the
Gibbs sampler by using a similar approximation in which
the space complexity is of the order O(TFKM), instead
of the O(TNKM) for LHA. The derivations are omitted
due to space restrictions.

5. BAYESIAN NONNEGATIVE
HARMONIC-TEMPORAL FACTORIZATION

Here, we describe how to introduce temporal continuity to
BNHF. The temporal structure is modeled using a mixture
of Gaussians arranged at regular intervals. The intensity of
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Figure 2. Graphical model of proposed method. Single
solid lines indicate latent variables and double solid lines
indicate observed variables.

each Gaussian component is decided using a Gamma dis-
tribution. Let T be the interval, τ be the index of Gaussian
components, λT be the precision of each Gaussian com-
ponent, and uk

τ be the intensity of τ -th Gaussian compo-
nent of k-th sound. The joint distribution can be written
as p(X, S, u, η, µ, λ). A graphical model of the method is
shown in Figure 2.

The conditional probability of sτkm
tf is:

p(sτkm
tf |u, η, µ, τ) = P(sτkm

tf |εTuk
τN (yt|τT, λ−1

T )

× εFηkmN (xf |µk + om, λ−1
k )), (39)

where yt is the temporal position of the t-th time frame.
The corresponding optimal posterior distribution is:

q(s[τkm]
tf ) = M(s[τkm]

tf |xtf , γ
[τkm]
tf ), (40)

γτkm
tf ∝ exp(E[lnuk

τ + ln ηkm+

lnN (xf |µk + om, λ−1
k )] + lnN (t|τT, λ−1

T )) (41)

Further, the optimal posterior distribution of uk
τ is approx-

imated as:

q(uk
τ ) ≈ Gam(uk

τ |ak
τ , b0), where (42)

ak
τ = a0 +

∑
tfm

E[sτkm
tf ]. (43)

6. EVALUATION

In this section, we compare the performance of three multi-
pitch estimation methods: LHA, NHF, and NHTF. We then
discuss their performance in detail.

6.1 Estimation Target

For the experiment, we used 40 musical pieces from
the RWC Music Database [6]. These included five pi-
ano solo pieces (RM-J001 to RM-J005), five guitar solo
pieces (RM-J006 to RM-J010), ten jazz duo pieces (RM-
J011 to RM-J020), ten jazz pieces played with three or
more players (RM-J021 to RM-J030), and ten classical
chamber pieces (RM-C012 to RM-C021). All the pieces
were recorded from MIDI files using a MIDI synthesizer
(Yamaha MOTIF-XS.) The drum tracks were muted, and
the number of players was counted without including the

Table 1. Calculated F-measures.

Non-infomative Infomative
Music Type LHA BNHF BNHTF LHA BNHF BNHTF
Piano Solo 0.558 0.558 0.590 0.584 0.584 0.590

Guitar Solo 0.684 0.684 0.726 0.728 0.728 0.740
Jazz (Duo) 0.524 0.524 0.545 0.552 0.552 0.556

Jazz (Trio∼) 0.523 0.523 0.548 0.536 0.536 0.541
Chamber 0.481 0.481 0.508 0.503 0.503 0.512

drum player. The recorded signals were truncated to the
first 32 seconds to reduce the large computational time
needed for the experiment. They were transformed into
wavelet spectrograms using Gabor wavelets with a time
resolution of 16 [msec], frequency bins from 30 to 3000
[Hz], and a frequency resolution of 12 [cents]. The ground
truths were constructed using the reference MIDI files.

6.2 Experimental Settings

Here, we describe the experimental settings. For the esti-
mation, two prior distribution settings were evaluated. In
the first one, all priors were set to be non-informative. That
is, a0, b0, α

0
m, β0, w0, and ν0 were set to unity and m0

was set to zero. In the other one, the prior distribution
of the harmonic structure was set appropriately. That is,
α0

m = 0.6547Nm−2, where N is the number of total ob-
servations. The other hyperparameters were set to be non-
informative. The setting of α0

m was the same setting as
HTC.

As an initialization, the relative weight of the source
model in the t-th frame was set to the sum of the ampli-
tudes of the nearest frequency bins of its overtones. The
initial overtone weights were set to decay exponentially.

Model orders K and M were set to 73 and 6, respec-
tively, where the number of overtones M is equal to HTC
[7]. The EM algorithm was truncated at 200 iterations. The
number of iterations was determined experimentally on the
basis of estimation accuracy saturation.

After the iterations, the estimated pitches were extracted
from the posterior hyperparameters. Let r be the threshold.
The effective observation count of the k-th basis in the t-th
time frame, Ntk, satisfies Ntk ≥ r maxtk Ntk, is consid-
ered to be sounding. The threshold was optimized experi-
mentally for each piece and the method used to evaluate the
potential performance of each model. The model frequen-
cies were allocated the nearest note number. The estimated
result and the ground truth were transformed into T × 128
binary maps, and the F-measure was then calculated. Let
N be the number of entries in the estimated map, C be the
number of entries in the truth map, and R be the number
of correct entries in the estimated map. The resultant F-
measure is calculated as F = 2R/(N +C). The larger the
value of the F-measure, the better the performance.

6.3 Results

The results are shown in Table 1. Our method outperforms
the conventional method for all the music type and both
prior settings. The highest performance was attained with
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Figure 3. Example of estimated result of the proposed
method with musical piece RM-J007.

appropriate prior for four of the five groups of musical
pieces and with non-informative for the remaining group.
This indicates the importance of the joint estimation of the
harmonic and temporal structures. Figure 3 illustrates an
example of the estimated result of the proposed model.

7. RELATED WORKS

Our method have a strong relation to the model proposed
by Ochiai et., al [12,13]. Ours and theirs are notably differ-
ent in three points. Firstly, they do not explicitly model the
spectral continuity. Secondly, they use Dirac delta function
instead of the ε-neighborhood to achieve the estimation of
Gaussian mixture distribution. By following this strategy,
the estimation is in conjugate form, but the interpretation
of the model becomes difficult. Thirdly, they model the
temporal structure based on the joint estimation of proba-
bilistic context-free grammar and Gaussian mixture distri-
bution.

8. CONCLUSION

We presented a new multipitch analyzer based on vari-
ational Bayes that explicitly models the harmonic and
temporal structures separately based on Gaussian mixture
model. Several priors were set to be not conjugate, in or-
der to integrate NMF and LHA. The variational posterior
distributions become conjugate under several approxima-
tions. Our method can be viewed as a Bayesian NMF
method with adaptive harmonic basis. Evaluation results
showed that the proposed method outperform the con-
ventional multipitch analyzer, latent harmonic allocation
(LHA). In the future, we will propose a more precise mod-
eling using recent improvements to NMF, including the
source-filter model [17] and nonparametric models [11].
This research is partially supported by KAKENHI (S) No.
24220006.
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ABSTRACT

The development of automated methods for revealing the
repetitive structure of a given music recording is of cen-
tral importance in music information retrieval. In this pa-
per, we present a novel scape plot representation that al-
lows for visualizing repetitive structures of the entire music
recording in a hierarchical, compact, and intuitive way. In
a scape plot, each point corresponds to an audio segment
identified by its center and length. As our main contri-
bution, we assign to each point a color value so that two
segment properties become apparent. Firstly, we use the
lightness component of the color to indicate the repetitive-
ness of the encoded segment, where we revert to a recently
introduced fitness measure. Secondly, we use the hue com-
ponent of the color to reveal the relations between different
segments. To this end, we introduce a novel grouping pro-
cedure that automatically maps related segments to similar
hue values. By discussing a number of popular and classi-
cal music examples, we illustrate the potential and visual
appeal of our representation and also indicate limitations.

1. INTRODUCTION

The musical form describes a piece of music in terms of
musical parts such as intro, chorus, and verse of a popular
song or the first and second theme of a classical work. Such
musical parts are typically repeated several times through-
out the piece and evoke in the listener the feeling of famil-
iarity. One major goal of audio structure analysis is to au-
tomatically derive the musical form directly from a given
music recording. To this end, most procedures divide the
music recording into repeating temporal segments and then
group these segments according to musically meaningful
categories [13].

Finding the repetitive structure of a music recording has
been a central and well-studied task within the wide area of
audio structure analysis, see, e. g., [2,5,7,8,11,12] and the
overview articles [3, 13]. Even though most of these ap-
proaches work well when repetitions largely agree, struc-
ture analysis becomes a hard and even ill-posed task when
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audio segments that refer to the same musical part reveal
pronounced musical variations. One way to circumvent
such problems is to only visualize structural elements and
their relations without explicitly extracting them. For ex-
ample, in [4] self similarity matrices are used to visualize
overall structural patterns or, in [15], repeating and related
elements are indicated by arc diagrams.

In this paper, we contribute to this line of research by
introducing a novel representation that reveals the hierar-
chical repetitive structure of a given music recording. In-
spired by the work by Sapp [14], we use the concept of a
2D scape plot, where each point represents an audio seg-
ment by means of its center and length. As our main contri-
bution, we describe an automated procedure for assigning
to each point a color value such that the repetitive struc-
ture of the music recording becomes apparent. On the one
hand, we use the lightness component of the color to in-
dicate the repetitiveness of the respective segment. This
repetitiveness is expressed in terms of a fitness measure
as recently introduced by Müller et al. [10]. On the other
hand, we use the hue component of the color to reveal the
relations across different segments, where we introduce a
function that maps related segments to similar hue values.
As a result, one obtains a hierarchical structure visualiza-
tion of the underlying music recording referred tostructure
scape plot, see Figure 4g for an example. We hope that this
representation not only visually appeals to the reader, but
also brings valuable and even surprising insights into the
structural properties of a recording.

The remainder of this paper is organized as follows. In
Section 2, we review the underlying fitness measure and
describe the corresponding fitness scape plot. Then, in
Section 3, we introduce our structure scape plot represen-
tation which is based on a novel distance measure to com-
pare different segments as well as on an efficient grouping
and coloring procedure. Based on a number of explicit ex-
amples, we discuss benefits and limitations of our structure
visualization in Section 4 and conclude with Section 5 by
indicating future work.

2. FITNESS SCAPE PLOT

In this section, we summarize the construction of the fit-
ness measure (Section 2.1) and then introduce the concept
of a fitness scape plot (Section 2.2).



(a)

0 50 100 150 200

A1 A2 B1 B2 C A3 B3 B4

 

 

0 50 100 150 200
0

50

100

150

200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) (d) (e)

(b)

S
eg

m
e

nt
le

ng
th

(s
e

c)

Segment center (sec)
 

 

0 50 100 150 200
0

50

100

150

200

−2

0

0.5

1
(c)

T
im

e
(s

e
c)

Time (sec)

 

 

0 50 100 150 200
0

50

100

150

200

−2

0

0.5

1
(d)

Time (sec)

T
im

e
(s

e
c)

 

 

0 50 100 150 200
0

50

100

150

200

−2

0

0.5

1
(e)

Time (sec)

T
im

e
(s

e
c)

Figure 1: Various representations for an Ormandy record-
ing of Brahms’ Hungarian Dance No. 5.(a) Musical form
A1A2B1B2CA3B3B4. (b) Fitness scape plot. The remaining
subfigures show the SSM with optimal path families for various
segmentsα (horizontal axis) and induced segment families (ver-
tical axis). (c) α = [68 : 89] (thumbnail, maximal fitness, corre-
sponding toB2). (d) α = [131 : 150] (corresponding toA3). (e)
α = [131:196] (corresponding toA3B3B4).

2.1 Fitness Measure

Let [1 : N ] = {1, 2, . . .N} denote the (sampled) time axis
of a given music recording. Then a segment is a subset
α = [s : t] ⊆ [1 : N ] specified by its starting points and
its end pointt. Let |α| := t−s+1 denote the length of seg-
mentα. In [10], a fitness measure has been introduced that
assigns to each audio segmentα a fitness valueϕ(α) ∈ R

which simultaneously captures two aspects. Firstly, it in-
dicates how well the given segment explains other related
segments. Secondly, it indicates how much of the overall
music recording is covered by all these related segments.
In the computation of the fitness measure, an enhanced
self-similarity matrix (SSM) is computed from the music
recording based on chroma-based audio features. It is well
known that each path of the SSM (a stripe of high score
running parallel to the main diagonal) reveals the similarity
of two segments (given by the two projections of the path
onto the vertical axis and horizontal axis), see [13]. The
main idea of [10] is to compute for each audio segment
α a so-calledoptimal path family overα that simultane-
ously reveals the relations betweenα and all other similar
segments. By projecting such optimal path family to the
vertical axis, we get the corresponding induced segment
family, where each element of this family defines a seg-
ment similar toα.

As an example, we consider a recording of the Hun-
garian Dance No. 5 by Johannes Brahms, which has the
musical formA1A2B1B2CA3B3B4, see Figure 1a. Fig-
ure 1c shows an optimal path family (cyan stripes) for the

B2-segmentα = [68 : 89] (horizontal axis) as well as the
induced segment family (vertical axis). The induced seg-
mentation consists of four segments corresponding to the
four occurrences of theB-part in this recording. Note that
repeating segments may be played in different tempi. For
example, theB2-part is played much faster than theB1-
part. Similarly, Figure 1d shows the optimal path family
for the segmentα = [131 : 150] (corresponding to theA3-
part) and the induced segmentation (consisting of the three
A-part segments). Finally, Figure 1e reveals that, for the
long segmentα = [131:196] (corresponding toA3B3B4),
there exists a similar segment (corresponding toA2B1B2).

The fitness value of a given segment is derived from
the corresponding optimal path family and the values of
the underlying SSM. Intuitively, one considers the overall
score accumulated by the path family and the total length
covered by the induced segmentation. After a suitable nor-
malization, the fitness is defined as the harmonic mean of
of coverage and score. For further details, we refer to [10].

2.2 Scape Plot Representation

We now describe how a compact fitness representation for
the entire music recording can be obtained showing the fit-
nessϕ(α) for all possible segmentsα. Note that each seg-
mentα = [s : t] is specified by its centerc(α) := (s+t)/2
and its length|α|. Using the center as horizontal coordi-
nate and the length as vertical coordinate, each segment
can be represented as a point in some triangular represen-
tation also referred to asscape plot. Such scape plots were
original introduced by Sapp [14] to represent harmony in
musical scores in a hierarchical way. In our context, we
define a scape plotΦ by settingΦ(c(α), |α|) := ϕ(α)
for segmentα. Figure 1b shows a visualization of the
fitness scape plot for our Brahms example, where the fit-
ness is represented by a lightness grayscale ranging from
white (fitness is zero) to black (fitness is high). The points
corresponding to the three segments discussed above are
marked within the scape plot by small circles. For exam-
ple, the segmentα = [68 : 89] (corresponding toB2) has
the scape plot coordinatesc(α) = 78.5 (horizontal axis)
and |α| = 22 (vertical axis). Actually, this segment has
the highest fitness among all possible segments and is also
referred to asthumbnail [10].

The fitness scape plot represents the repetitiveness of
each segment in a compact and hierarchical form. For ex-
ample, in our Brahms example, the repeating segments cor-
responding to theA-parts andB-parts are reflected by lo-
cal maxima in the scape plot. Also the repetitions of the
superordinate segments corresponding toABB are cap-
tured by the plot. However, so far, the visualization of the
fitness scape plot does not reveal the relationsacross differ-
ent segments. In other words, nothing is said about groups
of pairwise similar segment corresponding to the various
musical parts.



3. STRUCTURE SCAPE PLOT

Actually, the grouping information is implicitly encoded
by the optimal path families underlying the fitness mea-
sure. To make these relations more explicit, we now extend
the grayscale of the fitness scape plot by a color component
that reflects the cross-segment relations. Based on the in-
duced segmentations, we first introduce a distance measure
that allows for comparing two arbitrary segments (Sec-
tion 3.1). Then the objective is to map similar segments
to similar colors and dissimilar segments to distinct colors.
In the following, we proceed in several steps including a
color mapping step (Section 3.2), a point sampling and in-
terpolation step (Section 3.3), and a color combination step
(Section 3.4). The overall pipeline of our procedure is also
illustrated by Figure 4.

3.1 Segment Distance Measure

Recall from Section 2.1 that for a given segmentα there
is an optimal path family along with an induced segment
family, where each segment of this family is similar toα.
Let A = {α1, α2, . . . , αK} denote the induced segment
family of α, then the segmentsαk, k ∈ [1 : K], can be
thought of as the (approximate) repetitions ofα. Note that,
by definition, overlaps between repetitions are not allowed,
see [10].

Now, letα andβ be two arbitrary segments. Intuitively,
we consider these two segments to be close if they are ap-
proximately repetitions of each other (or at least if some
repetitions ofα andβ have a substantial overlap), other-
wise α andβ are considered to be far apart. More pre-
cisely, letA = {α1, . . . , αK} andB = {β1, . . . , βL} be
the respective induced segment families. Then, we define
the distanceδ(α, β) betweenα andβ to be

δ(α, β) := 1− max
k∈[1:K],ℓ∈[1:L]

|αk ∩ βℓ|

|αk ∪ βℓ|
, (1)

see alsoFigure 2 for an illustration. In other words, the dis-
tance is obtained by subtracting the maximal overlap (rel-
ative to the union) over all repetitions ofα andβ from the
value1. For example, theB1-segment andB2-segment
for the Brahms recording have a small distance (close to
zero) since the induced segment families more or less co-
incide (consisting of the fourB-part segments). In contrast
theB1-segment and theA1-segment have a large distance
(close to one) since none of their repetitions have a sub-
stantial overlap.

3.2 Color Mapping

Based on the distance measureδ, we now introduce a pro-
cedure for mapping the scape plot points (segments) to
color values in such a way that distance relations are pre-
served. To this end, we first need to specify a suitable
color space. Because of its perceptual relevance, we re-
vert to the HSL model, which is a cylindric parametriza-
tion of the RGB color space [6]. Here the angle coordinate
H ∈ [0, 360] (given in degrees) refers to the hue, the co-
ordinateS ∈ [0, 1] to the saturation, and the coordinate

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

α

β

α1 α2 α3 α4

β1 β2

(a)

(b)

(c)

(d)

Figure 2: Illustration of the computation of the distance mea-
suresδ(α, β) used to compare two segmentsα (shown in(a))
andβ (shown in(b)). The respective induced segment families
are shown in(c) and (d), respectively. The black box indicates
the union and the red box the overlap of the two segments which
are used to compute distance valueδ(α, β).

L

0

1

H
0◦ 120◦ 240◦ 360◦

Figure 3: Cylindric HSL (hue, saturation, lightness) color repre-
sentation. The figure shows only the outside surface of the cylin-
der corresponding to the saturationS = 1.

L ∈ [0, 1] (with 0 being black and1 being white) to the
lightness of the color. To obtain “full” saturated colors, we
fix the parameterS = 1. Figure 3 shows the color space
for S = 1 spanned by the coordinatesH andL. Note that
the hue angle coordinatesH = 0 andH = 360 encode
the same color (by definition this is the color “red”). In
the following, we reserve the lightness coordinate to rep-
resent the fitness value and only use the hue coordinate to
represent the cross-segment relationships.

The problem of mapping the scape plot points to the hue
color coordinates (which topologically corresponds to the
unit circle) in a distance preserving way can be seen as an
instance ofmultidimensional scaling (MDS), see [1]. Gen-
erally, MDS refers to a family of related techniques which
allow for mapping a set of points with pairwise distance
values onto a low-dimensional Euclidean space (often di-
mension2 or 3 for visualization purposes) such that the
distances between the original points are approximated by
the Euclidean distances of the mapped points.

In the following, we use basic MDS techniques to map
the scape plot points onto the unit circle (representing the
hue color space). LetM denote the number of scape plot
points to be considered in the mapping, see Figure 4b.
First, we compute anM ×M -distance matrix∆ by com-
paring theM points in a pairwise fashion usingδ. Next,
we perform a principal component analysis (PCA) of∆
and consider the two eigenvectors corresponding to the
two largest eigenvalues. The columns of∆ (which are
indexed by theM scape plot points) are then projected
onto the two-dimensional Euclidean space defined by these
two eigenvectors, see Figure 4c. Using PCA, the variance
across the mapped column vectors is maximized. There-
fore, scape plot points that have a distinct distance distri-
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Figure 4: Illustration of the pipeline for computing the structure scape plot for Brahms.(a) Fitnessscape plot.(b) Fitness scape plot
with sampled anchor points.(c) Anchor points projected onto the first two principal components.(d) Anchor points projected to the unit
circle colored with the resulting hue value.(e)Hue-colored anchor points.(f) Hue-colored scape plot using interpolation techniques.(g)
Structure scape plot combining fitness (lightness) and cross-segment relation (hue) information.

bution to the other points (encoded by its respective col-
umn vectors) are likely to be mapped to different regions
in the 2D space, see [1] for details. Furthermore, as shown
in Figure 4c, the projected points are usually distributed in
a circular fashion (even though this is not guaranteed and
crucially depends on the distance distributions of the origi-
nal points). Finally, we normalize the projected points with
respect to the Euclidean norm to obtain points on the unit
circle, which yields angle parameters that are associated to
hue values, see Figure 4d. Figure 4e shows the original
scape plot points colored with the derived hue values.

3.3 Sampling and Interpolation

Using all scape plot points in the described color map-
ping procedure may be problematic because of two rea-
sons. Firstly, using a large numberM of points would not
only make the computation of theM ×M distance matrix
∆ but also of the subsequent PCA rather expensive. There-
fore, the numberM of used points should be kept small.
Secondly, using all scape plot points may over-represent
segments of short lengths that are located in the lower part
of the triangular scape plot. As a result, the distance re-
lations of the short segments may dominate the selection
of the eigenvectors obtained in the PCA step. Therefore,
we only choose a suitable subset of scape plot points, also
referred to asanchor points, and then transfer the obtained
hue color information to the other points using interpola-
tion techniques.

Note that scape plot points of higher fitness are struc-
turally more relevant than scape plot points of lower fit-
ness. Therefore, in the anchor point selection step, we
sample the scape plot by taking the fitness into account.
To this end, we use a greedy procedure that consists of two
steps. Firstly, we select the scape plot point of maximal
fitness as an anchor point. Secondly, around this anchor

point, we specify a neighborhood of sizeρ > 0 and set
the fitness values of all points in this neighborhood to zero
excluding them for the subsequent procedure. The role of
the neighborhood is to avoid a sampling that is locally too
dense. This procedure is repeated until either all of the re-
maining scape plot points have a fitness of zero, or until
a specified maximal number of pointsM0 is reached, see
also Figure 4b.

Sometimes the fitness values of short segments are
rather “noisy.” This may also have musical reasons since
such segments often correspond to highly repetitive frag-
ments like a short riff or a single chord of dominant har-
mony. Therefore, it is often beneficial to exclude such
short segments in the anchor point selection by only con-
sidering scape plot points whose length coordinate lies
above a certain lower boundλ > 0. The influence of the
parametersM0, ρ, andλ on the resulting number of anchor
pointsM is discussed in Section 4.

The color mapping as described in Section 3.2 is now
applied only to the anchor points. In the next step, the color
information is transferred to arbitrary scape plot points by
simply interpolating color values of the nearest neighbor-
hood anchor points. However, since the hue values live on
a unit circle (rather than in the two-dimensional Euclidean
space), one needs to use spherical interpolation instead of
linear interpolation. Figure 4f shows the interpolation re-
sult obtained from the anchor points of Figure 4e.

3.4 Color Combination

So far, we have derived two scape plot visualizations:
one indicating the repetitive properties (fitness value rep-
resented by lightness, see Figure 4a) and the other indicat-
ing the cross-segment relations (represented by hue colors,
see Figure 4f). We now combine this information within a
single scape plot representation, which we also refer to as
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Figure 5: Structure scape plots and structure annotations for
recordings of various pieces.(a) Chopin Mazurka Op. 17 No. 3.
(b) Beatles song “While My Guitar Gently Weeps.”(c) Chopin
Mazurka Op. 33 No. 3.(d) Beatles song “You Can’t Do That.”

structure scape plot. To this end, we first linearly map the
fitness values onto the lightness parameter space[0, 1] of
the HSL model such thatL = 1 (white) corresponds to the
fitness value0 andL = 0 (black) to the maximal fitness
value occurring in the fitness scape plot. Furthermore, by
rotating the hue parameter space (unit circle) we normal-
ize the color assignment such that the thumbnail (fitness-
maximizing scape plot point) is mapped to the color “red”
(angleH = 0). Finally, for each scape plot point we use
the saturationS = 1, the computed lightnessL, and the
normalized hue angleH to obtain a single color value.

Figure 4g shows the final result of the structure scape
plot for our Brahms example. Note that the fourB-part
segments (repetitions of theB2-thumbnail) are represented
by red, the threeA-part segments by blue, and the super-
ordinate twoABB-part segments by green. Furthermore,
the visualization reveals some substructures of theA-parts,
each actually consisting of two (approximate) repetitions.
Finally, note that smaller segments within theC-part are
assigned to the color violet. Since theC-part contains
many fragments sharing the same harmony, our procedure
has captured some repetitiveness also in this middle part.

4. EXAMPLES AND DISCUSSION

In this section, we indicate the potential and some limi-
tations of our visualization procedure by discussing rep-
resentative examples. In our experiments, we used audio
recordings considering popular music as well as classical
music. On the one hand, we employed the dataset consist-
ing of recordings of the12 studio albums by “The Beatles”
using the structure annotations as described by [9]. On
the other hand, we used the complete Rubinstein (1966)
recordings of the49 Mazurkas composed by Frédéric

Chopin, where we manually generated some structure an-
notations for each piece. Note that these annotations are
not needed to generate the structure scape plots, but are
only used to compare our visualizations with some sort of
ground truth. As mentioned in the introduction, the pur-
pose of the scape plot visualizations is to yield a compact
and intuitive representation without the necessity of explic-
itly extracting the structure.

As for the parameter settings, we chooseM0, ρ, and
λ in a relative fashion depending on the duration of the
respective music recording. In particular, we determined
the upper boundM0 and the neighborhood parameterρ to
result in a numberM of anchor points ranging between
200 and250 for each recording. Furthermore, the lower
boundλ was set to correspond to5-7% of the recording’s
total duration. Figure 5 shows structure scape plots for
some representative music recordings. For example, Fig-
ure 5a shows the scape plot for a Rubinstein performance
of Chopin’s Mazurka Op. 17 No. 3. The fiveA-part seg-
ments, which also comprise the thumbnail, are represented
by red. Furthermore, the threeB-part segments are in-
dicated by a lighter orange color, and the superordinate
ABA-part segments are represented by green. Also sub-
structures of theA-part segments are visible: indeed each
A-part consists of two similar subparts. Interestingly, the
segments corresponding to theC- and the twoD-parts are
all represented by pink. Actually this is musically mean-
ingful, since each of the two repeatingD-parts is only a
slight extension of theC-part.

Figure 5b visualizes the structure scape plot for the Bea-
tles song “While My Guitar Gently Weeps.” Also in this
example, the structure scape plot nicely reflects the over-
all musical form. Each of the four verse segments (V -
part) consists of two (approximately) repeating subparts,
sayV = WW . Actually, the intro also corresponds to such
a subpart (I = W ) and the outro corresponds to three of
these subparts (O = WWW ), which also explains the red
coloring of these segments. Furthermore, the color blue
corresponds toWWW -segments and the color green to
V BV -segments.

The structure scape plot of a recording of the Mazurka
Op. 33 No. 3 is shown in Figure 5c, which indicates a
number of substructures not reflected in the structure an-
notation (see bothA parts). Finally, Figure 5d correctly
reproduces the overall structure of the Beatles song “You
Can’t Do That.” Only theV4-segment has not been cap-
tured well. Actually,V4 corresponds to an instrumental
section with some vocal interjections, which make theV4-
segment spectrally quite different to the other fourV -part
segments.

Next, we discuss some limitations and problems that
may occur in our visualization approach. As an illustrating
example, we consider the Beatles song “Hello Goodbye.”
Figure 6b shows the structure scape plot using our standard
parameter setting as described above. The red color corre-
sponds to the fourV R-part segments, which also comprise
the thumbail. However, the individualV -part andR-part
segments are all represented by green and are not distin-
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Figure 6: Anchor points projected onto the first two principal
components (left) and resulting structure scape plot (right) for the
Beatles song “Hello Goodbye.”(a)/(b) Usingλ = 14 seconds.
(c)/(d) Usingλ = 10 seconds.

guishable. The reason for this is that the lower bound for
the anchor points was set toλ = 14 seconds, which is too
high to capture the finer structures. By decreasing this pa-
rameter toλ = 10 seconds,V -part andR-part segments
are separated, see Figure 6d. As this example shows, the
choice of the parameterλ may have a significant impact
on the final visualization. The Beatles example also indi-
cates a second problem that may arise in our color map-
ping procedure. Usually, the anchor points projected to the
two principal components are homogeneously distributed
along the unit circle as in our Brahms example, see Fig-
ure 4c. Therefore, projecting these points to the unit circle
(to yield the desired hue values) does not destroy too much
of the neighborhood relations. However, in the Beatles ex-
ample, the projected anchor points are rather scattered in
the two-dimensional Euclidean space with some outliers
as indicated by the boxed and circled points shown in Fig-
ure 6a. Therefore, projecting these points onto the unit
circle may result in the same hue value for anchor points
that are actually far apart. This explains, why the substruc-
tures within theS-part are mapped to the same color as
substructures of theV R-part, see Figure 6b.

5. FUTURE WORK

These problems indicate some future research directions.
Possible improvements of the color mapping step may be
achieved by applying more involved generalized multidi-
mensional scaling techniques which directly map the an-
chor points to a smooth manifold (in our case the unit cir-
cle). Also, the one-dimensional hue color space may not
suffice to suitable capture more intricate cross-segment re-
lations. Here, a more flexible usage of the color space or
an extension to 3D scape plot representations may help to

better represent more complex structures. So far, we have
only given a qualitative evaluation to demonstrate the po-
tential of our techniques. In this context, user studies may
be necessary to better understand the actual user needs and
the applicability of our concepts. Besides introducing a
novel segment distance function as well as a grouping and
coloring procedure, the main contribution of this paper was
to introduce the concept of a structure scape plot for visu-
alizing repetitive structures of music recordings. We hope
that our visualization is not only aesthetically appealing,
but also may allow a user to explore and browse musical
structures in novel ways.
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ABSTRACT

In order to support individual user perspectives and differ-
ent retrieval tasks, music similarity can no longer be con-
sidered as a static element of Music Information Retrieval
(MIR) systems. Various approaches have been proposed
recently that allow dynamic adaptation of music similarity
measures. This paper provides a systematic comparison of
algorithms for metric learning and higher-level facet dis-
tance weighting on the MagnaTagATune dataset. A cross-
validation variant taking into account clip availability is
presented. Applied on user generated similarity data, its
effect on adaptation performance is analyzed. Special at-
tention is paid to the amount of training data necessary for
making similarity predictions on unknown data, the num-
ber of model parameters and the amount of information
available about the music itself.

1. INTRODUCTION

Musical similarity is a central issue in MIR and the key
to many applications. In the classical retrieval scenario,
similarity is used as an estimate for relevance to rank a
list of songs or melodies. Further applications comprise
the sorting and organization of music collections by group-
ing similar music clips or generating maps for a collection
overview. Finally, music recommender systems that fol-
low the popular “find me more like. . . ”-idea often employ
a similarity-based strategy as well. However, music sim-
ilarity is not a simple concept. In fact there exist various
frameworks within musicology, psychology, and cognitive
science. For a comparison of music clips, many interre-
lated features and facets can be considered. Their individ-
ual importance and how they should be combined depend
very much on the user and her or his specific retrieval task.
Users of MIR systems may have various (musical) back-
grounds and experience music in different ways. Conse-
quently, when comparing musical clips with each other,
opinions may diverge. Apart from considering individual
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users or user groups, similarity measures also should be
tailored to their specific retrieval task to improve the per-
formance of the retrieval system. For instance, when look-
ing for cover versions of a song, the timbre may be less
interesting than the lyrics. Various machine learning ap-
proaches have recently been proposed for adapting a music
similarity measure for a specific purpose. They are briefly
reviewed in Section 2. For a systematic comparison of
these approaches, a benchmark experiment based on the
MagnaTagATune dataset has been designed, which is de-
scribed in Section 3. Section 4 discusses the results of the
comparison and Section 5 finally draws conclusions.

2. ADAPTATION APPROACHES

The approaches covered in this paper focus on learning
a distance measure, which (from a mathematical perspec-
tive) can be considered as a dual concept to similarity. The
learning process is guided by so-called relative distance
constraints. A relative distance constraint (s, a, b) demands
that the object a is closer to the seed object s than object b,
i.e.,

d(s, a) < d(s, b) (1)

Such constraints can be seen as atomic bits of information
fed to the adaptation algorithm. They can be derived from
a variety of higher-level application-dependent constraints.
For instance, in the context of interactive clustering, as-
signing a song s to a target cluster with the prototype ct
can be interpreted by the following set of relative distance
constraints as proposed by Stober et al. [11]:

d(s, ct) < d(s, c) ∀c ∈ C \ {ct} (2)
where C is the set of cluster prototypes. Bade et al. de-
scribe how relative distance constraints can be derived from
expert classifications of folk songs [1] or from an existing
personal hierarchy of folders with music files [2]. Alter-
natively, it is also possible to directly ask the users to state
the opinion for a triplet of songs as in the bonus round of
the TagATune game [7]. (Section 3.2 covers this in de-
tail.) McFee et al. [8] use artist similarity triples collected
in the web survey described in [5]. They also describe a
graph-based technique to detect and remove inconsisten-
cies within sets of constraints such as direct contradictions.

Using relative distance constraints, the task of learning
a suitable adaptation of a distance measure can be formu-
lated mathematically as constraint optimization problem.



In the following, the two general approaches covered in
this comparison are briefly reviewed.

2.1 Linear Combinations of Facet Distances

Stober et al. model the distance d(a, b) between two songs
as weighted sum of facet distances δf1(a, b), . . . , δfl(a, b):

d(a, b) =
l∑
i=1

wiδfi(a, b) (3)

Each facet distance refers to an objective comparison of
two music clips with respect to a single facet of music in-
formation such as melody, timbre, or rhythm. Here, the
facet weights w1, . . . , wl ∈ R+ serve as parameters of
the distance measure that allow to adapt the importance of
each facet to a specific user or retrieval task. These weights
obviously have to be non-negative so that the aggregated
distance cannot decrease where a single facet distance in-
creases. Furthermore, the sum of the weights should be
constant such as l∑

i=1

wi = l (4)

to avoid arbitrarily large distance values.
The small number of parameters somewhat limits the

expressivity of the distance model. However, at the same
time, the weights can easily be understood and directly ma-
nipulated by the user. Stober et al. argue that this design
choice specifically addresses the users’ desire to remain
in control and not to be patronized by an intelligent sys-
tem that “knows better”. In [11], they describe various ap-
plications and respective adaptation algorithms which they
evaluate and compare in [12] using the MagnaTagATune
dataset. Three of these approaches are covered by the com-
parison in this paper.

2.1.1 Gradient Descent

Here, if a constraint is violated by the current distance mea-
sure, the weighting is updated by trying to maximize

obj (s, a, b) =

l∑
i=1

wi(δfi(s, b)− δfi(s, a)) (5)

which can be directly derived from Equation 1. This leads
to the following update rule for the individual weights:

wi = wi + η∆wi, with (6)

∆wi =
∂obj (s, a, b)

∂wi
= δfi(s, b)− δfi(s, a) (7)

where the learning rate η defines the step width of each it-
eration. As in [12], the optimization process is restarted 50
times with random initialization and the best result is cho-
sen to reduce the risk of getting stuck in a local optimum.

2.1.2 Quadratic Programming

Of the various quadratic programming approaches covered
in [12], only the one minimizing the quadratic slack is con-
sidered here because it was the best performing one in the
original comparison. In this approach, an individual slack
variable is used for each constraint, which allows viola-
tions. As optimization objective, the sum of the squared
slack values has to be minimized.

relative distance constraints linear classification problem 

Figure 1. Transformation of a relative distance constraint
for linear combination models into two training instances
of the corresponding binary classification problem as de-
scribed by Cheng et al. [3].

2.1.3 Linear Support Vector Machine (LibLinear)

The third approach takes a very different perspective. As
described by Cheng et al. [3], the learning task can be re-
formulated as a binary classification problem, which opens
the possibility to apply a wide range of sophisticated clas-
sification techniques such as (linear) Support Vector Ma-
chines (SVMs). Figure 1 illustrates this idea to rewrite
each relative distance constraint d(s, a) < d(s, b) as
m∑
i=1

wi(δfi(s, b)− δfi(s, a)) =
m∑
i=1

wixi = wTx > 0 (8)

where xi is the distance difference with respect to facet fi.
The positive training example (x,+1) then represents the
satisfied constraint whereas the negative example (−x,−1)
represents its violation (i.e., inverting the relation sign).
For these training examples, the normal vector of the hy-
perplane that separates the positive and negative instances
contains the adapted facet weights. As in [12], the Lib-
Linear library is used here, which finds a stable separating
hyperplane but still suffers from the so far unresolved prob-
lem that the non-negativity of the facet weights cannot be
enforced.

2.2 Metric Learning

Alternative approaches to weighting predefined facet dis-
tance measures include direct manipulation of parametrized
vector distance measures. All features are concatenated
to a single combined feature vector per clip. We model
a clip’s feature vector by g(a) : N 7→ RN . This corre-
sponds to assigning a single facet to each feature dimen-
sion. Frequently, the mathematical form of Mahalanobis
metrics is used to specify a parametrized vector distance
measure. In contrast to the approaches described in the pre-
vious section, adaptation is performed in the (combined)
feature space itself: Given two feature vectors a = g(a),
b = g(b) ∈ RN , the family of Mahalanobis distance mea-
sures can be expressed by

dW(a,b) =
√

(a− b)TW(a− b), (9)

where W ∈ RN×N is a positive semidefinite matrix, para-
metrizing the distance function. Generic variants of the



Euclidean metric, Mahalanobis metrics allow for linear trans-
formation of the feature space when accessing distance.
An important property of this approach is that the number
of adjustable parameters directly depends on the dimen-
sionality N of the feature space. As this number grows
quadratically with N , many approaches restrict training to
the N parameters of a diagonal matrix W, only permitting
a weighting of the individual feature dimensions.

2.2.1 Linear Support Vector Machine (SVMLight)

The SVM approach explained in Section 2.1.3 has been
shown as well suited to learning a Mahalanobis distance
measure: Schultz et al. [10] adapted a weighted kernelized
metric towards relative distance constraints. We follow the
approach of Wolff et al. [13], where a linear kernel is used.
This simplifies the approach of Schultz et al. to learning a
diagonally restricted Mahalanobis distance (Equation 9).

Like the SVM for the facet distances, a large margin
classifier is optimized to the distance constraints. Here,
for each constraint (s, a, b), we replace the facet distance
difference vector x in Equation 8 with the difference of the
pointwise squared 1 feature difference vectors x = (s −
b)2 − (s− a)2.

Given the vector w = diag(W),wi ≥ 0 and slack vari-
ables ξ(s,a,b) ≥ 0, optimization is performed as follows:

min
w,ξ

1

2
wTw + c ·

∑
(s,a,b)

ξ(s,a,b) (10)

s.t.∀ (s, a, b) wTx(s,a,b) ≥ 1− ξ(s,a,b)
Here, c determines a trade-off between regularization and
the enforcement of constraints. For the experiments below,
the SVMlight framework 2 is used to optimize the weights
wi . As for LibLinear, wi ≥ 0 cannot be guaranteed.

2.2.2 Metric Learning to Rank

McFee et al. [9] developed an algorithm for learning a Ma-
halanobis distance from rankings. 3 Using the constrained
regularization of Structural SVM, the matrix W is opti-
mized to an input of clip rankings and their feature vectors.
Given a relative distance constraint (s, a, b) (see Equation 1),
the corresponding ranking assigns a higher ranking score
to a than to b, when querying clip s. For a setX of training
query feature vectors q ∈ X ⊂ RN and associated training
rankings y∗q , Metric Learning to Rank (MLR) minimizes

min
W,ξ

tr(WTW) + c
1

n

∑
q∈X

ξq, (11)

s.t. ∀q ∈ X, ∀y ∈ Y \ {y∗q} :

HW

(
q, y∗q

)
≥ HW (q, y) + ∆(y∗q , y)− ξq,

with Wi,j ≥ 0 and ξq ≥ 0. Here, the matrix W is reg-
ularized using the trace. Optimization is subject to the
constraints creating a minimal slack penalty of ξq . c de-
termines the trade-off between regularization and the slack
penalty for the constraints below. HW(q, y) 4 assigns a

1 (a2)i := (ai)
2

2 http://svmlight.joachims.org/
3 http://cseweb.ucsd.edu/˜bmcfee/code/mlr/
4 For simplification, HW(q, y) substitutes the Frobenius product

〈W,ψ(q, y)〉F in [9].

score to the validity of ranking y given the query q with
regard to the Mahalanobis matrix W. This enforces W
to fulfill the training rankings y∗q . The additional ranking-
loss term ∆(y∗q , y) assures a margin between the scores of
given training rankings y∗q and incorrect rankings y. The
method is kept efficient by selecting only a few possible
alternative rankings y ∈ Y for comparison with the train-
ing rankings: A separation oracle is used for predicting the
worst violated constraints (see [6]). In our experiments, an
MLR variant DMLR restricts W to a diagonal shape.

3. EXPERIMENT DESIGN

3.1 The MagnaTagATune Dataset

MagnaTagATune is a dataset combining mp3 audio, acous-
tic feature data, user votings for music similarity, and tag
data for a set of 25863 clips of about 30 seconds taken from
5405 songs provided by the Magnatune 5 label. The bun-
dled acoustic features have been extracted using version
1.0 of the EchoNest API 6 . The tag and similarity data has
been collected using the TagATune game [7]. TagATune
is a typical instance of an online “Game With A Purpose”.
While users are playing the game mainly for recreational
purposes, they annotate the presented music clips. The tag
data is collected during the main mode of the game, where
two players have to agree on whether they listen to identi-
cal clips. Their communication is saved as tag data. The
bonus mode of the game involves a typical odd one out
survey asking two players to independently select the same
outlier out of three clips presented to them. The triplets of
clips presented to them vary widely in genre, containing
material from ambient and electronica, classical, alterna-
tive, and rock.

3.2 Similarity Data

The comparative similarity data in MagnaTagATune can be
represented in a constraint multigraph with pairs of clips as
nodes [8, 12]. The vote for an outlier k in the clip triplet
(i, j, k) is transformed into two relative distance constraints:
(i, j, k) and (j, i, k). Each constraint (s, a, b) is represented
by an edge from the clip pair (s, a) to (s, b). This results
in 15300 edges of which 1598 are unique. In order to
adapt similarity measures to this data, the multigraph has
to be acyclic, as cycles correspond to inconsistencies in the
similarity data. The MagnaTagATune similarity data only
contains cycles of length 2, corresponding to contradictive
user statements regarding the same triplet. In order to re-
move these cycles, the contradicting multigraph edge num-
bers are consolidated by subtracting the number of edges
connecting the same vertices in opposite directions. The
remaining 6898 edges corresponding to 860 unique rela-
tive distance constraints constitute the similarity data we
work with. 7

5 http://magnatune.com/
6 http://developer.echonest.com/
7 In [12], the authors report that the number of consistent constraints is

674. This differing number was caused by a software bug in the filtering
algorithm, which led to the removal of more constraints than necessary.

http://svmlight.joachims.org/
http://cseweb.ucsd.edu/~bmcfee/code/mlr/
http://magnatune.com/
http://developer.echonest.com/


3.3 Data Partitioning

In order to assess the training performance of the approaches
described in Section 2, we compare two cross-validation
variants to specify independent test and training sets.

A straightforward method, randomly sampling the con-
straints into cross-validation bins and therefore into combi-
nations of test and training sets has been used on the dataset
before by Wolff et al. [13]. We use this standard method
(sampling A) to perform 10-fold cross validation, sampling
the data into non-overlapping test and training sets of 86
and 774 constraints respectively

For the second sampling, it is considered that two con-
straints were derived from each user voting, as such are
related to the same clips. Assigning one of such two con-
straints to training and the remaining one to a test set might
introduce bias by referring to common information. In
our second validation approach, (sampling B) it is assured
that the test and training sets also perfectly separate on the
clip set. The 860 edges of the MagnaTagATune similar-
ity multigraph connect 337 components of three vertices
each. These correspond to the initial setup of clip triplets
presented to the players during the TagATune game.

As the removal of one clip causes the loss of all similar-
ity information (maximally 3 constraints) within its triplet,
the sampling of the test data is based on the triplets rather
than the constraints. On the 337 triplets, we use 10-fold
cross validation for dividing these into bins of 33 or 34
triplets. Due to the varying number of 2-3 constraints per
triplet, the training set sizes vary from 770-779 constraints,
leaving the test sets at 81-90 constraints.

For evaluation of generalization and general performance
trends, the training sets are analyzed in an expanding sub-
set manner. We start with individual training sets of ei-
ther 13 constraints (sampling A) or 5 triplets (sampling B),
corresponding to 11-15 constraints. The size of the train-
ing sets is then increased exponentially, including all the
smaller training sets’ constraints in the larger ones. Con-
straints remaining unused for each of the smaller training
set sizes are used for further validation, and referred to as
unused training constraints. For both sampling methods,
all test and training sets are fixed, and referred to as sam-
pling A and sampling B.

3.4 Features and Facets

As features, we use those defined in [12] plus the genre
features used by Wolff et al. [13]. This results in the set of
features shown in Table 1.

Of the 7 global features, “danceability” and “energy”
were not contained in the original clip analysis information
of the dataset but have become available with a newer ver-
sion of the EchoNest API. Furthermore, the segment-based
features describing pitch (“chroma”) and timbre have been
aggregated (per dimension) resulting in 12-dimensional vec-
tors with the mean and standard deviation values. This has
been done according to the approach described in [4] for
the same dataset. The 99 tags were derived from annota-
tions collected through the TagATune game [7] by applying

feature dim. value description

key 1 0 to 11 (one of the 12 keys) or −1 (none)
mode 1 0 (minor), 1 (major) or −1 (none)
loudness 1 overall value in decibel (dB)
tempo 1 in beats per minute (bpm)
time signature 1 3 to 7 ( 3

4
to 7

4
), 1 (complex), or −1 (none)

danceability 1 between 0 (low) and 1 (high)
energy 1 between 0 (low) and 1 (high)

pitch mean 12 dimensions correspond to pitch classes
pitch std. dev. 12 dimensions correspond to pitch classes
timbre mean 12 normalized timbre PCA coefficients
timbre std. dev. 12 normalized timbre PCA coefficients

tags 99 binary vector (very sparse)
genres 44 binary vector (very sparse)

Table 1. Features for the MagnaTagATune dataset. Top
rows: Globally extracted EchoNest features. Middle rows:
Aggregation of EchoNest features extracted per segment.
Bottom row: Manual annotations from TagATune game
and the Magnatune label respectively.

the preprocessing steps described in [12]. The resulting bi-
nary tag vectors are more dense than for the original 188
tags but still very sparse. The genre labels were obtained
from the Magnatune label as described by Wolff et al. [13].
A total of 42 genres was assigned to the clips in the test set
with 1-3 genre labels per clip. This also results in very
sparse binary vectors.

For the facet-based approaches described in Section 2.1,
two different sets of facets are considered consisting of 26
and 155 facets respectively. In both sets, the 7 global fea-
tures are represented as individual facets (using the dis-
tance measures described in [12]). As the genre labels
are very sparse, they are combined in a single facet us-
ing the Jaccard distance measure. The set of 155 facets
is obtained by adding 99 tag facets (as in [12]) and a sin-
gle facet for each dimension of the 12-dimensional pitch
and timbre features. For the set of 26 facets, the pitch
and timbre feature are represented as a single facet each
(combining all 12 dimensions). Furthermore, 14 tag-based
facets are added of which 9 refer to aggregated tags that
are less sparse (solo, instrumental, voice present, male, fe-
male, noise, silence, repetitive, beat) and 5 compare binary
vectors for groups of related tags (tempo, genre, location,
instruments, perception / mood). This results in a realis-
tic similarity model of reasonable complexity that could
still be adapted manually by a user. The more complex
model with almost six times as many facet weight param-
eters serves as the upper bound of the adaptability using a
linear approach for the given set of features.

4. RESULTS

For the similarity data sampling A, Figure 2 shows all of
the algorithms to improve the baseline of 63% satisfied un-
known constraints by 7% to 10%. Plotted are the perfor-
mance averages over 10-fold cross-validation as described
in Section 3.3. Except for SVMlight, most of the final gen-
eralization success is achieved within the first 250 train-
ing constraints. Only diagonal MLR shows notable non-
monotonic behaviour for larger training sets >200 con-



straints. Further tests on the unused training data repro-
duce the results on the static test sets shown here. As
shown in Figure 3, all algorithms are able to satisfy the
initial training constraints. With the exception of MLR,
(see Section 4.2), the training performance decreases for
growing training sets, asymptotically approaching the test
set performance. Such effects have been shown in [13] not
to contradict good generalization results.

4.1 Impact of Model Complexity

For the facet-based linear approaches (Figure 3, left), a
strong impact of the number of facet weight parameters can
be observed. Whilst the performance for the model with
155 facets is significantly superior on the training data, it
is generally worse on the test data. Only for a high number
of training constraints, the simpler model with 26 facets
can be matched or slightly outperformed. This is a strong
indicator for model overfitting. With its many parameters,
the complex model adapts too much to the training data at
the cost of a reduced ability to generalize. In contrast, the
simple model is able to generalize much quicker. This is
especially remarkable for the quadratic programming ap-
proach with the quickest generalization of all approaches.
Its adaptation performance on the test data also comes clos-
est to the training performance, which can be seen as an
upper bound. It appears as if this limit is increased by
about 5%, if 155 facets are used instead, but more train-
ing examples would be needed to get closer to this value.
Here lies great potential for future research: By adapting
the model complexity (i.e., the number of parameters) de-
pending on the number of training examples and the per-
formance on some unseen constraints, the ability of simple
models to quickly generalize could be combined with the
superior adaptability of more complex ones.

4.2 Effects of Similarity Sampling

For most of the algorithms tested, the effect of choosing
sampling A or sampling B is small. Best performing are
MLR (samling A) and quadratic programming(m = 155)
for sampling B. Except for MLR, decrease in test set per-
formance is limited to 1% when trained with the clip-sepa-
rating sampling B. In the right column of Figure 3, the met-
ric learning algorithms are compared. The bottom black
curves represent the test set results for sampling A (dashed,
· – ·) and sampling B (solid, —). The training perfor-
mances for these samplings are plotted on the top of the
graphs. While SVMlight (d) and DMLR (f) only loose 2-3%
in performance, MLR (e) drops by more than 6%. Exclu-
sively among the algorithms tested, the fully parametrized
MLR(e) variant shows a 100% training performance for all
training sizes. In line with results from Wolff et al. [13,14],
the algorithm generalizes well on the similarity data with
sampling A. Even with further permutations of the data,
this capability to generalize reduces significantly when us-
ing MLR with our sampling method B, possibly caused by
the lack of feature reoccurence in the training data.

5. CONCLUSIONS

The results of the experiment show that all approaches can
adapt a similarity model to training data and generalize the
learned information to unknown test data. Training perfor-
mance curves can be used as an indicator for the maximal
generalization outcome to expect, which depends on the
number of facets and the features used. Sensitivity with re-
spect to the sampling method of the test data was observed
for MLR, which requires further investigation. Another
promising direction for future work is to dynamically adapt
the model complexity, e.g., by regularization. The feature
data and sampling information are available online 8 for
benchmarking of approaches developed in the future.
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Figure 2. Performance comparison of facet-based approaches (with 26 facets) and metric learning. Values are averaged
over all 20 folds of sampling A. The baseline at 63% refers to the mean performance of random facet weights (n = 1000).
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Figure 3. Detailed performance of the individual approaches under different conditions. Top curves show training
performance, bottom curves and legend show test set performance. Left column (a, b, c): Performance of the facet-
based approaches using 26 facets (—) and 155 facets (– –). Comparison based on sampling B. Right column (d, e, f):
Performance of the metric-based approaches. Effects of sampling A(· – ·) and B(—) are compared.
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ABSTRACT

Recently a large amount of new chord annotations have
been made available. This raises hopes for further devel-
opment in automatic chord estimation. While more data
seems to imply better performance, a major challenge how-
ever, is the wide variety of genres covered by these new
data. As a result, the genre-independent training scheme
as is common today is bound to fail. In this paper we in-
vestigate various options for exploring genre information
for chord estimation, while also maximally exploiting the
full dataset. More specifically, we propose a hyper-genre
training scheme in which each genre cluster has its own pa-
rameters, tied together by hyper parameters as a Bayesian
prior. The results are promising, showing significant im-
provements over other prevailing training schemes.

1. INTRODUCTION

Identifying musical chords from audio recordings is a chal-
lenging task and has recently attracted the interest of many
researchers in the music information retrieval (MIR) field.
The general approach of automatic chord estimation (ACE)
involves two stages: the extraction of spectral features such
as chromagram from audio; and the estimation of chords
based on these features, via e.g. Hidden Markov Models
(HMMs). In the past few years, while developing chroma
extraction techniques has become a fruitful topic [2, 7–9],
researchers have also explored a variety of musical factors
such as key [5, 6, 10] and bassline [7, 9] that are related to
chord progressions to build up richer ACE systems.

Nevertheless, one issue that has cramped the develop-
ment in automatic chord estimation is the limited amount
of the data available. Since most of the studies so far
were carried out on a collection of The Beatles, Queen
and Zweieck songs (i.e. the MIREX dataset), it is becom-
ing increasingly probable that the existing ACE researches
are overfitting this dataset. Recently a large amount of
new chord annotations have been released by the structural
analysis of large amounts of music information (SALAMI)
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project [14], raising hopes for further development of the
ACE systems. A major challenge it also brings however, is
the wide variety of genres covered by the data.

This paper is devoted to the study of the new dataset.
Distinct from feature extraction and decoding research, we
investigate various training schemes for exploring genre
information to aid automatic chord estimation. We begin
by giving an overview of the ACE task.

1.1 Automatic Chord Estimation

Let x = [x1, . . . , xs, . . . , xS ] be a mono audio signal with
xs indicating the value of the s-th sample. In ACE re-
search, the signal is usually converted into a 12-dimensional
representation of the harmonic content, with one such vec-
tor for each time frame. This vector is known as a chroma
[2] vector, and it is intended to reflect the distribution of
salience over the 12 pitch classes. The chroma vectors
for the audio signal x are then gathered as the columns
of a matrix X ∈ Rd×T , with T denoting the number of
frames and d = 12. In the target domain the chord an-
notations are denoted by c ∈ A1×T , with A represent-
ing the chord alphabet. To model the relationship between
observed variables Xt and hidden variables ct, a standard
HMM [13] with the parameter set Θ =

{
Pi ∈ R|A|,Pt ∈

R|A|×|A|,Pe

}
is commonly used. Pi, Pt denote the ini-

tialization and the transition probabilities respectively, and
the emission probability for chord ct is frequently mod-
elled as a single Gaussian

pe(Xt|ct) = Xt ∼ N (µct ,Σct) (1)

with the distribution parameters {µc,Σc}c∈A. Under this
framework, the joint probability of the feature vectors X
and the corresponding chord sequence c is of the form

P (X, c|Θ) = pi(c1)

T∏
t=2

pt(ct|ct−1)

T∏
t=1

pe(Xt|ct). (2)

Given the optimal parameters Θ∗, the ACE task is equiva-
lent to finding c∗ that maximizes the joint probability c∗ =
argmax

c̄
P (X, c̄|Θ∗), which can be done efficiently by the

Viterbi algorithm [13].
By restricting our interest to a standard HMM, the train-

ing scheme as we define it is a strategy to derive the optimal
parameters Θ∗ from the training data. Given N audio clips
for which the chromagrams X = {Xn ∈ Rd×Tn}Nn=1 and



Figure 1. Genre distribution of the MIREX and the SALAMI datasets. The MIREX dataset is dominated by Rock and Pop
genres, whereas the SALAMI dataset has a much wider variety of genres such as Country and Blues/Soul.

Figure 2. Training schemes for automatic chord estima-
tion: universal training (left), genre-specific training (mid-
dle) and the proposed hyper-genre training (right).

the chord annotations C = {cn ∈ A1×Tn}Nn=1 are both
available, the prevailing scheme is the universal training
(denoted by UN, cf. left block in Fig. 2) that derives one
Θ∗ from all available data {X , C}.

1.2 Why a new training scheme?

The effectiveness of UN-training on the MIREX dataset
has now been established. Since this collection is highly
genre-biased and only small variations exist (cf. Fig. 1),
UN-training can make full use of the data without con-
founding chord characteristics. However, the SALAMI
data has a much wider variety of genres 1 (cf. Fig. 1), this
casts doubts on the effectiveness of UN-training for two
reasons: first of all, when reducing the chords to an al-
phabet such as triads (cf. Fig. 3), the variety of chords is
noticeably different between genres. For instance, Rock
and Country genres mainly use simple chords (e.g. major),
whereas Jazz tends to uses more complex ones (e.g. ma-
jor 7th). This subsequently incurs a large variation on the
chromas of the same chord among different genres (cf. Fig.4).
In addition, chord progressions of different genres can vary
dramatically [11]. Neither of these can be solved by UN-
training, since the scheme ignores the connection between
musical genre and chord variety and progression.

1 The genre information was obtained with thanks from http://
www.last.fm/ and http://www.wikipedia.org/.

A potential solution to these issues is to apply a more
complex model such as a Mixture of Gaussians (MOG) to
Eqn. (1), but this risks the probability functions of different
chords being confused [e.g. E:dim= (E,G,Bb) may also
yield high probability in an MOG model for C:maj due to
the modelling of C:7= (C,E,G,Bb)]. One can also re-
spect this musical factor with a more rigorous approach:
training a different Θ for each genre, an example of which
is the genre-specific training (denoted by GS, cf. middle
block in Fig.2) presented in [5]. However, this method of-
ten suffers from the problems caused by data sparseness,
because it can not maximally exploit the full dataset (see
the discussion in Sec. 3.1).

As an alternative, we develop a new training scheme
which we call hyper-genre training (denoted by HG, cf.
right block in Fig. 2). Instead of using independent param-
eters for each genre as it is in GS-training, HG-training
constructs a hierarchical probabilistic model and connect
the genres using hyper parameters. This framework is sim-
ilar to a Hierarchical Dirichelet Process (HDP) [15], which
has been applied to music similarity measurement [12] and
timbral similarity estimation [4] in the MIR domain. The
main difference here is that the proposed approach uses a
well-defined cluster structure on the basis of musical knowl-
edge, hence avoiding the massive sampling and uncertain
clustering process in HDP.

The rest of the paper is organized as follows. In Sec. 2
we apply the proposed HG-training to the standard HMM
and detail the corresponding parameter estimation. We
then evaluate the approach and compare it with the other
two training schemes in Sec. 3. Finally the conclusions
and future work are drawn in Sec. 4.

2. HYPER-GENRE HMM

To take into account the fact that songs belong to different
genres, the data is divided into K clusters according to the
genre information. Suppose the k-th cluster contains nk

songs and
∑K

k=1 nk = N , we then denote the collection of
chromagrams and chord annotations for cluster k as Xk =
{Xn ∈ Rd×Tn}nk

n=1, and Ck = {cn ∈ A1×Tn}nk
n=1.

In general, a UN-HMM trains one Θ on all available



Figure 3. Comparison of chord varieties of chord C be-
tween different genres. Each figure includes the chords
that can be reduced to the same triad. The percentages of
these chords in a cluster then suggest the genre-specific
chord variety. Note that in this figure the genres appeared
in the SALAMI dataset have been grouped manually and
formed 11 genre clusters.

Figure 4. Chroma features for all occurrences of C:min-
like chords (cf. middle plot in Fig. 3) for the Groove and
the Hard rock genres. To aid visualization, the 12 dimen-
sional feature space has been reduced to 2 using Principal
Component Analysis. We found that in the Groove clus-
ter, there were many more complex variants (e.g. C:min7),
whilst in Hard rock simple chords such as C:min were
more common. Owing to this, there is a large variation
between their chroma features.

data {X , C}; while a GS-HMM has a set of parameters
Θ = {Θk}Kk=1, each of which is trained on the cluster
examples {Xk, Ck}. The HG-HMM also has a set of genre-
specific parameters Θ̄ =

{
Θ̄k = (P̄k

i , P̄
k
t , P̄

k
e)
}K

k=1
, but it

ties them together by hyper parameters as a Bayesian prior.
One implementation of the HG-HMM is depicted in

Fig. 5, in which the genre clusters are connected via a hy-
per parameter set Θ0 = {µ0 ∈ Rd×|A|,Σ0 ∈ Rd×d×|A|,
α0 ∈ R|A|,β0 ∈ R|A|×|A|,k0 ∈ NK ,m0} to propagate
information. Under this framework, the parameter esti-
mates of Θ̄ are computed as follows.

2.1 Parameter Estimation

For the emission probability P̄k
e of cluster k, the hyper link

(dash line in Fig. 5) is equivalent to applying a conjugate
prior to the distribution parameters {µc

k,Σ
c
k}c∈A:

Σc
k ∼ W(Σc

0,m0)

µc
k|Σ

c
k ∼ N (µc

0,
1
kc0

Σc
k)

∀c ∈ A, (3)

where W denotes the Wishart distribution [1]. The Bayesian
update of the emission probability then becomes

p̄ke(Xt|c) = Xt ∼ T (m0 +mc
k − d+ 1,

µ̄c
k,

kc + 1
kc(m0 +mc

k − d+ 1)
Σ̄

c
k).

(4)

In (4) T denotes the multivariate Student-t distribution with
the following parameters

mc
k = #(ct = c), ∀ct ∈ Ck,

kc = kc0 +mc
k,

µ̄c
k =

kc
0µ

c
0+mc

kµ
∗c
k

kc
0+mc

k
,

Σ̄
c
k = Σc

0 +mc
kΣ

∗c
k +

kc
0m

c
k

kc ∥µ∗c
k − µc

0∥2,

(5)

where # indicates ‘the number of’ and {µ∗c
k ,Σ∗c

k }c∈A are
the maximum likelihood (ML) estimations of the parame-
ters {µc

k,Σ
c
k}c∈A using the cluster examples {Xk, Ck}.

Similarly, the hyper priors applied to the initialization
and the transition parameters of cluster k are given by

Pk
i |α0 = {pki (c)| c ∈ A} ∼ Dir(|A|,α0),

Pk
t |β0 = {pkt (c|c̄)| c ∈ A} ∼ Dir(|A|,βc̄

0), ∀c̄,
(6)

where Dir is the Dirichlet distribution. The Bayesian up-
date of these probabilities are then computed by: ∀c1, ct−1,
ct ∈ Ck

p̄ki (c) =
#(c1=c)+αc

0∑
c′∈A

#(c1=c′)+
∑

c′∈A
αc′

0

,

p̄kt (c|c̄) =
#(ct=c & ct−1=c̄)+βc̄,c

0∑
c′∈A

#(ct=c′ & ct−1=c̄)+
∑

c′∈A
βc̄,c′
0

.
(7)

Note that if a non-informative prior is used (i.e. αc
0 = 1

and βc̄,c
0 = 1), the Bayesian update (7) is the ML esti-

mations of the initialization and the transition parameters
trained on the cluster examples. This is equivalent to using
{Pk

i ,P
k
t }Kk=1 as used in the GS-HMM.

Eqns. (5) and (7) provide the insight of the hyper pa-
rameters: they reflect our prior belief about the genre clus-
ter parameters. Hence when few data are available to esti-
mate the parameters of cluster k, the HG-HMM can benefit



Figure 5. The implementation (dash-dot box) of the hyper-genre HMM for the SALAMI dataset. Ideally each genre
should be regarded as a cluster, but in practice this is difficult to achieve with limited data. In order to assure a reasonable
cluster size, we grouped the genres and created 11 genre-related clusters. These clusters are then connected via the hyper
parameters so as to share information. The number of songs in a genre (or cluster) is shown in the bracket.

from the hyper parameter set. The clusters (e.g. Rock) can
also share information with related ones (e.g. Blues), while
retaining their intrinsic chord varieties and progressions.
Ideally the set Θ0 should has several subsets, one for each
group of related genres. However, restricted by the data
available we had to follow the suggestions in [4, 12] and
used a single Θ0 that reflects the distribution of the whole
dataset instead: that is, (µ0,Σ0) are set to the mean and
the covariance matrices of all training data respectively;
α0,β0 counts for all chord initializations and transitions,
m0 = d and kc0 = #(ct = c), ∀ct ∈ C.

2.2 Decoding

Given the updated parameters {Θ̄k}Kk=1, the decoding pro-
cess is given by

c∗ = argmax
c̄

P (X, c̄|Θ̄k)

= argmax
c̄

p̄ki (c1)
T∏

t=2
p̄kt (ct|ct−1)

T∏
t=1

p̄ke(Xt|ct)

(8)
The decoder (8) requires the cluster label k of the test

example. This requirement can be easily waived by using
the maximum likelihood inference as suggested in [5]:

{c∗, k∗} = argmax
c̄,k

P (X, c̄|Θ̄k). (9)

3. EXPERIMENTS

Here we describe the main experiments conducted. The
dataset investigated is the SALAMI data, which contains
522 songs along with the ground truth chord annotations 2 .
In the experiments, we restrict the ACE system to a stan-
dard HMM with the loudness based chromagram [9]. In
order to capture intrinsic chord varieties and progressions
between genres but retaining a controllable complexity, we
restricted ourselves to an alphabet of triads 3 , with 73 uni-
que chords in total. To evaluate the proposed approach,
we randomly split 2/3 of songs from each genre cluster to
form the training set, while the remaining 1/3 were used
for testing. The frame-based chord estimation accuracy is
used as the evaluation metric and in total 102 train-test runs
were done to assess variance 4 .

3.1 Comparison of different training schemes

There are three training schemes we can apply to the emis-
sion parameters: universal training (UN), genre-specific
training (GS) and hyper-genre training (HG). Similarly, th-
ey can be applied to the initialization and the transition pa-
rameters, resulting in 3×3 = 9 combinations. Suppose the

2 The readers are referred to the Appendix for our process of ex-
tracting the SALAMI chord annotations. These annotations are avail-
able online at https://patterns.enm.bris.ac.uk/files/
SALAMI_522_chord_annotations.zip.

3 Chord types: maj, min, dim, sus2, sus4, aug and N.
4 That is, each song in the dataset would be tested 34 times.



cluster labels are known, in this subsection we compared
these combinations using the decoder (8).

Table. 1 presents the overall performances for each com-
bination, from which we observed a consistent improve-
ment of the hyper-genre training over the other schemes.
In particular, the HG-GS combination achieves the best
performance, amounting to 9.3% and 14.1% reductions
on the error rate compared with the universal (UN-UN)
and the genre-specific (GS-GS) trainings respectively. Al-
though applying a transition prior learnt from all the data
still yields better results than the other schemes, it is worse
than merely using a non-informative one. We postulate this
is because a transition prior learnt from all examples is a
mixed chord progression of all genres, applying it would
inevitably confound some typical progressions such as “I
(tonic) - V (dominant) - IV (subdominant)” commonly seen
in the Blues genre. This suggests that further improvement
might be gained by applying musical knowledge based tran-
sition priors on different genres, which can be obtained
from e.g. the synthetic MIDI data used in [5].

E\T UN GS HG
UN 63.61 ± 1.31 64.39± 1.29 64.3± 1.30

GS 60.61± 1.60 61.56 ± 1.68 61.05± 1.67
HG 65.93± 1.17 66.98± 1.21 66.47± 1.19

Table 1. Performances [%] of different scheme combina-
tions on the SALAMI dataset (best result in bold). The
vertical axis shows the schemes applied to the emission
parameters and the horizontal axis shows that to the ini-
tialization/transition parameters. The improvement of the
HG-HMM with non-informative priors (HG-GS) is signif-
icant at a level < 10−34 over the performances of the other
scheme combinations under a paired t-test.

Figure 6 further depicts the performances of different
training schemes on each genre cluster. For GS-training,
the performance gradually increases when more examples
are available for a cluster. The only exception is Groove,
possibly due to the fact that the complex chords in this
cluster are difficult to estimate. Limited by the amount
of the data available for each cluster, GS-training is gener-
ally inferior to UN-training. This problem was not experi-
enced or explored in [5] (Sec. 4.3), since their experiments
were based on synthetical MIDI data such that the GS-
HMM had sufficient examples to train the parameters. Al-
ternatively, HG-training is slightly worse than UN-training
when the data is very limited, by means of sharing in-
formation from the hyper parameters. For other clusters
such as Rock, HG-training allows it to obtain information
from related clusters such as Blues/Soul, while retaining
the genre-specific chord variety and progression. This ben-
efit makes it outperform UN-training and improve the per-
formance by an absolute 4.4%.

3.2 Bypassing the genres

In practice the genre information of the test data is un-
known, hence there is no choice but to use a genre-independent

Figure 6. Performances of the universal (UN-UN), the
genre-specific (GS-GS), the hyper-genre (HG-HG) and the
combined (HG-GS) training schemes on each cluster. The
clusters from left to right are sorted by the number of ex-
amples in the clusters.

model (e.g. UN-training); or increase the model complex-
ity and infer the genre as well. In this subsection we inves-
tigate how much we can gain by inferring the genre with
maximum likelihood technique (9). The experiment setup
was the same as that in Sec. 3.1, and we compared the fol-
lowing models with the ones presented in Tab. 1:

1) The GS-HMM (using the schemes GS-GS) with the
decoder (9). This is the model suggested in [5] (Sec. 4.3).

2) The HG-HMM (using HG-GS) with the decoder (9).
In addition to chord estimation accuracies, the genre

prediction accuracies of the models are also evaluated.
Tab. 2 shows the results and we observed a mild de-

crease in performance when compared with the same mod-
els using genre information in Tab. 1. This reflects the ben-
efit obtained from the genre information used. However,
the performances of using ML inference are very close to
that of using genre information directly, suggesting that
this technique is reliable to use when the genre for a test
example is unknown.

It is worth pointing out that the genre prediction accu-
racies are very low for both models, probably for two rea-
sons. Firstly, since the numbers of examples in different
clusters are highly imbalanced, some clusters might not
have enough data to train the parameters (e.g. Folk and
Jazz). In this case, a test example from that cluster could
be better decoded by other cluster models. Although ap-
plying the hyper parameters can ease this problem and im-
prove the chord estimation accuracy, it makes the cluster
models closer to the hyper prior and inevitably confounds
their intrinsic chord varieties. This consequently worsens
the genre prediction accuracies.

Another potential explanation is that since the genre
clusters are highly overlapped, it is very difficult to rigor-
ously classify an example into just one cluster. This seems
to suggest using a more flexible forest structure (e.g. the
genre Country Rock should be connected to both Country
and Rock clusters) instead of the directed tree depicted in
Fig. 5, which will be investigated in our future work.



GS-GS HG-GS
C-Acc 61.27± 1.50 66.83± 1.27
G-Acc 16.05± 2.98 10.52± 1.81

Table 2. Performances [%] of different models on the
SALAMI dataset (best result in bold). C-Acc denotes the
frame-based chord estimation accuracy and G-Acc is the
genre prediction accuracy.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new training scheme – hyper-
genre training for automatic chord estimation, capable of
testing on multiple varied genres. The principle is to con-
struct a hierarchical probabilistic model and connect the
genre clusters using hyper parameters. Compared with
the prevailing universal training scheme, HG-training is
able to retain chord variety and progression characteris-
tics of musical styles. Compared with genre-specific train-
ing, HG-training can benefit from the hyper prior and it
resolves the problem of data sparseness often encountered
in real world data. Both benefits have been verified in
our experiments on a large and varied chord annotation
dataset, where HG-training achieved significant improve-
ments over the other two schemes.

For future work, we aim to improve the hierarchical
structure of the proposed approach. This can be done by
employing a more flexible forest structure instead of the
directed tree graph. An alternative direction of research
is to learn such hierarchical structure from the data auto-
matically, which might lead to a more robust and powerful
ACE system. Finally, we are also interested in how incor-
porating musical knowledge based transition priors may
improve chord estimation accuracy.

5. APPENDIX: EXTRACTING CHORD
ANNOTATIONS FOR THE SALAMI DATASET

In this appendix we summarize how we extracted the ground
truths from the SALAMI chord annotation files.

There are two processes: obtaining the chord labels and
inferring the durations. For the former, we followed the
description in [14] and parsed the chord labels with the C.
Harte’s chord parser [3]. There were several exceptions,
which we revised manually. A more difficult task is to
extract chord durations. The SALAMI chord annotation
files do not offer time stamps for each chord (as used in
the MIREX annotation files). Instead, time instances are
given over multiple bars, where each bar contains one or
more chord. Our assumption is that the bars between two
time stamps would have equal durations (if they are not in
the same meter, then the durations are adjusted according
to the meter). Under this assumption we extracted chord
durations from the annotation files.

The original SALAMI dataset contains 649 songs, from
which we found 21 songs having ambiguous tuning. Addi-
tionally there are some duplications and cover songs. For
our experiments, we removed the 21 songs and the dupli-

cate and cover songs so that each unique song only ap-
peared once in the dataset. After this process we obtained
a set of 522 songs.
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ABSTRACT

We formulate a novel extension of nonnegative matrix fac-
torization (NMF) to take into account partial information
on source-specific activity in the spectrogram. This infor-
mation comes in the form of masking coefficients, such as
those found in an ideal binary mask. We show that state-of-
the-art results in source separation may be achieved with
only a limited amount of correct annotation, and further-
more our algorithm is robust to incorrect annotations. Since
in practice ideal annotations are not observed, we propose
several supervision scenarios to estimate the ideal mask-
ing coefficients. First, manual annotations by a trained
user on a dedicated graphical user interface are shown to
provide satisfactory performance although they are prone
to errors. Second, we investigate simple learning strate-
gies to predict the Wiener coefficients based on local in-
formation around a given time-frequency bin of the spec-
trogram. Results on single-channel source separation show
that time-frequency annotations allow to disambiguate the
source separation problem, and learned annotations open
the way for a completely unsupervised learning procedure
for source separation with no human intervention.

1. INTRODUCTION

During the past decade, nonnegative matrix factorization
(NMF) has become the core algorithm in single-channel
source separation. A rich literature has been developed
to adapt NMF to difficult scenarios in which sources are
highly synchronized, and little or no development data is
available.

In the past years, intensive research on Bayesian mod-
elling and parameterized methods have been conducted to
improve the identifiability of basis elements by restricting
the complexity of the estimated model. More recently, an-
other category of contributions consider incorporating in-
formation that is directly relevant to the data at hand, and
specified by the user. In [2], time activation of the sources
is used to specify direct constraints on the activation coeffi-
cients of the decomposition. Pitch estimates [5] were used
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for lead voice extraction. In [8], detailed score information
is provided so that each individual note can be separated.
While these contributions may use different NMF models,
a common trait is that user information is used to spec-
ify the support of decomposition coefficients at the coding
stage. A quite different line of work is proposed in [1, 3],
where isolated signals are used as proxy for the source sig-
nals, so that information on both the basis functions and
the activation coefficients can be used to constrain the fac-
torization.

In this paper, we propose to annotate directly the time-
frequency representation that is used to perform source
separation. We assume that we are given recordings where
a large fraction of time-frequency bins of the spectrogram
may be assigned unambiguously to one dominant source.
This hypothesis holds as long as there are not too many
sources, and post-processing of the recording does not in-
volve heavily non-linear effects. As illustrated in Figure
1, some patches in the spectrogram are cues for source-
specific activity, which may be exploited as information
on the optimal binary mask.
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Figure 1: Cues from computational audio source analysis
may be used as information on the optimal masking coef-
ficients

In this article we make three contributions : we propose
in Section 2 a novel modification of NMF (semi-supervised
NMF) to take into account time-frequency annotations of
the spectrogram, that is robust to errors in the annotations.
In Section 2.2, we present a graphical user interface to re-
trieve such time-frequency annotations. In Section 3, we



propose supervised learning algorithms to automatize an-
notations, and explain how to combine them with semi-
supervised NMF. Finally, we illustrate our contributions on
publicly available source separation databases in Section 4.

2. SEMI-SUPERVISED NMF

2.1 Model and interpretation

In this section we propose a novel modification of NMF
to incorporate annotations in the spectrogram. Let us first
briefly summarize our NMF model and introduce mathe-
matical notations, before proceeding to the main part of
the contribution.

Given the short time Fourier transform of a signal X ∈
CF×N (in the following f indexes frequency and n time),
we assume that X =

∑
g S

(g), where S(g) ∈ CF×N is the
spectrogram of each source signal for g ∈ {1, . . . , G}. De-
fine the power spectrograms of the sources V (g)

fn = |S(g)|2.
They are assumed to follow a linear model :
V

(g)
fn =

∑Kg

k=1W
(g)
fk H

(g)
kn , where W (g) ∈ RF×Kg

+ , H(g) ∈
RKg×N . Define K =

∑
gKg , W = (W (1), . . . ,W (G)) ∈

RF×K
+ and H> = ((H(1))>, . . . , (H(G))>) ∈ RK×N

+ .
Then, depending on the assumed distribution of S(g), es-
timation of W and H amounts to minimizing d(V,WH)
where d is a measure of fit between data and the under-
lying model. In this article we will use the Itakura-Saito
divergence, but actually any β-divergence may be used.

Given estimates V̂ (g)
fn of the power spectrogram of each

source, time domain estimates of the sources are then com-
puted by Wiener filtering, where the Wiener coefficients
of the source in the time-frequency domain are given by :

M
(g)
fn =

V̂
(g)
fn

V̂fn
.

The key idea in our contribution is the following : sup-
pose we have at hand a set L of annotated time-frequency
bins and a set of time-frequency masks M (g)

fn such that :

M
(g)
fn ∈ [0, 1], and

∑
gM

(g)
fn = 1 if (f, n) ∈ L,

∑
gM

(g)
fn =

0 otherwise.
For annotated time-frequency bins, we define target val-

ues for each source spectrogram : Ṽ (g)
fn =M

(g)
fn Vfn.

The remaining, un-annotated entries of V̂ are then com-
puted so as to fit the observed spectrogram. This idea trans-
lates into the following optimization problem :

min
∑
(f,n)

dIS(Vfn, V̂fn)+λ
∑

(f,n)∈L
g=1,...,G

µfndIS(Ṽ
(g)
fn , V̂

(g)
fn ) ,

(1)
where dIS(x, y) = x

y −log
x
y −1 is the Itakura-Saito diver-

gence 1 , and optimization is subject to the constraints that
W ≥ 0 (point-wise nonnegativity),H ≥ 0, and

∑
f Wfk =

1 to avoid scaling ambiguity. We interpret the second term
in Eq. (1) as a relaxed version of the constraints that V̂ (g)

fn

be equal to their target value M (g)
fn Vfn, for all annotated

bins (f, n) ∈ L.

1 Given that some values are set to zero, we replace the IS divergence
dIS(x, y) by dIS(ε + x, ε + y) (where ε = 10−7) in our optimization
problem, in order to deal with ill-conditioning of the objective function.

We may tune the relative importance of annotation by
varying parameter λ, from λ = 0 (standard NMF), to λ→
+∞ (in which case (WH)fn = V

(g)
fn is enforced exactly

if there are any feasible solutions). Thus, robustness to
uncertainty in the annotations is introduced by replacing
hard constraints by penalty terms in the NMF optimization
problem. Note that since annotations dictate the assign-
ment of components to sources, there is no need to group
components by hand. We will discuss the role of µfn in
the next section : in the case of user annotations, µfn = 1.
Let us discuss two cases :
(a) M

(g)
fn ∈ {0,1}: this is the case of user annotations,

where time-frequency bins are labelled by hand. In this
case, there can be only one active source at each time-
frequency bin, since

∑
gM

(g)
fn = 1. This is a strong as-

sumption, which is verified for a large fraction of the mix-
tures that are found in blind source separation.
(b) M(g)

fn ∈ [0,1]: this general case is relevant to the learn-
ing procedures we introduce in the next section, since they
output decision values in [0, 1].

Discussing the algorithm is beyond the scope of this pa-
per : we used a multiplicative updates algorithm with ap-
propriate modifications to deal with the additional terms in
Eq. (1) [6].

Figure 2: Example of user annotations in a ten seconds’
audio track: green regions are assigned to voice, and red
regions to accompaniment (best seen in color).

2.2 Relation with previous work

As in [2, 8, 5], annotations are used to constraint some
sources to be inactive. In fact, time annotations are a spe-
cial case of our model, where annotations are such that
M

(g)
fn =M

(g)
f ′n for all (f, f ′) (i.e., zeroes come in columns).

Our model deals with that case when there are two sources.
The only difference between our model and [2] is that in-
stead of enforcing Hkn = 0 as a hard constraint, we in-
troduce a soft penalty to enforce WfkHkn = 0, with the
added benefit that incorrect annotations are dealt with in a
robust fashion. The case of more than two sources is dealt
with a simple extension of Eq. (1), which we omit here for
lack of space.



2.3 A graphical user interface for time-frequency
annotation of spectrograms

In this section, we investigate manual annotation of the
spectrogram. A GUI was designed in Matlab to anno-
tate spectrograms (see Figure 2), with some extra sound
functionalities to help the user. It takes sound files as in-
put, applies some basic preprocessing (re-sampling at user-
specified rate, down-mixing to mono), computes a time-
frequency representation via user-specified parameters, and
displays the spectrogram. Zooming and slide-rule navi-
gation are enabled for better visualization. Annotation of
sources is done with a simple rectangle drawing utility :
one color for each source, as illustrated in Figure 2. An-
notations are stored in an annotation mask of dimension
F × N × G (where (F,N) is the size of the spectrogram
and G the number of sources). Several annotation masks
may be loaded into memory and displayed alternatively,
so the user can compare, for instance, manual annotations
with the output of a blind source separation algorithm. An-
notation masks may be exported to .mat format for further
processing. Finally, we implemented playback functional-
ities to help the user annotate the spectrogram.

We designed the GUI to make the annotation process
easier and faster : indeed, in our experience, while time an-
notations are easy and require only listening once or twice
to the mix, time-frequency annotations are hard even for
trained users : it takes up to one hour to annotate 20% of a
twenty seconds track.

3. TOWARDS A SUPERVISED ALGORITHM FOR
ANNOTATION

Research in computational audio scene analysis (CASA)
has emphasized the role of frequency tracks in source iden-
tification : indeed by looking at a spectrogram, it is easy to
assign a significant number of frequency tracks either to a
voiced source or a musical source (see Figure 1). In previ-
ous works, such cues have been used to compute a similar-
ity matrix that would then be used to perform clustering see
[9, 4]. We propose here a supervised learning procedure to
predict annotations automatically. At train stage, we have
at hand separate sources so that we observe not only the
mix, but also the Wiener coefficients M (g)

fn computed on
the ground truth, while at test stage we only observe V .
Thus, the goal is to predict E(M (g)|V ). In order to allevi-
ate the computational burden 2 , we make two restrictions
on the learning procedure : each vector (M (1)

fn , . . . ,M
(G)
fn )

for a given time-frequency bin (f, n) is predicted inde-
pendently of the others, and based only on the values of
patches centered at that time-frequency bin.

We now introduce the features and algorithms used to
train our predictor.

3.1 Features

The basic input to our learning algorithms consists in rect-
angular time-frequency blocks extracted from the input power

2 indeed even for ten seconds’ excerpts, there are more than 500 ×
1000 time-frequency bins for standard STFT parameters
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Figure 3: Samples of patches extracted from the SISEC
database. Intensity reflects amplitude, patches which are
labeled as accompaniment are in red, while patches which
are labeled as voice are in green. Patches in brown have
mixed Wiener coefficients (best seen in color).

spectrogram. The size of the rectangular blocks is fixed as
a parameter of the algorithm. They are then normalized to
have unit `1-norm so the features are scale invariant. We
also considered taking the log of patches, adding coordi-
nates of the patch as additional information, and taking a
Gabor transform of the patches. The Gabor transform in
particular was introduced so that correlations between pix-
els in each time-frequency blocks is taken into account.
Finally, we also tried averaging the ground truth Wiener
coefficients before learning, so that predicted regression
surfaces are smoother in time-frequency space.

3.2 Learning algorithms

Due to space limitation, we restrict ourselves to naming
the algorithms we chose and highlighting the key parame-
ters to tune. We refer the reader to standard textbooks on
machine learning for more details (e.g., [7]).
K-nearest neighbors (knn): for each test point x(test)i , the
C nearest points x(train)j , j ∈ {1, . . . , C} from the train set

are used to predict M (g)
i = 1/C

∑
j M

(g)
j .

Quantized knn (km): We learn C clusters from the train
set using K-means; for each cluster, we compute average
prediction coefficients M (g)

c . For each test point, we pre-
dict M (g)

c from the nearest cluster c.
Random Forests (rf): We learnC regression trees of depth
d from the train set and average over the C predictions for
each test point.

We will refer to this supervised learning procedure as
automatic annotations, no matter which algorithm is used.

3.3 Computation of µfn for automatic annotations

While the learning algorithms presented above predict Wie-
ner coefficients, output values near 0.5 reflect uncertainty
in the Wiener coefficients rather than prediction of mixed
volumes. For this reason we introduce an additional tun-
ing parameter µfn in Eq. (1), so that output values near 0.5



are less taken into account than values near {0, 1}. As a
rule, we choose µfn = 1 − G

G−1
∑

gM
(g)
fn (1 −M (g)

fn ), so

that 0 ≤ µfn ≤ 1 and µfn = 0 if all M (g)
fn are equal.

Moreover, when annotations are in {0, 1}, we always have
µfn = 1.

4. EXPERIMENTAL RESULTS

4.1 Description of music databases

We used two publicly available databases in our experi-
ments: the QUASI database 3 and the SISEC database for
Professionally Produced Music Recordings 4 . All source
tracks were down-sampled from 44100 Hz to 16000 Hz,
and down-mixed to mono by taking the average of left and
right channels. A voice track and accompaniment track
are then created by aggregating the various source files,
and then a final mix is created by summing the two tracks.
Sine-bell windows of size 1024 with 512 overlap were used
to compute short time Fourier transforms. The QUASI
database contains longer tracks that are amenable to time
annotations. The SISEC database contains short tracks
where only time-frequency annotations can be used. Al-
though detailed instrumental tracks are provided for most
of the mixtures, we work only on single-channel signals.
Since we are dealing with under-determined mixtures, we
restrict ourselves to separating voice from accompaniment
in each track, in order to alleviate the difficulty of the prob-
lem.

4.2 Ideal performance of semi-supervised NMF and
robustness to wrong annotations

SDR1 SDR2 SIR1 SIR2 SAR1 SAR2
0.1 % -0.02 -0.60 5.15 5.16 3.62 2.33
1 % 0.70 0.24 4.59 6.25 4.39 2.85

10 % 6.71 6.68 13.57 16.53 7.95 7.40
100 % 10.40 10.41 19.88 20.88 11.00 10.88

Table 1: Mean results on the SISEC database, as the pro-
portion of annotation increases.

Table 1 displays source separation results achieved by
semi-supervised NMF on the SISEC database when fed
with the actual Wiener coefficients computed from the ground
truth sources. Source separation performance is measured
by Source to Distortion Ratio (SDR), Source to Interfer-
ence Ratio (SIR), and Source to Artefact Ratio (SAR). Higher
values indicate better performance. As we can see, sat-
isfactory results are obtained with as little as 10% of an-
notations. When 100% of annotations are given, NMF
does nothing and the computed masks are simply the ideal
Wiener coefficients computed from the sources.

We study the robustness of our NMF routine by replac-
ing part of the ideal annotations by noise to simulate hu-
man errors. Table 2 displays average SDRs obtained when
fixing the annotation rate to 10% and varying either the rate

3 www.tsi.telecom-paristech.fr/aao/
4 sisec.wiki.irisa.fr

wrong annotations p or the optimization parameter λ. As
expected, for fixed λ the average SDR drops as p increases.
When p is fixed, there is an optimal value of λ that trades
off the benefits and drawbacks of annotations. Fixing the
target annotation rate to 10%, satisfactory results are ob-
tained with up to 10% of wrong annotations (i.e.1% of the
spectrogram).

λ p = 0 p = 0.05 p = 0.1 p = 0.2 p = 0.5

10−1 0.11 -0.08 -1.76 -1.47 -1.47
100 5.59 4.10 3.50 2.29 1.20
101 7.59 6.53 5.32 3.43 0.59
102 7.07 5.66 4.54 3.15 0.77

Table 2: Mean SDR value as λ and the proportion of
wrong annotations vary. The proportion of annotations is
set to 0.1

4.3 Automatic annotation : comparison of algorithms
and experimental results

method mean error (% improvement)
4 8 loggabor km avg 0.141 ±0.018 (14.9)
4 16 wcoords knn avg 0.140 ±0.015 (15.9)
4 8 wcoords knn avg 0.138 ±0.015 (16.8)
4 32 loggabor rf avg 0.137 ±0.013 (17.4)
4 32 loggabor knn avg 0.137±0.010 (17.4)

Table 3: Mean error on Wiener coefficient predictions on
the SISEC database (% improvement over random predic-
tion), for various learning strategies .

Learning algorithms were trained by dividing the SISEC
database in two sets of tracks. For each set, we train detec-
tors and test them on the other set. Thus we may compute
annotations and run semi-supervised NMF for all tracks
without the risk of overfitting. We emphasize the fact that
each track is annotated with a detector that has never seen
the spectrogram before : our method is purely supervised
with no adaptation to test data. Parameters of the learning
algorithms were selected at train stage by cross-validation.
Time-frequency patches of size in {4, 8}×{8, 16, 32}were
extracted. Out of each track we extract 5 × 103 patches at
train time, and 105 patches a test time, so approximately
10% of the track is annotated at test time when semi-super-
vised NMF is called.

We display in Table 3 the results of the best 5 detec-
tors, in terms of mean prediction error (first column) and
in terms of relative improvement over a purely random
predictor. Detectors are named after the following rule :
{patch size} {feature} {learning method} {averaging or
identical}. For instance, the tag loggabor corresponds to
taking log then Gabor transform of patches, and wcoords
adding frequency coordinates of the patches as side infor-
mation. Note that we used exact Wiener coefficients to
compute errors, so that all detectors can be compared even
when averaging was used at train stage. The improvement
over a random predictor is consistent across the features
and the algorithms that were used. Figure 4 compares an-
notations provided by the best detectors from Table 3 with



(a) Automatic (b) Correct

Figure 4: Comparison of automatic annotations and correct annotations (at the same time-frequency bins). Gray-scale
time-frequency bins are not annotated, red bins are annotated as accompaniment, green bins as voice(best seen in color).

ideal annotations at the same points were automatic anno-
tations were made. Red time-frequency bins correspond
to accompaniment, and green to voice. The most strik-
ing observation is that, while ideal annotations are in very
bright colors (few Wiener coefficients are different from 0
or 1), automatic annotations, on the other hand, are gen-
erally biased towards 0.5. This is to be expected since
predicting 0.5 incurs a risk of losing at most 0.25 (since
we use a regression loss), while predicting 0 or 1 incurs
a maximum loss of 1. The main asset of automatic an-
notations is that pitch tracks with varying frequency are
successfully predicted as voice. Automatic annotations are
biased towards predicting voice in the higher frequencies
: however the learning algorithm in this example did not
have the information of frequency. This might be because
transients “look” a lot like patches of unvoiced speech. Fi-
nally, one may spot inconsistencies in the predictions in
the sense that points belonging to the same pitch tracks
are sometimes classified incoherently, which is not surpris-
ing since the learning algorithms we have proposed predict
time-frequency bins independently.

To sum up, predictions of Wiener coefficients from lo-
cal patches are not perfect but provide a good starting point
for further modelling of the spectrogram. We expect that
better performance could be obtained by using more ad-
vanced cues from CASA, such as pre-clustering the spec-
trogram into pitch tracks and transient tracks, before learn-
ing 5 .

4.4 Overall results

We now turn to results obtained by semi-supervised NMF
combined with various annotation methods. On the SISEC
database, manual time-frequency annotations were done
with the GUI presented in Section 2.2. On the QUASI
database, tracks were amenable to significant time anno-

5 This is very similar to what is done in vision, where super-pixels
help deal with consistency in prediction and alleviate the computational
burden of predicting all pixel values.

tations, so by comparing results on both databases we can
compare the respective benefits of time-frequency annota-
tions VS time annotations.

In both scenarios, we compare five methods :
auto : Automatic annotations and semi-supervised NMF.
The best detector from Table 3 was chosen.
user : User annotations and semi-supervised NMF (time-
frequency annotations for SISEC, manual annotations for
QUASI). We triedK ∈ {5, 10, 20} for the SISEC database
and {10, 20, 50} for the QUASI database, as well as λ ∈
{1, 10, 100}, and selected parameters yielding highest SDR
for fair comparison with the baseline.
baseline : Run NMF and permute factors to obtain op-
timal SDR. We set K = 8 because it already takes a 10
times as long to evaluate SDRs for all permutation on a
single track as it takes to run semi-supervised NMF.
self : set s(g) = 1

Gx as estimates for the sources, it serves
to estimate the difficulty of the source separation problem
for a given database.
oracle : results obtained with Wiener coefficients com-
puted from the ground truth. In addition we display track
by track annotation accuracy for user annotations, for com-
parison with Table 2. For each method, we ran NMF three
times for 1000 iterations to avoid local minima, and kept
the run with the lowest objective cost value.

Tables 5a and 5b display average evaluation metrics for
each source (source 1 is always the accompaniment, and
source 2 is always the voice), on two different databases :

% annotated % correct
track 1 0.23 0.91
track 2 0.10 0.89
track 3 0.29 0.91
track 4 0.17 0.81
track 5 0.22 0.95

Table 4: Evaluation of user annotations on the SISEC
database.



auto user (t-f) baseline self oracle
SDR1 0.97 6.21 6.16 3.09 14.79
SDR2 0.51 2.58 1.61 -3.18 11.53
SIR1 3.17 18.64 9.91 3.09 24.00
SIR2 4.57 11.35 5.09 -3.18 23.90
SAR1 6.74 6.91 9.26 279.17 15.41
SAR2 4.18 3.91 5.58 279.17 11.84
% ann. 8.69 19.81 0.00 0.00 100.00

(a) SISEC

auto user (t) baseline self oracle
SDR1 6.76 7.59 6.29 6.21 16.88
SDR2 -4.33 -4.57 -1.71 -6.22 10.37
SIR1 6.97 15.05 13.81 6.21 25.62
SIR2 -3.75 4.09 1.88 -6.22 24.83
SAR1 21.91 9.00 7.71 268.45 17.66
SAR2 10.28 0.21 4.29 268.45 10.60
% ann. 6.91 100.00 0.00 0.00 100.00

(b) QUASI

Table 5: Results on the evaluated databases: (a) time-frequency annotations, (b) time annotations.

on the SISEC database, we experimented with time-fre-
quency annotations since the tracks were too short for time
annotations. Overall, results on the SISEC database are
better than those on QUASI. Our interpretation is that since
most of the time the accompaniment is active, the dictio-
naries tend to overfit the accompaniment and underfit the
voice. Time-frequency annotations on SISEC yield SDRs
that are a few points below that predicted by our bench-
mark from Table 2 : indeed human errors are not dis-
tributed randomly as was the case in our benchmark. Time-
frequency annotations outperform the baseline by 1 point
in SDR, which is significant because in semi-supervised
NMF there is no manual grouping of the components. Time
annotations loose to the baseline by −1 in SDR, but they
are still significantly correlated with the true sources when
compared with the baseline.

On the SISEC database, automatic annotations are also
below the baseline, however they are also significantly cor-
related with the true sources, when compared with the “self”
column. Signal to Interference Ratios are even comparable
with those of the baseline on the SISEC database. Auto-
matic annotations do not perform as well on the QUASI
database since we trained detectors only on tracks from
SISEC, so that more supervision would significantly im-
prove those figures.

To conclude, we have shown that time-frequency anno-
tations can improve significantly over NMF with ideally
grouped components. On longer tracks, time only anno-
tations yield reasonable results, but even when 100% of
the track is annotated, the estimated sources contain strong
interferences. Automatic annotations yield similar results,
but leave considerable room for improvement, since with
time-frequency annotations there will always be a point
where enough annotations with limited errors will provide
audible estimates of the sources.

5. CONCLUSION

We have proposed a novel formulation of semi-supervised
NMF that successfully takes into account annotations to
enhance the discriminative power of NMF. Semi-supervised
NMF is defined so that when a certain amount of annota-
tions is reached, source separation quality is near that of
ideal binary masks. Manual annotations retrieved with our
graphical user interface yield satisfactory results. We are

investigating ways to define annotations independently of
the particular time-frequency representation that is used.

Finally, semi-supervised NMF opens the way for inter-
action with methods from computational audio scene anal-
ysis. As such, the simple features and textbook pattern
matching algorithms we have presented show promising
results.

6. REFERENCES

[1] P. Smaragdis and G. Mysore. “Separation by “hum-
ming”: User-guided sound extraction from mono-
phonic mixtures.”, WASPAA, 2012.

[2] B. Wang. “Musical Audio Stream Separation”, Msc
Thesis, 2009.

[3] D. Fitzgerald. “User Assisted Source Separation using
Non-negative Matrix Factorisation”, Irish Signals and
Systems Conference, 2011.

[4] F. Bach and M.I. Jordan. “Blind one-microphone
speech separation: a spectral learning approach.” NIPS,
2004.

[5] J.-L. Durrieu and J.-P. Thiran. ”Musical audio source
separation based on user-selected f0 track.” (LVA/ICA),
2012.

[6] C. Févotte, N. Bertin, and J.-L. Durrieu. ”Nonnegative
matrix factorization with the Itakura-Saito divergence:
With application to music analysis.” Neural Computa-
tion, 2009.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The elements
of statistical learning. Springer, 2nd edition edition,
2009.

[8] R. Hennequin, B. David, and R. Badeau. ”Score in-
formed audio source separation using a parametric
model of non-negative spectrogram.” ICASSP, 2011.

[9] M. Lagrange, L.G. Martins, J. Murdoch, and G. Tzane-
takis. ”Normalized cuts for predominant melodic
source separation.” TASLP, 2008.



  
 

NEON.JS: NEUME EDITOR ONLINE 

Gregory Burlet, Alastair Porter, Andrew Hankinson, Ichiro Fujinaga 
Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT) 

McGill University, Montréal, Québec, Canada 
{gregory.burlet,alastair.porter,andrew.hankinson}@mail.mcgill.ca, ich@music.mcgill.ca 

ABSTRACT 

This paper introduces Neon.js, a browser-based music 
notation editor written in JavaScript. The editor can be 
used to manipulate digitally encoded musical scores in 
square-note notation. This type of notation presents 
certain challenges to a music notation editor, since many 
neumes (groups of pitches) are ligatures—continuous 
graphical symbols that represent multiple notes. Neon.js 
will serve as a component within an online optical music 
recognition framework. The primary purpose of the editor 
is to provide a readily accessible interface to easily 
correct errors made in the process of optical music 
recognition. In this context, we envision an environment 
that promotes crowdsourcing to further the creation of 
editable and searchable online symbolic music collections 
and for generating and editing ground-truth data to train 
optical music recognition algorithms. 

1. INTRODUCTION 

Music notation editors allow users to manipulate the 
arrangement of symbols within a digitally encoded 
musical score. Given the complexity of some musical 
works, the arrangement of symbols may have intricate 
relationships. Consequently, a music notation editor must 
have knowledge of these symbols and their relationships 
in a musical context to ensure that transformations to the 
symbols in the editor yield a music score that is 
syntactically correct. For example, the editor should 
ensure that notes are placed correctly on the staff and that 
musical properties are not violated. 

There are three main issues that a music notation editor 
must address: the notation encoding schema, the 
rendering of symbols, and the relationship between the 
notation encoding and the graphical representation. First, 
the digital representation of symbols in the music 
notation system must be systematically defined so that it 
represents the desired musical structures and hierarchies. 
Second, each symbol must be graphically rendered as 
glyphs on the screen. Finally, changes made by the user 
in the graphical interface must be translated accurately 
and completely to the underlying encoding—a non-trivial 
task since there may be cascading effects on other 

symbols in the encoded document. 
This paper introduces Neon.js, a music notation editor 

for an early notation system known as square-note 
notation, which originated in the 13th century. In this 
system of notation, individual notes may be grouped into 
larger structures called neumes, which represent the 
pitches of a vocal phrase spanning a single syllable. 
Neumes have different names that are determined by the 
pitch contour of the individual notes making up the 
neume. Most neumes are ligatures—symbols that 
represent multiple connected notes. Square-note notation 
editors must be able to correctly render these ligatures, 
while still allowing access to individual notes in the 
neume. An overview of this notation system and example 
scores can be found in the Liber Usualis, a compilation of 
plainchant used by the Roman Catholic Church [3]. 

Neon.js is a web application. It displays square-note 
notation in the web browser and accepts user input to 
modify the underlying digital representation of the score. 
Neon.js can be used to create new musical scores, or to 
correct errors from automated transcriptions in an optical 
music recognition (OMR) workflow. 

By making the editor easily accessible online, OMR 
error correction tasks can be distributed amongst many 
people, potentially accelerating the creation of ground-
truth training data and errorless symbolic music 
collections. The process of outsourcing a simple, defined 
task to the general population is known as 
crowdsourcing. We predict that by providing tools to 
enable crowdsourcing of the correction of OMR 
transcription errors, early music researchers will be able 
to obtain transcriptions more quickly in order to perform 
computer-assisted analyses of these works. 

We begin with a review of music notation editors and 
online crowdsourcing systems. Next, we discuss the 
benefits of a browser-based editor, the requirements for a 
musical document-encoding scheme, and available 
techniques for drawing in a web browser. Finally, the 
software architecture of Neon.js is introduced and the 
main functions of the editor are described, with a focus 
on functionality that is unique to square-note notation. 

2. RELATED WORK 

2.1 Music Notation Editors 

An editor for square-note notation contains some 
functionality that is similar to editors of common music 
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notation. The core functionality required of a notation 
editor is to allow the user to insert, delete, and change 
symbols in a piece of notated music. Well-known music 
notation editors such as Finale1, Sibelius2, MuseScore3, 
and NoteFlight4 provide these basic functions and more. 
Of these, NoteFlight is the only known example of a 
web-based editor for common music notation. All of 
these editors allow the user to save files containing the 
digital encoding of the edited musical document. These 
editors allow changes to individual symbol attributes, like 
note pitch and ornamentation, as well as changes to 
global musical properties, such as tempo and time 
signature. Since certain properties of common music 
notation do not exist in square-note notation, an editor for 
neume notation does not need to handle features such as 
tempo, time signature, chords, multiple voices on a staff, 
beams, slurs, or tuplet marks. 

Editors for square-note notation do exist, although they 
are significantly less prevalent than editors for common 
music notation. The Medieval plugin5 for Finale allows 
square-note notation to be edited in Finale. To input and 
render this notation in Finale, the plugin must work 
around some syntactic musical requirements that Finale 
imposes on scores. For example, the plugin alters the 
time signature of each bar in the score (each of which 
may have a different number of notes), to prevent Finale 
from automatically inserting bar lines. 

Another neume notation editor has been developed as 
part of the NEumed Unicode Manuscript Encoding 
Standard (NEUMES) project [2]. The editor is developed 
as a Java applet and is therefore available for use in a web 
browser6. The editor uses NeumesXML, an encoding 
format that describes square-note notation as well as 
earlier neume notation systems without staff lines. 
NeumesXML is an XML-based format that uses Unicode 
characters to represent different neumes. Although the 
editor did not advance beyond the prototyping phase of 
development, the user interface allows scanned images of 
musical scores to be displayed side-by-side with the 
rendered notation for reference.  

As part of the Tübingen project [7], the MEI-Neumes-
Viewer7 renders neume notation in the web browser. In 
the preliminary stages of the project, the Humdrum 
Toolkit was used to develop a data representation specific 
to their repertoire. In later stages of the project8 they 
developed the neume-encoding scheme that is now part 
of the Music Encoding Initiative (MEI). The MEI-
Neumes-Viewer is an engraving system, not an editor, 

                                                             
1 http://www.finalemusic.com 
2 http://www.sibelius.com 
3 http://musescore.org 
4 http://www.noteflight.com 
5 http://www.klemm-music.de/notation/medieval 
6 http://www.scribeserver.com/medieval/staves_applet.html 
7 http://www.dimused.uni-tuebingen.de/hildegard 
8 http://www.dimused.uni-tuebingen.de/tuebingen_phase1_e.php 

and so does not provide the ability to interactively edit a 
score. 

Many music notation encoding schemes have been 
proposed over the years, most of which are tailored to a 
specific notation system. However, few formats seek to 
provide a universal data representation that encompasses 
and describes all musical notation systems. A music 
notation editor requires a digital representation of the 
symbolic notation because it needs to be stored and 
processed by a computer. Digital encoding systems 
should be explicit and declarative to prevent loss of 
information [11]. An encoding system should not require 
software applications to derive relationships between 
elements in the musical score. Instead, all relationships 
should be explicitly described. For neume notation, the 
digital encoding should preserve neume types and pitch 
information [7]. 

Aruspix, an OMR system for recognizing early printed 
music [10], contains an editor that is used to correct 
recognition errors in OMR output. Aruspix renders the 
recognized score over top of the original image, 
facilitating error detection and correction by the user. 

2.2 Crowdsourcing Systems 

Many projects have benefited from using online 
crowdsourcing techniques to harness the computational 
power of many humans (e.g., Wikipedia). The 
reCAPTCHA project [1] has successfully transcribed 
over 440 million words that were unrecognizable by 
optical character recognition algorithms. This was 
accomplished by presenting transformed words as 
“Completely Automated Public Turing test to tell 
Computers and Humans Apart” (CAPTCHA) challenges 
on the web. These tests are designed to prevent malicious 
software from performing actions that should only be 
performed by humans, who must transcribe the machine-
unrecognizable words to prove they are human. In the 
process, optical character recognition errors are corrected 
[1]. When this is deployed over millions of websites, it 
becomes a highly effective method of performing large-
scale text correction. A further advantage of online 
crowdsourcing for document digitization is that it is 
inexpensive and requires minimal training for the 
contributors, compared to the cost and training required 
to set up a scanning and recognition workstation [8]. 

3. ONLINE EDITING 

3.1 Web Versus Desktop Applications 

The AJAX programming technique [9] for websites 
enables the creation of interactive web applications that 
behave like desktop applications. This has lead to 
discussions, involving both users and software 
developers, about the advantages and disadvantages of 
creating web applications over desktop applications. 



  
 

There are many features of web applications that are 
appealing to application users and developers. Unlike 
desktop applications, web applications can be continually 
updated by developers with new features and do not need 
to be updated by the end-user when a new version is 
released. Another feature is that any user with an Internet 
connection and a web browser can access and use the 
application, whereas desktop applications require time to 
install and typically have different installation procedures 
depending on the operating system of the client machine. 
While not necessarily browser independent, web 
applications are platform independent, creating a larger 
user base. 

There are, however, disadvantages of hosting a music 
notation editor online. The most notable disadvantage is 
that the user must be connected to the Internet to use the 
application. Compared to desktop applications, web 
applications that have a client-server architecture can be 
architecturally complex since interactions and 
synchronicity between the client and server must be 
maintained. Advocates of desktop application 
development also claim that web applications exhibit 
slower performance and discontinuous user interactions 
in relation to compiled programs. These deficits are 
becoming negligible now that contemporary web 
browsers have become faster at executing JavaScript, and 
the use of AJAX has enabled seamless and transparent 
communication between the client and server. 

Web applications have a lower barrier to entry than 
desktop applications. Fewer obstacles are presented to 
users interested in using the software, making them more 
suitable for use in crowdsourcing applications targeted to 
a large number of people. 

3.2 Crowdsourcing online 

Crowdsourcing may be used in an OMR workflow for the 
purposes of quickly and inexpensively correcting errors 
in digitized musical documents. Pattern recognition 
algorithms are not perfect—there will inevitably be 
recognition errors that must be fixed by a human. A 
single person can allocate a large amount of time to 
perform these corrections, or this unwieldy workload can 
be distributed amongst many people. The resulting digital 
encoding can then be archived, indexed for searching, or 
used as ground-truth data to further train OMR 
algorithms. 

In creating an online crowdsourcing system for the 
correction of OMR errors, there are four challenges that 
developers of these systems must consider [4]. First, 
users must be recruited and their interest maintained. A 
potential recruitment problem exists for the correction of 
square-note notation, since early music is less popular 
than contemporary music. Next, large tasks must be 
decomposed into manageable sub-problems, which are 
easily solvable by a single person. This method of 
problem solving is called divide-and-conquer. For OMR, 

error correction of an entire corpus can be broken down 
into smaller tasks where segments of music, such as a 
single page, line, or bar, are corrected. Each subtask 
would require users to correct the position and pitch of 
erroneous notes. A typical correction task is displayed in 
Figure 1. By providing an image of the original musical 
document for reference, a task that would normally 
require domain-specific musical knowledge can be posed 
as a comparison problem. The task of correcting pitch 
and position errors involves dragging the incorrectly 
recognized notes to match the position of those notes on 
the source image. This increases the number of possible 
contributors that can be recruited to perform correction 
tasks. One potential limitation of this correction scheme 
occurs when the neume type is incorrectly recognized. In 
this case, the incorrect glyph must be deleted and the 
correct glyph inserted to match the original score—a task 
that may require musical knowledge and may be 
surrendered to another user. The encouragement and 
retention scheme known as instant gratification could be 
used to immediately show contributors how their 
contributions are making a difference [4]. After 
correcting errors within a segment of music, displaying or 
auralizing the full score would not only emphasize the 
contributions of the user, but also encourage future 
corrections of OMR output. 

Figure 1. An example of a pitch correction task. Some 
recognized notes (dark) need to be moved to the same 
location as on the original score (light). 

 
The last two challenges a crowdsourcing system must 

consider is the evaluation of user contributions, and the 
combination of these contributions to solve the target 
problem. To manage OMR error corrections by multiple 
contributors, an ideal system might present the same 
segment of music to more than one person for correction. 
An automated voting system [1] can be used to choose 
the most commonly made correction for a segment of 
music and then combine segments into the final digitized 
score. 

3.3 Tools for Musical Engraving and Interaction 

Adobe Flash, Scalable Vector Graphics (SVG), and the 
HTML canvas element are technologies available for 
dynamic drawing in the web browser. Flash is a popular 
web technology that supports interactive manipulation of 
the drawing surface with scripts to produce interactive 



  
 

and media-driven web applications. However, web 
applications that use Flash require an additional program 
to be installed as a browser plugin in order to be used. 
Some operating systems and devices do not support Flash 
and therefore cannot run these applications. 

SVG is an XML format for describing images as 
vectors—mathematical descriptions of lines and curves. 
This representation enables SVG images to be rendered at 
any size, making the format a good choice for images that 
require a high level of detail. Most modern web browsers 
can display SVG images and manipulate them using 
JavaScript.  

The HTML canvas element is a low-level raster 
drawing surface supported by modern web browsers, 
which can be controlled with JavaScript. JavaScript 
libraries such as jQuery 10  can be used to simplify 
common tasks such as event handling, animations, and 
AJAX interactions. The canvas element implements a 
“fire-and-forget” model, where a drawing surface is 
presented as a two-dimensional array of pixels that can be 
independently coloured. Although images drawn on the 
canvas can be easily manipulated, interaction with the 
drawings requires some additional overhead. Since the 
canvas “forgets” what was drawn, the state of objects 
drawn to the canvas needs to be maintained. When the 
state of an object changes (e.g., dimensions and colour), 
the canvas is repainted to reflect these changes. 

4. A NEUME NOTATION EDITOR 

This section introduces our web-based neume notation 
editor, Neon.js. We start with a description of music 
notation encoding and how it can be rendered in a web 
browser. We then describe how the music notation editor 
links the notation encoding and the graphical 
representation. 

4.1 Notation Encoding 

Neon.js reads and writes files encoded in the Music 
Encoding Initiative (MEI) format. MEI is an XML-based 
file format for the representation of many notation 
formats. The MEI schema is split into a “core”, which 
defines features common to many notation formats, and a 
set of additional modules that each define a specific 
notation system [6]. Neon.js uses the Solesmes module, 
an extension to the MEI core that allows representation of 
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square-note notation along with other specific practices 
particular to the notation system used by monks in 
Solesmes, France in the 19th century. These practices 
include divisions (breath marks), episemata (note 
stresses), and unique neume names. 

4.2 Notation Rendering 

We decided to use the canvas element for rendering 
scores in Neon.js. We store images of neumes and 
ligatures as SVG so that the score can be rendered in 
detail at any zoom level. We use Fabric.js11, a library that 
provides high-level drawing functions such as lines and 
boxes. Fabric.js is also used to render our SVG images 
directly onto the canvas drawing surface in the browser. 

MEI files that have been transcribed by OMR contain 
the physical locations on the page of each recognized 
element, stored as a bounding box surrounding that 
element. We use these physical locations to calculate 
where to draw the musical symbols, including systems, 
clefs, neumes, and divisions. An example of Neon.js 
rendering one system of music from the Liber Usualis is 
shown in Figure 2. 

Neon.js draws elements of the score on top of an image 
of the musical document that the score was transcribed 
from. The user can adjust the transparency of the 
background image to show just the rendered notation, or 
both the background and notation. 

4.3 Software Architecture 

Neon.js is built using a client-server architecture. The 
Neon.js client renders the musical score in the browser 
and transforms user input into edit commands that are 
sent to the server. We use AJAX to send edit commands 
from the client to the server without needing to reload the 
web page. The server receives these commands from the 
client and applies them to a stored MEI file, saving the 
changes. The server is written in Tornado12, an open-
source Python web server framework. To read, 
manipulate, and write MEI files on the server, Neon.js 
makes use of the Python bindings of libmei13, an open-
source C++ library [6]. 

The Neon.js client uses object-oriented programming 
techniques and the model-view-controller design pattern 
[5] to separate display from musical knowledge. The role 
                                                             
11 http://fabricjs.com 
12 http://www.tornadoweb.org 
13 http://ddmal.music.mcgill.ca/libmei 

Figure 2. Neon.js rendering one system of the Liber Usualis, with and without bounding boxes. 



  
 

of the model-view-controller design pattern is to isolate 
application logic in the model from display and user 
interface logic in the view through an intermediary 
controller that coordinates the two. The model keeps the 
state of all of the musical elements on a score. When a 
user modifies an element, the score is redrawn to reflect 
the changes to the object’s state. This means that 
changing the data representation from MEI to 
NeumesXML, for example, would not affect the drawing 
code. Similarly, changing the drawing medium from 
canvas to SVG, for example, would not affect the data 
representation and editing functionality. 

5. EDITING FUNCTIONS 

To develop a more thorough understanding of the major 
functions of Neon.js, the structure of an instantiated 
neume object will be described. In Neon.js, a neume is 
represented as a sequence of puncta. A punctum is the 
simplest type of neume, consisting of only one note that 
is represented as a single square. Only the note name and 
octave of the first note is stored in the model. Subsequent 
notes are encoded as having a pitch relative to the first 
note. The following client-side functions operate on this 
information and then call a corresponding server function 
to update the underlying MEI file. In this section we 
focus on implementation details of the main editing 
functions that are specific to neume notation. 

5.1 Inserting and Deleting Neumes 

The only neume type that can be added to the score 
through the user interface is the punctum. Neumes that 
are composed of more than one note are entered by 
inserting a punctum for each pitch in the neume, then 
combining them with the neumify function (Section 5.2). 
This feature lets a user focus on the melodic content of 
the score without needing to identify the name of each 
neume to insert. 

Neumes may be deleted. When a neume contains 
multiple notes, all of the notes in the neume are deleted. 
To delete individual notes within a neume, it must first be 
ungrouped (Section 5.3).  

5.2 Neumify 

In the same way that ligatures pose problems for OMR 
systems by obfuscating pitches of individual notes [12], 
ligatures within neumes pose problems for square-note 
notation editors. In many cases, the graphical 
representation of a neume is not a simple concatenation 
of the selected glyphs. Figure 3 shows three notes being 
selected and combined by the neumify function into a 
porrectus neume, identified by the downward then 
upward melodic contour of the notes. Neon.js needs to be 
able to recognize a neume by its contour in order to draw 
it with the correct ligatures. MEI also requires the name 
of a neume to be encoded along with the notes that make 

up the neume. The neumify function infers the name of a 
neume from the pitch differences in a sequence of notes. 

 

 
Figure 3. A use case where the user selects a set of 
puncta and applies the neumify function to create a  
porrectus neume. 

When the neumify function processes a sequence of 
notes, the melodic contour of the notes is calculated. To 
describe the relationship of a note to its previous note, -1, 
0, or 1 is used to represent a lower pitch, the same pitch, 
or a higher pitch, respectively. We create a prefix tree 
containing all of the neume types that Neon.js can render. 
The edges of the tree represent the direction of movement 
between two notes. For example, the porrectus neume 
from Figure 3 has a contour of -1, 1. The traversal of a 
partial prefix tree is shown in Figure 4 with bolded lines. 
Using a prefix tree for lookups means that the speed of 
identifying a neume type is dependent on the number of 
notes in the neume and not the size of the tree, which 
means that more neume types can be added without 
affecting the speed of lookups. When the melodic 
movement of a sequence of puncta cannot be matched to 
a known neume type, the neume type is labeled 
“compound neume”. Instead of naïvely concatenating the 
selected glyphs to form the drawing of a compound 
neume, the longest matching prefix in the tree can be 
used to determine the best way of rendering notes within 
the neume. Neon.js is currently capable of differentiating 
between 44 distinct neume types.  

 
Figure 4. An example of deriving the porrectus neume 
type by searching a prefix tree. The bolded arrows re-
veal the traversal of the tree. 



  
 

5.3 Ungroup 

The ungroup function in Neon.js performs the inverse of 
the neumify function. When the ungroup function is 
applied to a neume, the neume is replaced by puncta 
having the same pitches as the underlying notes in the 
neume. This functionality lets a user adjust properties of a 
single note in a neume, such as pitch and ornamentation, 
and then regroup the neume with the neumify function. 

5.4 Modify Pitch 

Neon.js allows the user to modify pitches of neumes 
through a click and drag interface. The notes 
automatically snap to spaces or lines within the staff. 
When the user moves a neume comprised of multiple 
notes, all notes within the neume are shifted by the same 
amount. 

6. CONCLUSION 

Neon.js14 is an online and open-source neume notation 
editor developed as a web application. The editor uses the 
HTML canvas element to render musical symbols in the 
web browser. Neon.js supports MEI as a digital data 
representation for square-note notation and uses open-
source software libraries to facilitate manipulation of this 
data format. A minimal but powerful graphical user 
interface allows the user to digitally replicate or edit early 
music documents containing square-note notation. As the 
user modifies the arrangement of musical symbols, the 
underlying MEI file is modified to reflect these changes. 

As a web application, the software is easily accessible, 
requires no installation, and enables large-scale 
crowdsourcing to distribute the task of correcting note 
pitch and position errors made in the process of optical 
music recognition. We hope that the resulting symbolic 
music collections will then be indexed and available for 
search at a single location, creating a substantial source of 
information for early music researchers. We also hope 
that this centralized collection of corrected symbolic 
musical documents is made available for use as ground-
truth training data for the digitization of other 
manuscripts in square-note notation. Although developed 
as a component of an online optical music recognition 
workflow, Neon.js can also be used to manually 
transcribe or write new works. 
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ABSTRACT

We propose the use of Markov Logic Networks (MLNs)
as a highly flexible and expressive formalism for the har-
monic analysis of audio signals. Using MLNs information
about the physical and semantic content of the signal can
be intuitively and compactly encoded and expert knowl-
edge can be easily expressed and combined using a sin-
gle unified formal model that combines probabilities and
logic. In particular, we propose a new approach for joint
estimation of chord and global key The proposed model
is evaluated on a set of popular music songs. The results
show that it can achieve similar performance to a state of
the art Hidden Markov Model for chord estimation while
at the same time estimating global key. In addition when
prior information about global key is used it shows a small
but statistically significant improvement in chord estima-
tion performance. Our results demonstrate the potential of
MLNs for music analysis as they can express both struc-
tured relational knowledge as well as uncertainty.

1. INTRODUCTION
Content-based music retrieval is an active and important
field of research within the Music Information Retrieval
(MIR) community, that deals with the extraction and pro-
cessing of information from musical audio. Many applica-
tions, such as music classification or structural audio seg-
mentation, are based on the use of musical descriptors,
such as the key, the chord progression, the melody, or the
instrumentation. Often regarded as an innate human abil-
ity, the automatic estimation of music content information
proves to be a highly complex task, for at least two rea-
sons. The first reason is the great variability of musical
audio caused by the many modes of sound production and
the wide range of possible combinations between the var-
ious acoustic events which make music signals extremely
rich and complex from a physical point of view. The sec-
ond reason is that the information of interest is generally
very complex from a semantic point of view and many
musical descriptors, that are strongly correlated, are nec-
essary to characterize it. For instance, the chord progres-
sion is related to the metrical structure of a piece of mu-
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sic: chords change more often on strong beats than on
other beat positions in the measure [9]. The chord pro-
gression is also related to the musical key: some chords
are heard as more stable within an established tonal con-
text [13]. Recent work has shown that the estimation of
musical attributes would benefit from a unified musical
analysis [4, 14, 15, 21]. However, most of existing MIR
systems that estimate musical content from audio signals
have relatively simple probabilistic structure and are con-
strained by limited hypotheses that do not model the under-
lying complexity of music. The idea of reinforcing the per-
formance of object recognition by considering contextual
information has been explored in other fields than MIR,
such as computer vision [17].

As many real-world systems and signals, music signals
exhibit both uncertainty and complex relational structure.
Until recent years, these two aspects have been generally
treated separately, probability being the standard way to
represent uncertainty in knowledge, while logical repre-
sentation being used to represent complex relational infor-
mation. However, alternative approaches towards a uni-
fication have been proposed within the emerging field of
Statistical Relational Learning (SRL) [8]. Models in which
statistical and relational knowledge are unified within a
single representation formalism have emerged [6, 10, 18].
Among them, Markov Logic Networks (MLNs) [27], that
combine first-order logic and probabilistic graphical mod-
els (Markov networks) have received considerable atten-
tion in recent years. Their popularity is due to their ex-
pressiveness and simplicity for compactly representing a
wide variety of knowledge and reasoning about data with
complex dependencies. Moreover, multiple learning and
inference algorithms for MLNs have been proposed, for
which open-source implementations are available, for ex-
ample theAlchemy1 and ProbCog2 software packages.
MLNs have thus been used for many tasks in artificial in-
telligence (AI), such as meaning extraction [2], collective
classification [5], or entity resolution [32].

As far as we know, MLNs have not been used yet for
music content processing. Chord recognition is one of the
most popular MIR tasks as reflected by the number of re-
lated papers and the increasing number of contributions to
the annual MIREX3 evaluation. We propose MLNs as a
highly flexible and expressive modeling language for es-

1 http://alchemy.cs.washington.edu
2 http://ias.cs.tum.edu/research/probcog
3 http://www.music-ir.org/mirex/



timating the chord progression of a piece of music. The
main contribution is to show how various types of informa-
tion about the physics and the semantics of the signal can
be intuitively and compactly encoded in a unified formal-
ism. In addition, MLNs allow incorporating expert knowl-
edge in the model in a flexible fashion. In particular, we
show how prior information about the main key of an an-
alyzed excerpt can be used to enhance the chord progres-
sion. We also propose a new approach for the estimation
of harmonic structure and global key, in which the two at-
tributes are estimated jointly and benefit from each other.

2. BACKGROUND
Previous approaches for chord estimation can be classified
into two categories: approaches based on pattern-matching
and probabilistic approaches. One of the advantages of
probabilistic approaches is that they can model uncertainty
and variability. Indeed, the realization of a chord produced
in different conditions (instrumentation, dynamics, room
acoustics, etc.) can result in significantly different signal
observations. Moreover, probabilistic models allow incor-
porating context information to improve chord estimation.
For example, chord transitions based on musical rules can
be embedded in the model to improve estimation. A large
number of existing algorithms are based on the use of Hid-
den Markov Models (HMM), seee.g.[29, 31]. One of the
reasons is that chord transition rules may be incorporated
into the state transition matrix of the HMM. In the frame-
work of HMMs, additional context information, such as
the key [4, 14], the meter [23] or the structure [16], can
also be incorporated to improve the estimation.

Other statistical machine learning approaches for chord
estimation include conditional random fields [3], which
compared to HMMs do not require the observation vec-
tors to be conditionally independent. The use of N-grams
[30, 33] allows information about longer range chord de-
pendencies to be considered. In contrast, HMMs make the
Markovian assumption that each chord symbol only de-
pends on the preceding one. In some of these approaches,
context information is incorporated, such as in the graphi-
cal probabilistic model [20] where contextual information
related to the meter is used, or in [15], where a 6-layered
dynamic Bayesian network jointly modeling key, metric
position, chord and bass pitch class is proposed.

Existing approaches for chord recognition, in particu-
lar HMMs, have been quite successful in modeling chord
sequences. However, their limited probabilistic structure
makes the incorporation of additional contextual informa-
tion a complex task. More specifically, concerning chords
and key interaction, state-of-the-art approaches may not
fully exploit interrelationship between musical attributes,
as in [24] and [19] where key estimation is based on the
chord progression, but the chord estimation part does not
benefit from key information. Other approaches [28] do
not allow easily introducing expert knowledge (such as
musical information about the key progression) that could
help music content analysis. In this paper, we intend to
show how such relational cues can be compactly modeled
within the framework of Markov logic.

3. MARKOV LOGIC NETWORKS
A Markov Logic Network (MLN) is a set of weighted first-
order logic formulas [27], that can be seen as a template
for the construction of probabilistic graphical models. We
present a short overview of the underlying concepts with
specific examples from the modeling of chord structure.
A MLN is a combination of Markov networks and first-
order logic. AMarkov networkis a model for the joint
distribution of a set of variablesX = (X1, X2, ..., Xn) ∈
X [25], that is often represented as a log-linear model:

P (X = x) =
1

Z
exp(

∑

j

wjfj(x)) (1)

whereZ is a normalization factor, andfj(x) are features
of the statex (x is an assignment to the random variables
X). Here, we will focus on binary features,fj(x) ∈ 0, 1.

A first-order domain is defined by a set ofconstants
(that is assumed finite) representing objects in the domain
(e.g., CMchord, GMchord) and a set ofpredicatesrepre-
senting properties of those objects (e.g., IsMajor(x), IsHap-
pyMood(x)) and relations between them (e.g., AreNeigh-
bors(x, y)). A predicate can begroundedby replacing its
variables with constants (e.g., IsMajor(CMchord), IsHap-
pyMood(CMchord), AreNeighbors(CMchord, GMchord)).
A world is an assignment of a truth value to each possible
ground predicate (or atom). Afirst-order knowledge base
(KB) is a set of formulas in first-order logic, constructed
from predicates using logical connectives and quantifiers.
A first-order KB can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, it has zero probability. Table 1 shows a simple
KB. In a real world scheme, logic formulas aregenerally
true, but notalwaystrue. The basic idea in Markov logic
is to soften these constraints to handle uncertainty: when
a world violates one formula in the KB, it is less probable
than one that does not violate any formulas, but not im-
possible. The weight associated with each formula reflects
how strong a constraint is, i.e. how unlikely a world is in
which that formula is violated.

Table 1. Example of a first-order KB and corresponding
weights in the MLN.

Knowledge Logic formula Weight

A major chord implies an
happy mood.

∀ x IsMajor(x)⇒ IsHappy-
Mood(x)

w1 =
0.5

If two chords are neighbors,
either the two are major
chords or neither are.

∀ x ∀ y AreNeighbors(x,
y) ⇒ (IsMajor(x)⇔ IsMa-
jor(y))

w2 =
1.1

Formally, aMarkov logic networkL is defined [27] as
a set of pairs(Fi, wi), whereFi is a formula in first-order
logic andwi is a real number associated with the formula.
Together with a finite set of constantsC (to which the pred-
icates appearing in the formulas can be applied), it defines
a ground Markov networkML,C , as follows:

1. ML,C contains one binary node for each possible
grounding of each predicate appearing inL. The
node value is 1 if the ground predicate is true, and
0 otherwise.



2. ML,C contains one feature for each possible ground-
ing of each formulaFi in L. The feature value is 1
if the ground formula is true, and 0 otherwise. The
feature weight is thewi associated withFi in L.

A ground Markov logic network specifies a probability
distribution over the set of possible worldsX . The joint
distribution of a possible worldx is:

P (X = x) = 1
Z

exp(
∑

i wini(x))

=
exp(

P

i
wini(x))

P

x′∈X
exp(

P

i
wini(x′))

where the sum is over indices of MLN formulas andni(x)
is the number of true groundings of formulaFi in x. (i.e.
ni(x) is the number of times theith formula is satisfied by
possible worldx).

Figure 1 shows the graph of the ground Markov network
defined by the two formulas in Table 1 and the constants
CMchord and GMchord. Each possible grounding of each
predicate becomes a node in the corresponding Markov
Network. There is an arc in the graph between each pair of
atoms that appear together in some grounding of one of the
formulas. The grounding process is illustrated in Figure 2.

Figure 1. Ground Markov network obtained by applying
the formulas in Table 1 to the constants CMchord (CM)
and GMchord (GM).

Figure 2. Illustration of the grounding process of the
Ground Markov network in Figure 1. Adapted from [12].

4. PROPOSED MODEL
In this section, we show how we can move from a standard
HMM to a MLN, resulting in an elegant and concise rep-
resentation with flexible modeling of context information.

4.1 Baseline HMM
We utilize a baseline model for chord estimation proposed
in [22,23] and briefly described here. The front-end of our
model is based on the extraction of chroma feature vec-
tors [7] that describe the signal. The chroma vectors are
12-dimensional vectors that represent the intensity of the
twelve semitones of the Western tonal music scale, regard-
less of octave. We perform abeat synchronousanalysis

and compute one chroma vector per beat4 . A chord lexi-
con composed ofI = 24 major (M) and minor (m) triads
is considered. The chord progression is then modeled as
an ergodic 24-state HMM, each hidden statesn (n denotes
the time index) corresponding to a chord of the lexicon
(CM, . . . , BM, Cm, . . . , Bm), and the observations being
the chroma vectorson.

The HMM is specified using three probability distribu-
tions: the distributionP (s0) over initial states, the tran-
sition distributionP (sn|sn−1) and the observation distri-
butionP (on|sn). The state-conditional observation prob-
abilities P (on|sn) are obtained by computing the corre-
lation between the observation vectors (the chroma vec-
tors) and a set of chord templates which are the theoretical
chroma vectors corresponding to theI = 24 major and
minor triads. A state-transition matrix based on musical
knowledge [19] is used to model the transition probabil-
ities P (sn|sn−1), reflecting chord transition rules. The
chord progression over time is estimated in a maximum
likelihood sense by decoding the underlying sequence of
hidden chordsS = (s1, s2, . . . , sN) from the sequence of
observed chroma vectorsO = (o1, o2 . . . , oN ) using the
Viterbi decoding algorithm :

Ŝ = argmax
S

(p(S, O)). (2)

4.2 MLN for Chord Recognition
We now present a MLN for the problem of chord estima-
tion, that is derived from the baseline HMM. MLNs are
more general than HMMs, and we describe how the HMM
structure can be expressed in a straightforward way using
a MLN. Our MLN for chord recognition consists of a set
of first-order formulas and their associated weights. It is
described in Table 2. Given this set of rules with attached
weights and a set of evidence literals, described in Table
3, Maximum A Posteriori (MAP) inference is used to infer
the most likely state of the world.

Let ci, i ∈ [1, 24] denote the 24 chords of the dictio-
nary, andon, n ∈ [0, N − 1] denote the succession of ob-
served chroma vectors, withN being the total number of
beat-synchronous frames of the analyzed song. The chord
estimation problem can be formulated in Markov logic by
defining formulas in the MLN using an unobserved predi-
cateChord(ci, t), meaning that chordci is played at frame
t, and two observed ones,Observation(on, t), meaning
that we observe chromaon at framet, andSucc(t1, t2),
meaning thatt1 and t2 are successive frames. The con-
straints given by the prior, observation and transition prob-
abilities of the baseline HMM form the abstract model.
They are simply described by three MLN generic formulas.
For each conditional distribution, only mutually exclusive
and exhaustive sets of formulas are used,i.e. exactly one of
them is true. For instance, there is one and only one possi-
ble chord per frame. This is indicated in Table 2 using the
symbol!. The evidence consists of a set of ground atoms
that give the chroma observations corresponding to each
frame, and the temporal succession of frames over time.
The query is the chord progression.

4 This is doneby integrating a beat-tracker as a front-end of the system
[26].



Table 2. Chord recognition MLN used for inference.
Predicate declarations

Observation(chroma!, time)
Chord(chord!, time)

Succ(time, time)

Weight Formula
Prior observation probabilities:

log(P (CM(t = 0))) Chord(CM, 0)
· · · · · ·

log(P (Bm(t = 0))) Chord(Bm, 0)

Probability that the observation (chroma) has been emitted by a chord:
log(P (o0|CM)) Observation(o0, t) ∧ Chord(CM, t)

log(P (o0|C#M)) Observation(o0, t) ∧ Chord(C#M, t)
· · · · · ·

log(P (oN−1|Bm)) Observation(oN−1, t) ∧ Chord(Bm, t)

Probability to transit from one chord to another:
log(P (CM |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(CM, t2)

log(P (C#M |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(C#M, t2)
· · · · · ·

log(P (Bm|Bm)) Chord(Bm, t1) ∧ Succ(t2, t1) ∧ Chord(Bm, t2)

Table 3. Evidence for MLN chord estimation.
// We observe a chroma at each time frame:

Observation(o0, 0)
· · ·

Observation(oN−1, N − 1)
// We know the temporal order of the frames:

Succ(1,0)
· · ·

Succ(N − 1, N − 2)

In many existing MLNs weights attached to formulas are
obtained from training. However, we follow the baseline
approach and use weights based on musical knowledge.
They are directly obtained using the conditional prior, ob-
servation and transition probabilities of the baseline HMM.

The conditional observation probabilitiesare described
using a set of conjunctions of the form:

∀t ∈ [0, N − 1] log(P (on|sn = ci)) (3)

Observation(on, t) ∧ Chord(ci, t)

for each combination of observationon and chordci. Con-
junctions, by definition, have but one true grounding each.
According to Eq.(2), the weight associated with each con-
junction is set tow = log(P (on|sn = ci)) , with P (on|sn)
denoting the corresponding observation probability.

The transition probabilities are described using:
∀t1, t2 ∈ [0, N − 1] log(P (sn = ci|sn−1 = cj)) (4)

Chord(ci, t1) ∧ Succ(t2, t1) ∧ Chord(cj , t2)

for all pairs of chords(ci, cj), i, j ∈ [1, 24], and with
p = P (sn|sn−1) denoting the corresponding transition
probability.

The prior observation probabilities are described using:
log(P (s0 = ci)) Chord(ci, 0) (5)

for each chordci, i ∈ [1, 24] and withP (s0) denoting the
prior distribution of states.

4.3 Including Prior Information on Key
In this section, we show how prior information about the
key of the excerpt can be incorporated in the model. We
assume that we know the keyki, i ∈ [1, 24] of the ex-
cerpt. Key is added as a functional predicate in Table 2
(Key(key!, time)) and given as evidence in the MLN by
adding evidence predicates in Table 3 of the form:

Key(ki, 0), Key(ki, 1), · · · , Key(ki, N − 1) (6)

Relying on the hypothesis that some chords are heard as
more stable within an established tonal context [13], addi-
tional rules about key and chord relationship are incorpo-
rated in the model. Letki, i ∈ [1, 24] denote the 24 major
and minor keys andcj, j ∈ [1, 24] denote the 24 chords.
For each pair of key and chords(ki, cj), we add the rule:

log(pij) Key(ki, t) ∧ Chord(cj , t) (7)

where the valuespij , i, j ∈ [1, 24] define the prior distri-
bution of chords(c1, . . . , c24) given a keyki. They are ob-
tained from a set of key templates that represent the impor-
tance of each triad within a given key. The key templates
are 24-dimensional vectors, each bin corresponding to one
of the 24 major and minor triads. Two key templates, orig-
inally presented in [24], are considered. The first one,
referred to as “weighted main chords relative” (WMCR)
template, is derived from music knowledge, and attributes
non-zero values to the bins corresponding to the most im-
portant triads in a given key (those built on the tonic, the
subdominant and the dominant, plus the chord relative to
the one built on the tonic) [13]. The second one, referred
to as “cognitive-based” (CB) template, is built relying on a
cognitive experiment conducted by Krumhansl [13], giving
values corresponding to the rating of chords in harmonic-
hierarchy experiments. Templates corresponding to C ma-
jor (top) and C minor (bottom) keys are shown in Figure 3.
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Figure 3. Key templates for chord and key modeling.

4.4 Joint Estimation of Chords and Key
The key can be estimated jointly with the chord progres-
sion by simply removing the evidence predicates about key
listed in Eq. (6), that give prior information about the key
context, and by consideringKey as a query along with
Chord. In addition, we add rules in Table 2 to model key
modulations by using the set of formulas:

log(pkey
ij ) Key(ki, t1) ∧ Succ(t2, t1) ∧ Key(kj, t2)

for all pairs of keys(ki, kj), i, j ∈ [1, 24]. The values
p

key
ij , that reflect probability to transit from one key to an-

other, are derived from perceptual tests about proximity
between the various musical keys [13]. However, because
we focus on global key information in this paper, we man-
ually give a high weight to the formulas corresponding to
self-transitions (transition between two same keys) to favor
constant key over the analyzed song.

4.5 Inference
The inference step consists of computing the answer to a
query, here the chord progression and the key. Specifically,
Maximum Probability Explanation (MPE), often denoted
as Maximum A Posteriori (MAP) inference, finds the most
probable state given the evidence. For inference, we used



the toulbar2 branch & bound MPE inference [1], as imple-
mented in theProbCog toolbox. The graphic interface pro-
vided in ProbCog allows convenient editing of the MLN
predicates and formulas, which are given as input to the al-
gorithm. The answer to the query can then be directly com-
puted. Although manageable on a standard laptop, the in-
ference step has a high computational cost compared to the
baseline algorithm (≈ 2 min (chord only MLN), ≈ 4 min
(key MLN) against6 sec (HMM, MATLAB) for processing
60s of audio on a MacBook Pro2.4GHz Intel Core 2 Duo
with 2GB RAM).

5. EVALUATION
The proposed model has been tested on a set of hand-
labeled Beatles songs, a popular database used for the chord
estimation task [11]. All the recordings are polyphonic,
multi-instrumental songs containing drums and vocal parts.
We map the complex chords in the annotation (such as ma-
jor and minor6th, 7th, 9th) to their root triads. The original
set comprises 180 Beatles songs but we reduced it to 141
songs, removing songs containing key modulations. The
list of this subset can be found in [21].

Label accuracy (LA) is used to measure how the esti-
mated chord/key is consistent with the ground truth. The
LA chord estimation results correspond to the mean and
standard deviation of correctly identified chords per song.
The LA key estimation results indicate the percentage of
songs for which the key has been correctly estimated. The
results obtained with the various configurations of the pro-
posed model are described in Tables 4 and 5. Paired sam-
ple t-tests at the5% significance level are performed to de-
termine whether there is statistical significance in the ob-
served accuracy results between different configurations.
Table 4. Chords label accuracy (LA) results. HMM: baseline
HMM, Chord MLN: chord-only MLN, Prior key MLN: MLN
with prior key information, using the WMCR and CB key tem-
plates,Joint chord/key MLN: MLN for joint estimation of chords
and key. Stat. Sig.: statistical significance between the model
Chord MLNand others.

Chord LA Stat. Sig.
HMM 72.49 ± 14.68 no

Chord MLN 72.33 ± 14.78
Prior key MLN, WMCR 73.00 ± 13.91 yes

Prior key MLN, CB 72.22 ± 14.48 no
Joint chord/key MLN 72.42 ± 14.46 no

Table 5. Key label accuracy (LA) results.Joint chord/key MLN:
MLN for joint estimation of chords and key.DTBM-chroma
and DTBM-chord: Direct Template-Based Method. Exact Es-
timation EE, Mirex EstimationME and Exact + NeighborE+N
scores.Stat. Sig.: statistical significance between the modelJoint
chord/key MLNand others.

EE EE E+N Stat. Sig.
Joint chord/key MLN 82.27 88.09 94.32

DTBM-chord 48.59 67.39 89.44 yes
DTBM-chroma 75.35 85.14 95.77 yes

The main interest of the proposed model lies in its sim-
plicity and expressivity for compactly encoding physical
content and semantic information in a unified formalism.
Results show that the HMM structure can be concisely and
elegantly embedded in a MLN. Although the inference al-
gorithms used for each model are different, a song by song
analysis shows that chord progressions estimated by the
two models are extremely similar and the difference in the
label accuracy results is not statistically significant.

To illustrate the flexibility of the MLN formalism, we
also tested a scenario where some partial evidence about
chords was added by adding evidence predicates of the
form Chord(cGT

i , 0), Chord(cGT
i , 9), Chord(cGT

i , 19),
· · · , Chord(cGT

i , N − 1), as prior information of10% of
the ground-truth chordscGT

i , i ∈ [1, 24]. We tested this
scenario on the songA Taste of Honey, for which thechord
only MLNestimation results are poor. They were increased
from 55.69% to 77.04%, which shows how additional evi-
dence can be easily added and have a significant effect.

The MLN formalism incorporates prior information
about key in a simple way. The CB key templates are not
relevant for modeling chords given a key on our test-set,
whereas the results are significantly better with the WMCR
templates, that are more consistent with the harmonic/tonal
content of our test-set by clearly favoring the main triads
given a key. Incorporating prior information about key
with minimal model changes improves the chord estima-
tion results, and the difference is significant (Table 4).

In the Prior key MLN, coherent chords with the key
context are favored, removing some errors obtained with
the chord-only MLN. For instance, Figure 4 shows an ex-
cerpt ofEleanor Rigby, which is in E minor key. Between
24−30s, the underlying Em harmony is disturbed by pass-
ing notes in the voice. The prior key information favors Em
chords and reduces these errors. Prior key information can
also reduce confusions due to ambiguous mapping. For
instance, the songThe Word, in DM key, contains several
Ddom7 chords (D-F#-A-C), which are mapped to DM (D-
F#-A) chords in our dictionary. Many of them are esti-
mated as Dm chords with thechord MLN, whereas they
are annotated as DM chords with thePrior key MLN. In-
troducing prior key information results in chord estimation
that is more coherent with the tonal context.

By considering the key as a query, the proposed model
can jointly estimate chords and key. Key estimation is
based on the harmonic context, while the chords are es-
timated given a tonal context. Key information slightly
improves the chord estimation results, but the difference
is not statistically significant (see Table 4). Results in Ta-
ble 5 show that the tonal context can be fairly inferred from
the chords. Song by song analysis shows that harmonically
close errors in the chord estimation (such as dominant or
subdominant chords) do not affect the key estimation. In-
deed, most of the keys are either correctly estimated or cor-
respond to a neighboring key, as indicated by the MIREX
2007 key estimation score5 (88.09%) and theN+E score
(94.32%) that includes harmonically close keys6 .

Following [24, 28], we compare our key estimation re-
sults to adirect template-based method(DTBM) that can
be viewed as applying the Krumhansl-Schmuckler (K-S)
key-finding algorithm [13] to the analyzed excerpt. We
compute the correlation between a 12-dimensional vector
that averages chroma vectors over time and the 24 key tem-
plates (DTBM-chroma) by Krumhansl. The estimated key
is selected as the one that gives the highest value. To com-

5 1 for correctkey, 0.5 for perfect fifth detection, 0.3 for relative ma-
jor/minor, and 0.2 for parallel major/minor

6 Parallel, relative, dominant or subdominant.



Figure 4. Chord estimation results for an excerpt of the songEleanor Rigby.

pare the performances of thePrior key MLNwith a base-
line algorithm that estimates key from chords after they are
predicted, we also report results obtained with a slightly
modified version of the K-S algorithm that uses estimated
chords instead of chroma: we compute the correlation be-
tween a 24-dimensional vector that accumulates the esti-
mated chords over time (considering their duration) and
the CB / WMCR templates (DTBM-chord) 7 . Results are
presented in Table 5. In theDTBM-chordapproach, errors
in the estimation of the chord progression are propagated
to the key estimation step, which explains the lowEE re-
sults obtained. The results obtained withDTBM-chroma
approach are higher, but in both cases, our model performs
significantly better than the DTBM methods.

6. CONCLUSION AND FUTURE WORKS
In this article, we have introduced Markov logic networks
as an expressive formalism to estimate music content from
an audio signal. The results obtained with thechord MLN
for the task of chord progression are equivalent to those
obtained with the baselineHMM. Moreover, it allows in-
troducing expert knowledge to enhance the estimation. We
have focused on global key information. The model can be
extended to local key estimation, which will be the purpose
of future work. The proposed model has a great potential
of improvement in the future. Context information (such
as metrical structure, instrumentation, music knowledge,
chord patterns, etc.) can be compactly and flexibly em-
bedded in the model moving toward a unified analysis of
music content. Training approaches will be considered. In
particular, we will focus on the task of constructing new
formulas by learning from the data and creating new pred-
icates by composing base predicates, to compactly cap-
ture much more general regularities (predicate invention).
As far as we know, Markov logic network have not been
used for music content processing yet. We believe that this
framework that combines ideas from logic and probabili-
ties opens new interesting perspectives for our field.
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sentation of musical chords: a proposed syntax for text annotations.
In ISMIR, 2005.

[12] D. Jain. Knowledge engineering with markov logic networks: A
review. InKR, 2011.

[13] C.L. Krumhansl. Cognitive foundations of musical pitch. Oxford
University Press, New York, NY, USA, 1990.

[14] K. Lee and M. Slaney. Acoustic chord transcription and key extrac-
tion from audio using key-dependent HMMs trained on synthesized
audio. IEEE TASLP, 16(2):291–301, 2008.

[15] M. Mauch and S. Dixon. Automatic chord transcription from au-
dio using computational models of musical context.IEEE TASLP,
18(6), 2010.

[16] M. Mauch, K. Noland, and S. Dixon. Using musical structure to
enhance automatic chord transcription. InISMIR, 2009.

[17] Kevin Murphy, Antonio Torralba, and William T. Freeman. Graphi-
cal model for recognizing scenes and objects. InAdvances in Neural
Information Processing Systems 16. MIT Press, 2004.

[18] N.J. Nilsson. Probabilistic logic.J. Artif. Intell, 28:71–87, 1986.
[19] K. Noland and Sandler M. Key estimation using a hidden Markov

model. InISMIR, 2006.
[20] J.-F. Paiement, D. Eck, S. Bengio, and D. Barber. A graphical model

for chord progressions embedded in a psychoacoustic space. In
ICML, 2005.

[21] H. Papadopoulos.Joint Estimation of Musical Content Information
From an Audio Signal. PhD thesis, Univ. Paris 6, France, 2010.

[22] H. Papadopoulos and G. Peeters. Large-Scale Study of Chord Es-
timation Algorithms Based on Chroma Representation and HMM.
In CBMI, 2007.

[23] H. Papadopoulos and G. Peeters. Joint estimation of chords and
downbeats.IEEE TASLP, 19(1), 2011.

[24] H. Papadopoulos and G. Peeters. Local Key Estimation from an
Audio Signal Relying on Harmonic and Metrical Structures.IEEE
TASLP, 2011.

[25] J. Pearl.Probabilistic reasoning in intelligent systems: Networks of
plausible inference. San Francisco, CA: Morgan Kaufmann., 1988.

[26] G. Peeters. Beat-marker location using a probabilistic framework
and linear discriminant analysis. InDAFx, 2009.

[27] M. Richardson and P. Domingos. Markov logic networks.J. Ma-
chine Learning, 62, 2006.

[28] T. Rocher, M. Robine, P. Hanna, and L. Oudre. Concurrent Estima-
tion of Chords and Keys From Audio. InISMIR, 2010.

[29] M.P. Ryynänen and A.P. Klapuri. Automatic transcription of
melody, bass line, and chords in polyphonic music.Comp. Mus.
J., 32(3), 2008.

[30] R. Scholz, E. Vincent, and F. Bimbot. Robust modeling of musical
chord sequences using probabilistic N-grams. InICASSP, 2008.

[31] A. Sheh and D.P.W. Ellis. Chord segmentation and recognition us-
ing EM-trained HMM. InISMIR, 2003.

[32] P. Singla and P. P. Domingos. Memory-efficient inference in rela-
tional domains. InAAAI, 2006.

[33] K. Yoshii and M. Goto. A Vocabulary-Free Infinity-Gram Model for
Nonparametric Bayesian Chord Progression Analysis. InISMIR,
2011.



A GEOMETRIC LANGUAGE FOR REPRESENTING STRUCTURE IN
POLYPHONIC MUSIC

David Meredith
Aalborg University, Denmark
dave@create.aau.dk

ABSTRACT

In 1981, Deutsch and Feroe proposed a formal language
for representing melodic pitch structure that employed the
powerful concept of hierarchically-related pitch alphabets.
However, neither rhythmic structure nor pitch structure in
polyphonic music can be adequately represented using this
language. A new language is proposed here that incorpo-
rates certain features of Deutsch and Feroe’s model but ex-
tends and generalises it to allow for the representation of
both rhythm and pitch structure in polyphonic music. The
new language adopts a geometric approach in which a pas-
sage of polyphonic music is represented as a set of multi-
dimensional points, generated by performing transforma-
tions on component patterns. The language introduces the
concept of a periodic mask, a generalisation of Deutsch
and Feroe’s notion of a pitch alphabet, that can be applied
to any dimension of a geometric representation, allowing
for both rhythms and pitch collections to be represented
parsimoniously in a uniform way.

1. INTRODUCTION

The problem addressed here is that of designing a formal
coding language [9, p. 155] for precisely and parsimo-
niously describing structure in polyphonic music. In gen-
eral, there are various ways in which a musical pattern can
be perceived to be constructed, and a music coding lan-
guage should be capable of representing these different in-
terpretations. Moreover, it should be possible to compare
and evaluate encodings of the different ways of interpret-
ing a musical pattern. The various methods that have been
proposed for carrying out such comparisons and evalua-
tions fall into two categories: those based on the likelihood
principle of preferring the most probable interpretations;
and those based on the minimum principle of preferring
the simplest interpretations [9, p. 152]. Typically, statis-
tical approaches to musical structure analysis (e.g., [8])
apply the likelihood principle, whereas approaches in the
tradition of Gestalt psychology (e.g., [1]) apply the min-
imum principle. Indeed, van der Helm and Leeuwenberg
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[9, p. 153] suggest that the fundamental principle of Gestalt
psychology, Koffka’s [2] law of Prägnanz, which favours
the simplest and most stable interpretation, can be seen as
an “ancestor” of the minimum principle.

The language proposed here is in the tradition of the
Gestalt-based coding languages for music proposed by Si-
mon and Sumner [7], Restle [5] and Deutsch and Feroe [1].
It attempts to generalise and extend earlier languages by
adopting a geometric approach, along the lines of that pro-
posed by Meredith et al. [4]. A passage of polyphonic mu-
sic is represented in the proposed language as a set of mul-
tidimensional points, generated by performing geometric
transformations on component patterns. The language in-
troduces the concept of a periodic mask, a generalisation
of Deutsch and Feroe’s notion of a pitch alphabet, that can
be applied to any dimension of a geometric representation,
allowing for both rhythms and pitch collections to be rep-
resented parsimoniously in a uniform way.

A coding language of the type proposed here could be
used in music information retrieval to allow for the discov-
ery of patterns in a database that relate to a query pattern
on a deeper structural level than the surface. For example,
two patterns might be perceived to be related because they
have a similar structure but use different pitch alphabets
(e.g., where a melody is repeated in a different mode) or
because they have the same pitch interval structure but dif-
ferent rhythms. If the music is first encoded in a way that
represents these structures, then such relationships can be
automatically discovered more efficiently.

2. BACKGROUND

The earliest coding language for music was proposed in
1968 by Simon and Sumner [7]. Simon and Sumner rec-
ognized that music is multidimensional and aimed to allow
for the description of patterns in melody, harmony, rhythm
and form. Their language treats each of these dimensions
as an independent series of symbols, chosen from alpha-
bets, for which a compact representation can be derived in
terms of certain basic element operators, such as SAME
and NEXT. Simon and Sumner defined the notion of a
cyclic alphabet and recognized the usual tonal scales and
chords as “common” pitch alphabets that are “ordered sets
already defined in the culture”.

In his experiments on serial pattern learning, Restle [5]
found that subjects are particularly good at identifying
“runs” (e.g., (2 3 4 5)) and “trills” (e.g., (5 4 5 4)) and



tend to use these to segment a series of symbols. Res-
tle explained this by proposing that runs and trills allow
for particularly simple generative descriptions. He pre-
sented an “E-I theory” wherein a rule consists of a set E
of “events” (roughly equivalent to an alphabet) and a set I
of “intervals” (in the musical sense). Runs are then the set
of products of E-I rule systems in which I contains only
one interval. Restle’s language uses the sequence opera-
tors M (for mirror), T (for transposition) and R (for repeat)
for producing compact descriptions of sequences. For ex-
ample, if the numbers 1 to 6 represent a row of 6 lights that
can either be on or off, then the sequence (1 2 1 2 2 3 2 3
6 5 6 5 5 4 5 4) can be encoded as M(T(R(T(1)))). Restle
represented structures in his language as hierarchical trees
and presented an analysis of the theme of Bach’s first Two-
part Invention (BWV 772) which describes its tonal and
motivic structure.

Deutsch and Feroe’s [1] model is in the tradition of the
serial pattern languages proposed by Restle [5], Leeuwen-
berg [3] and Simon [6]. The language can be used to
encode arhythmic monophonic sequences of pitches (i.e.,
neither polyphony nor rhythm can be encoded). Structures
are defined to be sequences of the elementary operators
‘same’ (s), ‘next’ (n) and ‘predecessor’ (p), that operate
over alphabets, which are linearly ordered sets of symbols.
Structures are decoupled from alphabets. A sequence,
{S;α}, is the application of a structure S to an alphabet, α;
and a “sequence of notes” (actually a sequence of pitches)
can be generated by applying a sequence to a reference
element. Compound sequences can be built up from se-
quences by using the sequence operators, ‘prime’ (pr), ‘ret-
rograde’ (ret), ‘inversion’ (inv) and ‘alternation’ (alt). Al-
phabets can be defined as sequences and ‘stacked’ hierar-
chically. For example, the C major scale would be defined
as a subset of the chromatic scale (denoted by ‘Cr’), using
the expression C = {{(∗, 2n2, n, 3n2, n);Cr}; c} and the
C major triad could be defined relative to the C major scale
by the expression {{(∗, 2n2, n3);C}; 1}.

The music encoding language presented in the next sec-
tion extends and generalises these notions of structures and
alphabets by re-casting them in geometric terms.

3. A GEOMETRIC MUSIC ENCODING
LANGUAGE

In the language proposed here, a passage of music is rep-
resented as a set of notes. A note, n, is an ordered pair,
n = 〈t, p〉, where t = t(n) is the onset time of the note
in tatums and p = p(n) is the note’s MIDI note number.
A note is therefore a point in note space which is the two-
dimensional Euclidean integer lattice in which the x co-
ordinate represents time in tatums and the y co-ordinate
represents pitch in terms of MIDI note number.

A vector, v, is an ordered 4-tuple, v = 〈t, p,Mt,Mp〉,
where t = t(v) is the time component of v, p = p(v) is the
pitch component of v, Mt = Mt(v) is the time mask se-
quence of v and Mp = Mp(v) is the pitch mask sequence
of v. t(v) and p(v) are integers. Mt(v) and Mp(v) are
mask sequences.

m(m, i)
1 if i = nil return nil
2 j ← o(m), k ← 0
3 if i ≥ o(m)
4 while j < i
5 k ← k + 1
6 j ← j + s(m)[(k − 1) mod |s(m)|]
7 else
8 while j > i
9 k ← k − 1
10 j ← j − s(m)[k mod |s(m)|]
11 if j = i return k
12 return nil

Figure 1. The function m(m, i), where m is a mask and i
is an integer or nil.

u(m, i)
1 if i = nil return nil
2 j ← o(m), k ← 0
3 if i ≥ 0
4 while k < i
5 k ← k + 1
6 j ← j + s(m)[(k − 1) mod |s(m)|]
7 else
8 while k > i
9 k ← k − 1
10 j ← j − s(m)[k mod |s(m)|]
11 return j

Figure 2. The function u(m, i), where m is a mask and i
is an integer or nil.

A mask sequence, M, is an ordered set of masks,
M = 〈m1,m2, . . . ,mk〉. A mask, m, is an ordered pair,
m = 〈o, s〉, where o = o(m) is an integer called the off-
set of the mask and s = s(m) is an ordered set of integers
called the structure of the mask. Each integer in a mask
structure is called an interval. Ifm is a mask and i is an in-
teger, then the function m(m, i) (see Figure 1) returns the
masked value of i for the maskm; and the function u(m, i)
(see Figure 2) returns the unmasked value of i for the mask
m.

Figure 3 illustrates how a mask is used to map a subset
of the integers onto the complete set of integers. In the up-
per part of Figure 3, the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉 is ap-
plied. The mask defines a periodic repeated pattern of in-
tervals on the number line such that successive elements in
the pattern are mapped onto successive integers. For exam-
ple, the mask offset, 3, is mapped onto 0. The next integer
that does not map onto nil is 5, which therefore maps onto
1, and so on. This particular mask, 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉,
can be used to represent the E[ major scale; and the struc-
ture of this mask, 〈2, 2, 1, 2, 2, 2, 1〉, can be used to repre-
sent the class of all major scales.

Figure 3 also illustrates that the output of one mask can
be given as input to another. Thus we can take the range
of the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉 and apply the function
in Figure 1 to these values with the mask 〈4, 〈2, 2, 3〉〉 to
give the result shown in the lower part of Figure 3. In



Figure 3. Applying the mask sequence,
〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉.

(a)

(b)

(c)

Figure 4. (a) The right-hand part of the first bar of
Chopin’s Étude, Op. 10, No. 5. (b) A plausible rhythmic
reduction of (a). (c) A plausible rhythmic reduction of (b).

this particular case, the mask 〈4, 〈2, 2, 3〉〉 can be used to
represent a dominant triad in a seven-note scale. Apply-
ing this to the output of the mask 〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉
therefore gives a representation of the dominant triad in
E[ major—i.e., the B[ major triad. If the topmost number
line in Figure 3 represents MIDI note number, then MIDI
pitch 10 maps onto 4 in the middle number line, represent-
ing the fact that 10 is the fifth scale degree in E[ major.
The number 4 in the middle line is then mapped onto 0 in
the lowest number line, representing the fact that this scale
degree is now the root of the dominant triad. Thus, the
dominant triad in E[ major can be represented by the mask
sequence, 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉. This ex-
ample demonstrates that a mask sequence can be used to
represent the notion of hierarchically related pitch alpha-
bets proposed by Deutsch and Feroe [1]. For example, the
mask sequence 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈4, 〈2, 2, 3〉〉〉 cor-
responds to Deutsch and Feroe’s alphabet,

{{(∗, 2n2, n3); {{(∗, 2n2, n, 3n2, n);Cr}; e[}}; 5} .

However, unlike Deutsch and Feroe’s pitch alphabets,
mask sequences can also be used to represent rhythmic and
metric structures. For example, the crotchet metric level in
a 4/4 bar in which the tatum is a semiquaver can be repre-
sented by the mask sequence 〈〈0, 〈2〉〉, 〈0, 〈2〉〉〉. Similarly,
the dotted crotchet metric level in a 6/8 bar where the tatum
is a semiquaver can be represented by 〈〈0, 〈2〉〉, 〈0, 〈3〉〉〉.

Figure 4 (a) shows the right-hand part of the first bar
of Chopin’s Étude, Op. 10, No. 5. Figure 4 (b) and
(c) show plausible rhythmic reductions of the surface in
Figure 4 (a). If we use the triplet semiquaver as the tatum
duration, then the rhythm of Figure 4 (b) can be repre-
sented by the mask sequence 〈〈0, 〈2〉〉〉; and the rhythm
of Figure 4 (c) could be represented by the mask sequence
〈〈0, 〈2〉〉, 〈0, 〈2, 1, 3〉〉〉 (or 〈〈0, 〈4, 2, 6〉〉〉).

If M is a mask sequence and i is an integer, then the
function m(M, i) (see Figure 5) returns the masked value
of i for the mask sequence M (i.e., the result of applying

m(M, i)
1 k ← i, j ← 0
2 while j < |M|
3 k ← m(M[j], k)
4 j ← j + 1
5 return k

Figure 5. The function m(M, i) where M is a mask se-
quence and i is an integer.

u(M, i)
1 k ← i, j ← |M| − 1
2 while j ≥ 0
3 k ← u(M[j], k)
4 j ← j − 1
5 return k

Figure 6. The function u(M, i) where M is a mask se-
quence and i is an integer.

each of the masks in M, in turn, with an initial input value
of i). Conversely, the function u(M, i) in Figure 6 returns
the unmasked value of i for the mask sequence M.

If v is a vector, then Mt(v) and Mp(v) together de-
fine the space, M(v) = 〈Mt(v),Mp(v)〉, in which v is
defined. If a vector, v, is in note space, then the vec-
tor can be written as an ordered pair, 〈t(v),p(v)〉, with-
out specifying the time and pitch mask sequences (e.g.,
〈2, 3〉 = 〈2, 3, 〈〈0, 〈1〉〉〉, 〈〈0, 〈1〉〉〉〉). Given a note n1 and
a vector v, then we can translate n1 by v to give a new
note, n2. In order to do this, n1 must first be mapped onto
a point, q1, in the spaceM(v). q1 is then translated by v in
the usual geometric way to another point, q2, inM(v). Fi-
nally, q2 is mapped back onto a note, n2, in note space. If
n is a note and v is a vector, then this process of translation
can be accomplished using the algorithm in Figure 7.

Note that, if v is a vector in any space other than note
space, then there will not, in general, be a unique vector
in note space to which v is equivalent. For example, if
v = 〈1, 1, 〈〈0, 〈2, 3〉〉〉, 〈〈0, 〈3, 2〉〉〉, then Figure 8 shows
that there are 4 distinct vectors in note space to which v
might be equivalent, depending on the note that is being
translated. A consequence of this is that, in general, there is
no unique vector in any space that is equivalent to the sum
of two or more vectors that are in different spaces. The

T(n, v)
1 x1 ← m(Mt(v), t(n))
2 y1 ← m(Mp(v), p(n))
3 x2 ← x1 + t(v)
4 y2 ← y1 + p(v)
5 t2 ← u(Mt(v), x2)
6 p2 ← u(Mp(v), y2)
7 return 〈t2, p2〉

Figure 7. The function T(n, v) where n is a note and v is
a vector.



Figure 8. Equivalent vectors in note space for the vector,
v = 〈1, 1, 〈〈0, 〈2, 3〉〉〉, 〈〈0, 〈3, 2〉〉〉.

resultant vector in note space of applying two vectors in
succession to a note depends on the note itself. This means
that vectors in the sense defined here cannot be added to-
gether in the normal way. Instead, if a note is to be trans-
lated by the sum of two or more vectors, the vector sum
has to be explicitly stated.

Since the sum of two or more vectors is not necessarily
equal to a unique vector in any space, it must be considered
a different type of object from a vector. We therefore de-
fine a special type of object called a vector sum to represent
a sum of vectors. A vector sum is an ordered set of vec-
tors, since vector addition in the sense defined here is not
commutative. If we want to denote the sum of the vectors
v1, v2, . . . vk, applied in that order, then we simply write
v1+v2+ . . .+vk. If w is the vector sum v1+v2+ . . .+vk,
then |w| = k, w[j] = vj+1 and w =

∑k
i=1 vi. If w1 and

w2 are vector sums such that w1 = v1,1+v1,2+ . . .+v1,m
and w2 = v2,1 + v2,2 + . . . + v2,n, then w1 + w2 =
v1,1 + v1,2 + . . . + v1,m + v2,1 + v2,2 + . . . + v2,n. If v
is a vector, then w(v) returns the vector sum that contains
just v. In other words, w(v) typecasts a vector to a vec-
tor sum. If w is a vector sum, then we define w(w) = w.
To simplify the notation, we allow for vector sums to be
added to vectors without explicit typecasting. Thus if v is
a vector and w is a vector sum, then v + w = w(v) + w
and w + v = w +w(v).

As an example, suppose we have three mask sequences
and two vectors as follows

M0 = 〈〈0, 〈1〉〉〉 ,
M1 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉〉 ,
M2 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈0, 〈2, 2, 3〉〉〉 ,
v1 = 〈1, 1,M0,M1〉 and
v2 = 〈1, 1,M0,M2〉 .

T(n,w)
1 n2 ← n
2 for i← 0 to |w| − 1
3 n2 ← T(n2, w[i])
4 return n2

Figure 9. The function T(n,w) where n is a note and w is
a vector sum.

S(V)
1 if V = 〈〉 return {}
2 w ← w(V[0])
3 W ← {w}
4 for i← 1 to |V| − 1
5 w ← w + V[i]
6 W ←W ∪ {w}
7 return W

Figure 10. Function for computing the equivalent vector
sum set, W , for V , where V is either a vector sequence or
a vector sum sequence.

If we now translate the note 〈0, 0〉 by v1, then we get the
note 〈1, 2〉, that is T(〈0, 0〉, v1) = 〈1, 2〉. However, we
cannot then translate 〈1, 2〉 by v2 because 〈1, 2〉 is not in
the space in which v2 is defined. If n is a note and w is a
vector sum, then the function T(n,w) in Figure 9 can be
used to compute the note that results when n is translated
by w. T(〈0, 0〉, v1 + v2) is therefore undefined, whereas
T(〈0, 0〉, v2 + v1) = 〈2, 5〉, illustrating the fact that vector
addition is not commutative in this context.

A vector sequence is an ordered set of vectors and a
vector sum sequence is an ordered set of vector sums. For
any given vector sequence or vector sum sequence there
exists an equivalent vector sum set which can be computed
using the function in Figure 10. Any run of k identical
vectors, v, in a vector sequence can be encoded as kv. For
example, 〈v1, 3v2, v3〉 = 〈v1, v2, v2, v2, v3〉. A run of k
identical vector sums, w, in a vector sum sequence can
similarly be encoded as kw.

If V is a vector set, vector sum set, vector sequence or
vector sum sequence, then the function W(V), defined in
Figure 11 returns the vector sum set that is equivalent to V .

W(V)
1 if V is a vector sequence or vector sum sequence
2 W ← S(V)
3 else if V is a vector set
4 W ← ∅
5 for each v ∈ V
6 W ←W ∪ {w(v)}
7 else
8 W ← V
9 return W

Figure 11. Function for computing the equivalent vector
sum set, W , for V , where V is a vector sequence, a vector
sum sequence, a vector set or a vector sum set.



T(n,V)
1 W ←W(V)
2 N ← ∅
3 for each w ∈W
4 N ← N ∪ {T(n,w)}
5 return N

Figure 12. Function for translating a note, n, by a vec-
tor set, vector sequence, vector sum set or vector sum se-
quence, V .

T(N,V)
1 N2 ← ∅
2 for each n ∈ N
3 N2 ← N2 ∪ T(n,V)
4 return N2

Figure 13. Function for translating a note set, N , by a
vector set, vector sequence, vector sum set or vector sum
sequence, V .

A single note, n, or a set of notes,N , can be used to gen-
erate a set of notes by translating it by a vector set, a vector
sum set, a vector sequence or a vector sum sequence. Fig-
ures 12 and 13 show functions for carrying out these types
of translation. A vector sum set therefore acts as a gener-
alisation of Deutsch and Feroe’s concept of a “structure”.
Moreover, the combination of a note and a vector sum set
to generate a set of notes is a generalisation of Deutsch and
Feroe’s notion of combining a structure with a reference
pitch to generate a sequence of pitches.

The function P(X), defined in Figure 14 is a general-
isation of Deutsch and Feroe’s “prime” sequence opera-
tor, “pr”. The single argument, X, is an ordered set in
which each element is a vector set, vector sum set, vector
sequence or vector sum sequence. The first step in P(X)
is to convert each element X[i] into its equivalent vector
sum set (lines 1–3). The zero vector sum is then included
in each vector sum set, Y[i] (lines 4–6). P(X) then re-
turns a set containing a vector sum for each element of
the n-ary Cartesian product of the vector sum sets in Y
(lines 7–14). Note that if A and B are sequences such
that A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉 then
A⊕B = 〈a1, a2, . . . , am, b1, b2, . . . , bn〉.

Deutsch and Feroe’s “ret” and “inv” sequence opera-
tors correspond to reflection in the geometric language pro-
posed here: “ret” corresponds to reflection in an axis par-
allel to the pitch axis, while “inv” corresponds to reflection
in an axis parallel to the time axis. The functions,

Rp(v) = 〈t(v),−p(v),Mt(v),Mp(v)〉 and

Rt(v) = 〈−t(v),p(v),Mt(v),Mp(v)〉

reflect vectors in the time axis and pitch axis, respectively.
The functions in Figure 15 can be used to reflect vector
sums and the functions in Figure 16 can be used to reflect
sequences or sets of vectors or vector sums. Note that
there is no necessity for a function analogous to Deutsch
and Feroe’s “alt”, because the music is represented as a

P(X)
1 Y ← 〈〉
2 for i← 0 to |X| − 1
3 Y ← Y ⊕ 〈W(X[i])〉
4 v0 ← 〈0, 0〉
5 for i← 0 to |Y| − 1
6 Y[i]← Y[i] ∪ {w(v0)}
7 W1 ← Y[0]
8 for i← 1 to |Y| − 1
9 W2 ← ∅
10 for each w1 ∈W1

11 for each w2 ∈ Y[i]
12 W2 ←W2 ∪ {w1 + w2}
13 W1 ←W2

14 return W1

Figure 14. The function P(X) where X is an ordered set
in which each element is a vector set, vector sum set, vector
sequence or vector sum sequence.

Rp(w)
1 w2 ← w(Rp(w[0]))
2 for i← 1 to |w| − 1
3 w2 ← w2 +Rp(w[i])
4 return w2

Rt(w)
1 w2 ← w(Rt(w[0]))
2 for i← 1 to |w| − 1
3 w2 ← w2 +Rt(w[i])
4 return w2

Figure 15. Functions for reflection. w is a vector sum.

set of geometrical points rather than a sequence of sym-
bols. There is also no need for a scaling function to repre-
sent augmentation or diminution, since this can be accom-
plished using appropriate time mask sequences.

4. EXAMPLES

Figure 17 shows one of the examples used by Deutsch and
Feroe [1, p. 504] to illustrate their model. This pattern can
be encoded as T(n1,P(〈3v1〉, 〈v2〉)) where

n1 = 〈1, 60〉 ,
v1 = 〈1, 1,M1,M2〉 ,
v2 = 〈−1,−1〉 ,

M1 = 〈〈1, 〈2〉〉, 〈0, 〈3〉〉〉 and
M2 = 〈〈0, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈0, 〈2, 2, 3〉〉〉 .

Given that the function, U(S1, S2, . . . Sk) returns the
union of sets S1, S2, . . . Sk, then the pattern in Figure 4
can be encoded as follows:

U(T(n1,P(〈v1〉, 〈v2〉)),T(n2,P(〈v3〉)),T(n3,P(〈2v1〉, 〈v2〉)))



Rp(V)
1 W1 ←W(V)
2 W2 ← ∅
3 for each w ∈W1

4 W2 ←W2 ∪ {Rp(w)}
5 return W2

Rt(V)
1 W1 ←W(V)
2 W2 ← ∅
3 for each w ∈W1

4 W2 ←W2 ∪ {Rt(w)}
5 return W2

Figure 16. Functions for reflection. V is a vector set, vec-
tor sum set, vector sequence or vector sum sequence.

Figure 17. Example pattern used by Deutsch and Feroe [1,
p. 504].

where

n1 = 〈0, 90〉 ,
n2 = 〈4, 87〉 ,
n3 = 〈6, 85〉 ,
v1 = 〈1,−1,M1,M2〉 ,
v2 = 〈1, 1,M3,M2〉 ,
v3 = 〈1, 1,M3,M4〉 ,

M1 = 〈〈0, 〈2〉〉〉 ,
M2 = 〈m1, 〈0, s1〉〉 ,
M3 = 〈〈0, 〈1〉〉〉 ,
M4 = 〈m1, 〈3, s1〉〉 ,
m1 = 〈6, 〈2, 2, 1, 2, 2, 2, 1〉〉 and
s1 = 〈2, 2, 3〉 .

Figure 18 shows bars 320–322 from the first movement
of Beethoven’s Sonata in E[, Op. 7. This passage can be
encoded as U(A,B) where

A = T(n1,P(〈2v1〉, 〈5v2〉)) ,
B = T(n2,P(〈17〈1, 0〉〉)) ,
n1 = 〈0, 65〉 ,
n2 = 〈0, 58〉 ,
v1 = 〈0, 1,M1,M2〉 ,
v2 = 〈1,−1,M1,M2〉 ,

M1 = 〈0, 〈3〉〉 and
M2 = 〈〈3, 〈2, 2, 1, 2, 2, 2, 1〉〉, 〈6, 〈2, 2, 3〉〉〉 .

Figure 18. Bars 320–322 of Beethoven’s Sonata in E[,
Op. 7, 1st. mvt.

5. CONCLUSIONS AND FUTURE WORK

This paper has introduced a geometric coding language
for describing musical structure that extends Deutsch and
Feroe’s [1] model and recasts it in geometrical terms, al-
lowing rhythmic and pitch structure in polyphonic music to
be expressed as transformations on sets of points. The lan-
guage introduces the concepts of masks, mask sequences
and masked spaces which generalise Deutsch and Feroe’s
notion of hierarchical alphabets to the time dimension, al-
lowing rhythms and pitch collections to be represented par-
simoniously in a uniform way. A Java implementation of
the language and some extended encoding examples are
freely available online. 1

The primary design goal of the language described here
is that it should allow for the formulation of minimal-
length descriptions of musical works. There are many
ways in which the language could be developed further.
For example, decoupling vector co-ordinate values from
spaces could permit repetitions of vector co-ordinate value
patterns in different spaces to be represented more parsi-
moniously. There are also cases where structure might be
expressed more compactly if pitch class were decoupled
from pitch height. Such decoupling of information types
and other potentially useful modifications will be explored
in the near future. Longer-term goals include

• to develop algorithms for automatically inferring en-
codings from note sets,

• to develop appropriate measures for description
length and

• to explore the relationship between such an encod-
ing language and the way that musical structure is
represented cognitively and neurologically.
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ABSTRACT

In this work we investigate the applicability of unsuper-
vised feature learning methods to the task of automatic
genre prediction of music pieces. More specifically we
evaluate a framework that recently has been successfully
used to recognize objects in images. We first extract local
patches from the time-frequency transformed audio signal,
which are then pre-processed and used for unsupervised
learning of an overcomplete dictionary of local features.
For learning we either use a bootstrapped k-means cluster-
ing approach or select features randomly. We further ex-
tract feature responses in a convolutional manner and train
a linear SVM for classification. We extensively evaluate
the approach on the GTZAN dataset, emphasizing the in-
fluence of important design choices such as dimensionality
reduction, pooling and patch dimension on the classifica-
tion accuracy. We show that convolutional extraction of lo-
cal feature responses is crucial to reach high performance.
Furthermore we find that using this approach, simple and
fast learning techniques such as k-means or randomly se-
lected features are competitive with previously published
results which also learn features from audio signals.

1. INTRODUCTION

Automatic categorization of music pieces into categories
such as mood, artist or genre is a widely studied topic
in music information retrieval. Those categorization tasks
basically consist of two steps: feature selection/extraction
and classification. Designing and selecting good features
for a certain task is demanding and requires expert knowl-
edge about the domain at hand. Nonetheless, a wide range
of those hand designed features have been proposed in the
past. More recently there has been a growing interest in
methods that automatically learn features from data in an
unsupervised fashion. Those methods have been very suc-
cessful on a range of recognition benchmarks for images
as well as audio data (see Section 2).

In this work, we investigate the applicability of a k-
means based unsupervised feature learning framework that
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has been used successfully for object recognition in RGB-
D images [1] to the problem of genre classification of mu-
sic pieces.

This framework allows us to fast and flexibly learn local
features of different sizes and shapes and to show whether
features that span the whole frequency range, only parts of
it or even features that cover several consecutive points in
time perform best for the task of genre prediction.

To do so, we need to transform the raw audio signal
into the time-frequency domain, for which researches have
used varying transformations in the past. We determine the
influence of this choice by evaluating the feature learning
on two different transformations.

After learning an overcomplete dictionary of local fea-
tures, we extract feature responses in a convolutional man-
ner. Although computationally more expensive, we show
that convolutional extraction, together with the right pool-
ing scheme, improves recognition performance significantly.

The paper is structured as follows: In Section 2 we give
a short review of approaches that also learn features from
audio data, followed by a description of the learning frame-
work in Section 3 and 4. We extensively evaluate the pa-
rameters of the learning framework and show its potential
on the GTZAN dataset [14] by reporting competitive re-
sults in Section 5.

2. RELATED WORK

There is a range of feature learning methods that have been
used to tackle music information retrieval tasks e.g. sparse
coding [6], principal component analysis [5], deep belief
networks [4,8], or a mean-covariance restricted Boltzmann
machine [11].

All those feature learning frameworks rely on a transfor-
mation of the raw audio signal to the spectral domain. Fre-
quently used is the short time Fourier transformation (with
varying window lengths), which can be mel-frequency scaled
[5, 11]. Henaff et al. [6] apply the constant-Q transform
[12].

Features learned by those approaches differ in size and
shape, e.g. some approaches rely on features that cover
single time frames [4–6], only parts of the frequency range
[6] or even learn time-frequency features that span several
consecutive points in time [11].

Learning feature codebooks using simple k-means has
a long tradition and has also been applied to audio tasks
in [11, 13].



However, Coates et al. [3] just recently found that good
image features can be learned using k-means if state-of-
the-art image pre-processing and feature encoding is used.
This finding could be confirmed and extended for RGB-D
images by Blum et al. [1] who used a convolutional boot-
strapped k-means procedure to successfully learn RGB-D
features for object recognition in “3D” images.

3. LEARNING FEATURE RESPONSES

Our goal is to learn a set of feature responses D ∈ RN×k

given a set of input vectors X = {x(1), . . . , x(m)} with
x(i) ∈ RN . The input vectors are patches of size v × w
extracted from a training set represented as column vec-
tors. Each value is represented using d channels (e.g. with
RGB images d = 3, with spectrograms d = 1) and hence
N = v ·w · d. Random patches of size v×w are extracted
to build the training set X . Once X is known we apply a
pre-processing step followed by the unsupervised learning
algorithm.

3.1 Pre-processing

As a pre-processing step we first normalize all patches con-
tained in X by subtracting their mean and dividing by the
standard deviation. Afterwards a whitening transformation
[7] is applied to the patches. The purpose of the whiten-
ing transformation is to ensure that values are decorrelated
and have unit variance. This step is crucial to ensure a
good quality of the learned feature responses as shown
in [3]. We use PCA whitening, which allows us to drop
insignificant dimensions from the input data. This results
in increased feature extraction speed and can improve fea-
ture quality as shown in [1]. If dimensionality reduction
is used, we chose to keep the first n components thereby
projecting each extracted patch x ∈ RN to a lower dimen-
sional vector x′ ∈ Rn.

3.2 Unsupervised learning

We use a k-means approach to learn k centroids build-
ing the feature response dictionary D by clustering the ex-
tracted patches X . Although k-means is a very simple un-
supervised learning algorithm that is easy to implement, it
has recently been shown that it is competitive to other un-
supervised learning algorithms when learning local, low-
level features from pre-processed image data [3]. Apart
from its simplicity the main advantage of using k-means
over other algorithms is that it is very fast and scales well
to a large amount of centroids. It can therefore be trivially
parallelized on current computer hardware in a map-reduce
manner and allows us to learn large, over-complete feature
dictionaries that can be expensive to learn using other un-
supervised learning approaches.

3.2.1 Bootstrapping

To further improve upon the feature quality that can be
achieved using standard k-means, as well as the required
run time until convergence, we use a bootstrapping learn-
ing scheme as proposed in [1] to train the k centroids.

(a) without bootstrapping (b) with bootstrapping

Figure 1: Comparison of 16 × 16 features learned on the
GTZAN dataset using the CQT transform without and with
bootstrapping. (a) Without bootstrapping several cluster
centers, marked in white, do not represent good feature
responses due to the high dimensional space in which k-
means clustering is performed. (b) When bootstrapping is
enabled all learned centroids correspond to nicely localized
features.

We first cluster in the subspace spanned by the first p
principal components and fill the learned centroids with
zeros for all other n − p dimensions. These centroids are
then used to warm start the clustering procedure in the n
dimensional PCA whitened space.

Without bootstrapping some features are badly local-
ized, which is an artifact of clustering in a high dimen-
sional space (e.g. 256 dimensions if patches of size 16×16
are used). This effect is visible in Fig. 1 where affected
features are marked white. When the bootstrapping pro-
cedure is used the features are well distributed over the
whole feature space by pre-training the centroids on the
major principal components. The consecutive clustering
procedure in the complete feature space is thus simplified
and the badly localized features disappear.

4. FEATURE EXTRACTION
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Figure 2: Schematic of the convolutional extraction
scheme. Note that with a stride s smaller than v or w,
extracted patches overlap.

After learning the dictionary, feature responses are ex-
tracted from the input data. Employing a convolutional
extraction scheme (see Fig. 2), we traverse the input data
with stride s and extract patches at all possible positions.
Instead of using standard hard k-means where the feature
response f(x) is a sparse vector indicating the closest cen-



troid

fi(x) =

{
1 if ci = argminci∈D ‖ci − x‖
0 else

, (1)

we compute the triangular response to maximize the in-
formation content of each feature response. It keeps the
information about the distance of the current patch to all
centroids ci ∈ D that are closer than the average distance
µ(z) = 1

k

∑k
i=1 zi where z ∈ Rk with zi = ‖ci − x‖. In

this case f(x) can be defined as

fi(x) = max(0, µ(z)− zi). (2)

4.1 Pooling
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Figure 3: Illustration of the pooling scheme. In the first
step, the time-frequency transformed audio signal is split
up into overlapping windows. For each window features
are extracted and pooled.

Since using all feature responses for classification is
computationally expensive - we get a response of size k for
each patch that we extract convolutionally - it is common
practice to use a pooling scheme to reduce the dimension-
ality of the feature vector. The term pooling here refers
to placing a grid with c cells on the input data and com-
puting a function (e.g. maximum or average) over all fea-
ture responses that fall into a grid cell. The dimension of
the resulting feature vector is reduced to c × k. For ob-
ject recognition in images a frequently used grid structure
is 2 × 2. This is a reasonable choice for object recogni-
tion tasks where objects are positioned at the center of the
image. Here the grid helps to roughly encode the spatial
properties of the presented objects in the resulting feature
vector. Analogously for audio data, using more than one
pool on the time axis results in an encoding of the tempo-
ral properties of the feature response. This however is not
desired for the task of genre prediction, since characteristic
patterns for a certain genre might not always occur at ex-
actly the same time. Additionally we might have to predict
the genre based only on a fragment of the song (as it is the
case for the GTZAN dataset), underlining the problem that
encoding timing may not help, but in fact impair the qual-
ity of our prediction. Invariance to timing can be achieved
by pooling only once on the time axis (e.g. 2 × 1). This
however may reduce the information content of the feature
vector too drastically. To overcome this problem, we split
the input data into overlapping time windows of a certain
length (similar to [6] and [5]), compute feature responses

and pool on each window separately. Each window then
serves as input to the classifier and the final result is deter-
mined by voting over the classification results of all win-
dows. An illustration of this scheme is depicted in Fig. 3.

5. EVALUATION

We evaluate the performance of the learned features on the
GTZAN dataset [14].

5.1 Experimental Setup

5.1.1 Dataset

The GTZAN dataset is organized into 10 distinct genres:
Blues, Classical, Country, Disco, Hip hop, Jazz, Metal,
Pop, Reggae and Rock. Each genre is represented by 100
song fragments of 30 seconds length.

5.1.2 Pre-processing of audio data

There are several transformations used in the literature to
transform the raw audio signal into the time-frequency do-
main (see Section 2). To determine the influence of this
pre-processing choice, we evaluate the feature learning for
two different transformations. We apply a short time Fourier
transform, calculated on 1024 samples with 512 samples
overlap (STFT) and, in a second setting, use the Constant
Q-Transform (CQT) [12] spanning 8 octaves, using 64 bins
per octave, to create spectrograms of the audio signal. Both
spectrograms have exactly the same number of values on
the frequency axis (512 values). We also sub sample the
CQT to have exactly the same time resolution as the STFT
(1292 time frames). This way any possible advantage due
to a larger representation can be ruled out.

5.1.3 Classification

For classification we use a linear SVM in a 10-fold cross
validation setting.

5.2 Patch dimension and learning techniques

In a first experiment, we show the influence of varying
patch sizes and learning techniques on classification accu-
racy. We learned features using k-means with bootstrapped
and randomly initialized cluster centers (chosen at random
from the input data). We ran k-means until convergence.

Table 1: Influence of varying patch dimensions and learn-
ing methods on classification accuracy. Results are aver-
aged over ten runs of 10-fold cross validation to minimize
the influence of random partitioning. The standard devia-
tions are all well below 1%.

Patch size k-means (random) k-means (boot.)
(freq. × time ) STFT CQT STFT CQT

64× 1 64.81 70.91 64.72 70.57
128× 1 59.59 67.14 68.48 72.19
256× 1 65.79 62.12 67.86 70.8
512× 1 62.37 66.54 67.69 67.26
16× 16 75.2 74.2 75.11 77.7



Features span parts of the frequency axis (64× 1, 128× 1,
256 × 1), the whole frequency range (512 × 1) or fre-
quency and time (16 × 16). Note that features are ex-
tracted convolutionally (with stride 1) if possible which ex-
cludes features of size 512 × 1. In contrast to the smaller
patches those features cannot benefit from introducing sev-
eral pools on the frequency axis, they already span the
whole frequency range. That is why we only use one pool
in this experimental condition. If not mentioned otherwise,
we learn dictionaries of size 800 using PCA whitening and
keeping as many components necessary to explain 95% of
the variance. Table 1 shows the results of this experiment.

For a small patch size of 64 × 1 the performance of
k-means and bootstrapped k-means is almost equal. Here
bootstrapping k-means is unnecessary, since in low dimen-
sions random initialization of the cluster centers suffices.
With growing feature size however (e.g. 256× 1), random
k-means suffers from the effect depicted in Fig. 1, where
parts of the dictionary are wasted on ill localized features.
Bootstrapping k-means reduces the impact of this prob-
lem and affects classification accuracy significantly (e.g.
5.05% improvement with a feature size of 128× 1).

Comparing the performance of varying feature sizes, we
find that learning features on the whole frequency range
(without convolution) has the lowest accuracy, compared
to smaller frequency patches. The 16× 16 time-frequency
features outperform any other setting.

In all settings the STFT accuracies are worse than the
results on the CQT transformed audio signal. In addition
to the advantages of the Constant-Q transform over the dis-
crete Fourier transform described in [12], we suspect that
this is due to the fact that the Constant-Q transform is much
sparser and less noisy than the STFT and thereby facilitates
learning of good features.

5.3 Pooling and time windows

In this experiment we evaluate the parameters of the pool-
ing scheme described in Section 4.1 used for feature ex-
traction. We employ average pooling in all experiments
and vary the number of pools on the frequency axis. We
perform experiments on the CQT transformed data. The
results for features of size 256 × 1 and 16 × 16 (note
that both settings share the same number of components)
learned with bootstrapped k-means are are shown in Fig.
4a). In all tested settings, increasing the number of fre-
quency pools helps to improve the classification accuracy.
Best results are achieved using two to four pools.

In Fig. 4b) the results of varying the length of the time
windows are depicted. Accuracy increases with shorter
time windows. Depending on the patch size, the optimum
is reached with a window length of 1 second (16 × 16) or
2 seconds (256× 1). This finding is in agreement with [5].

5.4 PCA dimensionality reduction and dictionary size

We show the effect of varying the number of principal
components kept in Fig. 4c). In the previous experiments,
we used exactly as many principal components needed to
explain 95 % of the variance, which translates to keeping

Classifier Features Accuracy (%)

Linear SVM Convolutional K-means
(16× 16) (our) 85.25± 3.5

RBF SVM DBN [4] 84.3
Linear SVM PSD on octaves [6] 83.4± 3.1

Linear SVM Convolutional K-means
(128× 1) (our) 83.37± 2.54

Linear SVM PSD on frames [6] 79.4± 2.8

Table 2: Our results (in bold) compared to previously pub-
lished results that learn features on the GTZAN dataset.
We report the averaged accuracy and standard deviation
after one run of 10-fold cross validation.

88 principal components in case of the 16×16 features and
133 for the 256× 1 features. We find that for both feature
sizes the highest accuracy can be achieved by setting the
number of principal components to 100.

Finally, we evaluate the effect of varying the size of the
dictionary learned. In Fig. 4d) the results of varying this
number are depicted. Increasing the size of the dictionary
steadily improves recognition performance.

5.5 Overall performance

To compare our results with previously published results
on the GTZAN dataset we learned 1600 features, used 4
frequency pools, time windows of 2 seconds length and
kept the first 100 (16×16) and 72 (128×1) principal com-
ponents. Results are shown in Table 2. With features that
span time and frequency, we reach the best result on the
GTZAN dataset compared with other approaches that learn
features from audio data. There are however approaches
that do not learn features in an unsupervised fashion, but
focus on sophisticated classifiers and significantly outper-
form our results (92.7% [2] , 92.4% [9]).

5.6 Additional experiment using random features

Recently randomly selected features were found to per-
form well on object recognition benchmarks. Saxe et al.
[10] attribute the success of random features to the convo-
lutional pooling architecture they are used in. To investi-
gate the role of convolutional feature extraction for audio
data, we performed a similar, additional experiment. We
chose the same parameters as described in Section 5.5, but
instead of learning features, we randomly selected PCA
whitened patches without any further clustering and used
these as features. Indeed, we found that classification ac-
curacy did not suffer significantly (85.09%±3.56), but the
interpretability of the features is lost. This result underlines
the importance of convolutional feature extraction.

6. DISCUSSION

Our experiments indicate that convolutional extraction of
local feature responses is a viable approach to increase
recognition accuracy for the task of genre prediction.

With convolutional extraction there is a trade off be-
tween computational complexity and accuracy. Extracting
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Figure 4: Classification accuracies averaged over ten runs of 10-fold cross validation with (a) varying number of frequency
pools, (b) varying time window lengths, (c) varying dictionary size and (d) varying number of components kept.

features convolutionally with a stride of 1 is computation-
ally more expensive than extracting non-overlapping fea-
ture responses. To speed up the feature extraction we tried
to reduce the size of the spectrograms to a quarter of their
original size (128 × 323), which helps twofold. For one,
the number of patches that need to be extracted decreases
and we are able to learn smaller patch dimensions, which
speeds up finding the closest centroids. We found that ac-
curacy did only decrease marginally to 84.77%±2.6, when
learning patches of size 8×8 on the smaller input. Another
way of speeding up the extraction is to increase the stride s.

Figure 5: Example features learned on frequency patches
32× 1 (enlarged for better visualization).

This however has a stronger effect on accuracy, which re-
duces to 83.45%±3.3 (16×16, same setting as in Section
5.5) with a stride of 4.

Another important finding is that time-frequency fea-
tures perform better in terms of accuracy than frame level
features. Nonetheless, features that span the whole fre-
quency range have the advantage of being easily interpretable
in musical terms (see Fig. 5 for exemplary features learned
only on the frequency axis). This is not the case for lo-
cal time-frequency patches since the exact frequency is not
encoded in those patches. They do however represent pat-
terns of energy distribution over time that can occur at any
frequency, e.g. energy remaining constant at one frequency

(a) (b) (c) (d)

Figure 6: Examples of learned time-frequency features
(enlarged for better visualization).



(Fig. 6b), energy spreading across frequencies (Fig. 6c)
and note onsets (Fig. 6a and d).

Finally, we show the confusion matrix of the result that
was achieved with our best performing features in Fig. 3.
Genres that have a low confusion rate include classic, jazz
and metal, problematic are rock and pop songs. We be-
lieve that the confusion patterns that occur are plausible,
e.g. confusing metal with rock songs is a reasonable mis-
take, since both genres are closely related.

Bl Ro Di Hi Ja Re Po Co Cl Me
Bl 827 61 1 9 0 20 12 48 0 4
Ro 12 650 55 25 7 25 51 49 0 32
Di 31 36 853 11 2 36 45 12 0 9
Hi 8 5 21 866 0 32 33 0 0 0
Ja 19 6 0 4 961 10 0 12 9 0
Re 48 16 10 22 0 824 15 20 0 0
Po 0 36 33 41 0 18 775 24 0 0
Co 45 110 18 1 0 35 16 830 0 7
Cl 0 5 9 0 30 0 10 1 991 0
Me 10 75 0 21 0 0 43 4 0 948

Table 3: The confusion matrix for ten runs of 10-fold cross
validation using features of size 16× 16. Genres that have
a low confusion rate include classic, jazz and metal, prob-
lematic are rock and pop songs.

7. CONCLUSION

In this work, we have presented an approach that predicts
the genre of a music piece. We have shown that learn-
ing local features using simple and fast techniques like
k-means or even randomly selected features is competi-
tive with other more complex learning approaches, if fea-
tures are extracted convolutionally. We found that time-
frequency patches perform better than one dimensional fre-
quency patches and that they reach the highest accuracy to
date compared with other learned features on the GTZAN
dataset. Furthermore, we have shown that features learned
on the CQT transformed audio signal perform better than
those learned on the STFT spectrogram. We consider as
interesting future work to apply the feature learning to dif-
ferent tasks in the domain of music information retrieval,
e.g. auto tagging and also to investigate the possibility of
learning a deeper representation on top of the low level
features learned so far.
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ABSTRACT

An approach of parsing piano music interpretation is
presented. We focus mainly on quantifying expressive
timing activities. A small number of different expressive
timing behaviors (constant, slowing down, speeding
up, accent) are defined in order to explain the tempo
discretely. Given a MIDI performance of a piano music,
we simultaneously estimate both discrete variables that
corresponds to the behaviors and continuous variables
that describe tempo. A graphical model is introduced to
represent the evolution of the discrete behaviors and tempo
progression. We demonstrate a computational method
that acquires the approximate most likely configuration of
the discrete behaviors and the hidden continuous variable
tempo. This configuration represent a “smoothed” version
of the performance which greatly reduces parametrization
while retaining most of its musicality. Experiments are
presented on several MIDI piano music performed on a
digital piano. An user study is performed to evaluate our
method.

1. INTRODUCTION

The score of Western classical music is a notation form
that contains information such as pitches, durations, and
words or symbols that give an abstract reference of how
music should be played. It is rather a cartoon like
description that misses much detail compared to actual
performances. Classical musicians are trained to fill the
differences. It is fair to say that the music we hear
from CD or concerts have much more information than
its corresponding notation. Often people use words such
as intention, emotion, expression, interpretation, gesture,
phrasing and articulation to describe this extra information.
However, from a scientific point of view, these descriptions
are vague, subjective and hard to quantify.

In this work, we propose a mathematical approach that
aims to create a representation for interpretation. We think
of interpretation as having a categorical component to it.
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This will be the discrete component of our model. We
consider interpretation to be performance strategies for
different groups of music notes, where the fine details
of notes such as inter-onset intervals (IOI) in each group
should be strongly correlated and explicitly constrained,
instead of modeled independently. We believe this is
similar to how musicians think of and communicate about
music. Thus our representation will consist of discrete
states that describe different performance behaviors and
continuous variables that describe tempo and timing in
detail. Where the detail will follow the characteristic of
the discrete behaviors.

In order to circumvent the difficulty of audio recogni-
tion, we chose to use MIDI data for interpretation parsing
in this work. The note by note detail and continuous
controllers enable using MIDI to create and preserve
expressive performances. For instance, we can find many
MIDI piano performances from internet that demonstrate
expressive interpretation. But relating MIDI data directly
to interpretation is still not straightforward. Because the
observable aspects of the performance are consequences
of hidden interpretive notions. There is a missing layer
of ideas that one needs in order to interpret the numbers
in MIDI performance. This hidden layer of interpretive
constructs guide the timing and volume data. We believe
this hidden layer has a close relationship to interpretation
and attempt to model it in this work.

This approach has many potential applications. In the
area of creating expressive digital music in symbolic form,
we have a long standing interest of trying to systematically
change a performance meaningfully. It is often that
someone had a decent performance recorded where some
part of the performance is not fulfilling. If one is not
willing or able to repeat the performance until getting
better results, the only thing we can do is to modify
parameters at the individual note level and hope some
combinations might work. This is clearly an unnatural and
unmusical way to modify an expressive performance. It
would be better to operate on a higher-lever representation
of the interpretation that understands notion of gestures
and phrases. For instance, when we modify the parameter
of a single note, some other parameters will compensate to
retain a musical sense.



A musically meaningful representation of interpretation
can also be used as a visualization tool. It is often an
interesting experience for musicians to listen to a recording
of themselves. As a listener, one has a different perspective
and judges the performance more objectively. However,
listening to a recording is time consuming, and we can
only access a small amount of information at one time.
Our representation can be used to visualize tempo changes
in a discrete way, so musicians can take advantages of
their eyes to see and explore an entire performance at
once. Furthermore, such visualization can also be used
to compare different performances, so it will be easier for
musicians to discover how they differ from professionals.

Such representation could also be applied to the
expressive rendering problem. With the development
of the computer technology, there is a growing interest
in generating performance that can match the level of
professional musicians. The existing rendering systems
are mostly rule-based or case-based. Such systems often
include extracting and applying rules with parameters [1]
[2] [3]. The advantage of our representation is that it is
much lower dimensional than the usual MIDI performance.
Hence it is easier to estimate the parameters rather than to
estimate all the details for every note. Our representation
also has the potential to reduce the unintentional activities
from performers which could cause troubles in applying
machine learning techniques to performances.

Another possible application of such representation is
in creating accompaniment system. A traditional accom-
paniment system seeks to create a flexible accompaniment
to a live soloist that follows the player [4] [5]. For
most existing systems, the main focus is to keep up
with the soloist as much as possible. Which could
inevitably result in overfitting the soloists performance
and failing to understand what the player’s real intentions
are. Good following requires a deeper understanding
of the performers intention, thus separating signal from
noise. Our representation has the potential to provide
a performance model that maintains a certain level of
musicality as well as offer enough flexibility. Also, a more
advanced accompaniment system may be able to function
like a music partner and even teach the player in the future.
It is hard to imagine constructing such system without
having a layer that can represent the interpretation.

We present a mathematical model in section 2. There is
a literature on models that combine discrete state variables
with Gaussian variables in fields such as economics,
medical science and control engineering [6] [7] [8] [9].
These models are known alternately as Markov jump
process, hybrid models, state-space models with switching
and switching Kalman filter. We think this type of model
suits our purpose of parsing the interpretation of a piano
performance. A computation method is introduced in
section 3 in order to compute the approximate most likely
configuration of the variables in our model. Experiments
are presented in section 4 as well as a brief user study that
evaluates our model.

2. THE MODEL

We consider only expressive timing in this section.
Suppose we have a music performance that contains a
sequence of note onset times o0, o1, ...oN . Let the score
positions associated with the notes be p0, p1, ...pN which
are measured in beats. We define four possible types of
different behaviors regarding tempo activities. Every event
will be labeled as one of the following four behaviors.
α1. constant speed
In much notated music, especially Western classical mu-

sic, often tempo marks or beats per measure(BPM) are
used to indicate how fast the music should be played. It
is clearly impossible for a human being to strictly execute
them, but for most of the time these indications are still
expected to be respected. There are words such as “rush”
and “unstable” that sometimes are used by musicians to
describe unintentional tempo change. In our analysis, we
want to recognize and fix these unintentional actions.
α2. slowing down
Although for many sections of music performance con-

stant speed is intended, it is still very unlikely that such
speed will be carried consistently though a music piece.
An always strict in-tempo performance is often referred
to as “mechanical”, which is often undesirable and un-
common for Western classical music. Intentional tempo
variation within a short time period is a technique that is
often used to show expressiveness. Even though certain
varying process could be very complicated, it can always
be seen as a sequence of basic behaviors. We consider
slowing down to be one of them.
α3. speeding up
We consider speeding up to be the other basic behav-

ior. Combined with α1 and α2, these three “devices” can
theoretically represent any kind of tempo behaviors.
α4. Accent (single note behavior)
A common technique to make an accent of a certain

note is to take a little extra time before playing that note.
Although it can also be seen as a slowing down followed
by an immediate speeding up, in this discussion, we would
like to model this as an individual behavior for two reason-
s: 1) Such behavior occurs often; 2) the tempi before and
after accents are usually the same. We believe this needs
to be modeled explicitly.

So, the possible discrete states for every event are de-
scribed by the set Σ = {α1, α2, α3, α4}. Our goal is
to label each event on with a behavior Sn from Σ. Let
S1, S2, ..., SN be the discrete behavior process, Sn ∈ Σ, n =
1, ..., N .

We model the sequence of the discrete states as a Markov
chain. Figure 1 shows The Markov model. The assump-
tions are: 1) The states can stay in either constant speed
state, slowing down state or speeding up state; 2) Before
speeding up, there must be a slowing down process; 3)
before slowing down, the performance must be in constant
speed; 4) Accent can only happen during constant speed
mode and will only last for one note. These assumptions
are not necessarily true, we only make our model this way
for simplicity.
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Figure 1. A Markov model showing possible transitions
between the discrete states.

This Markov chain is modeled with initial probabilities:

I(s1) = P (S1 = s1)

s1 could only be α1 or α3 in our model – meaning we
only start a performance with a constant tempo or speeding
up to a constant tempo.

The transition probability matrix is defined as:

R(sn+1, sn) = P (Sn+1 = sn+1|Sn = sn)

Now we model the tempo behavior in different states
under a switching Kalman filter framework. Let t1, t2, ..., tN
and a1, a2, ..., aN be the continuous variables that repre-
sent the tempo and acceleration associated with o1, o2, ..., oN
repectively, measured in seconds per quarter note. Denote

Xn,t = tn

Xn,a = an

Xn = (tn, an)T

ln = pn − pn−1

Where ln is the IOI in beats for two consecutive events.
We have the initial distribution

X1 ∼ N(

(
µt
0

)
,

(
σ2
t 0

0 0

)
) |S1=α1

X1 ∼ N(

(
µt
µa

)
,

(
σ2
t 0

0 σ2
a

)
) |S1=α3

Then we define the different behaviors

Xn = Xn−1 |Sn=α1,Sn−1=α1 (1)

Xn ∼ N(

(
µt
0

)
,

(
σ2
t 0

0 0

)
) |Sn=α1,Sn−1=α3

(2)

Xn = Xn−1 |Sn=α1,Sn−1=α4
(3)

Xn,a ∼ N(µa, σ
2
a)

Xn,t = Xn−1,t + lnXn,a
|Sn=α2,Sn−1=α1

(4)

Xn =

(
1 ln
0 1

)
Xn−1 |Sn=α2,Sn−1=α2 (5)

s

x

y

Figure 2. The DAG describing the dependency structure
of the variables of our model. Circles represent discrete
variables while squares represent continuous variables.

Xn,a ∼ N(−µa, σ2
a)

Xn,t = Xn−1,t + lnXn,a
|Sn=α3,Sn−1=α2 (6)

Xn =

(
1 ln
0 1

)
Xn−1 |Sn=α3,Sn−1=α3 (7)

Xn = Xn−1 |Sn=α4 (8)

This model forces the tempo to be a constant (but
unknown) in each section where the discrete states stay in
α1 or α4. It also forces an unknown constant acceleration
when discrete states in α2 and α3. Equation (2) means
when the performance comes back from speeding up, the
performer will start a new unknown tempo. We denote
all the unknown tempi {Xn,t s.t. Sn = α1, Sn−1 = α3}
as {τ1, ..., τK}. Equation (4) means every time when
the performance gets into slowing down states, a new
unknown acceleration with a positive mean is introduced.
Equation (6) means every time when the performance gets
into speeding up states, a new unknown acceleration with
a negative mean is introduced. We denote all the unknown
accelerations {Xn,a s.t. Sn = α2, Sn−1 = α1 OR Sn =
α3, Sn−1 = α2} as {γ1, ..., γL}.

Now we relate this tempo and acceleration to the
observables. Let the IOI yn = on − on−1 for n =
1, 2, ..., N Then the data model is:

yn = lnXn,t + cn + εn (9)

where

cn = 0 |Sn 6=α4
(10)

cn ∼ N(µc, σ
2
c ) |Sn=α4

(11)

εn ∼ N(µε, σ
2
ε ) (12)

Equation (11) means when the performance comes to
an accent, the performer will stretch the IOI with a
random length. We denote all the unknown variables {Cn
s.t.Sn = α4} as {κ1, ..., κM}. Equation (12) represent
the observation errors. All the other variables of the model
depend deterministically on these variables

τ1, ..., τK , γ1, ..., γL, κ1, ..., κM , ε1, ..., εN



The directed acyclic graph(DAG) of the graphical
model is represented in figure 2. The model has both
discrete and continuous variables. For every configuration
of the discrete variables, the continuous variable have a
multivariate Gaussian distribution and is a Kalman filter.
Thus, the S1, .., SN , X1, ..., XN , y1, ..., yN collectively
have a conditional Gaussian distribution.

3. COMPUTING THE INTERPRETATION PARSE

We want to simultaneously estimate the discrete state vari-
able S1, S2, ..., SN and the continuous variable tempoX1, X2

, ..., XN given the observed IOI data y1, y2, ..., yn.
The joint likelihood function can be expressed as

L(y, s, x) = I(s1)P (y1|x1, s1)

×
N∏
n=2

(P (sn|sn−1)P (xn|xn−1, sn, sn−1)P (yn|xn, sn))

We are interested in finding the best configuration of hid-
den variable S and X that has the greatest probability of
giving the observation y.

(ŝ, x̂) = arg max
s∈S,x∈X

L(y, s, x)

Since our model has a linear graph structure described
in Figure 2, the maximization problem can be solved using
dynamic programming. Using the notation aji = {ai, ai+1,
..., aj}. Let Ln(yn1 , s

n
1 , x

n
1 ) be the joint likelihood func-

tion for variables until observation n, yn1 , S
n
1 , X

n
1 for n =

1, 2, ..., N . Then we define the density of the optimal con-
figuration for variables until observation n

Hn(sn, xn) = max
sn−1
1 ,xn−1

1

Ln(yn1 , s
n
1 , x

n
1 ) (13)

Then Hn(sn, xn) can be computed recursively

H1(s1, x1) = max
s1

I(s1)P (y1|x1, s1)

Hn(sn, xn) = max
sn−1,xn−1

Hn−1(sn−1, xn−1)

× P (sn|sn−1)

× P (xn|xn−1, sn, sn−1)

× P (yn|xn, sn)), n = 2, ..., N

We can see that

max
sN ,xN

HN (sN , xN ) = max
sN1 ,x

N
1

Ln(yN1 , s
N
1 , x

N
1 ))

A more detailed description of this method can be found
in [10].

It is obvious that the possible state sequences grow ex-
ponentially with the number of event N . In order to make
the computation tractable, we need to approximate. In this
experiment, we use a simple approach that is to sort the
current hypotheses on probability densities and leave out
the small ones in (13). This method is also known as “beam
search”.

Once we compute the approximately optimal configura-
tion of discrete states ŝ. We can recover x̂ from the Kalman
filter defined by ŝ.

4. EXPERIMENTS

MIDI is our data format. We use the time stamps directly
from MIDI files as the onset times of the notes. All data
are collected from a high quality digital piano made by
YAMAHA. The reason we choose such an instrument is to
ensure that we can hear exactly the same thing as originally
recorded when the music is being reproduced. Also when
we evaluate our model by modifying the performances and
compare them to the original ones, using this instrument
can minimize the effect introduced by difference in sound
characteristic. The piano keyboard is weighed to simulate
the feeling of the real piano keys. According to the 5
pianists who helped creating the data, although it is still
not the same as playing a real piano, they can adapt to it
and play expressively.

3 sets of experiments are performed:

4.1 Smoothing a Performance

The first set of experiment demonstrates that our model
parsimoniously and faithfully represents the original per-
formance.

The data set contains 12 piano excerpts played by
graduate level piano major students from the Indiana
University Jacobs School of Music. In order to show
the generality of our model, the excerpts are selected
from composers from different time periods, including
Bach, Haydn, Mozart, Beethoven, Schumann, Brahms and
Barber. The notated tempi for the excerpts also differ (i.e.
there are fast pieces and slow pieces.).

For each excerpt, we have a corresponding MIDI score
created from music notation software. Using the method
described in [11], we can acquire the music times {pk} in
beats for the performance. For each note, we use the time
stamp of the MIDI onset as our observation on. If several
notes are struck at the same time (i.e. a chord), we use
the onset time of the first note. µt is always set to be the
notated tempo. σt, µa, σa, µc, σc, εn are manually set to
some appropriate value.

Using the method described in section 2 and 3, we can
compute the approximate optimal state configuration ŝ and
corresponding tempo process x̂•,t. By reconstructing t,
and hence y, from our estimated variables x̂n,t, we created
a simplified or “smoothed” interpretation. Figure 3 4 5
shows some examples of observed IOIs and “smoothed”
IOIs. In each figure, the top plot represents the tempo of
the original performance where the bottom plot represents
the “smoothed” version. There are many sections of the
“smoothed” version that are horizontal lines, which is the
behavior of α1 constant tempo. The “peaks” in the bot-
tom plot show the α2 slowing down and α3 speeding up
expressive gestures as well as the α4 accents. We want
to see that if the “smoothed” version is approximating the
original one with greatly reduced parametrization as well
as capturing some of the “important events” and eliminates
“unintentional variation”.

We use the “smoothed” version to render a MIDI per-
formance with everything else unchanged. Which includes
MIDI velocities/note length for each notes and pedaling.



Figure 3. The original tempi and “smoothed” tempi
of a performance of Schubert Piano Sonata D959, 1st
movement excerpt. (The x-axis represent the music time
as in beats. The dotted line represents the original
performance. The normal line represents the “smoothed”
version. Lines with slope = 0 represent state α1; lines with
slope> 0 represent state α2; lines with slope< 0 represent
state α3; lines with slope = +∞ represent state α4)

Figure 4. The original tempi and “smoothed” tempi of a
performance of Beethoven Piano Sonata Op.31 No.3, 1st
movement excerpt. (The lines have the same meaning as
in Figure 3)

Figure 5. The original tempi and “smoothed” tempi of a
performance of Chopin Etude Op.10 No.3 excerpt. (The
lines have the same meaning as in Figure 3)

played by worse similar better
professional pianists (4.1) 23 54 31
other musicians (4.2) 4 6 17
dynamic experiment (4.3) 1 7 1

Table 1. Results from the survey of asking 9 subjects
about their opinions on “smoothed” version. The total
16 excerpts of the 3 sets of experiments are presented in
random order to avoid bias.

Then we perform a simple user study. We present both
the original version and the “smoothed” version to 9 par-
ticipants who were graduate level piano major students.
The subjects were presented with random ordering of the
two versions of every excerpt. They are asked to choose
one from the following options: 1) version 1 is better; 2)
version 2 is better; 3) they are about the same. Although
what we are really interested in is whether the “smoothed”
version is similar to the original performance, we design
the questionnaire this way to avoid putting bias towards
choosing similar in our subjects’ mind.

From the 9×12 = 108 results that evaluated in this way.
The results are shown in table 1 Which shows many of the
cases subjects think our “smoothed” version is at least on
par with the original version.

4.2 Improving a Performance

The second set of experiment demonstrates that our model
can provide a performance standard. If someone has a
sense of musicality but lacks piano skills, our model may
be able to improve their performance. This experiment
differ from the previous one because the amateur piano
players play less professionally. So we are testing the
“correcting” and “improving” abilities of our model rather
than “smoothing”. This data set contains several excerpts
played by students majoring string performance who knew
music well but didn’t have serious training in piano
performance. We run the exact same procedure as in
the first set of experiment and ask participants the same
questions. From the results in table 1 we can see subjects
think the “smoothed” version is better more often than the
excerpts in 4.1, though we do not make inference on the
larger population.

4.3 On Dynamics

The third set of experiment demonstrates that dynamics
can also be modeled with the conditional Gaussian
framework.

We choose Beethoven sonata op.101 1st movement as
our material. First we manually partition our music into
3 monophonic voices. For each voice we have a series
of MIDI velocities v1, v2, ..., vn. Our model for dynamic
has two types of behaviors β1, β2, in which dynamic can
change to a new value or starting a new second order
smooth progression.
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Figure 6. The original dynamics and “smoothed”
dynamics of one voice of a performance of Beethoven
Sonata Op.101, 1st movement excerpt.(Red dots represent
state β1; Black dots represent state β2)

Denote

Zn = (dn, en, fn)T

We define the dynamic behaviors

Zn =

1 1 0
0 1 1
0 0 1

Zn−1|Rn−1=β2

Zn ∼ N(

µdµe
µf

σ2
d 0 0

0 σ2
e 0

0 0 σ2
f

)|Rn=β2,Rn−1=β1

Zn ∼ N(

µd0
0

σ2
d 0 0

0 0 0
0 0 0

)|Rn=Rn−1=β1

Then we relate the model to observations

vn = Zn,d + δn

δn ∼ N(µδ, σ
2
δ )

Using the similar method described in section 3, we
compute the “smoothed” dynamics. Figure 6 shows an
example of the dynamics before and after the “smoothing”.

We use both “smoothed” onset times and dynamics to
render a new MIDI performance with everything else un-
changed. Then we ask the subjects the same questions.
Again, the majority think the “smoothed” version is at least
on par with the original performance.

5. DISCUSSION

Although there is no clear evidence showing “smoothed”
performances computed from our model are better than
original ones, it is still interesting to see that people think
they are comparable. It suggests that our model under-
stands the interpretation in a reasonable way.

The direct follow-up of this work is applying the model
in accompaniment system. It is challenging to deal with
soloist’s unintentional activities [11]. We can see from the
experiments that our model can reduce the “performance

noise”. Also, learning the discrete parameters from our
model may help with the score following problem since
we can model following strategies separately in different
parts of music.

In visualization scenario, our current model is only a
“toy version” since it only has a limited number of behav-
iors. For future work, we will explore more “devices” (i.e.
more discrete states) that match musicians’ intuitive ideas.

Eventually, we also want to use such models for expres-
sive rendering problem. For fine detail of performance, the
“devices” may need to be more sophisticated than simple
linear models.

We look forward to see more generally useful applica-
tions of this model framework as it develops.
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ABSTRACT

We present a method for understanding the rhythmic con-
tent of a collection of identified symbols in optical mu-
sic recognition, designed for polyphonic music. Our ob-
ject of study is a measure of music symbols. Our model
explains the symbols as a collection of voices, while the
number of voices is variable throughout a measure. We
introduce a dynamic programming framework that identi-
fies the best-scoring interpretation subject to the constraint
that each voice accounts for the musical time indicated by
the known time signature. Our approach applies as well
to the situation in which their are multiple possible hy-
potheses for each symbol, and thus combines interpreta-
tion with recognition in a top-down manner. We present
experiments demonstrating a nearly 4-fold decrease in the
number of false positive symbols with monophonic music,
identify missing tuplets, and show preliminary results with
polyphonic music.

1. INTRODUCTION

Throughout the history of the ISMIR community symbol-
ically-represented music has figured prominently in a wide
variety of applications, analysis techniques, as well as search
and retrieval schemes. In spite of this demonstrated need,
symbolic music data are still in short supply, greatly limit-
ing the scale and variety of scientific music research. For
music in machine-generated common Western notation, op-
tical music recognition (OMR) provides, in principle, a di-
rect path to create rich and extensive symbolic databases,
thus OMR is among the most important problems for the
classically-oriented music scientist. Significant advances
in core OMR technology would lead to large scale sym-
bolic music libraries, digital music stands, content-based
search, as well as many specific applications well-known
in this community.

OMR is a deeply challenging problem, well-known to
ISMIR stalwarts [1–3], though less well-represented over
recent years in published research. Blostein and Baird [4]
present a 1992 OMR overview that is not so different from
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a more current description [5]. One does not work long
in this domain without encountering longstanding themes
and conflicts of recognition science.

Our strong bias is for top-down recognition: approaches
that begin by clearly articulating the world of possible hy-
potheses or answers, then scoring these hypotheses accord-
ing to their a priori plausibility and their agreement with
the data. The HMM approach to speech recognition is one
of the most famous and successful examples of this kind,
combining top-down modeling with computationally pow-
erful dynamic programming (DP) techniques for search
and training. However, the real-world recognition prob-
lems admitting feasible top-down approaches appear to con-
stitute a small minority. All OMR approaches we know,
except [3,6], instead proceed bottom-up — beginning with
the image data, gradually trying to piece together progres-
sively higher-level constructions, ultimately concluding with
the overall interpretation of the data. The preference for
bottom-up strategies by nearly all OMR researchers (in-
cluding ourselves) stems from their computational feasibil-
ity. The hallmark of a bottom-up approach is a series of in-
termediate and irreversible decisions as one climbs the lad-
der connecting the image data and its interpretation. The
Achilles’ heel of the bottom-up paradigm is the inevitable
incorrect intermediate decision constituting a blind alley
that cannot be retraced. In OMR, the most obvious exam-
ple would be an incorrect segmentation of the data leading
to unrecognizable symbols, though many others exist.

The greatest virtue of the top-down recognition approach
is its simultaneous focus on recognition and interpretation
— primitive hypotheses such as “note head here” are only
considered when they fit into a meaningful interpretation
of the scene (say measure) at hand. While it seems too op-
timistic to hope to formulate OMR in an entirely top-down
manner, there are many sub-problems where one can em-
ploy this philosophy. We do this whenever possible. While
we begin bottom-up, seeking various self-contained ob-
jects without regard for their overall organization, each in-
dividual search procedure is itself top-down. For example,
we find isolated chords (including single notes) by explor-
ing candidate stem locations through grammar-induced DP
strategies that consider every meaningful chord presenta-
tion and result in a globally optimal interpretation. Simi-
larly, we recognize a beamed group by building a grammar
of the possible presentations and computing the globally
optimal meaningful structure. Further details can be found
in [7].



Figure 1. Numbering of symbols for polyphonic rhythm
decoding.

Figure 2. Example of a voice split.

The result of this process is a collection of mutually
inconsistent and overlapping hypotheses that share “body
parts” in impossible ways — this is a typical pitfall of a
bottom-up approach where it is difficult to formulate the
concept of a hypothesis’ unique “claim” to a particular im-
age pixel. As described in [7], we resolve these conflicts by
a phase seeking non-overlapping variants of the identified
objects, completely discarding some of them, resulting in a
collection of separate symbols that best explain the image
data. This is where our present discussion begins.

An OMR system may attempt many different levels of
music understanding. The most superficial approach would
only record the primitive symbols (note head, stem, ledger
line, etc.) found on the page, “punting” on any deeper in-
terpretation of their meaning. Many levels of increasing
depth could conceivably be added to this baseline. While
we remain uncertain about the right depth of interpretation
for our OMR system, it is hard to imagine a useful ap-
proach that does not understand rhythm and pitch. Without
such interpretation, we cannot even play back the music,
significantly limiting the value of the resulting symbolic
data. Of these problems rhythm is, by far, the more chal-
lenging one.

In the simplest case — single voice music with no un-
measured notes — rhythm interpretation is rather straight-
forward: symbols can be clearly ordered from left to right,
with the onset time of each symbol within a measure given
as the sum of all preceding symbol durations. This situ-
ation quickly breaks down when the music uses multiple
voices on a single staff as in Figure 1. Identifying the on-
set times here requires that we partition the symbols into
three simultaneous voices, thus allowing the application
of our monophonic strategy to each voice. Unfortunately,
the number of voices is not known a priori and frequently
changes throughout the duration of the measure as in Fig-

ure 2. In this work we propose a method of rhythmic in-
terpretation that understands the music in terms of voices,
allowing voices to be added or dropped anywhere in the
bar.

Of course, this rhythmic understanding is an essential
part of the symbolic data we seek to create, thus valuable
in its own right. However, the process of understanding
rhythm can be combined with the recognition process to
improve the accuracy of our recognized results. The sim-
plest example of this idea would leverage the “time signa-
ture constraint” — the note values in a voice must add up to
the time signature when viewed as a rational number. For
example, [8] has used this idea as a post-process to identify
potential recognition errors. In this context we consider
multiple hypotheses for each recognized symbol, choos-
ing the best scoring overall measure interpretation obey-
ing this constraint. More generally, we present a model
for the possible polyphonic presentations of a measure,
seeking the best scoring interpretation generated by the
model, given our recognized symbols. The most signif-
icant contribution of our present work is a top-down ap-
proach for rhythm interpretation that integrates recognition
with higher-level understanding.

2. RHYTHM DECODING

2.1 Monophonic Rhythm Decoding

The basic processing unit of our system is the measure,
whose identification is discussed in [7]. In order to rec-
ognize the contents of a measure, we must both correctly
segment the measure into meaningful pieces while inter-
preting the meaning of each piece. We first treat the case of
monophonic music, here meaning that the notes and rests
form a single stream of events. The most typical example
would be music played by an instrument that produces a
single note at a time, though our approach also applies to
sequences of chords, as long as the notes of each chord
share a stem.

Suppose we have partitioned the monophonic measure
into a sequence of K symbols that can be unambiguously
ordered from left to right. These objects could be rests,
isolated notes, beamed groups, as well as objects without
associated musical time such as clefs. If extraneous sym-
bols, not corresponding to actual document symbols, have
been (mis)recognized, it won’t matter how these symbols
figure in this ordering.

We let Sk be a collection of possible interpretations for
the kth object. For instance, for a rigid isolated symbol
such as a rest, we consider all possible position and la-
bel hypotheses, retaining the best scoring position for each
label (quarter rest, eighth rest, etc). In the case of an iso-
lated note, our recognition result may involve a closed note
head, though an open note head may match nearly as well.
Or perhaps we were uncertain about the number of aug-
mentation dots or flags attached to the note. We revisit the
DP analysis of the note, modifying the trace-back phase to
create the “N-best” interpretations of the object [9]. Thus
our isolated note analysis produces a list of possible inter-



pretations along with scores measuring the quality of fit to
the image data.

Similarly we construct an N-best list for the interpre-
tations of a beamed group. These hypotheses may dif-
fer in the number of beams that connect any pair of ad-
jacent notes, existence of partial beams, or number of aug-
mentation dots attached to a note. In summary, the input
to our rhythm recognizer is an ordered list of K objects,
each with collection of possible hypotheses, Sk. For each
sk ∈ Sk we let D(sk) denote the musical time consumed
by the hypothesis, with recognition score H(sk). Our con-
vention for musical time gives a quarter note duration 1

4 ,
and eighth note 1

8 , with similar rational numbers for other
notes, rests, or beamed groups. In each collection, Sk we
include the “null” interpretation with duration and score
0, corresponding to the case of a false positive recognition
error.

In many cases we find that the best scoring hypothe-
ses collectively make rhythmic sense. That is, we find that∑

k D(ŝk) = T where ŝk = argmaxsk∈Sk
H(sk) and

T is the measure’s time signature represented as a ratio-
nal number (e.g. T = 3

4 for 3/4 time). In such a case there
would be no reason to consider any other possible interpre-
tation of the symbols. However, it is common to encounter
scenarios where the best scoring hypotheses do not “add
up,” while the correct interpretations of some symbols are
found “further down” in the hypothesis list. In such a case
it makes sense to look for the sequence s∗1, . . . , s

∗
K with

s∗k ∈ Sk given by

s∗1, . . . , s
∗
K = arg max∑

k D(sk)=T

∑
k

H(sk)

where the maximum is taken over all sequences s1, . . . , sK
with sk ∈ Sk for k = 1, . . . ,K.

The identification of this optimal configuration is a sim-
ple exercise in dynamic programming. To this end we let
Pk denote the possible measure positions for the kth ob-
ject:

Pk = {
k∑

k′=1

D(sk′) : sk′ ∈ Sk′}

for k = 1 . . . ,K, with P0 = {0}. These are the “states”
of the DP calculation. Then we initialize M0(0) = 0 and
recursively define

Mk(pk) = max
pk−1∈Pk−1,sk∈Sk

pk−1+D(sk)=pk

Mk−1(pk−1)+H(sk) (1)

for k = 1, . . .K and pk ∈ Pk. The optimal path, s∗1, . . . , s
∗
K ,

has score MK(T ) — it is a simple exercise to recover the
path that generates the optimal score MK(T ).

By enforcing the time signature constraint on our in-
terpretation we guarantee that the result makes rhythmic
sense and fix recognition errors in the process, analogous
to the decoding of an error-correcting code.

2.2 Recognizing System Rhythm

A system groups together a collection of staves that are
played simultaneously. Usually systems align symbols oc-

curring at the same musical time to the same horizontal
position. For instance, corresponding bar lines of a sys-
tem generally occur at a common horizontal position — in
fact, our system recognizer identifies systems by partition-
ing the staves into groups having common bar line posi-
tions. As always with music notation, there are exceptions
to this general rule, such as when whole rests are centered
rather than “left aligned,” or when symbols must be off-
set from their idealized positions to avoid overlap, as with
unison whole notes.

This alignment convention can be used to extend the
idea of the preceding section by adding a term to the score
function penalizing misalignment of simultaneous events.
Suppose we begin with a system of L staves and write
sl1, . . . , s

l
K with slk ∈ Sl

k for an interpretation of the lth
staff. As a minor abuse of notation, we write P (slk) =∑k

k′=1 D(slk′) for the measure position of slk, though clea-
rly P (slk) depends on the entire history leading to slk. For
every pair of simultaneous rhythmic events in a system
measure — that is, slk, s

l′

k′ with P (slk) = P (sl
′

k′), we pe-
nalize their misalignment by Q(|X(k, l)−X(k′, l′)|), with
some non-decreasing function, Q, where X(k, l) gives the
horizontal location of the kth event in the lth staff. For
a rest, we would take this location to be the horizontal
component of its center, while for an isolated note would
would take the horizontal component of the note head cen-
ter, since this is normally what the layout tries to align. For
beamed groups we simply use the horizontal component of
the first note head center.

We now optimize the criterion:

J =
L∑

l=1

∑
k

H(slk)−
L∑

l,l′=1

l 6=l′

P (slk)=P (sl
′
k′ )

Q(|X(k, l)−X(k′, l′)|)

(2)
subject to the usual time signature constraint on each mea-
sure. Due to the very large state space that would ensue,
it may not be feasible to perform simultaneous optimiza-
tion over all {slk} variables by DP. A computationally more
tractable approach would be the familiar Gauss-Seidel or
“coordinate-wise” optimization. That is, we first recognize
each staff measure independently according to the tech-
nique of the previous section. Then we iteratively revisit
each staff in turn, holding the interpretation of the other
staff measures fixed while optimizing over the current staff
measure. This calculation is possible since, when consider-
ing staff l′, the measure positions, P (slk), l 6= l′, are known
since the sl1, . . . , s

l
K are fixed, while for l = l′, P (slk) is

the DP state.

2.3 Missing Tuplets and Symbol Overloading

Rhythmic notation allows for various abbreviations that
may not literally make sense, but are clear in context. Of-
ten the correct interpretation is reinforced by the horizon-
tal alignment of coincident symbols, as in the previous
section. For instance, it is common to omit the ’3’ on



Figure 3. Example of implicit triplets. Our state model
requires a triplet to begin on a beat and continue for entire
beat before returning to duple rhythm or beginning another
triplet.

a beamed group of three notes, when the triplet interpre-
tation is obvious, though this convention also allows for
mixing rests and notes implicitly grouped into 3’s (or some
other tuplet number) as in Figure 3. Another common ab-
breviated notation uses the half rest or whole rest to denote
an empty measure even when the rest doesn’t account for
the correct bar length. While it may be literally correct to,
for instance, write a dotted half rest for a blank measure of
3/4 time, there doesn’t seem to be any possibility for mis-
interpreting the plain half rest, so the shorthand persists.

Examples such as the “overloaded” half rest are easy to
treat with the preceding methodology. When the half rest
appears as a possible interpretation of a symbol in 3/4 time,
we simply add an identically-scored interpretation corre-
sponding to the full length of the measure. The case of
the missing triplet on a group of three beamed notes can
be handled similarly, allowing both “straight” and triplet
interpretations of the group (while in duple meter).

The same ideas can apply in the more complex missing
triplets of Figure 3, where the implicit grouping involves
several musical symbols. To do this we must multiply our
state space by 2 allowing each state to occur in a “straight”
and “triplet” version. When we are in a triplet state, all
note values count for 2/3 their nominal length. We can
leave the triplet state, reverting to the literal interpretation
of rhythm, only when the measure position has no factor of
3 in the denominator (i.e. when the triplet is completed).
We may also limit the places where triplets can begin (i.e.
where we can transition from a non-triplet state to a triplet
state) to quarter note or eighth note pulses.

2.4 Polyphonic Rhythm Decoding

As discussed in Section 1, the rhythmic intent of poly-
phonic notation is often ambiguous, deriving its meaning
from implicit use of voices which may appear or disappear
at any place within a measure. In this section we present an
algorithm for the rhythmic decoding of a measure of poly-
phonic symbols. For clarity’s sake we focus on the sim-
plest statement of the problem, assuming correctly identi-
fied symbols, a single staff, and no missing tuplets. How-
ever, this technique can be extended using any of the ideas
of the previous three subsections. For instance, the ideas
of Section 2.1 can be included in an obvious way to cover
the case where we have multiple rhythmic hypotheses for
each symbol, as in Section 3, with analogous extensions
for missing tuplets and staff measures.

We first consider the situation in which the number of
voices, V , is known, while the voices persist throughout
the entire measure. In such a case, the sum of rhythmic
values over all symbols in the measure would be V T . Here
the interpretation problem simply separates these symbols
into voices, as is necessary for their rhythmic understand-
ing. We begin by numbering the K symbols of the measure
from left to right, breaking ties arbitrarily, as in Figure 1:
we require only that the resulting sequence of the symbols’
measure positions is non-decreasing. We represent a possi-
ble interpretation as a sequence of states, one state for each
of the K symbols, where a state consists of three quanti-
ties for each active voice: the index of the voice’s most
recent symbol and two rational numbers giving the onset
and offset times of the most recent symbol. For instance,
the correct state sequence associated with Figure 1 would
be:

voice 1 voice 2 voice 3
1 (1, 0

1 ,
3
8 ) — —

2 (1, 0
1 ,

3
8 ) (2, 0

1 ,
3
8 ) —

3 (1, 0
1 ,

3
8 ) (2, 0

1 ,
3
8 ) (3, 0

1 ,
6
8 )

4 (4, 3
8 ,

6
8 ) (2, 0

1 ,
3
8 ) (3, 0

1 ,
6
8 )

5 (4, 3
8 ,

6
8 ) (5, 3

8 ,
6
8 ) (3, 0

1 ,
6
8 )

6 (6, 6
8 ,

9
8 ) (5, 3

8 ,
6
8 ) (3, 0

1 ,
6
8 )

7 (6, 6
8 ,

9
8 ) (7, 6

8 ,
9
8 ) (3, 0

1 ,
6
8 )

8 (6, 6
8 ,

9
8 ) (7, 6

8 ,
9
8 ) (8, 6

8 ,
9
8 )

This sequence is “legal” since all voices account for the
number of beats expressed by the time signature (9/8), as
seen by the 3rd member of each voice in the last row of the
table.

Of course, the true state sequence is not known, in prac-
tice. We proceed by considering all possible state sequences,
scoring them according to the their plausibility in search
of the best scoring candidate. In doing so we generate a
search tree where the kth level of the tree treats the kth
symbol in our list. At the kth level we expand each branch
by adding the kth symbol to all possible voices, while scor-
ing this extension according to several criteria. Perhaps
the most important criterion is the degree to which musi-
cally coincident symbols align horizontally. When a new
symbol enters a voice, we must first consult the state to
see if it contains symbols sharing the new symbol’s onset
time. This is why the symbol’s starting position is included
as part of the state. For each such coincident symbol in
the state, we compute the difference in horizontal position
with that of the entering symbol. This is why the state
also retains the index of the symbol. The state information
can also be used to penalize the addition of a new symbol
whose stem direction does not agree with that of the most
recent symbol, etc.

The search proceeds over K iterations — one for each
incoming symbol, generating a search tree in the process.
Each iteration begins by expanding each surviving branch
by adding the current symbol to one of the voices, or cre-
ating a new voice if available voices exist. These new hy-
potheses are then scored according to the criteria discussed
above. At this point it is possible that we have generated
multiple paths to the same state, and, if so, we only retain



the best scoring state. That is, we perform DP cutoffs. In
doing so, the particular voice numbering is not considered
relevant, so two states that differ only by the labeling of
voice numbers are considered identical. After performing
DP cutoffs, we may still need to prune the tree further to
render the search feasible, retaining only the best scoring
B hypotheses after each iteration.

Of course, it is not reasonable to assume a priori that
we know the number of voices. For that matter, the num-
ber of voices may change throughout the duration of the
measure. The most common instance of this phenomena
occurs when a multi-voice measure begins or ends with a
rest, in which case it is common to use a single rest for
all voices. More generally, it is common to allow voices to
come in, or go out, of existence when the resulting notation
uses less ink and still suggests the right idea to the reader.
Figure 2 shows an example where a voice is added midway
through the measure (we regard stems with multiple note
heads as a single voice).

We address this problem by adding some flexibility to
our state production rules. Regardless of the number of
voices, we begin each measure with a single voice. At the
beginning of each iteration, any voice is allowed to split
into two identical voices, as long as some maximum num-
ber of voices has not yet been reached. The incoming sym-
bol is then allowed to extend any currently active voice.
Additionally, any two voices sharing the same ending time
can merge into a single voice. Since we want to discour-
age gratuitous use of these kinds of productions, we add
a penalty term when they are invoked. The correct state
sequence associated with Figure 2 is as follows:

voice 1 voice 2
1 (1, 0

1 ,
1
2 ) —

2 (2, 1
2 ,

5
8 ) —

3 (2, 1
2 ,

5
8 ) (3, 5

8 ,
7
8 )

4 (4, 5
8 ,

4
4 ) (3, 5

8 ,
7
8 )

5 (4, 5
8 ,

4
4 ) (5, 7

8 ,
4
4 )

3. EXPERIMENTS

We tested the algorithm of Section 2.1 on the 2nd move-
ment of the Mozart Quintet for Clarinet and Strings, K. 581.
The original images of the four pages of this movement can
be seen at

http://www.music.informatics.indiana.edu/papers/ismir12.
As with all experiments presented here, we begin by find-
ing our best representation of the image data in terms of
non-overlapping isolated symbols, isolated chords, and beamed
groups. This phase implicitly segments the image into dis-
tinct objects. Using the N-best techniques discussed above,
we then identify a list of possible interpretations of each
symbol or symbol group, thus forming the input to our
rhythm decoder. The best scoring hypothesis for each sym-
bol is superimposed in blue in the referenced images. As
discussed above, the collection of best scoring individual
hypotheses may not make rhythmic sense, thus we seek the
best scoring meaningful interpretation through our rhythm
decoder.

Best Score Rhythm Decoding
symbol name False+ False- False+ False-
solid note head 6/898 14/908 5/891 18/908
open note head 1/34 4/37 1/32 6/37
note stem 36/921 10/927 32/913 14/927
1 beam 4/429 9/434 3/427 10/434
2 beam 1/77 4/80 0/76 4/80
3 beam 1/90 2/91 1/91 1/91
aug. dot 113/153 1/39 3/38 4/39
single flag down 0/7 0/7 7/14 0/7
single flag up 0/9 3/12 0/12 0/12
double flag up 0/0 1/1 0/0 1/1
whole rest 27/27 13/13 1/14 0/13
half rest 30/30 0/0 2/2 0/0
quarter rest 12/36 1/25 1/25 1/25
eighth rest 12/30 1/19 2/20 1/19
16th rest 0/1 3/4 0/2 2/4
32th rest 0/6 0/6 1/7 0/6
total 243/2748 66/2603 59/2544 62/2603
decimal .088 .025 .023 .024

Table 1. False positives and false negatives for each prim-
itive symbol with and without rhythm decoding. The table
shows a nearly 4-fold decrease in false positives with es-
sentially no change in false negatives.

Each of these images was hand-marked with ground
truth by identifying bounding boxes of the primitive sym-
bols of Table 1, as well as some rhythmically neutral sym-
bols (clefs, accidentals, etc.) that don’t appear in the table.
As can be seen from the images and the table, the origi-
nal recognition contained many small false positive sym-
bols such as augmentation dots and whole/half rests. From
a statistical point of view, almost any data model will be
prone to such “small symbol” errors, due to the higher vari-
ability of small-sample estimates. However, many of these
unwanted symbols have only marginal data scores and do
not appear in the best scoring measure hypothesis subject
to the time signature constraint. In fact, the Table 1 shows
a nearly 4-fold decrease in false positives with virtually
no change in false negatives. False negatives, for the most
part, cannot be corrected by our rhythm decoder, since they
stem mostly from errors in which the correct hypothesis
does not appear anywhere in our input to the algorithm.

The last page of the Mozart Quintet 2nd movement, vis-
ible at the website reference above, contains a number of
unmarked triplets, as well as several marked ones, as in
Figure 3. We tested the algorithm of Section 2.3 which
includes unmarked triplets among the hypotheses that are
considered. Since a number of the triplets on our page
involve two symbols, a rest and two beamed notes, we
must modify our state space in the manner described in
Section 2.3, giving two versions of each rhythmic posi-
tion: “triplet” and “straight.” We recognized the page us-
ing the rhythm decoder of Section 2.1, both with and with-
out accounting for unmarked triplets. When allowing for
triplets we correctly recognized all of the triplets on the
page, while the larger associated state space caused no ad-
ditional errors on the measures that did not contain triplets.
This is, of course, a small “proof of concept” experiment,
rather than a large scale validation.



A final experiment treats the first page of the Rach-
maninov Etudes Tableaux, op. 33 for piano, also displayed
at the aforementioned web page. Piano music is particu-
larly difficult for OMR, due to the higher symbol density,
implicit uses of voices, as well as other idiosyncrasies of
keyboard notation. However, the frequent use of implicit
voices poses an appropriate challenge for our polyphonic
rhythm decoder of Section 2.4 — most measures in the
right hand of this page contain two voices.

Our goal now is simultaneously to choose from the avail-
able hypotheses for each object, and to explain the sym-
bols’ rhythm in terms of several possible voices. In this
way we integrate recognition and interpretation, as is con-
sistent with our philosophy, rather than treating them as
distinct phases of OMR. While the page uses voices in a
consistent manner (two for the right hand and one in the
left), we do not assume this knowledge. Rather we assume
a maximum of two voices that are allowed to come and
go in each measure, as described in Section 2.4. Since we
do not yet recognize time signatures, we assume the time
signature is known for each measure.

Evaluating OMR in terms of symbol primitives, as in
Table 1, is relatively straightforward and common in the
OMR literature. We can imagine various useful notation
applications based only on such primitive information, jus-
tifying a limited place of this kind of evaluation. However,
we expect that most uses of OMR will require a higher
level of music understanding than that expressed by sym-
bol primitives. One possible approach to OMR evalua-
tion represents each measure as a list of notes (or notes
and rests), with each note having several attributes such
as position within measure, length, pitch, coordinates of
note head, etc. When both ground truth and recognized re-
sults are represented in this manner, a false negative can
be identified as any note in the ground truth that cannot
be “matched” with a note in the recognized results. Here
a match requires agreement of all attributes of the ground
truth note with one of the recognized notes. False posi-
tives are computed by reversing the roles of ground truth
and recognized results. Since our current emphasis is on
rhythm, we evaluate our approach in this manner describ-
ing each note in terms of its note head coordinates and
rhythmic onset position within the measure. While not ex-
plored here, we believe this general evaluation paradigm
(with suitable modifications) is serviceable in a wide range
of OMR scenarios.

Using this procedure we achieved false negative and
false positive rates of 30/402 and 8/380 on the Rachmani-
nov page. While evaluations in terms of musical quantities
such as pitch and rhythm may better measure the useful-
ness of the OCR results, they don’t clearly convey what
actually goes wrong in recognition — in contrast, primi-
tive evaluation is quite specific in this regard. On this one-
page test, all errors were due to one of three things. One
measure simply had misrecognized rhythm, however, the
rhythmic result was quite syncopated, suggesting we may
be able to further improve by penalizing unusual rhythm.
Most of the false negatives were due to the second kind

of error — missing note heads on chords that were other-
wise correctly recognized. Our approach cannot possibly
recover from such errors. The last type of error results
from the unusual figure in the left hand of measures 5-
9, in which an eighth and sixteenth are beamed together
with a sixteenth rest written in the interior of the beamed
group. This situation violates our assumption that notes in
beamed group are executed in sequence without the pos-
sibility of intervening notes/rests from other symbols. We
believe this type of error could be corrected with simple
modifications of our approach. As before, numerous false
positives from recognition are corrected by this procedure.
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ABSTRACT

In this paper we establish a threshold for perceptually ac-
ceptable beat tracking based on the mutual agreement of a
committee of beat trackers. In the first step we use an ex-
isting annotated dataset to show that mutual agreement can
be used to select one committee member as the most reli-
able beat tracker for a song. Then we conduct a listening
test using a subset of the Million Song Dataset to estab-
lish a threshold which results in acceptable quality of the
chosen beat output. For both datasets, we obtain a percent-
age of trackable music of about 73%, and we investigate
which data tags are related to acceptable and problematic
beat tracking. The results indicate that current datasets are
biased towards genres which tend to be easy for beat track-
ing. The proposed methods provide a means to automat-
ically obtain a confidence value for beat tracking in non-
annotated data and to choose between a number of beat
tracker outputs.

1. INTRODUCTION

Beat tracking can be considered one of the fundamental
problems in music information retrieval (MIR) research.
There have been numerous algorithms presented (e.g., [5,
6, 10]) whose common aim is to “tap along” with musical
signals. Furthermore the inclusion of beat trackers within
other music analysis tasks (such as harmony analysis [8],
structural segmentation [11]) has become common-place.
However despite the somewhat automatic inclusion of beat
trackers as temporal processing components, beat tracking
itself is not considered a solved problem. Recent compar-
ative studies of beat trackers suggest there is often little to
choose between the best performing state of the art meth-
ods [4, 12]. Indeed the viewpoint could be taken that beat
tracking performance is approaching a glass ceiling [9]
with the current algorithms stagnating at around the 80%
mark when evaluated using the least stringent metrics on
common datasets [4].
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In previous work [9] we proposed that the presence of
this apparent glass ceiling was not the result of beat track-
ing algorithms having reached their full potential, but rather
the datasets on which beat trackers are evaluated not con-
taining a sufficient proportion of challenging examples; and
that current beat trackers have over-learned the musical
properties of the “easier” songs within these datasets. To-
wards the future advancement of beat tracking we presented
a technique to automatically identify challenging examples
for beat tracking without the need for ground truth annota-
tions [9]. Our technique was based on measuring the mean
mutual agreement (MMA) between a committee of state of
the art beat tracking algorithms, where low mutual agree-
ment (or put another way, high disagreement) between beat
outputs was shown to be a good indicator of low perfor-
mance against the ground truth. To this end we empirically
determined an MMA “failure” threshold below which beat
tracking performance was shown to be very poor, and cre-
ated a new database comprised of challenging songs with
MMA below this threshold.

In this paper we address the opposite issue, where, in-
stead of trying to find where beat tracking algorithms fail,
we wish to identify when beat tracking has been success-
ful. When ground truth annotations are available this ques-
tion can be easily answered, however the problem is non-
trivial when no ground truth exists, i.e., on the vast ma-
jority of music. The current implicit means for doing so
is simply to extrapolate the performance on the limited
dataset, for which a precise evaluation can be conducted,
and assume this is representative of beat tracking perfor-
mance on all music.

In light of our previous concerns about the make-up of
these annotated databases, we believe that extrapolating
performance in this way will be overly optimistic. There-
fore when seeking to determine an unbiased measure of
performance we can either manually annotate more and
more music examples for evaluation, or instead attempt to
estimate beat tracking performance without ground truth.
Due to the impractical nature of the first option, we pursue
the second. Furthermore, if no ground truth is required,
then performance can be estimated on very large (effec-
tively unlimited) collections of music.

We extend our previous work to attempt to determine
an MMA “success” threshold above which we can have
high confidence in the beat tracking output of a commit-



tee of state of the art algorithms. We determine the success
threshold by means of a subjective listening test, where lis-
teners are asked to rate the quality of the beat output given
by the committee across a range of songs for which the
MMA has been calculated. In each case the beat tracker
output chosen to represent the committee is selected auto-
matically as the one which most agrees with the remainder
of the committee, i.e., the beat tracker output with the max-
imal mutual agreement (MaxMA). We demonstrate that se-
lecting between beat tracker outputs using MaxMA leads
to improved performance over consistently picking any in-
dividual algorithm from the committee.

Through the calculation of both MMA and MaxMA we
present a technique by which we can estimate the level
of successful beat tracking on any dataset without ground
truth, and, for those songs with MMA above the threshold,
automatically annotate the beats in a way that exceeds the
performance of the state of the art. In light of the recently
presented Million Song Dataset [1] we consider this work
to be particularly timely.

The remainder of the paper is structured as follows:
Section 2 gives an overview of the proposed method based
on mutual agreement and describes the chosen committee.
Section 3 demonstrates the improvement in performance
when selecting a beat tracker based on the MaxMA ap-
proach on a manually annotated dataset. Section 4 applies
the technique to non-annotated data and describes the pro-
cedure followed in the listening test and the main results.
Section 5 concludes the paper with discussion of the results
and areas for future work.

2. MEASURING MUTUAL AGREEMENT

The measurement of Mean Mutual Agreement (MMA) is
inspired by the Query by Committee concept [14] which
selects the most informative set of samples from a database
based on the mutual (dis-)agreement between a designated
committee of learners. In beat tracking, the MMA is com-
puted using the beat outputs (or beat sequences) of a com-
mittee of N beat trackers on a musical piece, by measuring
the mutual agreement MAi,j between every pair of esti-
mated beat tracker outputs i and j, and retrieving the mean
of all N(N − 1)/2 mutual agreements. A graphical exam-
ple is shown in Figure 1.

In addition to calculating the MMA as a summary statis-
tic, we can easily identify the mutual agreement, MAi, of
the beat tracker output i which most agrees with the re-
mainder of the committee: MaxMA, and the beat tracker
output i which agrees the least: MinMA. In order to mea-
sure the mutual agreement MAi,j between each pair {i, j}
of beat tracker outputs, a beat tracking evaluation method
must be chosen. In [9] we reviewed the properties of ex-
isting evaluation methods [2] and selected the Information
Gain approach [3] (InfGain) as the only one with a true
zero value, able to match low MMA (measured in bits)
with unrelated beat tracker outputs:

MAi,j = InfGain(i, j), i, j = 1, . . . , N∧i 6= j. (1)

The Information Gain measure is determined by forming a

Figure 1: Example calculation of the MMA and MaxMA
for a song with the beats estimated from a committee of
four beat trackers.

beat error histogram representing the timing error between
beat sequences. A numerical score is calculated as a func-
tion of the entropy of the histogram. The range of values
for the Information Gain is 0 bits to approximately 5.3 bits,
where the upper limit is log2(K) for K=40 histogram bins.
For further details see [3].

To form our committee we select five state of the art and
publicly available beat trackers: Dixon (Dix.) [5], Degara
(Deg.) [4], Ellis (Ell.) [6], IBT [13], and Klapuri (Kla.) [10].
These convey the performance and diversity necessary to
compute a reliable MMA [9].

3. MUTUAL AGREEMENT ON EXISTING
ANNOTATED DATA

In order to assess if the mutual agreement among our com-
mittee of beat trackers can reliably inform us about the
best estimated beat tracker output we computed and com-
pared the outputs of this committee on a manually anno-
tated dataset containing 1360 song excerpts [5,7] (referred
to as Dataset1360) which covers the following genres:
Acoustic; Afro-American; Jazz/Blues; Classical; Choral;
Electronic; Rock/Pop; Balkan/Greek; and Samba.

Since we have shown in previous work that disagree-
ment among the committee indicates poor beat tracking
performance [9], we consider the potential positive effect
of agreement within the committee. Our hypothesis is that
the beat tracker that best agrees with the rest of the com-
mittee (the one with MaxMA) will be the most reliable al-
gorithm for a specific musical piece. On this basis, we
compare the mean ground truth performance of the best
overall beat tracker, Best Mean, (which was shown to be
Klapuri [10] (Kla.) for Dataset1360 [9]) against the mean
scores of the algorithms with the MaxMA and MinMA for
each excerpt. To illustrate the upper limit on performance
for our committee we also compute the Oracle as the mean
score given by the best beat tracker per excerpt.

Figure 2 compares the results of the described perfor-
mance variants on Dataset1360. As described in Section 2,
the MaxMA and MinMA were computed using the Inf-
Gain 1 . In order to compare MinMA and MaxMA against

1 the InfGain and AMLt measures were computed using the
the beat tracking evaluation toolbox, available at http://code.
soundsoftware.ac.uk/projects/beat-evaluation
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Figure 2: AMLt scores of the beat tracker output with
maximum (MaxMA) and minimum (MinMA) agreement
per song, compared with the single best beat tracker choice
(BestMean), and the oracle score (Oracle) for various
thresholds of MMA applied to Dataset1360.

the Best Mean and Oracle performances of the committee
on the same data, we used the least stringent continuity-
based measure, AMLt 1 (Allowed Metrical Level with no
continuity required) [3], where beats are accurate when
consecutive falling within tempo-dependent tolerance win-
dows around successive annotations. Beat tracker outputs
are also considered accurate if beats occur on the off-beat,
or are estimated at double or half the annotated tempo.
This performance measure provides a more intuitive scale
of 0 to 100% than Information Gain and allows some am-
biguity in the choice of metrical level at which the beats
are estimated.

Performance across these conditions was computed for
different amounts of data confined by incremental values
of MMA, in the range of [0-3] bits and varying in steps
of 0.3 bits. These MMA values act as a threshold for the
selection of excerpts from the dataset (e.g., for an MMA of
2.1 bits we retain 52.1% of the song in the dataset).

As expected, the overall performance of the committee
increases with the MMA threshold. This confirms the hy-
pothesis that the MMA is able to reliably detect difficult
songs for beat tracking, and therefore can confine the data
to easier songs by removing those with low MMA. Across
all MMA thresholds we can observe that the performance
of MinMA is significantly lower than all other configu-
rations tested. Although lower than the Oracle, MaxMA
outperforms the BestMean algorithm, and the difference
between the two, around 3.3%, is statistically significantly
(p<0.01) for all songs with an MMA below 2.4 bits. Above
2.4 bits this difference is no longer significant however the
performance of the Oracle, BestMean and MaxMA are all
very high. This suggests that for very high MMA thresh-
olds, where beat tracker outputs are highly consistent with
one another, any attempt to choose between the members
of the committee offers little scope for improvement.

4. AUTOMATICALLY BEAT-ANNOTATING A
LARGE DATASET

Having illustrated the validity of using the MaxMA method
to select a beat tracker output among a committee of al-
gorithms on a manually annotated dataset, we now turn
our attention to applying it to a large collection of non-
annotated data. For very large collections it is impractical
to expect there to be ground truth annotations on which
to base the performance evaluation. Towards understand-
ing how well the state of the art in beat tracking can au-
tomatically annotate beats in large collections we employ
our MMA and MaxMA methods and attempt to determine
the proportion of songs for which the beat estimates are
acceptable via a subjective listening test. We want to es-
tablish a threshold on MMA above which the beat tracker
outputs are perceptually acceptable. For each file, the beat
tracker output will be chosen using the MaxMA method.

4.1 Million Song Subset

The large collection we aim to automatically annotate is
the MillionSongSubset from the Million Song Dataset [1].
The subset is comprised of 10,000 songs without ground
truth for which audio previews were obtained. The major-
ity of audio previews were either 30 s or 60 s in duration,
however to provide sufficiently long song excerpts for beat
tracking we discarded any shorter than 20 s. This left a set
of 9940 songs on which to automatically annotate beats. To
complement the audio data, we obtained 31696 Last.fm 2

tags which covered a subset of 4638 songs.
Once all of the audio and meta data was collected we

ran the committee of beat tracking algorithms recording
the MMA value per excerpt and saving the MaxMA beat
tracker output.

4.2 Subjective Listening Test

The aim of our listening test was to determine an MMA
threshold above which the beat tracker output given by the
MaxMA method was deemed acceptable to human listen-
ers. By subsequent inspection of the number of songs in
the dataset above this MMA threshold we could then esti-
mate the proportion for which beat tracking can be consid-
ered successful.

Just as it is not possible to hand annotate beats in nearly
10,000 songs, it is equally impractical to ask participants to
listen and rate this large number. As alternative to the ex-
haustive rating of all audio songs, we selected 8 levels of
MMA = [0.5, 1.0, 1.5, . . . , 4.0] bits and chose the 6 clos-
est songs from the MillionSongSubset to each MMA level,
giving a total of 48 songs to summarize the dataset. To cre-
ate the musical stimuli for the listening test we constructed
stereo audio files containing a mixture of source audio and
the MaxMA beat output synthesized as short click sounds.
To mitigate the effect of errors in beat tracking at the start
of songs, which might bias the listener ratings, each mu-
sical stimulus was formed out of the middle 15 s of each

2 http://labrosa.ee.columbia.edu/millionsong/
lastfm



song. To allow listeners to hear the audio with and with-
out click sounds, we panned the source audio on its own
on the left channel, and on the right channel we mixed the
click sounds conveying the beats with a quiet version of the
source audio. Through informal listening tests prior to the
main experiment, this was deemed an acceptable method
for creating the stimuli.

To take the listening test we recruited 25 participants
(21 male, 4 female) with an age range of 23 to 41 (mean =
31 years, std = 4.7 years). The participants’ level of music
training ranged from 0 to 20 years (mean = 8.7 years, std =
7.7 years). Each participant was instructed to perform the
test in a quiet environment with good quality headphones.
Prior to starting the main test, the participants were given
three training examples (not in the main set of 48). The
training phase was used for three reasons: i) to familiarise
participants with the type of musical stimuli in the test, ii)
for the participants to understand the panning of the beats
in the stimuli and iii) so the participants could set the play-
back volume to a comfortable level. To prevent order ef-
fects in the stimuli, each participant was given an individ-
ual playlist of songs in a different random order.

In taking the test, the participants were asked to answer
the following question: “How do you rate the overall qual-
ity of the given click as a beat annotation of the piece?”
The options for rating were: 1 - Bad, 2 - Poor, 3 - Fair, 4 -
Good, 5 - Excellent.

4.3 Results

4.3.1 Listening Test

Figure 3 presents a comparison between the human ratings
and the MMA of our committee of beat trackers for the se-
lected 48 pieces of the MillionSongSubset. The plot shows
that for an MMA equal to 1.5 bits the mean rating was 3.7
(Good) with a standard deviation of 0.93. However, for
MMA equal to 1 bit, the mean rating was much lower, at
around 2.4 (Poor). Performing a t-test, we found the differ-
ence between the mean ratings at these MMA values to be
highly significant (p < 0.0001). On this basis we can eas-
ily identify an MMA threshold of 1.5 bits which separates
perceptually acceptable beat tracking from inaccurate beat
tracking.

4.3.2 MMA Threshold

By selecting an MMA of 1.5 bits as a threshold of percep-
tual confidence for beat tracking we find 996 songs (73%)
in Dataset1360 and 7252 songs (coincidentally also 73%),
in the MillionSongSubset above this limit (see Figure 4).
Table 1 shows the AMLt scores for the Oracle, MaxMA,
Best Mean, and MinMA for the two subsets of Dataset1360
separated by MMA = 1.5 bits, evaluated against the ground
truth. The beat tracking performance is consistently high
for songs with MMA >1.5 bits, with a mean MaxMA per-
formance of ≈90%, which must be considered very accu-
rate, and hence hints at a meaningful relationship between
subjective judgement of beat tracking and the AMLt scores
obtained from the objective evaluation. While beat track-
ing performance is lower for MMA < 1.5 bits this does not

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

R
a

ti
n

g

MMA level [=] bits

Figure 3: Listening test ratings vs MMA for the selected
48 music excerpts, from the MillionSongSubset.

Name AMLt (%) MMA
Oracle 95.4

MMA>1.5MaxMA 89.9
Best Mean 86.3
MinMA 63.9
Oracle 70.9

MMA<1.5MaxMA 58.8
Best Mean 54
MinMA 50.1

Table 1: Mean AMLt score of Oracle, MaxMA,
Best Mean, and MinMA for the two subsets of
Dataset1360 divided by an MMA threshold of 1.5 bits.

mean the MaxMA beat estimations cannot be perceptually
accurate, merely that we do not have high confidence in
them.

4.3.3 Last.fm Tag Analysis

Given the MMA threshold and collected Last.fm meta-
data, we now look at the genre-related tags of the songs that
appear significantly more often (with p < 0.0001) in the
MillionSongSubset with MMA above and below 1.5 bits.
These are shown in Table 2. From inspection of the table
we can see that the genres above the MMA threshold are
those which we would typically associate with being “eas-
ier” for beat tracking where as those below the threshold
appear more challenging. Seeing all genre labels related
to metal music below the threshold was a surprising result
since this music is strongly percussive and is not charac-
terised by wide tempo changes. The fact that metal music
consistently falls below the threshold indicates it might be
the “noisy” element of the music which causes it to be dif-
ficult. To the best of our knowledge we are unaware of
many metal examples in existing beat tracking databases.
This suggests it is something of a forgotten genre for beat
tracking.

Another important observation relates to the tag fre-
quency for genre labels above and below the threshold.
There is a far higher proportion of songs tagged “Rock”
and “Pop” compared to all the others, and in general the
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Figure 4: Datasets sorted by MMA and the perceptual
threshold of 1.5 bits.

tags used above the threshold appear much more frequently
than those below it. From this we can infer that, just as
Dataset1360 is biased towards easier cases for beat track-
ing [9], the same could be said of the MillionSongSubset.
Evidence for this conclusion can be found in the descrip-
tion of the MillionSongDataset itself [1] where the lack of
diversity is mentioned; in particular the small amount of
classical and world music.

Given the disproportionate number of easier songs for
beat tracking in this dataset, our estimate of 73% of songs
for which beat tracking is acceptable may still be an op-
timistic estimate of the true level of beat tracking perfor-
mance across all music.

4.3.4 MaxMA Choice of Beat Tracker

Having investigated the main results of applying MaxMA
to automatically annotate beat locations, we now address
the properties of the committee. Figure 5 presents his-
tograms for both evaluated datasets depicting the propor-
tion of songs where each beat tracking algorithm is se-
lected as the MaxMA beat output. Both histograms show
similar shapes, indicating that there may be some similar
properties between the musical content of both datasets.
The two most chosen algorithms are those of Degara [4]
and Klapuri [10]; both of which perform most accurately
against the ground truth, and can be considered the best
among the state of the art methods. As to why the Degara
algorithm is chosen more frequently than that of Klapuri,

Tag Frequency MMA
Rock 1080

MMA>1.5

Pop 680
Dance 320
Hip-hop 271
Rap 193
Pop rock 154
Reggae 149
Jazz 227

MMA<1.5

Instrumental 199
Death metal 80
Black metal 74
Progressive metal 59
Classical 36
Grindcore 28

Table 2: Frequency of the genre-based occurrence of tags
for the two subsets of MillionSongSubset divided by an
MMA threshold of 1.5 bits.
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Figure 5: Histograms with the number of times each algo-
rithm is chosen with the MaxMA approach.

results in [4] indicate that the inter-quartile range of the De-
gara algorithm is smaller than that of Klapuri (for a similar
median), implying it is “wrong” in a lower proportion of
songs.

5. DISCUSSION AND CONCLUSIONS

To estimate the confidence of beat tracking without ground
truth annotations we have proposed the use of two meth-
ods based on the mutual agreement between a committee
of beat tracking algorithms. The first, the Mean Mutual
Agreement, was used to estimate the level of consensus
between the beat outputs of the committee. The second,
the Maximum Mutual Agreement, was used for selecting
the best beat tracking output from the committee of beat
trackers.

Through a subjective listening test we determined an
MMA threshold between this committee of beat trackers
of 1.5 bits above which we believe automatic beat track-
ing can be applied with high confidence. Based on this
perceptual confidence, we demonstrate that around 73% of
the MillionSongSubset could be automatically annotated
using our committee of beat trackers. This proportion of
songs for which we can be confident in an automatic beat
annotation was also verified in a second dataset with man-
ually annotated ground truth. Given the apparent bias in



these datasets towards easier genres for beat tracking, we
consider this value of 73% to be somewhat optimistic. We
plan to verify this hypothesis in future work by measuring
MMA in more diverse datasets.

Regarding the types of music which formed the remain-
ing 27% of the MillionSongSubset (i.e., those below the
threshold) we found a high proportion of tags related to
metal and similar “noisy” styles of music. Beyond classi-
cal music and jazz, which are known to be challenging for
beat tracking systems, we consider the difficulty of beat
tracking in metal to be a new and unexpected result, and
furthermore an interesting area for the future development
of beat tracking algorithms.

In addition to using MMA to determine successful beat
tracking, we also presented a related technique, MaxMA,
to select beat estimations among a committee of beat track-
ers. The fact that a simple approach of this kind was able
to demonstrate a significant improvement over using indi-
vidual state of the art algorithms is encouraging. Yet, as
our results indicate, performance of MaxMA falls some
way below that of the Oracle system using our committee.
This suggests that there is still room for making a more ac-
curate selection among existing algorithms, and exploring
new selection methods will form a further area for future
work.

One limitation of our approach may have been the use
of short song excerpts for the listening test. This was done
to make the listening test as manageable as possible for a
wide range of participants. However, to obtain a greater
understanding of subjective ratings for longer musical ex-
cerpts and a better understanding of perceptual difficulty
in beat perception we plan to conduct more sophisticated
subjective listening experiments.

While all the directions for future work have so far been
related to beat tracking, we strongly believe that, given
suitable evaluation metrics, our framework based on MMA
and MaxMA could be readily applied to other areas of
MIR. We therefore encourage researchers to explore its us-
age in problems such as onset detection, chord detection,
structural segmentation, and music transcription.
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ABSTRACT

We present a corpus-based study of musical rhythm, based
on a collection of 4.8 million bar-length drum patterns
extracted from 48,176 pieces of symbolic music. Ap-
proaches to the analysis of rhythm in music information
retrieval to date have focussed on low-level features for re-
trieval or on the detection of tempo, beats and drums in
audio recordings. Musicological approaches are usually
concerned with the description or implementation of man-
made music theories. In this paper, we present a quantita-
tive bottom-up approach to the study of rhythm that relies
upon well-understood statistical methods from natural lan-
guage processing. We adapt these methods to our corpus of
music, based on the realisation that—unlike words—bar-
length drum patterns can be systematically decomposed
into sub-patterns both in time and by instrument. We show
that, in some respects, our rhythm corpus behaves like nat-
ural language corpora, particularly in the sparsity of vo-
cabulary. The same methods that detect word collocations
allow us to quantify and rank idiomatic combinations of
drum patterns. In other respects, our corpus has proper-
ties absent from language corpora, in particular, the high
amount of repetition and strong mutual information rates
between drum instruments. Our findings may be of direct
interest to musicians and musicologists, and can inform the
design of ground truth corpora and computational models
of musical rhythm.

1. INTRODUCTION

In Western popular music and jazz, the main percussive
instrument is the drum kit, consisting of a collection of
drums and cymbals arranged around the drummer. Drum
kits can contain a large range of different instruments. The
bass drum (or kick drum) is usually the drum with the low-
est frequency and is operated via a foot pedal. The snare
drum, the dominant back-beat instrument, has a higher-
pitched sound with additional noise components from the
snares spanned across its lower skin. The hi-hat is made
from two cymbals facing each other, which the drummer
can open and close via a foot-pedal. The closed hi-hat has
a short, high-pitched sound, whereas the open hi-hat has a
longer sustain. Ride cymbals have a sustained high-pitched

Permission to make digital or hard copies of all or part of this work for
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bear this notice and the full citation on the first page.
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(b) pattern projected to the bass drum/snare drum space

Figure 1: Example drum patterns in drum tab notation,
with musical time on the x axis; strong lines are beats.
Drums from bottom to top: bd – bass drums, sd – snare
drums, hh – hi-hat closed/pedal, ho – hi-hat open, ri – ride
cymbals, cr – crash cymbals, to – toms, tb – tambourine,
hc – hand clap, pe – other percussion.

ring, while the crash cymbals’ sound is usually more noise-
like. Tom-toms are drums of intermediate sizes between
the bass and snare drums. Hand-claps and tambourine are
often used to provide additional colour, along with further
varied percussion instruments, which we do not discuss in
this study. The history and makeup of the modern drum kit
is covered comprehensively elsewhere, e.g. [3].

In music information retrieval (MIR), most research on
rhythmic features has concentrated on beats, meter and
tempo. The tracking of beats establishes a temporal grid on
a piece of music, which is useful to anchor other descrip-
tors of a musical piece in time. The timing of beats also
determines the tempo, which correlates with the perceived
speed of the music [10]. The automatic identification of
meter [9] is also based on beats, and provides additional
rhythmic information. However, neither meter nor tempo,
nor their combination, capture the temporal sequence of
rhythmic events. Several audio features have been devel-
oped to include this temporal information [5, 17, 19] with
considerable success, especially for clear-cut cases such as
the classification of ballroom dances [4]. Being concerned
with good performance in retrieval tasks, these methods
are deliberately agnostic to how the rhythmic signal was
originally created. On the other end of the spectrum lies



the automatic transcription of music, and that of drums in
particular. Drum transcription algorithms [7, 22, 23] usu-
ally neglect musical higher-level context such as meter and
simultaneous rhythm patterns. One possible exception is
Paulus’s n-gram model of drum sequences [18] that in-
forms transcription. The n-gram model demonstrates that
context models can be useful to suppress errors, but it is
also quite obvious that modelling rhythm as sequences of
half-beat length symbols is a strong simplification that can-
not capture interactions of concurrent rhythms played on
multiple drums. A further simplification present in most
drum transcription papers is the very small set of different
drums considered: bass drum, snare drum and hi-hat. In
this paper, we consider a much larger rhythm space, both
in terms of temporal context and drum instrumentation.

Comparatively little work in MIR has quantitatively ex-
amined rhythms in symbolic data. While Muramaki’s work
on drum fill detection [15] is concerned with analysis, most
work is focussed on improving music production, for ex-
ample by combination drum loops of suitable complexity
[21]. The study of rhythm has a long tradition in musicol-
ogy, but only in recent decades has empirical music analy-
sis found its way into the musicological tradition. Notable
tools include the Humdrum Toolkit [8], jSymbolic [14] and
music21 [2], which facilitate the processing of symbolic
music, but do not directly examine the statistical properties
of the corpus itself, nor provide tools as sophisticated as
those available for natural language processing. In the do-
main of harmony, some attempts have been made to anal-
yse chord progressions with language models [13, 20].

In this paper, language models are employed to analyse
the statistical properties of a large corpus of drum parts, to
reveal the degree of variety within and between pieces, and
to discover interdependencies between different parts of
the drum kit. In the next section we describe our represen-
tation of rhythm patterns, while in section 3 an overview
of the data set, consisting of 48,176 MIDI files, is given.
Section 4 provides the results of our analyses, and the final
two sections contain a brief discussion and conclusions.

2. DRUM PATTERN DEFINITION

In order to build a corpus of drum patterns, we need to
segment the music into short chunks whose lengths corre-
sponds to meaningful metrical units. Since we are deal-
ing with a symbolic representation which provides unam-
biguous onset times, the main effort required is to parse
the events according to the metrical structure, suppress-
ing performance-related information such as fluctuations
in tempo, timing, and dynamics, which—for the purposes
of this study—we are not interested in. Instead, similar to
linguists building text corpora from stemmed words with
grammatical endings removed, we build reduced drum pat-
tern models by applying five levels of abstraction.

Bar segmentation. The tracks are segmented into bars as
encoded in the MIDI files. Each bar is a token, the funda-
mental unit, similar to word tokens in language.

Drum categorisation. We summarise the General MIDI
standard drums into 10 known drum categories (see
Figure 1) and one unknown category.

count portion

4/4 4,305,516 90.3%
3/4 188,297 3.9%
2/4 114,068 2.3%
6/8 53,681 1.1%
12/8 19,575 0.4%
other 84,830 1.7%

Table 1: Distribution of time signatures in the corpus.

Tempo abstraction. We discard tempo information (but
not metrical structure).

Intensity abstraction. We discard sound intensity infor-
mation, i.e. MIDI velocity.

Quantisation. We quantise the drum notes relative to the
beat, reducing the granularity to a grid of 12 equally spaced
divisions per beat span, and retain only their onset time.

The resulting representation contains approximately the
same information that would be found in traditional score
notation. After this “stemming” procedure, we charac-
terise a drum pattern via the presence (or absence) of drum
onsets for each beat, position within the beat, and drum
category, as visualised in the example drum tab represen-
tation shown in Figure 1a. Hence, a bar with Nb beats
can be represented as a binary sequence of Nb × 12 × 11
bits. For the most frequent time signature, 4

4, the number
of beats is Nb = 4, and so the space of possible 4

4 patterns
allows 24×12×11 ≈ 10159 different patterns. Thus, despite
five abstraction steps, we have retained an extremely large
pattern space. Since the space is much larger than any data
set, it is clear that large parts of the space will never ap-
pear in actual music. We show later that we can not only
quantify the size of the space used in a given corpus, but
also make predictions about how much of the space will be
used as the corpus grows.

We define drum pattern sub-spaces by discarding some
drums or metric positions. For example, if we restrict
our attention to sub-patterns made of only bass and snare
drums, a large number of different full patterns with, say,
different use of the hi-hat would be mapped to the sub-
pattern shown in Figure 1b.

3. DATA

We collected 72,283 unique MIDI files from the Internet.
In order to understand the nature of the resulting collec-
tion, we drew a random sample of 100 songs and manually
classified them. The sample mainly contains pop/rock mu-
sic (62 songs), film music (10), jazz (9), classical (7) and
country/folk music (6). Of the six remaining songs, five are
of various genres and one was not decodable. A large pro-
portion of the songs are good-quality renditions of popular
recordings.

A study of the within-track interonset intervals (IOIs)
on the whole dataset reveals that many songs are already
quantised; about a third of the songs (34%) contain> 99%



(a) All metrical positions

predicted
# types at P Rsw Rloc

drums # types 20M tokens in % in % in %

all 656798 1688906 6.23 73.5 33.4
bd 46243 101230 0.45 91.1 64.2
sd 62647 143525 0.62 90.5 67.5
bd/sd 186688 454218 1.90 85.5 52.6
hh/ho 76351 174590 0.79 91.3 69.4
cmb 170344 415935 1.76 85.8 54.3
to 29394 70500 0.30 95.3 85.9
hc/tb/pe 84417 191712 0.88 94.4 81.9
bd/sd/cmb 466962 1176552 4.76 77.6 38.5

(b) Beats 1 and 2 only

predicted
# types at P Rsw Rloc

drums # types 20M tokens in % in % in %

all 342453 786850 3.30 82.1 48.0
bd 7602 14788 0.07 94.9 76.8
sd 14272 30612 0.14 94.7 79.5
bd/sd 48493 106701 0.47 91.3 68.5
hh/ho 21460 44131 0.20 94.5 79.1
cmb 57287 124465 0.54 90.8 64.8
to 7523 16782 0.07 97.2 92.1
hc/tb/pe 32014 67845 0.31 96.1 86.9
bd/sd/cmb 198699 454309 1.94 85.1 52.9

Table 2: Sub-pattern statistics. P is productivity (see
Section 4.2), R are repetition indices (Section 4.3).

IOI-quantised events, while 60% still contain > 75% IOI-
quantised events. Our impression that the songs are usually
carefully crafted for authentic playback is reflected in the
fact that 71% of the songs have varied velocities (less than
half of the notes uses the most popular velocity), i.e. it is
likely that only few songs are MIDI exports from music
typesetting programs.

In order to limit the influence of abnormally long songs
only notes less than 20 minutes into any song are con-
sidered. Very soft drum notes (velocity < 20) are re-
moved. We exclude songs with empty drum tracks, and
those whose musical beat is likely to be out of sync with
the MIDI beat (i.e. where the frequency of on-beat drum
notes is < 50% that of the most frequent quantisation).

After decoding, the collection contains 4,765,947 bar
tokens in 48,176 files, which corresponds to a mean of
around 99 bars per song. The overwhelming majority, 90%
of bars, is in 4

4 time, with only a few other time signatures
exceeding 1% of the corpus (see Table 1).

The terms type and token are borrowed from natural lan-
guage processing and will be used here as follows:

type: unique drum pattern (≈ unique word in language),

token: drum pattern type instance.

The overall number of bar types in our database is
656,798. The sub-pattern spaces retain the same number

1 2 5 10 20

frequency r in collection

V
r  
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Figure 2: Type frequencies Vr by token count r for drum
patterns (filled squares), drum pattern by song (filled trian-
gles), the Brown language corpus (blank squares).

of tokens, but can have dramatically fewer distinct pattern
types, as Table 2 (column 2) shows.

4. RESULTS

This section provides an overview and discussion of some
insights that can be gained from our corpus of drum
patterns. More exhaustive information is available at
http://isophonics.net/ndrum.

4.1 Large Number of Rare Events

As with many natural language corpora, the distribution of
type counts and the frequencies of these type counts are ex-
tremely skewed. Figure 2 shows a plot called frequency-of-
frequencies plot, in which the number of type occurrences
r in the database is plotted against the number of types Vr
that occur r times. The figure shows three graphs: drum
pattern counts, song-wise drum pattern counts (one per
song in which the type occurs), and word type counts from
a corpus of American English, the Brown Corpus. The
number V1 of types that occur only once in the whole col-
lection is greatest; tokens occurring twice already account
for much smaller fractions of the corpora, a phenomenon
often referred to as large number of rare events (LNRE).

The log-log scale plot in Figure 2 illustrates an addi-
tional property of the data: all distributions can be approx-
imated by a straight line, a characteristic of “scale-free”
distributions. For a discussion of this phenomenon, see,
for example, [16]. While the full drum pattern count (filled
squares) resembles the word distribution in the Brown cor-
pus in slope (the absolute height reflects that the Brown
corpus has only 1M tokens), it is not as smooth as the
Brown corpus’s. However, the unstable nature of the graph
is not random; rather, the higher values at multiples of
2 reflect the usual organisation of music in units of even
multiples of bars. As we would expect, then, counting the
number of songs in which a type appears leads to a much
smoother graph (filled triangles) that is unaffected by rep-
etitions. We will return to song-wise counts in Section 4.3.



4.2 Vocabulary Growth

For LNRE distributions we can estimate how fast the num-
ber of types (in our case: distinct drum patterns) is growing
with vocabulary size. A popular measure for that is pro-
ductivity P [1]. For a corpus of size N with V1 types that
occur only once, productivity is calculated as

P = V1/N. (1)

This measure is an indicator of the potential to generate
new patterns. The productivity of large pattern spaces is
generally much higher than that of smaller sub-spaces. For
example, all productivity values in Table 2b, where the
sub-patterns are constrained to the first two beats of a bar,
are far smaller than the respective ones in table 2a. More
interestingly, however, there are also large differences to
be found between single drums. For example, the produc-
tivity of the snare drum as shown in table 2a is far greater
than that of the bass drum in the same table, suggesting
that snare drum patterns are used more creatively (most
probably due to the bass drum usually being operated by
one foot). In fact, assuming a Zipf-Mandelbrot model [6],
we can predict the vocabulary size as a function of corpus
size; Table 2 displays productivity values and the predicted
number of tokens for a vocabulary size of 20 million.

4.3 Repetition and Different Ranking Types

Simply using the relative frequencies prf of pattern types
is the standard way to measure word probabilities, but it
is less informative in music because of the high amount of
repetition present. In our paper on chord progressions [12]
we suggest to use the proportion of songs a (chord) pattern
occurs in, which we call psw here. For example, count-
ing a token only once per song reduces the overall token
count from N = 4, 765, 967 to Nsw = 1, 264, 139 for
the full pattern spaces. A softer way of reducing the in-
fluence of repetition is motivated by the observation that
drum patterns in consecutive bars are often identical: one
can eliminate tokens that are exact repetitions of the im-
mediately preceding token. This locally non-repeating set
has Nloc = 3, 176, 153 tokens, with relative frequencies
denoted by ploc. We use the reduced token counts to define
local and song-wise repetition indices:

Rloc = 1− Nloc

N
and Rsw = 1− Nsw

N
. (2)

Table 2 lists the repetition indices (in %) for different sub-
pattern corpora. Even the full patterns have a song-wise
repetition index Rsw of 74%, meaning that only just more
than a quarter of the drum patterns per song are unique. A
similar picture emerges when looking at local repetition,
which accounts forRloc ≈ 33% of all tokens. Repetition is
even more dominant in smaller sub-patterns: Rsw = 90%
of snare drum pattern tokens are repeated within a song,
and Rsw = 68% are repetitions of the preceding bar.

In Figure 3, we show the 10 most common bar-length
patterns in the corpus. Empty patterns with different time
signatures occupy the 1st, 4th and 5th rank, while stan-
dard rock patterns using only bass, snare and closed high-
hat occupy the remaining ranks. A variation with a swing
high-hat pattern appears at rank 9.

1.

2. bd
sd
hh

3. bd
sd
hh

4.

5.

6. bd
sd
hh

7. bd
sd
hh

8. bd
sd
hh

9. bd
sd
hh

10. bd
sd
hh

Figure 3: Ranking by prf score (Section 4.3).

The song-wise results are shown in Figure 4, with the
empty patterns removed. Although some of the same pat-
terns appear, the non-empty pattern which occurs in the
most songs is a crash cymbal and bass drum on the first
beat of the bar, presumably at the end of a piece or sec-
tion. Rank 3 and 7 have quarter note patterns often used
for “counting in” a song, while ranks 4 and 8 are the two
sub-patterns of the rank 2 pattern—a single crash cymbal
and a single bass drum respectively. Ranks 5 and 6 con-
tain standard rock drum beats seen previously. The results
with local repetition removed (i.e. ranked by ploc) are sim-
ilar and are not shown here. Comprehensive rankings can
be found at http://isophonics.net/ndrum.

4.4 Collocations and Typical Drum Patterns

Linguists have long realised that interesting, idiomatic
word combinations do not usually appear in the top ranks
when sorted by frequency. Collocations—combinations of
two words that occur more often than would be expected
from their individual frequencies—are usually more inter-
esting and meaningful. One strategy to discover colloca-
tions is to consider two hypothetical models: H1, by which
the likelihood of one of the tokens to occur depends on the
other, andH2, by which their occurrences are independent.
One can then calculate the likelihood ratio

log λ = log
L(H1)

L(H2)
(3)

of the two hypotheses for any pair of word types—or
indeed drum pattern types. We follow Manning and
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Figure 4: Ranking by psw score (Section 4.3).
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Figure 5: Ranking by collocation score (Section 4.4).

Schütze’s approach [11, Chapter 5], assuming binomial
type count distributions, and calculate log λ scores for
combinations of bass drum/snare drum patterns on the one
hand and hi-hat (open and closed) patterns on the other.

Ranking by the collocation score (3) results in a list of
typical drum patterns that need not necessarily be frequent.
Figure 5 shows some example of rarer patterns that never-
theless rank much higher than in the frequency rankings
discussed in Section 4.3. For example, the typical 6

8 pat-
tern at rank 15 appears only at rank 99 in the raw frequency
ranking (and at ranks 59 and 389 when ranked by rloc and
rsw, respectively). The 3

4 pattern at rank 20, too, is much
further down the frequency rankings (48, 115, 264), as is
the disco-style pattern at collocation rank 27 (35, 67, 171).

4.5 Mutual Information

That the decomposition of drum patterns is meaningful can
be illustrated by the fact that the information flow between
the sub-patterns across the corpus models musical relation-
ships between them. The entropy (in bits) of a discrete

ri
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o

bd sd
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ht

Figure 6: Hierarchical clustering of nine drum types by
mutual information. The distance matrix is based on the
inverted, normalised mutual information values (see text).

distribution X in with probabilities pi is defined as

H(X) = −
N∑
i=1

pi log2 pi (4)

with the convention that if pi = 0, then pi log2 pi = 0.
It expresses how much information is needed in order to
represent the distribution. While this is interesting in it-
self, we are interested in how much information two drum
pattern sub-spaces X and Y share. This is what mutual
information expresses. It is defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (5)

To normalise the measure we divide by the sum of the in-
dividual entropies, and to turn the similarity into a measure
of divergence we take the exponential of its negation:

d(X,Y ) = exp

{
− I(X;Y )

H(X) +H(Y )

}
. (6)

This allows us to calculate pair-wise divergence values be-
tween all drum types. The result is visualised in Figure 6
as a binary tree obtained by hierarchical clustering with
the complete-linkage algorithm. The more information is
shared between drums according to d, the closer they will
appear on the tree. The algorithm has indeed recovered
aspects of the usage of the drum kit, with the drums that
form the core of most rhythms in popular music—bass
drum, snare drum and hi-hat—grouped together on the
right, loosely associated with the percussion instruments.
Within the remaining drums on the left hand side, the ride
cymbals have their own branch, whereas the tambourine is
grouped with hand claps, and crash cymbals with tomtoms,
with each grouping suggesting high mutual information.

5. DISCUSSION AND FUTURE WORK

We must be aware that findings made in the MIDI domain
may only partially be applicable to other music. Further-
more, the size of the database prohibits the manual verifi-
cation of every song. In addition to the measures described
in Section 3, automatic sanity checks could further reduce
the noise in the data.

We expect that the outcomes of the present study will be
valuable to musicians and researchers, so we are interested
in a rigorous evaluation of its usefulness. Several scenar-
ios are conceivable. For example, our system can easily



be extended to return a ranked list of pattern synonyms,
i.e. patterns that are used in similar contexts as the query
pattern—a creative tool for drummers. A useful music in-
formatics application could be to extend the promising n-
gram technique for audio drum transcription proposed by
Paulus, especially with models that “back off” [11, Chapter
6] not only in time, but also in the sub-pattern instrument
spaces presented in this paper.

6. CONCLUSIONS

We have introduced a novel method of empirical research
on musical rhythm by considering bar-length drum pat-
terns and treating them analogously to words in natural lan-
guage processing. This paper has shown that the approach
yields useful and interesting results because the palette of
tools available from natural language processing can—to a
large extent—be used in the musical domain, too.

We have found that the distributions of drum patterns
resemble those of and English words, and have used this
fact to predict different vocabulary growth behaviours in
our musical corpus. Vocabulary growth predictions can be
useful to inform decisions on how much ground truth is
needed to cover a given proportion of unseen data.

We have discovered some properties that clearly distin-
guish our data from language corpora, most prominently
the extremely high degree of repetition. A second, more
subtle, difference is that drum patterns can be decomposed
in time and by instrument, yielding distributions with dif-
ferent characteristics.

We have proposed three simple ways of ranking drum
patterns by raw frequency, repetition-reduced frequency,
and song frequency. In order to identify not only fre-
quent, but interesting drum pattern combinations, we have
applied collocation ranking to our drum corpus. For
musicians, the pattern rankings, which can be found at
http://isophonics.net/ndrum, may be the most interesting
aspect of this paper.

Finally, by calculating the mutual information flow be-
tween sub-patterns pertaining to the individual drum cat-
egories, drum categories that are musically related cluster
together.

We believe that the corpus-based study of rhythm as
proposed in this paper is interesting not only to musi-
cians. Musicologists and music informatics researchers
might find it a valuable resource to obtain a quantitative
view on rhythm and drum patterns.
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[13] M. Mauch, D. Müllensiefen, S. Dixon, and G. Wiggins. Can
Statistical Language Models be Used for the Analysis of Har-
monic Progressions? Proc. of the 10th Int. Conf. on Music
Perception and Cognition (ICMPC 2008), 2008.

[14] C. McKay. Automatic Genre Classification of MIDI Record-
ings. PhD thesis, McGill University, 2004.

[15] Y. Murakami and M. Miura. Automatic detection system for
fill-in from drum patterns employed in popular music. Proc.
of the 10th Western Pacific Acoustics Conference, 2009.

[16] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s
law. Contemporary physics, 46(5):323–351, 2005.

[17] E. Pampalk. Audio-Based Music Similarity and Retrieval :
Combining a Spectral Similarity Model with Information Ex-
tracted from Fluctuation Patterns. Proc. of the 7th Int. Conf.
on Music Information Retrieval (ISMIR 2006), 2006.

[18] J. K. Paulus and A. P. Klapuri. Conventional and Periodic N-
grams in the Transcription of Drum Sequences. Int. Conf. on
Multimedia and Expo (ICME 2003), 2003.

[19] G. Peeters. Spectral and Temporal Periodicity Representa-
tions of Rhythm for the Automatic Classification of Music
Audio Signal. IEEE Trans. on Audio Speech And Language
Processing, 19(5):1242–1252, 2011.

[20] R. Scholz, V. Dantas, and G. Ramalho. Automating func-
tional harmonic analysis: the Funchal system. Seventh IEEE
International Symposium on Multimedia, 2005.

[21] G. Sioros and C. Guedes. Complexity-Driven Recombination
of MIDI Loops. Proc. of the 12th Int. Conf. on Music Infor-
mation Retrieval (ISMIR 2011), pages 381–386, 2011.

[22] K. Yoshii, M. Goto, and H. G. Okuno. Automatic Drum
Sound Description for Real-World Music Using Template
Adaptation and Matching Methods. Proc. of the 5th Int. Conf.
on Music Information Retrieval, pages 184–191, 2004.

[23] A. Zils, F. Pachet, O. Delerue, and F. Gouyon. Automatic ex-
traction of drum tracks from polyphonic music signals. Sec-
ond Int. Conf. on Web Delivering of Music, pages 179–183.
IEEE Comput. Soc, 2002.



ONE IN THE JUNGLE: DOWNBEAT DETECTION IN HARDCORE,
JUNGLE, AND DRUM AND BASS

Jason A. Hockman1,2, Matthew E.P. Davies3, and Ichiro Fujinaga1,2

1Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT)
2Distributed Digital Archives and Libraries (DDMAL), McGill University, Montreal, Canada

3Sound and Music Computing Group, INESC TEC, Porto, Portugal
jason.hockman@mail.mcgill.ca, mdavies@inescporto.pt, ich@music.mcgill.ca

ABSTRACT

Hardcore, jungle, and drum and bass (HJDB) are fast-
paced electronic dance music genres that often employ
resequenced breakbeats or drum samples from jazz and
funk percussionist solos. We present a style-specific
method for downbeat detection specifically designed for
HJDB. The presented method combines three forms of
metrical information in the prediction of downbeats: low-
level onset event information; periodicity information from
beat tracking; and high-level information from a regression
model trained with classic breakbeats. In an evaluation
using 206 HJDB pieces, we demonstrate superior accuracy
of our style specific method over four general downbeat
detection algorithms. We present this result to motivate
the need for style-specific knowledge and techniques for
improved downbeat detection.

1. INTRODUCTION

In the early 1990s, affordable sampling technologies (e.g.,
Akai S900 and Commodore Amiga) and the popularity
of rave culture provided the impetus for the creation of
three related genres—hardcore, jungle, and drum and bass
(HJDB)—unique in their fast tempi and drum sounds,
which are mostly derived from samples of percussion
solos in 1960s–80s funk and jazz recordings known
as breakbeats. Since 1990, over 25,000 artists have
contributed over 132,000 tracks on almost 6,000 labels. 1

HJDB became so popular in the mid-1990s that it was
showcased on BBC’s Radio 1 program, “One In The
Jungle”. Both popular press [1,16] and academic literature
[10] have mostly treated HJDB from a sociology/cultural
studies perspective, presenting the music within larger
contextual issues, e.g., race, drugs, and cultural politics.
A notable exception [3], provides tools for automated
breakbeat splicing and resequencing.

1 http://www.rolldabeats.com/stats
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In this study, we present a downbeat detection model
created with the intention of finding downbeats within
music containing breakbeats, and provide a comparison of
its performance against four pre-existing algorithms on a
database of 206 HJDB excerpts. We view this as a first step
in an automated analysis of the musical surface of HJDB
from a computational musicology perspective, towards the
eventual goal of understanding how individual artists use
breakbeats (e.g., slice ordering and pitch adjustment) in
modern music.

1.1 Hardcore, Jungle, and Drum and Bass

Hardcore began around 1990, and was the first of the
HJDB genres to fully embrace the use of breakbeats.
Tracks soon left the 120–130 beats per minute (BPM)
house and techno standard and steadily became faster
(upwards of 180 BPM), with longer, more intricate drum
patterns. The less synth-driven, breakbeat collage art of
jungle appeared around 1992. By 1994, many artists
abandoned the rhythmic complexity of jungle in favor of
simpler rhythms associated with drum and bass. As is the
standard workflow in these genres, breakbeats are recorded
into a sampler’s memory, segmented, and assigned to
MIDI note values. HJDB artists create the rhythmic
(and sometimes harmonic and melodic) structure of their
arrangements using these samples. While hundreds of
breakbeats have been employed in HJDB, many artists
use a handful of standards such as the “Amen” breakbeat,
originally from The Winston’s Amen, Brother [17].

1.2 Downbeat Detection

The meter of a piece of music implies a counting mecha-
nism for hierarchical stressed and unstressed beats within
a measure. A downbeat is the first beat within a
measure (or if counting beats, the one). While the
computational task of downbeat detection has received
little attention, the related task of beat tracking has
received much more attention in recent years [9,13,15].
A possible reason for this imbalance may be related to
the increased complexity of the task; prior to extracting
downbeats, the estimation of additional subtasks (e.g.,
onset detection and beat detection) is often required, which
can propagate errors into downbeat estimation. Robust
downbeat detection would benefit information retrieval



tasks such as structural analysis [8], and would facilitate
analysis of phrase structure and hypermeter; both useful
in improving automated mixing and DSP effects that
rely on musically relevant change-point positions. More
relevant to our interests, downbeat detection provides key
segmentation points that allow for a comparison of HJDB
artists’ drum usage.

Generalized downbeat detection methods have been
proposed in the literature. Goto [11] employs rhythmic
template patterns to the output of a drum detection
algorithm. In non-percussive music, downbeats are
assumed to be present at temporal locations of large
spectral change, and are detected through a process of
peak-picking spectral frames, grouping of the resultant
segments into beats, and a comparison of beats for
harmonic change. Davies and Plumbley [5] present
a similar approach, in which downbeats are found by
selection of beat positions that maximize spectral change.
Klapuri et al. [13] extract the temporal evolution of a
hidden metrical sequence exhibited in the output of a comb
filter bank. The joint-state estimates of the beat, sub-beat,
and meter periods are chosen through a first-order Markov
process. Papadopoulos and Peeters [14] propose a method
for joint estimation of harmonic structure and downbeats
using an HMM that models chords and their metrical
position. They present an additional method in [15] that
also formulates the problem within an HMM framework,
in which beat templates are first estimated from the data,
and beats are then associated with positions in a measure
by reverse Viterbi decoding.

Unlike the aforementioned algorithms, which are gen-
eralized for arbitrary musical input, Jehan [12] presents a
regression model that predicts downbeat positions based
on learning style-specific characteristics from training data
containing rhythmic and timbral characteristics akin to
those in the testing data. Evaluation is presented in
constrained circumstances, in which testing is performed
on part of the same song used for training, or on a test
song from the same album on which the remaining songs
are used as training.

It is our belief that while generalized downbeat de-
tection models will perform well in many circumstances,
there remain niche genres that fall outside the scope of
these methods [12]. HJDB, while heavily percussive and
almost exclusively in 4/4, presents challenges due to its
characteristic fast tempo, high note density, non-standard
use of harmony and melody, and emphasis on offbeats.

1.3 Motivation

With the exception of [12,15], the above methods rely on
general approaches to downbeat detection, and do not infer
information about content between estimated downbeats.
Our eventual aim is to use detected downbeats towards an
estimation of the ordering of drum segments, and their
source, i.e., the breakbeat from which the drums were
sampled. To do so, our particular application requires
an understanding of likely solo percussion performances.
We therefore attempt to leverage knowledge of breakbeat

timbres and patterns from the 1960s–80s to inform an
understanding of three modern genres that utilize them.
At the core of the presented model is a top-down support
vector regression technique, similar to [12] trained on these
building blocks of the music under analysis. Although
HJDB artists often resequence segments of breakbeats, the
resequenced patterns often reflect knowledge of standard
breakbeat patterns. To improve the robustness of this
model we incorporate additional stages including beat
tracking, and low-level onset detection to focus on kick
drum frequencies.

The remainder of this paper is structured as follows:
Section 2 outlines our HJDB-specific downbeat detection
method. Section 3 presents our evaluation methodology
and dataset. Section 4 presents evaluation results and
discussion, and Section 5 provides conclusions and future
work.

2. METHOD

Our main interest is to determine if an algorithm trained
on breakbeat patterns and timbres can find downbeats in
modern forms of music that employ them. We began by
re-implementing the algorithm as described in [12], with
the aim of utilizing it within the full range of HJDB music.
Exact parameterization of the model is not provided in
[12], so we first tuned our model by optimizing results on
examples described in the paper.

2.1 Support Vector Regression for Downbeats

In [12], support vector regression (SVR) is employed to
infer likely downbeat positions. Audio is segmented by
onset detection or a tatum grid. Each audio segment, S,
is associated with a metrical position, t, within a measure
with downbeats at t=0, and last sample points before the
next downbeat at t=3. We used the LibSVM 2 epsilon-
SVR algorithm in MATLAB with a RBF kernel.

To train the regression model, we require a feature
matrix F and associated class vector C, which we derive
from breakbeats. Two HJDB artists selected 29 breakbeats
from several lists of breakbeats commonly used in HJDB.
Audio for each breakbeat was trimmed to the portion of
the signal containing only the percussion solos. Each
breakbeat, β, is then segmented using an eighth-note grid,
and a class vector, cβ , is created using the metrical position
of each eighth-note segment in a measure.

The feature matrix fβ is comprised of 58 features
extracted from each segment in β consisting of: mean
segment Mel-frequency spectral coefficients; loudness of
the onset (dB) of each segment; maximum loudness (dB)
of the onset envelope; and chroma. Segments are then
associated with metrical positions in cβ as in [12]. fβ
is normalized to have zero-mean and unit variance across
each row (all segments). Features are shingled (time-
lagged and weighted linearly) [2] to emphasize more
recent segments. We then aggregate feature matrices and

2 http://www.csie.ntu.edu/∼cjlin/libsvm/



class vectors across all breakbeats, creating an aggregate
feature matrix F and aggregate class vector C. A feature
and parameter optimization stage found best results using
40 Mel-frequency spectral coefficients and as in [12], 8
to 16 past segments (equivalent to 1 to 2 bars). Principal
Component Analysis (PCA) feature reduction is applied to
F to extract the top ten features across all breakbeats. A
model is then trained using F and C.

To test the regression model using test audio, A, we
require a feature matrix FA. We first segment the audio
using an eighth-note grid created by interpolating the
temporal location of beats (we assume beats are found at
the quarter-note level), γ, as found by Beatroot [7]. FA is
created similarly to fβ . The PCA model prepared in the
training set is applied for feature reduction. We then use
the trained model created above with feature matrix FA
to predict class values, CA, which contain the estimated
metrical position of each segment. In [12], the derivative of
CA is used as a detection function from which downbeats
are chosen.

While we were able to recreate the examples in [12]
using the reimplemented method, training on breakbeats
and testing on HJDB music showed that CA often differed
significantly from the idealized output (i.e., pure sawtooth
waveform), which resulted in the derivative of CA being
an unreliable detection function on its own.

2.2 Limitations of the Model

We now discuss three conditions that might cause these
irregularities in CA. First, breakbeat patterns are not
universal; i.e., one breakbeat may employ a kick drum
on beat one and snare drum on beat two, yet another may
contain a kick drum on beats one and two, and a snare on
the offbeat of two. As a result, CA may not monotonically
increase between downbeats. Second, HJDB artists
often re-order slices, which will also cause undesirable
output between downbeats. However, breakbeats almost
invariably begin with kick drums, and drum-types most
associated with downbeats are kick drums. This is
also the case for breakbeat usage within HJDB, where
artists mostly apply downbeat-preserving transformations,
in which segments are reordered and manipulated in such
a way to preserve the perception of downbeats. Third,
CA may diverge due to a mismatch in training and testing
data. The training data contains percussion-only sections
of audio, while the testing data is comprised of excerpts
of full HJDB pieces, which may include a variety of
transformations (e.g., pitch modifications) to the original
breakbeats. To overcome these potential problems, we
propose subsequent stages to improve the accuracy of the
model: post-processing of CA (Section 2.3); extraction of
additional metrical information—namely, a low-frequency
detection function (Section 2.4) and weighting at beat-
times (Section 2.5); and information fusion with a final es-
timation of downbeats by dynamic programming (Section
2.6). An overview of the complete algorithm is presented
in Figure 1.
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Figure 1: Overview of proposed method. Circles denote
stages in the method; solid lines point to variables created
in these stages; and dotted lines point to variables created
in subsequent steps.

2.3 Regression Output Post-processing

As we are unable to rely solely on the derivative of CA
for an exact location of downbeats, we propose its use in
providing a coarse estimation of downbeats. We create
likely downbeat position function, E, as the first-order
coefficient of the linear regression at each eighth-note
position, by applying linear regression of a sliding buffer
of eight segments (equivalent to the length of a measure)
across CA. If the eight points of CA under analysis
resemble a positive linear slope, as they do at downbeats,
the value of E will be positive. As the buffer shifts, such
that it no longer begins on a downbeat (but now includes a
downbeat at buffer position 8), the value ofE will decrease
as it will no longer maintain a positive linear slope. Once
the buffer has reached the end of CA, E is normalized to
values between 0 and 1.

2.4 Low-Frequency Onset Detection

The coarseness of E led us to incorporate low-level onset
event information related to salience and timing. We
introduce a low-frequency onset detection function, L,
as follows: As in [6], we segment the input audio into
40 ERB-spaced sub-bands and calculate complex spectral
difference across each (with a temporal resolution of 11.6
msec per onset detection function sample). We apply our
knowledge of standard usage of basic rock drum kit drum-
types (i.e., kick drum, snare drum, and hi-hats) within
breakbeats and HJDB music. Since drum types found at
downbeats are likely to be kick drums, we focus on lower
frequencies and sum the output of the lowest ρ bands to
produce L. While the precise number of bands is not
critical, we found ρ=5 to provide adequate results.

2.5 Beat-Time Weighting

In Section 2.1, beat time locations, γ, are used to create the
eighth-note grid used in the segmentation of the test audio
for the SVR model. We also use γ to generate a beat-time
weighting, U , for emphasis in L. At γ (here quantized



to the resolution of L), U=ω, and otherwise U=1. The
precise value of ω is not crucial, however we found ω=1.3
to perform well. To contend with alignment issues of beat
times and peaks in L, we additionally weight U=ω at ±2
detection function samples of γ.

2.6 Information Fusion and Decision

In this stage, we combine low-frequency onset detection
function, L, with beat-time weighting, U , and likely
downbeat position function, E, to create a final detection
function, Θ, used in the determination of downbeat times.

Our motivation in combining these three forms of in-
formation is as follows: L provides low-level information
pertaining to event location and salience, while E provides
informed knowledge of likely downbeat positions based on
similarity of the test segment patterns to patterns of drums
in the breakbeat training set. The integration of beat-time
weighting provides alternate possible downbeat positions
that E has either missed or erroneously measured.

As none of these information sources alone is capable
of accurate downbeat detection, our hope is that fusing
them in a meaningful way will create a hybrid detection
function that imparts the key attributes of each, resulting in
a more robust detection function from which we will select
downbeats. We first interpolate E to match the temporal
resolution of L. We then combine L, E, and U :

Θ = (L(1 + E)) ∗ U, (1)

where ∗ refers to element-wise multiplication.
An example of the usefulness of both E and U in

emphasizing peaks of L at likely downbeat positions (and
suppressing peaks not likely associated with downbeats)
is presented in Figure 2. The top graph shows L (solid
line) without scaling byE (dot-dashed line), and annotated
downbeat positions (vertical dashed line). The middle
graph shows L after scaling by E (solid line). The bottom
graph depicts L after scaling by E and U (solid line).

For the final selection of downbeat positions from Θ,
we require a peak-finding method capable of finding strong
peaks that exist at regular intervals. Dynamic program-
ming (DP) has been shown useful for such purposes in beat
detection [9]. We similarly adopt DP to find downbeats
within Θ, with a likely downbeat period τ . Given a
high probability of 4/4 time signature and steady tempo in
HJDB, it is sufficient to estimate τ as 4 times the median
of all inter-beat intervals derived from γ.

3. EVALUATION

The aim of our evaluation is to determine the efficacy of
our method and four general models on a dataset solely
consisting of HJDB. In this section, we present our dataset,
algorithms under evaluation, and methodology.
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Figure 2: Effect of stages in information fusion: (top) L
with no scaling, E, and annotations; (middle) L scaled by
E, and annotations; (bottom) L scaled by E and U , and
annotations.

3.1 Hardcore, Jungle and Drum and Bass Dataset

Our dataset is comprised of 236 excerpts 3 of between
30 seconds and 2 minutes in duration. Each excerpt was
selected from a full-length HJDB piece digitized from its
original vinyl format to a 16-bit/44.1kHz WAV file. The
pieces span the five years (1990–4) of hardcore’s subtle
transformation through jungle and into drum and bass.

Well-known, popular HJDB pieces were chosen for in-
clusion in the dataset. An effort was taken to ensure a wide
distribution of artists, styles, and breakbeats used; three
professional HJDB DJs were consulted for their opinions.
Downbeat annotations were made by a professional drum
and bass musician using Sonic Visualiser. 4 30 excerpts
were removed from the test dataset to create a separate
parameter tuning dataset used to optimize the parameters
in the algorithm presented in Section 2. The remaining
206 excerpts were then used in our evaluation.

3.2 Evaluation Methodology

For evaluation metrics, we chose to modify the continuity-
based beat tracking evaluation metrics used in the MIREX
2011 beat-tracking evaluation [4]. The principal difference
is that we assess downbeats as the subject of evalua-
tion, rather than beats. Additional modifications include
adjustment of the tolerance window threshold, alteration
of the possible interpretations of the downbeat to reflect
whole beat offsets, and exclusion of the longest continually
correct segment metric in [4]. We create a tolerance
window of 1/16th note around each annotated downbeat in
our dataset (i.e., 6.25% of the inter-annotation-interval).
For an estimated downbeat to be correct, it must fulfill
three conditions: First, it must be located within the
6.25% tolerance window around the nearest annotation.
Second, the previous estimated downbeat must be located

3 For the track list, see: http://ddmal.music.mcgill.ca/breakscience/dbeat/
4 http://www.sonicvisualiser.org/



within the 6.25% tolerance window around the previous
annotation. Finally, the inter-downbeat-interval must be
within 6.25% of the inter-annotation-interval. We then
count the total number of correct downbeats and provide
a mean accuracy for a given excerpt. Among the various
beat offsets allowed by our evaluation measure, our main
interest is in the 1 statistic, which indicates how well
the estimated downbeats align with annotations. 1 is the
mean accuracy across all excerpts. We provide additional
statistics, 2, 3, and 4, to quantify errors in downbeat
estimations, offset by whole beats. A potential problem for
general models is HJDB’s fast tempo. We therefore include
an additional metric, 1/2x, which provides an error statistic
for estimated downbeats found at the half-tempo rate. 1/2x
is calculated by using the evaluation method above, with
the annotations sub-sampled by a factor of two.

3.3 Algorithms Included in Evaluation

Our evaluation focuses on a comparison of the perfor-
mance of the HJDB-specialized model with four general-
ized models. We expect this evaluation to be challenging
for generalized models due to the lack of harmonic change,
fast tempo, and high note density in HJDB music. We
compare the following five models: commercial soft-
ware #1 (CS1); commercial software #2 (CS2); Klapuri
et al. (KL) [13]; Davies and Plumbley (MD) [5]; and our
HJDB specialized method (HJ). The MD and KL methods
are briefly described in Section 1.2. CS1 and CS2 are
commercial products from two separate companies. 5 As
we do not have access to the methods in CS1 or CS2, we
treat them as black boxes.

4. RESULTS AND DISCUSSION

4.1 Parameter-Tuning Set Results

We first compare results of four possible configurations
of our model using the 30-excerpt parameter-tuning set,
to determine the best system to use in the full evaluation
(Section 4.2). Table 1 presents results for these con-
figurations using the 1, 2, 3, and 4 statistics described
above. While two of the configurations do not contain
beat-time weighting, U , all configurations contain the
dynamic programming stage with likely downbeat-level
periodicity τ , derived from beats. Informal evaluation
of Beatroot’s performance on our dataset resulted in an
F-measure of 83.0%. The base system (labeled LDF )
containing low-frequency detection function, L, performs
well, which demonstrates the effectiveness of focusing
on kick drum frequencies. Adding either emphasis U
(LDF , U ) at estimated beat times or estimated likely
downbeat detection function E (LDF , E) has a similar
positive effect. Adding both U andE has a further positive
effect, indicating independence between these features. In
addition, errors in statistics 2, 3, and 4 in either LDF , U
or LDF , E are reduced by addition of the other features—
e.g., the 6% error found in LDF ,E in the 4 statistic is

5 of which one was a beta version

reduced to 3.3%. Similarly, the 2.8% error found in the
LDF , U on the 2 statistic is reduced to 0.6%. Addition of
either or both emphasis U or E results in an improvement
in accuracy over LDF alone, and a reduction in error rates
2, 3, and 4.

1 2 3 4

LDF 72.8 3.7 3.4 6.4

LDF, E 79.3 0.8 9.6 6.0

LDF, U 79.9 2.8 2.8 4.8

LDF, U, E 83.4 0.6 3.1 3.3

Table 1: Accuracy measure 1 and error metrics 2, 3, 4
(in percentages) for four configurations of the presented
system using the parameter-tuning dataset. Bold scores
denote highest accuracy in 1, and lowest error in 2, 3, 4.

4.2 HJDB Evaluation Results

Evaluation performance for the five compared methods
is displayed in Table 2. Our specialized algorithm HJ
(using the LDF,U,E configuration) performs best in the
1 statistic. In addition, HJ achieves the smallest 2 and
1/2x error statistics (with a low 4 error rate), which when
coupled with high 1 performance, is seen rather favorably.

1 2 3 4 1/2x

CS1 38.5 2.8 4.0 4.2 2.8

CS2 7.4 11.7 9.5 6.7 1.1

KL 51.3 2.8 9.6 0.2 3.0

MD 29.3 4.7 5.5 3.0 1.2

HJ 74.7 2.3 5.8 2.0 0.0

Table 2: Accuracy measure 1 and error metrics 2, 3, 4,
1/2x (in percentages) for the five models under evaluation
using HJDB test dataset. Bold scores denote highest
accuracy in 1, and lowest error in 2, 3, 4, 1/2x.

When a model finds a downbeat on beats two or four
in HJDB music, it is likely to indicate a preference for
high-energy note events such as snares (often played on
beats two and four). All models have some degree of error
reported in the 3 metric, possibly due to similarities in
breakbeat drum patterns starting on beats one and three,
which results in a confusion of phrase boundaries at these
positions. Surprisingly, none of the models displayed an
affinity for the 1/2x metric that our intuition led us to
believe generalized models would find more favorable.

4.3 Discussion

While our specialized method outperformed the gen-
eralized models, results should be examined with the
understanding that only our approach had access to the
parameter-tuning set used to adjust parameters of the SVR
algorithm. While this may make the comparison somewhat



imbalanced, our model is the only algorithm necessitating
such parametric tuning, as the other models are general
approaches. We have incorporated specific attributes of
HJDB music in a model used for its analysis: information
about timbre, pitch, and loudness of segments; knowledge
of likely patterns; and emphasis on kick drum events and
potential downbeat candidates at beat locations. Intuition
tells us that the model in its present configuration may not
perform as well in a generalized evaluation or niche genres
excluding breakbeats, as downbeats in these datasets may
not be conveyed similarly.

5. CONCLUSIONS AND FUTURE WORK

We have presented a style-specific model for finding
downbeats in music that we applied to hardcore, jungle and
drum and bass. At the core of our approach is a learning
technique trained on classic breakbeats that form the rhyth-
mic and timbral basis of these musical styles. We expanded
this model to incorporate information related to likely
onsets in low-frequency bands and beat tracking. Through
fusion of these complementary information sources we
create a downbeat detection function from which we infer
downbeats using dynamic programming.

Evaluation of our style-specific model with generalized
downbeat detection methods demonstrates a wide gap in
performance. This not only highlights the efficacy of our
approach in the confines of HJDB, but also provides further
evidence towards the style-specific nature of downbeat
detection. We consider the latter conclusion more critical,
and expect our method to be less effective in music without
breakbeats, and in music in which downbeats are conveyed
by chord changes.

In building our model we have attempted to keep as
many components as general as possible, leaving the
training of the SVR as the sole part explicitly style-adapted
to HJDB. In this way, we believe our approach could
be readily adapted to other music styles through style-
specific training of the SVR. This strategy will form a key
component of our future work; both by training multiple
models on different styles and investigating methods for
automatic selection between these models. We believe
the most profitable future advances in downbeat detection
will be style-specific, rather than generalized models.
Within the domain of HJDB music, we intend to harness
the knowledge of downbeats to explore the relationships
between the musical corpus and specific breakbeats amid a
large-scale study of the genres.
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ABSTRACT

We use results from the 2011 MIREX “Audio Music Sim-
ilarity and Retrieval” task for a meta analysis of the hub
phenomenon. Hub songs appear similar to an undesirably
high number of other songs due to a problem of measuring
distances in high dimensional spaces. Comparing 17 algo-
rithms we are able to confirm that different algorithms pro-
duce very different degrees of hubness. We also show that
hub songs exhibit less perceptual similarity to the songs
they are close to, according to an audio similarity func-
tion, than non-hub songs. Application of the recently intro-
duced method of “mutual proximity” is able to decisively
improve this situation.

1. INTRODUCTION

In a number of recent publications [21,27,28] the so-called
“hubness” phenomenon has been described and explored
as a general problem of machine learning in high dimen-
sional data spaces. Hubs are data points which keep ap-
pearing unwontedly often in nearest neighbor lists of many
other data points. This effect is particularly problematic in
algorithms for similarity search, as the same “similar” ob-
jects are found over and over again. In Music Information
Retrieval (MIR), the hub problem has been primarily stud-
ied in the context of music recommendation based on mod-
eling of audio similarity. Songs which act as hubs are re-
ported as being similar to very many other songs and hence
keep a significant proportion of the audio collection from
being recommended at all. This paper tries to answer the
following questions concerning hubs in audio music sim-
ilarity which so far have not been solved to a satisfactory
degree: (i) Do different parameterizations and algorithms
produce different hubs? (ii) Are hub songs perceptually
meaningful?

This is done by conducting a meta-analysis of 17 algo-
rithms and utilizing 8500 human gradings of the perceptual
similarity of song pairs. A recently published method [29]
(“mutual proximity”) is applied to reduce the negative ef-
fects of hubness.
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2. RELATED WORK

One of the central notions of Music Information Retrieval
(MIR) is that of music similarity. Proper modeling of mu-
sic similarity is at the heart of every application allowing
automatic organization and processing of music data bases.
A fundamental constituent to computation of music simi-
larity is timbre similarity based on parameterization of au-
dio using Mel Frequency Cepstrum Coefficients (MFCCs)
plus Gaussian mixtures as statistical modeling [22]. It is
precisely for this approach to music similarity where exis-
tence of hubs has been first documented and established in
MIR by Aucouturier and Pachet in 2004 [3]. Hub songs
were defined as songs which are, according to the au-
dio similarity function, similar to very many other songs
and therefore keep appearing unwontedly often in recom-
mendation lists preventing other songs from being recom-
mended at all. Such songs that do not appear in any recom-
mendation list have been termed “orphans”. The authors
further stated that hub songs “objectively have nothing to
do with the seed song” [3], i.e. they share no perceptual
similarity with the songs they are recommended for ac-
cording to the audio similarity function. Only anectodic
evidence in the form of two examples is provided for this
rather general statement. Since the data set for this study
was quite small (350 songs from 37 artists), the authors re-
mark that “a further study should be done with a larger
database”. Similar observations about false positives in
music recommendation that are not perceptually meaning-
ful have been made elsewhere [24] using an even smaller
data set.

Following this initial report about the hub problem a
number of results concerning hubness in the context of
MIR have been established. Aucouturier and Pachet [4]
showed that hubs are distributed along a scale-free distri-
bution, i.e. non-hub songs are extremely common and large
hubs are extremely rare. This is true for MFCCs mod-
elled with different kinds of Gaussian mixtures as well as
Hidden Markov Models, irrespective whether parametric
Kullback-Leibler divergence or non-parametric histograms
plus Euclidean distances are used for computation of sim-
ilarity. But is also true that hubness is not the property
of a song per se since non-parametric and parametric ap-
proaches produce very different hubs. The hub effect is
not an artefact of using small data sets in computer experi-
ments since it also exists in very large databases (> 250000
songs) and gets even worse with growing size of databases



[14]. Not all parameterizations of audio are equally prone
to hubness. Fluctuation patterns (FP) [16, 23] have been
shown to produce almost no hubs and a combination of
MFCCs and FPs is able to reduce hubness while maintain-
ing an overall high quality of audio similarity [12, 14]. It
has also been noted that audio recorded from urban sound-
scapes, different from polyphonic music, does not produce
hubs [2] since its spectral content seems to be more homo-
geneous and therefore probably easier to model. The same
has been observed for monophonic sounds from individ-
ual instruments [17]. Direct interference with the Gaussian
models during or after learning has also been explored (e.g.
homogenization of model variances) although with mixed
results. Whereas some authors report an increase in hub-
ness [4], others observed the opposite [18]. Using a Hierar-
chical Dirichlet Process instead of Gaussians for modeling
MFCCs seems to avoid the hub problem altogether [20].
The existence of the hub problem has also been reported
for music recommendation based on collaborative filtering
instead of on audio content analysis [8]. Similar effects
exist for image [10, 19] and text retrieval [28] making this
phenomenon a general problem in multimedia retrieval and
recommendation.

Berenzweig [7] was probably the first to suspect a con-
nection between the hub problem and the high dimension-
ality of the feature space. The hub problem was seen as
a direct result of the curse of dimensionality [5], a term
which refers to a number of challenges due to the high di-
mensionality of data spaces. Radovanović et al [27, 28]
were able to provide more insight by linking the hub prob-
lem to the property of concentration [15] which occurs as
a natural consequence of high dimensionality. Concentra-
tion is the surprising characteristic of all points in a high
dimensional space to be at almost the same distance to all
other points in that space. It is usually measured as a ra-
tio between spread and magnitude, e.g. the ratio between
the standard deviation of all distances to an arbitrary refer-
ence point and the mean of these distances. If the standard
deviation stays more or less constant with growing dimen-
sionality while the mean keeps growing the ratio converges
to zero with dimensionality going to infinity. In such a
case it is said that the distances concentrate. This has been
studied for Euclidean spaces and other lp norms [1, 15].
Radovanović et al [28] presented the argument that in the
finite case, some points are expected to be closer to the
center than other points and are at the same time closer, on
average, to all other points. Such points closer to the center
have a high probability of being hubs, i.e. of appearing in
nearest neighbor lists of many other points. Points which
are further away from the center have a high probability of
being “orphans”, i.e. points that never appear in any near-
est neighbor list. This concentration of distances has also
been reported for audio data [21].

Already in the context of concentration of distances it
has been noted that the degree of concentration depends on
the intrinsic rather than embedding dimension of the fea-
ture space [15]. Whereas the embedding dimension is the
actual number of dimensions of a feature space the intrin-

sic dimension is the, often much smaller, number of dimen-
sions necessary to represent a feature space without loss of
information. It has also been demonstrated that hubness
depends on the intrinsic rather than embedding dimension-
ality [28].

A direct consequence of the presence of hubs is that a
large number of nearest neighbor relations in the distance
space are asymmetric, i.e., a hub y is the nearest neighbor
of x, but the nearest neighbor of the hub y is another point
a (a 6= x). This is because hubs are nearest neighbors to
very many data points but only k data points can be near-
est neighbors to a hub since the size of a nearest neighbor
list is fixed. This behavior is especially problematic if x
and y belong to the same class but a does not, violating
the pairwise stability of clusters [6]. In a recent publica-
tion [29] a general unsupervised method to attenuate the
negative effects of hubness by repairing asymmetric near-
est neighbor relations has been presented. It transforms
arbitrary distance matrices to matrices of so-called proba-
bilistic mutual proximity (MP). On a range of audio data
sets it has been demonstrated that it is indeed able to de-
crease hubness while improving audio similarity as mea-
sured with genre classification accuracy. Since we will use
this method to improve results for the MIREX data set it
will be described in more detail in section 5.3. Please note
that MP can be seen as a refinement of the so-called “P-
norm” [26], which has been applied to the hub problem by
other authors too [9].

3. DATA AND ALGORITHMS

For our meta-analysis of hubness we use the data from
the recent 2011 “Audio Music Similarity and Retrieval”
task 1 within the annual MIREX [11] evaluation campaign
for MIR algorithms. Each of 18 competing algorithms
was given 7000 songs (30 second audio clips). The data
consists of 10 almost equally sized genre classes: 700
songs from BAROQUE, COUNTRY, EDANCE, JAZZ,
METAL, RAPHIPHOP, ROCKROLL, ROMANTIC, 699
from BLUES, 701 from CLASSICAL. Every algorithm
was given these 7000 song excerpts and returned either
a full 7000 × 7000 distance matrix (algorithms CTCP1,
CTCP2, CTCP3, DM2, DM3, ML1, ML2, ML3, SSKS3,
SSPK2, STBD1, STBD2, STBD3) or a matrix of size
7000 × 100 (GKC1, HKHLL, PS1, YL1) containing the
first 100 nearest neighbors to each song. The resulting dis-
tance matrix for algorithm ZYC2 is faulty containing the
same distance of the same pair of songs over and over again
and is therefore excluded from our analysis 2 . Please note
that some of the systems are very closely related, some-
times using just different parameters for the same algo-
rithm (e.g. CTCP1-3, DM2-3, ML1-3, STBD1-3).

From the 7000 songs, “100 songs were randomly se-
lected from the 10 genre groups (10 per genre) as queries

1 The 2011 results and details can be found at:
http://www.music-ir.org/mirex/wiki/2011:
Audio Music Similarity and Retrieval Results

2 Please note that ZYC2 did participate in the MIREX task and even
scored in the mid-field of results. This seems to be due to nonrandom
genre order during evaluation and not to its real performance.



and the first 5 most highly ranked songs out of the 7000
were extracted for each query (after filtering out the query
itself, returned results from the same artist were also omit-
ted). Then, for each query, the returned results (candidates)
from all participants were grouped and were evaluated by
human graders” 1 . For each individual query/candidate
pair, a single human grader provided both a FINE score
(from 0 (failure) to 100 (perfection)) and a BROAD score
(not similar NS, somewhat similar SS, very similar VS) in-
dicating how similar the songs are in their opinion. Since
we use FINE scores only, this altogether gives 17× 100×
5 = 8500 human gradings for our analysis.

4. EVALUATION

The following measures are used to evaluate the hubness
phenomenon in section 5. Abbreviations correspond to la-
bels in the result table 1.

k-occurrence statistics (H25/cov, H50/cov, maxH):
As a measure of the hubness of a given song we use the
so-called k-occurrence Nk [4], i.e. the number of times
the song occurs in the first k nearest neighbors of all the
other songs in the data base. Please note that the mean
k-occurrence across all songs in a data base is equal to k.
Any k-occurrence significantly bigger than k therefore in-
dicates existence of a hub. Since human graders evaluated
the five most similar songs we used k = 5. We com-
pute the absolute number of the maximum k-occurrence
maxH (i.e. the biggest hub) and the number of songs for
which the k-occurrence is bigger than 25 or 50 (i.e. the
number of small hubs H25 and large hubs H50). Ad-
ditionally we give the number of these hubs that appear
as candidate songs in the human grading evaluation, e.g.
“H25/cov = 6/3” means that out of six hub songs with k-
occurrence bigger than 25 three songs have been evaluated
(covered) by human graders.

Hubness (hub): We compute the hubness for each al-
gorithm’s distance matrix according to Radovanović et
al. [28]. Hubness is defined as the skewness of the dis-
tribution of k-occurrences Nk of a whole data set. Positive
skewness indicates high hubness, negative values low hub-
ness.

Reachability (reach): This is the percentage of songs
from the whole data base that are part of at least one of the
nearest neighbor lists. If a song is not part of any of the
recommendation lists of size k = 5 it is an orphan song
which will never be recommended as a candidate song.

Number of hub gradings (#H): For every algorithm,
500 human gradings exist for further analysis. The number
of hub gradings is the number of gradings where the can-
didate song in a query/candidate pair is a hub song. This
is given using k-occurrences of 25 (H25) and 50 (H50) to
distinguish between hubs and non-hubs.

Fine Score (fineH, fineNH, fine): To evaluate the per-
ceptual quality of hubs and non-hubs we compute average
fine scores. For every song in the whole data base we check
whether it was the candidate in any of the query/candidate
pairs in the human evaluation experiment. We average
all respective fine scores for hub songs (fineH) and non-

hub songs (fineNH) separately. This is done using k-
occurrences of 25 (H25) and 50 (H50) to distinguish be-
tween hubs and non-hubs. We also include the average
across all fine scores (fine) irrespective of whether candi-
date songs are hubs or not.

Accuracy (acc): To evaluate the quality of audio sim-
ilarity for the whole data base, and not just for the songs
which have been evaluated by human graders, we com-
puted the genre classification performance. Since songs
within a certain genre will also sound more similar than
songs from different genres, high genre classification re-
sults indicate good audio similarity measures. It has also
been demonstrated that algorithms achieving high genre
classification results are able to produce results that corre-
late higher with human music similarity judgements [25, p.
26]. We compute the k = 5-nearest neighbor classification
accuracy, i.e. the percentage of the five nearest songs that
have the same label as the query song. Songs from the
same artist as a query song are omitted from the nearest
neighbor list by using an artist filter [13].

5. RESULTS

All results discussed in the following section can be found
in table 1 listing all evaluation measures (from column hub
to fineNH , see section 4) for all algorithms (from CTCP1
to YL1, see section 3) plus improved results using “mutual
proximity” (rows mp, see section 5.3).

5.1 Hubness across algorithms

As already discussed in section 2 hubness is not a property
of an individual song but is connected to what features are
computed from the audio, what models are being learned
from the features and how these processing steps are af-
fected by the concentration of distances in high dimen-
sional spaces. The MIREX audio similarity results provide
the opportunity to compare 17 different algorithms with re-
spect to their hubness. Looking at the results in table 1 it is
apparent that the different algorithms produce very differ-
ent degrees of hubness. The hubness values (column hub)
range from 0.96 (HKHLL1) to 3.98 (STBD3) indicating
that all distributions of k-occurrences are skewed to the
right, i.e. are prone to hubness. Looking at the numbers
of small (H25) and large (H50) hubs it is also clear that
the different algorithms produce very different numbers of
hubs. The number of small hubs range from 0 (SSKS3)
to 256 (STBD3), those of large hubs from 0 (CTCP1-
3, GKC1, HKHLL1, ML1, ML3, SSKS3, SSPK2) to 60
(STBD3). The largest k-occurrence maxH ranges from
21 (HKHLL1) to 122 (STBD3). The average correlation
of k-occurrences of all songs across all pairs of algorithms
is only 0.14 showing that different algorithms produce very
different hubness for a song. It is interesting to note that
closely related algorithms show much higher correlations
(e.g. an average of 0.76 for CTCP1, CTCP2 and CTCP3).
The reachability reach ranges from small 65.5% (STBD3)
up to 95.9% (SSKS3).



H25 H50
algo hub acc H25/cov H50/cov maxH reach fine #H fineH fineNH #H fineH fineNH

CTCP1 1.28 59.42 6/3 0/0 31 93.8 57.3 3 60.0 57.3 0 - 57.3
mp 1.32 58.75 9 0 35 92.5

CTCP2 1.08 59.66 1/1 0/0 26 94.9 58.6 2 41.0 58.7 0 - 58.6
mp 1.02 59.20 0 0 25 94.4

CTCP3 1.41 60.07 12/3 0/0 35 92.3 56.2 3 44.3 56.3 0 - 56.2
mp 1.41 59.38 10 0 36 90.3

PS1 2.43 59.52 32/15 2/2 81 88.0 57.7 19 55.9 57.8 2 76.5 57.6
mp 1.02 54.80 1 0 31 99.1

SSKS3 0.93 60.12 0/0 0/0 25 95.9 58.1 0 - 58.1 0 - 58.1
mp 1.13 59.61 3 0 31 93.8

SSPK2 1.19 59.67 5/3 0/0 33 94.5 58.6 3 73.0 58.6 0 - 58.6
mp 1.33 58.95 5 0 38 93.7

DM2 2.80 50.62 68/22 4/3 90 84.2 50.5 29 48.2 50.6 5 36.2 50.6
mp 2.15 51.19 40 1 58 88.9

DM3 2.83 50.69 76/32 7/3 85 84.4 50.3 43 47.2 50.6 4 42.0 50.4
mp 2.15 51.03 48 1 58 88.9

GKC1 1.31 25.83 11/3 0/0 34 90.8 31.8 3 30.0 31.9 0 - 31.8
mp 0.16 26.52 0 0 15 97.8

HKHLL1 0.96 38.40 0/0 0/0 23 93.3 42.2 0 - 42.2 0 - 42.2
mp 0.48 38.76 0 0 24 98.3

ML1 2.19 45.95 61/22 0/0 47 85.9 47.8 26 46.5 47.9 0 - 47.8
mp 1.06 48.22 2 0 30 93.8

ML2 2.17 44.22 60/19 1/0 54 87.4 47.3 25 36.1 47.9 0 - 47.3
mp 1.08 45.74 2 1 30 94.4

ML3 1.49 45.17 12/3 0/0 38 90.8 47.8 3 47.7 47.8 0 - 47.8
mp 0.94 44.74 1 0 26 95.2

STBD1 3.46 26.62 161/71 17/10 90 81.0 33.9 86 29.5 34.8 16 22.9 34.3
mp 1.40 28.81 5 0 45 93.7

STBD2 2.88 25.91 135/60 9/5 70 82.0 30.6 72 28.0 31.0 6 21.3 30.7
mp 1.24 27.37 3 0 34 95.5

STBD3 3.98 25.38 256/113 60/35 122 65.5 30.4 149 29.3 30.9 54 23.0 31.3
mp 2.18 26.88 64 2 57 86.1

YL1 2.16 41.14 65/21 1/0 54 84.4 42.4 27 33.4 42.9 0 - 42.4
mp 1.82 41.01 2 1 65 95.6

Table 1. All results (please see section 5 for details) for all evaluation measures (from column hub to fineNH , see
section 4) for all algorithms (from CTCP1 to YL1, see section 3) plus improved results using “mutual proximity” (rows
mp, see section 5.3). Algorithms CTCP1 to SSPK2 (top six rows) already use “P-norm” and therefore do not show
improvements due to mp, see section 5.3.

To sum up, different algorithms indeed produce very
different degrees of hubness.

5.2 Hubness and perceptual quality

The next question we like to clarify is whether hub songs
exhibit less perceptual similarity to the songs they are close
to (according to an audio similarity function) than non-hub
songs.

The correlation between hubness and average fine score
of all algorithms (columns hub and fine in table 1) is
−0.56. This indicates that algorithms generating large
hubness show low fine scores, i.e. overall bad perceptual
similarity. Notable exceptions are maybe GKC1 with low
hubness and low fine scores (hub = 1.31, fine = 31.8)
and PS1 with rather high hubness and high fine scores
(hub = 2.43, fine = 57.7).

Analyzing the differences in fine scores between hubs

and non-hubs, we can see that the average fine scores
for small hubs (fineH ,H25) are almost always smaller
than those for non-hubs (fineNH ,H25). The only ex-
ceptions are algorithms CTCP1 and SSPK2. The average
difference in fine scores is 3.65. This average is taken
across all algorithms where grading information for hubs
is available (#H > 0). The average fine scores for large
hubs (fineH ,H50) are again almost always smaller than
those for non-hubs (fineNH ,H50), with algorithm PS1
being the only exception. The average difference in fine
scores is 5.49. Again this average is taken across all al-
gorithms where grading information for hubs is available
(#H > 0). Please note that e.g. for PS1, only two human
gradings of large hub songs do exist.

To sum up, both small and large hubs seem to be less
perceptually meaningful than non-hub songs but the aver-
age difference in human gradings is only 3.65 to 5.49 on



a scale from 0 to 100. Audio similarity computed with
algorithms showing high hubness seems to be less percep-
tually meaningful than that of algorithms with low hubness
in general.

5.3 Reducing hubness

To reduce the negative effects of hubness we apply “mu-
tual proximity” (MP) [29] to the distance matrices from
all algorithms. MP takes a distance matrix and (i) trans-
forms distances between points x and y into probabili-
ties that y is closest neighbor to x given the distribution
of all distances to x in the data base, (ii) combines these
(asymmetric) probabilistic distances from x to y and y to
x via the product rule. The first step of transformation to
probabilities re-scales and normalizes the distances like a
z-transform. The second step combines the probabilities
to a mutual measure thereby repairing sometimes contra-
dicting, asymmetric nearest neighbor information which
seems to cause hubness in similarity measures. Please
note that MP requires knowledge of the full distance ma-
trix since it needs to compute means and variances across
full rows and columns during the re-scaling step. For al-
gorithms GKC1, HKHLL, PS1 and YL1 we only have dis-
tances to the first 100 nearest neighbors of each song. In
this case we use this limited set of distances instead of full
rows and columns for computation of MP.

Before discussing the improvements due to MP it has
to be said that six of the competing algorithms (CTCP1-
3, PS1, SSKS3, SSPK2) already use a transformation of
the distance matrix similar to MP. Usage of the so-called
“P-norm” [26], which can be seen as a predeccesor to MP,
together with application of MP does not seem to improve
hubness. As a matter of fact, it sometimes even worsens
the hubness situation. On the other hand, the six algorithms
employing the “P-norm” already are the six best rank-
ing systems according to their average fine score. There-
fore we now discuss only those algorithms that do not use
the “P-norm” already (DM2-3, GKC1, HKHLL1, ML1-3,
STBD1-3, YL1).

Comparing hubness indices (column hub in table 1) be-
tween original algorithms and their improved MP version
(rows mp) it can be seen that all values improve. The av-
erage decrease in hubness (hub) is 45.5%. The number
of small hubs H25 also always decrease with an average
of 83% less hubs. The average decrease in the number of
large hubs H50 is 79.6%. The average decrease of the
largest hub maxH is 33.2%. Only HKHLL1 and YL1
show a slightly larger maxH , with all other indices also di-
minishing. The reachability reach for all algorithms is en-
hanced, on average by 8.95 percentage points. This means
that audio simialrity re-scaled with MP produces less or-
phan songs and includes a larger part of the data base in
the nearest neighbor lists. All these improvements seem
to be accompanied with unchanged quality in audio simi-
larity. At least all genre classification results (column acc)
remain more or less constant, with some insignificant in-
creases and decreases.

To sum up, mutual proximity (MP) is able to decisively

improve the hubness situation while not changing the over-
all performance in audio similarity.

6. DISCUSSION AND CONCLUSION

In this paper we were able to explore two important ques-
tions concerning hubness in audio music similarity which
so far have not been answered satisfactory. We have
corroborated earlier results indicating that different fea-
tures computed from the audio in combination with dif-
ferent models being learned produce very different de-
grees of hubness. This was done by comparing a yet
unprecedented number of different approaches (17 algo-
rithms from the 2011 MIREX “Audio Music Similarity
and Retrieval” task). We were also able to show that hub
songs, when being recommended as being very similar, are
judged to be less perceptually meaningful than non-hub
songs by human evaluators. This was done by conducting
the first systematic and extensive study on the perceptual
quality of hub songs based on human evaluations again us-
ing MIREX data. Last but not least we were able to show
that it is possible to reduce the many negative effects of
hubness by applying “mutual proximity” to re-scale audio
similarity distances.
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ABSTRACT

The principal goal of the annual Music Information Re-
trieval Evaluation eXchange (MIREX) experiments is to
determine which systems perform well and which systems
perform poorly on a range of MIR tasks. However, there
has been no systematic analysis regarding how well these
evaluation results translate into real-world user satisfac-
tion. For most researchers, reaching statistical significance
in the evaluation results is usually the most important goal,
but in this paper we show that indicators of statistical sig-
nificance (i.e., small p-value) are eventually of secondary
importance. Researchers who want to predict the real-
world implications of formal evaluations should properly
report upon practical significance (i.e., large effect-size).
Using data from the 18 systems submitted to the MIREX
2011 Audio Music Similarity and Retrieval task, we ran
an experiment with 100 real-world users that allows us to
explicitly map system performance onto user satisfaction.
Based upon 2,200 judgments, the results show that abso-
lute system performance needs to be quite large for users
to be satisfied, and differences between systems have to be
very large for users to actually prefer the supposedly better
system. The results also suggest a practical upper bound of
80% on user satisfaction with the current definition of the
task. Reflecting upon these findings, we make some rec-
ommendations for future evaluation experiments and the
reporting and interpretation of results in peer-reviewing.

1. INTRODUCTION

Evaluation experiments are the main research tool in Infor-
mation Retrieval (IR) to determine which systems perform
well and which perform poorly for a given task [1]. Sev-
eral effectiveness measures are used to assign systems a
score that estimates how well they perform. The assump-
tion underlying these evaluations is that systems with bet-
ter scores are actually perceived as more useful by the users
and therefore are expected to bring more satisfaction.

Researchers are usually interested in the comparison be-
tween systems: is system A better or worse than system
B? After running an experiment with a test collection, re-
searchers have a numeric answer to that question that mea-
sures the effectiveness difference between systems. Statis-
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tical procedures are then used to check whether that dif-
ference is statistically significant or not. Statistical signif-
icance is usually thought of as a sort of bulletproof evi-
dence that one system really is better than another. Teams
usually follow one or another research line based solely on
statistical significance, and it has also become an essential
requirement for publication in peer-reviewed venues.

However, there are several misconceptions regarding sta-
tistical significance [2, 11]. In the case of IR evaluation
experiments, null hypotheses about differences in perfor-
mance are false by definition, so observing a small p-value
to conclude significance is just a matter of meeting certain
conditions in the experiment. On the other hand, very little
attention is paid to the effect-sizes and their implications
in practical terms. In fact, even if statistical significance is
present, the difference between two systems may very well
be so subtle that users do not note the difference.

However, IR evaluations are traditionally focused on the
algorithmic aspect of the systems, and whether the results
do predict user satisfaction or not is very seldom stud-
ied [8]. Evaluation experiments make different assump-
tions regarding the operational settings and the needs and
behavior of the users, so the extent to which results can be
extrapolated should be questioned [9].

In this paper we focus on the evaluation of the Au-
dio Music Similarity and Retrieval task (AMS), as carried
out in the annual Music Information Retrieval Evaluation
eXchange (MIREX). AMS is one of the tasks that most
closely resemble a real-world music retrieval scenario, and
it is also one of the tasks that receives most attention from
the research community. We carried out an experiment
with 100 users that allowed us to map system effective-
ness onto user satisfaction, providing a new perspective
in the interpretation of evaluation results. We also argue
that researchers should not only focus on achieving statis-
tical significance in effectiveness differences, but also on
the size and practical implications of such differences.

2. SYSTEM EFFECTIVENESS
AND USER SATISFACTION

In the MIREX AMS evaluation experiments, the similar-
ity of a document to a query is assessed by humans and
based on two different scales. The Broad scale has three
levels: 0 (not similar), 1 (somewhat similar) and 2 (very
similar). The Fine scale has 101 levels, from 0 (not similar
at all) to 100 (identical to the query). Only one measure is
reported to assess the effectiveness of the participating sys-
tems: AG@5 (Average Gain after 5 documents retrieved):



AG@k =
1

k

k∑
i=1

gaini

where gaini is the gain of the i-th document retrieved (the
similarity score assigned). Two versions of AG@5 are ac-
tually reported, following the Broad and Fine scales.
AG@k assumes that a document retrieved at rank 3 is

as useful as a document retrieved at rank 30. A measure
with a more realistic user model is nDCG@k (Normalized
Discounted Cumulated Gain after k retrieved) [3]:

nDCG@k =

∑k
i=1 gaini/ log2 (i+ 1)∑k
i=1 gain

∗
i / log2 (i+ 1)

where gain∗i is the gain of the i-th document in the ideal
ranking (i.e. ∀i : gain∗i ≥ gain∗i+1). The gain contri-
bution of a document is discounted with the logarithm of
the rank at which it is retrieved, thus penalizing late ar-
rival of relevant documents. Also, the gain contribution of
documents is divided by the ideal contribution, bounding
the measure between 0 and 1. Therefore, and for the sake
of simplicity when comparing results across measures, we
normalize AG@k between 0 and 1 too:

nAG@k =
1

k · l+
k∑
i=1

gaini

where l+ is the maximum similarity score allowed by the
scale: 2 in the Broad scale and 100 in the Fine scale.

2.1 Interpretation of Effectiveness Scores

After running an evaluation of AMS systems, researchers
interpret the results and make design decisions accordingly
[9]. The ultimate goal is answering this question: what
system would yield more user satisfaction? But we need to
ask something else first: what measure and what similarity
scale are better to predict user satisfaction?

Intuitively, if a system obtained a nAG@5 or nDCG@5
score of 1, our interpretation would be that an arbitrary
user would be 100% satisfied with the results of the sys-
tem, or satisfied 35% of the times if the effectiveness score
achieved were 0.35. On the other hand, if system A ob-
tained an effectiveness score larger than the one obtained
by system B, we should expect users to prefer A. By choos-
ing one or another measure, researchers make different as-
sumptions as to the behavior and needs of the final users,
and by choosing one or another similarity scale they follow
different criteria to differentiate satisfying from unsatisfy-
ing results. To the best of our knowledge, none of these
assumptions has been validated in the literature so far.

3. EXPERIMENTAL DESIGN

We devised an experiment with actual users that allowed
us to map system effectiveness onto user satisfaction. Sub-
jects were presented with a query clip and two ranked lists
of five results each, as if retrieved by two different AMS
systems A and B [8]. They had to listen to the clips and
then select one of the following options: system A pro-
vided better results, system B did, they both provided good

Figure 1. Task template used in the experiment.

results, or they both returned bad results (see Figure 1).
From these we can differentiate 4 judgments:

• Positive preference, if the subject selected the sys-
tem whose results yield larger effectiveness.

• Negative preference, if the subject selected the sys-
tem whose results yield smaller effectiveness.
• Good nonpreference, if the subject indicated both

systems are equally good.
• Bad nonpreference, if the subject indicated both

systems are equally bad.

Such a design allows us to analyze the results from two
different approaches: evaluation of a single system and
comparison of two systems. Subjects indicating that both
systems are good suggest that they are satisfied with both
ranked lists. That is, their answer serves as an indication
that the effectiveness measured for those systems translates
into user satisfaction. If, on the other hand, they indicate
that both systems are bad, we can infer that those effec-
tiveness scores do not translate into user satisfaction. Sub-
jects indicating a preference for one ranked list over the
other one suggest that there is a difference between them
large enough to be noted. That is, their answer serves as an
indication that the difference in effectiveness between the
systems translates into users being more satisfied with one
system than with the other.

3.1 Data

We used the similarity judgments collected for the 2011
edition of the MIREX AMS task: a total of 18 systems by
10 research teams were evaluated with 100 queries, leading
to a total of 6,322 unique similarity judgments. This is the
largest edition as of the writing of this paper 1 .

According to the definition of nAG@k with Broad judg-
ments, the difference between two systems is always a mul-
tiple of 0.1. For each difference ∆ ∈ {0, 0.1, ..., 1}, we se-
lected 200 random queries and artificially created two ran-
dom ranked lists of 5 documents such that their difference
in nAG@5 would be ∆ according to the Broad judgments
made for that query in MIREX 2011. Therefore, we have
a total of 2,200 examples. Note that for the extreme value
∆ = 1 we need at least 5 very similar documents and 5 not

1 http://www.music-ir.org/mirex/wiki/2011:MIREX2011 Results
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Figure 2. Distribution of effectiveness differences in all 2,200
examples, for nAG@5 (top) and nDCG@5 (bottom), and Broad
(left) and Fine (right) judgments.

similar documents for the query. Due to this restriction, we
could actually use only 73 of the total 100 queries. Across
all 2,200 examples, we had 2,869 unique ranked lists of
results, with 3,031 unique clips (including the 73 queries).

Figure 2 shows the distributions of effectiveness differ-
ences in the 2,200 examples. As mentioned, differences
for nAG@5 with Broad judgments follow a uniform dis-
tribution, but with the Fine judgments there are very few
examples with large differences. We note though that this
is an artifact of the Fine scale itself and not a sampling
flaw: for ∆ = 0.9 we need 5 documents with very high
similarity scores (90 to 100) and 5 documents with very
low scores (0 to 10); however, assessors very rarely assign
such small and large scores. Therefore, it is very rare to
observe differences that large when using the Fine scale.

These 2,200 pairs of artificial ranked lists can also be
evaluated as per nDCG@5. As Figure 2 shows, the dis-
tributions of differences in nDCG@5 are very similar to
nAG@5. Our examples do therefore cover the wide range
of possible evaluation outcomes.

3.2 Procedure

All 2,200 judgments were collected via crowdsourcing. Pre-
vious work by Lee [6] and Urbano et al. [10] demonstrated
that music similarity judgments gathered through crowd-
sourcing platforms are very similar to the ones collected
with experts, with fast turnaround and low cost. Another
advantage of using crowdsourcing for our experiment is
that it offers a large and diverse pool of subjects around
the globe. Using a controlled group of students or experts
would probably bias our results, but using a diverse pool
of workers allows us to draw conclusions that should gen-
eralize to the wider population of users.

However, using crowdsourcing has other issues. The
quality of judgments via crowdsourcing can be questioned
because some workers are known to produce spam answers
and others provide careless answers to profit without actu-
ally doing the task. We decided to use the platform Crowd-
flower to gather the judgments, which delegates the work
to other platforms such as Amazon Mechanical Turk. It
also provides a quality control layer at the process level
that separates good from bad workers by means of trap ex-
amples [5,8]: some of the examples shown to workers have

known answers (provided by us) that are used to estimate
worker quality. Workers that show low quality on the trap
examples are rejected, and those that show high agreement
are allowed to participate. We provided Crowdflower with
20 such trap examples (5 for each of the four answers), as-
signing each of them a subjective level of difficulty based
on the answers by two experts.

3.3 Task Design

Figure 1 shows the task template we used. A first section
listed the task instructions, and then a Flash player permit-
ted subjects to listen to the query clip. Below, they could
find the two ranked lists of 5 results each, followed by ra-
dio buttons to select the answer. Finally, a textbox was pro-
vided for workers to optionally leave feedback. All 3,031
audio clips were uploaded to our servers, and served upon
request. The order in which examples are shown to work-
ers is random, as is the assignment of the ranked lists as
system A or system B. Also, we limited the maximum
number of answers by a single worker to 50, minimizing
the possible bias due to super-workers.

We collected all answers in four batches of 550 exam-
ples each. Lee collected similarity judgments paying $0.20
for 15 query-document pairs [6], while Urbano et al. col-
lected preference judgments paying $0.02 for each query-
document-document [10]. In both studies workers were
therefore paid approximately $0.007 per audio clip. Music-
related tasks are known to be enjoyable by workers, and
given that quality does not significantly degrade when de-
creasing wages [7], we decided to pay $0.03 for each ex-
ample, leading to approximately $0.003 per clip. Adding
the corresponding feeds to Crowdflower, all 2,200 judg-
ments were collected for a grand total of $100.

4. RESULTS 2

The four batches were completed in less than 24 hours. We
collected answers from 881 unique workers from 62 coun-
tries and 7 different crowdsourcing markets. These work-
ers provided a grand total of 6,895 answers, from which
Crowdflower accepted 3,393 (49%) as trustworthy. Note
that the extra answers are due to repeatedly showing trap
examples to workers. Only 100 workers were responsible
for these trusted answers, so 781 workers (87%) were re-
jected. The average quality of these 100 workers, as com-
puted by Crowdflower [5], ranges from 60% to 100%, with
an average of 95%. In fact, 27 of our 2,200 examples con-
tained the exact same documents, in the exact same order,
in both ranked lists. Only twice did we not get, as should
have, an unsigned preference in these cases. Therefore, the
results reported herein comprise 2,200 answers by 100 dif-
ferent users who, apparently, provided honest responses.

4.1 Evaluation of a Single System

For 884 of the 2,200 examples (40%) we received a non-
preference (i.e. subjects judged both systems as equally
good or bad). Therefore, we have 1,768 ranked lists that
subjects considered equally satisfying. Figure 3 shows the

2 All data can be downloaded from http://julian-urbano.info.
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Figure 3. Distribution of absolute effectiveness scores in the
884 examples with unsigned preferences, for nAG@5 (top) and
nDCG@5 (bottom), and Broad (left) and Fine (right) judgments.

distributions of absolute effectiveness scores. As can be
seen, a wide range of scores are covered, following a some-
what uniform distribution as well. The number of good and
bad nonpreferences was almost the same too: 440 vs. 444.

Figure 4 shows the ratio of good nonpreferences ob-
served in these 884 examples as a function of absolute
effectiveness. As expected, there is a very tight positive
correlation between effectiveness and user satisfaction. In
fact, the relationship appears to be nearly linear. There is
no appreciable difference between measures, but the Fine
scale seems to adhere better to the diagonal than the Broad
scale does. Note that the deviations from the trend with the
Fine judgments (∆ < 0.2 and ∆ > 0.8) are just an artifact
of the very small number of observations in that range (see
Section 3.1 and Figure 3).

Figure 4 shows a pretty straightforward mapping be-
tween nAG@k and nDCG@k scores and user satisfac-
tion. However, the Broad scale seems to reveal a practi-
cal lower bound of 20% and an upper bound of 80% on
user satisfaction. This could be merely due to noise in the
crowdsourced data or a fault in the measures or scales. But
given the symmetry, we believe these bounds are due to the
natural diversity of users: some might consider something
a very good result while others do not [4]. This means that
even if a system obtains a nAG@5 score of 0, about 20%
of the users will like the results (or dislike if nAG@5 = 1).

This is evidence of the room for improvement through
personalization. Therefore, the AMS evaluations should
include a user factor, possibly through user profiles, so that
systems can attempt to reach 100% satisfaction on a per
user basis. Otherwise, the final user satisfaction should not
be expected to pass 80% for arbitrary users.

4.2 Evaluation of Two Systems

For 1,316 of the 2,200 examples (60%) we did receive a
preference (i.e. subjects indicated that one system pro-
vided better results than the other one). Whether those
user preferences were positive or negative (i.e. agreeing
with the effectiveness difference or not), depends on the
combination of measure and scale used. Figure 5 shows
the ratio of preference signs across all 2,200 examples.

In terms of positive preferences (left plot), ideally we
would want users to show a preference for the better sys-
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Figure 4. Ratio of good and bad nonpreferences in 884 examples,
as a function of absolute system effectiveness, for AG@5 and
nDCG@5 combined with the Broad and Fine judgments.

tem whenever we observe an effectiveness difference in the
evaluation, regardless of how large this difference is. But
there is a very tight positive correlation instead: the larger
the difference in effectiveness, the more likely for users to
prefer the supposedly better system. The relationship is
again nearly linear, though this time we can observe a very
clear difference between the Broad and Fine scales: for
the same magnitude of the difference, the Fine judgments
are always closer to the ideal 100% of positive user pref-
erences. In fact, the Broad scale seems to indicate once
again an upper bound of 80%. In addition, the plot shows
that for users to prefer the supposedly better system more
than the random 50% of the times, a difference of at least
0.3 in the Fine scale is needed, or 0.5 in the Broad scale.
Note that the deviations from the trend with the Fine judg-
ments (∆ > 0.8) are also here just an artifact of the very
small number of observations in that range.

As a consequence, there is a very clear negative corre-
lation in terms of nonpreferences (middle plot): the larger
the differences between systems, the more likely for users
to prefer one of them. Again, the Fine scale seems to be-
have better than the Broad scale.

As the right plot shows, all four combinations of mea-
sure and similarity scale yield very similar ratios of neg-
ative preferences. There is a very slight negative correla-
tion with difference in effectiveness, but in general about
5-10% of the user preferences disagree with the sign of the
effectiveness difference. That is, about 5-10% of the times
users prefer the supposedly worse system.

5. UNDERSTANDING EVALUATION RESULTS

The effectiveness of IR systems is assessed with different
measures such as nAG@k and nDCG@k. These mea-
sures are used to assign systems a score that represents how
well they would satisfy users. For an arbitrary system A a
measure M defines a distribution of effectiveness scores
YA, describing the effectiveness of the system for an arbi-
trary query. The goal of evaluation experiments is usually
finding the mean of that distribution: yA.

Computing the parameter yA allows researchers to as-
sess how well the system performs and what is the ex-
pected user satisfaction according to the user model un-
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Figure 5. Ratio of positive preferences (left), nonpreferences (middle) and negative preferences (right) observed in the 2,200 examples,
as a function of system effectiveness difference, for nAG@5 and nDCG@5 combined with the Broad and Fine scales.

derlying M . However computing this distribution would
require running the system for the universe of all queries,
which is clearly impossible. Instead, IR evaluation exper-
iments are run with a sample of queries Q, so they are
used as estimators of the true yA. The average effective-
ness across queries, yA, is used as the estimate ŷA. Like
any other estimate, ŷA bears some uncertainty, so statisti-
cal techniques such as confidence intervals should be em-
ployed to report the confidence on the estimation.

When comparing two systems, say A and B, one is usu-
ally interested in the distribution of the difference DAB,
representing the paired difference in effectiveness between
A and B for an arbitrary query. Again, a comparative IR
evaluation experiment only provides an estimate d̂, whose
sign indicates which system is expected to perform better.

5.1 Statistical Significance: p-values

Given that d is an estimate, the immediate question is: how
confident can we be of this difference? The observed d
could be just a random and rare observation due to the
particular sample of queries used. Again, statistical tech-
niques are needed to compute some sort of confidence on
the difference. The most popular is hypothesis testing.

In a statistical hypothesis testing procedure, a null hy-
pothesis H0 is defined, such as H0 : d = 0. The alterna-
tive, or research hypothesis, is then defined as the opposite:
H1 : d 6= 0. All hypothesis testing procedures are based
on probability distributions, so there is always some de-
gree of uncertainty when estimating parameters such as d.
Thus, researchers may commit one of two errors: a Type I
error if they conclude H0 is not true when it actually is, or
a Type II error if they conclude H0 is true when it is not.
The maximum probability of committing a Type I error is
known as the significance level, usually α = 0.05. The
probability of committing a Type II error is denoted with
the letter β, and 1−β is known as the power of the test: the
probability of detecting a difference if there really is one.

The result of a hypothesis testing procedure is a proba-
bility called p-value. These are usually mistaken with the
probability of H0 being true [2, 11], but they are actually
the probability of observing the difference d (or one larger)
under the assumption that H0 is true. That is, p-values are
the probability of the data given the hypothesis, not the
probability of the hypothesis given the data. If the reported
p-value is smaller than the significance level α, we then
reject the null hypothesis in favor of the alternative, and

say that the difference is statistically significant. But it is
important to note that the test does not tell anything about
H0 being true or false: that dichotomous interpretation is
made by us based on the p-value and α, not by the test.

This is the ultimate goal of an IR evaluation: reaching
significance. However, observing a statistically significant
difference between two systems is usually misinterpreted
as having high confidence that one system really is bet-
ter than the other one because H0 was rejected [2, 11]. In
fact, all these null hypotheses are false by definition: any
two different systems produce a distribution of differences
with d 6= 0. What is important is the magnitude of d: dif-
ferences of 0.0001, for instance, are probably irrelevant,
but differences of 0.8 definitely are. However, a difference
of just 0.0001 will always be statistically significant under
certain experimental conditions, so focusing on statistical
significance alone becomes, at some point, meaningless.

5.2 Practical Significance: effect-sizes

The most popular procedure to test such hypotheses about
population means is the paired t-test. In IR evaluation, the
hypotheses use to be H0 : d ≤ 0 and H1 : d > 0. The test
statistic is then computed as (note that in our case d = 0):

t =
d− d

sd/
√
|Q|

(1)

where sd and d are the standard deviation and mean of the
sample of DAB computed with the set of queries Q in the
test collection. Using the t-distribution’s cumulative distri-
bution function, the p-value is then calculated as the area
that is to the right of t. If p-value < α, we reject the null
hypothesis and plainly conclude d > 0.

Examining Eqn. (1) we can see that the test is more
likely to come up significant with larger observed differ-
ences d and smaller deviations sd. But most important is
to note that the power of the test is also directly propor-
tional to the sample size |Q|: the more queries we use to
evaluate systems, the more likely to observe a significant
difference. This shows that focusing on significance alone
is eventually meaningless: all a researcher needs to do in
order to obtain significance is evaluate with more queries.

Increasing the sample size (number of queries) increases
the power of the test to detect ever smaller differences be-
cause the standard error on the mean, sd/

√
|Q|, decreases.

Thus, observing a statistically significant difference does



not mean that the systems really are different, in fact they
always are. It just means that the observed difference and
the sample size used were large enough to conclude with
confidence that the true difference is larger than zero.

What really matters is how far apart from zero d is.
This is the effect-size, which measures the practical signif-
icance of the result. As shown in Section 4.2, large differ-
ences in effectiveness scores (large effect-sizes) do predict
more user satisfaction, but small differences do not really.
However, with a sufficiently large number of queries we
may be able to detect a statistically significant difference
whose effect-size is extremely small, having no value for
real users. In such a case we would have statistical signifi-
cance, but no practical significance at all.

5.3 Reporting and Interpreting Results

We showed above that obtaining small p-values (statistical
significance) should not be the sole focus of researchers
when running evaluation experiments. The focus should
really be on obtaining large effect-sizes (practical signif-
icance). The easiest way to report effect-sizes is just to
report the effectiveness difference between systems or the
absolute score of a single system. But these figures are just
estimates of population means, and therefore subject to er-
ror. A better way to report effect-sizes is with confidence
intervals, computed as d ± tα/2 · sd/

√
|Q|. Confidence

intervals for the absolute effectiveness of a single system
are computed likewise, but using the y and sy estimates.

Along with the results in Section 4, these confidence in-
tervals can be used to interpret evaluation results from the
ultimate perspective of user satisfaction. For instance, the
HKHLL1 system in MIREX AMS 2011 obtained a nAG@5
score of 0.422 for the Fine judgments, with a 95% confi-
dence interval ranging from 0.376 to 0.468. According to
the results in Figure 4, this system is expected to satisfy an
arbitrary user from about 35% to 45% of the times.

On the other hand, the difference between SSPK2 and
DM2 was found to be statistically significant. The magni-
tude of the difference was just 0.082, with the 95% con-
fidence interval ranging from 0.051 to 0.112. According
to Figure 5 though, such difference is hardly ever noted by
the users. Indeed, substituting in Eqn. (1) we find that any
d larger than 0.031 would have been deemed as statistically
significant for these two systems. This is an example of a
statistically significant difference that makes no practical
difference for arbitrary users.

In summary, we suggest to report not only the observed
scores but also their confidence intervals, and the actual
p-values rather than an indication of significance. For in-
stance, a proper report for a single system would read as
nAG@5 = 0.584±0.023. For the difference between two
systems, we suggest ∆nAG@k=0.037±0.031(p=0.02).
By reporting the p-value we leave the interpretation of sig-
nificance to the reader and his operational context: a large
effect-size (e.g. d = 0.43), even if not statistically signifi-
cant (e.g. p-value = 0.06), is definitely worth implement-
ing. After all, the levels α = 0.05 and α = 0.01, despite
widely accepted, are completely arbitrary. People gener-
ally consider p-value = 0.054 as significant, while others

request p-value < 0.005. It depends on the context of the
reader and factors such as the cost of committing a Type I
error or the cost of implementing one or another technique.

6. CONCLUSIONS

Reaching statistical significance in IR evaluation experi-
ments is usually the most important goal for researchers.
A difference between systems is usually regarded as im-
portant if significance is involved, when in reality all sys-
tems are different. With the development of ever larger test
collections, statistical significance can easily be misunder-
stood, suggesting large differences between systems when
they are actually very similar. To predict the real-world im-
plications of these differences, researchers need to focus on
effect-sizes as indicators of practical significance. That is,
it does not matter whether there is a difference or not (in
fact, there always is), what matters is how large it is. Final
user satisfaction is only predicted with effect-sizes. Statis-
tical significance serves just as a measure of confidence.

However, even when reporting on the magnitude of ef-
fectiveness differences, there is no established relationship
with final user satisfaction. To fill this gap we carried out a
user study with 100 real users in the context of the Au-
dio Music Similarity and Retrieval task, where subjects
indicated their preferences between different system out-
puts. Our results allow researchers to map observed ab-
solute scores and relative effectiveness differences directly
onto expected user satisfaction. In addition, they suggest
room for improvement if considering personalization, as
well as further work on the development of measures and
evaluation criteria that more closely capture the user model
underlying the task.
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ABSTRACT

In this paper we present a method for the statistical charac-
terisation of melodic pitch contours, and apply it to auto-
matic melody extraction from polyphonic music signals.
Within the context of melody extraction, pitch contours
represent time and frequency continuous sequences of pitch
candidates out of which the melody must be selected. In
previous studies we presented a melody extraction algo-
rithm in which contour features are used in a heuristic man-
ner to filter out non-melodic contours. In our current work,
we present a method for the statistical modelling of these
features, and propose an algorithm for melody extraction
based on the obtained model. The algorithm exploits the
learned model to compute a “melodiness” index for each
pitch contour, which is then used to select the melody out
of all pitch contours generated for an excerpt of polyphonic
music. The proposed approach has the advantage that new
contour features can be easily incorporated into the model
without the need to manually devise rules to address each
feature individually. The method is evaluated in the context
of melody extraction and obtains promising results, per-
forming comparably to a state-of-the-art heuristic-based
algorithm.

1. INTRODUCTION

Melody extraction algorithms can be divided into several
categories, based on their underlying approach. Some sys-
tems extract the melody by first separating it from the rest
of the audio signal using source separation techniques [6,
11]. Purely data-driven approaches have also been pro-
posed, such as [14] in which the entire short-time magni-
tude spectrum is used as training data for a support vector
machine classifier. Still, the largest set of methods to date
are those that can be referred to as salience-based algo-
rithms, which derive an estimation of pitch salience over
time and then apply tracking or transition rules to extract
the melody line without separating it from the rest of the
audio [4,8,12,16,18]. A review of salience-based systems
can be found in [15].
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For salience-based methods, one of the most important
steps is the tracking and selection of pitch candidates. That
is, given a set of pitch candidates at each frame, the system
must decide which candidate belongs to the melody. This
is also one of the steps that varies most between systems:
in [8], tracking agents compete for candidates on a per
frame basis using a set of heuristics, and the most salient
agent at the end of the tracking is selected as the final
melody. Tracking agents are also used in [5], where pitch
candidates are first grouped into tone objects which are
added to the agents using rules based on auditory stream-
ing. In [16] Hidden Markov Models (HMM) are used to
model the pitch evolution of single notes, and then the
models are combined into a single HMM with inter-note
transition probabilities learned from a training data-set.

In [18], we proposed a method for melody extraction
based on pitch contour characteristics. In our approach,
pitch candidates are first grouped over time into pitch con-
tours – time and frequency continuous sequences of pitch
candidates, whose length may vary from a single note in
the shortest case to a short phrase in the longest. Given
all the pitch contours generated from the audio signal of
a polyphonic piece of music, we compute a set of con-
tour characteristics, or features, related to contour salience,
length, height and pitch evolution (namely pitch deviation
and the presence of vibrato). These contour features are
then used to devise filtering rules for filtering out non-
melodic contours. Given the final set of contours after
filtering, the melody is selected as the pitch candidate be-
longing to the most salient contour present in each frame.
In the most recent Music Information Retrieval Evaluation
eXchange (MIREX 2011) [3], the algorithm was shown to
outperform all alternative approaches, obtaining the high-
est mean overall accuracy achieved by a melody extraction
algorithm for the current MIREX data-sets [17].

Similar to other extraction algorithms such as [5,8], one
characteristic of our approach is that it heavily relies on
heuristics for the candidate selection stage. Whilst this in
itself is not a problem (some of the most successful algo-
rithms also rely on heuristics [5]), it has the disadvantage
that new heuristics must be devised whenever we want to
incorporate new musical information into our algorithm
(i.e. new contour features). This motivates us to explore
the possibility of exploiting contour features in an auto-
mated manner, that is, creating a model based on contour
features that can be easily updated whenever we want to
incorporate new features.



In this paper, we present a method for the statistical
characterisation of pitch contours using contour feature dis-
tributions. We do this by combining the distributions of
different contour features into a single multivariate Gaus-
sian distribution which embodies most of the features cur-
rently used by the algorithm. By learning separate feature
distributions for melodic and non-melodic contours, we are
able to create two different multivariate distributions, one
for computing the likelihood that a contour is melodic, and
the other for computing the likelihood that it’s not melodic
(i.e. accompaniment). The likelihoods are used to com-
pute a single “melodiness” index, which is then used to
select the final melody sequence. As can be inferred from
the above description, the proposed method is flexible in
that new features can be easily incorporated into the model
without the need to manually devise rules to address them.

The structure of the remainder of the paper is as fol-
lows. In Section 2 we describe the proposed approach,
including the creation of pitch contours, computation of
contour features and their distributions, and the statistical
modelling of these distributions. In Section 3, we describe
the evaluation of the proposed approach, including evalu-
ation material, measures and results. Finally, in Section 4
we conclude the paper with discussion of the results and
some propositions for future work.

2. METHOD

In this section we describe the steps performed to obtain
our contour feature model. These include the creation of
pitch contours, computation of contour features and fea-
ture distributions, and finally the modelling of these distri-
butions as a multivariate normal distribution.

2.1 Creating pitch contours

A summary of the contour creation process is provided
here. For further details, the reader is referred to [18]. A
block diagram of the process is provided in Figure 1.

!"#$%&'(")*+,% !"#$%-()"#.*+,%
/0+(01)%

23#)#2(")*-#40+%

561#'%'017+"--%

&'(")%

89"2()#'%

()#+-:0).%

;)"61"+2<=>.9'*(17"%

20))"240+%

?*+%-#'*"+2"%.#99*+,%@*(3%

3#).0+*2%@"*,34+,%

Audio signal 

Sinusoid extraction 

Salience function 

Pitch contour creation 

and characterisation 

Spectral peaks 

Time-frequency salience 

Pitch contours & contour features 

Figure 1. Block diagram of the steps involved in the cre-
ation of pitch contours.

In the first stage, sinusoids (spectral peaks) are extracted
from the signal at each frame. We start by applying an
equal loudness filter which attenuates frequencies where
the melody is usually not present [19]. Next we compute
the Short-Time Fourier Transform, and take the peaks of
the spectrum at each frame. Peak frequencies and ampli-
tudes are re-estimated by computing each peak’s instan-
taneous frequency using the phase vocoder method [7].
In the next stage, the spectral peaks are used to create a
salience function based on weighted harmonic summation
[19]. The salience function is quantised into 600 bins cov-
ering a range of nearly five octaves from 55Hz to 1760Hz.
The peaks of the salience function at each frame are con-
sidered as pitch candidates for the melody. In the next
stage, the pitch candidates are grouped over time and fre-
quency using rules based on auditory streaming [2] to cre-
ate pitch contours. In Figure 2 we provide examples of
contours generated from excerpts of different musical styles.
Contours belonging to the melody are highlighted in bold.
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Figure 2. Pitch contours generated from excerpts of (a)
vocal jazz, (b) opera, (c) pop and (d) instrumental jazz.

2.2 Contour features and distributions

Once the contours are created, we compute a set of contour
characteristics, or features, for each contour. Similarly to
some melody extraction systems, we define features based
on contour pitch, length and salience [12]. However, by
avoiding the quantisation of contours into notes we are able
to extend this set by introducing features extracted from the
pitch trajectory of the contour, namely its pitch deviation
and the presence of vibrato. Every pitch contour is repre-
sented by two discrete series c(n) and s(n), n = 1 . . . N .
The former contains the frequency values (in cents) of ev-
ery pitch candidate in the contour, and the latter its corre-
sponding salience value. Thus, for every pitch contour we
compute the following characteristics:

• Pitch mean Cp̄ = 1
N

∑N
n=1 c(n).

• Pitch deviation Cσp =
√

1
N

∑N
n=1(c(n)− Cp̄)2.



• Total salience CΣs =
∑N
n=1 s(n).

• Mean salience Cs̄ = 1
NCΣs.

• Salience deviationCσs =
√

1
N

∑N
n=1(s(n)− Cs̄)2.

• Length Cl = N · HfS (in seconds, where H and
fS are the hop size (128) and sampling frequency
(44100) used by algorithm respectively).

• Vibrato presence Cv: whether the contour has vi-
brato or not (true/false). Vibrato is automatically de-
tected by the system using a method based on [9].

In [18] these features were used to filter out non-melody
pitch contours. To do this, we computed the distribution of
each feature 1 for melody and non-melody contours using
a representative data-set (c.f. Section 3.1), reproduced in
Figure 3. Each plot includes the feature distribution for
melody contours (solid red line) and non-melody contours
(dashed blue line). In plots (c), (d) and (e) the feature val-
ues are normalised by the mean feature value for each ex-
cerpt. Observing these graphs we see how melodic con-
tour characteristics differ from non-melodic contours: a
mid-frequency pitch range, greater pitch variance, greater
salience (both mean and total) and salience variance, and
longer contours. These observations concur with voice
leading rules derived from perceptual principles [10]. Note
that in most (but not all) of the excerpts in this data-set the
melody is sung by a human voice. Additionally, for vi-
brato presence we found that 95% of all contours in which
vibrato was detected were melody contours.

In [18], these observations were exploited by devising a
set of heuristic filtering rules to remove non-melodic con-
tours. As mentioned in the introduction, whilst this ap-
proach was shown to be very successful for filtering non-
melodic contours, in our current work we raise the ques-
tion of whether the contour feature distributions can be ex-
ploited in a more general way using statistical modelling.

2.3 Statistical Modelling

Our goal is to define a statistical model that encompasses
all of the contour feature distributions provided in Figure
3. To do so, we represent all feature distributions as two
multivariate normal distributions, one for melodic contour
features and one for non-melodic contour features. In [13]
a multivariate Gaussian was shown to obtain comparable
classification performance to GMMs when the amount of
training data is relatively small.

As seen in the plots, though some distributions (in par-
ticular the distribution of pitch height for melodic con-
tours) appear normal, this is not the case for all distribu-
tions. Thus, in the first step of the modelling we apply
a power transform to obtain a normal-like distribution for
each contour feature. Specifically, we apply the Box-Cox
transform [1], which for a variable Y with data samples
yi > 0 is defined as:

1 With the exception of vibrato presence which is a binary value
(true/false).
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Figure 3. Pitch contour feature distributions (relative
frequency vs. feature value): (a) Pitch mean, (b) Pitch
std. dev., (c) Mean salience, (d) Salience std. dev., (e) Total
salience, (f) Length. The red solid line represents the dis-
tribution of melody contour features, the blue dashed line
represents the distribution of non-melody contour features.

y
(λ)
i =

{
(yλi −1)
λ , if λ 6= 0,

log(yi), if λ = 0,
(1)

where the power parameter λ is selected such that it max-
imises the log-likelihood of λ given the transformed data,
which is assumed to be normally distributed. An example
of the distributions for the contour total salience feature
CΣs before an after transformation is provided in Figure
4. In plots (a) and (b) we show the feature distribution for
melodic contours before and after transformation respec-
tively, and in plots (c) and (d) we plot the corresponding
distributions for non-melodic contours. In plots (b) and (d)
we also display the normal distribution that best fits the
transformed data.

The mean vectors µ and covariance matrices Σ (of size
N × N where N is the number of features used) of the
transformed distributions are obtained using the standard
maximum likelihood estimators, allowing us to construct
a multivariate normal distribution with parameters θ =
(µ,Σ) of the form:

fθ(x) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

(2)
This procedure is repeated twice, once for the melodic

contour feature distributions, and once for the non-melodic
(i.e. background) contour feature distributions, resulting
in two multivariate normal distributions which we denote
fθm and fθbg respectively. Given the feature vector x of
a pitch contour, we can now use fθm and fθbg to compute
the likelihood of the contour being a melodic contour and
the likelihood of it being a non-melodic contour (equations
3 and 4 respectively):
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Figure 4. Contour total salience distributions. For melodic
contours: (a) raw data, (b) after Box-Cox. For non-melodic
contours: (c) raw data, (d) after Box-Cox.

L(θm|x) = fθm(x) (3)

L(θbg|x) = fθbg(x) (4)

Given the two likelihoods, we define the “melodiness”
index M(x) of a pitch contour with feature vector x as
the likelihood ratio of the melodic and non-melodic likeli-
hoods:

M(x) =
L(θm|x)
L(θbg|x)

(5)

3. EVALUATION

We evaluate the proposed contour characterisation approach
in the context of melody extraction. To do so, we de-
fine a straight-forward rule for melody selection based on
our proposed melodiness indexM(x). Given the contours
generated for a musical excerpt, at each frame we check to
see which contours are present in the frame and select as
melody the pitch candidate belonging to the contour whose
features x result in the highest melodiness index M(x).
The resulting melody sequence is evaluated using the stan-
dard measures employed for melody extraction evaluation.
In the following sections we describe the music collection
and measures used for evaluation, and compare the results
obtained using the proposed method to those obtained by a
state-of-the-art melody extraction algorithm.

3.1 Music Collection

The collection used for evaluation is comprised of musi-
cal excerpts with per-frame annotations of the melody F0
which are freely available for research purposes (cf. col-
lection 3 in [18]). Our collection includes 65 audio ex-
cerpts from a variety of musical genres including rock,
pop, R&B, jazz and opera singing. Excerpt durations range
from 5 to 35 seconds. For each excerpt, the annotation

is comprised of two columns, one containing the time-
stamp for the frame, and the other containing the F0 of
the melody in that frame. If there is no melody present in
the frame (i.e. the frame is ‘unvoiced’), a value of 0Hz is
placed in the annotation.

3.2 Evaluation Measures

The extracted melody sequence is evaluated using the stan-
dard measures employed for melody extraction evaluation
in the MIREX campaign. The measures are designed to
evaluate the performance of the algorithm in several as-
pects: voicing detection (determining when the melody is
present and when it is not), pitch accuracy (estimating the
correct F0 when the melody is present), and overall accu-
racy (the combination of voicing and pitch accuracy). It
should be noted that our proposed approach, as presented
above, does not include a method for voicing detection.
That is, at each frame a non-zero frequency value is re-
turned by choosing a pitch candidate from one of the con-
tours present in the frame. The only exception are frames
in which no contours are present, in which case the al-
gorithm outputs 0Hz. For this reason, in the first part of
the evaluation the proposed approach is evaluated only in
terms of its pitch accuracy. In the second stage of the eval-
uation, we combine the proposed approach with the voic-
ing detection method proposed in [18], and evaluate the re-
sults obtained using this combined approach. When voic-
ing detection is included, the algorithm indicates whether
a frame is voiced or unvoiced by returning either a posi-
tive or negative frequency value respectively (e.g. 300Hz
or -300Hz). The negative values represent the pitch es-
timate of the algorithm for frames it has detected as un-
voiced. When evaluating the algorithm’s pitch accuracy
the sign is ignored, meaning incorrect voicing detection
will not affect the pitch (and chroma) accuracy. The over-
all accuracy (see below) serves as a global measure which
considers both pitch and voicing detection accuracy. A
summary of the evaluation measures, which are detailed
in [15], is provided in Table 1.

Voicing Recall Rate: the proportion of frames labeled as voiced
in the ground truth that are estimated as voiced by the algorithm.
Voicing False Alarm Rate: the proportion of unvoiced frames
in the ground truth that are estimated as voiced by the algorithm.
Raw Pitch Accuracy: the proportion of voiced frames in the
ground truth for which the F0 estimated by the algorithm is
within ± 1

4
tone (50 cents) of the ground truth annotation.

Raw Chroma Accuracy: same as the raw pitch accuracy, ex-
cept that both the estimated and ground truth F0 sequences are
mapped into a single octave, in this way ignoring octave errors
in the estimation.
Overall Accuracy: combines the performance of the pitch es-
timation and voicing detection to give an overall performance
score. Defined as the proportion of frames (out of the entire
piece) correctly estimated by the algorithm, where for non-
voiced frames this means the algorithm labeled them as non-
voiced, and for voiced frames it means the algorithm both la-
beled them as voiced and provided a correct F0 estimate for the
melody (i.e. within ± 1

4
tone of the ground truth).

Table 1. Evaluation measures for melody extraction.



3.3 Results

To avoid any bias in the results, we separate the training
and evaluation material by conducting a 3-fold cross val-
idation, and report the results averaged across all folds.
In Table 2 we provide the results obtained by our pro-
posed approach (without any voicing detection method).
For completeness we calculate all evaluation measures,
though as explained above, since we do not attempt to per-
form any voicing detection, only the raw pitch and raw
chroma measures (highlighted in bold) should be taken
into consideration at this point. For comparison, we in-
clude the results obtained by the algorithm presented in
[18] (which includes voicing detection), which obtained
the highest mean overall accuracy results in MIREX 2011
(denoted SG) [17].

Alg. Voicing Voicing Raw Raw Overall
Recall False Alarm Pitch Chroma Accuracy

Prop. 0.95 0.60 0.77 0.83 0.65
SG 0.86 0.19 0.81 0.83 0.77

Table 2. Results obtained using the proposed method with-
out voicing detection, compared to those obtained by SG.

We see that the proposed approach obtains the same
chroma accuracy as the state-of-the-art algorithm. The lower
raw pitch accuracy indicates that the proposed approach
makes slightly more octave errors. Nonetheless, the re-
sults are definitely promising, and their comparability to
SG suggests that the proposed approach is also compa-
rable with other state-of-the-art melody extraction algo-
rithms evaluated in MIREX 2 .

In the second stage of the evaluation, we combine the
proposed approach with the voicing detection method pro-
posed in [18]. The approach is based on filtering out con-
tours by setting a salience threshold determined from the
distribution of contour mean salienceCs̄ in a given excerpt.
The reader is referred to the article cited above for further
details. Thus, the combined approach consists of first fil-
tering out non-voiced contours using the voicing filter, and
then selecting the melody out of the remaining contours
based on their melodiness index M(x) as before. The
F0 estimate for non-voiced frames (recall that algorithms
can return F0 estimates for non-voiced frames so that pitch
and voicing accuracies can be evaluated independently) is
produced by selecting the pitch candidate belonging to the
non-voiced contour (i.e. a contour that was removed by the
voicing filter) with the highestM(x) out of all non-voiced
contours present in the frame. The results are presented in
Table 3, once again alongside the results obtained by SG
for comparison. This time we focus on the voicing evalua-
tion measures and the overall accuracy.

As expected, by combining our proposed approach with
a voicing detection method we are able to considerably re-
duce the voicing false-alarm rate (from 60% to 25%) whilst
maintaining a relatively high voicing recall rate (87%). As
a result, the overall accuracy of the proposed approach

2 Music Information Retrieval Evaluation eXchange [Online]:
http://www.music-ir.org/mirex/wiki/Audio Melody Extraction (Apr. 12).

Alg. Voicing Voicing Raw Raw Overall
Recall False Alarm Pitch Chroma Accuracy

Prop. 0.87 0.25 0.78 0.83 0.74
SG 0.86 0.19 0.81 0.83 0.77

Table 3. Results obtained using the proposed method with
voicing detection, compared to those obtained by SG.

goes up from 65% without voicing detection to 74% with
voicing detection. Though the same voicing detection ap-
proach is applied in both cases, we note the voicing false
alarm is not the same. This is because some steps in SG,
though not designed to address voicing detection, have been
shown to have a positive effect on it [18]. Whilst the com-
bined approach does not outperform SG (no other system
has, to date), the results serve as a promising proof-of-
concept, with an overall accuracy which is comparable to
other state-of-the-art melody extraction algorithms.

As a final step, we inspect the values of our melodiness
indexM(x) for melody and non-melody contours. In Fig-
ure 5, we plot the values ofM(x) for all pitch contours of
all excerpts (on a log scale). For each excerpt we first nor-
malise allM(x) values by the highest value in the excerpt,
so that we can plot all values from all excerpts in a single
graph. Values for melody contours are represented by a red
circle, and values for non-melody contours by a blue x.
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Figure 5. Normalised M(x) values for melody contours
(red circle) and non-melody contours (blue x).

We see that the M(x) values for the two classes are
fairly distinguishable, with the vast majority of melody
contours having higherM(x) values than non-melody con-
tours. This, apart from suggesting thatM(x) is indeed a
good indicator for melody contours, means we might be
able to refine our melody selection algorithm by studying
the distributions ofM(x) for melody and non-melody con-
tours. We intend to explore this possibility in future work.

4. CONCLUSION

In this paper we presented an approach for the statistical
characterisation of melodic pitch contours. We explained
how pitch contours can be generated from an audio excerpt



and how to calculate contour features. We then showed
how these features can be used to build a model to de-
scribe melodic and non-melodic contours, leading to the
computation of a melodiness indexM(x). The proposed
approach was evaluated in the context of melody extrac-
tion by using the melodiness index to select the melody
out of the generated contours. The results of the evalua-
tion showed that the approach achieves pitch and chroma
accuracies comparable to a state-of-the-art melody extrac-
tion algorithm. By combining the proposed approach with
a voicing detection method, we were able to obtained sat-
isfying overall accuracy values as well.

When considering the caveats of the proposed approach
compared to the state-of-the-art algorithm (SG), one clear
difference is that whilst in SG temporal information is also
taken into account, in the proposed approach the melody
selection at each frame is performed using the melodiness
indexM(x) only, and no temporal continuity is taken into
account. This means the pitch trajectory of the melody is
allowed to contain large jumps which are not common in
melodies, which tend to have a relatively smooth pitch tra-
jectory in accordance with voice leading principles [10].
Thus, a possible direction for improving the performance
of the proposed approach is to combine the melodiness in-
dex with some type of temporal evolution constraint. For
instance, we could use the melodiness index in combina-
tion with one of the tracking techniques mentioned in the
introduction of the paper, such as HMMs [16] or tracking
agents [5, 8]. Another possibility for improvement is to
consider more contour features. For instance, earlier in the
paper it was explained that in 95% of the cases where the
system detected vibrato in a contour, that contour belonged
to the main melody. This information is not exploited in
the current model (with the exception of the voicing de-
tection method). An additional important research direc-
tion would be the gathering of more data to enable the use
of more sophisticated statistical models (e.g. GMMs). Fi-
nally, another interesting research direction would be to
learn genre specific feature distributions, and depending
on the genre of the excerpt use a different model to com-
pute M(x). This could be done by creating a two stage
classification/melody extraction system, where the contour
features could also be used for the classification stage as
in [20].
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ABSTRACT 

Melodic motifs form essential building blocks in Indian 

Classical music. The motifs, or key phrases, provide 

strong cues to the identity of the underlying raga in both 

Hindustani and Carnatic styles of Indian music.  Thus the 

automatic detection of such recurring basic melodic 

shapes from audio is of relevance in music information 

retrieval. The extraction of melodic attributes from poly-

phonic audio and the variability inherent in the perfor-

mance, which does not follow a predefined score, make 

the task particularly challenging. In this work, we consid-

er the segmentation of selected melodic motifs from au-

dio signals by computing similarity measures on time se-

ries of automatically detected pitch values. The methods 

are investigated in the context of detecting the signature 

phrase of Hindustani vocal music compositions (bandish) 

within and across performances.  

1. INTRODUCTION 

Hindustani classical music is primarily an oral tradition. 

While large archives of audio recordings are available, 

there are few written scores even for widely performed 

compositions. In such a scenario, retrieval of music based 

on any relevant high level music descriptors such as raga 

(melodic mode) or bandish (a raga-specific composition 

for vocal music) relies entirely on available textual meta-

data, if any. It is therefore very attractive to consider the 

automatic extraction of such metadata from audio record-

ings of concerts. Automatic detection of melodic motifs, 

for instance, can provide useful inputs to raga identifica-

tion as well as identification of the bandish itself [1]. Al-

so, within a concert audio recording, it would be interest-

ing to detect the occurrence of the characteristic melodic 

phrases thus providing a rich transcription to the listener 

and the serious student of music. In this work, we consid-

er the problem of detecting specific phrases from record-

ed performances given one instance of the phrase as tem-

plate. We also attempt to understand the limitations of the 

approach in terms of the detection of phrases across per-

formances and artistes. 

There is no known previous work on the audio based 

detection of melodic phrases in Hindustani classical mu-

sic. A considerable body of recent work, however, has 

addressed the discovery of melodic patterns from sym-

bolic scores in Western folk music [2]. A continuous-

time pitch contour is derived from the score for use in 

segment alignment and classification. Likewise, the li-

mited reported work on audio signals is based on first ob-

taining note representations by monophonic pitch tran-

scription [3].  In the case of Hindustani classical music, 

however, the available symbolic notation is inadequate to 

deal with tuning variations and complex ornamentation 

that are fundamentally linked to raga characteristics, call-

ing for a different approach to data representation and 

pattern matching. 

In the next section, we review the music background 

required to appreciate the problem, and outline the chal-

lenges. The database and evaluation methods are de-

scribed next. A framework for the signal processing and 

pattern matching is proposed. The performance of the 

system is presented followed by a discussion of the re-

sults and prospects for future work. 

2. MOTIFS IN HINDUSTANI MUSIC 

Hindustani music, especially the modern khyal style, is a 

predominantly improvised music tradition operating 

within a well-defined raga (melodic) and tala (rhythmic) 

framework. Apart from the permitted scale intervals 

(swaras) that define a raga, it is its characteristic phrases 

that complete the grammar and give it a unique identity 

[4]. Most ragas can be adequately represented by up to 8 

phrases which then become the essential building blocks 

of any melody. Thus the detection of recurring phrases 

can help to identify the raga. Indeed musical training in-

volves learning to associate characteristic phrases, or mo-

tifs, with ragas. Melodic improvisation involves weaving 

together a unique melody bound by the chosen rhythmic 

cycle (tala) and consistent with the raga phraseology.  

Often the improvisation is anchored within a known 

composition, or song, known as bandish which provides a 

platform for exposing a specific raga. The bandish is 

identified by its lyrics (especially its title phrase) and me-

lody corresponding to a specific raga, tala and laya 

(tempo). In the improvised section of the concert known 

as the bol-alap, the singer elaborates within each rhyth-

mic cycle of the tala using the words of the bandish in-

terspersed with solfege and held vowels, purposefully 

reaching the strongly accented first beat (the sam) of the 

next rhythmic cycle on a fixed syllable of the signature  

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page.  

© 2012 International Society for Music Information Retrieval  



  

 

 

 

Figure 1. Top: spectrogram with superposed vocal pitch and mukhda in boxes; below: first beat of each subcycle 

(S= sam) with aligned lyrics in vocal regions.

phrase of the bandish.  This recurring phrase, known as 

the mukhda, is the title phrase of the bandish and is de-

fined by its text as well as its melodic shape. It acts like a 

refrain throughout the exposition, which can last several 

minutes, whereas the other lyrics of the bandish can un-

dergo extensive variation in melodic shape in the course 

of improvisation.  

While segmentation of characteristic phrases of the 

raga from a recorded performance is clearly an interest-

ing task that falls within the scope of melodic motif de-

tection, a trained musician is required to notate the rec-

orded performances in order to generate the ground-truth 

needed for evaluation of any automatic system. On the 

other hand, the mukhda of the bandish is easy to segment 

manually due to the characteristic words of the lyrics and 

its specific location within the rhythmic cycle. Automatic 

detection of the mukhda can serve to identify the bandish 

apart from making possible a partial transcription of the 

performance itself for the interested listener. Although 

the mukhda is detected easily by listening for the lyrics, 

automatic segmentation cannot rely on such cues due to 

the known difficulties of speech recognition from singing 

in polyphonic audio. We focus therefore on the melodic 

and rhythmic invariances to provide cues for the automat-

ic detection of all occurrences of the mukhda, provided 

one reference instance, across the audio recordings of 

bandish of prominent artistes. Such work can also serve 

as the basis for more general melodic phrase detection 

contexts. 

3. DATABASE AND EVALUATION METHODS 

We selected 4 full-length CD-quality recorded concerts 

of well-known Hindustani khyal vocalists. In all cases, 

the accompanying instruments are the tanpura (drone), 

harmonium and tabla. The section of each concert cor-

responding to bandish-based improvisation (bol-alap) is 

extracted for this study.   Table 1 shows the artiste names  

and bandish titles with other relevant details including 

CD cover metadata and the duration of the bol-alap sec-

tion. All the performances use the popular tintal rhythm 

cycle with 16 beats divided equally over 4 sections. The 

beats are realized by the strokes of the tabla (percussion) 

with the first beat of each section considered to be 

stressed in 3 of the 4 sections. All the mukhda phrases, 

which may occur around any sam (first beat of the cycle) 

throughout the performance, are manually labeled. This 

serves as the ground truth (“positives”) for the motif de-

tection evaluation. The tempo indicated for each piece is 

an average, with slow fluctuations in cycle length ob-

served throughout the recordings. Of the four recordings 

in Table 1, the first two correspond to the same bandish 

by different artistes. The last recording is by a female vo-

calist. It was observed that this recording with its slow 

tempo exhibits the largest variations in the duration of the 

mukhda even after accounting for local variations in cycle 

length.  

 

 

Artiste Raga Tala Bandish Tempo 

(bpm) 

Dur. 

(min) 

#Phrases 

Positive Negative 

Bhimsen  Joshi (BJ) Marwa Tintal Guru Bina Gyan 193 4.58 13 55 

Ajoy Chakraborti(AC) Marwa Tintal Guru Bina Gyan 205 9.08 33 295 

Bhimsen Joshi (BJ) Puriya Tintal Jana na na na 204 9.36 17 97 

Kishori Amonkar (KA) Deshkar Tintal Piya Jaag 43 22.3 44 176 

Table 1. Description of database 



  

 

 

For further processing, the audio is converted to 16 

kHz mono at 16 bits/sample. Fig. 1 shows the spectro-

gram (of the 3 kHz frequency range) of a duration 

slightly greater than 1 full rhythmic cycle extracted from 

the Piya Jaag recording by Kishori Amonkar. Superim-

posed on the spectrogram is the detected pitch contour (as 

obtained by the method presented later in Sec. 4). Be-

neath the spectrogram is an annotation block depicting 

the aligned tala cycles. The first beat of the cycle is the 

sam (S) corresponds to the dha stroke of the tabla. In Fig. 

1, the first beat of each sub-cycle is labeled (dha (D) or 

tha (T)). The penultimate sub-cycle before the S is the 

khali, as also evident from the absence of low frequency 

tabla partials in the spectrogram of this segment. The 

mukhda segments corresponding to the utterance “Piya 

Jaag” are enclosed in boxes. The mukhda segments are 

observed to be melodically similar and also similarly 

aligned within the tala cycles. Note that the song syllable 

that coincides with the sam (S) is sometimes left incom-

plete by the vocalist.   

The proposed motif detection method is evaluated in 

the following experiments. 1) Within-concert detection  

accuracy where each manually labeled motif serves once 

as the reference template for all remaining motifs in the 

same artiste-bandish recording; 2) across-concerts detec-

tion accuracy where the reference template of a particular 

artiste is used to find the motifs of the same bandish by a 

different artiste.  

4. AUTOMATIC MOTIF DETECTION 

The pitch contour depicted in Fig. 1 can be viewed as a 

time series in which the desired phrase segments are em-

bedded.  As such, finding segments in the overall contour 

that are similar to a given phrase would involve matching 

the pitch at every time instant of the given phrase to the 

pitch at every other time instant throughout the time se-

ries [3]. It is of interest to explore methods to reduce the 

search complexity. In the present context, we can exploit 

the additional knowledge about the rhythmic relationship. 

As discussed in Sec. 3, the vocalist embeds the mukhda 

phrase in the metrical cycle (tala) so that a fixed syllable 

coincides with the sam instant. The metrical space of 

each cycle is occupied by improvisation culminating with 

the mukhda. Motivated by this, we approach the automat-

ic detection of the mukhda phrase from the audio by first 

identifying a limited set of candidate phrases based on the 

detected rhythm cycle structure, and then computing a 

melodic similarity distance between the reference tem-

plate and each of the candidates.  

As in any classification task, it is necessary to design 

an appropriate data representation and a suitable similari-

ty model for the matching. In this section, we describe the 

signal processing implementation of a pitch-based data 

representation and consider similarity models that are 

suited to the comparison of such time series. Finally, 

candidate segments with distances from the reference 

template lower than a threshold are the detected positives.     

4.1 Signal Processing 

4.1.1 Vocal Pitch Detection 

In Hindustani classical vocal music, the accompanying 

instruments include the drone (tanpura), tabla, and often, 

the harmonium as well. The singing voice is usually do-

minant and the melody can be extracted from the detected 

pitch of the predominant source in the polyphonic mix. 

Melody detection involves identifying the vocal segments 

and tracking the pitch of the vocalist. The drone and 

harmonium are strongly pitched instruments. We there-

fore employ a predominant-F0 extraction algorithm de-

signed for robustness in the presence of pitched accom-

paniment [4]. This method is based on the detection of 

spectral harmonics helping to identify multiple pitch can-

didates in each 10 ms interval of the audio. Next pitch 

saliency and continuity constraints are applied to estimate 

the predominant melodic pitch.  The best of pitch detec-

tion methods achieve no more than 80% accuracy on po-

lyphonic audio. An important factor limiting the accuracy 

is the fixed choice of analysis parameters, which ideally 

should be matched to the characteristics of the audio such 

as the pitch range of the singer and the rate of variation of 

pitch. In the regions of rapid pitch modulation, characte-

ristic of Indian classical singing, shorter analysis win-

dows serve better to estimate the vocal harmonic fre-

quencies and amplitudes. Hence for better pitch detection 

accuracy, it is necessary to adapt the window length to 

the signal characteristics. This is achieved automatically 

by the maximization of a signal sparsity measure com-

puted at each analysis instance (every 10 ms) for local 

pitch detection [6]. Finally, it is necessary to identify the 

vocal regions in the overall tracked pitch. This is 

achieved by using the peculiar characteristics of Hindus-

tani music where the vocal segments are easily discrimi-

nated from the instrumental pitches due to the different 

temporal dynamics [7]. 

4.1.2 Motif Candidate Selection 

Motivated by the characteristic of the mukhda, namely 

it’s alignment with the sam stroke of the rhythm cycle, 

which the artiste pays great importance to achieve, the 

search algorithm starts by restricting candidate melodic 

segments to those that match rhythmically.  This can 

achieved via the automatic detection of the beat instants 

in the audio. In the spectrogram of Fig. 1, the tabla 

strokes corresponding to the beats of the tala cycle are 

visible as vertical impulsive onsets. While the sam stroke 

itself is not particularly distinctive, the dha strokes (in-

cluding the sam) can be detected as the highest onsets in 

the combined energies of two frequency bands: [5000, 

8000] and [0, 1000] Hz. The former band is relatively 

free of interference from vocal partials while the latter 

band captures the low frequency partial of the dha stroke. 

The filtered output power is subjected to a first-order dif-

ference and then half-wave rectified.  Spurious peaks are 

removed by a local threshold. The consistency of the 

spacing of detected onsets with the known average tempo 



  

 

is considered further to identify the largest peaks as the 

dha stroke onsets. 

 

Figure 2. Two positive and one negative phrase of 

Guru Bina Gyan 

 

Figure 3. Three positive and one negative (bottom 

right) phrase of Piya Jaag 

All audio segments whose alignment around a detected 

onset matches that of the mukhda are treated as potential 

candidates for motif detection. The extracted segment ex-

tends from the instant (sam-t1) to (sam+t2) where t1 and 

t2 are nominal values (number of beats in the 16-beat 

cycle) chosen based on the reference mukhda instance.  

Such a data representation is inherently robust to the slow 

tempo variations that occur during the concert.  

The sequence of pitch values (in cents) obtained 

across the extracted candidate audio segment is a time 

series representation that is used further for similarity 

matching with a reference time series that is similarly ob-

tained. Figures 2 and 3 depict the pitch contours of a few 

candidate segments showing examples of the melodic and 

timing variability across mukhda realization within con-

certs. We observe that there are prominent differences in 

the melodic pitch contour, both in terms of fine pitch var-

iation as well as timing. The note (swara) sequence of the  

Guru Bina Gyan phrase is seen to be [Sa, Sa, Ni, Re, Ni, 
Dha]. However, since the word Gyan is often left unsung 

by the artiste, the sam itself serves as the right limit (i.e. 

t1=5, t2=0) of the mukhda in our task.  The swara corres-

ponding to Piya Jaag are [Da, Pa, Ga, Pa]. Here t1=1 and 

t2=2 were applied to delimit the mukhda. Any pitch gaps 

within the boundaries correspond to pauses. These are 

filled by linear interpolation or extrapolation of neigh-

bouring pitch values before similarity matching. 

4.2 Similarity Modeling 

Due to the beat-based method of candidate extraction, the 

segments tend to be of different absolute durations de-

pending on local tempo variations. Also, singing expres-

siveness manifests itself in timing changes that can affect 

the total duration of the sung phrase.  The sequence of 

pitch values obtained at 10 ms intervals throughout the 

candidate audio segment can be viewed as a non-uniform 

length time-series representation.  We explore two dis-

tinct similarity measures for non-uniform length temporal 

sequences.  

Piecewise aggregate approximation has been used to 

obtain dimension-reduced uniform length time-series for 

motif discovery in bioinformatics [8]. We apply this me-

thod, called SAX, to convert a non-uniform length time 

series of pitch in cents, computed every 10 ms, to a uni-

form length, dimension-reduced sequence of symbols. 

The string length W is varied to determine the optimum 

dimension of the data representation.  A given time-series 

is aggregated into W uniform length segments each 

represented by the averaged value of the segment. The 

real-valued pitch in cents is retained as such but we also 

consider quantizing pitch to the nearest semitone. Since 

the tonic frequency is singer dependent in Indian music, 

the semitone grid is anchored on the most prominent peak 

of an overall pitch histogram derived from the vocal pitch 

track across the test audio.  Since our present work is 

confined to within-concert matching, a tonic detection 

error is inconsequential. Next, the Euclidean distance be-

tween the two W-length sequences, the reference and the 

candidate, is used as a similarity measure.  

Another widely used method to compare real-valued 

time series related to each other through, possibly, nonli-

near time-scaling, is the dynamic time-warping (DTW) 

distance measure [9].  The distance between the so 

aligned reference and candidate phrases is used as the si-

milarity measure. Pathological warpings are avoided by 

incorporating the Sakoe-Chiba constraint on the width of 

a diagonal band in the DTW path matrix. The absolute 

difference in cents between pitch values is used as the 

local distance in the DTW path optimization. Any abso-

lute difference within 25 cents (i.e. a quarter tone) is 

rounded down to 0 cents. This is found to help reduce the 

influence of practically imperceptible pitch differences on 

the warping path and therefore any unnecessary stret-

ching of the path. 

5. EXPERIMENTS AND DISCUSSION 

Given the database described Table 1, we evaluate the 

different data representations and similarity measures on 

within-concert and across singer-concert motif detection 

tasks. Each candidate phrase extracted from the detected 

onsets as presented in Sec. 4 is labeled positive or nega-

tive depending on whether or not it is the actual motif 

(i.e.  mukhda phrase). Table 1 shows the number of such 

phrase segments available for the evaluation of the motif 

detection methods. To maximize the use of the available 

annotated data, each labeled motif is considered as the 

reference once with all other motifs serving as positive 

tokens and the remaining candidates as negative tokens.  

Thus, the Piya Jaag motif detection task can be evaluated 

on 44x43 = 1892 positive pairs and 44x176 = 7744 nega-

tive pairs (i.e. each positive with all negatives). Table 2 

summarizes the experiments. The Experiment A consid-

ers motif detection from within the Guru Bina recording 

of Bhimsen Joshi given a reference template from the 

same recording. Similarly, the Experiments B, C and D 



  

 

consider the within-concert detection as specified in Ta-

ble 2. The Experiment E uses the positive tokens of Guru 

Bina by BJ to detect the mukhda in the same bandish 

concert by a different vocalist, AC. As it turns out, the 

two male singers are tuned to the same tonic. In each ex-

periment, the rate of false alarms for a given hit rate (cor-

rect detections) is computed for each combination of si-

milarity model and data representation. The similarity 

measures include SAX and DTW. The data representa-

tions chosen for the study are either the continuous pitch 

values (i.e. 1200 cents per octave) indicated by “q1200”, 

or the quantized versions (12 semitones per octave on an 

equitempered scale) indicated by “q12”. 

Fig. 4 shows an example of the distribution of dis-

tances for positive-positive pairs and positive-negative 

pairs. The recording is Piya Jaag (Experiment D) eva-

luated with DTW-q1200.  We observe that the distances 

between the positive phrases cluster closely relative to the 

distances between the positive-negative phrase pairs. 

There is a limited overlap between the two distributions. 

That the spread of the negative distances is relatively 

wide indicates the robustness of the distance measure in 

terms of its discrimination of melodic shapes. We also 

note the presence of a small isolated cluster of positive 

distances. A closer examination revealed that this 

stemmed from the wide timing variability across Piya 

Jaag phrases with its particularly slow tempo. Thus there 

were at least two distinct behaviours within the set of 

positive phrases. The inter-phrase distances between the 

longer duration phrases tended to be lower than the dis-

tances involving shorter duration phrases. Fig. 5 shows 

the ROC (hit rate versus false alarm rate) derived from 

the distributions of Fig. 4 by varying the decision thre-

shold. We observe two bends in the curves, consistent 

with the bimodal shape of the pdf.  

Table 3 summarizes the classification results across 

the experiments in terms of false alarm rate (FA) for a 

fixed HR chosen near the knee of the ROCs of the cor-

responding data. Given that the extracted candidate 

phrases have durations varying in the range of 2-4 sec 

(200-400 length string), we vary the SAX string length 

around W=50 (corresponding to the aggregation of 4-8 

samples). Preliminary experiments revealed that W sub-

stantially lower than this (i.e. more averaging) led to wor-

sened performance. We note that the performance of 

SAX improves with pitch quantization at a fixed string 

length of 50. Increasing or decreasing the string length 

around this does not improve performance on the whole. 

The DTW system performs substantially better than SAX 

in terms of reducing the FA at fixed hit rate. As in the 

case of SAX, pitch quantization helps to improve perfor-

mance further in some cases. That DTW does relatively 

better indicates that non-uniform time warping is essen-

tial to achieve the needed alignment between phrases be-

fore distance computation. This is consistent with what is 

known about the tradition where the essential melodic 

sequence of the mukhda phrase is strongly adhered to by 

the singer while metrical alignment is focused only on 

getting to the specific syllable onset (e.g. Gyan in Fig. 2 

and Jaag in Fig. 3) on the first beat of the cycle (the 

sam). 

 

Expt Bandish Singer #Phrases 

POS NEG 

A Guru Bina BJ 
  

156 

 

715 

B Guru Bina AC 
1056 9735 

C Jana na na na BJ 
272 1649 

D Piya Jaag KA 
1892 7744 

E Guru Bina  BJ vs AC  429 3835 

Table 2. Description of experiments with number of 

positive and negative phrase candidates available in 

each 

 

Figure 4. DTW distances distribution for Piya 

Jaag recording 

 

Figure 5. ROC curves for Piya Jaag distribution 

Further, comparing the Experiments E and B as a case of 

between-concert to within-concert performance of the 

motif detection methods, we see that the FA is somewhat 

higher in Experiment E which involves a reference motif  

    



  

 

from the concert of the same bandish by a different ar-

tiste. This is consistent with the anticipated higher varia-

bility in motif contour across artistes. 

6. CONCLUSION 

Similarity measures traditionally used in time-series 

matching have been shown to perform well in the context 

of melodic motif detection in the improvised bandish of 

Hindustani vocal concert recordings. The processing of 

the polyphonic audio signals needed to achieve a suitable 

data representation was presented. Musical knowledge 

related to the metrical relation between the mukhda motif 

and the underlying rhythmic structure was exploited to 

achieve a reduced search space, using available similarity 

measures, and possibly more robust detection. While the 

mukhda context considered in this work is relevant in 

both Hindustani and Carnatic vocal music (in the bol-

alap and niraval respectively), the detection of other cha-

racteristic raga phrases would be a logical extension. It is 

not clear whether rhythmic cues would help in this more 

general melodic segmentation. Further extension to unsu-

pervised clustering of phrases in a concert recording can 

contribute to higher-level classification tasks such as ra-

ga recognition as well to further research in audio tran-

scription for such musical traditions. 
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Method Experiment A Experiment B Experiment C Experiment D Experiment E 

 HR FA HR FA HR FA HR FA HR FA 

SAX-q1200 -W50 1 .096 .94 .019 .86 .239 .87 .130 .94 .035 

SAX-q12-W40 1 .084 .94 .016 .86 .231 .87 .135 .94 .024 

SAX-q12-W50 1 .071 .94 .015 .86 .216 .87 .124 .94 .029 

SAX-q12-W60 1 .091 .94 .014 .86 .210 .87 .133 .94 .023 

DTW-q1200 1 .044 .94 .007 .86 .044 .87 .032 .94 .015 

DTW-q12 1 .053 .94 .008 .86 .042 .87 .025 .94 .014 

Table 3. Performance of SAX and DTW motif detection under different configurations. WX = SAX string dimen-

sion is X; qY= quantized pitch levels per octave;  HR = hit rate;  FA = number of false alarms 
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ABSTRACT

Intonation is an important concept in Carnatic music that
is characteristic of a raaga, and intrinsic to the musical ex-
pression of a performer. In this paper we approach the de-
scription of intonation from a computational perspective,
obtaining a compact representation of the pitch track of a
recording. First, we extract pitch contours from automat-
ically selected voice segments. Then, we obtain a a pitch
histogram of its full pitch-range, normalized by the tonic
frequency, from which each prominent peak is automati-
cally labelled and parametrized. We validate such parame-
trization by considering an explorative classification task:
three raagas are disambiguated using the characterization
of a single peak (a task that would seriously challenge a
more naı̈ve parametrization). Results show consistent im-
provements for this particular task. Furthermore, we per-
form a qualitative assessment on a larger collection of raa-
gas, showing the discriminative power of the entire repre-
sentation. The proposed generic parametrization of the in-
tonation histogram should be useful for musically relevant
tasks such as performer and instrument characterization.

1. INTRODUCTION

Carnatic music is the south Indian art music tradition and
Raaga is the melodic framework on which Indian art mu-
sic thrives. The intonation of a single swara 1 can be dif-
ferent due to the melodic context established by different
raagas. Therefore, to understand and model Carnatic music
computationally, intonation analysis becomes a fundamen-
tal step.

We define intonation as the pitches used by a performer
in a given musical piece. From this definition our approach
will consider a performance of a piece as our intonation
unit. In Carnatic music practice, it is known that the in-
tonation of a given swara can vary significantly depending

1 A swara-sthana is a frequency region which indicates the note and its
allowed intonation in different melodic contexts.
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on the artist and the raaga [8, 15]. The study of intona-
tion differs from that of tuning in its fundamental empha-
sis. When we talk about tuning we refer to the discrete
frequencies with which we tune an instrument, thus it is
more of a theoretical concept than the one of intonation,
with which we focus in the pitches used during a perfor-
mance. The two concepts are basically the same when we
study instruments that can only produce a fixed set of dis-
crete frequencies, like the piano.

Given than in Indian music there is basically no instru-
ment with fixed frequencies (the harmonium is an impor-
tant exception), in practice tuning and intonation can be
considered the same. Here we will maintain the terms, tun-
ing or intonation, used by the different studies.

Krishnaswamy [7] discusses various tuning studies in
the context of Carnatic music, proposing a hybrid tuning
scheme based simple frequency ratios plus various tun-
ing systems, specially equal temperament. His work also
points out the lack of empirical evidence thus far. Recently,
Serrà et al. [12] have shown important quantitative differ-
ences between the tuning systems in modern Carnatic and
Hindustani 2 musics. In particular, they show that Carnatic
music follows a tuning system which is very close to just-
intonation, whereas Hindustani music follows a tuning sys-
tem which tends to be more equi-tempered. Although there
are several studies on intonation and tuning in Indian mu-
sic, the emphasis so far has been in the interpretation of
ancient texts rather than on analysing real musical prac-
tise(see [7, 8, 12] and references therein).

In a study that was conducted with Hindustani music
performances [8], pitch consistency is shown to be highly
dependent on the nature of gamaka 3 usage. The swaras
sung with gamakas were often found to have a greater vari-
ance within and across the performances, and across dif-
ferent performers. Furthermore, the less dissonant swaras
were also found to have greater variance. However, it was
noted that across the performances of the same raaga by
a given performer, this variance in intonation was minor.
The same work concludes that the swaras used in the an-
alyzed performances do not strictly adhere to either just-
intonation or equal-tempered tuning systems. Belle et al [1]
use the intonation information of swaras to classify Hin-
dustani raagas. Another recent experiment conducted with

2 The north Indian art music tradition.
3 Gamakas are a class of short melodic movements sung around and

between swaras.



Carnatic music performances draws similar conclusions
about the variance in intonation [15]. However, the method-
ology employed in these experiments cannot easily be scaled
to a larger set of recordings due to the human involvement
at several phases of the study, primarily in cleaning the data
and the pitch tracks, and also in interpreting of the obser-
vations made.

Approaches to tuning analysis of real musical practise
usually follow a so-called ‘stable region’ approach, in which
only stable frequency regions are considered for the anal-
ysis (cf. [12]). However, it is known [14] that the most
portion of the performance in Carnatic music is gamaka-
embellished. Since gamakas are characteristic to a given
raaga, such an approach is not suitable to understand the
crucial information provided by them. So far, the tuning
analysis was approached to explain the interval positions
of Carnatic music with one of the known tuning methods
like just-intonation or equal-temperament. But consider-
ing that these intervals are prone to be influenced by factors
like raaga, performer [8] and instrument [7], computational
analysis of swara intonation for different raagas, artists and
instruments has much more relevance to the Carnatic mu-
sic tradition.

2. HISTOGRAM PEAK PARAMETRIZATION

In this contribution we propose a methodology based on
histogram peak parametrization that helps to describe the
intonation of a given recording by characterizing the distri-
bution of pitch values around each swara. From the obser-
vations made by Krishnaswamy [7] and Subramanian [14],
it is apparent that steady swaras only tell us part of the
story that goes with a given Carnatic music performance.
The gamaka-embellished swaras pose a difficult challenge
for automatic swara identification. Therefore, alternative
means of deriving meaningful information about the into-
nation of swaras becomes important. The gamakas and the
role of a swara are prone to influence the aggregate dis-
tribution of a swara. We believe that this information can
be derived by parametrizing the distribution around each
swara.

Our intonation description method can be broadly di-
vided into six steps. In the first step, the prominently vocal
segments of each performance are extracted using a trained
support vector machine (SVM) model. In the second step,
the pitch corresponding to the voice is extracted using mul-
tipitch analysis. In the third step, using all the performan-
ces of each raaga, a pitch histogram for every raaga is com-
puted and its prominent peaks detected (we will refer to
them as reference peaks). In the fourth step, we compute
the pitch histogram for each single performance, detecting
the relevant peaks and valleys using information from the
overall histogram of the corresponding raaga. In the fifth
step, each peak is characterized by using the valley points
and an empirical threshold. Finally, in the sixth step, the
parameters that characterize each of the distributions are
extracted.

2.1 Segmentation

Cleaning the data is a crucial pre-processing step for our
experiments. All the Carnatic vocal performances are ac-
companied by a violin and one or more percussion instru-
ments. We just use the sections in which the voice is alone
or very prominent. In order to do this automatically, we
train an SVM model [5] on 300 minutes of audio data,
equally split between vocal, violin and percussion sections
of 10 seconds each. The features extracted from the audio
and used in the classification task are [4]: Mel-frequency
cepstral coefficients, pitch confidence, spectral flatness,
spectral flux, spectral rms, spectral rolloff, spectral strong-
peak, zero crossing rate and tristimulus. This method scores
an accuracy of 96% in a 10-fold cross validation test.

2.2 F0 Analysis

With the segmentation module in place, we minimize to
a large extent pitch errors due to the interfering accompa-
nying instruments. However, there is a significant number
of the obtained voice segments in which the violinist fills
short pauses or in which the violin is present in the back-
ground, mimicing the vocalist very closely with a small
time lag. This is one of the main problems we encountered
when using pitch tracking algorithms like YIN [3], since
the violin was also being tracked in quite a number of por-
tions. The solution has been to extract the predominant
melody [10] using a multi-pitch analysis approach. Then,
given that the pitch accuracy of YIN is better, we com-
pare the pitch obtained from the multi-pitch analysis with
YIN at each time frame, and we only keep the pitch from
those frames where both methods agree within a threshold.
Though it is a computationally intensive step, this helps in
obtaining clean pitch tracks, free of f0-estimation and oc-
tave errors. The frequencies are then converted to cents and
normalized with the tonic frequency obtained using [11].
The octave information is retained.

2.3 Histogram Computation

As Bozkurt et al. [2] point out, there is a trade-off in choos-
ing the bin resolution of a pitch histogram. A good bin res-
olution keeps the precision high, but significantly affects
the peak detection accuracy. However, unlike Turkish-
maqam music where the octave is divided into 53 Holdrian
commas, Carnatic music uses roughly 12 swaras [13].
Hence, in this context, choosing a finer bin width is not
as much a problem as it is in Turkish-maqam music. In
order to retain the preciseness in estimating the parame-
ters for such distribution, we keep the bin resolution at one
cent. We then compute the histogram H by placing the
pitch values into their corresponding bins:

Hk =
N∑

n=1

mk, (1)

where Hk is the k-th bin count, N is the number of pitch
values, mk = 1 if ck ≤ P (n) ≤ ck+1 and mk = 0 other-
wise, P is the array of pitch values and (ck, ck+1) are the
bounds on k-th bin.



Features/Classifier Naive Bayes 1-Nearest Neigh. SVM Logistic Regression Random Forest
Mean and Height 63.43% 56.67% 61.81% 56.33% 64.62%
All parameters combined 63.76% 68.90% 65.19% 68.86% 70.71%

Table 1. Results of an exploration raaga classification test with 42 recordings in 3 raagas using different classifiers. The
random baseline accuracy in this case is 28.57%.

Features/Classifier Naive Bayes 1-Nearest Neigh. SVM Logistic Regression Random Forest
Mean and Height 39.6% 39.85% 41.25% 43.65% 48.85%
All parameters combined 58.05% 67.6% 74.25% 77.45% 74.45%

Table 2. Results of an exploration raaga classification test with 26 recordings in 2 raagas using different classifiers. The
random baseline accuracy is 20% in this case.

Figure 1. Histograms corresponding to the recordings of
Kalyani raaga shown in thin lines of different colors, to-
gether with the average histogram labelled with peaks and
valleys, shown in thick green line. Only the middle octave,
which contains the most information, is shown.

In the histograms of a few performances, we observe
that a number of pitch distributions for specific swaras are
very narrow. However we can observe that the distribu-
tions still play a role in characterizing the performance.
To validate this observation, an average histogram is com-
puted for each raaga with all the performances in the raaga.
This histogram has a clearer distribution for each swara in
the raaga and it serves as a reliable reference to verify the
peaks identified in individual performances (Fig. 1).

2.4 Peak Detection and parametrization

A given histogram is convolved with a Gaussian kernel us-
ing a standard deviation of five cents. This step is neces-
sary for the peak detection algorithm to avoid identifying
the spurious peaks. The peaks are identified using a depth
parameter (Dp) and with an empirically set lookahead pa-
rameter (Lp). A local maxima is labelled as a peak only
if it has valleys deeper than Dp on either side, and is also
the maxima at least within Lp values ahead. In the case
of Havg , Dp and Lp are set high (in our experiment, they

correspond to 2.5 · 10−5 and 20 respectively), which re-
sult in fewer, but reliable peaks. In addition, for each peak
in Havg , an upper and lower octave peak is added if there
does not already exist a peak in a given proximity. We call
these extended reference peaks. To compute the histogram
of a given performance, Dp and Lp are set to lower val-
ues (in our experiment, they correspond to 2 · 10−5 and
15 respectively), which result in more peaks which include
several unwanted ones. However, only those peaks which
have a corresponding match in extended reference peaks
of Havg (within a given proximity) are retained. This step
not only helps to identify all the possible peaks for a given
performance, but also compensates the choice of higher
bin resolution, which otherwise generally results in some
unwanted peaks.

In order to parametrize a given peak in the performance,
it needs to be a bounded distribution. Generally, we ob-
serve that two adjacent peaks are at least 80 cents apart.
The valley point between the peaks becomes a reasonable
bound if the next peak is close by. But in cases where they
are not, we have used a 50 cent bound to limit the distri-
bution. The peak is then characterized by five parameters:
peak location, mean, variance, skew and kurtosis.

3. RESULTS & DISCUSSION

One of the crucial factors that influence intonation of a
given swara is raaga. This can be attributed to the factors
like the role the swara plays in the raaga, the gamakas used
with it, and the characteristics of neighbouring swaras. For
a given swara, all of them change with the raaga [13]. This
affects the distribution of pitches around it. Therefore,
we choose to evaluate our approach by using intonation
of swaras to characterize raagas. Hence, we focused on a
data set which is representative enough of the variations al-
lowed on swaras: 170 performances in 16 raagas each with
at least 5 recordings per raaga are selected. These perfor-
mances feature 35 vocal artists in total.

We evaluate our approach using three self-contained
tasks. The first one is an explorative raaga disambigua-
tion task in which the proposed parameters of the peak are
shown to consistently increase the accuracy of the system.
The second task is a qualitative study showing the use-



Figure 2. (a). Kurtosis values for swaras of Bhairavi, Mukhari and Manji raagas. (b). Pearson’s first skewness coefficient
values for swaras of Bhairavi, Mukhari and Manji raagas. (c). Kurtosis values for swaras of Begada and Kambhoji raagas.
(d). Variance values for swaras of Begada and Kambhoji raagas. The x-axis corresponds to swara names in all the subplots.

fulness of peak parameters in discriminating raagas which
share the same set of swaras. In the third task, the peak po-
sitions are used in deriving a general template for preferred
mean values of swaras. Further, this general template is
juxtaposed against different raagas showing notable devia-
tions.

3.1 Raaga classification task

Previous raaga classification techniques employ only two
parameters extracted by histogram analysis: peak position
and height [6]. However, in using just these two parameters
for classifying raagas which share the same set of swaras,
there is a high chance of error. In order to assert the use-
fulness of our approach to describe intonation, we take 42
recordings in three raagas (Bhairavi, Thodi and Hindolam)
which share five common swaras. Due to the limitation on
the number of available recordings, choosing many swaras
in our task will make it difficult to assess the complemen-
tarity of the new parameters, and could also potentially re-
sult in over-fitting (more features than instances). There-
fore, we chose one swara to perform the raaga classifica-
tion task.

The task is performed using two feature sets, both hav-
ing four features. One set consists of just the position
and height of the swara in the middle and upper octaves
(common swara parametrization, hence used as a base-
line). To ensure fairness, we have used two feature se-
lection methods and different classifiers [5, 9] 4 over sub-

4 The implementations provided in Weka were used with default pa-
rameters.

Figure 3. Skewness values for swaras of Surati and
Kedaragowla raagas.

sampled data sets in a 10-fold cross validation test. The
other feature set is obtained by using information gain-
based and correlation-based feature selection methods [9]
on a combination of position, height, skewness, kurtosis,
variance and the mean of the distribution. Both feature se-
lection methods select new parameters different from the
position and the height.

Table 1 shows the averaged results obtained. Though
the accuracy increments are not statistically significant, they
are indicative of the worthiness of additional parameters.
However, if we just consider the classification of two raa-
gas with 26 recordings and perform the same test, the re-
sults show a significant increase in the overall accuracy
(Table 2). These two explorative tasks show a consistent
increase in the accuracy of the system, which indicates



the usefulness and complementarity of the proposed peak
characteristics.

3.2 Allied Raagas

In the experiment described in the previous section the raa-
gas share a subset of the swaras. However, there is a class
of raagas which share exactly the same set of swaras, but
have different characteristics, called allied raagas. Since
the swaras are common for the raagas, the discriminative
capability of the peak position and/or mean will be con-
siderably low. Therefore, these raagas constitute a good
repertoire to test our approach. We consider three sets of
allied raagas which together have 60 recordings in 7 raa-
gas. The first set has three raagas, and the second and the
third sets have two raagas each.

Fig. 2 (a) shows the kurtosis values for swaras of the
first set of allied raagas (Bhairavi, Mukhari and Manji). In
all the figures that follow, we have only shown the val-
ues for the most relevant swaras due to space constraints.
R2/G

∧
1

5 and M1 swaras can be seen to play a notable role
in discriminating the raagas in this set. Fig. 2 (b) shows the
skewness values for swaras of the same set of allied raagas.
The distinction is observed even better through the skew-
ness values of D2/N1, P and P∧ swaras. Generally, in a
given raaga, the melodic context of a swara is kept consis-
tent across octaves, which means that the intonation char-
acteristics of a swara across octaves should be consistent.
The skewness values of P and P∧ swaras assert this.

Figs. 2 (c) & (d) show the kurtosis and the variance val-
ues, respectively, for swaras of the second set of allied raa-
gas (Begada and Kambhoji). All the swaras can be ob-
served to play an equal role in distinguishing raagas of this
set. The consistency of the variances of G3, and R2/G1,
and kurtosis of G3 and D2/N1 across octaves is quite ev-
ident. Fig. 3 shows the skewness values for swaras of the
third set of allied raagas (Surati and Kedaragowla). The
observations from this set further reinforce the usefulness
of the peak parametrization approach to describe intona-
tion.

3.3 Analysis of peak positions

Table 3 shows the average of peak positions of each swara
across all the available recordings (we now use the full
data set), and the absolute sum of the differences of all
observations from the corresponding equi-tempered and
just-intonation intervals. The swaras which are observed
in less than 20 recordings are not shown. There is a gen-
eral tendency to just-intonation intervals compared to equi-
tempered, which is in agreement with the results obtained
by Serrà et al. [12]. However, this tendency is not very ev-
ident, supporting the claims in [7]. What interests us more
here is the relevance of the values shown in the table for
understanding the intonation of swaras in different raagas.
For that we consider the set of the average values (Table 3)
for each swara to be a general template. A similar template
is obtained for each raaga, and the differences between the

5 ∧ denotes the swara in upper octave.

Swara Mean DE DJ Recordings
Sa 1.92 6.43 6.43 142
R2/G1 200.93 10.93 11.62 68
G3 384.67 16.34 10.51 56
M1 495.05 9.94 9.56 123
P 700.18 6.01 6.21 164
D2/N1 889.58 13.99 11.06 87
D3/N2 987.87 16.0 14.11 56
Sa∧ 1196.62 6.35 6.35 174
R2/G1∧ 1401.37 8.86 8.97 96
G3∧ 1583.63 17.21 10.04 61
M1∧ 1693.05 12.71 12.17 91
P∧ 1897.86 7.45 8.08 118
D2/N1∧ 2095.6 8.78 13.15 54
D3/N2∧ 2192.15 14.17 13.33 28

Table 3. Mean of peak positions of each swara, and the
differences from corresponding Equi-tempered (DE) and
Just-Intonation (DJ ) intervals.

two templates are analysed and interpreted to check if they
are musically meaningful.

Figs. 4 (a), (b) and (c) show the boxplots for positions of
D2, N2 and M1 respectively, in various raagas. They were
examined by a trained musician who interpreted them, and
asserted that they made sense in the context of today’s
practice of the raagas. For instance, it is said that D2

in Khamas raaga is sung without any gamaka, whereas
the same swara in Kalyani raaga is sung with a particular
gamaka that might have been responsible for the observed
phenomenon. This explains the observations made from
Fig. 4 (d). Furthermore, as a sanity test, we have plotted the
positions of the swara P in various raagas. This swara is
normally expected to be sung without any gamaka. Hence,
we expect the peak positions corresponding to P of all the
raagas to be centered around the mean position observed
in the general template (Table 3). Fig. 4 asserts this, except
for minor deviations.

4. CONCLUSIONS

We have proposed a peak parametrization approach to de-
scribe intonation in Carnatic music and evaluated it quali-
tatively using three tasks. All the tasks discriminate raagas
with the obtained information of swara intonation. How-
ever there are a few challenges in this approach. Few swaras,
by the nature of the role they play, will not be manifested as
peaks at all. Rather, they will appear as a slide that cannot
be identified by a peak detection algorithm. Characteriz-
ing pitch distributions near all the theoretical intervals or
from the general template shown in Sec. 3.3, irrespective
of whether it is identified as a peak or not, is one possi-
ble way to address this issue. However, identifying few
heuristics that will help in locating such slides can be a
good substitute, since it falls in line with our methodology
in not assuming any particular tuning. The future direction
of this work is to extend it to the Hindustani music tradi-



Figure 4. (a). Peak positions of D2 for recordings in Khamas, Kalyani and Sourashtram raagas. (b). Peak positions of N2

for recordings in Ananda Bhairavi, Hindoam, Khamas, and Sourashtram raagas. (c). Peak positions of M1 for recordings
in several raagas. (d). Peak positions of P for recordings in several raagas. The dashed line shows the mean of the
corresponding swara obtained from the general template.

tion, and also to characterize performers and instruments
by their preferred intonation.
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ABSTRACT

In this paper, we present a supervised method to improve
the multiple pitch estimation accuracy of the non-negative
matrix factorization (NMF) algorithm. The idea is to ex-
tend the sparse NMF framework by incorporating pitch
information present in time-aligned musical scores in or-
der to extract features that enforce the separability between
pitch labels. We introduce two discriminative criteria that
maximize inter-class scatter and quantify the predictive po-
tential of a given decomposition using logistic regressors.
Those criteria are applied to both the latent variable and the
deterministic autoencoder views of NMF, and we devise
efficient update rules for each. We evaluate our method
on three polyphonic datasets of piano recordings and or-
chestral instrument mixes. Both models greatly enhance
the quality of the basis spectra learned by NMF and the
accuracy of multiple pitch estimation.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is an unsuper-
vised technique to discover parts-based representations un-
derlying non-negative data [12], i.e. a set of characteristic
components that can be combined additively to reconsti-
tute the observations. When applied to the magnitude spec-
trogram of a polyphonic audio signal, NMF can discover a
basis of interpretable recurring note events and their asso-
ciated time-varying encodings, or activities, that together
optimally reconstruct the original spectrogram.

In general, the extracted representation will converge to
individual note spectra provided the following conditions
are met [5]. First, each observed spectrogram frame must
be representable as a non-negative linear combination of
the isolated note spectra, an approximation that depends on
the interference between overlapping harmonic partials in
a polyphonic mix but that is nevertheless reasonable [22].
The second condition requires that basis spectra be linearly
independent, and the third condition requires that all com-
binations of individual notes be present in the database.
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This last assumption is of course difficult to achieve com-
pletely but partial combinations seem sufficient in practice.
Consequently, the activities extracted by NMF have proven
useful as features to detect individual note pitches played
simultaneously at a given instant in a polyphonic audio sig-
nal, a task known as multiple pitch estimation, and for the
related task of transcribing audio excerpts into musical no-
tation [1, 3, 4, 19]. Sparsity, temporal and spectral priors
have proven useful to enhance the accuracy of multiple
pitch estimation [3, 7, 20].

Since NMF is an unsupervised technique, it can be ap-
plied in principle to an unlimited number of musical record-
ings without the need for ground-truth pitch labels. How-
ever, such information is often readily available as recorded
expressive performances, symbolic sequences (e.g. a MIDI
file) or time-aligned musical scores. In those cases, we
would like to exploit the pitch information to steer the NMF
decomposition in a supervised way to obtain discrimina-
tive features more useful for multiple pitch estimation. A
few attempts have been made in this direction, notably
by adding a linear discriminant analysis (LDA) stage to
the activities extracted by NMF [23], or by embedding
Fisher-like discriminant constraints inside the decomposi-
tion [9, 21, 23]. Discriminative dictionaries have also been
developed for sparse coding [15]. Those methods how-
ever are designed for classification, which means choosing
a single label, whereas multiple pitch estimation is a multi-
label task, i.e. multiple pitch labels can be associated with
a single spectrogram frame. In this context, we propose
two discriminative criteria that maximize inter-class scatter
for each label separately and estimate the predictive power
of a given decomposition using logistic regressors. Those
ideas are applied in the conventional latent variables frame-
work of NMF and in a deterministic autoencoder model
to directly maximize test-time discriminative performance.
Efficient update rules are devised for each, and we show
that our method greatly improves the quality of the basis
spectra learned by NMF and the accuracy of multiple pitch
estimation on three polyphonic datasets of piano record-
ings and orchestral instrument mixes.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we review the NMF algorithm and its ap-
plication to multiple pitch estimation. In Sections 4 and 5
we introduce the latent variables and autoencoder discrim-
inative models. We describe our experiments and evaluate
our method in Sections 6 and 7.
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Figure 1. Illustration of the sparse NMF decomposition (λ = 0.01, µ = 10−5) of an excerpt of Drigo’s Serenade. Using
a dictionary W pretrained on a polyphonic piano dataset, the spectrogram X is transformed into an activity matrix H ap-
proximating the piano-roll transcription Y . The columns of W were sorted by increasing estimated pitch for visualization.

2. NON-NEGATIVE MATRIX FACTORIZATION

The NMF method aims to discover an approximate factor-
ization of an input matrix X:

nf×nt

X '
nf×nt

Λ ≡
nf×m
W ·

m×nt

H (1)

whereX is the observed magnitude spectrogram with time
and frequency dimensions nt and nf respectively, Λ is the
reconstructed spectrogram, W is a dictionary matrix of m
basis spectra and H is the activity matrix. Non-negativity
constraints Wi,j ≥ 0, Hi,j ≥ 0 apply on both matrices.
NMF seeks to minimize the reconstruction error, a distor-
tion measure between the observed spectrogramX and the
reconstruction Λ. A popular choice is the Euclidean dis-
tance:

CLS ≡ ||X − Λ||2 (2)

with which we will demonstrate our method although it can
be easily generalized to other distortion measures in the β-
divergence family [11]. Minimizing CLS can be achieved
by alternating multiplicative updates to H and W [13]:

H ← H ◦ W
TX

WT Λ
(3)

W ←W ◦ XH
T

ΛHT
(4)

where the ◦ operator denotes element-wise multiplication,
and division is also element-wise. These updates are guar-
anteed to decrease the reconstruction error assuming a lo-
cal minimum is not already reached. While the objective
is convex in either W or H separately, it is non-convex in
W and H together and thus finding the global minimum is
intractable in general.

2.1 Sparsity constraints

In a polyphonic signal with relatively few notes played at
any given instant, it is reasonable to assume that active ele-
ments Hij should be limited to a small subset of the avail-
able basis spectra. To encourage this behavior, a sparsity
penalty CS can be added to the total SNMF objective [10]:

CS = λ|H| (5)

where | · | denotes the L1 norm and λ specifies the relative
importance of sparsity. In order to eliminate underdeter-
mination associated with the invariance of WH under the
transformation W → WD, H → D−1H , where D is a
diagonal matrix, we impose the constraint that the basis
spectra have unit norm. Equation (3) becomes:

H ← H ◦ WTX

WT Λ + λ
(6)

and the multiplicative update toW (equation 4) is replaced
by projected gradient descent [14]:

W ←W − µ(Λ−X)HT (7)

W:i ←
W:i

||W:i||
(8)

where W:i is the i-th column of W , µ is the learning rate
and 1 ≤ i ≤ m.

3. NMF FOR MULTIPLE PITCH ESTIMATION

The ability of NMF to extract fundamental note events
from a polyphonic mixture makes it an obvious stepping
stone for multiple pitch estimation. In the ideal scenario,
the dictionary W contains the spectrum profiles of indi-
vidual notes composing the mix and the activity matrix H
approximately corresponds to the ground-truth score. An
example of the sparse NMF decomposition of an excerpt of
Drigo’s Serenade using a dictionary pretrained on a simple
polyphonic piano dataset is illustrated in Figure 1. The
dictionary contains mostly monophonic basis spectra that
were sorted by increasing estimated pitch for visualization.
We also observe a clear similarity between the activity ma-
trix and the target score in a piano-roll representation Y .

There are many options to exploit the NMF decomposi-
tion to perform actual multiple pitch estimation. The dic-
tionary inspection approach [1, 18, 19] consists in estimat-
ing the pitch (or lack thereof) of each column of W , which
can be done automatically using harmonic combs [20], and
to transcribe all pitches for which the associated Hij activ-
ities exceed a threshold η:

Ykj = 1⇔
∑

i|L(i)=k

Hij ≥ η (9)



where L(i) is the estimated pitch label (index) of the i-th
basis spectrum. For this method, a new factorization can
be performed adaptively for each new piece to analyze,
or the dictionary can be pretrained from an extended cor-
pus and kept fixed during testing. Dictionaries can also be
constructed from the concatenation of isolated note spec-
tra [3, 4].

Another option is to predict each column of Y from
the corresponding column of H using a general-purpose
multi-label classifier or a set of binary classifiers, one for
each label (note) in the designated range. This obviously
requires the use of a fixed dictionary and the availability
of annotated pieces to train the classifiers. In this work, we
will exclusively employ pretrained dictionaries and we will
consider both dictionary inspection and multi-label classi-
fication with linear support vector machines (SVM) [17].

4. DISCRIMINATIVE CRITERIA

The simple interpretation of the activity matrix as an ap-
proximate transcription usually deteriorates when we in-
crease instrumental diversity, pitch range or polyphony. In
this section, we introduce two discriminative criteria ex-
ploiting the aligned score information Y to ensure that NMF
extracts meaningful features into W and H .

The first criterion is inspired from linear discriminant
analysis in that we aim to maximize the inter-class scatter
of the Hij , where the classes here refer to the presence or
absence of a given pitch label at a given time. We encour-
age the activities associated with a given basis spectrum to
be maximal when its pitch is present in the score and mini-
mal otherwise, such that a unidimensional decision thresh-
old is sufficient to estimate the presence of a note. We first
assign a pitch label L(i) to each column i of W , or set
L(i) = −1 to denote an unpitched basis spectrum. Due to
the invariance ofWH under the column permutation ofW
and the equivalent row permutation of H , this assignment
can be done arbitrarily as long as the number of basis spec-
tra describing each pitch (q) and the number of unpitched
spectra (q̄) remain constant. More precisely, this criterion
has the form:

Cd(H) =
∑
ij


−β+Hij if YL(i),j = 1

β−Hij if YL(i),j = 0

0 if L(i) = −1

(10)

where the β+ and β− parameters quantify respectively the
importance of presence and absence of an Hij element.
Note that the limit β− →∞ corresponds to setting Hij =
0 for YL(i),j = 0.

The second proposed criterion does not impose a pre-
determined structure on the activity matrix, but rather at-
tempts to determine whether H is a good predictor for Y .
We introduce a stage of logistic regressors with weight ma-
trix V and bias vector b using H as input:

pkj = σ((V H)kj + bk) (11)

where σ(x) ≡ (1+e−x)−1 is the element-wise logistic sig-
moid function and p is an output matrix of note probabili-

X

Y

W

H*

Minimization
Problem

�

Output
Prediction

Figure 2. In the DNMF autoencoder model, the input is
encoded via a deterministic minimization procedure. The
code H∗ is trained to reconstruct X and to predict Y .

ties, or probabilistic piano-roll. We use the cross-entropy
as a discriminative criterion for H:

Cl(H) = −α
∑
kj

Ykj log pkj + (1− Ykj) log(1− pkj)

(12)
where α is a weighting coefficient. Adding our criteria to
the total objective yields the DNMF model:

C = CLS + CS + Cd + Cl. (13)

It is easy to show that the Hessian matrices ∇2
HCd(H)

and ∇2
HCl(H) are both positive semi-definite and that the

DNMF objective remains convex in W or H separately.
The multiplicative update rule forH (equation 6) becomes:

H ← H ◦ WTX

WT Λ + λ+ ∂Cd(H)
∂H + ∂Cl(H)

∂H

(14)

where the gradients are given by:

∂Cd(H)

∂Hij
=


−β+ if YL(i),j = 1

β− if YL(i),j = 0

0 if L(i) = −1

(15)

∂Cl(H)

∂H
= αV T (p− Y ). (16)

The update rules forW are the same as for sparse NMF and
are given by (7) and (8). The V and b parameters are opti-
mized via stochastic gradient descent using the updates:

V ← V − µ(p− Y )HT (17)

bk ← bk − µ
∑
j

(pkj − Ykj). (18)

5. AUTOENCODER MODEL

In the probabilistic latent variables model (LV) underly-
ing NMF, the activities are regarded as hidden variables
with joint negative log probability given by (13) and the
use of equations (14) and (7-8) during training corresponds
to the expectation and maximization phases of an EM al-
gorithm [12]. A subtlety associated with this interpretation
arises in testing conditions when the labels Y are unknown.
We can resort to equation (6) to infer H , but it is possible
to address this issue in a more principled manner with the
autoencoder model (AE) presented in this section.

Let us consider the value of H obtained in testing con-
ditions, denoted H∗:

H∗(W ) ≡ arg min
H

(CLS + CS) (19)



and let us apply the same discriminative criteria Cd(H∗)
and Cl(H

∗) on that variable. Since H∗ is a purely de-
terministic function of the input with W the only learned
parameter, this model can be assimilated to an autoencoder
with the encoding step consisting in a complex minimiza-
tion problem (equation 19) and the decoding step is the
usual linear input reconstruction (equation 1). In addition,
the discriminative criteria encourage H∗ to be a good pre-
dictor of Y . The overall model is depicted in Figure 2. The
projected gradient descent update for W becomes:

W ←W − µ∂C(H∗)

∂W
(20)

W:i ←
W:i

||W:i||
(21)

Since H∗(W ) is the result of an optimization process,
the gradient of C(H∗) with respect to W is not trivial to
compute. We can exploit the convergence guarantee of the
multiplicative update (6) to express H∗ as an infinite se-
quence truncated to K iterations:

H∗ = lim
k→∞

Hk ' HK (22)

where:

Hk+1 = Hk ◦ WTX

WTWHk + λ
(23)

from which the gradients are easily computed by back-
propagation through iteration k in an efficient O(K) time:

∂C

∂Hk
=

∂C

∂Hk+1
◦ H

k+1

Hk
−WTWBk (24)

for 0 ≤ k < K, where the auxiliary variable Bk is:

Bk =
∂C

∂Hk+1
◦ Hk+1

WTWHk + λ
. (25)

The initial conditions are:

∂C

∂HK
= WT (WHK −X) + λ+

∂Cd

∂HK
+

∂Cl

∂HK
(26)

where the two rightmost terms are given by (15) and (16)
with H = HK . The gradient with respect to W is then
given by:

∂C

∂W
=

K−1∑
k=0

[
X
( ∂C

∂Hk+1
◦ H

k+1

WTX

)
−

W (BkHkT +HkBkT )
]

+ (WHK −X)HKT . (27)

When computing ∂C/∂W , the finite-sequence approx-
imation (22) needs only be accurate in the vicinity of the
current value of W , denoted W 0. We can increase effi-
ciency without sacrificing precision by initializing H0 ≡
H∗(W 0) and keeping K small (< 10). Note also that this
gradient may become infinite when W is rank deficient,
a condition that arises when combinations of basis spectra
momentarily align [8]. This optimization issue is alleviated
in practice by two facts: the basis spectra are renormalized
after each update (equation 21), and the use of a finite se-
quence to approximate the gradient tends to smooth out
singularities.

6. EVALUATION

We use three datasets to evaluate our method:
RAND is a piano dataset of random chords part of the

larger MAPS database [6]. Each chord contains from 2 to 7
notes sampled from the whole piano range with heteroge-
neous loudnesses. We randomly split the data into training,
validation and test sets using a 4:1:1 ratio.

ORC is a random polyphonic dataset similar to RAND,
but that includes common orchestral instruments such as
violin, cello, trumpet, French horn, saxophone, oboe, bas-
soon, clarinet, flute and piccolo, in addition to piano and
organ. Each of the 3000 tracks contains 5 instruments si-
multaneously playing in their respective range for 16 sec-
onds and was rendered with the FluidR3 SoundFont 1 .

MUS is a collection of classical piano pieces also in-
cluded in MAPS [6], that contains nine sets created by
high-quality software synthesizers (7 sets) and a Yamaha
Disklavier (2 sets). Five synthesizer sets were selected for
training, with the remaining two held out for validation
to avoid overfitting the specific piano tones heard during
training. We used the first 30 seconds of each piece from
the Disklavier sets for test. The average polyphony for this
dataset is 2.9.

The magnitude spectrogram was computed for all data-
sets by the short-term Fourier transform using a 93 ms slid-
ing Blackman window at 10 ms intervals. Each spectro-
gram frame (column ofX) was normalized and square root
compressed to reduce the dynamic range. The ground truth
Y was directly inferred from the MIDI files [6].

We evaluate multiple pitch estimation performance with
the standard metrics of accuracy, precision, recall and F-
measure [2]. Either dictionary inspection or linear SVMs
using H∗ or X as input serve to estimate the pitches. The
SVMs can optionally be replaced by multilayer percep-
trons (MLP) [16] for comparison. For each NMF model,
the parameters are first selected to maximize accuracy on
the validation set and we report the final performance on
the test set. Parameters are optimized over predetermined
search grids on the following intervals:

q ∈ [1, 7] q̄ ∈ [0, 12] η ∈ [0, 20]
β± ∈ [10−6, 10] α ∈ [10−2, 102]
λ ∈ [10−7, 2] µ ∈ [10−6, 10−3]

7. RESULTS

To illustrate the effectiveness of our approach, we first eval-
uate qualitatively the learned basis and pitch activities on
polyphonic piano data. The dictionary matrices obtained
on RAND via unsupervised NMF (Fig. 3(a)) and DNMF
(Fig. 3(b)) are presented in Figure 3 after sorting the columns
by increasing estimated pitch. From these results, it is clear
that DNMF extracted basis spectra – from a purely poly-
phonic mix – that correspond much closely to the expected
spectrum of individual piano notes. It is thus not surprising
that applying those dictionaries to extract pitch activities
H∗ from an excerpt of the MUS test set (Fig. 4(a)) yielded

1 http://www.hammersound.net
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Figure 3. Dictionaries trained (q = 1, q̄ = 0) on the RAND dataset via NMF (a) and DNMF (b). Columns were sorted by
increasing estimated pitch for visualization.
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Figure 4. Spectrogram (a) and piano-roll score (b) for the first 15 seconds of an arpeggiated version of Silent Night, Holy
Night from the MUS test set. Pitch activities H∗ (c-d) were estimated for that signal using the pretrained dictionaries in
Figure 3(a-b) respectively.

less noisy estimates much closer to the ground-truth score
(Fig. 4(b)), as can be observed from Figure 4(c-d).

A more quantitative measure of the discriminative qual-
ity of the learned basis is the discriminative ratio r:

r(H) =

 ∑
i,j|YL(i),j=1

Hij

/ ∑
i,j|YL(i),j=0

Hij

 . (28)

According to this definition, we obviously favor higher ra-
tios. While r can be made arbitrarily high in training con-
ditions simply by increasing β±, what we really care about
is its value in testing conditions r(H∗). Figure 5 shows
a significant increase in the test discriminative ratio with
our latent variable algorithm compared to the sparse NMF
baseline, which indicates a much better pitch label sepa-
rability. The additional improvement provided by the au-
toencoder model demonstrates that directly optimizingH∗

is useful to increase discriminative performance.
In the next experiments we verify if the discriminative

features learned by our models translate in good pitch esti-
mation performance. Frame-level accuracies on the RAND
and ORC datasets are presented in Table 1 using dictionary
inspection and in Table 2 for multi-label classification. The
proposed models outperform the baselines in all cases, es-
pecially DNMF-AE used in conjunction with SVMs. Ta-
ble 3 shows frame-level precision, recall and F-measure
results on the MUS test set for common existing NMF
variants. Our approach surpasses adaptive unconstrained
NMF and is competitive with NMF trained on isolated pi-
ano notes and NMF with spectral constraints [20].
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Figure 5. Evolution of the ratio r(H∗) during training on
the RAND dataset. “tr” stands for training conditions.

Method RAND ORC
NMF 27.6% 30.0%
SNMF 32.3% 43.8%
DNMF-LV 53.2% 58.8%
DNMF-AE 53.4% 58.6%

Table 1. Multiple pitch estimation accuracy obtained by
dictionary inspection on the RAND and ORC datasets.

8. CONCLUSION

We have shown that by exploiting pitch information present
in time-aligned musical scores to encourage the extracted
features to discriminate against the pitch labels, we can im-
prove the multiple pitch estimation performance of NMF
on three datasets of polyphonic music. Interestingly, the



Features RAND ORC
Spectrogram 50.9% 55.9%
NMF 56.2% 59.4%
SNMF 55.5% 59.5%
DNMF-LV 60.4% 63.3%
DNMF-AE 61.6% 65.5%
Spectrogram (MLP) 52.7% 62.0%

Table 2. Multiple pitch estimation accuracy obtained on
the RAND and ORC datasets via linear SVMs using the
specified feature extraction technique.

NMF variant Prec. Rec. F-meas.
No training

Unconstrained † 58.9% 60.0% 57.8%
Spectral constraints [20] 71.6% 65.5% 67.0%

Pretrained dictionary
Isolated note spectra † 68.6% 66.7% 66.0%
Proposed (DNMF-LV) 68.1% 65.9% 66.9%
Proposed (DNMF-AE) 66.8% 68.7% 67.8%

Other methods
SONIC [16] 74.5% 57.6% 63.6%

Table 3. Average multiple pitch estimation performance
of common NMF variants on the MUS (MAPS) piano
dataset. †These results are from Vincent [20].

resulting basis spectra closely resemble the spectrum of
individual piano notes, even though they were trained on
purely polyphonic data without explicit harmonicity con-
straints. Once that discriminative basis is learned, relevant
pitch activity features can be efficiently computed using
only standard multiplicative updates.
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ABSTRACT

A series of experiments on the automatic classification of
classical guitar sounds with support vector machines has
been carried out to investigate the relevance of the features
and to minimise the feature set for successful classifica-
tion. Features used for classification were the time series
of the partial tone amplitudes, and of the MFCCs, and the
energy distribution of the nontonal percussive sound that
is produced in the attack phase of the tone. Furthermore
the influence of sound parameters as timbre, player, fret
position and string number on the recognition rate is in-
vestigated. Finally, several nonlinear kernels are compared
in their classification performance. It turns out, that a se-
lection of 505 features out of the full feature set of 1155
elements does only reduce the recognition rate of a linear
SVM from 82% to 78%. With the use of a polynomial
instead of a linear kernel the recognition rate with the re-
duced feature set can even be increased to 84%.

1. INTRODUCTION

In the recent years musical instrument recognition has been
extensively investigated. Primary research goals were au-
tomatic indexing of multimedia data bases, automatic mu-
sical genre classification and automatic music transcrip-
tion systems. A less common topic is the quality assess-
ment of musical instruments, which will be covered in the
present paper. Currently the research efforts show sev-
eral trends. One is the attempt to transfer the success-
ful classification based on single notes to the analysis and
classification of solo musical phrases. Joder, Essid, and
Richard [9] describe a modification of Support Vector Ma-
chines with alignment kernels which they report to perform
better than classifiers based on Gaussian Mixture Models
or Hidden Markov Models. Barbedo and Tsanetakis [2]
published their results on the even more challenging task of
instrument classification in polyphonic recordings. Their
method is the detection of partial tone structures that are
unique to certain instrument groups, which are fed to a spe-
cialised decision-tree algorithm.

A second trend in instrument classification research is
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the systematic comparison of the performance of certain
statistical methods and commonly used feature sets in or-
der to reduce the feature space dimensionality and thus es-
caping the “curse of dimensionality” – the exponential in-
crease of required training samples with increasing dimen-
sion of the feature space. A detailed general description
of algorithms and procedures of feature space reduction is
given by Guyon and Elisseeff [6]. Deng, Simmermacher,
and Cranefield published a very good and complete sur-
vey on feature relevance for musical instrument classifica-
tion [3]. Loughran, Walker, and O’Neill present a genetic
algorithm approach to feature selection [11]. Genetic al-
gorithms can even be employed for feature generation, as
described by Mierswa and Morik [12], and by Pachet and
Roy [13]. One outcome of these approaches could be the
generation of meaningful features, that give an insight in
the nature of the investigated sounds.

There is a paper on the quality assessment of musical
instruments by Hsiao and Su [7]. They used an waveform-
based feature set in conjunction with a multiclass Mahalanobis-
Taguchi system to develop an automatic saxophone quality
assessment system.

In this article we present a systematic study on the pa-
rameters influencing the classification performance of a
support vector machine (SVM) classifier to distinguish sin-
gle tones of three different classical guitars from each other.
This continues an earlier work published on the 2008 DAFx
conference [4].

Our research motivation is to pinpoint those acoustical
features of high-quality instruments that are responsible for
the perceived musical quality of the guitar. The classifi-
cation experiments were conducted to further support our
working hypothesis, that the acoustical quality of an instru-
ment reveals itself at least partially already in a single tone.
This hypothesis is motivated by the way professional gui-
tarists assess an instrument: They test the acoustical prop-
erties of the guitar by carefully listening to single tones
played on all strings and over the whole range of the fin-
gerboard.

In the following section our experimental setup and the
feature and sample selection strategy is described, followed
by the presentation and discussion of classification perfor-
mance results. The article is concluded by a summary and
an interpretation of the results in terms of musical acous-
tics.
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Figure 1. Time series of partial tones 6 – 11 of a guitar
tone.

2. EXPERIMENTS

Single guitar tones of three high-quality classical guitars
(by the luthiers Hense, Marin, and Wichmann) played by
four players on three different fret positions with the three
different sound intentions sonorous, sharp, and warm, were
recorded, resulting in ≈ 4000 tone samples, each with a
duration of 2–3 seconds. These samples were normalised
for equal maximum amplitude and three groups of features
were extracted: The time series of the partial tone ampli-
tudes (PT) (see figure 1 for an example), the time series of
the mel frequency cepstral coefficients (MFCC) as shown
in figure 2, and the power distribution of the nontonal spec-
trum (NT), see [5]. The partial tone time series was ob-
tained by first taking the magnitude spectrum of the whole
length of the sound sample, and f0 was identified by cep-
stral analysis. Then the sound was split into frames of 4096
samples, each frame multiplied with a Blackman window,
the FFT was calculated and the amplitudes of the first 16
partial peaks, i.e., the peaks in the vicinity of n · f0, were
evaluated. The data of the first 40 frames was taken as the
partial tone feature set.

The MFCC data was computed using the Matlab Audi-
tory Toolbox by Slaney [14], with frame size of 1024 sam-
ples, and a frame frequency of 25 Hz. The time series of
the first 10 MFCCs was evaluated, and the first 50 frames
were taken as the MFCC feature set.

The calculation of the nontonal features starts with the
magnitude spectrum of the whole sound sample, from which
the tonal peaks have been removed as shown in Fig. 3. To
obtain the nontonal features, the nontonal power spectrum
Pk at frequency index k is computed by squaring the non-
tonal spectrum Yk, and the accumulated power between
fstart = 0 and fend = fk is calculated to yield the fuction
Ck:

Ck =
k∑

i=0

Pk (1)

The logarithm of this monotonously increasing function
is taken, and the range of logCk from 1 to its final value
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Figure 2. Time series of the first 10 MFCCs of a guitar
tone. Curves shifted vertically for better overview.
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Figure 3. Magnitude spectrum and nontonal magnitude
spectrum of a guitar tone.
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Figure 5. A directed acyclic graph for multi-class identifi-
cation

is split into 16 equally spaced parts. The corresponding 15
boundary frequencies are taken as the nontonal features, as
shown in figure 4.

The complete feature set consists of 1155 elements (40 ·
16 PT + 50 · 10 MFCC + 15 NT).

These features or subsets of them were used for train-
ing the SVMs and for running the classification tests. All
but the last group of experiments were performed with lin-
ear SVM kernels, the best classification performance with
linear kernels was 82.0 %, it was achieved using the full
feature set of 1155 elements.

For each guitar, a SVM for a one-vs-rest classification
was trained. For the multi-class identification, a directed
acyclic graph (DAG) was constructed according to Fig. 5.

The classification performance is determined as the ra-
tio of correctly classified test examples and the total num-
ber of examples

Performance =
ncorrect

ntotal
(2)

A flexible data processing software has been written in
GNU Octave [1], a free MatlabTM clone, for feature ex-
traction and data selection. For the SVMs, the SVMLight
implementation of Joachims has been used [8].

Several series of experiments were carried out to inves-
tigate which features are most important for a correct clas-
sification, how small the feature set can be made without
degrading the classification performance, and if there are
nonlinear kernels that perform better than the linear ker-
nel.

In addition, the training and testing was conducted with
different subsets of the guitar tone samples to investigate
the role of the player, and to test, if a preselection of sounds
according to several criteria can improve the classification
result.

Two preliminary experiments were performed: A cross-
validation of the classification was made by exchanging
the sample sets for test and training. In the second prelimi-
nary experiment an attempt was made to reduce the feature
space by performing a Principal Component Analysis on
the training data set.

3. RESULTS AND DISCUSSION

3.1 Classification Performance With the Full Feature
Set and a Linear Kernel

As a first step, the classification experiment has been car-
ried out with the full data set of 1155 features, 978 training
samples, 972 test samples, with a linear kernel.

The classification performance of 82.0 % is taken as the
reference value for all subsequent experiments.

3.1.1 Cross-validation

The experiment was repeated with the test and training data
exchanged. Table 1 compares the results of the two exper-
iments.

Guitar Reference
Test / Train Data
Exchanged

Overall 82.0 % 84.2 %
Hense 74.4 % 82.9 %
Marin 81.8 % 77.7 %
Wichmann 88.6 % 92.0 %

Table 1. Cross-validation of guitar classification with ex-
changed train and test data

The deviations between the two experiments give an
impression of the variances of the classification measure-
ments.

3.2 Principal component analysis (PCA)

As a supporting study, an attempt was made to reduce the
dimensionality of the feature space by applying a principal
component analysis to the feature data. With the first 500
PCA-Eigenfeatures the classification rate is only 72.1 %,
which is significantly worse than the classification result
of 77.7 %, based on a manually selected 505-feature set
shown in section 3.3.3. An explanation for this poor re-
sult might be the fact, that most of the features are time
series, for which the differences of the neighbouring val-
ues carry important information. The preprocessing in the
princomp function of the Octave/Matlab Statistical Tool-
box removes these dependencies by calculating the mean
and variance for each feature in the training set separately,
and then for each feature value subtracts the mean and
scales the variance to unity, thus eliminating the informa-
tion of the relative magnitudes of the feature values.

To get a substantial reduction of the feature space, an
adaption of the PCA method for time series, as described
in chapter 12 of the book of Jolliffe [10], will have to be
applied.

3.3 Relevance of Features

The experiment series to determine the relevant features
were carried out with the full sample data set: 978 samples
for training, and 972 samples for testing.



3.3.1 MFCCs

In this series of experiments only the time series of MFCC
features were used for classification. In the first experi-
ment set the MFCC coefficients were grouped into lower
and upper half (coefficients 1 – 5 and 6 – 10), in the second
experiment set the features were divided into three groups
(coefficients 1 – 3, 4 – 7, and 8 – 10). All possible com-
binations of groups in the series were tested, these are the
most important results:

MFCC
coefficients Features Performance
1 – 10 500 75.5 %
1 – 5 250 71.2 %
6 – 10 250 60.2 %
1 – 7 350 72.0 %
1 – 3 150 65.9 %
4 – 7 150 62.6 %
8 – 10 150 56.8 %

Table 2. Classification performance of subsets of the
MFCC features

The MFCC coefficient group 1 – 3 contains the most
relevant third of the MFCC coefficients.

3.3.2 Partial Tones (PT)

In this series of experiments several selections of the first
16 partial tones have been made. Again a grouping in
halves and thirds has been performed.

Partials Features Performance
1 – 16 640 52.8 %
1 – 11 440 57.2 %
1 – 5 200 44.0 %
6 – 11 240 54.3 % (!)
12 – 16 200 42.7 %

Table 3. Classification performance of subsets of the PT
features

The medium third of the partial tones gives not only the
best result of the one-third-selection, it is noteworthy, that
this reduced feature set even performs better than the full
set of partial tones.

3.3.3 Feature Combinations

Several combinations of the nontonal, MFCC, and par-
tial tone features were tested. The best performance was
achieved by combining nontonal features with MFCCs 1 –
5 and partial tones 6 – 11 i.e., the best-performing selec-
tions of the previous experiments:

Comparison of the first two lines in Table 4 shows, that
the addition of the 15 nontonal features increases the clas-
sification performance by 5 percent points. It has to be
stressed, that the MFCC and the PT features each repre-
sent a time series of 50 (MFCC) and 40 (PT) data points
respectively, whereas the nontonal energy distribution is a

Feature selection Features Performance
MFCC 1 – 5, PT 6 – 11 NT 1 – 15 505 77.7% (!)
MFCC 1 – 5, PT 6 – 11 490 71.9%
MFCC 1 – 5, NT 1 – 15 265 76.0%
MFCC 1 – 7, PT 6 – 11 NT 1 – 15 605 77.7%

Table 4. Classification performance of various feature
combinations

global feature set that consists of only 15 single data val-
ues. So it can be concluded, that the nontonal features add
new information to the feature set, that is not implicitly
contained in the other feature data.

Another notable fact is, that the inclusion of the time
series of MFCCs 6 and 7 does not at all affect the classifi-
cation performance, as can be seen by comparing the first
and the last line of Table 4.

3.4 Selections of Tone Samples

In the subsequent experiments certain selections of tone
samples were made to further pinpoint the relevance of
features. Since the number of training samples is reduced,
also a reduced parameter set has to be used, so the most
successful combination of the preceding experiments was
taken: nontonal features 1 – 15, MFCCs 1 – 5, and partial
tones 6 – 11. This is the 505-element feature set of sec-
tion 3.3.3. In each overview of results the number of audio
samples used for test and training is given.

3.4.1 Player

In the first set of the experiments with preselected tone
samples, the influence of the player is investigated. In the
first part, three out of four players are used for training, the
remaining player is taken for testing. In the second part,
the training is performed with all players, and again one of
the players is used for testing.

Player
(Test)

Samples
(Test)

Players
(Train)

Samples
(Train) Performance

1 324 2, 3, 4 654 59.6 %
2 162 1, 3, 4 816 69.1 %
3 324 1, 2, 4 648 65.4 %
4 162 1, 2, 3 816 64.2 %

Table 5. Classification performance, player in test set not
included in training set

Player
(Test)

Samples
(Test)

Players
(Train)

Samples
(Train) Performance

1 324 1 – 4 978 74.4 %
2 162 1 – 4 978 71.6 %
3 324 1 – 4 978 83.5 %
4 162 1 – 4 978 78.4 %

Table 6. Classification performance, player in test set is
included in training set

As was to be expected, the players have quite a large
influence on the produced sound, and so the classification



performance decreases, when the testing player is not in
the group of the training players. The classification perfor-
mance might in this case be improved by a larger pool of
players.

3.4.2 Timbre

In these experiments sound samples of the same timbre are
used for training and testing. The term timbre here refers to
the sound intention of the player. Usually, a warm timbre
is produced by plucking the string above the sound hole of
the guitar with the finger moving in an angle of approx. 45◦

to the string; a sharp timbre is produced by plucking near
the bridge with the plucking finger moving perpendicular
to the string.

Timbre
Samples
(Train / Test) Performance

sharp 326 / 324 80.6 %
sonorous 327 / 324 79.0 %
warm 325 / 324 82.7 %

Table 7. Classification performance for different timbres

It would have been expected, that the preselection of
timbre would improve the classification performance, but
the experiments show, that this is not the case. Obviously
the influence of the different strings and the different posi-
tions on the fingerboard introduce too much inhomogene-
ity.

3.4.3 String

This series of experiments tests the influence of the string
on the sound. Only sounds of the same string are taken for
training and testing.

String
(Note)

Samples
(Train / Test) Performance

1 (e’) 165 / 162 96.3 %
2 (b) 163 / 162 92.6 %
3 (g) 162 / 162 80.9 %
4 (d) 163 / 162 79.6 %
5 (A) 163 / 162 84.0 %
6 (E) 162 / 162 83.3 %

Table 8. Classification performance for different strings

Obviously the preselection of the string does provide
substantially more homogeneous sample sets. The trained
SVMs are specialised to the sound of one particular string
and perform substantially better than with the whole range
of tone samples.

3.4.4 Fret

The last experiment series in this sections is devoted to the
fret, i.e., the position on the fingerboard .

The observed performances of Table 9 are approximately
the same as the overall performance given in Table 1.

Fret
Samples
(Train / Test) Performance

1 326 / 324 84.9 %
5 176 / 174 79.9 %
6 150 / 150 78.7 %

10 314 / 312 81.7 %

Table 9. Classification performance for different fret posi-
tions

4. NONLINEAR KERNELS

In a last series of experiments different nonlinear kernels
were used for classification. Again the 505-element feature
set of section 3.3.3 is used.

The only nonlinear kernel provided by SVMLight, that
gave satisfactory results was the polynomial kernel. Ta-
ble 10 shows the classification results for several polyno-
mial degrees:

Polynomial
Degree

Samples
(Train / Test) Performance

1 978 / 972 77.7 %
2 978 / 972 82.3 %
3 978 / 972 84.0 %

Table 10. Classification performance for polynominal ker-
nels of degree 1–3

Other available nonlinear kernels (Sigmoid, RBF) and
higher degree polynomial kernels performed very poor.

5. SUMMARY AND OUTLOOK

In this paper a detailed feature relevance study about the
classification performance of SVMs for classical guitar sounds
is presented. It is shown, that the original feature set of
1155 features with a classification performance of 82.0 %
can be reduced to 505 features with an even better perfor-
mance of 84.0 % when employing a third degree polyno-
mial kernel.

Several experiments on the preselection of sound sam-
ples for testing and training have been carried out. A ten-
tative interpretation in musical terms shall be tried in the
following paragraphs.

The group of experiments with a pool of players used
for training of the SVMs and one player for testing shows,
that there is a large influence of the player on the sound.
This conclusion can be drawn from the fact, that the clas-
sification performance is significantly increased, when the
testing player is also member of the training players. From
musical experience this is plausible. It is the interaction of
player and instrument that produces the sound.

The preselection experiments, where the same timbre,
string, and fret is used for training and testing can be ex-
plained in a technical way: the more uniform the samples
are, the easier is the detection of differences arising from
the acoustical properties of the guitars. The very good clas-
sification performance for the highest two strings (96.3 %)
and 92.6 % is in accordance with the experience of luthiers



and guitar players: A good guitar reveals its quality on the
treble strings (b and e’), whereas even medium quality gui-
tars may sound good on the lower strings.

It would be a promising approach to improve the overall
classification result by introducing a two-step classification
process: in the first step the string is determined, and in
the second step the guitar is identified. Currently there are
experiments going on to compare the reported results with
other classification methods, in particular neural networks
and a specialised form of principal component analysis to
the classification problem presented by Wells and Aldam
in [15].

The classification framework is currently being modi-
fied to apply to pieces of polyphonic solo guitar music.
The robustness of the method has to be proven, when there
is a mixture of tones to be analysed, and further features
may show up in the musical context, that are not present
in the single note analysis, especially the range of possible
variations in amplitude, attack and decay times and various
spectral properties.
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ABSTRACT

In folk song research, string methods have been widely
used to retrieve highly similar tunes or to perform tune
family classification. In this study, we investigate how var-
ious string methods perform on a fundamentally different
classification task, which is to classify folk tunes into gen-
res, the genres being the dance types of the tunes. A new
data setDance-9is therefore introduced. The different
string method classification accuracies are compared with
each other and also withn-gram models and global feature
models which have been proven to be useful in previous
folk song research. They are shown to yield similar results
to the global feature models, but are outperformed by the
n-gram models.

1. INTRODUCTION

In the history of Music Information Retrieval (MIR), folk
song databases have often been used as test collections to
evaluate computational models, especially the Essen Folk-
song Collection [18] has been the test set for various MIR
methods [19, 4]. The availability of large databases of la-
belled folk tunes and the fact that many of these contain
mainly monophonic tunes, make it an attractive test bed for
machine learning algorithms applied to musical sequences.

However, there is also a deeper interest in folk music
from an ethnomusicological point of view, which is grow-
ing with the progression of advanced music data mining
methods and the computational possibility of dealing with
large folk song corpora. Archives of folk music are be-
ing handed over to computational musicologists to be an-
alysed, clustered and subdivided into comprehensible sub-
groups. A self-organizing map is used to identify and anal-
yse motive collections of 22 folk music cultures in Eurasia
[10]. Automatic pattern discovery has been applied to Cre-
tan folk songs, in order to describe the characteristic fea-
tures of each song type and region [6].
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Besides these descriptive tasks, a common task in com-
putational folk music analysis is music retrieval, which
is related to the concept of melodic similarity. Symbolic
melodic similarity tasks have been proposed at the MIREX
contests in 2005, 2006 and 2007, and were reintroduced
since 2010, with the Essen folksong database as test set.
Most of the methods applied at these contests rely on se-
quence alignment algorithms, which are shown to be suc-
cesful [7, 20, 21].

In this paper, however, we are interested in the the pre-
dictive task of folk music classification, where the goal is
to predict the class label of an unseen folk tune. Sequence
alignment methods have been used for the classification of
folk songs into tune families, which are ensembles of tunes
that all derive from the same initial tune [22]. It is shown
that they outperform global feature approaches. In our pre-
vious work, we have shown thatn-gram models outper-
form global feature models for the classification of Euro-
pean folk tunes into their geographic region [8]. Given the
conclusions of these previous papers on the topic of folk
tune classification, the question arises how sequence align-
ment methods and more generally string methods compare
with n-gram models. We will thus pursue our comparative
study by adding this third category of models, in order to
shed some light on the existing folk music classification
methods and their performance.

This paper investigates the performance of three string
methods for the task of genre classification on a newly
developed folk tune databaseDance-9, containing 2198
dances of 9 different types, which we call the genres. String
methods rely on a sequential music representation which
views a piece as a string of symbols. A pairwise similarity
measure between the strings is computed and used to clas-
sify unlabeled pieces. Obvious examples of string meth-
ods are the sequence alignment methods mentioned above,
but also less standard approaches which have been used in
the field of text classification, such as compression based
techniques [13] or the string subsequence kernel method
[12]. Compression based techniques have been applied
to music classification [11] and clustering [5], but these
methods have not been thoroughly compared with other
existing methods for folk tune classification. String subse-
quence kernels have never been applied to music classifi-
cation, but relate to the method presented by Pérez-Sancho



Dance type number of pieces relative number
Bourrée 59 2.7%
Hornpipe 108 4.9%
Jig 793 36.1%
March 76 3.5%
Polska 339 15.4%
Reel 453 20.6%
Schottische 119 5.4%
Strathspey 123 5.6%
Waltz 128 5.8%
Total 2198

Table 1. TheDance-9collection: the number of pieces of
each dance type.

et al. [16], wheren-words are used to represent musical
pieces as Boolean feature vectors, in order to classify MIDI
files into jazz or classical music.

These string methods will be compared with bothn-
gram models and global feature models which we have
studied in depth before [8], and the hypothesis of this study
is thatn-gram models will outperform both the global fea-
ture models and the string methods on the task of folk tune
genre classification. It is unclear how the string methods
will compare with the global feature models, since this
classification task is essentially different than the tune fam-
ily classification proposed by van Kranenburg [22]. Two
folk dances, say for example two random waltzes, gener-
ally differ more than two tunes belonging to the same tune
family.

The remainder of this paper is structured as follows. In
the next section we discuss the data set and its representa-
tion that will be used for our experiments, then we describe
the three string methods in detail, recapitulate then-gram
models and global feature models, before describing the
experimental setup and reporting the results. We conclude
with a discussion and future work.

2. DATA SET AND MUSIC REPRESENTATION

In this section we introduce a new folk tune database for
our experiments, we illustrate two types of music represen-
tation and the features that will be used.

2.1 Data set : Dance-9

The corpusDance-9is a large collection of European folk
tunes which are subdivided into nine dance type categories,
the largest ones being jigs, reels and polskas. An overview
of the nine dance types and the class sizes is displayed in
Table 1. The associated classification task is to predict the
dance type of an unseen tune, which is what we call agenre
classification task.

This corpus has been extracted from a much larger col-
lection of approximately 14,000 folk songs transcribed in
the ABC format, most of which are available on the web
[1]. Many tunes contain metadata about their type of folk
dance, and to constructDance-9we only selected those

with an unambiguous dance type annotation. Furthermore,
we discarded all dance types that occurred insufficiently to
have any statistical significance. To the remaining 2198
pieces, two preprocessing steps have been applied in or-
der to end up with core melodies that fit for our research
purpose: the first step ensures that all pieces are purely
monophonic by retaining only the highest note of dou-
ble stops which occured in some of the tunes, and in the
second step we removed all performance information such
as grace notes, trills, staccato, etc. Repeated sections and
tempo indications were also ignored. Key and time signa-
ture information has been retained, even though they will
not be explicitly used as musical features, as we explain
in section 3.3. Finally, a conversion to clean quantized
MIDI files is carried out with abc2midi. We removed all
dynamic indications generated by the style interpretation
mechanism of abc2midi.

2.2 Music representation

In MIDI format, the folk tunes are reduced to a list of music
events which are specified by their onset time, their pitch
and duration. For the purpose of music data mining, one
can represent a piece in various ways based on this infor-
mation, and the chosen music representation is associated
to the type of model one intends to use. We will discuss
two main types of representation:

• global feature vector: a global feature describes an
aspect of the whole piece with one single value, such
as the average pitch or the fraction of ascending in-
tervals. With a collection of global features, one
can represent the piece as a multidimensional fea-
ture vector. There is a wide range of standard ma-
chine learning techniques available in toolboxes to
classify such vectorized data.

• string representation: a piece can also be viewed
as an ordered sequence of events, and every event
is represented by an event feature of one’s choice.
In our case, the music events are note objects, with
pitch and duration as basic event features, from which
one can for example derive the melodic interval be-
tween the current and the previous note. Other ex-
amples are “duration ratio” or “melodic contour”.
This event feature sequence can be used directly for
modelling, or it can first be mapped onto anASCII

symbol string.

Figure 1 illustrates these types of representation on the
first measures of the Scottish jig “With a hundred pipers”.
The two upper lines show two global features “average
pitch” and “rel. freq. M2”, which is the relative frequency
of major seconds. Some event features are illustrated on
the next three lines, “pitch” being a basic one from which
“melodic interval” is derived. The “interonset interval”
tells the time span between the onset times of two succes-
sive notes (given in MIDI ticks here), which is similar to
note duration, except when there are rests in the piece. The
lower two lines show a possible mapping into strings given
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6

average pitch 67.125
rel. freq. M2 0.714

pitch 69 71 73 64 64 66 64 66
melodic interval ⊥ +2 +2 -9 0 +2 -2 +2
interonset int. ⊥ 12 12 48 24 24 24 24

int-string ‘ffqjfdf’
ioi-string ‘lltiiii’

Figure 1. Excerpt of the Scottish jig “With a hundred
pipers”, illustrating the difference between global features,
event features and the string representation.

two event features, the melodic interval feature is mapped
to “int-string” and the interonset interval to “ioi-string”.

Each type of representation allows us to describe the
music pieces on different levels of abstraction. When deal-
ing with global features, one can create a large collection
of features, each of them capturing information about a dif-
ferent musical aspect. The entire collection will be used
to vectorize the pieces, and classification is achieved with
standard machine learning algorithms. In the context of
event features or the string representation, only one event
feature is chosen for modelling, and this choice entirely
implies the musical aspect to model and its granularity.

In order to do a fair comparison between the methods,
we will only consider features that directly derive from
pitch on the one hand andduration on the other hand,
regardless of the used method. More precisely, for the
string methods andn-gram models, separate models are
built with the event features “melodic interval” and “in-
teronset interval”. For the global feature models, we manu-
ally created two collections of global features, one contain-
ing features derived from the pitches, and the other with
features derived from the note durations. Any attributes
that make use of other information such as the key or time
signature are not included.

3. METHODS

3.1 String methods

In this section we give a detailed description of the string
methods and the implementations that are used in our ex-
periments.

3.1.1 Sequence alignment

The first category of string methods are the sequence align-
ment methods, which are very common in computational
biology to compare protein sequences for example. Align-
ment algorithms define a similarity measure between two
sequences of symbols, by estimating the minimal cost it
takes to transform one sequence into the other by means

of edit operations, such as substition, insertion and dele-
tion. Therefore, this method is often referred to as “edit
distance”, which is in fact the Levenshtein distance. For
example, the edit distance between the strings ‘ismir’ and
‘music’ is equal to 4, since the optimal alignment between
them is given by

i s m i r

❏❏
m u s i c

which means four edit operations are needed: two substi-
tutions (‘i’ to ‘m’ and ‘r’ to ‘c’), one insertion (the ‘u’) and
one deletion (the ‘m’).

More advanced alignment algorithms and alignment scor-
ing mechanisms have been developed depending on the ap-
plication field. Mongeau and Sankoff [15] were among the
first who designed a variant specifically for the alignment
of musical sequences. For the purpose of our current re-
search, we have used WEKA ’s implementation of the edit
distance [2]. In a preliminary experiment, we tested this
implementation on the melodic interval and interonset in-
terval strings of the exact tune family database used by
van Kranenburg [22]. We obtained one nearest neighbour
classification accuracies of 94.2% and 80.6% respectively
in comparison with his 92.0% and 74.0%, which shows
that the general edit distance algorithm is sufficient for our
comparative study at hand.

3.1.2 Compression based distance

The second type of string methods are compression based
techniques, which also define a distance measure between
two strings, by using the concept of information distance
inherited from information theory. Ideally, this distance
would be represented as

d(x, y) =
max(K(x|y), K(y|x))

max(K(x), K(y))
,

whereK(x) is the Kolmogorov complexity of stringx,
andK(x|y) is the conditional complexity of stringx given
stringy. The underlying motivation behind this distance is
to compute how much information is not shared between
the two strings relatively to the information that they could
maximally share. Since the Kolmogorov complexityK(x)
can not be exactly computed, it is approximated by the
length of the compressed version of the string using a com-
pressorC, denoted byC(x). The information distance
is thus approximated by the normalized compression dis-
tance [5]:

NCD(x, y) =
C(xy)− min(C(x), C(y))

max(C(x), C(y))
,

wherexy represents the concatenation of the stringsx and
y. Various types of compressors can be used to estimate
the Kolmogorov complexity, in our experiments we used
bzlib , which is a block sorting text compression algo-
rithm. For instance, the normalized compression distance



between ‘ismir’ and ‘music’ is computed as follows:

C(‘ismir’ ) = 344,
C(‘music’) = 336,
C(‘ismirmusic’) = 352,

which are the compressed sizes in bits. So,

NCD(‘ismir’,‘music’) =
352− 336

344
= 0.046512.

This number represents how different the two strings are,
it is generally contained in[0, 1].

3.1.3 String subsequence kernel

The third kind of string method is the string subsequence
kernel method (SSK), which has been developed for text
classification [12]. This approach computes a similarity
measure between strings based on the number and form
of their common subsequences. Given any pair of two
strings, SSK will find all common subsequences of a spec-
ified lengthk, also allowing non-contiguous matches, al-
though these are penalized with a decay factorλ ∈ (0, 1).
For example,

SSK(k = 2, ‘ismir’,‘music’) = λ5 + λ6,

because there are two common subsequences ‘si’ and ‘mi’,
and the lengths of the matches are the exponents ofλ :

‘ismir’ ‘music’
match l1 match l2 l1 + l2

‘si’ ‘smi’ 3 ‘si’ 2 5
‘mi’ ‘mi’ 2 ‘musi’ 4 6

To speed up the algorithm, one can reduce the search
space of subsequences by specifying a maximal exponent
m of λ, which is calledλ-pruning; it has been shown there
is little quality loss due to this pruning. In our experiments,
we looked for short subsequences (k = 2, 3, 5) allowing
few or no non-contiguous matches. The parameterλ was
set to a default value of 0.5.

The general idea behind these three string methods is
to determine a similarity measure between two “stringi-
fied” music piecesx andy. A similarity measure between
strings is either derived from a distance metricd(x, y),
such as the edit distance or the normalized compression
distance (NCD), or else it is computed directly from the
strings, which is what the string subsequence kernel (SSK)
does. Given a distance metricd(x, y), one can simply use a
nearest neighbour approach to classify unseen test pieces,
replacing the usual Euclidean distance withd(x, y). In the
case of the string subsequence kernel, the computed simi-
larity measure is considered as the kernel function of a sup-
port vector machine, a state of the art classifier that learns
non-linear decision boundaries between classes.

3.2 n-gram models

In this section we briefly recall how ann-gram model can
be employed for classification of music pieces, for more

details we refer to our previous work [8]. In a first stage,
every piece of the music data is transformed into an event
feature sequence according to a feature of choice. In the
training phase, for each class then-grams are counted to
estimate the probability distribution of the musical “words”
in that particular class. Given a test piece represented by its
event feature sequence, the piece probability is then com-
puted as the joint probability of the individual events in
the piece according to the learned distribution, with the as-
sumption that the probability of an event only depends on
then−1 previous events. Finally, the test piece is assigned
to the class with the highest piece probability, which is the
most likely to have “generated” the piece.

Note that the music representation is basically the same
as for the string methods, but the essential difference be-
tween these methods is that ann-gram model aims to model
the transitions for a given class, whereas a string method
computes a pairwise similarity measure between pieces.

3.3 Global feature models

In this section, we describe what global features were cho-
sen for our experiments. Two separate global feature sets
were made, with features derived from the pitch on the one
hand and from the note durations on the other hand. The
features were chosen among the following (see Table 2) :

• TheAlicanteset of 28 global features, proposed by
P.J. Ponce de Léon and J.M. Iñesta in [17] to clas-
sify a collection of 110 MIDI tunes in the genres
jazz and classical. Among these, 7 are derived from
pitch, e.g. “average melodic interval” and 12 from
duration, like “duration range”.

• TheJesserset, containing 39 statistics designed by
B. Jesser [9], 31 of which are pitch-based features.
Most of these are basic relative interval counts, like
“dminthird”, measuring the fraction of descending
minor thirds, for all ascending and descending inter-
vals in the range of the octave. This set also includes
6 features derived from the note durations.

• The McKay set of 101 global features [14], which
were used in the winning 2005 MIREX symbolic
genre classification experiment and computed with
McKay’s software package jSymbolic [3]. This set
is composed of a wide range of features, since it was
intended to classify orchestrated MIDI files. We re-
tained 34 features based on pitch, for example “Di-
rection of motion”, i.e. the fraction of melodic inter-
vals that are rising rather than falling, and 4 based
on duration.

All features derived from pitch were joined to obtain a set
of 73 features, since there are not many overlapping fea-
tures. With the same procedure applied to the duration fea-
tures a set of 22 features was formed. We recall that any
features derived from the meter or the key signature have
not been retained, since we want to compare the methods
and representations on the basis of the same information.



Global feature set pitch duration
Alicante 8 12
Jesser 31 6
McKay 34 4
Total 73 22

Table 2. Global features that were selected for our ex-
periments,divided into those derived from pitch and those
from duration.

Since global features represent every instance as a mul-
tidimensional feature vector, any standard machine learn-
ing classifier can be applied to get a performance accuracy.

4. RESULTS

In this section we describe the experimental setup and the
classification results on the folk tune data setDance-9.
Since we are interested in the relative performance of the
string methods, then-gram models and the global feature
models, we have computed 10-fold cross validation classi-
fication accuracies for each of the methods. Care has been
taken to use the exact same cross validation folds in all
experiments, and the classifier parameters (if applicable)
have always been set to standard values to do an unbiased
comparison between the methods.

The string methods edit distance and NCD have been
evaluated using a one nearest neighbour approach (1NN),
whereas SSK implies one works with a support vector ma-
chine. Different lengths of short subsequences have been
examined (k = 2, 3, 5), and it was found that the best per-
formances were obtained with contiguous matches; only
those will be displayed. For then-gram models, we con-
structed trigram and pentagram models, in direct compari-
son with the SSK method. The global feature vectors have
been classified with nearest neighbour approaches as well
as with a regular SVM kernel with a Radial Basis kernel
Function (RBF). For all experiments with SVM, the pa-
rameter determining the softness of the decision boundary
has been set to its default value, after verifying this does
not penalize any of the methods.

The results are reported in Table 3, which have to be
compared to a baseline classification accuracy of 36.1%
one obtains by always choosing the largest class “Jig”. The
first column contains the results using only features related
to pitch or melodic interval sequences, whereas the sec-
ond column gives the results with the duration features and
interonset interval sequences. It appears immediately that
the latter leads to superior classification accuracies regard-
less of the method, with a difference of approximately20%
on average. This shows that the recognition of folk dance
types on this corpus is easier to achieve with the duration
representations than with melodic ones, which is not sur-
prising since folk dances are commonly distinguished by
their rhythmic patterns.

SSK appears to be the most powerful string method, es-
pecially with contiguous subsequences of lengthk = 3.
However, when we increase the length tok = 5 the per-

String methods melodic int. interonset int.
EditDist (1NN) 50.0 70.0
NCD (1NN) 48.0 68.0
SSK (k = 2, m = 4) 54.0 71.2
SSK (k = 3, m = 6) 60.8 72.9
SSK (k = 5, m = 10) 38.4 68.9
n-gram models melodic int. interonset int.
n = 3 60.7 71.9
n = 5 66.1 76.1
Global feature models pitch duration
1NN 40.3 66.9
5NN 44.8 69.3
SVM, RBF-kernel 53.5 67.7

Table 3. The 10-fold cross validation classification accu-
racies withall methods using the interval and duration rep-
resentation.

formance drops when using the melodic interval strings.
NCD does not lead to any promising result, whereas the
edit distance does reasonably well, especially if one keeps
in mind its computation time is a lot shorter than for SSK.

The comparison across all the methods reveals that the
pentagram model clearly outperforms the other approaches,
with both the melodic interval and the interonset interval
features. The trigam model also outperforms most other
methods with both representations, except for SSK with
k = 3 that achieves very similar results. On this corpus,
the string methods and global feature models yield simi-
lar results with the melodic features, but on the rhythmic
features there is a slight advantage for all the string meth-
ods except NCD. For the global feature models, the SVM
with RBF-kernel performs better than both nearest neigh-
bour models with the melodic features, but with the rhyth-
mic features there is no benefit in using the more sophis-
ticated SVM classifier over the simple nearest neighbours
approach.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we thorougly examined the classification per-
formances of three string methods and compared them with
well-known other classification methods on a large folk
dance dataset with nine classes. We have described the
difference between the underlying types of music repre-
sentation and features, and have shown that features based
on duration lead to better classification models than fea-
tures based on pitch, no matter if they are used to represent
the music with an event feature sequence or string, or with
a collection of global features.

The comparison between the methods has revealed that
then-gram models outperform both the string methods and
the global feature models, which is in agreement with our
earlier survey [8]. This result proves the effectiveness of
modelling the transitions within a musical sequence and
supports our hypothesis that then-gram model should be
the default model for folk tune classification.

However, the string methods generally perform slightly



better than the global feature models, particularly with the
string subsequence kernel which obtains the highest accu-
racies among the string methods. This first result on music
classification with the string subsequence kernel is encour-
aging for future work. The alignment methods which have
been shown to be efficient in tune family classification [22]
cannot measure up to the pentagram model on this genre
classification task. We are currently doing more research
on other folk song databases to get a broader view of the
alignment method performance. In particular we are inter-
ested in discovering which models are most effective with
respect to the precise classification task at hand.
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ABSTRACT 

Turkish makam music needs a comprehensive database 
for public consumption, to be used in MIR. This article 
introduces SymbTr, a Turkish Makam Music Symbolic 
Representation Database, aimed at filling this void.  
SymbTr consists of musical information in text, PDF, and 
MIDI formats. Raw data, drawn from reliable sources, 
and consisting of 1,700 musical pieces in Turkish art and 
folk music was processed featuring distinct examples in 
155 diverse makams, 100 usuls  and 48 forms. Special 
care was devoted to selection of works that scatter across 
a broad historical time span and were among those still 
performed today. Total number of musical notes in these 
pieces was 630,000, corresponding to a nominal playback 
time of 72 hours. Synthesized sounds particular to Turk-
ish makam music were used in MIDI playback, and tran-
scription/playback errors were corrected by input from 
experts. Symbolic representation data, open to the public, 
is output from a computer program developed exclusively 
for Turkish makam music. SymbTr was designed as a 
wholesome representation of aforementioned distinct au-
ditory and visual features that distinguish Turkish makam 
music from other music genres. This article explains the 
database format in detail, and also provides, through ex-
amples, statistical information on pitch/interval allocation 
and distribution. 

1. INTRODUCTION 

Turkish makam music is a genre drawing roots from a 
thousand year old tradition, featuring distinct melodic 
patterns called makam and rich rhythmic structures called 
usul. Since the number of tones per octave is greater in 
Turkish makam music, compared to Western music, sev-
eral sharp and flat accidentals appear in printed scores. 
Additionally, one must take into consideration a multi-
tude of idiosyncratic rhythmic structures. Although there 
exists only one version of the score, independent of the 
instrument or key, musicians perform improvised trans-
positions during performance, as permitted by the ranges 
of their instruments and the vocalist on hand. Probably 
the most prominent feature of Turkish makam music is its 

monophonic ─and incidentally heterophonic─ structure. 
Another characteristic is the number of notes in an oc-
tave: 17, 24, and, according to some musicologists, even 
a greater number of tones to the octave make up the pitch 
palette of Turkish makam music [12], [16]. Although dis-
playing a higher pitch count compared to Western music, 
there is no one-to-one correlation between the fixed fre-
quency values, music theory, implied in engraved scores 
and what is actually performed in practice [3]. 

  Everything mentioned up to this point was to differ-
entiate Turkish makam music from many other world 
music genres. It then follows; data structures and algo-
rithms developed for other musical traditions are not di-
rectly applicable to Turkish makam music. On the other 
hand, there are only a handful of researchers working on 
computational models for Turkish makam music. There 
remains much to be done in areas related to data collec-
tion/compilation, algorithm development, and research. 
SymbTr is hopefully a likely candidate to be a pioneer in 
the field, since it is capable of accommodating and ex-
pressing information specific to makam music. Secondly, 
early studies ([9], [18]) have returned encouraging re-
sults. It is anticipated that SymbTr might provide a setting 
for scholars interested in makam music, potentially 

 
(a) 

 
(b) 

 
(c) 

Figure 1. A Turkish folksong's scoring in (a) KTM,  
(b) THM, and (c) mixed format 
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stimulating further research at a global level. 

2. STYLES OF TURKISH MAKAM MUSIC 

Turkish makam music is viewed under two major head-
ings: 

1. Classical Turkish music (KTM), 
2. Turkish folk music (THM). 
Since both styles originate from the same cultural 

roots, their modal motifs and rhythmic structures are very 
similar in character [17]. Owing to political movements 
emerging at the turn of the 20th Century, a superficial bi-
furcation took place, which led to a divergence between 
the two styles resulting in two separate traditions. Today, 
these two traditions differ considerably when it comes to 
their respective theoretical models, notation systems, and 
terminology. Fig. 1 shows the first two measures from a 
folksong score, which is part of both the THM and KTM 
repertoires of TRT 1. Scores are shown in three different 
notational systems. 

As can be detected in the scores, accidental symbols, 
in particular, are different even though the melody is es-
sentially the same: In the KTM version reverse and 
hooked flat signs (Fig. 1-a) represent the accidentals, 
while in the THM version superscripts over ordinary flat 
signs are used (Fig. 1-b). The mixed notation in (Fig. 1-c) 
displays a combination of the two. Reverse and hooked 
flats, by definition, lower a note by 1 and 4 Holdrian 
commas (Hc) 2  respectively. However, many of the 
measurements ([1], [4], [5]) evince that, printed scores for 
works in the Saba makam should carry a 2 comma flat 
sign for B and a 3 comma flat sign for D as the key signa-
ture. Indeed, these values are substituted in THM and 
mixed notations. 

The difference between KTM and THM notation lies 
not only in the symbols representing the accidentals. In 
KTM notation there are almost no ornamentation sym-
bols on the score. In THM, on the other hand, ornamenta-
tion is achieved by repeated use of notes with smaller 
rhythmic values, as shown in the trill in Fig. 1-b [17]. 
When such passages are converted into SymbTr, note 
clusters representing ornamentation are indicated by a 
single core note, with its type shown in the Code field. 

Because of the fact that THM and KTM have mixed 
and intertwined traditionally, the SymbTr database natu-
rally accommodates pieces from both categories. Format 
in the database was, therefore, designed to reconcile the 
artificial disparity between the two traditions. The most 
important design element for the database was the fun-
damental tuning selected. The Arel - Ezgi (AE) tone-
system, which has been recognized and widely adopted as 
the official KTM system since the 1950s, has 24 notes in 
an octave. In contrast, THM has adopted a notation with 
17 notes to the octave. Twelve of the said 17 notes are 
common with the AE system. Moreover, both tonal scales 

                                                           
1 Turkish Radio/TV Broadcasting Corporation. 
2 Interval unit obtained by the division of the octave into logarithmical-

ly equal 53 parts: Hc = 1200 / 53 ≈ 22.5 cent. In this article comma 
signifies the Holdrian comma. 

present a near-perfect subset of 53 tone equal tempera-
ment (53TET), with deviations less than 1 cent [19] (Fig. 
2). Possibly due to this structural connection, Turkish 
makam music education has been built around 53TET, 
whether acknowledged by name (Ayomak, Sarısözen) or 

 
Figure 2. 17 tones in THM (left column), 24 tones in 
KTM (right column), and 53TET in between 



  
 
not [13]. Hence, the term "comma", when describing 
makams and preparing printed scores, refers to the 
Holdrian comma as the basic intervallic unit, obtained by 
equally dividing the octave into 53 equal parts. Selecting 
53TET as the master underlying tuning in SymbTr also 
facilitates transpositions across ahenks (pitch-levels). 
Ahenks can be defined as 7 principal and 5 minor catego-
ries corresponding to 12 chromatic pitch-levels akin to 
what key transposing instruments of Western music ac-
complish. Detailed information about ahenks and Turkish 
makam music in general can be found in [10] and [14]. 

3. MAKAM MUSIC AND SYMBOLIC DATA 

SymbTr database is generated by using the output from a 
computer program Mus2-Alpha, developed by the author 
of this article. This software is the first notation and play-
back application for Turkish makam music to the best of 
our knowledge. All pieces in the database were entered 
manually using the said software. Printed scores and 
MIDI files were, then, prepared for every piece in the da-
tabase. Initially, before the introduction of Mus2-Alpha 
and its sister applications (Nota 2.2 1, Notist 2), scores 
were engraved either manually or using programs such as 
Finale or Sibelius, that were developed solely to tran-
scribe Western music. Since these programs were not de-
signed to notate flats and sharps specific to Turkish 
makam music, their standard output formats such as Mu-
sicXML and MIDI have not been useful in research on 
Turkish makam music [7]. 

The format for SymbTr described in this article was 
derived from Mus2-Alpha's original format that was used 
initially to transcribe printable sheet music for pieces in 
Turkish makam music. Since this format includes reprise 
markings such as segno and coda, some modifications for 
scientific research are necessary. In SymbTr, notes are 
linearized just as they are performed. An advantage asso-
ciated with Mus2-Alpha originating data is that pieces can 
be amended through consultation with experts, using lis-
tening tests based on synthesized sound output. An entry 
level version of this program, Mus2okur 3, has reached 
thousands of users, thereby resulting in a wide scale 
screening of possible errors in the database. 

The main source of data in SymbTr is TRT and other 
trustworthy archives (Recollection of Turkish Music Cul-
ture 4), where almost all of them were entered using the 
AE notation. To synthesize realistic intonations, however, 
it was necessary to use pitches not included in the AE 
tone-system. Five notes in the THM scale lie outside the 
AE scale (Fig. 2). As a courtesy for Turkish musicians, a 
composite system was adopted in the printout scores of 
SymbTr: Symbols for flats and sharps were taken directly 
from AE, and numerical superscripts were inserted to ex-
press comma-alterations for notes that were not available 
                                                           
1 http://www.tulgan.com/Nota22/ 
2 http://notist.org/ 
3 www.musiki.org 
4 www.sanatmuziginotalari.com/ under http://devletkorosu.com 

Please go to the second link ‘http’first to reach the main site. Then, 
look for and click on the first address ‘www’. 

in the tone-system (Fig. 1-c). 

4. SymbTr FORMAT 

Basic information such as makam, form and usul related 
to each piece in SymbTr is indicated in the filename. In 
this manner, any piece can be accessed directly from the 
file system: 

beyati--sarki--aksak--karsidan_yar--dede_efendi.txt 
 

   Makam  Form   Usul          Title            Composer 
Some fields in the SymbTr format consist of different 

representations of the same information. Therefore, one 
field can be easily converted into the other with the help 
of the relevant computer code. However, since this addi-
tional information requires very little extra storage space, 
it is provided separately for the convenience of research-
ers. These basic and readily derived fields are described 
under common headings below. 

Code: Signifies a normal note (#9) or ornamentation. 
The most commonly used ornamentation codes are as fol-
lows: #7 for tremolos, #8 for acciaccatura, #12 for trills, 
and #23 for mordent. 

NoteAE / CommaAE: A kind of scientific pitch nota-
tion [20]: Indicates note letter, its octave (for exam-
ple, G5 for gerdaniye), and its comma equivalent (349) 
(Fig. 3). Notes in THM sheets that do not exist in the AE 
system are represented by their closest equivalent 
AE note, e.g. Mi b2 = Dikhisar (Eb1) (Fig. 2). C4 is the 

 
Figure 3. Triple octave operational range of SymbTr  
database and some of the comma numbers 
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9 Do5 318 C5 318 1 4 667 95 96 Bir  

9 Re5b3 324 D5b4 325 1 8 333 99 108 dal 

9 Re5b3 324 D5b4 325 1 16 167 99 96 
 

9 Do5 318 C5 318 1 16 167 95 84 
 

9 Si4b2 312 B4b1 313 1 4 667 95 72 da  

12 Do5 318 C5 318 1 8 333 99 96 i 

9 Do5 318 C5 318 1 16 167 99 96 
 

9 Si4b2 312 B4b1 313 1 16 167 95 96 
 

9 La4 305 A4 305 1 8 333 99 96 ki  

8 Si4b2 312 B4b1 313 1 8 42 99 96 
 

9 La4 305 A4 305 1 16 167 99 96 
 

9 Sol4 296 G4 296 1 16 167 95 96 
 

9 La4 305 A4 305 1 8 333 99 96 ki 

9 Si4b2 312 B4b1 313 1 8 333 95 96 
 

9 Do5 318 C5 318 1 4 1334 45 84 raz  

  Table 1. SymbTr representation of the score in Fig. 1.c 

 

http://www.sanatmuziginotalari.com/
http://devletkorosu.com/


  
 

Nr. Makams 
# of 

Pieces 
Usuls 

# of 
Pieces 

Forms 
# of  

Pieces 

1 Hicaz 118 Sofyan 251 Şarkı 677 

2 Rast 88 Aksak 246 Türkü 285 

3 Nihavent 85 Düyek 143 Seyir 169 

4 Uşşak 85 Aksaksemai 101 Küpe 120 

5 Segah 74 Curcuna 91 Peşrev 74 

6 Hüseyni 72 Ağıraksak 83 Aranağme 72 

7 Hüzzam 65 Yürüksemai 75 Sazsemaisi 66 

8 Mahur 54 Nimsofyan 74 İlahi 32 

9 Kürdilihicazkar 51 Semai 69 Yürüksemai 27 

10 Muhayyer 51 Senginsemai 54 Beste 23 

Table 2. The most used 10 makams, usuls, and forms in SymbTr 

note with the frequency of about 262 Hz and numbered as 
60 in the MIDI standard. All notes excluding C’s have a 
fractional MIDI Nr. The MIDI Nr corresponding to 
CommaAE can be computed by the following formula: 

        
            

   
                (1) 

In order to represent flats and sharps in Hc units, 
the "b" and "#" prefixes were used respectively. For ex-
ample, the segah note in AE tone-system is represented 
as B4b1; since, according to AE theory, it should sound 
one comma lower than the natural B (Si - buselik). Its 
comma equivalent is 313, and MIDI Nr is 70.87. 

Note53 / Comma53: Indicates the code and the value 
of the note in 53TET. If there is no difference between 
the performance and the sheet music, CommaAE and 
Comma53 values are the same. However, in some makam 
sequences such as Uşşak, Hüzzam, Saba and Karcığar, 
these two values often vary. For example, in some 
makams the pitch that corresponds to B4b1 in AE is 
Si4b2 in 53TET, since, in practice, this note should sound 
2 commas lower then Si (B). Its comma equivalent is 312, 
and MIDI Nr is 70.64. 

Numerator / Denominator and ms: Stands for the 
rhythmic value of the note, with its duration measured in 
milliseconds. When the tempo (quarter note beats per mi-
nute) of the piece is known, these two values can be con-
verted to each other by the following formula: 

                   

     
 
         

            
               (2) 

In Turkish makam music, changes in the tempo of a 
piece is a run-of-the-mill situation (e.g., the 4th section of 
sazsemaisi pieces are performed faster than other sec-
tions), and since the database can be used for rhythmic 
analysis purposes [9], it was found useful to enter these 
two strands of information in the same record. 

LNS (Legato / Normal / Staccato): Indicates how tied 
or detached the notes are to be played. This information is 
extracted by listening to performances in synch with 
verses and syllables in the lyrics. The default value is 95; 
that is, the last 5% of the duration time for normal notes 
is completed with silence. 50 means playback should be 
of staccato. Rest signs are determined using this value. 

VelOn: Indicates the volume or strike of the note, 
making nuanced performance possible. Turkish makam 
music scores ordinarily do not contain dynamics mark-
ings like piano or crescendo. In SymbTr an attempt has 
been made to compensate, 
as much as possible, for this 
deficiency. 

Syllable1: Indicates the 
syllable corresponding to a 
note. There is one space 
character at the end of the 
syllables that occur at word 
endings and two space char-
acters at the end of the vers-
es. This information was 
added to facilitate the track-
ing of the melody, as well as 

for its utility in studies of lyrics-based analyses [8]. In 
instrumental pieces, it is used to represent the beginning 
of sections such as "TESLİM", etc… In other places this 
field is left blank. Instrumental parts of vocal pieces con-
tain a series of dots in this field. In the original Mus2-
Alpha database, repetitive passages have a separate field 
for the second syllable. However, due to copyright con-
siderations there is only one field in SymbTr. 

The representation of the score of Fig. 1-c in SymbTr 
is listed in Table 1. The data starts immediately after the 
column headings. Fields are tab-delimited. 

5. MAKAM MUSIC AND MIDI 

It is impossible to produce makam music intonations us-
ing ordinary MIDI messages. Therefore, it becomes nec-
essary to use pitch-bend techniques. To generate the 
needed feature, a pitch-bend message must be sent with 
the same delta-time value as the note, just before the 
‘Note on’ message. The pseudo-MIDI messages for the 
first 5 notes in Fig. 1-c are as follows: 

Delta 
Time 

Pitch 
Bend 

Note 
On 

0 7 960 C4 
4 9 429 D5b 
2 9 429 D5b 
1 7 960 C4 
1 6 492 B 

 The anchor note is A (La). Therefore, pitch-bend is 
unnecessary for any A in all octaves. Bend is required for 
all other pitches. For example, the A – C interval is 13 Hc 
wide. This value is up to 5.7 cents narrower than the 
12TET minor third. Taking into account that 100 cents = 
4096 pitch bend units, bending for C is calculated as fol-
lows: 8 192 – 5.7 ∙ 40.96 ≈ 7 960. 
 MIDI files in SymbTr database are not for listening to 
music. They are included, so that the researchers may 
find it useful to hear the tune in its simplest raw form. To 
this end, even the instrument information has not been 
added. Voicing is done with the default MIDI instrument. 

6.  SOME STATISTICS 

SymbTr has been created mainly for the purpose of edu-
cation and scientific research, and hence, endeavored to 
be as rich as possible in the diversity of makams, forms, 



  
 

usuls, and so on. There are many examples such as seyir 
composed for educational purposes. One criterion in the 
selection of pieces has been music lovers’ familiarity 
with them, as to whether a piece be average or above-
average. We did not adopt  random sampling (as in [2], 
[11], and [15]) as proper methodology when one consid-
ers 80% of the twenty five thousand pieces in the TRT 
repertoire have hardly ever been performed or have be-
come obsolete. A musical piece, composed but almost 
never performed cannot be held equivalent to one widely 
known and frequently performed. 

 Some statistics about SymbTr as follows: 

Total number of pieces: 1 700 
Number of notes: ~ 630 000 
Classical: 1 400 
Folk: 300 
Vocal pieces: 1 295 
Instrumental pieces: 405 
Religious: 49 
The number of distinct makams: 155 
The number of distinct usuls: 100 
The number of distinct forms: 48. 

Highest ranking 10 makams, usuls, and forms are 
shown in Table 2. 

7.  PITCHES AND INTERVALS 

Of all the pitches in the database, 17 that are used 
over 1 per cent in quantity and duration are listed in de-
scending order in Table 3. Percentages in quantity and 
duration exhibit slight variances but these do not affect 
the ranking. 

 Figure 4 shows a histogram of these pitches in the 
two octave range between yegah (D4: 274) - tizneva (D6: 
380) using the note codes as given in Table 3. 

It is interesting to note that 9 pitches in the 3 octave 
range (Fig. 3) have never been used (for example, kaba-
hicaz, and kabadikhicaz). When we excluded the notes 
that were heard for less than one thousandth of the time, 
only 33 pitches remained, whereas there were 72 pitches 
defined in this range in the AE tone-system. These obser-
vations seem to support Can's results [6]. 

The most commonly used 13 AE intervals and their 
usage as quantity in percentages are listed in Table 4. 

 The SymbTr database can be accessed at the follow-
ing address, open for public consumption: 

http://compmusic.upf.edu 

 
Figure 4. Usage of the notes in SymbTr as durations in percentages 

Nr AE Name AE Code Quantity % Duration % 

1 Neva D5 16.1% 16.1% 

2 Çargah C5 11.0% 10.7% 

3 Hüseyni E5 9.4% 9.7% 

4 Gerdaniye G5 8.5% 9.1% 

5 Dügah A4 8.5% 7.9% 

6 Segah B4b1 6.9% 6.6% 

7 Acem F5 5.4% 5.6% 

8 Muhayyer A5 4.8% 5.3% 

9 Eviç F5#4 4.7% 5.0% 

10 Rast G4 4.0% 3.6% 

11 Nimhicaz C4#4 2.9% 2.8% 

12 Hisar E5b4 1.9% 1.9% 

13 Kürdi B4b5 1.8% 1.7% 

14 Dikkürdi B4b4 1.6% 1.5% 

15 Buselik B4 1.4% 1.4% 

16 Nimhisar D5#4 1.2% 1.2% 

17 Dikhisar E5b1 1.0% 1.0% 

Table 3. The most commonly used 17 pitches 

Interval 
(Hc) 

Name, Direction % 

-9 Whole Tone (Tanini), descending 18.1 

0 Unison 15.4 

-5 Apotome (Küçük Mücennep), desc. 12.5 

9 Whole Tone (Tanini) 11.4 

5 Apotome (Küçük Mücennep) 8.6 

-4 Limma (Bakıyye), desc. 6.3 

-8 Minor Whole Tone (B. Mücennep), 
desc. 

4.2 

4 Limma (Bakıyye) 4.1 

8 Minor Whole Tone (Büyük Mücennep) 2.6 

13 Augmented Second 2.1 

-12 Augmented Second, desc. 2.0 

-13 Augmented Second, desc. 1.8 

22 Perfect Fourth 1.6 

Table 4. The most commonly used 13 AE intervals 

http://compmusic.upf.edu/


  
 

8. SIMILAR DATASETS 

In this article, we announce the availability of a new da-
tabase called SymbTr, the most extensive machine reada-
ble database for Turkish makam music currently availa-
ble. There is only one other compilation that would quali-
fy to be called a database: the recently launched TSM 
Corpus [2] (TÜBİTAK 1 ref. is PN: 110K040) consisting 
of symbolic data that relate to 600 pieces. These two da-
tabases are far from adequately representing Turkish 
makam music. New data, however, is being continually 
added to the SymbTr database through various projects. In 
addition, Mus2 (Turkish makam and microtonal music 
notation program) 2, which is still being marketed com-
mercially, can produce output in the SymbTr format. 

TSM Corpus project, supported by TÜBITAK, can be 
quite useful. However, the following deficiencies in data-
base design need to be resolved: 

 Presence of data belonging to various pieces in a 
single Excel format file makes usage difficult, 

 Syllabized lyrics are not included in the database, 
 Tempo information for musical pieces is not provid-

ed. Only one quantization information is included 
concerning durations: 1/4 meter note = 100 units. 
This is a serious drawback for musical pieces that 
require, in particular, the inclusion of tempo and / or 
usul modulations throughout, 

 It is not specified which engraved score variant is 
employed when entering symbolic data. 

9. DISCUSSION 

If MIR community members at large run their applica-
tions on the SymbTr database, making necessary small 
changes, it may lead to two-way improvements: Myster-
ies of makam music may be unraveled on a grand scale, 
at a global setting while scholars keep tapping into new 
structures and patterns, thus moving into uncharted terri-
tories of human cognition. 
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ABSTRACT

This paper addresses the polyphonic music classification
problem on symbolic data. A new method is proposed
which converts music pieces into binary chroma vector se-
quences and then classifies them by applying the dissimilarity-
based classification method TWIST proposed in our previ-
ous work. One advantage of using TWIST is that it works
with any dissimilarity measure. Computational experiments
show that the proposed method drastically outperforms SVM
and k-NN, the state-of-the-art classification methods.

1. INTRODUCTION

Classification of music is one of the most fundamental prob-
lems in music information retrieval research and has been
studied extensively (e.g., [4, 5, 7, 19, 20, 25, 28]). Music is
usually polyphonic in the sense that more than one tone
sounds simultaneously and thus a single time interval is
made up of two or more simultaneous tones. Classifying
polyphonic music pieces seems to be more difficult than
classifying monophonic music pieces.

The difficulty in classifying polyphonic music stems from
two issues. The first issue is in determining what kind of
information needs to be extracted from polyphonic music.
Many previous research (e.g., [13, 18]) reduce the classifi-
cation problem of polyphonic music to that of monophonic
music by converting the data in some way. For example,
the so-called skyline method converts polyphonic music to
monophonic music by choosing the highest pitches among
multiple pitches. This approach is effective to an extent,
but it does not fully exploit the information which can be
obtained from multiple pitches.

The second issue is how to classify the preprocessed
data. A major approach of machine learning techniques
is to represent data as feature vectors and then applying
learning algorithms. There are several known features such
as performance worm [9], performance alphabet [26] and
others [4, 19, 20, 28]. Then, it is non-trivial to construct ef-
fective features from data, since such construction requires
much human resource such as experts’ knowledge. If we

Permission to make digital or hard copies of all or part of this work for
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c© 2012 International Society for Music Information Retrieval.

employ kernel-based machine learning approaches such as
SVM (e.g., [15–17, 21, 29]), we can avoid the problem
of explicitly constructing features by using kernels since
kernels implicitly define features. However, the kernel-
based has a limitation that the kernel must be positive-
semidefinite. Therefore many popular (dis)similarity mea-
sures such as the edit distance is not applicable since they
are not proved to be positive-semidefinite.

In this paper, we propose a new method for classify-
ing polyphonic music, which is a combination of poly-
phonic music preprocessing and classification techniques.
For preprocessing data, our method employs chroma vec-
tor representation which is popular for audio data (e.g., [3]).
Unlike previous approaches such as the skyline method,
we preprocess the data so that information contained in
the original data is kept as much as possible. An advan-
tage of the chosen approach is that it captures concurrent
behavior of pitches by encoding them into a new set of
strings, and therefore, can extract more information from
polyphonic music data than the monophonic music reduc-
tion approach.

For classification, we propose a multi-class version of
our classification method named TWIST (Tug-of-War be-
tween Instances by Soft margin optimization Technique)
proposed in [2]. TWIST is based on the theory of Wang et
al. [31] for learning with (dis)similarity functions. The the-
ory guarantees that under some mild assumptions, the final
classifier constructed from dissimilarity functions is accu-
rate enough for future data. Further, TWIST can use any
dissimilarity function which might not be positive semi-
definite.

By combining the two approaches described above, we
significantly outperform the state-of-the-art methods such
as k-nearest neighbor (k-NN) and SVM with string kernels
for composer classification tasks of classical piano music
and Japanese POP music given in MIDI format.

2. OUTLINE OF OUR METHOD

In this section, we explain the outline of our method. Our
method consists of two parts: (i) First of all, we convert
polyphonic music data into binary chroma sequences. In
our experiments, the original polyphonic data is given as
MIDI data. (ii) Next, given labeled binary chroma se-
quences and a dissimilarity function which measures the
discrepancy between them, we use a multi-class version of
TWIST to learn a classifier. The details are given in Sec-



tion 3.

3. QUANTIFYING DISSIMILARITY BETWEEN
MUSIC PIECES

The key to successfully using TWIST is in choosing how
to quantify dissimilarity between music pieces. We con-
sider dissimilarity measures d that are combinations of a
preprocessing p of music pieces into particular sequential
representation, and a string dissimilarity measure δ. That
is, d is given by d(x, y) = δ(p(x), p(y)), where x, y are
music pieces.

One popular sequential representation of polyphonic mu-
sic is the chroma vector sequence representation. A chroma
vector is a twelve-element vector with each dimension rep-
resenting the intensity in a very short time interval, as-
sociated with a particular semitone regardless of octave.
Chroma vectors model important aspect of music audio
and have been widely used in music retrieval [22, 23], mu-
sic classification [1, 10], and several other applications in
music information processing [24].

On the other hand, many string (dis)similarity measures
have been proposed, such as the edit distance [30], the
longest common subsequence (LCS) length [14], the nor-
malized compression distance (NCD) [6], which are used
in many applications such as automatic spelling correc-
tion, information retrieval, gene information analysis and
so on. String kernels such as the n-gram kernel [16], the
mismatch kernel [15], the subsequence kernel [21] are also
string similarity measures.

Consider applying such a string similarity measure to
music pieces that are given in the form of sequences of
binary chroma vectors (or pitch sets). A naive approach
would be to use the so-called skyline method, where the
highest pitch is chosen among multiple pitches in each time
interval. It is essentially a reduction to monophonic music
processing.

Another approach is a direct computation of dissimilar-
ity regarding the binary chroma vectors as just symbols.
There are 212 = 4096 symbols. For the edit distance, we
have to define the weights associated with edit operations,
namely, the weight w(a, ε) of deleting a and the weight
w(ε, a) of inserting a for any symbol a, and the weight
w(a, b) of replacing a with b for any distinct symbol pair
(a, b). The simplest way is to use the unit weight func-
tion such that w(a, ε) = w(ε, a) = 1 for any symbol a
and w(a, b) = 1 for any distinct symbol pair (a, b) 1 . An-
other possible way would be to set w(a, b) = 1 − θ(a, b)
where θ(a, b) is the angle between the vectors a and b for
any distinct symbol pair (a, b), and w(a, ε) = w(ε, a) = 1
for any symbol a. An alternative way is to quantify resem-
blance between chroma vectors based on musical knowl-
edge. Harte et al. [12] proposed such a method: It converts
12-dim. binary chroma vectors into 6-dim. real-valued vec-
tors, called the tonal centroid vectors (TC vectors in short).
They claim in [12] that close harmonic relations such as
fifths and thirds appear as small Euclidian distances. Thus

1 The edit distance with this weight function is often called the Leven-
shtein distance.

the Euclidian distance of two TC vectors or the cosine of
the angle between them could be a good dissimilarity (sim-
ilarity) measure between original chroma vectors.

Using TC vector conversion Ahonen et al. [1] took an-
other approach. The component values of TC vectors are
quantized to 0 or 1 to produce 6-dim. binary vectors, which
we call the binary TC vectors. The resulting sequences are
thus strings over an alphabet of size 64, and NCD with
bzip2/PPMZ is used to quantify their dissimilarity.

In Section 5 we compare by computational experiments
the performance of all combinations of sequential repre-
sentation and (dis)similarity measure mentioned above.

4. CLASSIFICATION METHOD

In this section, we briefly sketch TWIST [2] which is de-
signed for binary classification. Then we show how to ex-
tend TWIST for multi-class classification tasks.

4.1 binary classification

TWIST employs a dissimilarity-based learning framework
of [31], which we call TW (Tug-of-War). We first explain
the TW framework below.

Let X be the instance space. We call a pair (x, y) of
instance x ∈ X and label y ∈ {−1, 1} an example. Sup-
pose that we are given p positive examples (x+

1 , +1) . . . ,
(x+

p , +1) and n negative examples (x−
1 ,−1), . . . , (x−

n ,−1).
We are also given a dissimilarity function d(x, x′) is a
function from X × X to R+.

For each pair of positive instance x+
i and negative in-

stance x−
j (i = 1, . . . , p, j = 1, . . . , n), we define the base

classifier hi,j : X → {−1, +1} as follows:

hij(x) = sgn(d(x−
j , x) − d(x+

i , x)),

where sgn(a) = 1 if a > 0 and −1 otherwise. The base
classifier hij classifies an instance x as positive if x is more
dissimilar to the negative instance x−

j than the positive in-
stance x+

i (in other words, x is more similar to x+
i than

x−
j ) and it classifies an instance x as negative, otherwise.

The behavior of the base classifier seems like a tug-of-war,
which is why we call the framework TW. In the TW frame-
work, the final classifier is a weighted voting of base clas-
sifiers,

sgn[
p∑

i=1

n∑
j=1

wijhij(x)]

for some weights wijs. TW has a theoretical guarantee
that, under some natural assumptions, there exist weights
such that the associated final classifier is accurate enough
for future instances. A heuristics is used to determine weights
in the original paper [31].

Our previous work [2] uses a more robust method for
finding weights than the above mentioned heuristics. We
named the method of [2] TWIST, which is an abbreviation
of “Tug-of-War of Instances by Soft margin optimization
Technique”. TWIST employs the 1-norm soft margin opti-
mization to determine weights wijs. The 1-norm soft mar-
gin optimization is a standard formulation of classification



problems in Machine Learning (see, e.g., [8, 32]), which
is known to provide a robust classifier. In our case, the
1-norm soft margin optimization is formulated as follows:

max
ρ,b,w,ξ+,ξ−

ρ − 1
ν

p∑
k=1

ξ+
k − 1

ν

n∑
k=1

ξ−k (1)

sub.to
p∑

i=1

n∑
j=1

wijhij(x+
k ) + b) ≥ ρ − ξ+

k (k = 1, . . . , p),

−
p∑

i=1

n∑
j=1

wijhij(x−
k ) + b) ≥ ρ − ξ−k (k = 1, . . . , n),

w ≥ 0,

p∑
i=1

n∑
j=1

wij = 1, ξ+, ξ− ≥ 0,

where each yk is +1 or −1. An additional advantage of 1-
norm soft margin optimization is that the resulting weights
are likely to be sparse since we regularize 1-norm of the
weights This property is also useful for feature selection
tasks.

4.2 multi-class classification

We explain how to extend TWIST for multi-class classi-
fication. We employ the standard reduction method from
multi-class to binary classification, one-versus-rest. The
one-versus-rest method solves K-class classification by re-
ducing it to K binary classification problems. For each
class k (1 ≤ k ≤ K), the associated binary classification
problem is constructed by assuming the label k is positive
and other labels are negative. Then a learning algorithm is
applied for each binary classification problem and it out-
puts the classifier hk : X → R for each class k. The final
classifier of the one-versus-rest method is given as

arg max
k=1,...,K

hk(x).

5. COMPUTATIONAL EXPERIMENT

We evaluated the performance of TWIST in composer clas-
sification of music pieces in comparison to those of the
classification methods k-NN and SVM. A suitable dataset
should contain enough number of music pieces for each
composer, and the pieces for all composers have roughly
the same conditions (the length, genre, instrument, etc. of
the piece). Although various MIDI datasets are publicly
available, datasets suitable for composer classification are
rare. For example, the classical music dataset of the RWC
Music Database 2 consists of 50 pieces written by 24 com-
posers, only 2.08 pieces for each composer on the average.

The following datasets were available for our experi-
ments:

Classical. The set of classical music MIDI files described
in [27]. It consists of 5 sets of 25 pieces of keyboard

2 http://staff.aist.go.jp/m.goto/RWC-MDB/

music, written by Bach, Beethoven, Chopin, Mozart
and Schumann, respectively.

JPOP. A set of Japanese POP (JPOP) music MIDI files for
KARAOKE downloaded from a commercial site by
YAMAHA. It consists of 5 sets of 25 pieces of JPOP,
written by 5 composers (Tomoyasu Hotei, Tetsuya
Komuro, Keisuke Kuwata, Takahiro Matsumoto, Kazu-
masa Oda).

From the MIDI files, we removed the MIDI events other
than the NOTE ON/OFF events and quantized the NOTE
ON/OFF times with unit time corresponding to the six-
teenth note length. The tracks/channels of the MIDI files
can then be viewed as sequences of sets of pitches that are
“ON” in respective unit time intervals. Each MIDI file in
Classical consists of two tracks, corresponding to the left
and right hand parts. We extracted two pitch-set sequences
and merged them into a single sequence. Each MIDI file
in JPOP consists of a single track with several channels.
We chose the channel 0 corresponding to main melody part
and obtained a single pitch-set sequence from the channel.
We then converted the obtained pitch-set sequences into (a)
highest-pitch strings, (b) binary chroma vector sequences,
and (c) binary TC vector sequences.

For quantifying dissimilarities between sequences, we
adopted several (dis)similarity measures between strings.
For TWIST, SVM and k-NN, we used the following two
string kernels: n-gram kernel with parameters n = 2, 5, 10
and mismatch kernel with parameters n = 5, 10 and m =
1, 2, where m is the maximum number of errors allowed.
For TWIST and k-NN, we also used the following (dis)simi-
larity measures: edit distance, LCS, and NCD with com-
pression programs gzip and bzip2.

For the edit distance between binary chroma vector se-
quences, we used the symbol-pair weight functions w of
the three types: (i) the unit weight (w(a, b) = 1 if a 6= b
and w(a, b) = 0 if a = b); (ii) w(a, b) = 1 − cos θ(a, b)
for binary chroma vectors a, b; and (iii) w(a, b) = 1 −
cos θ(a′, b′) for TC vectors a′, b′ of binary chroma vec-
tors a, b. For highest-pitch strings and binary TC vectors,
we used only the unit weight. We used the cosine val-
ues for (ii) and (iii) in the case of LCS. We note that the
compression programs gzip and bzip2 used in NCD
take data files of byte-sequences as input. We encoded the
highest-pitch strings as one-byte-integer sequences, wrote
them into data files and then applied the compressors to the
files. For binary chroma vector sequences, we wrote them
as data files of two-byte-integer sequences to be processed
in a byte-wise manner by the compressors.

We evaluated the three classification methods by per-
forming 5-fold cross validation. We used the values 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 for the parameter ν of the 1-norm soft
margin optimization formulation (1). For SVM, we used
the ν-SVM implementation of LIBSVM (version 3.11) [11].
The values 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 for the parameter ν
were used. For k-NN, we used k = 1, 3, 5. Accuracies
are obtained using the best value of ν for each method and
each (dis) similarity measure.



Table 1. Comparison of classification accuracy for dataset Classical (in %).

(a) highest-pitch strings.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 70.40 78.40 80.80 84.80 76.00 77.60 72.80 72.80 81.60 79.20 75.20
1-NN 52.80 20.00 51.20 41.60 16.00 20.00 12.00 19.20 18.40 12.00 13.60
3-NN 60.00 18.40 62.40 48.00 17.60 41.60 44.80 28.00 19.20 46.40 39.20
5-NN 51.20 24.80 56.00 39.20 33.60 27.20 32.00 36.00 34.40 31.20 30.40
SVM N/A N/A N/A N/A 51.20 44.00 24.80 52.00 52.80 26.40 29.60

(b) binary chroma vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

weight weight
bzip2 gzip n = 2 n = 5 n = 10

n = 5 n = 10
unit cosine TC unit cosine TC m = 1 m = 2 m = 1 m = 2

TWIST 80.00 70.40 72.00 81.60 77.60 77.60 91.20 92.00 80.00 70.40 49.60 74.40 73.60 61.60 67.20
1-NN 46.40 50.40 44.80 29.60 30.40 27.20 63.20 53.60 20.00 22.40 24.00 20.80 21.60 18.40 17.60
3-NN 35.20 43.20 38.40 25.60 28.80 24.00 68.00 63.20 16.80 4.80 8.00 10.40 16.80 4.80 4.80
5-NN 25.60 40.00 37.60 23.20 23.20 21.60 65.60 56.00 25.60 1.60 9.60 3.20 11.20 4.80 4.00
SVM N/A N/A N/A N/A N/A N/A N/A N/A 57.60 40.00 24.80 44.80 51.20 24.00 23.20

(c) binary TC vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 76.00 78.40 85.60 88.80 78.40 70.40 59.20 72.00 73.60 64.80 67.20
1-NN 42.40 28.00 56.00 59.20 20.00 20.00 17.60 19.20 19.20 16.00 17.60
3-NN 32.00 25.60 64.80 65.60 18.40 18.40 17.60 18.40 18.40 15.20 16.00
5-NN 28.00 25.60 57.60 52.00 22.40 1.60 6.40 3.20 12.00 1.60 0.80
SVM N/A N/A N/A N/A 58.40 46.40 25.60 52.00 54.40 25.60 29.60

The experimental results for Classical are summarized
in Table 1. TWIST drastically outperforms the other clas-
sification methods in all combinations of sequential repre-
sentation and (dis)similarity measure. TWIST shows the
best accuracy when used with combination of the binary
chroma vector sequence representation and NCD with gzip.

The experimental results for JPOP are summarized in
Table 2. Again, TWIST defeats the other classification
methods in most combinations of sequential representa-
tions and (dis)similarity measures. This time TWIST us-
ing NCD with bzip2 shows good accuracies. In fact the
best and the second best are achieved by NCD with bzip2
combined with the highest-pitch strings and with the bi-
nary chroma vector sequence representations, respectively.

Now we discuss the effects of preprocessing for clas-
sification of JPOP and Classical. For JPOP, the classi-
fication accuracy with highest-pitch strings is better than
that with chroma vector sequences. This might be due
to the fact that JPOP is almost like monophonic music.
More precisely, each music of JPOP is characterized with
highest-pitch sequence mostly corresponding to the lead
vocal line. On the other hand, each piano music of Clas-
sical is characterized with a succession of simultaneously
sounding pitches. Therefore, chroma vector representation

is more advantageous for classification of polyphonic mu-
sic since the representation keeps more information in the
original music.

6. CONCLUSION

In this paper we proposed a polyphonic music classifica-
tion method as a combination of way of quantifying affin-
ity between music pieces and the classification technique
TWIST [2]. The method converts given music data into
binary chroma vector sequences, and builds a classifier
based on the similarity values between the sequences (or
their converted sequences) using a string similarity mea-
sure. One advantage is that TWIST works with any simi-
larity measure, not necessarily to be positive semidefinite.
The results of computational experiments with classical
music and Japanese POP music show that TWIST dras-
tically outperforms the well-known classification methods
k-NN and SVM with string kernels in all combinations of
sequential representation and similarity measure.

Although the computational experiments were carried
out on MIDI files, our classification method can, in the-
ory, be applied to audio files, provided that an appropriate
function that quantifies affinity between music audio data



Table 2. Comparison of classification accuracy for dataset JPOP (in %).

(a) highest-pitch strings.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 78.40 80.80 86.40 73.60 38.40 31.20 39.20 28.80 48.80 26.40 28.00
1-NN 26.40 21.60 33.60 27.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 37.60 45.60 58.40 44.00 58.40 58.40 20.00 20.00 58.40 58.40 20.00
5-NN 34.40 42.40 43.20 40.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
SVM N/A N/A N/A N/A 35.20 25.60 17.60 25.60 36.00 17.60 19.20

(b) binary chroma vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

weight weight
bzip2 gzip n = 2 n = 5 n = 10

n = 5 n = 10
unit cosine TC unit cosine TC m = 1 m = 2 m = 1 m = 2

TWIST 80.00 83.20 83.20 76.80 81.60 81.60 84.80 79.20 60.80 48.80 28.80 44.00 50.40 36.00 34.40
1-NN 31.20 30.40 34.40 27.20 27.20 30.40 35.20 30.40 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 44.80 44.80 49.60 53.60 53.60 55.20 51.20 44.80 57.60 56.80 58.40 58.40 49.60 57.60 58.40
5-NN 41.60 41.60 46.40 46.40 46.40 32.80 48.80 40.00 19.20 20.00 20.00 20.00 27.20 20.00 20.00
SVM N/A N/A N/A N/A N/A N/A N/A N/A 40.80 40.00 32.00 40.80 40.80 33.60 36.00

(c) binary TC vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 72.80 83.20 79.20 80.80 56.00 38.40 40.00 45.60 42.40 28.80 37.60
1-NN 28.80 28.00 31.20 30.40 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 44.00 55.20 48.80 55.20 57.60 56.00 58.40 58.40 42.40 57.60 58.40
5-NN 44.00 48.00 45.60 40.00 20.00 21.60 20.00 20.00 27.20 20.00 20.00
SVM N/A N/A N/A N/A 38.40 39.20 32.00 41.60 43.20 33.60 36.00

is available. A future work is to develop such a function
for music audio data.
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ABSTRACT 

Music structure description, i.e. the task of representing 
the high-level organization of music pieces in a concise, 
generic and reproducible way, is currently a scientific 
challenge both algorithmically and conceptually. In this 
paper, we focus on semiotic structure, i.e. the description 
of similarities and internal relationships within a music 
piece, as a low-rate stream of arbitrary symbols from a 
limited alphabet and we address methodological ques-
tions related to annotation. 
We formulate the labeling task as a blind demodulation 
problem, whose goal is to identify a minimal set of semi-
otic codewords, whose realizations within the music 
piece are subject to a number of connotative variations 
viewed as modulations. The determination of labels is 
achieved by combining morphological, paradigmatic and 
syntagmatic considerations relying respectively on (i) a 
morphological model of semiotic blocks in order to de-
fine their individual properties, (ii) the support of proto-
typical structural patterns to guide the comparison be-
tween blocks and (iii) a methodology for the determina-
tion of distinctive features across semiotic classes. 
Specific notations are introduced to account for unresolv-
able semiotic ambiguities, which are occasional but must 
be considered as inherent to the music matter itself. A set 
of 500 music pieces labeled in accordance with the pro-
posed concepts and annotation conventions is being re-
leased with this article. 

1. INTRODUCTION 

Music can be defined as “the art, process and result of 
deliberately arranging sound items with the purpose of 
reflecting and affecting senses, emotions and intellect” 
[1]. From a more operative viewpoint, music can be ap-
proached as a set of sounds organized by human compos-
ers for human listeners. From these definitions, the role of 
structure in the musical process appears as rather essen-
tial, as it is both a constituent and a support of the musi-
cal discourse.  
In the domain of MIR, music structure is frequently con-
sidered as a central element to music description and 
modeling, but also as a scientific challenge, both algo-
rithmically and conceptually [2]. This situation has trig-
gered significant effort in the MIR community, towards 
the production of annotated resources [3][4] and the or-
ganization of evaluation campaigns [5]. 

At the scale of an entire piece, music structure is a con-
cept which can be approached in several ways : 

a. The acoustic structure which consists in describing 
the course and turns of active sources and/or timbral 
textures within the piece : singer(s), lead entries, in-
strumentation, etc…  

b. The functional structure which is based on usual 
designations of the different parts in terms of their 
role in the music piece, for instance : intro – verse – 
chorus – bridge – etc… (cf. [6], for instance),  

c. The semiotic structure which aims at representing, 
by a limited set of arbitrary symbols (called labels), 
the similarities (and interrelations) of structural 
segments within the piece. 

These various views of music structure have influenced 
the design of methods and algorithms for the automatic 
analysis of audio data, for instance [7][8][9]. 
However, in spite of a need and an interest for methodo-
logical and operational concepts [10][11], there is no 
well-established principles for the structural annotation of 
music pieces, either in terms of problem statement, pro-
cedure, or annotation conventions, even in “simple” cases 
like pop songs. 
In this context, some of our former work [12][13] has 
been focused on the definition of structural block bounda-
ries. In this article, we address the labeling task, i.e. the 
determination of equivalence classes between structural 
segments so as to obtain a symbolic transcription of the 
piece’s structure. Our methodology is primarily designed 
for audio data but can also be applied to written music. 
By approaching a music piece as a “communication sys-
tem”, we formulate (section 2) the labeling task as the 
resolution of an ill-posed problem, for which the solution 
is seeked by assuming that recurring properties and sys-
tematic differences across structural blocks are more 
prone to be semiotically relevant than irregular and occa-
sional variations. 
Within this scope, semiotic analysis aims at ensuring a 
trade-off between : 

- coverage : i.e. to encompass the largest possible num-
ber of musical properties in the semiotic description 

- regularity : i.e. to obtain a transcription as regular as 
possible and relating to a simple prototypical pattern. 

- accuracy : i.e. to account as faithfully as possible for 
the distinctive properties across semiotic elements. 

- compactness  : i.e. to limit the semiotic alphabet to a 
reasonable number (and distribution) of elements. Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.  
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This trade-off is obtained by combining methodological 
criteria based on morphologic, syntagmatic and paradig-
matic considerations (section 3). 
In section 4, we introduce annotation conventions which 
cover the most typical situations but which also handle 
occasional semiotic ambiguities, i.e. segments undecided-
ly belonging to two classes at the same time. 
We release, with this article, a set of approximately 500 
music pieces, annotated with the proposed conventions, 
and accompanied with additional documentation. 

2. CONCEPTUAL APPROACH 

The semiotic annotation of a music piece consists in sum-
marizing its high-level structure as a short sequence of arbi-
trary symbols drawn from a limited alphabet, for instance : 

A  B  C  D  A  B  C  D  E  C  D  C  D  D 

In the scope of this work, we suppose that the elements 
thus indexed are structural segments (or blocks) of com-
parable size and at a typical timescale between 10 and 25 
seconds. 

 A music piece viewed as a communication system  2.1

Assuming the existence of a semiotic description of music 
structure is intimately linked to the hypothesis of an under-
lying communication scheme which governs, at the struc-
tural scale, the global narrative organization of the piece. 
It is rather commonplace to consider music in general as 
a means of communication, based on a set of rules and 
conventions (which clearly depend on the type of music 
under consideration). Here, we consider that each music 
piece can itself be viewed as the output of a particular 
communication system, with its own constituents : a 
sender (the composer), one (or several) receiver(s) (i.e. 
listeners), a transmission channel (which can take various 
forms), a message (the musical narration) and a code, 
namely the alphabet of semiotic elements (or codewords) 
with which is built and developed the narration. 
From this viewpoint, the codewords are fundamentally 
piece-specific and they are discovered (and inferred) grad-
ually by the listener while the piece unfolds, i.e. while the 
musical narration develops. Describing the semiotic struc-
ture of a music piece can thus be viewed as a deciphering 
task based on the observation of the output of a communi-
cation system (possibly with the help of more or less con-
scious knowledge of composition conventions). 

 Semiotic structure : an ill-posed inverse problem 2.2

Semiotic structure description falls in the category of ill-
posed inverse problems, and therefore cannot be solved 
unequivocally unless additional constraints are incorpo-
rated to condition the solution. 

One option could be to try to formulate the conditioning 
constraints in terms of particular properties of the music 
substance, more or less specific to the genre of the piece. 
However, this approach would require sharp expertise, 
general concordance and a stable status of the composi-
tional rules for all genres, which is difficult to imagine 

and which would certainly raise major problems of com-
parability and compatibility of the result across pieces 
(and annotators). 

Our objective is to formulate the properties of semiotic 
elements (i.e. the conditioning constraints) as generically 
as possible. This is why, we propose that the structural 
description of the piece should be approached as some 
sort of blind information demodulation problem, i.e. the 
separation of a carrier (the sequence of codewords) and a 
modulation (the variations in the realization of the code-
words), solely based on the behavior and relationships of 
musical properties, but not on their actual substance. 

 Inferring a semiotic code : an intuitive example 2.3

Let’s consider the following sequence : 

 
A careful study of this sequence reveals that : 

- Almost all items are directional. 
- Only 4 distinct orientations are observed (say N, E, 

SE and NW).  
- Gray level varies but does not show any regular pat-

tern, nor does the tail of the objects, nor their size. 
- Orientation is driven by a strong syntax (for instance, 

SE is always followed by NW, NW never by E, etc…) 
- The shape of item #9 is singular (could be interpreted 

as pointing SE or NW, though) 

Let’s now consider this second sequence : 

 
Here, we observe that : 

- Almost all items are (also) directional but 
- Direction is taking all sort of random, unquantizable 

values 
- Gray level takes only 4 different values (say 20, 40, 

60 or 80 %) 
- The tail of the objects (still) does not show any regu-

lar pattern, nor their size. 
- Gray level is driven by a strong syntax (for instance 

20 % is always followed by 80 %) 
- The gray-level of item #9 is singular / undecided 

The successive values or states taken by the various prop-
erties constitute information layers and, in both cases, a 
particular layer exhibits some systematic and organized 
behavior : “orientation” in the first sequence, “gray-level” 
in the second one. The knowledge of their behavior con-
veys, at a low explicative cost, significant information on 
the overall sequence. At the same time, the other proper-
ties appear mostly as creating different variants (or con-
notations) in the realization of these properties. 

In both cases, the symbolic representation of the most or-
ganized information layer is : 

A  B  C  D  A  B  C  D  E  C  D  C  D  D 

and in fact, considering any other property (or combina-
tion of properties) would create rather uninformative, 
much less regular or almost trivial descriptions, such as 
ABCDE…KLMN, AABCBCDAEBADAA, or AAA…ABAAAAA. 



 The carrier-modulation model 2.4

In the proposed approach, we assume that the sequence of 
structural elements can be decomposed into : 

- A carrier component which is built on information 
layers whose behavior, is periodic, cyclic, regular, re-
current, repeated, correlated, quantized, organized…  

- A modulation component which corresponds to in-
formation layers which appear as aperiodic, acyclic, 
irregular, occasional, erratic, sporadic, uncorrelated, 
isolated, continuous-valued, scattered, etc…  

The sequence of semiotic labels describes the succession 
of property values taken by the carrier component. The 
modulation component represents circumstantial or inci-
dental variations of the semiotic elements 

 Application to music 2.5

At the level of a short musical passage, successions of 
notes belonging to a given musical scale form an acoustic 
melody whose properties (amplitude, duration, attack, …) 
are modulated over time to convey expressivity. 

Similarly, at the level of the whole piece, the succession 
of structural blocks forms some sort of semiotic tune, 
build on the “scale” of semiotic elements and whose 
modulation constitute connotative variants across differ-
ent stages of the musical narration. However, as opposed 
to conventional music units, those “macro-notes” are 
piece-dependent and they are primarily inferred by de-
tecting and comparing structural elements over the whole 
piece.  

At this point, it is very important to note that the particu-
lar status of a property as being either semiotic (carrier) 
or connotative (modulation) cannot be a priori decided 
on the single basis of its nature.  

Indeed, in a number of pieces, structural blocks are built 
on a few distinct harmonic progressions which recur 
throughout the piece together with a strong variability of 
the melodic line, whereas other pieces may be built on a 
unique harmonic cycle from the beginning to the end, the 
melodic line being the only distinctive feature between 
blocks. Some techno or electro pieces rather use the tim-
bre or the texture to create structural patterns over a con-
stant melodic-harmonic loop. In percussive pieces, the 
structural organization usually stems from rhythmic 
properties, etc…  

Therefore, the analysis of semiotic structure primarily re-
quires to identify, for each music piece, which are the mu-
sical information layers (melody, harmony, rhythm, etc…) 
taking part to the semiotic component. 

 Semiotic features 2.6

Let us now consider a third toy example, which we sup-
pose to be an other realization of ABCDABCDECDCDD : 

 
Here we have a slightly more complex situation than in 
section 2.3, in the sense that the structure of the sequence 

is based on a switch of the semiotic property on which the 
carrier component is built, as summarized in the table be-
low  : 

Symbol Orientation Gray-level Tail-shape Size 
A North any any any 
B East any any any 
C any 20 % any any 
D any 80 % any any 
E Indistinct Multiple any any 

Such a situation is very common in music : for instance in 
a song, verses 1 and 2 may consist of two distinct melodies 
based on a same harmonic progression while choruses 1 
and 2 may be based on two distinct chord loops (while the 
melodic line would be identical or almost). Indeed, in the 
case of music, semiotic structure relies on musical proper-
ties whose nature varies across pieces but which may also 
vary within a given piece.  

Semiotic annotation therefore requires the determination 
of what we call semiotic features, i.e. not only the semiot-
ic properties but also the particular values taken by these 
properties to form the carrier component describing the 
sequence of structural blocks. In the case above, the se-
miotic properties are orientation and gray-level, while the 
semiotic features are North orientation, East orientation, 
20 % gray-level and 80 % gray-level (the other values of 
orientation and gray-level being irrelevant to the carrier 
component). 

It is also worth noting that, in this example, the syntag-
matic organization of the sequence plays an essential role 
in guiding the determination of the relevant semiotic fea-
tures. Indeed, East is always followed by 20 %, itself al-
ways followed by 80 %, and more globally, the pattern 
N-E-20-80 is observed twice. 

 The three ingredients of semiotic structure 2.7

To sum up the underlying process at work behind semiot-
ic analysis, we can distinguish 3 levels of reasoning 
which jointly participate to the determination of the se-
miotic description : 

- Morphological analysis : intrinsic features of the 
structural elements composing the sequence (i.e, the 
properties and the values of these properties). 

- Syntagmatic analysis : local relations that elements 
exhibit with their neighbors within the piece 

- Paradigmatic analysis :  similarities and differences 
which they exhibit with other elements. 

The following sections investigate in details these three 
facets of semiotic structure analysis and how they interact 
with one another. 

3. METHODOLOGICAL AXES 

 Morphological analysis 3.1

The morphological analysis of structural blocks is based 
on the System & Contrast (S&C) model [14]. 



Under this approach, each structural block is assumed to 
be built around 4 morphological elements (of typically 2 
bars each) forming a square carrier system. These ele-
ments relate through a (usually 2x2) matrix of simple re-
lationships. Structural blocks can be more complex, but 
they usually can be reduced to a square stem. 
In general, on some musical information layers, the 4th 
element departs from the logical sequence formed by the 
first three (thus creating some sort of punctuation).  
The morphology of a square S&C can be written as : 

    ( )   ( )   ( ( ( ))) 

where a is the “seed” morphological element, f and g are 
the internal relations between the elements forming the 
carrier system and   a contrast function that represents 
the (relative) disparity of the 4th element. S&Cs exist on 
several musical layers in different forms and at different 
timescales simultaneously. Their synchronization con-
tributes to the musical consistency of the segment and to 
its autonomy [12]. Identifying S&Cs is thus very useful 
to locate, at the chosen timescale, the boundaries of the 
structural blocks.  
A S&C can be summarized as a quadruplet :        , 
which can be viewed as the “genetic code” of the struc-
tural block. Moreover, in many situations, either f or g (or 
both) are “identity” (id), resulting in well-identifiable 
morphological patterns such as aaaa, abab, aabb (for 
    ) or aaab, abac, aabc (for     ). These patterns 
can straightforwardly be extended to “close-to-id” or 
“begins-like” functions : aaa’b, aba’c, aa’bc, … 
The morphology of structural blocks can therefore be 
primarily characterized by the various systems followed 
by its (say p) active musical layers, i.e. as a multi-
dimensional quadruplet  (       )       . In many cas-
es, this quadruplet can be represented more simply as the 
morphological pattern governing each layer : for instance, 
         for the melodic line,       

    for the harmony, 
         for the drum loop, etc… 

 Syntagmatic analysis 3.2

Moving back now to the timescale of the entire piece, we 
discuss how the position and context of structural blocks 
within the piece can be taken into account in order to 
guide semiotic labeling. 
Indeed two structural blocks will be considered to be a 
priori more likely to belong to the same equivalence class 
if they appear in similar contexts in the piece, i.e. if they 
are located beside similar left and/or right segments with-
in the piece. For instance, in the sequence ABxDABy-
DECDCDD, x and y are more likely to belong to the same 
semiotic class than in ABxDyBCDECDCDD. This criterion 
partly relates to commutability, often used in semiotic 
analysis. 
A second syntagmatic factor to take into account is that 
differences between two blocks should not be appreciated 
in the same way if the two blocks are immediately next to 
each other or if they appear at some distance in the piece : 
a slight difference observed between two successive simi-

lar blocks may be distinctive (especially if this opposition 
is recurrent in the piece) whereas a stronger difference at 
a long distance may just be a connotative variation, espe-
cially if the two blocks occur in similar contexts. 
The guidance of a prototypical structural pattern (see 
Table I) is also an essential element of syntagmatic analy-
sis, for weighing similarities and differences between and 
across blocks and interpreting them with respect to the 
global organization of the piece. 
However, while the semiotic structure of music tends to 
be based on recurrent patterns, the actual realization of a 
structural pattern in a music piece generally shows irregu-
larities (which are bound to increase when getting to-
wards the end of the piece). For instance the structural 
description ABCDABCDECDCDD can be viewed as a reali-
zation of 4 cycles of an (ABCD) structural pattern with 
growing irregularities towards the end of the piece. 
In practice, structural patterns can prove to be very effi-
cient to guide the annotation for some musical genres, but 
they can also turn out to be totally useless for others. 

 Paradigmatic analysis 3.3
The goal of paradigmatic analysis is to determine the set 
of semiotic features within the population of structural 
blocks, i.e. what are the semiotic properties (and the val-
ues taken by these properties) which characterize the 
equivalence classes (cf. subsection 2.6). 
A key concept of this process is that, rather than comparing 
the surface properties of the structural segments, the semi-
otic comparison of blocks is based primarily on the com-
parison of their carrier system, i.e. the triplet       (as 
defined in subsection 3.1) resulting from their morphologi-
cal analysis. Note that the contrast function   is treated 
separately, as a special form of modulation (see 4.1).  
For a given music information layer, the carrier systems 
of two structural blocks x and y are considered as homol-
ogous, if there exist a property of that layer for which the 
triplets (        ) and  (        )  are similar. For in-
stance, if the musical layer is the melody, the property 
can be the melody itself, the support notes of the melody, 
the shape of the melodic line, etc… 
This comparison is carried out for all musical layers 
which show some morphological organization and the 
subset of common properties that emerges from the com-
parison provides the characteristics of a potential class 
encompassing x and y. In particular, if the similarity of 
the systems holds for all music information layers active 
in x and y, it is considered that these segments should be 
grouped into a single semiotic class. 
Semiotic features can thus be hypothesized as conjunc-
tions of properties (together with their particular values) 
occurring in similar S&Cs and these features can be or-
dered (at least partly) according to their coverage of the 
various musical information layers. 
A global solution is then searched (empirically) as a parti-
tion of the population of structural segments grouping 
those with equivalent carrier systems in the subspace of 



their semiotic features. In case of several possible solu-
tions, the one yielding the most regular sequence of labels 
is chosen. 
Finally, the set of distinctive features is established as the 
minimal subset of properties (and their particular values) 
which is necessary and sufficient to distinguish each se-
miotic element from all the others. 
Of course, the trade-off between accuracy of the descrip-
tion and compactness of the semiotic set is an essential 
stopping condition. It is conjectured that a “good” a pos-
teriori distribution of labels should follow some sort of 
Zipf law, or at least should not depart too much from it. 

4. ANNOTATION CONVENTIONS 

 Primary notation of semiotic labels  4.1

Quite naturally, two blocks with non-equivalent carrier 
systems are denoted by 2 distinct alphabetic capital let-
ters : A vs B. 

When two blocks show equivalent carrier systems but 
different contrasts ( ), this difference is noted as a sub-
script : A1 vs A2. Blocks showing no (or extremely weak) 
contrasts are denoted A0 and conversely, blocks showing 
exceptional contrasts are denoted A* (they usually tend to 
occur at the end of the piece). 

When two blocks have equivalent carrier systems, but 
they significantly differ in their (surface) realizations 
(connotative variants), they are denoted with distinct su-
perscripts, for instance : A’ vs A’’. Optionally, the super-
script may be chosen specifically to indicate the nature of 
the variant. For instance, the notations A+ and A- are used 
to indicate more or less rich occurrences, and A~ can be 
used to denote exceptional variants of A. 

When a property evolves gradually within a block, this is 
denoted as a fade-in or a fade-out. This is denoted as <A, 
A> and it may apply to surface properties such as the in-
tensity, the instrumentation support, or to strengthening 
or vanishing properties of the carrier system. 

If a block is realized only in a half-form, specific nota-
tions are used : A/2 for a half-size block, |A and A| for 
left (resp. right) truncated half block, more general cases 
of incomplete blocks being denoted as …A or A…. 

Table II summarizes these annotation conventions. 

 Composite labels for handling ambiguities 4.2

Inevitably, semiotic labeling leads to some situations 
which exhibit ambiguities, resulting from the combina-
tion or the mutation of semiotic items to create new hy-
brid ones, namely some sort of chord, at the level of the 
semiotic structure. This is indeed a natural process in mu-
sic at many time-scales  

Therefore, a set of additional notations were designed to 
render these ambiguities through composite labels (whose 
configurations are schematized on figure 1). 

AB (vertical hybrid) : block showing undecided preva-
lence of properties of A and B, for instance, superposition. 

A&B (intrication) : block showing intertwined portions of 
A and B. The size of block A&B is the total of that of A 
and B. 

B|A (horizontal hybrid) : a specific system (B) is present 
in the first half of the block but the second half recalls the 
system of A (sometimes with a different contrast). 

B<A  (kinship) : block B is acceptable as autonomous at the 
current timescale but it exhibits strong cohesion with the 
previous block A via some common property or super-
system. The sequence [A][B<A] could be described as a 
single morphological system at the immediately upper 
timescale. 
B/A (mutation) : morphological system partly similar to A 
(rooted in A) but with a subset of properties whose sys-
tem strongly departs from that of the other elements of 
class A. This is typically the case in some types of solos, 
where the harmony is common to some former block but 
the melody of the lead becomes freestyle. This situation 
also includes cases when the subset of properties is simp-
ly void, for example a passage (in particular, an intro) 
where the instrumental background is played alone, with-
out any main lead. 

A?B (indetermination) : ambiguous segment which can-
not be annotated unequivocally. A typical situation like 
this is B?A~, when it is impossible for the annotator to 
conclude whether the segment is a specific semiotic ele-
ment B or a very particular connotative variant of item A. 

We also introduce notations for short segments that occa-
sionally intervene in between  regular ones : 

A_B (overlap) : i.e. tiling segment corresponding to a par-
tial superposition between A and B. 

_AB_ (connexion) : short segment located between A and 
B which cannot decidedly be related primarily to A or B. 
 

Figure 1 : composite labels (schematic configurations) 



 Proto-functional symbols 4.3

Even though semiotic structure description is distinct 
from functional structure description, we consider that it 
can be informative to choose the semiotic labels in such a 
way that they somehow reflect the proto-functional status 
of the block within the piece. We therefore propose to 
use, as much as possible, the alphabetic letters with the 
correspondence given in Table III. 

 Transcription example 4.4

Semiotic symbols can be put into brackets to facilitate 
visual parsing, especially when they are composite. Due 
to a lack of space, we leave it to the reader to “decode” 
the semiotic transcription represented below : 

[I/A] [A1] [A2] [B] [C] [J/2] [A’1] [|A’2] [B’] [C] [X/C] [Y/2] [C*] 

 Concluding remark 4.5

We want to underline that a primary objective of these 
notations is to provide a consistent communication lan-
guage for describing the most obvious aspects of the se-
miotic structure of music, while also being able to reflect 
some of its subtle ambiguities. 

5. ANNOTATION EFFORT AND FUTURE WORK 

The set of approximately 500 music pieces, for which an-
notations in terms of structural boundaries have been re-
leased in 2011 [13], has been updated and complemented 
with semiotic labels obtained with the present methodol-
ogy and is accessible at [15]. These annotations have 
been produced manually. They come with additional 
documentation and with the analysis of some difficulties 
met during the annotation process. 
Future work will be turned towards the formalization of 
the concepts and methodology presented in this article in 
terms of information theory criteria, and their investiga-
tion for the design of models and algorithm for the auto-
matic inference of music structure. 

Prototype Illustration Codification 
Trivial AAAAAAAA… (A) 

Binary ABABABABAB… (AB) 

Ternary ABCABCABC… (ABC) 

Quaternary ABCDABCDABCD… (ABCD) 

Alternate  AABCCDAABCCD… (2A,B,2C,D) 

Cyclic  ABBCDDDABBCDDD… (A,2B,C,3D) 

Acyclic  ABBCDDDEEF… A,2B,C,3D,2E,… 

Ergodic  ABCDBADAAACBCC… {ABCD} 

Table I : Most common prototypical structural patterns  

 

REFERENCES 

[1] Mixture of several definitions from various sources. 
[2] J. Paulus, M. Müller, A. Klapuri, Audio-based music struc-
ture analysis, Proc. ISMIR 2010. 
[3] SALAMI Project : http://salami.music.mcgill.ca 
[4] QUAERO Project : http://www.quaero.org 
[5] MIREX 2011 : http://www.music-ir.org/mirex/2011 
[6] Ten Minute Master n°18 : Song Structure - Music Tech 
Magazine, October 2003, pp. 62-63. 
[7] J. Foote. Automatic audio segmentation using a measure of 
audio novelty. IEEE ICME, pp. 452–455, Aug. 2000. 
[8] J. Paulus. Signal Processing Methods for Drum Transcrip-
tion and Music Structure Analysis. PhD Thesis, 2009. 
[9] M. Müller and F. Kurth. Towards structural analysis of au-
dio recordings in the presence of musical variations. EURASIP 
Journal on Advances in Signal Processing, 2007. 
[10] G. Peeters, E. Deruty : Is Music Structure Annotation Multi 
Dimensional ? LSAS, Graz (Austria) 2009. 
[11] J.B.L. Smith, J.A. Burgoyne, I. Fujinaga, D. De Roure, J.S. 
Downie : Design and Creation of a Large-Scale Database of 
Structural Annotations.  Proc. ISMIR 2011. 
[12] F. Bimbot, O. Le Blouch, G. Sargent, E. Vincent : Decom-
position into Autonomous and Comparable Blocks : A Structur-
al Description of Music Pieces, Proc. ISMIR 2010. 
[13] F. Bimbot, E. Deruty, G. Sargent, E. Vincent : Methodology 
and Resources for The Structural Segmentation of Music Pieces 
into Autonomous and Comparable Blocks, Proc. ISMIR 2011. 
[14] F. Bimbot, E. Deruty, G. Sargent, E. Vincent : Complemen-
tary report to the article "Semiotic Structure Labeling of Music 
Pieces : Concepts, Methods and Annotations Conventions”. 
IRISA Internal Report n° 1996, June 2012. 
[15] http://musicdata.gforge.inria.fr 

Acknowledgements 
Part of this work was achieved in the context of the 
QUAERO project, funded by OSEO. 
 

 Regular Specific 
Semiotic 
variants A1, A2, A3, …, Ai, Aj A0, A* 

Connotative 
variants A’, A”, …, A

(i)
, A

(j)
 A

+
, A

-
, A~ 

 
Fade-in / out Non-square Incomplete 

<A 
A> 

A/2 or (1/2) A 
(3/4) A, (5/4) A 

|A, A| 
…A, A… 

Table II : Main set of semiotic labels 

 
 Intro Pre-

central Central Post-
central Relay Other 

(recurrent) 
Other 

(sporadic) Outro 

Primary set I, J A,B C,D E,F J,K M,N X,Y,Z K, L 

Secondary set G,H P,Q R,S T,U G,H V,W G,H 

 Table III : Proto-functional semiotic symbols



LARGE-SCALE COVER SONG RECOGNITION
USING THE 2D FOURIER TRANSFORM MAGNITUDE

Thierry Bertin-Mahieux
Columbia University
LabROSA, EE Dept.

tb2332@columbia.edu

Daniel P.W. Ellis
Columbia University
LabROSA, EE Dept.

dpwe@ee.columbia.edu

ABSTRACT

Large-scale cover song recognition involves calculating item-
to-item similarities that can accommodate differences in
timing and tempo, rendering simple Euclidean measures
unsuitable. Expensive solutions such as dynamic time warp-
ing do not scale to million of instances, making them inap-
propriate for commercial-scale applications. In this work,
we transform a beat-synchronous chroma matrix with a 2D
Fourier transform and show that the resulting representa-
tion has properties that fit the cover song recognition task.
We can also apply PCA to efficiently scale comparisons.
We report the best results to date on the largest available
dataset of around 18,000 cover songs amid one million
tracks, giving a mean average precision of 3.0%.

1. INTRODUCTION

Music videos are abundant on the web, and tracing the dis-
semination of a given work is a challenging task. Audio
fingerprinting [26] can be used to find an exact copy of a
given music track, but the same technology will not work
for finding novel versions of the original work, i.e. “cover
songs”. Since cover songs are typically recorded by musi-
cians other than those who originally commercialized the
track, one motivation for identifying such “covers” is to
ensure the correct handling of songwriting royalties. For
instance, on YouTube, the copyright holder of the musical
work can have the covers of her work removed, or she can
receive part of the advertising revenue from the video 1 .
Figure 1 shows how easy it is to find thousands of such cov-
ers online from the metadata alone, but many more are not
identified as covers. Another reason to study cover song
recognition is that finding and understanding transforma-
tions of a musical piece that retain its essential identity can
help us to develop intelligent audio algorithms that recog-
nize common patterns among musical excerpts.

Until recently, cover recognition was studied on a small
scale (a few hundred tracks) due in part to the scarcity of

1 http://www.youtube.com/t/faq
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Figure 1. Search result for self-identified cover songs of Lady
Gaga on YouTube on November 22nd, 2011. This simple query
produces about 35, 900 results.

generally-available databases. Most current algorithms are
based on comparisons between chroma patterns, or a re-
lated feature, using some form of dynamic time-warping
(DTW) [23]. Chromas are derived from the spectrogram
and provide a coarse approximation of the musical score
(see Section 2), which make them suitable for our task. Re-
cently, the release of the Million Song Dataset [1] (MSD),
which contains metadata and audio features (including chro-
mas) for one million songs, has spurred the investigation of
large-scale music information retrieval techniques. Linked
to this dataset, the SecondHandSongs dataset (SHS) iden-
tifies approximately eighteen thousand cover songs. The
task of finding these cover songs within one million tracks
makes it much closer to a commercial-scale application.

Very large datasets constrain the amount of computa-
tion that can be devoted to individual comparisons, making
DTW an increasingly infeasible choice. To work with mil-
lions of examples, we would ideally reduce each compari-
son to a simple operation in a low-dimensional space. Such
a space may be defined via hash codes extracted from the
signal in the spirit of fingerprinting algorithms [2]. Hash
codes can be efficiently indexed, and finding a song that
contains particular hash codes is extremely fast. Another
option is to project the entire song into a small fixed dimen-
sion space in which nearest neighbors are our candidate
covers. Nearest neighbor methods are easy to parallelize



and scale, and working with a fixed-dimensional represen-
tation (instead of a variable-length audio signal) is a great
convenience.

Disappointed by the results presented in [2], we focus
on the second option. Beat-synchronous chroma repre-
sentations form a relatively compact description that re-
tains information relevant to covers, and may be cropped
to a constant size. Unfortunately, direct comparison of
chroma patterns using common metrics is poorly behaved
[3]. Summarizing a song by extracting a few chroma patches
and comparing them with Euclidean distance gives unus-
able results. In order to obtain an efficient nearest-neighbor
algorithm, we need a representation for the chroma patches
with the following properties:

• representation vectors can be compared using a sim-
ple metric, e.g. Euclidean distance;

• representation vectors are compact, i.e. low-dimensional;
• representation must be robust to semitone rotations

(musical transpositions);
• representation should be robust to different pattern

offsets (time alignments).

The last condition would allow us to match patches with-
out having to identify a universal time alignment which
is very difficult in a large set. Our candidate representa-
tion is the two-dimensional Fourier transform magnitude
(2DFTM), a simplified version of the representation used
in [18] and discussed in Subsection 3.2. The Fourier trans-
form separates patterns into different levels of detail, which
is useful for compacting energy (as in image compression
schemes such as JPEG) and for matching in Euclidean space.
Discarding the phase component provides invariance both
to transposition (rotation) in the pitch axes and skew (mis-
alignment) on the beat (time) axis. Thus, taking the 2DFTM
of a chroma patch, we obtain a transformation of chroma
features that makes Euclidean distance quite useful, even
after dimensionality reduction through PCA. Our method
encodes each track as a 50-dimensional vector and pro-
vides a large improvement over the hash code-based method
[2]. On the SHS, this approach gives the best result re-
ported so far.

The rest of this work is organized as follows: In Section
2, we present the chroma feature and its variants, its metric
issues, and the task of cover song recognition. In Section
3, we describe how we transform the chroma matrices and
look at the resulting invariance properties. Section 4 details
our experiments on large-scale cover song recognition, and
we conclude in Section 5.

2. PREVIOUS WORK

2.1 Chroma feature and distance

Chroma features were introduced as pitch-class profiles
(PCP) [9]. Many variants have been derived, including
HPCP [10] and CENS [21]; an overview can be found
in [15]. There is even evidence that chromas can be learned
from a simple similarity task [12].

Unfortunately, chroma matrices (or chroma patches, our
term for chroma matrices with a fixed number of time sam-
ples) are high-dimensional features that are difficult to com-
pare with usual metrics [3]. Previous work has experi-
mented with Euclidean distance [3, 23], cosine distance
[23], Kullback-Leibler divergence [3,22] and Itakura-Saito
divergence [22]. None of the results were fully satisfying
for the task of cover song recognition.

2.2 Cover song recognition

Cover song recognition has been widely studied in recent
years, including a specific task within MIREX since 2007
[6]. An early system is Ellis and Poliner [8] and a good
overview is in Serrà’s thesis [23]. A significant amount of
work has been done with classical music [16, 19–21] but
popular music can present a richer range of variation in
style and instrumentation.

Most cover song works were tested on a few hundred or
thousand songs, a size not comparable to commercial col-
lections (Spotify 2 claims more than 15M tracks). How-
ever, some of the work was made to scale and could be
extended to larger sets. Kurth and Müller [17] use a code-
book of CENS features to encode songs, thus creating an
index that can be searched efficiently. Casey and Slaney
[5] use locally-sensitive hashing (LSH) to quickly com-
pare chroma patches, or shingles. Yu et al. [27] also use
LSH to compare different statistics about a song. Kim and
Narayanan [16] look at chroma changes over time and sug-
gest using these changes as hash codes. Finally, our previ-
ous method [2] uses hash codes inspired by the fingerprint
system of [26], i.e., identifying peaks in the chromagram
and encode their relative positions. This was the first result
reported on the SHS.

The idea of using the magnitude of the two-dimensional
Fourier transform has been explored in [14, 18]. As with
the methods above, these were tested on a few hundreds
or thousands examples. The differences with the method
used in this work are highlighted in Subsection 3.4

3. CHROMA FEATURE AND 2DFTM

Our feature representation is the magnitude of the two-
dimensional Fourier transform of beat-aligned chroma patches.
Below, we explain how they are computed and discuss their
properties.

3.1 Chroma

We use the chroma features computed by the Echo Nest
API [7] as described in [13]. They are available as part of
the Million Song Dataset [1] and were used in [2].

A chromagram is similar in spirit to a constant-Q spec-
trogram except that pitch content is folded into a single
octave of 12 discrete bins, each corresponding to a par-
ticular semitone (e.g., one key of the octave on a piano).
For each song in the MSD, the Echo Nest analyzer gives a
chroma vector (length 12) for every music event (called

2 http://www.spotify.com
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Figure 2. Beat-aligned chroma features.

“segment”), and a segmentation of the song into beats.
Beats may span or subdivide segments. Averaging the per-
segment chroma over beat times results in a beat-synchronous
chroma feature representation similar to that used in [8].
Echo Nest chroma vectors are normalized to have the largest
value in each column equal to 1.

Empirically, we found improved results from raising the
highest values relative to the lowest ones by a power-law
expansion. We believe this accentuates the main patterns
in the signal. Figure 2 illustrates the stages in converting
segment-aligned chroma features and their loudness to cre-
ate beat-aligned chroma features for our task.
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FT images have the low-frequency values in the center.

3.2 Magnitude of the 2D Fourier Transform

Taking the two-dimensional Fourier transform is a com-
mon task in digital image processing where it is useful for
denoising and compression, among other things [11]. As
illustrated in the examples of Figure 3, a single point in the
2D Fourier transform corresponds to a sinusoidal grid of a
particular period and orientation in the image (transform)
domain; more complex images are built up out of multiple
sinusoid grids.

We skip the definition of the 2D Fourier transform and
its magnitude since it is widely known. Note that for visu-
alization purposes, the bins are shifted so that the center of
the axis system is in the middle of the image 3 . In that rep-
resentation, the transformed image is symmetrical about
the origin. Figure 4 gives an example of the transform ap-
plied to the chroma patch from Figure 2.
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Figure 4. 2DFTM over a beat-synchronous chroma patch. Bins
have been shifted so the maximum energy is in the center and
magnitude values have been raised to the power 0.5 for visualiza-
tion purposes. In the 2DFTM, the darker columns at −9 and +9
can be explained by the repetitive pattern in time in the chroma
patch (bottom semitone) whose period is approximately 9 beats.

3.3 Rotation invariance

Analyzing nearest neighbors or clusters of chroma patches
helps understand the properties of a given representation.
Quantizing the chroma vector can be a useful step in an al-
gorithm [20], but it can also be a goal on its own with the
hope of seeing meaningful music patterns emerge [4]. The
use of the 2DFTM introduces an interesting invariance, not
only in key as in [4], but also in time, since small time
shifts within a large patch correspond primarily to phase
shifts in the Fourier components, with only slight changes
in magnitude arising from edge effects. Figure 5 shows, for
a randomly-chosen chroma patch at the top-left of the fig-
ure, the nearest neighbors obtained from the 2DFTM rep-
resentation. For visualization purposes, we used 16-beat
patches for this experiment. The result is noisy, but we see
a clear square wave pattern that is repeated with different
onsets in the first three neighbors.

3.4 Comparison with Similar Previous Approaches

Our method resembles those of [14,18], but some steps are
simplified in view of the size of the collection at hand. In
[14], instead of beat-aligned chromagrams, the authors use
two-dimensional autocorrelation, then, for each semitone,
take 17 samples spaced logarithmically in time (to normal-
ize tempo) building a 12x17 feature matrix for each song.
Autocorrelation is the Fourier transform of the Fourier Trans-
form magnitude we use.

3 fftshift in MATLAB, scipy.fftpack.fftshift in Python
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Figure 5. Neighbors of the upper left patch using 2DFTM rep-
resentation (including raising values to power 1.96). The square
signal shape, shifted in time, is visible in the first two neighbors
(upper right, middle left) and partially in the middle right neigh-
bor.

Compared to [18], we do not extract melodic lines, and
we represent each track with an aggregate patch rather than
storing many overlapping patches. We use PCA as the do-
main for comparison to improve generalization. Marolt de-
scribes time-shift invariance of the 2DFTM as an issue, but
for us it is the main attraction. We found 75 beat patches
to be most useful compared to the optimum at 32 in [18],
perhaps because of PCA. A main emphasis of his work is
the use of LSH, but reducing each track to a single pat-
tern makes such indexing unneccessary, even for our much
larger database.

4. COVER SONG RECOGNITION

Our goal is to find cover songs among mostly western pop
music. The experiments are conducted on the Second-
HandSongs dataset (SHS). The SHS was created by match-
ing the MSD with the online database 4 that aggregates
user-submitted cover songs. The SHS training set contains
12, 960 cover songs from 4, 128 cliques (musical works),
and the testing set has 5, 236 tracks in 726 cliques. Note
that we use the term “cover” in a wide sense. For instance,
two songs derived from the same original work are consid-
ered covers of one another.

4.1 Method

We will represent each song by a vector of fixed-length,
defining a point in Euclidean space. The closer two feature
vectors lie in this space, the more likely the songs are cov-
ers. The steps to compute this feature vector for a song are
summarized as follows:

1. obtain chroma from the MSD
2. resample onto beat grid
3. apply power-law expansion
4. extract FFT patches and keep magnitude
5. take the median

4 www.secondhandsongs.com

6. apply PCA

The first step is done using the code provided with the
MSD. One can also call The Echo Nest API [7] if start-
ing from audio (see Subsection 4.4). Beat estimation is
also provided in the MSD, and the second step is mostly
a linear scaling. The third step, in which we enhance the
contrast between strong and weak chroma bins by raising
the values to an exponent, was determined to be useful in
our experiments. In the fourth step, we take the 2DFTM as
shown in Figure 4 for every 75-beat long chroma patch. In
the fifth step we keep the median, within each bin, across
all the transformed patches. Finally, in the sixth step, we
use PCA to reduce the dimensionality. PCA is done with-
out normalization, the data is simply centered to zero and
rotated. In our experiments PCA was computed on 250K
songs that were not identified as covers (i.e., in neither the
SHS train or test sets).

Many of the parameters above were chosen empirically.
We do not present the list of parameters we tried for lack
of space and the little interest they carry. Simply note that
the following parameters were chosen based on their abil-
ity to identify 500 train covers (see Subsection 4.3, first
experiment):

• patches of size 75 beats, we tried number of beats
ranging from 8 to 100;

• median as opposed to average;
• raising to the power 1.96, we tried values between

0.25 and 3.0.

The number of PCs we keep after PCA is also a parameter,
but choosing the best one is more difficult. The number of
PCs is a trade-off between accuracy and feature vector size
(and hence speed). We believe 50 is the “best” trade-off,
but we report results for other numbers of PCs. Still re-
garding PCA, since we use chroma patches of 75 beats, we
have 12 × 75 = 900 principal components. Note that half
of the components (450) are redundant due to the symme-
try in the 2DFTM, and have a variance of zero associated
to them.

4.2 Reference methods

We compare our algorithm to other methods, at different
scales depending on the speed of the algorithm. We start
with our previous work [2], the only reported result on the
SHS to our knowledge. Also taken from that work, we
report again a comparison with the method from [8].

We also test a DTW-based method based on [24] using
code from S. Ravuri 5 . This is more of a sanity check than
a full comparison; the authors in [24] used up to 36 semi-
tones instead of the 12 we possess, we did not re-estimate
the DTW parameters, etc. It is likely that the full system
from [24] outperforms our method, the problem being the
execution time which is prohibitive on a large scale. In our
implementation, each DTW comparison takes on the order
of 10 ms. One query on the MSD would therefore take

5 http://infiniteseriousness.weebly.com/
cover-song-detection.html



about 2.7 hours. Thus we do this comparison only on our
500 binary queries.

Finally, we compare with pitch histograms, a feature
that was suggested for music identification in [25]. The
pitch histogram of a song is the sum of the energy in the
12 semitones normalized to one. In our case, we compute
it from beat-aligned chroma features. This feature is not
powerful enough to perform cover recognition on its own,
but it gives an idea of how much more information our
method can encode in a ∼ 10-dimensional feature.

4.3 Experiments

Method accuracy
random 50.0%
pitch hist. 73.6%
correlation 76.6%
DTW 80.0%
jcodes 1 [2] 79.8%
jcodes 2 [2] 77.4%
2DFTM (full) 82.0%
2DFTM (200 PC) 82.2%
2DFTM (50 PC) 82.2%
2DFTM (10 PC) 79.6%
2DFTM (1 PC) 66.2%

Table 1. Results on 500 binary tasks. PC is the number of
principal components we retain after PCA. Empirically, 50
PC appear to be the best trade-off between accuracy and
size.

We follow the methodology of [2] where the parame-
ters are first tuned on a subset of 500 binary tasks created
within the SHS training set (we use the same 500 queries).
The goal is: Given a query song A and two songs B and
C, find which of B or C is a cover of A. The result is the
percentage of trials where the algorithm succeeds. We then
present the results testing on the training set, mostly as a
sanity check. Finally, we report result on the SHS test set
using the full MSD.

In [2], the main reported result was the average rank of
a known cover given a query. For instance, on 1M songs,
picking at random would give 500K. We again report this
measure to permit comparison, but for practical purposes
this number may be misleading since it is dominated by
the most difficult covers, of which there will always be a
number, and hides differences in performance near the top
of the ranking. We now prefer to report results in terms of
mean average precision (meanAP), which puts emphasis
on results that rank high, i.e., the covers that are in the top
k results. present the recall curves for a few algorithms
(see Figure 6).

As we see in Table 3, the method based on our 2DFTM
representation provides a significant improvement over the
method in [2] for both measures. In particular, based on
meanAP, many more covers are ranked in the first few hun-
dred results, which makes it much more valuable in a com-
mercial system. Note that a second, slower step could be
applied to the top k results, k being 1K or 10k, similar to
the progressive refinement in [27]. A good candidate for
this second step would be the full system of [24].

Method average rank mean AP
pitch hist. 4, 032.9 0.01851
2DFTM (full) 3, 096.7 0.08912
2DFTM (200 PC) 3, 005.1 0.09475
2DFTM (50 PC) 2,939.8 0.07759
2DFTM (10 PC) 3, 229.3 0.02649
2DFTM (1 PC) 4, 499.1 0.00186

Table 2. Results on the training set (12, 960 songs). For
average rank, lower is better. For meanAP, higher is better.

Method average rank mean AP
random 500, 000 ∼ 0.00001
pitch hist. 268, 063 0.00162
jcodes 2 308, 370 0.00213
2DFTM (200 PC) 180, 304 0.02954
2DFTM (50 PC) 173,117 0.01999
2DFTM (10 PC) 190, 023 0.00294
2DFTM (1 PC) 289, 853 0.00003

Table 3. Results on 1M songs. For average rank, lower is
better. For meanAP, higher is better.

Using the system with 50 principal components, Figure
6 shows us that more than half of the covers are ranked in
the top 100k and more than a quarter of them are in the top
10k. For 112 queries, the first song returned was a known
cover. We ignore here the songs that might have ranked
second or third after other known covers. This includes the
pairs (Hayley Westenra, Kate Bush) performing “Wuther-
ing Heights” and (The Boomtown Rats, G4) performing “I
don’t like Mondays”, matches considered easy in [2].

In terms of speed, with a 50-dimensional vector per
song, ranking all one million for all 1, 726 test covers in
Python took 1h 46min on a machine with plenty of RAM.
This is around 3-4 seconds per query without any optimiza-
tion or parallelization. Compared to the 2.7 hours of the
DTW method, that is a ∼ 2, 500x speedup.

4.4 Out of collection data

Using audio as the query input with the SHS is a chal-
lenge, beat-synchronous features relies on a consistent beat
tracker. Fortunately, The Echo Nest provides an open API
which will convert any uploaded audio into the format pro-
vided in the Million Song Dataset. We experimented with
this using cover songs found on YouTube. For instance,
the song “Summertime” by Ella Fitzgerald and Louis Arm-
strong 6 was correctly associated with a cover version by

6 http://www.youtube.com/watch?v=MIDOEsQL7lA
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Joshua Redman (first match). The Ella Fitzgerald and
Louis Armstrong version present in the SHS was found at
rank 9. The fact that this was not the first match might
be explained by the lower audio quality on YouTube, or it
could be a different version.

5. CONCLUSION

The 2DFTM allows us to pose the search for cover songs
as estimating an Euclidean distance. We show that this rep-
resentation exhibits some nice properties and improves the
state-of-the-art on large-scale cover song recognition. Fur-
thermore, obtaining good results using patches of 75 beats
suggests an easy way to include more time dependency in
the harmonic representation. Future work will look into
the usefulness of this representation for other tasks, such
as music tagging and segmentation. Finally, all our code is
available online 7 .
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ABSTRACT 

In this paper, we present an effective and efficient way to 
create an accurately labeled dataset to advance audio key 
finding research. The MIREX audio key finding contest 
has been held twice using classical compositions for 
which the key is designated in the title. The problem with 
this accepted practice is that the title key may not be the 
perceived key in the audio excerpt. To reduce manual an-
notation, which is costly, we use a confusion index gen-
erated by existing audio key finding algorithms to deter-
mine if an audio excerpt requires manual annotation. We 
collected 3224 excerpts and identified 727 excerpts re-
quiring manual annotation. We evaluate the algorithms’ 
performance on these challenging cases using the title 
keys, and the re-labeled keys. The musicians who aurally 
identify the key also provide comments on the reasons for 
their choice. The relabeling process reveals the mismatch 
between title and perceived keys to be caused by tuning 
practices (in 471 of the 727 excerpts, 64.79%), and other 
factors (188 excerpts, 25.86%) including key modulation 
and intonation choices. The remaining 68 challenging 
cases provide useful information for algorithm design. 

1. INTRODUCTION 

The typical trend in technology development is for sys-
tems proposed later to outperform earlier ones, but this 
does not seem to have been the case for audio key find-
ing, judging by the results of the MIREX audio key find-
ing contest. The first MIREX audio key finding contest 
was held in 2005, and the second contest took place six 
years later. The same dataset was used in the two con-
tests, and based on the numbers, the systems in MIREX 
2011 seem to have performed worse than the ones in 
2005 on average. This points to the fact that the statistics 
of the contest results alone have not provided sufficient 
information for future researchers to develop better sys-
tems. If the goal of the contest is to move the research 
community forward, a detailed examination of the results 
is required. 

An effective way to improve audio key finding is to 
examine the cases in the dataset for which most systems 

have difficulties. For this paper, we constructed a dataset 
with 3324 music audio recording excerpts, 2.6 times the 
number in the MIREX dataset. It is worth noting that this 
dataset created from actual music recordings is distinct 
from the MIREX dataset synthesized from MIDI files. 
We implemented five existing audio key finding systems 
and tested them on the dataset. Using the title key as 
ground truth, let the confusion index, I, be the number of 
systems that disagree with this ground truth. We then ex-
tracted a subset of the data consisting of excerpts for 
which no more than two systems reported correct an-
swers, i.e. I≥3. This subset, called the challenging set, 
was re-examined by three professional musicians and 
their keys manually labeled. By comparing the relabeled 
keys with the title keys, we observe reasons why the ex-
cerpt’s perceived key might be different from the title 
key. We also present the musicians’ comments about 
their annotations to show the factors that impact audio 
key finding. Finally, we describe some controversial au-
dio key finding cases for which we received three con-
flicting answers.  

 The paper is organized as follows. Section 2 provides 
the background of MIREX audio key finding contests. 
Section 3 presents the five audio key finding systems im-
plemented for the study. In Section 4, we describe the ex-
periment design, followed by a detailed examination of 
the experiment results. We state our conclusions and sug-
gestions for future work in Section 5. 

2. BACKGROUND 

In MIREX 2005, Chew, Mardirossian and Chuan pro-
posed contests for symbolic and audio key finding [7]. 
For audio key finding, a wave file is given as input and 
one answer including a key name (for example, “C”) and 
a mode (such as “major”) is expected as output. The 
ground truth used in the contest is the key defined by the 
composer in the title of the piece, as is the practice in key 
finding research. Each output key is compared to the 
ground truth and assigned a score as follows: 1 point if 
the output is identical to the ground truth, 0.5 if they are 
a perfect fifth apart, 0.3 if one is the relative major/minor 
of the other, and 0.2 if one is the parallel major/minor of 
the other. In the contest, 1252 audio files synthesized 
from MIDI were used as the test dataset, consisting of 
symphonies from various time periods. The best system 
achieved an 87% correct rate, with a composite score of 
89.55% [8]. The second audio key finding/detection con-
test was held in 2011 [9]. The same dataset was used and 
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same evaluation method was employed. The best system 
achieved a 75% correct rate and weighted score of 82%.  

3. AUDIO KEY FINDING SYSTEMS 

In this section we first describe the general structure of an 
audio key finding system, then the five systems imple-
mented in this study. Systems that rely on training data 
are not implemented because the title key (ground truth) 
may not be the key of the excerpt. 

3.1 A General Structure 

Figure 1 illustrates a general structure of an audio key 
finding system. The system can be divided to two major 
parts as shown in the dashed boxes. The components in 
the left dashed box are designed to transform low-level 
acoustic features such as frequency magnitude into high-
level music information such as pitches or pitch classes.  
Some audio key finding systems start with some prepro-
cessing of the data, such as the removal of noise and si-
lence. The next two steps, windowing and Fast Fourier 
Transform (FFT), indicate a basic approach for spectral 
analysis. After spectral analysis, the step labeled Pitch 
Class Profile (PCP) generation converts the frequency 
spectrum information into a pitch class distribution called 
a pitch class profile. This is often the step where most au-
dio key finding systems differ. 

 

Figure 1. General structure of audio key finding systems. 

After a pitch class profile is generated, it is then com-
pared with 24 predefined key templates or profiles, 12 
major and 12 minor, to determine the key in the audio 
excerpt. This step is shown in the right dashed box in 
Figure 1, consisting of two components: a key finding 
algorithm and a representation model of keys. A repre-
sentation model provides a typical pitch class distribution 
for a specific key. The key profiles produced by the rep-
resentation model are then used to determine the key in a 
key finding algorithm. For example, a simple key finding 
algorithm calculates the correlation between the pitch 
class profile of the audio excerpt and the 24 key profiles, 
and the key profile that reports the highest correlation 
value is selected as the key. 

In the following sub sections, we describe the audio 
key finding systems implemented in this study in detail, 
emphasizing the uniqueness of each system. 

3.2 Krumhansl’s and Temperley’s Key Profiles 
Tonality has been studied extensively not only in music 
theory, but also from many other perspectives. In 1986, 
Krumhansl and Schmuckler [6] developed a widely ac-
cepted model called the probe tone profile method (re-

ferred to as the K-S model for convenience), which con-
structs pitch class profiles for major and minor keys by 
using user ratings from probe tone experiments. In 1999, 
Temperley [10] improved upon the K-S model by modi-
fying the key profiles to emphasize the differences be-
tween diatonic and chromatic scales. Temperley also ad-
justed the weights of the forth and seventh pitches so as 
to differentiate between keys with highly similar pitch 
class signatures. The key profiles generated by the K-S 
model and Temperley are shown in Figure 2. 

These key profiles can be directly used to build a sym-
bolic key finding system. In this study, we added an au-
dio signal processing module to these key profiles, and 
created two base audio key finding systems for compari-
son. The audio signal processing module consists of a si-
lence removal preprocessing step, rectangular windowing 
with non-overlapped frames, FFT, and generation of a 
PCP using a uniform weighting function across the fre-
quency range of a pitch and also for all pitches folded in-
to 12 pitch classes. 

 

Figure 2. C major and C minor key profiles proposed by 
Krumhansl, Temperley, Izmirli and Gómez. 

3.3 Izmirli’s System 

Izmirli proposed a template-based correlation model for 
audio key finding in [5]. During the PCP generation step 
shown in Figure 1, called chroma template calculation in 
Izmirli’s system, pitches are weighted using a decreasing 
function that gives low-frequency pitches more weight. In 
Izmirli’s system, he constructed key templates from 
monophonic instruments samples, weighted by a combi-
nation of the K-S and Temperley’s modified pitch class 
profiles, as shown in Figure 2. Izmirli’s system also 
tracks the confidence value for each key answer, and the 
global key is then selected as the one having the highest 
sum of confidence values over the length of the piece. 



  
 

3.4 Gómez’s HPCP 

In [5], Gómez detected pitches using three times the 
standard resolution of the pitch frequency spectrum of the 
FFT method, and distributed the frequency values among 
the adjacent frequency bins using a triangular weighting 
function to reduce boundary errors. A Harmonic Pitch 
Class Profile (HPCP) is generated as input to the key 
finding algorithm, using a modified version of 
Krumhansl’s key templates as shown in Figure 2.  

3.5 Chuan and Chew’s FACEG 

In [3], Chuan and Chew proposed an audio key finding 
system called Fuzzy Analysis Center of Effect Generator 
(FACEG). A fuzzy analysis technique is used for PCP 
generation using the harmonic series to reduce the errors 
in noisy low frequency pitches. The PCP is further re-
fined periodically using the current key information. The 
representation model used in the system is Chew’s Spiral 
Array model [1, 2], a representation of pitches, chords, 
and keys in the same 3-dimensional space with distances 
reflecting their musical relations. The Center of Effect 
Generator (CEG) key finding algorithm determines key in 
real-time: an instantaneous key answer is generated in 
each window based on past information. It is the only 
model amongst the ones considered with pitch spelling.   

4. EXPERIMENT DESIGN 

In this section we describe the manner in which the da-
taset is prepared, and the experiment design for exploring 
the reasons for the challenging cases. 

4.1 Data Collection and Selection 

The dataset used in this study is provided by Classical 
KUSC, a classical public radio station. The entire dataset 
consists of over 40,000 audio recordings of classical per-
formances.  For this study, we selected compositions by 
Bach, Mozart and Schubert. We chose these three com-
posers’ work because (1) tonality is generally more clear-
ly defined in these pieces than in more recent composi-
tions; and (2) the composers represent three different 
styles with distinguishable levels of tonal complexity. We 
further refined the dataset by filtering out the recordings 
that do not have key information in the title. For multi-
movement works, we used only the first and last move-
ment, because they are generally in the title key. 

As a result, the dataset we used in this study consists of 
1662 recordings of varying lengths. Similar to the evalua-
tion procedure in the MIREX 2005 and 2011 audio key 
finding contests, we extracted two excerpts from each re-
cording: one containing the first 15 seconds and the other 
representing the last 15 seconds of the recording. We on-
ly reserved the beginning and end sections of a recording 
because these two sections are more likely to be in the 
key shown in the title. As a result, we ended up with a 
total of 3324 different excerpts in the experiment.  

4.2 Evaluation Method 
To improve the performance of existing audio key find-
ing systems, some more detailed examination of the chal-
lenging cases is necessary. An excerpt is considered chal-
lenging if no more than two systems out of the five im-
plemented reported the key identical to the one in the ti-
tle. A challenging set was thus built from such cases. 

The excerpts from the challenging cases were given to 
two professional musicians for key annotations. During 
the process, the two musicians were provided with the 
15-second long excerpts instead of the entire pieces, to 
ensure that they have the same acoustic information as 
the systems. No key labels or titles were revealed to the 
musicians. The only information other than the audio ex-
cerpt provided is the name of the composer.  

The musicians were asked to write down one answer 
as the global key for each excerpt, based on the 15 se-
conds they heard. They were also asked to comment on 
the reasons behind their answers, particularly for excerpts 
that they felt were difficult to annotate. When the key an-
notations by the two musicians differed, the excerpt was 
given to a third professional musician for relabeling. The 
final relabeled key was determined by majority vote from 
the three annotations. 

5. EXPERIMENT RESULTS 

5.1 Results Using Title Keys as Ground Truth 

Out of the 3324 excerpts, there were 727 excerpts 
(21.87%) for which no more than two systems reported 
answers identical to the title keys, i.e. I≥3. We focused 
on these 727 excerpts, the challenging cases in this study, 
to examine the difficulties most key finding systems en-
counter. Table 1 shows the distribution of the challenging 
set, in absolute numbers and as a percentage of the num-
ber of excerpts we considered by each composer. 

Composer Total # of 
recordings 

Challenging set 
(first 15 sec) 

Challenging set 
(last 15 sec) 

Bach 553 245 (44.30%) 244 (44.12%) 
Mozart 873 75 (8.59%) 98 (11.23%) 
Schubert 236 24 (10.17%) 41 (17.37%) 

Table 1. Details of the entire data set and the challenging 
set by Bach, Mozart and Schubert. 

We divided the reported key into 9 categories based on 
its relation to the title key: correct, dominant (Dom), sub-
dominant (SubD), parallel major/minor (Par), relative 
major/minor (Rel), same mode with the root one half-step 
higher (Mode +1), same mode with the root one half-step 
lower (Mode – 1), same mode but not in the previous cat-
egories (Mode Others), and the rest of relations not in-
cluded in any of the previous categories (Others).  

Figure 3 shows the results for the Bach challenging set 
in (a) first 15 seconds and (b) last 15 seconds respectively. 
It can be observed that most of the incorrect answers re-
ported by the systems fall into the last three categories, 



  
 

especially in the category (Mode – 1), indicating that tun-
ing may be an issue in key finding for Bach’s pieces.   

 
Figure 3. Key finding results for the challenging Bach 
dataset using the title key as ground truth. 

Figure 4 shows the results for the Mozart challenging 
set in the (a) first and (b) last 15 seconds, respectively. In 
Figure 4 (a), similar to the results in Figure 3 (a), the last 
three categories account for the majority of the results in 
the first 15 seconds. However, unlike Figure 3 (b), the 
parallel major/minor (Par) category accounts for a signif-
icant proportion of the results in Figure 4 (b). The report-
ed keys are also more evenly distributed than in Figure 3. 

 

Figure 4. Key finding results for the challenging Mozart 
dataset using the title key as ground truth. 

Figure 5 shows the results for the Schubert challenging 
set in the (a) first and (b) last 15 seconds, respectively. 
The results of Schubert challenging set are more similar 
to Mozart’s than Bach’s, as the results are more evenly 
distributed in the first 15 seconds and the parallel ma-
jor/minor dominates in the last 15 seconds. One distinct 
feature observed in the Schubert results is that the (Mode 
– 1) category is much less significant. 

 

Figure 5. Key finding results for the challenging Schu-
bert dataset using the title key as ground truth. 

5.2 Results Using Re-labeled Keys as Ground Truth 

Table 2 shows the statistics of re-labeled keys in relation 
to title keys. The tuning category consists of re-labeled 
keys one half step away from title keys, while the other 
category includes relabeled keys that are neither  identical 
to title keys nor in the tuning category.     

Compos-
er 

First 15 seconds Last 15 seconds 
tuning other tuning other 

Bach 183 
(74.7%) 36 (14.7%) 182 

(74.6%) 54 (22.1%) 

Mozart 48 (64%) 16 (21. 3%) 55 (56.1%) 38 (38. 8%) 
Schubert 1 (4.2%) 8 (33. 3%) 2 (4.9%) 36 (87.8%) 

Table 2. Relations between title keys and re-labeled keys. 

 

Figure 6. Key finding results for the challenging Bach 
dataset using the re-labeled key as ground truth. 

Figure 6 shows the results for the Bach challenging set in 
the (a) first 15 seconds and (b) last 15 seconds using the 
relabeled keys as ground truth. Comparing the results in 
Figure 3 with those in Figure 6, it is clear that many of 
the recordings of Bach’s compositions are not tuned to 



  
 

modern definitions of the title key. Pitches ranged from 
one quarter to one half-step lower than what one might 
expect in modern tuning. Therefore, the cases labeled as 
(Mode – 1) in Figure 3 could be considered correct. This 
also points to the importance of verifying the title keys 
manually for the audio key finding. However, it is debat-
able whether the key should be relabeled based on mod-
ern tuning. For example, a recording may be recognized 
as being in the key of B major according to modern tun-
ing, but B major is a very uncommon key in Baroque mu-
sic and some musicians still prefer to call it C major de-
spite the flattened tuning. 

 

Figure 7. Key finding results for the challenging Mozart 
dataset using the re-labeled key as ground truth. 

Figure 7 shows the results for the Mozart challenging 
set using the relabeled keys as ground truth in the (a) first 
15 and (b) last 15 seconds. Observe that the number of 
correct answers is increased, indicating that the first and 
last 15 seconds of these pieces are actually in a key other 
than the title key. By comparing Figure 7 (a) and Figure 4 
(a), we observe that the increase in correct answers in 
Figure 7 (a) mainly results from decreasing numbers in 
the four categories: Mode – 1, Others, Dominant (Dom) 
and Parallel (Par). This shows that for Mozart, a piece 
may start in a related parallel major/minor or even a for-
eign key. For the last 15 second excerpts, a piece may end 
in a parallel major/minor key. The tuning problem, indi-
cated by the (Mode – 1) category, can still be observed in 
Mozart’s recordings in both the first and last 15 seconds. 

Figure 8 shows the results on the Schubert challenging 
set in the (a) first 15 and (b) last 15 seconds. The number 
of correct answers does not increase much in Figure 8 (a) 
comparing to Figure 5 (a), and the increment in Figure 8 
(a) is the result of decrement in the Parallel major/minor 
(Par) category. When the relabeled keys are used as the 
ground truth, almost all the systems recognize the keys 
correctly in the last 15-second excerpts as shown in Fig-
ure 8 (b). This result shows that Schubert’s pieces may 
end in the parallel major/minor key, or even some more 
distant keys in the same mode. 

 

Figure 8. Key finding results for the challenging Schu-
bert dataset using the re-labeled key as ground truth. 

5.3 Musicians’ Comments and Case Studies 

In this section we present the musicians’ comments 
alongside their answers, and excerpts where they disa-
greed with each other.  

The musicians were encouraged to write down com-
ments with their answers but were not restricted in terms 
of the words they can use. Table 3 shows the most fre-
quently used keywords and their meanings. 

Keywords Meanings Num. of 
occurrence 

sharp/flat Notes sound sharp/flat compared to 
modern tunings 

79 

easy Clear V-I chord progression 66 
picardy 3rd A piece in a minor key that ends in 

the parallel major 
28 

modulation A piece changes from one key to an-
other  

16 

tough/tricky Difficult to determine the key, mostly 
due to missing cadence 

15 

cadence Cadence cut off; cadence spotted in 
the middle of the piece; misleading 
cadence 

4 

Table 3. Keywords with meanings and number of occur-
rences in musicians’ comments. 

Among 727 excerpts, there are only 8 excerpts in 
which all three musicians disagreed on the key. Table 4 
gives the details of the 8 excerpts, the musicians’ anno-
tated keys, and our notes on why these excerpts might 
have confused the annotators.  

6. CONCLUSIONS AND FUTURE WORK 

In this paper we presented an approach to effectively and 
efficiently develop a well-annotated dataset for audio key 
finding. Having a well-annotated dataset is essential for 
any kind of algorithm testing and development, but it is 
very time-consuming to create one with numerous exam-
ples. In this paper we implemented five audio key finding 
systems, and used them to select the examples that re-



  
 

quire manual examination. Three professional musicians 
re-labeled the keys for these difficult cases.  

Composer Recording (excerpt)/ 
Performer 

Title key Relabeled 
keys 

Bach Cello Suite #3 BWV 
1009 (last 15 secs)/Yo-
Yo Ma 

C major C major,  
B major,  
C minor 

 Cello. Briefly in minor mode at the beginning, but ends 
unequivocally in C major; pitches flat. 

Schubert Moments Musicaux: #6 
Op 94 (last 15 
secs)/David Fray 

Ab major Eb major,  
G# major,  
A major 

 Piano. In Ab major; tuning sharp. Annotator 1 misled 
by Bb’s in beginning. 

Mozart String Quartet #16 K428 
(first 15 secs)/Quartetto 
Italiano 

Eb major F minor,  
C minor,  
Eb major 

 String Quartet. Chromatic start and notes following led 
to ambiguity in mode; ends clearly in Eb major. 

Mozart String Quartet #16 K428 
(first 15 secs)/Quatuor 
Mosaiques 

Eb major B minor,  
D major,  
Eb minor 

 Same piece as above; annotations completely different. 
Mozart String Quartet #19 K465 

(first 15 secs)/ Quatuor 
Mosaiques 

C major C minor,  
B minor,  
unsure 

 String Quartet. In C but Eb in vln 2 and flat A in vln 1 
(an intonation choice) led to perceived minor mode. 

Mozart Gran Partita Serenade 
K361 (last 15 
secs)/Octophorus 

B major Bb major,  
D major,  
A major 

 Strings. Tuning flat, which explains the Bb and A. 
Mozart Symphony #22 K162 

(last 15 secs)/Amsterdam 
Baroque Orchestra 

C major B major,  
E major,  
D major 

 Orchestra. Tuning flat, which explains the B. 
Mozart Requiem K626 (last 15 

secs)/Vienna Philharmon-
ic 

D minor C major,  
unsure,      
F major 

 Voices/Str/Winds/Perc. Flat; insufficent information. 

Table 4. Information of the excerpts where three musi-
cians disagree on the key. 

By examining the relabeled keys, we discovered potential 
causes for the difficulties and make the following obser-
vations and recommendations:  
(a) tuning: In recorded performances, different tuning or 
intonation choices can cause confusion. Evaluations 
could either account for all possible categorical key name 
interpretations (e.g. flat C might be interpreted as B), or 
allow for tuning (and letter name) independent key find-
ing, for example by requiring systems to locate the most 
stable tone. 
(b) modulations: some excerpts may not be entirely in 
one key, modulating midstream or ending with a Picardy 
3rd. These excerpts could either be removed, or more nu-
anced ground truth created with key change annotations. 
(c) missing cadences: a key is theoretically established 
when a complete cadence confirms its identity. Many ex-
cerpts from the first 15 seconds of pieces may not have 
these cadences. Care could either be taken to make sure 

these cadences exist in the evaluation samples, or the 
scoring system could account for levels of difficulty of 
assessing key based on annotators’ notes.  

The established dataset and annotations, and the pro-
cess of collecting them, will benefit the audio key finding 
community and MIREX contests. While we cannot pub-
licly share the music files, we will post the results of the 
annotations online. Future plans include augmenting the 
dataset with automatically generated key labels. 
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ABSTRACT 

User studies in the music information retrieval and music 
digital library fields have been gradually increasing in re-
cent years, but large-scale studies that can help detect 
common user behaviors are still lacking. We have con-
ducted a large-scale user survey in which we asked nu-
merous questions related to users’ music needs, uses, 
seeking, and management behaviors. In this paper, we 
present our preliminary findings, specifically focusing on 
the responses to questions of users’ favorite music related 
websites/applications and the reasons why they like them. 
We provide a list of popular music services, as well as an 
analysis of how these services are used, and what qualities 
are valued. Our findings suggest several trends in the 
types of music services people like: an increase in the 
popularity of music streaming and mobile music con-
sumption, the emergence of new functionality, such as 
music identification and cloud music services, an appreci-
ation of music videos, serendipitous discovery of music, 
and customizability, as well as users’ changing expecta-
tions of particular types of music information.  

1. INTRODUCTION 

Understanding what kinds of music information services 
people use, how they use them, and what they expect 
from them is critical in designing successful services. We 
have seen a gradual increase in different types of user and 
usability studies in recent years. However, many of these 
studies are based on a limited number of subjects, and 
tend to employ analysis of qualitative research methods, 
like in-depth interviews or focus groups. While these 
kinds of studies can help uncover rich data about music 
users, large-scale user studies are also necessary in order 
to test the generalizability of results and to complement 
the insights obtained from smaller qualitative studies. 

To fill this gap, we have conducted a large-scale user 
survey questioning people’s music needs, uses, and music 
seeking and management behaviors. This survey is an ex-
tension of previous research conducted in 2004 by Lee 

and Downie [7]. The information we acquired through 
this new study can help improve our general understand-
ing of music users and their behaviors, as well as how 
they have changed as compared to the 2004 survey re-
sults. 

2. LITERATURE REVIEW 

We conducted an extensive literature search in order to 
find out how many large-scale user studies exist in the 
MIR domain. Of the 87 studies discovered, only 6 involve 
more than 100 subjects (with the exception of studies ana-
lyzing user generated content such as queries/reviews). 
Ellis et al. [4] developed a web-based game named “Mu-
sicSeer,” which collected over 6,200 responses; they 
found that “subjective artist similarities are quite variable 
between users,” suggesting that the concept of a single 
ground truth may be problematic. Barrington et al. [1] 
studied 185 subjects and asked them to evaluate results 
from multiple music recommender systems. Both of these 
studies focused on highly specific ideas, such as respons-
es about artist-to-artist relationships [4] or recommenda-
tion results [1], rather than general music behaviors. 

Some studies dealt with particular organizations’ user 
groups. Lai and Chan [5] surveyed 244 Hong Kong Bap-
tist University Music Library users to improve under-
standing of their needs, usage patterns, and preferences 
toward various collections. The authors found that partic-
ipants used scores and multimedia more frequently than 
other types of library materials, although they believed 
that electronic journal databases, books, and online music 
listening were also important to their academic and per-
formance needs. In their survey of visitors to the Experi-
ence Music Project in Seattle, Maguire et al. [9] found 
that improving the user interface was the most important 
suggestion for changes to the museum’s digital collection. 

Other studies dealt with broader topics and more gen-
eral user populations. Lesaffre et al. [8] collected 663 
qualified survey responses to clarify the influence of de-
mographics and musical background on how people de-
scribe music’s semantic qualities. Their research listed 
several characteristics that average MIR system users 
likely would have, and found that gender had the most 
significant influence on music perception. Brinegar and 
Carpa [2] also surveyed 184 respondents on how they 
manage music across multiple devices, and provided em-
pirical data on the sizes of user collections, the meth-
ods/reasons for synchronization, how users dealt with mu-

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.  

© 2012 International Society for Music Information Retrieval  



  

 
sic loss, and so on. Lee and Downie [7] conducted a 
large-scale music survey in 2004 asking two groups of 
respondents (University of Illinois community, and gen-
eral adult public) about their music information needs, 
uses, and search/browse patterns. Their analysis revealed 
the social aspects of music information seeking – that it 
can be a public and shared process, and many users felt 
positively towards reviews, ratings, and recommendations 
from other people. The authors also stressed the im-
portance of providing context metadata (i.e., metadata on 
a music item’s relationships with other items, and its as-
sociations with other works). Our study aims to add fur-
ther insights into music users’ behaviors; in particular, 
this paper focuses on discovering how people use current-
ly available music services and why they favor them.  

3. STUDY DESIGN 

3.1 Study Population and Sampling 

The design specifics of the 2004 and 2012 surveys are 
summarized in Table 1. For the 2004 survey, the candi-
date respondents for Group I were randomly selected 
from a list of students, faculty, and staff from the Univer-
sity of Illinois at Urbana-Champaign. For Group II, invi-
tations to the survey were posted in music-related mailing 
lists/forums in order to recruit participants. For the 2012 
survey, we posted invitations on mailing lists at Universi-
ty of Washington as well as music-related mailing lists. 
We also recruited participants through the authors’ social 
media network such as Facebook, Twitter, and Google+. 

 2004 Survey 2012 Survey 

Study  
population 

Group I: 
UIUC  

community 

Group II:  
General  

population 

UW community 
+ General  
population 

Sampling Random Convenience Convenience 
# questions 19 21 23 
# responses 436 312 520 

Table 1. Basic statistics of the surveys 

In the 2004 survey we asked 19 questions for Group I 
and 21 questions for Group II (2 additional questions on 
job type and education level). The questions covered 
why, where, how, and how often users seek and obtain 
various kinds of music information; who they ask for 
help; how they use music information; what music-related 
websites/apps they use; and so on. The design of the 2012 
survey was based on the previous survey to facilitate re-
sults comparison. The 2012 survey included 4 additional 
questions about how users manage physical and digital 
music collections, what devices they use to listen to mu-
sic, and any comments related to the survey. In both sur-
veys, there were follow up questions that were asked 
based on how users answered the main questions.  

3.2 Limitation 

One concern is that the different populations and sam-
pling methods might affect the comparability of the re-
sults. For the 2004 survey, we were able to obtain a full 
list of all UIUC community members, and thus were able 

to randomly select participants. In the 2012 survey, it was 
not possible to obtain such a listing of the UW communi-
ty for survey purposes, due to privacy concerns. When we 
compared the demographic information of respondents, 
[Table 2], there were in fact some differences. The aver-
age age was slightly higher for the 2012 survey respond-
ents and the dominant gender was also different. Howev-
er, most of the respondents did come from the United 
States for both surveys. In the article reporting the full 
survey results, we will be presenting the results control-
ling for these particular variables in order to see if there 
are significant differences between these sub-user groups. 
Nevertheless, it is important to be aware of this limitation 
in interpreting the findings and implications of this study.       

 2004 Survey 2012 Survey 
Age Average: 30 Average: 37 

Gender (excluding 
unanswered) 

M (50.4%)  
F (46.1%) 

Male (36.2%)  
Female (58.8%) 

Geographic location 73.8% US 60.3% US 

Table 2. Demographic information of respondents 

4. DATA AND DISCUSSION 

4.1 Overview 

In this section, we present a detailed analysis of one of the 
open-ended questions, which asked about users’ favorite 
music-related websites/applications. We also compare the 
responses we obtained for this question in 2004 and 2012, 
and present excerpts from users’ responses and quantita-
tive data on user responses from other relevant questions. 

4.2 Summary of Results 

4.2.1 Favorite Music-related Websites/Applications 

The exact question asked was “What are your favorite 
music-related websites or apps? What do you like about 
them?” We received a total number of 237 responses 
from Group I, 229 from Group II in the 2004 survey, and 
419 responses in the 2012 survey. Many users mentioned 
more than one website/application in their responses, so 
the total number of references to individual websites/apps 
added up to 1002 for the 2004 survey (combined) and 
945 for the 2012 survey. Table 3 summarizes the services 
that received 5 or more responses from both surveys.  

We can observe that a variety of different types of ser-
vices were mentioned: Internet radio/streaming, music 
management and purchase, music identification, diction-
ary-type sources, reviews, etc. Many of our users seemed 
very savvy and knowledgeable, and specified multiple 
favorite websites and applications, explaining that they 
use each of them for very specific purposes.  

When we compared the results from both surveys, we 
noticed a heavier concentration of responses with particu-
lar websites in 2012 survey. Only 5 websites were men-
tioned more than 5 times in both surveys and another 16 
were new (in bold). There are a few completely new types 
of services, such as music identification (e.g., Shazam, 
Soundhound), and cloud music (e.g., Spotify, Groove-
shark, Google Music). Peer-to-peer file sharing applica-



  

 
tions like Kazaa (in 2004) or general search engines like 
Google disappeared from the top list in 2012. The signifi-
cant increase in the popularity of iTunes can probably be 
explained with the increasing use of mobile devices. 

2004 Survey (combined) 2012 Survey 
Websites # % Websites/Apps # % 

Amazon 58 12.4 Pandora 149 35.6 
All Music Guide 36 7.7 YouTube 68 16.2 
Launch 25 5.4 Spotify 57 13.6 
MTV 20 4.3 iTunes 56 13.4 
Kazaa 19 4.1 Shazam 32 7.6 
CD Now 18 3.9 Amazon 30 7.2 
iTunes 17 3.6 Naxos 25 6.0 
Mudcat Café 15 3.2 Last.fm 25 6.0 
Rolling Stone 12 2.6 Grooveshark 25 6.0 
Billboard 10 2.1 Pitchfork 20 4.8 
Pitchfork 10 2.1 All Music Guide 20 4.8 
Google 9 1.9 NPR 16 3.8 
Lyrics.com 8 1.7 Grove Music 

Online 12 2.9 Grove Music 
Online 7 1.5 

Wikipedia 11 2.6 
eBay 6 1.3 IMSLP 11 2.6 
Netscape Radio 6 1.3 Soundhound 10 2.4 
Tower 6 1.3 Rhapsody 8 1.9 
Andante 5 1.1 Google Music 8 1.9 
CMT 5 1.1 KEXP 7 1.7 
   Soundcloud 6 1.4 
   ArkivMusic 5 1.2 

Table 3. Services mentioned by 5 or more users. 

We conducted a more thorough analysis of how these 
services were being used. Table 41 shows a list of how 
users specified they used different services, and how often 
those behaviors were mentioned in the surveys. We no-
ticed a general trend of greater direct music consumption 
from these websites and applications, mostly due to the 
increased number of streaming and cloud music services. 
There was a significant drop among the several responses 
related to general music-information seeking, i.e., “To 
learn about the artists/bands.” We conjecture that this has 
to do with the emergence and rising popularity of major 
music related websites and applications that serve pur-
poses other than just providing music information. The 
existence and popularity of these websites now seem to 
heavily affect users’ perception of what to expect from 
music services. Considering that 16 of the 21 top-rated 
services did not exist in 2004, this is not very surprising. 

The data also suggest that the expectations from users 
regarding access to particular types of music information 
may have changed. For instance, websites providing lyr-
ics information were sought by 7.3% of users in the 2004 
survey, whereas in 2012, only 1.2% of respondents men-
tioned the need for lyrics information. Instead of visiting 
a particular website for lyrics, we suspect that many users 
are able to utilize a phrase search option in search engines 

                                                           
1 Table 4 and 5 are based on responses where the user specified the rea-
son for liking the service. Some responses only specified the name or 
URL. 646 responses specified the reasons in 2004 and 644 in 2012.  

like Google and are able to find links to numerous web-
sites that provide lyrics. In addition, certain websites such 
as YouTube are not lyrics websites, but provide video 
content that often incorporates lyrics information. Thus, 
users might not even think of particular lyrics websites as 
one of their favorite music related websites. This may al-
so be true for information on local events, which is much 
easier to find through social media in 2012.  

We also saw a drop in responses indicating participa-
tion in or value for activities of social interaction [Table 
5]. In 2004, online forums were extremely popular as a 
place to interact with other people. However, in 2012, so-
cial media such as Facebook, Twitter, and Google+ are 
now providing a space for users to discuss music, and us-
ers may not even think of these websites as specifically 
music-related, thus not showing up in the survey data.  

The other category included: To track listening (new in 
2012); save wish lists; find blogs; compare versions; etc.  

                                                   Response 
Usage 

2004  
Survey 

2012  
Survey 

# % # % 
To listen to music recordings 70 10.8 143 22.2 
To discover new music/artists 14 2.2 80 12.4 
To obtain/purchase music recordings 95 14.7 46 7.1 
To obtain music information (general) 56 8.7 35 5.4 
To identify/verify a particular song 6 0.9 34 5.3 
To learn about the artists/bands 110 17.0 31 4.8 
To read reviews 37 5.7 30 4.7 
To search for/browse music recordings 22 3.4 23 3.6 
To listen to samples before purchase 32 5.0 23 3.6 
To get recommendations 11 1.7 22 3.4 
To interact with other people 48 7.4 22 3.4 
To obtain current news/information 26 4.0 21 3.3 
To watch performances/music videos 14 2.2 18 2.8 
To learn more about recordings 37 5.7 18 2.8 
To obtain information for work/research 20 3.1 15 2.3 
To obtain scores 29 4.5 13 2.0 
To create playlists/stations 0 0.0 13 2.0 
To store/manage music and metadata 0 0.0 9 1.4 
To obtain lyrics 47 7.3 8 1.2 
To find out about events 29 4.5 7 1.1 
To share music recordings 2 0.3 6 0.9 
To obtain ranking/rating information 11 1.7 4 0.6 
Other 22 3.4 16 2.5 

Table 4. How the websites/applications are used 

4.2.2 Reasons for liking the Websites/Applications 

From the user responses on why they like these web-
sites/applications, we were able to infer what kinds of 
qualities users perceive to be important for these services. 
As shown in Table 5, there was a variety of different qual-
ities mentioned by users in both surveys. We found it sur-
prising that the quality mentioned most often was actually 
being exposed to new artists/music and serendipitous dis-
covery, even more so than being free or inexpensive. The 
design aspects of the system (e.g., easy and convenient 
access to music; user-friendly system) were also per-
ceived as important qualities. In fact, users’ expectations 
on these aspects seem to be much higher compared to 



  

 
how they were in 2004. Being able to customize or per-
sonalize the service was also highly appreciated. The re-
sponses for comprehensive coverage of music, including 
particular styles of music, and good music content that is 
updated frequently and matches users’ interests/tastes, all 
dropped. We think it is unlikely that users do not believe 
these qualities are important anymore; rather, users prob-
ably just expect that current music services have these 
qualities to begin with. With the increasing use of mobile 
devices and a variety of applications, compatibility also 
surfaced as a new important quality for users.  

The other category included: innovative, high quality 
recordings and writing, different purchase options, 
providing alerts, being able to listen to the whole album, 
not posting to Facebook, not hogging resources, directly 
paying artists, fewer bugs, etc. 

                                           Response 
Quality 

2004  
Survey 

2012  
Survey 

# % # % 
Exposure to new things/Serendipity 18 2.8 80 12.4 
Free/Inexpensive 50 7.7 68 10.6 
Ease of access/Convenience 9 1.4 52 8.1 
Customizability/Personalization 8 1.2 49 7.6 
User-friendly/Ease of use 28 4.3 46 7.1 
Comprehensive/Exhaustive coverage 64 9.9 37 5.7 
Variety/Wide selection 51 7.9 36 5.6 
Access to particular style of music 69 10.7 28 4.3 
Compatibility/Use with other devices 1 0.2 25 3.9 
Access to music samples 18 2.8 23 3.6 
Good search/browse functions 8 1.2 23 3.6 
Social/Ability to interact with others 52 8.0 22 3.4 
Matches user’s interest/taste 67 10.4 21 3.3 
Good music/content 61 9.4 16 2.5 
Quick/Instant service 7 1.1 16 2.5 
Comparative data/Similar music 8 1.2 14 2.2 
No rights management/restrictions 0 0.0 10 1.6 
Fun/High entertainment value 2 0.3 9 1.4 
Authority/Credibility of information 7 1.1 8 1.2 
Does not require much user input 1 0.2 8 1.2 
Rare/Obscure recordings/information 17 2.6 7 1.1 
Familiarity/Set as default 8 1.2 6 0.9 
Ability to store/archive recordings 0 0.0 6 0.9 
New content/Updated frequently 48 7.4 5 0.8 
Accuracy/Reliability of information 5 0.8 5 0.8 
Access to local information 5 0.8 4 0.6 
Good organization/design 11 1.7 3 0.5 
No or fewer ads 6 0.9 3 0.5 
Other 12 1.9 31 4.8 

Table 5. The list of qualities valued by users 

4.3 Discussion of the Trends in 2012 

4.3.1 Popularity of Streaming Services 

Analyzing the responses from both surveys clearly reveal 
the increasing popularity of Internet radio/music stream-
ing services. With the rising use of various mobile devic-
es such as tablets and smartphones, it is not surprising that 
streaming service is also becoming increasingly prevalent. 
Music is only one of many types of digital media users 
store on mobile devices, in addition to photos, videos, 

games, documents, etc., and numerous apps. This means 
that even though the storage space of these devices is al-
ways growing, the space allocated for music will always 
be limited. Listening to streaming music services rather 
than carrying one’s own collection is one way to resolve 
that issue, as noted in comments below. Some comments 
also implied that there are songs users want to own vs. 
songs they just want to listen to now and then. 

“I like them because I can still listen to music without cluttering 
up my phone or work computer with extra files.” 

“I also use things like spotify and pandora to listen to music 
that I don't necessarily want to own but have a hankering for 
now and again.”  

The quantitative data also support this trend. Table 6 
shows various response statistics to questions related to 
Internet radio/streaming services and mobile music con-
sumption. When we compare the frequency of users lis-
tening to these services from the 2004 and 2012 surveys 
(the first and second rows), we see a significant increase 
in the proportion of respondents (+30.7%) who use these 
services 5 or more times per month as well as a large de-
crease in the users (-16.5%) who never use these services. 
Two new questions were asked in the 2012 survey about 
how often people use music/music-themed apps on mo-
bile phones (third row), and search for music heard 
through online streaming services (fourth row). 20.7% 
indicated they use music related apps “a few times a 
week” (8.4%) to “almost every day” (12.3%), implying a 
heavy mobile consumption of music by these users. 
Streaming music was also an important trigger for music 
searching; a total of 77% of respondents indicated that 
they search for music heard on streaming services at least 
once a month, and 22.8% do it “a few times a week” 
(12.0%) or “almost every day” (10.8%).  
                                  

                                    Response   
 
 
   
 
Source 

Positive Never Count 
Frequency  
(times per 

month) 

Total Total 

1 2-4 5 
% % % % # 

Listening to streaming music/ 
online radio (old) 

25.5 27.5 25.5 21.6 1066 

Listening to streaming music/ 
online radio (new) 

13.3 25.4 56.2 5.1 488 

Using music or music-themed 
apps on mobile phone (new) 

14.0 18.4 20.7 46.9 478 

Searching for music heard from 
online streaming service (new) 

24.6 29.6 22.8 23.2 501 

Table 6. Various statistics related to streaming 
services and mobile music consumption 

4.3.2 Emergence of Music Identification Services 

Music identification services like Shazam and Sound-
hound also seem quite popular (42 responses combined). 
To provide a baseline for comparison, Table 7 shows the 
responses to different options for the question, “How of-
ten to do you ask the following people/services for help 



  

 
when you search for music or music information?” 
Friends and family members received the most positive 
responses. Over half (56.6%) of the responses indicated 
users consulted their social networks, and 43.5% of the 
503 users said they have used music identification ser-
vices. Overall the proportion of users who use this kind of 
service is still less than those who ask other people.  

         Responses from                   
                            2012 
  Frequency  

Friends and  
family 

People on  
Social 

Network 

Music ID  
service 

Almost every day 2.4% 1.6% 1.0% 
A few times a week 7.9% 6.3% 4.6% 
About once a week 10.4% 6.5% 5.6% 
2 or 3 times a month 20.0% 12.4% 5.6% 
Once a month or less 37.7% 29.9% 21.1% 
Never 21.6% 43.3% 56.5% 
Total responses 509 508 503 

Table 7. Frequency of users asking for help when 
searching for music or music information 

However, when asked about how likely they would be 
to use the search/browse option of a music identification 
service, only 28.1% answered positively (Very likely + 
Somewhat likely), 62.4% answered negatively (Not very 
likely + Not at all likely), and 9.5% said “Don’t know.” 
We may infer that some people might use it out of curi-
osity but would not use it again. Considering that this type 
of service is still relatively new, we suspect that users’ 
responses may change over time. We have observed simi-
lar results for a number of other search/browse options 
when we compared the responses from 2004 and 2012 
surveys (e.g., “purchase patterns” (+20.6%), “recommen-
dations from other people” (+14.9%), “mood/emotional 
state induced” (+7%) of positive responses in 2012).  

4.3.3 Music combined with other Multimedia 

It is interesting to note that YouTube was the second most 
preferred service by users in the 2012 survey, despite that 
the main objective of the website is not to provide music 
content. In addition to the benefit of being able to see mu-
sic videos and concert/performance footage, the extensive 
coverage of YouTube was also highly valued by users as 
noted in the comments below: 

“…gives an incredibly large choice of uploaded music to listen 
to (once again, including some specialized and rare items I 
wouldn’t be able to find in my local library).” 

“…I practically never searched for a song I didn’t find on their 
servers.” 

YouTube was also seen as a place where many new 
artists post their work, where you can find “official” mu-
sic videos, and hear a great deal of covers or different 
versions of songs. Some users also think of YouTube as 
an archive of old and rare music related materials. In ad-
dition, users appreciated that they do not need special 
hardware/software to use the service.: 

“…the clips will play on any reasonable electronic platform 
(not restricted to certain brands or types, not requiring certain 
software beyond what it [sic] is likely to be on computers or 
smartphones already).”   

4.3.4 Serendipitous Discovery of New Music 

Exposure to and serendipitous discovery of new mu-
sic/artists were very important to users in the 2012 survey 
[Table 5]. We conjecture that the popularity of services 
like Pandora or Spotify is greatly affecting user expecta-
tion. 32 responses specified that serendipitous discovery 
is the very reason why they like Pandora. Users gave split 
responses to the question asking how likely they would be 
to use the search/browse option “by recommendations 
from recommender systems”: 50.8% positive, 46.9% neg-
ative, and 2.2% “Don’t know.” We saw a few responses 
that shed insight into why some people may not be 
pleased with current recommender systems: 

“I've found a few new songs and artists I like through it, but I 
get frustrated with it sometimes when it thinks I like a whole 
genre because of one song, and it doesn't repeat the songs I 
REALLY like often enough.” 

“…even though it has stupid ads and plays music I don't like 
half the time... just because it's easy.” 

Recommender systems, of course, play a major role in the 
serendipitous discovery of music, but users mentioned 
employing other resources (e.g., YouTube, Pitchfork) to 
find new music, as well. By interviewing users about how 
they evaluate playlists, Lee [6] found that people definite-
ly like learning new things, but still want them contextual-
ized in familiar territory. We saw several comments that 
resonate with this finding: 

“it exposes me to artists I'd never heard of before in genres I 
enjoy.” 

“they either play music I already like/know or introduce me to 
music that suits my tastes in an easy, unobtrusive way.”  

4.3.5 Customizability vs. Not Requiring User Input   

As shown in Table 5, users’ belief that a service is cus-
tomized for them or that they are able to personalize it 
themselves seems very important and has a strong, posi-
tive effect on how they feel about that service. Some ex-
amples of comments include: “stations tailored to my mu-
sical tastes and moods,” “nice customization opportuni-
ties,” “I like that you can say you like or dislike songs,” 
and “I can adjust it to play music I like.” It is actually dif-
ficult to say how much these beliefs are objectively justi-
fied; for instance, do users understand the technical pro-
cess of what happens after they like or dislike particular 
songs recommended by the service? We suspect that most 
users do not know how much these services actually in-
corporate their input to modify the results presented, ex-
cept for the vague idea that they are somehow making it 
better to suit their tastes. This sense of control seemed to 
be what was important to them, rather than a set of perfect 
results [further discussion in Section 5]. 



  

 
It is also important to note that there exist a smaller 

number of users who prefer “not doing much.” In order to 
appeal to these users, it will be important to provide an 
option to have an automatic algorithm learn their tastes 
and do the work on their behalf. Some of their comments 
include: “I like that Pandora streaming radio lets me be 
lazy,” “making playlists is too much work most of the 
time,” “they are free and do not require me to download 
or own anything. Streaming is key.” 

5. CONCLUSION AND FUTURE WORK 

This work is part of a bigger research agenda that aims to 
provide an empirical basis for the development of music 
services reflecting the needs of real users. Our findings 
suggest several changes in the kinds of music services 
people like: an increase in the popularity of streaming 
services and mobile music consumption, an emergence of 
new types of services like music identification or cloud 
music services, an appreciation of music videos, serendip-
itous music discovery, and customizability, etc. 

However, it also became apparent that many of the us-
ers’ music information needs in 2012 did exist in 2004. 
The difference we see is that in 2012, a few dominant 
services are being used to fulfill those needs rather than a 
number of different websites. For instance, access to mu-
sic videos/performances has always been important; users 
in the 2004 surveys were going to Yahoo! Launch, MTV, 
and VH1, and now seem to use YouTube for the same 
purpose. Users also told us that getting recommendations 
and discovering new music was important in 2004 [7]. In 
2012, Pandora has become one of the major applications 
that serve those needs. The social aspect of music search 
was revealed in 2004 survey responses, where users said 
they were asking friends and family members about music 
and going to different forums to talk to other users [7]. 
Now we have Spotify and last.fm, where people can find 
out what their friends are listening to, and Shazam and 
Soundhound to help identify music. 

Another interesting aspect of the survey was that many 
users recognize and accept the limitations of the services 
they like. As noted by the excerpts below, users seem 
willing to accept and forgive a few flaws if there are some 
other attractive aspects:  

 “…incredibly easy to use, awesome service, great wide-
ranging library, integrated information, always being updated - 
glitchy at times and doesn't have everything but more than 
makes up for it in convenience and design.” 

“…it will do song identification, including humming/singing 
(still a little buggy, but a great idea),it pulls up lyrics for songs 
identified, gives you links to where you can purchase the music 
or to listen to it via the Slacker Radio app. It's really great!”   

We believe that this is an important point with strong 
implications for developers of music systems and services. 
Much of the efforts in the MIR domain have been focused 
on improving the accuracy of particular algorithms, re-
sulting in the “glass ceiling” problem where the effective-
ness of techniques has reached its limits [3]. Maybe we 

should also start asking about what really matters to users; 
as the users in our survey told us, ease of use, a wide vari-
ety of music, innovative ideas, compatibility with other 
devices/apps, etc. are maybe as important as getting “ac-
curate” results. We hope that the list of qualities valued 
by users of music related websites/applications will help 
inform system designers and developers in modifying ex-
isting services or creating new services.  

A journal article reporting the detailed analysis of the 
2012 survey and comparison of the results from 2012 and 
2004 surveys is in preparation. For our future work, we 
plan to conduct additional user studies surrounding the 
expectations of specific music services, in particular, 
cloud music services. We are also interested in analyzing 
the failed cases, asking people what kinds of music relat-
ed websites/applications they do not like and why.  
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ABSTRACT 

This paper explores the impact of the MIREX (Music In-
formation Retrieval Evaluation eXchange) evaluation ini-
tiative on scholarly research. Impact is assessed through a 
bibliometric evaluation of both the MIREX extended ab-
stracts and the papers citing the MIREX results, the trial 
framework and methodology, or MIREX datasets. Impact 
is examined through number of publications and citation 
analysis. We further explore the primary publication ven-
ues for MIREX results, the geographic distribution of 
both MIREX contributors and researchers citing MIREX 
results, and the spread of MIREX-based research beyond 
the MIREX contributor teams. This analysis indicates 
that research in this area is highly collaborative, has 
achieved an international dissemination, and has grown to 
have a significant profile in the research literature. 

1. INTRODUCTION 

In this paper we report on the results of a study investi-
gating the scholarly impact of the Music Information Re-
trieval Evaluation eXchange (MIREX), an annual formal 
evaluation of MIR systems and algorithms. A detailed 
examination of the structure of the MIREX trials and the 
results of the initial three years of the MIREX program is 
presented in [2]. In this present work, we look back on 
the MIREX publication literature to develop a rich pic-
ture of patterns of publication, collaboration, and dissem-
ination of MIREX research (Section 3). Our analysis is 
based on a set of MIREX-related publications gathered 
via Google Scholar (Section 2).  Issues encountered in 
building our MIREX document set indicate the existence 
of barriers to the dissemination of MIREX results. These 
issues are further explored in Section 4, where we also 
describe proposals to reduce these barriers—specifically, 
by providing a digital library of MIREX extended ab-
stracts (thereby pulling the scattered abstracts together 
into a single repository that supports searching and 
browsing), and by recommending the development of 
referencing conventions for MIREX-related documents, 
datasets, and evaluation frameworks. 

2. BIBLIOGRAPHIC DATA GATHERING 

In this present paper, the impact of the MIREX trials is 
measured through both the number of MIREX-related 
papers published and the number of times that these pa-
pers have been cited. The MIREX publications include 
both the brief descriptions of the MIREX algorithms 
submitted to a given trial (referred to in the MIREX trials 
as ‘extended abstracts’) and the papers derived from the 
MIREX extended abstracts and MIREX results. As rely-
ing solely on sheer quantity of papers has obvious draw-
backs, additional analysis focuses on the citation counts 
to round out the picture by indicating the degree to which 
each publication “has made a difference” [8] [9].  

Three document sources have been commonly used in 
previous bibliometric studies:  the ISI Web of Science 
(Thomson Reuters), Scopus (Elsevier), and Google 
Scholar (Google). The three have very different collec-
tion policies. The differences most significantly impact-
ing this present study are that ISI restricts its computer 
science conference proceedings coverage more heavily 
than the other two; Scopus provides a more comprehen-
sive coverage of both publishers and what they term 
‘quality web sources’ than ISI; and Google Scholar in-
cludes the majority of the ISI and Scopus offerings as 
well as books, technical reports, and white papers. 

In choosing Google Scholar as the source for this pre-
sent study, we were influenced by issues of coverage and 
user preference. MIREX-flavored research is based 
strongly in computer science and engineering, two fields 
that place a greater emphasis on conference publications 
and technical reports than other sciences—and both ISI 
and Scopus do not include these publications types to the 
extent of Google Scholar [3] [4]. As the MIREX extend-
ed abstracts are not formally published, they are not in-
cluded in the ISI and Scopus databases, and so their im-
pact could not be measured through those resources. Fur-
ther, we are specifically interested in exploring the docu-
ments most readily visible from the viewpoint of re-
searchers interested in MIREX (rather than obtaining 
comprehensive coverage by hunting down MIREX relat-
ed publications through all possible sources). For a given 
topic, Scopus, ISI, and Google Scholar are each likely to 
cover some content unavailable to the other two. Google 
and Google Scholar are the resources of preference for 
researchers in computer science and other science fields 
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[5]—and so by basing this study on documents drawn 
from Google Scholar, we build up a picture of the world 
of MIREX research that more closely resembles the 
viewpoint of MIREX researchers. 

As citations must build up over time, we restricted the 
scope of this study to the years 2005 – 2010 rather than 
coming up to date (with the expectation that the 2009 and 
2010 will show a ‘Groos droop’ [7]—the noticeable 
‘droop’ in the right hand tail of the distribution—as cita-
tions are still accumulating for these later years).  Each 
year was individually searched by using the date re-
striction facility in Google Scholar Advanced Search, and 
the search criterion used was “MIREX AND music” 
(‘Mirex’ is also a widely used insecticide, and so a further 
restriction to the music domain was necessary to filter out 
agricultural research).  

Each paper in these initial results sets was then exam-
ined to gauge its relevance to this study. To be included 
in the study, the paper had to use / reference the results of 
a MIREX trial, a MIREX technique, MIREX data, or 
MIREX software. MIREX extended abstracts present in 
the Google Scholar results were also retained (extended 
abstracts not available through Google Scholar were not 
included in this study). Papers only tangentially related to 
MIREX were eliminated (for example, papers mentioning 
the MIREX trials as one example among many of retriev-
al evaluation exercises).  Further documents were culled 
because they were not formal research papers (for exam-
ple, undergraduate student assignments).  Documents that 
were not publicly available were, when possible, down-
loaded for examination through the researchers’ universi-
ty library facilities (for example, the ACM publications). 
Some papers were not readily accessible, and for these 
the abstract and search snippet were examined; if these 
did not indicate a significant relationship to MIREX then 
they were also eliminated. Finally, duplicates were identi-
fied and merged (citation counts for copies were added 
together). Table 1 shows the document counts for both 
the raw and cleaned datasets. 

 
 2005 2006 2007 2008 2009 2010 
Raw 74 154 186 246 281 330 
Cleaned 64 87 131 139 134 196 
 
Table 1. Number of documents in the initial search re-
sults (raw) and final datasets (cleaned). 

 
For each document retained, we recorded: author 

names, authors’ institutional affiliations, title, abstract, 
publication type (journal article, book chapter, conference 
paper, thesis, technical report), abstract, source (eg, con-
ference name), and citation count.  As Google Scholar 
provides only the raw citation count, we were not able to 
filter for self-citations. Not all of this metadata was avail-
able for every document; specifically, a small number of 
institutional affiliations were absent and so the analyses 

of author geographic distribution and collaboration (Sec-
tion 3.6) may be slight underestimates.   

3. ANALYSIS OF MIREX PUBLICATONS 

This section examines the impact of MIREX through 
publication and citation counts, the extent of collabora-
tion within the MIREX research community, and the geo-
graphic distribution of MIREX research efforts.  

3.1 MIREX Publication Set 

For 2005 - 2010 we identified a total of 752 publications:  
236 MIREX extended abstracts, and 516 more formal 
publications based on the MIREX trials and results (Ta-
ble 2). Theses and dissertations are treated separately in 
Section 3.2. Note that this dataset does not provide ex-
haustive coverage of either category, and coverage of the 
MIREX abstracts in particular is patchy when viewed 
through the lens of Google Scholar. We return to this 
point in Section 4 with an explanation of this phenome-
non and a partial solution to the relative invisibility of 
some MIREX documents. 

Table 2 shows an overall increase in the number of 
MIREX-derived publications—a ten-fold increase in the 
first three years of the trials, and another large increase in 
2010. The MIREX trials are clearly seen by the research 
community to have value, as expressed through the 
growth of literature that builds on MIREX. 

However, MIREX extended abstracts can be seen to 
receive relatively fewer citations than the publications 
deriving from the MIREX trials (and even at that, the ci-
tation average for MIREX extended abstracts is in most 
years heavily skewed by one or two abstracts that re-
ceived large numbers of citations). In contrast, a compa-
rable analysis of the TRECVid (video retrieval) [8] [9] 
and ImageClef (image retrieval) [10] evaluations show 
the papers for those evaluation trials to have a similar ci-
tation profile to their respective derived literature. Again, 
in Section 4 we explore possible reasons for the lower 
citation counts and offer a tactic to counter this effect. 

The h-index is a measure that attempts to encapsulate 
both the quantity and visibility of a set of publications 
[1]. It is calculated as the number h that is the largest 
number of papers in the set that have each received at 
least h citations. In Table 2 we see further evidence that 
the MIREX-derived publications have a far higher profile 
than the MIREX extended abstracts; in a given year the 
h-index for the derived publications is roughly three to 
four times higher than that of the extended abstracts. 

3.2 MIREX-derived Publications: Publication Types 

The derived papers are published formally as chapters in 
edited books, as conference papers, and in journals, and 
are less formally made available as technical reports. The 
publication venues follow the profile typical of computer 
science and engineering: there is a greater emphasis on 
conference than on journal publications, with a smaller  



  
 

 

  

 

 MIREX extended abstracts MIREX derived publications 
Year No. Citations Mean 

 citations 
h-index No. Citations Mean  

citations 
h-index 

2005 54 302 5.59 10 10 358 35.80 – 
2006 36 226 6.28 6 51 1308 25.65 20 
2007 33 242 7.33 9 98 1453 14.83 21 
2008 38 99 2.61 6 101 1754 17.37 22 
2009 33 34 1.03 3 101 802 7.94 14 
2010 42 35 0.83 3 155 914 5.90 14 

Table 2.  Overview of citation data, 2005 – 2010. 

(but not completely negligible) number of book chapters 
and technical reports (Table 3). 

The MIREX annual results are reported through a spe-
cial session in the ISMIR conference, and ISMIR is the 
focal conference for music retrieval research—so it is to 
be expected that ISMIR would be a significant publica-
tion venue for the MIREX-derived research. As Table 4 
illustrates, once past the inaugural year over three quar-
ters of the MIREX-derived papers are published outside 
of ISMIR, and that spread to other conferences and jour-
nals increased in the final year of this present study. 

 2005 2006 2007 2008 2009 2010 
Technical  
report 

0 1 3 3 2 1 

Book chapter 0 2 1 2 2 7 
Conference  10 37 67 79 83 106 
Journal article 0 11 17 17 14 41 
 
Table 3. Publication type for MIREX-derived papers. 
 

2005 2006 2007 2008 2009 2010 
5  

(50%) 
14 

(27%) 
29 

(30%) 
26 

(26%) 
25 

(25%) 
28 

(18%) 
 

Table 4. Number and percentage of MIREX-derived pa-
pers that are published in ISMIR conferences. 
 

3.3 MIREX Theses and Dissertations 

Table 5 shows the number of research theses and disserta-
tions that are based to some extent on the MIREX trials—
typically by referencing MIREX annual results, by testing 
a novel algorithm against published MIREX datasets, or 
reporting more fully on the researcher’s own MIREX en-
try. The uptake of MIREX as a degree focus bodes well 
for the future of research in this area, as Masters and PhD 
students move into research positions.  

The theses and dissertations are cited less than the oth-
er MIREX-derived publications (Table 5), but that is to 
be expected—in the science fields, theses/dissertations 
are commonly re-worked into journal or conference pub-

lications, which are both more visible to other researchers 
and more visibly peer-reviewed (and hence more likely to 
be noticed and cited). 

Year Degrees No. Total Cita-
tions 

Mean 
citations 

 2005 Masters: 1 2 7 3.5 
PhD:       1 

2006 Masters: 8 13 90 6.92 
PhD:       5 

2007 Masters: 10 13 114 8.77 
PhD:        3 

2008 Masters: 14 23 90 6.92 
PhD:        9 

2009 Masters:  4 14 19 1.36 
PhD:       10 

2010 Ugrad:    1  21 46 2.19 
Masters: 9 
PhD:       11 

Table 5. MIREX-related theses and dissertations. 

3.4 Collaboration in MIREX Research 

The mean number of authors per paper is presented in 
Table 6 and the distribution of author numbers per paper 
is presented in Figure 2. The research teams submitting to 
the original MIREX trials were small—the vast majority 
comprised one or two researchers—but over the years the 
number of participants in a MIREX submission has 
grown. The number of co-authors for papers based on 
MIREX has shown steady growth to 2010. Both trends 
likely reflect the maturing of this area of research, as sta-
ble research groups develop from the interests of one or 
two key researchers.  

The size of the collaborative teams for both categories 
of paper are larger than might be expected; typically the 
mean number of co-authors for a computer science or en-
gineering paper hovers around two [6]. 

 2005 2006 2007 2008 2009 2010 
Extended 
abstracts 

1.75 1.75 2.39 2.47 2.85 2.79 

Derived 
papers 

2.3 2.31 2.62 2.96 2.95 3 

Table 6. Mean number of authors per paper. 
 



  
 

 

Figure 2a. Number of authors per paper for MIREX ex-
tended abstracts. 

 
Figure 2b. Number of authors per paper for MIREX de-
rived publications (excluding theses and dissertations). 

3.5 Geographic Distribution of MIREX Researchers 

Thirty-six countries have contributed at least one publica-
tion in the 2005 – 2010 MIREX document set (Table 7 
presents the league table of the top contributors, and Fig-
ure 3 presents a map-based visualization of this geo-
graphic distribution). Participation in the MIREX evalua-
tions is clearly not restricted to a small inner circle, and 
the MIREX results are seeing similarly widespread appli-
cation.   

Examining more closely the national affiliations for 
authors of the papers under study, we see that the re-
search is surprisingly collaborative across national 
boundaries and between institutions within a single coun-
try (Table 8). The percentage of papers involving co-
authors from two or more countries seems to have stabi-
lized at 12% from 2007 – 2009, and then to have in-
creased sharply in 2010 to 18%. The increases in these 
cross-boundary collaborations may reflect the increasing 
maturity of the field, as researchers move to new posi-
tions while maintaining research ties in their former insti-
tutions, or perhaps the personal connections made 
through ISMIR / MIREX conferences are encouraging 
greater collaboration outside the researcher’s home insti-
tution. A further drill-down into the publications dataset 
(and likely follow-up survey of MIREX researchers) is 
necessary to clarify the factors contributing to this effect. 

Country MIREX 
abstracts 

Derived 
papers 

Theses Total 

USA 33 130 19 182 
France 29 61 5 95 
Spain 27 48 11 86 
UK 22 50 11 83 
Canada 14 32 7 53 
Austria 16 23 6 45 
Finland 16 16 2 34 
Germany 15 19  34 
China 14 19 1 34 
Japan 8 22  30 

Table 7. Number of publications by country for the top 
ten contributors, 2005-2010. 

 

 

Avg no. of  
countries per 
paper 

% of multi-
national  
collaborations 

Avg no. of  
institutions per 
paper 

2005 1.2 20.0% 1.13 
2006 1.04 3.9% 1.08 
2007 1.16 13.3% 1.22 
2008 1.15 12.9% 1.32 
2009 1.14 12.0% 1.43 
2010 1.18 18.3% 1.46 

Table 7. Summary of international and cross-institutional 
collaborations. 

4. BUILDING A GREATER PROFILE FOR MIREX 
EXTENDED ABSTRACTS 

Early in the data gathering process it became apparent 
that a substantial proportion of the MIREX extended ab-
stracts were not being harvested by our Google Scholar 
searches—for example, a manual count of the 2008 ex-
tended abstracts on the MIREX wiki (http://www.music-
ir.org/mirex/wiki/) yielded 51 submission abstracts, where 
our Google Scholar search identified only 38. Further, 
several extended abstracts appeared as multiple, but not 
identical, versions of the same  intellectual content (obvi-
ously revised versions of a single submission). We later 
discovered that yet other extended abstracts were indeed 
present in the Google Scholar collection, but as they did 
not include MIREX in the document text or extracted 
metadata, they were not returned in our searches. 

 Perhaps more troublingly, Google Scholar was unable 
to extract meaningful bibliographic metadata for a num-
ber of the extended abstracts that did appear in the 
MIREX searches.  For these latter extended abstracts, the 
researchers verified that they were indeed part of the 
MIREX trials by traversing backwards through the file 
hierarchy in which the document was stored, until we 
could determine that it was indeed a legitimate contribu-
tion to a MIREX evaluation cycle.  For an extended ab-
stract lacking metadata, a researcher unfamiliar with 
MIREX, but interested in the intellectual content of the 
paper, would not know the extent to which the results 
presented in the paper could be trusted—was this paper



  
 

 
Figure 3. Geographic distribution of MIREX researchers. 

peer reviewed? Was it a technical report, less formally 
‘published’ but still endorsed by the authors’ institutions? 
Or was it a student assignment accidentally harvested by 
Google Scholar? 

These issues with identifying both the existence and 
provenance of MIREX extended abstracts in Google 
Scholar are likely explanations for the relatively low cita-
tion counts for the extended abstracts identified in this 
present study (Table 2).  To mitigate these issues and, we 
hope, provide a mechanism for the MIREX evaluation 
documents to gain a higher profile, we have developed a 
digital library of the extended abstracts using the open 
source digital library software Greenstone [11].  Figure 4 
shows a snapshot taken from this resource.  The figure 
shows the result of searching for "F0" using the full-text 
index of the abstract texts.  Each matching document dis-
plays the title, year of publication, and the authors, along 
with a link to the PDF document. Also provided for each 
document is a "Locate @ Google Scholar" link.  Clicking 
on this takes the title of the paper and initiates a search 
for this on Google Scholar.  While not guaranteed to find 
a match, we found it worked reliably well in practice, and 
a convenient way to locate citation information about the 
extended abstract. Features also include browsing by title, 
author and date, as well as search by these metadata 
fields.  The resource can be accessed through 
http://music-ir.org/mirex-dl/library). 

While this digital library provides improved access fa-
cilities to the extended abstracts, it is worth noting that 
the some of the metadata for each abstract may be pro-
vided through the digital library interface and is not ap-
parent on the document itself.  Searchers may stumble 
across an extended abstract via any number of mecha-
nisms—a Google Scholar search, a general search engine 
query, a link from another website—and there is no guar-
antee that the specific path a particular user takes in  lo-
cating a given document will provide any cues as to the 
document’s provenance beyond those included in the text 
of the document itself. For this reason, we recommend 

that each extended abstract should include a header 
providing the citation for that abstract. 

 

 

Figure 4. Sample search results display in our prototype 
digital library of MIREX extended abstracts. 

Close examination of the MIREX-derived literature al-
so uncovered difficulties that some authors had obviously 
experienced in knowing how to cite the results of the 
MIREX trials (for example, the relative performance of 
specific algorithms). While an overview of the year’s 
MIREX evaluations generally appears in the proceedings 
of the annual ISMIR conference, this document does not 
provide comprehensive results from all tasks. Exhaustive 



  
 

summaries of results are available on the MIREX wiki1, 
but these are not provided in a form that is recognized as 
being suitable for indexing by Google Scholar—and no 
guidelines are given on the wiki as to how to cite these 
results. A straightforward solution would be to issue the-
se results summaries as technical reports and store them 
in repositories indexed by Google Scholar and other 
scholarly indexing systems. 

Similar difficulties were apparently experienced in 
providing formal acknowledgment of the MIREX trials, 
experimental setup, or datasets (the MIREX wiki does not 
provide a canonical reference form for these). While the-
se papers did use the term “MIREX” in describing the 
results and datasets in the paper body (and so our Google 
Searches did return these papers), these mentions were 
not tied to entries in the papers’ reference sections—and 
consequently no MIREX entity receives citation credit.   
Contrast this situation with that of the TRECVid evalua-
tion series, which suggests standard references for many 
aspects of this programme (http://www-
nlpir.nist.gov/projects/t01v/trecvid.citation.html). We en-
courage the MIREX organizers to develop similar refer-
encing guidelines, and will include them in the home 
page of our extended abstracts digital library. 

5. CONCLUSIONS 

Our examination of the MIREX literature (the extended 
abstracts and papers referring to / referencing MIREX 
results, datasets, and evaluation trials) portrays a thriving 
international research community, characterized by col-
laboration.  We have identified barriers to the accessibil-
ity of the MIREX extended abstracts, and present a proto-
type digital library for these documents that we believe 
can improve the MIREX profile in the larger research 
community. We also provide recommendations for modi-
fications to the format of extended abstracts and the in-
formation presented in the MIREX wiki, to increase the 
visibility of MIREX to search engines and to make it eas-
ier for researchers to locate citation information for 
MIREX documents. 

We believe that these small changes have the potential 
for a large payoff:  MIREX can follow in the steps of the 
successful TRECVid and ImageCLEF series by providing 
the MIREX extended abstracts and citation information in 
formats that are readily indexed by Google Scholar and 
other resources, easily located by interested researchers, 
and easily cited in relevant publications.  
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ABSTRACT

Every person reacts differently to music. The task then is to
identify a specific set of music features that have a signifi-
cant effect on emotion for an individual. Previous research
have used self-reported emotions or tags to annotate short
segments of music using discrete labels. Our approach
uses an electroencephalograph to record the subject’s reac-
tion to music. Emotion spectrum analysis method is used
to analyse the electric potentials and provide continuous-
valued annotations of four emotional states for different
segments of the music. Music features are obtained by pro-
cessing music information from the MIDI files which are
separated into several segments using a windowing tech-
nique. The music features extracted are used in two sepa-
rate supervised classification algorithms to build the emo-
tion models. Classifiers have a minimum error rate of 5%
predicting the emotion labels.

1. INTRODUCTION

Listening to music brings out different kinds of emotions.
It can be involuntary and different for every person and
primarily caused by musical content. A lot of research has
been done identifying music features that are associated
with affecting emotion or mood [3, 5, 17]. The work of [9]
also investigates music features and discusses how chang-
ing these features can affect the emotions the music elicits.

With a good background of how different music fea-
tures affect emotions, it is possible to automatically clas-
sify and predict what kind of emotions a person will ex-
perience. A survey of music emotion research by Kim et
al. [6] report that the typical approach for classifying mu-
sic using emotion is to build a database of ground truth of
emotion labels by subjective tests. Afterwards, a machine
learning technique is used to train a classifier to automati-
cally recognize high-level or low-level music features.

A common problem encountered by previous work is
the limitation of the annotation for emotion. It takes a lot
of time and resources to annotate music. Lin, et al. [8] re-
views various work on music emotion classification and
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utilize the vast amount of online social tags to improve
emotion classification. However, a personalized emotion
model for labelling music would still be desirable. Music
that is relaxing for some people may be stressful for others.

Songs are also usually annotated with the most promi-
nent emotion (i.e. only one emotion label per song). Multi-
label classification [18] can be used to have richer emotion
annotations. These annotations however are still discrete-
valued emotion labels.

In our work, we are interested in learning how emo-
tion changes throughout the song and identify music fea-
tures that could have caused these changes. Because of
this, continuous-valued emotion annotations are preferred.
One method to do this is to use an electroencephalograph
(EEG) in recognizing emotions similar to the work used
to develop Constructive Adaptive User Interface (CAUI),
which can arrange [7, 13] and compose [14] music based
on one’s impressions of music. In addition to collecting
continuous-valued annotations for full-length music, we
focus our work on considering individual emotion reac-
tions to music as opposed to building a generalized emo-
tion model.

2. DATA COLLECTION METHODOLOGY

We construct a user specific model by using supervised
machine learning techniques to classify songs using music
features. As mentioned earlier, this task requires songs that
can elicit emotions from a listener and the music features
of these songs.

For this research, we had a 29-year old female partic-
ipant who selected and annotated songs. The music col-
lection is a set of MIDI files comprised of 121 Japanese
and Western songs having 33 Folk, 20 Jazz, 44 Pop, and
24 Rock music. By using MIDI files, the music informa-
tion can be easily extracted to produce high-level features
for the classifier. MIDI files also eliminate any additional
emotions contributed by lyrics.

2.1 Emotion annotation

Music emotion annotation is performed in 3 stages. First,
the subject listened to all songs and manually annotated
each one. The subject was instructed to listen to the entire
song and was given full control on which parts of the song
she wanted to listen to.

After listening to each song, the subject gives a general
impression on how joyful, sad, relaxing, and stressful each



Figure 1. The EEG has 23 electrodes used to record elec-
trical changes on the scalp. Each node is identified by a
letter to indicate lobe position: F-Frontal lobe, T-Temporal
lobe, C-Central lobe, P-Parietal lobe, O-Occipital lobe. ’Z’
refers to an electrode placed on the mid-line

song was using a five-point Likert scale. Aside from the
emotions felt, the subject was also asked to rate whether
she was familiar with the song or not using the same scale.
With this feedback, we chose the 10 most relaxing songs
and 10 most stressful songs with varying levels of familiar-
ity to the subject. The manual annotation was done in one
session for approximately one and a half hours.

Since collection of the emotion annotations takes a lot
of time and effort from the subject, it was decided to con-
centrate time and resources on a certain type of emotion.
We opted to concentrate on relaxing music because these
are normally the kind of music people would want to listen
to on stressful days. The stressful songs are meant to serve
as negative examples for the classifier.

In the second stage an EEG was used to measure brain
activity while the subject listened to the 20 songs previ-
ously selected. The EEG device is a helmet with electrodes
that can be placed on all scalp positions according to the In-
ternational 10–20 Standard. Figure 1 shows the location of
the different electrodes. Using the EEG, electric potential
differences were recorded with a reference electrode on the
right earlobe.

Work on EEG to recognize emotions find that different
mental state produces a distinct pattern of electrical activ-
ity [1, 2]. The right hemisphere is responsible for negative
emotions (i.e. stress, disgust, sadness) while the left hemi-
sphere is responsible for positive emotions (i.e. happiness,
gratitude, amusement).

The EEG device is very sensitive. As such, the subject
was instructed to close her eyes and remain still while data
was being collected. Listening sessions had to be limited
to a maximum of 30 minutes or upto the moment that the
subject begins to feel uncomfortable wearing the helmet.
We had to ensure that the subject was comfortable and
eliminate external factors that may contribute to changes
in emotion. On average, EEG readings for 7 songs were
recorded per session.

Prior to playing each music, we introduce a 10 second
white noise to help the subject focus on the task at hand
without stimulating a strong emotional response. After lis-
tening to one song, a short interview is conducted to de-

termine if the subject particularly liked or disliked specific
parts of the song. The interview also helped confirm the
initial manual annotations of the subject.

In the final stage, continuous emotion annotations were
obtained using EMonSys. This software 1 uses the emo-
tion spectrum analysis method (ESAM) [12] to convert
brain wave readings to emotion readings. Using data from
10 scalp positions at Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1,
O2, electric potentials were separated into their θ (5–8 Hz),
α (8–13 Hz) and β (13–20 Hz) frequency components by
means of fast Fourier transforms (FFT). Cross-correlation
coefficients for each pair of channels are computed (i.e.,
10 channels * 9 channels/2) and these are evaluated for ev-
ery time step together with the 3 bands to obtain an input
vector Y having 135 variables at each time step. EMonSys
can evaluate the EEG readings at different time steps. We
used the smallest available: 0.64 seconds.

Using an emotion matrix C, this 135-dimensional vec-
tor is linearly transformed into a 4-D emotion vector E =
(e1, e2, e3, e4), where ei corresponds to the 4 emotional
states, namely: stress, joy, sadness, and relaxation. For-
mally, the emotion vector is obtained by

C · Y + d = E, (1)

where d is a constant vector. The emotion vector is used
to provide a continuous annotation to the music every 0.64
seconds. For example, if one feels joy, the emotion vector
would have a value of E = (0, e2, 0, 0).

2.2 Extracting Music Features

A song having length m is split into several segments us-
ing a sliding window technique. Each segment, or now re-
ferred to as a window w has a length n, where one unit of
length corresponds to one sample of emotion annotation.

MIDI information for each window is read using a mod-
ule adapted from jSymbolic [10] to extract 109 high-level
music features. These features can be loosely grouped into
the following categories: Instrumentation, Texture, Dy-
namics, Rhythm, Pitch Statistics, and Melody. The fea-
ture set includes one-dimensional and multi-dimensional
features. For example, Amount of Arpeggiation is a one-
dimensional Melody feature, Beat Histogram is a
161-dimensional Rhythm feature, etc. All features avail-
able in jSymbolic were used to build a 1023-dimension
feature vector. The category distribution of the feature vec-
tor is shown in Table 1. The Others category refers to
the features Duration and Music Position. Duration is a
feature from jSymbolic, which describes the length of the
song in seconds. Music Position refers to the position of
the window relative to duration of the song. Although it
was known that not all of the features will be used, this ap-
proach allows utilization of feature selection techniques to
determine which features were the most important in clas-
sification.

After extracting the features for one window, the win-
dow goes through the data using a step size s until the end

1 software developed by Brain Functions Laboratory, Inc.



Category Amount Percentage
Dynamics 4 0.39%
Instrumentation 493 48.19%
Melody 145 14.17%
Pitch 174 17.01%
Rhythm 191 18.67%
Texture 14 1.37%
Others 2 0.20%

Table 1. Distribution of features used for the instances

of the song is reached. Each window was labelled using
the average emotion values within the length of the win-
dow. Formally, the label for wi is the emotion vector
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where 1 ≤ j ≤ m− n.

3. EMOTION MODEL

Weka’s [4] implementation of linear regression and C4.5
were used to build the emotion models for each emotion.
The training examples were derived from the window given
one emotion label, which results to four datasets. Each
dataset has a maximum of 6156 instances using the small-
est values for the sliding window (i.e. n = 1 and s = 1).
The number of instances depends on the parameters used
for windowing. During preliminary experiments we ob-
served that the decrease of training data due to larger step
sizes had too much of a negative influence on performance.
As such, all features were extracted using the smallest size
of s = 1 for all experiments.

Prior to training, all features that do not change at all
or vary too frequently (i.e. varies 99% of the time) are
removed. Afterwards, normalization is performed to have
all feature values within [0, 1].

3.1 Using Linear Regression

The linear regression used for building the emotion mod-
els uses the Akaike criterion for model selection and M5
method [15] to select features. The M5 method steps
through the features and removes features with the smallest
standardized coefficient until no improvement is observed
in the estimate of the error given by the Akaike information
criterion.

3.2 Using C4.5

C4.5 [16] is a learning technique that builds a decision
tree from the set of training data using the concept of in-
formation entropy. Since this technique requires nominal
class values, the emotion labels are first discretized into
five bins. Initial work used larger bin sizes but we observed
poorer performance using these.

3.3 Testing and Evaluation

We used 10-fold cross-validation to assess the models gen-
erated by the two methods using different values for the

Figure 2. Relative absolute error using linear regression

Figure 3. Relative absolute error using C4.5

window length. We use the relative absolute error for eval-
uating performance of the classifiers. Weka computes this
error measure by normalizing with respect to the perfor-
mance obtained by predicting the classes’ prior probabili-
ties as estimated from the training data with a simple
Laplace estimator. Figures 2 and 3 show the change in
relative absolute error using linear regression and C4.5, re-
spectively. Window length values were varied from 1 to 30
samples (i.e. 0.64 seconds to 19.2 seconds of music).

4. RESULTS AND ANALYSIS

Increasing the window size increases accuracy of the clas-
sifiers. Further experiments were done to include window
sizes upto 240 samples. Results of these are shown in Fig-
ures 4 and 5. From these results, we find the value of n
which minimizes the average relative absolute error over
n = [1..20]. For linear regression, using n = 90 gives
the minimum average relative absolute error of 7.6% with
a correlation coefficient of 0.8532 and root mean squared
error of 0.1233. The average is taken from values for the
four emotion model results.

Using C4.5, a smaller window length is necessary to
obtain similar results. Using n = 60, the average relative
absolute error is 5.1%, average root mean squared error is
0.0871, and average Kappa statistic is 0.9530. The Kappa
statistic describes the chance-corrected measure of agree-
ment between the classifications and the true classes.

When n ≥ 120, we notice that some songs are no longer
included in the training data as the window length becomes
greater than the song length. As such, results using these
window lengths may not be accurate.



n = 1 n = 30 n = 60 n = 90 n = 120
Class No. S R S R S R S R S R

1 84.0% 95.3% 56.5% 82.2% 52.3% 80.5% 51.0% 81.5% 49.1% 80.5%
2 13.3% 3.8% 31.6% 9.9% 28.6% 6.0% 26.1% 3.7% 25.7% 3.2%
3 1.9% 0.7% 8.7% 6.5% 15.4% 10.3% 18.4% 11.1% 20.7% 9.4%
4 0.5% 0.2% 1.8% 1.0% 1.8% 2.2% 2.3% 2.7% 1.6% 5.7%
5 0.3% 0.0% 1.4% 0.4% 1.9% 1.0% 2.1% 1.1% 2.9% 1.1%

Table 2. Class sizes for Stress (S) and Relaxation (R) data after discretization

Figure 4. Relative absolute error using linear regression

Figure 5. Relative absolute error using C4.5

4.1 Influence of window length

Model accuracy is highly dependent on the parameters of
the windowing technique. Increasing the window length
allows more music information to be included in the in-
stances making each more distinguishable from instances
of other classes.

Increasing the window length also affects the emotion
annotations. ESAM was configured to produce emotion
vectors having positive values. Since most of the emotion
values are near zero, the average emotion values for the
windows are also low. Figure 6 shows the steady increase
of the values for the class labels as the window length is in-
creased. The standard deviation also follows a linear trend
and steadily increases from 0.091 to 0.272 for the same
window lengths. Using larger window lengths diversifies
the emotion labels as well which, in turn, contributes to
better accuracy.

The low average values also affected the discretization
of the emotion labels for C4.5. It resulted to having a ma-
jority class. Table 2 shows that class 1 is consistently the
majority class for the data set. With a small window length,
more instances are labelled with emotion value close to 0.
We note, however that as window length is increased, the
number of classes steadily balances out. For example, at

Figure 6. Average of emotion value for different window
lengths

Category Stress Relaxation Sadness Joy
Rhythm 40.4% 32.4% 32.8% 34.0%
Pitch 21.3% 29.7% 28.4% 32.0%
Melody 10.6% 16.2% 19.4% 20.0%
Instrumentation 17.0% 10.8% 10.4% 8.0%
Texture 8.5% 5.4% 4.5% 2.0%
Dynamics 0.0% 2.7% 1.5% 0.0%
Others 2.1% 2.7% 3.0% 4.0%

Table 3. Distribution of features used in C4.5

n = 1, 84% of the data is labelled as class 1, but when
n = 90, it is only 51%. This is the general trend for all
the emotion models. At n = 90, the instances labelled as
class 1 for the other emotion labels are as follows: 62.2%
for Joy, 78.8% for Sadness, and 81.5% for Relaxation.

4.2 Important features used in C4.5

C4.5 builds a decision tree by finding features in the data
that most effectively splits the data into subsets enriched in
one class or the other. This causes a side effect of identify-
ing music features that are most beneficial for classifying
emotions.

Table 3 summarizes the features included in the trees
generated by the algorithm using n = 60. The items are
ordered according to the number of features present in the
decision trees. A big portion of the features included are
rhythmic features averaging 34.9% of the feature set. Fea-
tures related to instrumentation also play a big part in iden-
tifying Stress unlike the other emotions. On the other hand,
melody features are more important for Relaxation, Stress
and Joy.

A closer inspection of the decision tree reveals that each
emotion can be classified faster using a different ordering
of music features. Table 4 shows the distribution of fea-
tures found in the first 5 levels of the different decision



Category Stress Relaxation Sadness Joy
Rhythm 23.4% 13.5% 6.0% 14.0%
Pitch 0.0% 10.8% 9.0% 10.0%
Melody 4.3% 2.7% 1.5% 6.0%
Instrumentation 4.3% 2.7% 4.5% 4.0%
Texture 0.0% 0.0% 0.0% 0.0%
Dynamics 2.1% 2.7% 1.5% 0.0%
Others 0.0% 2.7% 0.0% 0.0%

Table 4. Distribution of features found in the first 5 levels
of the decision trees of C4.5

trees. The Stress model mostly uses rhythmic features and
2 melodic features for the first 4 levels and uses Instru-
mentation for the 5th level. During the interview with the
subject, when asked which parts of the songs are stressful,
she explains that songs with electric guitar and rock songs
in general are very stressful for her. Rock songs used in
the dataset had a fast tempo and may be a factor as to the
construction of the decision tree.

For relaxing music, the subject mentioned that there
are specific parts of the songs that made her feel relaxed.
These include introductory parts, transitions between cho-
rus and verses, piano and harp instrumentals, and climactic
parts of the song (i.e. last verse-chorus or bridge). Exam-
ining the decision tree for relaxation, we find that Melodic
Interval Histogram, Basic Pitch Histogram, and Music Po-
sition are used for the first 3 levels, which are features that
support the statements of the subject. Although emotion
models for Joy and Sadness are available, a complete anal-
ysis of these cannot be done since the dataset was primarily
focused on relaxing and stressful music.

4.3 Accuracy of Emotion labels

The manual emotion labels were also compared to the emo-
tion values from ESAM. The average emotion value for
each song was calculated and transformed into a 5-point
scale. Comparing the manual annotations with the dis-
cretized continuous annotations, we find that only 25%
of the emotion labels from EEG were the same with the
manual annotations, 62% of the emotion labels from EEG
slightly differed from the manual annotations, and 13%
were completely opposite from what was originally
reported. It is difficult to attribute error for the discrep-
ancy. One possible cause could be the methodology for
manual annotations. While the subject was doing the man-
ual annotations, we observed that usually, she would only
listen to the first 30 seconds of the song and in some cases
skip to the middle of the song. It is possible that the man-
ual annotation incompletely represents the emotion of the
entire song.

It is also possible that the subject experienced a differ-
ent kind of emotion unconsciously while listening to the
music. For example some songs that were reported to be
stressful turned out not stressful at all. We examined the
emotion annotations and checked if there was any depen-
dency between the values.

In Table 5 we can see that the subject treated the emo-
tion Stress to be the bipolar opposite of Relaxation due to

Joy Sadness Relaxation Stress
Sadness -0.5638
Relaxation 0.5870 0.0733
Stress -0.6221 -0.0555 -0.9791
Familiarity 0.7190 -0.2501 0.5644 -0.6252

Table 5. Correlation of manual annotations

Joy Sadness Relaxation Stress
Sadness -0.1187
Relaxation 0.4598 -0.2338
Stress -0.4450 0.3100 -0.4223
Familiarity -0.0579 0.2956 -0.2343 0.5731

Table 6. Correlation of annotations using ESAM

the high negative correlation value. Using ESAM, we find
a similar situation but there is only a moderate negative
correlation between the two as shown in Table 6. If we
examine the other emotions, we find that Joy has a correla-
tion with Relaxation and a negative correlation with Stress.
This is consistently reported for both manual annotations
and annotations using ESAM.

Finally, we compared the amount of discrepancy be-
tween manual and automated annotations against the sub-
ject’s familiarity with the song. We found that the discrep-
ancy values for joyful and relaxing songs have a high corre-
lation with familiarity : 0.6061 for Joy and 0.69551 for Re-
laxation. This implies that measurements of ESAM for Joy
and Relaxation become more accurate when the subject is
not familiar with the songs. It is possible that unfamiliar
songs will help induce stronger emotions as compared to
familiar music. This may be an important factor when us-
ing psychophysiological devices in measuring emotion.

5. CONCLUSION

This research focuses on building an emotion model for
relaxing and stressful music. The model was built by ex-
tracting high-level music features from MIDI files using
a windowing technique. The features were labelled using
emotion values generated using EEG and ESAM. These
values were also compared against manual emotion anno-
tations. With the help of interviews conducted with the
subject, we observe that EEG and ESAM can be used for
annotating emotion in music especially when the subject
experiences a strong intensity of that emotion. Familiarity
of the subject with the song can affect genuine emotions.

Linear regression and C4.5 were used to build the differ-
ent emotion models. Using a 10-fold cross-validation for
evaluating the models, high accuracy with low relative ab-
solute errors was obtained by using large window lengths
encompassing between 38.4 seconds (n = 60) to 57.6 sec-
onds (n = 90) of music.

6. FUTURE WORK

The current work involves one subject and it would be in-
teresting to see if the model can be generalized using more



subjects or, at the least, to verify if the current methodology
will yield similar results when used with another subject.

Instead of using the average value for the emotion la-
bel, we intend to explore other metrics to summarize the
emotion values for each window.

Further study on the music features is also needed. The
current model uses both one-dimensional and multidimen-
sional features. Experiments using only one set of the fea-
tures will be performed. We also wish to explore the ac-
curacy of the classification if low-level features were used
instead of high-level features.

The window length greatly affects model accuracy. We
have yet to investigate if there is a relationship between the
average tempo of the song with window length. We hy-
pothesize that slower songs would require longer window
lengths to capture the same amount of information needed
for fast songs. On the other hand, songs with fast tempo
would need shorter window lengths.

Finally, this model will be integrated to a music recom-
mendation system that can recommend songs which can
induce similar emotions to the songs the user is currently
listening to.
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ABSTRACT

A novel unsupervised method for automatic music struc-
ture analysis is proposed. Three types of audio features,
namely the mel-frequency cepstral coefficients, the chroma
features, and the auditory temporal modulations are em-
ployed in order to form beat-synchronous feature sequences
modeling the audio signal. Assume that the feature vec-
tors from each segment lie in a subspace and the song as a
whole occupies the union of several subspaces. Then any
feature vector can be represented as a linear combination
of the feature vectors stemming from the same subspace.
The coefficients of such a linear combination are found by
solving an appropriate ridge regression problem, resulting
to the ridge representation (RR) of the audio features. The
RR yields an affinity matrix with nonzero within-subspace
affinities and zero between-subspace ones, revealing the
structure of the music recording. The segmentation of the
feature sequence into music segments is found by applying
the normalized cuts algorithm to the RR-based affinity ma-
trix. In the same context, the combination of multiple au-
dio features is investigated as well. The proposed method
is referred to as ridge regression-based music structure anal-
ysis (RRMSA). State-of-the-art performance is reported for
the RRMSA by conducting experiments on the manually
annotated Beatles benchmark dataset.

1. INTRODUCTION

The structural description of a music piece at the time scale
of segments, such as intro, verse, chorus, bridge, etc. is re-
ferred to as the musical form of the piece [15]. Its deriva-
tion from the audio signal is a core task in music thumb-
nailing and summarization, chord transcription [10], learn-
ing of music semantics and music annotation [1], song seg-
ment retrieval [1], or remixing [6].

Human listeners analyze and segment music into mean-
ingful parts by detecting the structural boundaries between
the segments thanks to the perceived changes in timbre,
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tonality, and rhythm over the music piece. Music struc-
ture analysis extracts low-level feature sequences from the
audio signal in order to model the timbral, melodic, and
rhythmic content [15]. The segmentation of the feature
sequences into structural parts is performed by employ-
ing methods based on either repetition, homogeneity, or
novelty [1, 6, 7, 12, 14, 15, 17] to analyze a recurrence plot
or a self-similarity distance matrix. For a comprehensive
review on automatic music structure analysis systems the
interested reader is referred to [4, 15] (and the references
therein).

In this paper, a novel method for music structure anal-
ysis is proposed, which differs significantly from the pre-
vious methods. In particular, three types of audio features,
namely the mel-frequency cepstral coefficients (MFCCs),
the Chroma features, and the auditory temporal modula-
tions (ATMs) are employed in order to form beat-synchro-
nous feature sequences modeling the timbral, tonal, and
rhythmic content of the music signal. It is reasonable to
assume that due to the timbral, tonal, and rhythmic ho-
mogeneity within the music segments, the audio features
extracted from a specific music segment are highly cor-
related and thus linearly dependent. Therefore, there is
a linear subspace that spans the beat-synchronous audio
features for each specific music segment implying that the
sequence of feature vectors extracted from the whole mu-
sic recording will lie in a union of as many linear sub-
spaces as the music segments of this recording are. Ac-
cordingly, a feature vector extracted at the time scale of
a beat can be represented as a linear combination of the
feature vectors stemming from the subspace it belongs to.
Formally, one solves an appropriate inverse problem in or-
der to obtain the representation of each feature vector with
respect to a dictionary, which is constructed by all the other
feature vectors as atoms (i.e., column vectors). Here, it
is proved that the joint ridge representation (RR) of the
features drawn from a union of independent linear sub-
spaces exhibits nonzero within-subspace affinities and zero
between-subspace affinities. That is, a ridge regression 1

problem is solved, which admits a unique and closed-form
solution. The segmentation of the feature sequence into
music segments is revealed by applying the normalized
cuts spectral clustering algorithm [16] to the RR-based affin-

1 Ridge regression is also known as Tikhonov regularization.



Figure 1. Each music recording is modeled by three audio features, namely the MFCCs, the Chroma features, and the
ATMs resulting to three beat-synchronous feature matrices. The RR is derived for each feature matrix and three affinity
matrices are obtained as described in Section 3. A cross-feature affinity matrix is obtained by linearly combining the affinity
matrices obtained for the individual features. The segmentation of the music recording into music segments is obtained by
applying the normalized cuts spectral clustering algorithm to the cross-feature RR-based affinity matrix.

ity matrix. Provided that music segments can seldom be
revealed efficiently by resorting to a single feature, multi-
ple features are extracted from each music recording and
the cross-feature information is utilized in order to obtain
a reliable music segmentation. To this end, a cross-feature
RR-based affinity matrix is constructed by linearly com-
bining the RR-based affinity matrices obtained for each
individual feature. Again, the segmentation of the fea-
ture sequence into music segments is obtained by applying
the normalized cuts to the cross-feature RR-based affin-
ity matrix. The proposed method is referred to as ridge
regression-based music structure analysis (RRMSA) and
it is outlined in Fig. 1.

The performance of the RRMSA is assessed by con-
ducting experiments on the manually annotated Beatles da-
taset. The RRMSA is demonstrated to yield a state-of-the-
art performance.

The remainder of the paper is as follows. In Section 2,
the audio features employed are briefly described. The
RRMSA is detailed in Section 3. Dataset, evaluation met-
rics, and experimental results are presented in Section 4.
Conclusions are drawn in Section 5.

2. AUDIO FEATURE REPRESENTATION

The variations between different music segments are cap-
tured by extracting three audio features from each monau-
ral music recording sampled at 22.05-kHz. In particular,
the MFCCs, the Chroma features, and the ATMs are em-
ployed.

1) The MFCCs encode the timbral properties of the mu-
sic signal by parameterizing the rough shape of spectral
envelope. Following [14], the MFCC calculation employs
frames of duration 92.9 ms with a hop size of 46.45 ms

and a 42-band filter bank. The correlation between the fre-
quency bands is reduced by applying the discrete cosine
transform along the log-energies of the bands. The zeroth
order coefficient is discarded yielding a sequence of 12-
dimensional MFCCs vectors.

2) The Chroma features are able to characterize the har-
monic content of the music signal by projecting the entire
spectrum onto 12 bins representing the 12 distinct semi-
tones (or chroma) of a musical octave. They are calculated
by employing 92.9 ms frames with a hope size of 23.22
ms as follows. First, the salience of different fundamental
frequencies in the range 80 − 640 Hz is calculated. The
linear frequency scale is transformed into a musical one by
selecting the maximum salience value in each frequency
range corresponding to one semitone. Finally, the octave
equivalence classes are summed over the whole pitch range
to yield a sequence of 12-dimensional chroma vectors.

3) The ATMs carry important time-varying information
of the audio signal [11]. They are obtained by modeling the
path of human auditory processing as a two-stage process.
In the first stage, which models the early auditory system,
the acoustic signal is converted into a time-frequency dis-
tribution along a logarithmic frequency axis, the so-called
auditory spectrogram. The early auditory system is mod-
eled by Lyons’ passive ear model [9] employing 96 fre-
quency channels ranging from 62 Hz to 11 kHz. The au-
ditory spectrogram is then downsampled along the time
axis in order to obtain 10 feature vectors between two suc-
cessive beats. The underlying temporal modulations of
the music signal are derived by applying a biorthogonal
wavelet filter along each temporal row of the auditory spec-
trogram, where its mean has been previously subtracted,
for 8 discrete rates r ∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz
ranging from slow to fast temporal rates. Thus, the entire



auditory spectrogram is modeled by a three-dimensional
representation of frequency, rate, and time which is then
unfolded 2 along the time-mode in order to obtain a se-
quence of 96× 8 = 728-dimensional ATMs.

Postprocessing. Sequences of beat-synchronous feature
vectors are obtained by averaging the feature vectors over
the beat frames. The latter are found by using the beat
tracking algorithm described in [5]. Each row of the beat-
synchronous feature matrix is filtered by applying an aver-
age filter of length 8. Finally, each feature vector under-
goes a normalization in order to have zero-mean and unit
ℓ2 norm.

3. MUSIC STRUCTURE ANALYSIS BASED ON
RIDGE REGRESSION

In this section, the RRMSA is detailed. Let a given mu-
sic recording of K music segments be represented by a
sequence of N beat-synchronous audio feature vectors of
size d, i.e., X = [x1|x2| . . . |xN ] ∈ Rd×N . The per-
ceived timbral, tonal, and rhythmic homogeneity within
a music segment implies that the audio features extracted
from this music segment are highly correlated, exhibiting
linear dependence. This motivated us to assume that beat-
synchronous feature vectors belonging to the same mu-
sic segment live into the same subspace. Therefore, if
a music recording consists of K music segments, the se-
quence of N beat-synchronous audio feature vectors (i.e.,
the columns of X) are drawn from a union of K indepen-
dent linear subspaces of unknown dimensions. Thus, each
feature vector can be represented as a linear combination
of feature vectors drawn from the same subspace. That is,
X = XZ, where Z ∈ RN×N is the representation matrix,
which contains the linear combination coefficients in its
columns 3 . Clearly, zij = 0, if xi and xj lie on different
subspaces and nonzero otherwise.

Such a representation matrix Z can be found by solving
a least-squares problem regularized by the Frobenius norm
(denoted by ∥.∥F ), the so-called ridge regression problem:

argmin
Z

∥X−XZ∥2F + λ∥Z∥2F . (1)

The unique solution of the unconstrained convex problem
(1) is referred to as ridge representation (RR) matrix and it
is given in closed-form by:

Z = (XTX+ λI)−1XTX. (2)

Technically, the desired property of the RR matrix to ad-
mit nonzero entries for within-subspace affinities and zero
entries for between-subspace affinities is enforced by the
regularization term λ∥Z∥2F in (1) as proved in Theorem 1,
which is a consequence of Lemma 1. This result indicates
that if the data follow subspace structures (i.e., come from

2 The tensor unfolding can be implemented in Matlab by em-
ploying the tenmat function of the MATLAB Tensor Tool-
box available at: http://csmr.ca.sandia.gov/˜tgkolda/
TensorToolbox/.

3 Due to the assumptions stated at the beginning of Section 3, the ma-
trix X does not has full column rank. Therefore, X = XZ does not
admit the identity matrix as solution.

a union of independent subspaces), the correct identifica-
tion of the subspaces can be obtained accurately, fast, and
in closed form by solving (1) without imposing sparsity or
other constraints on the data model.

Lemma 1 [2]. For any four matrices B,C,D, and F of
compatible dimensions,

∥∥∥∥[ B C
D F

]∥∥∥∥2
F

≥
∥∥∥∥[ B 0

0 F

]∥∥∥∥2
F

= ∥B∥2F + ∥F∥2F .

(3)
Theorem 1. Assume the columns of X (i.e., the fea-

ture vectors) are drawn from a union of K linear indepen-
dent subspaces of unknown dimensions. Without loss of
generality, one may decompose X as [X1|X2| . . . |XK ] ∈
Rd×N , where the columns of Xk ∈ Rd×Nk , k = 1, 2, . . . ,K
correspond to the Nk feature vectors originating from the
kth subspace. The minimizer of (1) is block-diagonal.
The proof can be found in the Appendix.

Let Z = UΣVT be the singular value decomposition
(SVD) of Z. Set Ũ = U(Σ)

1
2 and M = ŨŨT . A RR-

based nonnegative symmetric affinity matrix W ∈ RN×N
+

has elements [8]:

wij = m2
ij . (4)

The segmentation of the columns of X into K clusters (i.e.,
music segments) is performed by employing the normal-
ized cuts [16] onto the RR-based affinity matrix W.

Since the music segments cannot be accurately derived
by resorting to one feature, cross-feature information is ex-
pected to produce a more reliable music segmentation. Let
Wm, Wc, and Wa be the RR-based affinity matrix ob-
tained, when the MFCCs, the Chroma, and the ATMs are
employed, respectively. A cross-feature RR-based affinity
matrix Wcf ∈ RN×N

+ can be constructed by:

Wcf = 1/3(Wm +Wc +Wa), (5)

or any other combination of the individual affinity matri-
ces. The segmentation of the music recording can be ob-
tained by applying the normalized cuts [16] to the cross-
feature RR-based affinity matrix Wcf .

In general, the number of segments K in a music record-
ing is unknown and thus it is reasonable to be estimated. To
this end, the soft-thresholding approach is employed [8].
That is, the estimated number of segments K̄ is found by:

K̄ = N − int(
N∑
i=1

fτ (σi)). (6)

The function int(.) returns the nearest integer of a real num-
ber, {σi}Ni=1 denotes the set of the singular values of the
Laplacian matrix derived by the corresponding affinity ma-
trix, and fτ is the soft-thresholding operator defined as
fτ (σ) = 1 if σ ≥ τ and log2(1 +

σ2

τ2 ), otherwise. Clearly,
the threshold τ ∈ (0, 1).



4. EXPERIMENTAL EVALUATION

4.1 Dataset, Evaluation Procedure, and Evaluation
Metrics

Beatles dataset 4 : The dataset consists of 180 songs by
The Beatles. The songs are annotated by the musicol-
ogist Alan W. Pollack. Segmentation time stamps were
inserted at Universitat Pompeu Fabra (UPF). Each music
recording contains on average 10 segments from 5 unique
classes [17].

The structure segmentation is obtained by applying the
RRMSA to each individual feature sequence as well as to
all possible feature combinations. In Fig. 2, sample RR-
based affinity matrices are depicted. Two sets of experi-
ments were conducted on the Beatles dataset. First, follow-
ing the experimental setup employed in [1,3,6,7,12,14,17],
the number of clusters (i.e., segments) K was kept constant
and equal to 4. Second, for each music recording, the num-
ber of segments was estimated by (6). The optimal values
of the various parameters (i.e., λ, τ ) were determined by a
grid search over 10 randomly selected music recordings of
the dataset.

In order to compare fairly the RRMSA with the state-
of-the-art music structure analysis methods, the segment
labels are evaluated by employing the pairwise F -measure
as in [3,6,7,12,14,17]. The pairwise F -measure is a stan-
dard evaluation metric for clustering algorithms. It is de-
fined as the harmonic mean of the pairwise precision and
recall. The segmentation results and the reference segmen-
tation (i.e., the ground truth) are handled at the time scale
of beats. Let FA be the set of identically labeled pairs of
beats in a recording according to the music structure analy-
sis algorithm and FH be the set of identically labeled pairs
in the human reference segmentation. The pairwise pre-
cision, PP , the pairwise recall, PR, and the pairwise F -
measure, PF , are defined as:

PP =
|FA ∩ FH |

|FA|
, (7)

PR =
|FA ∩ FH |

|FH |
, (8)

PF = 2 · PP · PR

PP + PR
, (9)

where |.| denotes the set cardinality.

4.2 Experimental Results

The segment-type labeling performance of the RRMSA on
the Beatles dataset is summarized in Table 1 for a fixed
number of segments (i.e., K = 4) as in [3, 6, 7, 12, 14,
17]. By inspecting Table 1, one can see that the ATMs are
more suitable for music structure analysis than the MFCCs
and the Chroma features. Furthermore, the latter two fea-
tures lead to an undesirable over-segmentation of the mu-
sic recordings. Similar findings were reported in [12]. The
best result reported for segment-type labeling on the Bea-
tles dataset is obtained here, when the RR-based affinity

4 http://www.dtic.upf.edu/ perfe/annotations/sections/license.html

matrices of the MFCCs and the ATMs are combined. In-
terestingly to note that by employing cross-feature affinity
matrices the average number of segments approaches 10
(i.e., the actual average number of segments according to
the ground-truth), although no constraints have been en-
forced during clustering. In addition to the very promising
performance of the RRMSA with respect to PF , it is worth
mentioning that the RRMSA is fast. The average CPU time
for the calculation of the RR-based affinity matrix is 0.858
CPU seconds.

Features Parameters PF Segments
MFCCs (λ = 0.3) 0.54 37.1
Chroma (λ = 0.1) 0.57 36.7
ATMs (λ = 0.1) 0.61 6.1
MFCCs & Chroma (λ = 0.3, 0.1) 0.55 20.6
MFCCs & ATMs (λ = 0.3, 0.1) 0.63 7.1
Chroma & ATMs (λ = 0.1, 0.1) 0.60 8.1
MFCCs & Chroma & ATMs (λ = 0.3, 0.1, 0.1) 0.61 8.8

Table 1. Segment-type labeling performance of the
RRMSA on the Beatles dataset with fixed K = 4.

The best result obtained by the RRMSA on the Beatles
dataset with respect to PF (i.e., 0.63) outperforms the re-
sults obtained by the majority of the state-of-the-art music
segmentation methods listed in Table 2 on the same dataset
previously. The results were rounded down to the nearest
second decimal digit. It is seen that the RRMSA admits
the highest PF when the MFCCs and the ATMs are com-
bined. Similarly, MFCCs combined with Chroma yielded
the top PF in [3] and [6]. Similar conclusions were drawn
in [13], when multiple audio features were combined. It
is worth mentioning that the RRMSA does not involve any
postprocessing based on music knowledge, such as elimi-
nating too short segments or restricting the segment length
to improve the accuracy of music segmentation. This is not
the case for the methods in [7] and [14]. Furthermore, the
RRMSA involves only one parameter in contrast to meth-
ods [3, 7, 14, 17], where the tuning of multiple parameters
is needed.

The segment-type labeling performance of the RRMSA
on the Beatles dataset, when K is estimated by (6), is re-
ported in Table 3. Again, the use of the ATMs for music
representation makes the RRMSA to achieve better per-
formance than that when either the MFCCs or the Chroma
features are used. By combining the ATMs and the MFCCs,
the PF for the RRMSA reaches 0.60. In this case, the es-
timated average number of segments equals the actual av-

Reference Features PF

[3] MFCCs & Chroma 0.63
[6] MFCCs & Chroma 0.62
[17] Chroma 0.60
[14] MFCCs 0.60
[12] ATMs 0.59
Method in [7] as evaluated in [14] MPEG-7 0.58

Table 2. Segment-type labeling performance on the Beat-
les dataset obtained by state-of-the-art methods with fixed
K = 4.



Figure 2. RR-based affinity and self-distance matrices of beat-synchronous feature vectors extracted from the Anna (Go
to Him) by The Beatles when employing the MFCCs (a) and (d), the Chroma features (b) and (e), or the ATMs (c) and (f).
The negative image of the affinity matrices is depicted. It is obvious that RR-based affinity matrices provide more clear and
noise-free structural information than the self-distance matrices for all features.

erage number of segments according to the ground-truth
(i.e., 10). This result indicates that it is possible to perform
a robust unsupervised music structure analysis in a fully
automatic setting.

Further details related to the estimation of K by em-
ploying various audio features and their combinations are
shown in Table 4. The absolute error is defined as |K̄ −
Kg|, where Kg is the actual number of segments based
on the ground-truth. The prediction rate refers to the ra-
tio of the number of music recordings where the number
of segments was predicted correctly over the total num-
ber of music recordings in the dataset. If we consider the
value K̄ = Kg ± 1 as the correct number of predicted seg-
ments, then we obtain the Proximal Prediction Rate (PPR)
(i.e., the last column in Table 4). The results presented in
Table 4 indicate that the combination of the MFCCs and
the ATMs yields the lowest absolute error, resulting to the
highest prediction rate and thus the highest segmentation
accuracy.

Features Parameters PF Segments
MFCCs (λ = 0.3, τ = 0.7) 0.54 24.9
Chroma (λ = 0.1, τ = 0.64) 0.48 26.6
ATMs (λ = 0.1, τ = 0.64) 0.59 6.4
MFCCs + Chroma (λ = 0.3, 0.1, τ = 0.7) 0.59 12.2
MFCCs & ATMs (λ = 0.3, 0.1, τ = 0.23) 0.60 10.0
Chroma & ATMs (λ = 0.3, 0.1, τ = 0.27) 0.56 12.8
MFCCs & Chroma & ATMs (λ = 0.3, 0.1, τ = 0.33) 0.53 20.0

Table 3. Segment-type labeling performance of the
RRMSA on the Beatles dataset for automatically estimated
K.

Features Absolute Error Prediction Rate (%) PPR (%)
MFCCs 1.24 25.26 65.59
Chroma 1.88 15.59 42.47
ATMs 1.72 18.81 52.68
MFCCs & Chroma 1.88 15.60 42.47
MFCCs & ATMs 1.15 30.10 73.11
Chroma& ATMs 1.43 22.58 61.82
MFCCs & Chroma & ATMs 1.22 26.34 67.20

Table 4. Accuracy of the estimation of the number of seg-
ments, K, on the Beatles dataset.

5. CONCLUSIONS

In this paper, a robust and fast method for music structure
analysis (i.e., the RRMSA) has been proposed. In particu-
lar, the ridge regression representation of the MFCCs, the
Chroma, and the ATMs have been used to derive affinity
matrices, where the normalized cuts algorithm has been
applied to obtain the music structure. Among the three
features, the ATMs and the MFCCs have been proved the
most powerful. By linearly combining the RR-based affin-
ity matrices of the MFCCs and the ATMs and applying
next the normalized cuts, state-of-the-art performance on
the Beatles dataset has been reported for a fixed number
of segments. Furthermore, an accurate method to estimate
the number of segments in each music recording has been
developed, enabling a fully automatic unsupervised music
structure analysis.



APPENDIX: PROOF OF THEOREM 1

Let us denote by {S1,S2, . . . ,SK}, a collection of K
independent subspaces. The direct sum of a collection of
K subspaces is denoted by ⊕K

k=1Sk. Let Z be the unique
minimizer of (1) and D be a block-diagonal matrix with
elements dij = zij , if xi and xj belong to the same sub-
space (i.e., music segment here), and dij = 0 otherwise.
We can define Q = Z − D. Without loss of general-
ity let us suppose that xj belongs to the ith subspace, i.e.,
xj = [XZ]j ∈ Si. We can write Q as the sum of two ma-
trices Q1 and Q2 whose supports are on disjoint subsets of
indices, such that [XQ1]j ∈ Si and [XQ2]j ∈ ⊕K

k ̸=iSk.
We show that Q2 = 0. For the sake of contradiction, we
assume that Q2 ̸= 0. Since Z = D +Q1 +Q2, we have
xj = [XZ]j = [X(D+Q1)]j + [XQ2]j . Since xj ∈ Si

and [X(D + Q1)]j ∈ Si, by the independence of sub-
spaces, Si∩⊕K

k ̸=iSk = {0}, we should have [XQ2]j = 0.
But [XQ2]j = 0 implies, xj = [XZ]j = [X(D+Q1)]j

and hence D +Q1 is feasible solution of (1). By the fact
that the supports of Q1 and Q2 are disjoint subsets of in-
dices and Lemma 1, ∥D+Q1∥2F ≤ ∥D+Q1 +Q2∥2F =
∥Z∥2F . That is D + Q1, is a feasible solution of (1) at-
taining a smaller Frobenius norm than ∥Z∥2F , which con-
tradicts the optimality of Z. Thus, Q2 = 0, meaning that
only the blocks that correspond to vectors in the true sub-
spaces are nonzero.
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ABSTRACT

Separating the leading voice from a musical recording
seems to be natural to the human ear. Yet, it remains a dif-
ficult problem for automatic systems, in particular in the
blind case, where no information is known about the sig-
nal. However, in the case where a musical score is avail-
able, one can take advantage of this additional informa-
tion. In this paper, we present a novel application of this
idea for leading voice separation exploiting a temporally-
aligned MIDI Score.

The model used is based on Nonnegative Matrix Factor-
ization (NMF), whose solo part is represented by a source-
filter model. We exploit the score information by con-
straining the source activations to conform to the aligned
MIDI file. Experiments run on a database of real popu-
lar songs show that the use of these constraints can sig-
nificantly improve the separation quality, in terms of both
signal-based and perceptual evaluation metrics.

1. INTRODUCTION

Extracting the main melody from a musical signal can be
of interest, for example, for the remixing of a musical piece
or the creation of a ‘play-along’ version of a recording, in
the context of karaoke or classical concertos. Whereas this
task is quite natural to the human ear, the automated solv-
ing of such a separation problem is notoriously difficult.

In the past, many works have considered the separa-
tion of musical sources as a blind audio source separa-
tion problem, assuming only general knowledge about the
sources, such as temporal and harmonicity priors [16] or
timbre information [14]. On the other hand, audio source
separation approaches which integrate specific information
about the content of each recording (see [15] for exam-
ple) have recently received a large interest. In the case
of music, valuable information about the sources can be
found in the score when it is available. Hence, the topic
of score-informed source separation, exploiting a tempo-
rally aligned score, has recently emerged. The score in-
formation is used to initialize the parameters of a model,
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which are then re-estimated in order to precisely match the
data. Several kinds of models have been proposed, such
as a sinusoidal model [12], Nonnegative Matrix Factoriza-
tion (NMF) [4] or Probabilistic Latent Component Analy-
sis (PLCA) [6]. The model of [10] exploits MIFI synthe-
ses of the score, and operates a trade-off between fidelity
to the synthesized sound and to the actual data to be sep-
arated. In [1], a multipitch estimator is used to model the
spectral shape of each note. The authors of [9] employ
a parametric NMF model which estimates a constant har-
monic structure for each source. The specific problem of
extracting the main melody part has also been addressed
in [7] with an NMF-like probabilistic model, where each
note is represented as a harmonic template.

In the present work, we exploit the physically-motivated
source-filter NMF model proposed in [2], which is specif-
ically designed for the extraction of the leading voice. We
take advantage of the aligned score through time and pitch
constraints. These constraints are similar to the ones al-
ready applied in [8] to a source-filter NMF model. How-
ever, while the latter work exploits the information given
by a multipich estimator, we make use of actual MIDI tran-
scriptions of the pieces. We evaluate the benefit of the
score-based information on a database of real data, com-
posed of nine multi-track recordings of popular songs. The
scores are constituted by real-life MIDI scores, which are
synchronized using a state-of-the-art alignment algorithm
[11]. Several signal-based and perceptual evaluation crite-
ria are used and the results show that both the interferences
and the separation artifacts are reduced thanks to the score
information. Furthermore, the use of time-frequency con-
straints applied on the leading voice components allows for
a multi-pass approach for the removing of the reverberated
voice, which improves the perceived quality of the sepa-
rated accompaniment.

The rest of this paper is organized as follows: in Section
2 we present the source-filter NMF model used as base-
line system for blind leading voice separation. Section 3
explains how the aligned MIDI score is exploited in the
proposed methods for score-informed leading voice sep-
aration. We finally report the performed experiments in
Section 4, before drawing some conclusions.

2. BASELINE SYSTEM: BLIND SEPARATION

As baseline system for the blind separation of the leading
voice, we use the model proposed in [2]. Let us now detail



the main features of this model.

2.1 Signal Model

Let S be the matrix representing the short-time power spec-
trum of the musical recording, which is assumed to be of
single-channel nature. We suppose that this matrix can be
decomposed as:

S = SV + SA, (1)

where SV and SA are the short-time power spectrum of the
leading voice and of the musical accompaniment, respec-
tively. Furthermore, a source-filter model is assumed for
the solo part. Thus, the matrix SV can be written as the
element-wise product of a ‘source’ matrix SF0 by a ‘filter’
matrix SΦ:

SV = SΦ � SF0 , (2)

where � denotes the element-wise product.
For the contributions SA, SF0 and SΦ, an NMF model

is assumed. Each of these terms is modeled as the product
of two nonnegative matrices W and H. The former is a
dictionary of spectrum templates (in columns) and the lat-
ter contains the corresponding activation amplitudes over
time. Finally, we have:

S =
(
WΦHΦ

)
�
(
WF0HF0

)
+WAHA (3)

The ‘source spectral shapes’ of matrix WF0 are set to
fixed harmonic combs with logarithmically-spaced funda-
mental frequencies, with 20 F0 values per semitone (in
order to take into account tuning variations or vibratos)
between 100 Hz and 800 Hz. This range is sufficient for
most popular songs. In order to estimate smooth filters,
the elements of the filters dictionary WΦ are modeled as
the combination of overlapping Hann windows (in the fre-
quency domain). As default parameters, the size of the
filter dictionary is 10 and the rank of the accompaniment
decomposition is set to 40.

2.2 Separation Strategy

The leading voice separation procedure consists of several
steps. First, the matrices of eq. (3) (except for WF0 ) are
estimated from the processed signal using an NMF opti-
mization algorithm based on the Itakura-Saito divergence.
From this first result, only the estimated main source acti-
vation matrix HF0 is kept. It can be interpreted as the in-
stantaneous ‘power’ of the corresponding fundamental fre-
quencies. Since the signal of interest is the leading voice,
it is assumed to correspond to the dominant pitch. How-
ever, in order to avoid spurious ‘jumps’ in the case where
the voice stops or if another instrument has a higher energy
in a distant pitch, a tracking algorithm is used to estimate
the whole sequence of F0 values for the leading voice.

In the second step, another estimation of the model (3)
is performed, in which HF0 is constrained so that only the
values around the tracked pitch are allowed to be non-zero.
Finally, the leading voice is reconstructed by Wiener filter-
ing. The estimate ŜV of the short-time power spectrum is

then given by:

ŜV =

(
WΦHΦ

)
�

(
WF0HF0

)
(WΦHΦ)� (WF0HF0) +WAHA

(4)

and the time-domain signal is retrieved by inverse Fourier
transform (using the phase of the original mixture) and
overlap-add.

3. EXPLOITATION OF THE SCORE
INFORMATION

We now explain how we exploit the additional information
given by the aligned musical score.

3.1 Information Conveyed by the Score

By musical score, we designate a set of notes character-
ized by their pitch, onset time and duration. In this work,
we additionally assume that the notes in the score corre-
sponding to the leading voice can be discriminated from
the other notes. This is the case in most score MIDI
files, where the instruments correspond to different tracks.
Hence, the score can provide valuable information for the
leading voice separation task. However, the score employs
a temporal scale (expressed in beats), whose correspon-
dence with the actual time in second is in general both
unknown and variable. Fortunately, systems for accurate
music-to-score alignment have been proposed to overcome
this problem [5, 11, 13].

The aligned score then provides the pitch, onset and off-
set time of the notes played in the musical piece. Neverthe-
less, some limitations have to be taken into account. In par-
ticular, the pitches of the score are expressed in semitones,
which constitutes a coarser frequency resolution than the
short-time Fourier transform representation of the audio.
Furthermore, there can be various sources of imprecision
or mismatch between the score and the actual recording.
For example, vibratos can strongly alter the fundamental
frequency of a note. There may also be transcription er-
rors or different interpretations of the music. In particular,
the synchronization between the instruments or voices in
polyphonic music may not be perfect, yielding a tempo-
ral indeterminacy and thus a possible imprecision in the
alignment. For these reasons, the information conveyed
by the aligned score cannot be fully trusted at a precise
level. Nevertheless, it can be used at a coarser level, so as
to narrow the search for the voice components in the spec-
trogram. In this work, we use only the ‘voice track’ of the
aligned score. Indeed, in most cases of popular music, no
reference musical score exists and the available transcrip-
tions can often resemble ‘lead sheet’ scores, which focus
on the main melody and only describe the global harmony
of the accompaniment.

3.2 Time and Pitch Constraints

We propose to exploit the score information through two
types of constraints applied in the model (3). The first
approach only makes use of the information regarding
whether the leading voice is present or not in each frame.



This corresponds to the case where the pitch of the aligned
score is not sufficiently reliable. This temporal constraint
consists in forcing all the activations of the source element
(contained in the matrix HF0 ) to be equal to zero when the
voice is known to be absent. A time tolerance window is
allowed, in order to overcome the possible temporal impre-
cision of the score alignment. The voice is then considered
as absent in a frame when no note of the aligned score is
present inside a temporal window of length θt. The value
of this tolerance threshold is a trade-off between two goals.
If it is short, one may ‘miss’ the voice in the case where
the score is imperfectly aligned. On the other hand, a long
tolerance window may result in the extraction of another
instrument as the leading voice, when the latter is absent.

The second approach takes advantage of both, time and
pitch information, on the aligned score. As previously, the
constraint used consists in forcing zero values of the source
activation matrix where the source is known to be absent.
This implies the use of an additional tolerance threshold θf
on the fundamental frequency, in order to limit the pitch
imprecisions. Hence, a component HF0

i,j or the source ac-
tivation matrix (corresponding to fundamental frequency i
in frame j) is allowed to be non-zero only if there is a note
in the aligned score, of pitch p, onset time t1 and offset
time t2, such that:

|p− i| ≤ θf and t1 − θt ≤ j ≤ t2 + θt. (5)

4. EXPERIMENTS

4.1 Database and Settings

The database used in this work is composed of nine
separated-track versions of well-known popular songs, for
which a MIDI transcription was found on the internet. The
list of the songs is displayed in Table 1. Unfortunately,
these data cannot be shared due to copyright restrictions.
In all these pieces, the source of interest is a human voice.
Some of the songs contain vocal harmonies (several vocal
parts), which introduce an ambiguity about the determi-
nation of the main source. In some others, mistakes are
found in the MIDI score, where some vocal parts are not
transcribed. In the corresponding pieces, only an excerpt
where these problems do not occur has been used. All the
files were converted to mono signals with 44.1 kHz sam-
pling rate. For each piece, the file to be processed was cre-
ated by linearly mixing the leading voice with the accom-
paniment. This procedure is much simpler than the mixing
phase of professionally processed music, which often in-
volves additional filtering or dynamic range compression.
However, it was necessary to ensure that the final mixtures
perfectly correspond to the separated tracks.

The MIDI scores were aligned by the method presented
in [11]. This results in very accurate alignment, and the
imprecision between the recording and the synchronized
MIDI are most of the time not noticeable. As this system
is reported to detect almost all the notes within a 300 ms
window around their actual position, we set the threshold
θt to this value. The frequency tolerance threshold θf is
heuristically set to 3 semitones.

Title Original Artist
1 A Day in the Life The Beatles
2 Genie in a Bottle Christina Aguilera
3 I Heard it Through the Grapevine Marvin Gaye
4 Is This Love Bob Marley
5 Long Train Running The Doobie Broth-

ers
6 Sgt Pepper’s Lonely Hearts Club

Band
The Beatles

7 She’s Leaving Home The Beatles
8 Stop Me If You Think You’ve

Heard This One Before
The Smiths

9 With a Little Help From My
Friends

The Beatles

Table 1. List of the songs in the database.

In the experiments, we compare the separation obtained
with both systems described in Section 3 with the base-
line system of Section 2. We also introduce an additional
method, which exploits the temporal information of the
aligned score for a post-processing of the baseline system.
In this approach, a ‘temporal mask’ is applied on the lead-
ing voice estimate: when the voice is considered as absent
(in the sense of Subsection 3.2), the corresponding signal
frames are shifted to the accompaniment estimate.

The separation quality is measured by the criteria de-
scribed in [3]. They comprise three signal-based and four
perceptual metrics, namely the Signal-to-Distortion Ra-
tio (SDR), Signal-to-Interference Ratio (SIR), Signal-to-
Artifacts Ratio (SAR), Overall Perceptual Score (OPS)
and Target-, Interference- and Artifacts-related Perceptual
Scores (TPS, IPS and APS respectively).

4.2 Results

The results of the evaluations, averaged over the nine
pieces, are compiled in Table 2. One can first notice that
the system exploiting the time-frequency constraint obtains
the best results according to almost all the measures used.
In particular, the average OPS of the leading voice esti-
mates improves from 21.5 to 32.5 and the average SDR
increases by 1.5 dB. This indicates that the proposed ap-
proach does improve the leading voice separation quality,
since both the interferences and artifacts are reduced com-
pared to the baseline system.

The use of the temporal indications of the score, which
indicate when the leading voice is active, results in an im-
provement of the quality of both leading voice and accom-
paniment estimates. As expected, the interferences of the
accompaniment in the leading voice estimates are greatly
reduced with the ‘temporal mask’ post-processing of the
baseline system. Hence, the average SIR increases from
8.4 dB to 11.0 dB. Moreover, the constraints detailed in
Subsection 3.2, which forces the voice to be active only
where the main melody is actually present, leads to a fur-
ther improvement for most of the songs. The use of these
constraints results in a more precise estimation of the spec-
tral components of the NMF and, as a consequence, in a re-
duction of the artifacts. For instance, the average APS on
the accompaniment parts increases from 59.0 to 63.8 with



SDR (dB) SIR (dB) SAR (dB) OPS TPS IPS APS
LV Ac LV Ac LV Ac LV Ac LV Ac LV Ac LV Ac

Baseline 5.8 9.1 8.4 12.4 15.2 19.3 21.5 37.0 39.5 62.9 50.8 55.6 31.4 50.6
Baseline + Tem-
poral Mask 6.7 10.0 11.0 12.9 15.8 20.5 29.5 43.6 41.4 68.1 58.3 57.6 35.1 59.0

Time Constraint 7.0 10.3 11.5 13.3 16.1 20.8 31.6 43.3 45.4 67.9 58.9 57.5 37.4 62.6
Time-Frequency
Constraint 7.3 10.5 11.9 13.7 16.9 21.5 32.5 42.9 46.4 68.3 57.9 58.1 39.9 63.8

Table 2. Average evaluation criteria, measured on the leading voice (LV) and accompaniment (Ac) parts. In boldface are
the best value of each column.

time and frequency constraints.

A more precise representation of the SDR values for
every tested song is displayed in Figure 1. This figure
confirms that the use of the the information conveyed in
the musical score is valuable. Indeed, in terms of SDR,
the baseline system is outperformed by all the other ap-
proaches. An observation which can seem surprising is
that in many of the pieces, the addition of the frequency
constraint does not improve the SDR measure. This is ex-
plained by the efficiency of the tracking algorithm used
for the determination of the fundamental frequency of the
leading voice. Hence, when the leading voice is strongly
dominant in the recording, this tracking does not need to
be constrained. On the other hand, the constraint has a vis-
ible effect on recording no. 4: Is This Love. Indeed, this
song contains background vocals which can incidentally
be tracked as main voice, when the lead singer is not domi-
nant (for example in the case of breaths). Hence, the global
average SDR slightly increase from 8.7 dB to 8.9 dB.

The OPS criterion measured on the database is dis-
played in Figure 2. In general, this metric exhibits the same
tendencies as the SDR. However, there are some noticeable
differences concerning the accompaniment estimates. In-
deed, for the first three songs, the best OPS is obtained
with the original system. A more specific analysis reveals
that these correspond to cases where the score does not
perfectly match the performance.

One of the main sources of deviation is the length of the
notes in the MIDI score. Indeed, whereas the note onsets
can be relatively well defined, determining the offsets is
a notoriously hard problem, which can even be ill-posed.
The score often indicates how the notes are to be played,
which can actually be different from how the notes are
heard in the recording, mainly because of the reverbera-
tion phenomenon (which is often increased by artificial ef-
fects). This phenomenon is strongest in song no. 1 A Day
in the Life. In this piece, with the proposed constraints,
the voice is ‘cut’ at the end of some musical phrases, be-
cause it is considered as absent while it can still be heard in
the recording. This phenomenon is not prominent from the
‘signal’ point of view: indeed, the SIR criteria measured on
the accompaniment estimates of this piece are 16.3 dB with
the time-frequency constraint and 15.6 dB with the base-
line system. However, this results in intermittent ‘bursts’
of voice in the accompaniment part, which is more strongly
penalized by the perceptual measures. Hence, the value of
the IPS degrades from 60.4 to 50.9.

In the songs no. 2 Genie in a Bottle and no. 3 I Heard
it Through the Grapevine, this note length problem is also
visible. Besides, the lead singer sometimes adds ‘orna-
ments’ to the transcribed score, in particular through ‘vo-
calises’, which are common in the soul music style. Hence,
both time and frequency priors indicated in the MIDI file
can be misleading at some point. As previously, this does
not have a large influence on the signal-based measures,
since the SIR of the accompaniment estimate only de-
creases from 13.3 dB to 12.6 dB. However, the perceptual
importance of these separation errors is greater: the OPS
drops from 45.3 to 34.1.

4.3 Constrained Second Pass

In order to reduce the problem caused by the reverberation
of the leading voice, we experimented with the use of a sec-
ond pass of the separation algorithm. Indeed, the reverber-
ation often introduces ‘polyphony’, in the sense that sev-
eral notes of the leading voice can be present at the same
time in the recording. Since the separation model is inher-
ently monophonic, because it is motivated by the physics
of voice production, a multi-pass approach is needed for
the handling of several simultaneous notes.

Hence, after the first separation with the time-frequency
constraint, we apply the same algorithm on the accompa-
niment estimate, where some reverberated leading voice is
supposed to remain. In this second pass however, the time
tolerance for the offset is modified, so that each note is al-
lowed to be active for 800 ms after its annotated extinction
in the synchronized MIDI score. The threshold for the on-
set time is unchanged. The estimated reverberated voice is
then added to the voice estimate of the first separation.

Figure 3 displays the influence of this approach on the
OPS criteria. While it has little effect on the OPS of the
leading voice estimate, it can recover from some of the
previously described problems of the accompaniment. In-
deed, on six of the nine tested pieces, the two-pass sep-
aration visibly increases the OPS. Furthermore, the use of
this approach leads to an improvement on every piece com-
pared to the baseline system, except for song no. 9 With a
Little Help From My Friends, where the score is equivalent.

More thorough analysis reveals that the second pass ac-
tually slightly degrades the leading voice estimates, ac-
cording to many evaluation metrics. In particular, it adds
some interference in the vocal track, since in many places,
the reverberated voice is dominated by the accompani-
ment. Thus, the average SIR decreases from 11.9 dB to
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Figure 1. Signal to Distortion Ratio (SDR) measured on each of the tested songs and average.
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Figure 2. Overall Perceptual Score (OPS) measured on each of the tested songs and average. For the accompaniment of
song no. 5, the extraction is nearly perfect, since all proposed methods obtain an OPS of 99 (not represented here).

9.6 dB. However, the artifacts are somewhat reduced and
the voice seems to be better preserved. Hence, the average
TPS improves from 46.4 to 53.7.

The opposite effect is observed on the accompaniment
estimates, since more artifacts are measured. Hence, the
average APS decreases from 63.8 to 55.3. However, these
artifacts, which are very limited in terms of signal energy
(the average SAR is 21.2 dB), are counterbalanced by the
reduction of the interferences: the average SIR increases
from 13.7 dB to 15.0 dB.

5. CONCLUSION

In this work, we exploited of a time-aligned MIDI file to
perform a score-informed separation of the leading voice
from a musical recording. The source-filter model as-
sumed for the leading voice allowed for a natural use of the
score information, by means of time and frequency con-
straints on the source components. We evaluated the use-
fulness of these constraints on a database of real recordings
of popular songs and corresponding MIDI scores.

The results show that the score-guided constraints ap-
plied to the model not only reduce the interferences of the
accompaniment in the leading voice separated track, but
also allow for a more accurate estimation of the spectral
shapes of all the components. Hence, this results in a re-
duction of the separation artifacts on both leading voice
and accompaniment estimates. These improvement can be
measured with perceptual metrics as well as signal energy-

based criteria. Furthermore, a two-pass approach is made
possible by the time-frequency constraints on the voice
components. This allows for the removal of the remaining
reverberated voice in the accompaniment estimate, while
limiting the artifacts introduced when the voice has been
correctly eliminated.

However, some problems are observed when the score
does not exactly match the performance.In these cases, the
score-based constraints can prevent the system from es-
timating the right components. Although these problems
do not generally represent much in terms of signal energy,
they can have some perceptual importance. Thus, future
work for the improvement of the separation could involve
musically-motivated modifications of the constraints, for
example allowing more frequency deviation in the begin-
ning and at the end of the notes, in order to account for
glissandi. One could also investigate a ‘soft constraint’
approach, which would penalize source activations which
are far from the score indication, without completely for-
bidding them. The influence of the separation parameters
(number of components for the accompaniment, size of
the filter dictionary) could also be more thoroughly inves-
tigated. In particular, the search for a relation between the
optimal parameters and some features extracted from the
musical score could be interesting. Finally, another per-
spective can be the exploitation of the score information
for the extraction of the unvoiced components of the lead-
ing voice, which were not taken into account in this work.
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ABSTRACT 

In this paper we address the problem of measuring synco-
pation in order to mediate a musically meaningful interac-
tion between a live music performance and an automati-
cally generated rhythm. To this end we present a simple, 
yet effective interactive music system we developed. We 
shed some light on the complex nature of syncopation by 
looking into MIDI data from drum loops and whole 
songs. We conclude that segregation into individual 
rhythmic layers is necessary in order to measure the syn-
copation of a music ensemble. This implies that measuring 
syncopation on polyphonic audio signals is not yet tractable 
using the current state-of-the-art in audio analysis.  

1. INTRODUCTION 

Rhythmic syncopation is an essential notion both in ana-
lyzing and characterizing music as well as in automatical-
ly generating musically interesting rhythmic performanc-
es. It is commonly related to rhythmic complexity and 
tension. Several operational and formal definitions of 
syncopation have been given (see [1], [2]), such as the 
one found in the New Harvard Dictionary of Music which 
describes syncopation as a temporary contradiction to the 
prevailing meter.  

Various syncopation metrics have been reported (see 
[3], [4]), however, a reliable computational model that 
can measure syncopation directly on an actual music per-
formance does not yet exist. Most metrics use binary rep-
resentations as input and disregard information contained 
in the amplitudes of events. However, music performanc-
es are usually captured as audio signals or MIDI events, 
and in both cases the amplitudes of events play an im-
portant role in rhythm perception. A new syncopation 
measure was recently reported by Sioros and Guedes [5] 
(referred to as SG henceforth) that considers the ampli-
tude of events can be applied to obtain a more detailed 
representation of rhythm. This kind of representation is 
closer to an actual music signal; it resembles a mono-

phonic real time stream of MIDI events. 
We aim to develop a system that uses syncopation to 

mediate the interaction between a musician performing 
live and an automatic rhythm generator. To this end, we 
explore the difficulties in measuring syncopation in a live 
music performance. The current study focuses on measur-
ing syncopation in MIDI streams, from which we draw 
conclusions on how to measure syncopation in audio sig-
nals. 

We examined the difficulties in measuring syncopation 
on rhythmic patterns derived from multichannel, multi-
timbre MIDI streams by analyzing two datasets, one 
comprised of short drum-loops and the second of whole 
songs in various genres. We used the Longuet-Higgins 
and Lee’s metric [6] (referred to as LHL) as it is well-
known and shows good agreement with human judgments 
([3], [7]). We conclude that the segregation of the instru-
ments in the performance is needed to obtain meaningful 
syncopation measurements. A comparison between the 
SG and the LHL metrics was performed, which shows 
agreement between the two measures, and deviations that 
can be attributed to processing the amplitude information 
in the SG metric. 

Finally, we developed a software system that maps real 
time syncopation measurements to aspects of a rhythmic 
performance automatically generated by the 
kin.rhythmicator software [8]. The measurements are per-
formed on either audio or MIDI inputs, as long as they 
are the result of a single instrument. The system serves as 
a tool for exploring, designing and creating interactive 
music performances.  

In Section 2, we describe the two syncopation metrics 
used in the current study. In Section 3, a small study on 
syncopation follows, where the two MIDI datasets are ex-
amined and a comparison between the two metrics is 
made. In Section 4, we describe the interactive music sys-
tem we have developed. 

2. SYNCOPATION MEASUREMENTS 

2.1 Binary representations of rhythms. 

The computation of syncopation using the LHL algo-
rithm [6] is based on a hierarchical metrical structure con-
structed by stratifying the given meter into metrical lay-
ers. The structure can be represented as a tree diagram 
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with the whole bar at the top and the lower metrical levels 
under it. The exact form of the tree depends on the time 
signature of the meter. For a 4/4 meter, the bar is subdi-
vided first into half notes, then quarter notes, eighth notes 
etc.  until a level is reached which represents the shortest 
note value to be considered. In this way the meter is sub-
divided into pulses that belong to different metrical lev-
els,. In the LHL measure, each pulse is assigned a met-
rical weight according to the metrical level it belongs to, 
starting with 0 for the whole bar level, 1 for the half 
note, 2 for the quarter note, and for each following level 
the weights are further lowered by 1. While in many stud-
ies, e.g.[7], the lowest level chosen is the 8th note, for ap-
plications involving actual music data at least the 16th 
note level is necessary. In the current study, all syncopa-
tion measurements are done on rhythmic patterns in 4/4 
stratified to the 16th note level, however, in the examples 
given in this section we only show metrical levels down to 
the 8th note level for visual clarity.  

 Given a monophonic note sequence, we can compute a 
syncopation score based on the weights of the metrical 
positions of the notes and the rests. Note durations are 
ignored. A score is assigned to each rest that is the differ-
ence between the weight for that pulse minus the weight 
for the preceding note event. Summing all scores yields 
the syncopation value for the sequence. Some examples 
are given in Table 1. We placed the syncopation scores 
assigned to the rest-note combinations at the metrical po-
sitions of the rests. The depicted sequences are consid-
ered to wrap around as loops. In Example 2 we get a syn-
copation score of (0(3))+(2(3))+(2(3))= 3 + 1 + 1 = 5.  

 A closer look at these examples reveals, in certain 
cases, that the results of the algorithm contradict our mu-
sical intuition. Example 1 receives a value of 0 since it 
contains no rests. Example 3, however, also receives a 
syncopation of 0, against our experience that it is more 
syncopated than Example 1. This arises because negative 
scores compensate positive scores: (-3-0) + ( -1- (- 3)) + 
(- 2- (- 3)) = 0. We note that summing only positive 
scores in Example 3 would yield a positive syncopation 
value. The negative values computed by the LHL algo-
rithm negatively correlate with what could be referred to 
as metrical strength: while the sequence of 8th notes in 
Example 1 has a neutral score, Example 4 supports the 

beat more strongly, as indicated by the larger negative 
values. However, since we are mainly interested in relia-
bly detecting the syncopation of a bar, we can sum only 
the positive scores (last column) in Table 1.  

In the present study, the results of the algorithm are 
normalized by the maximum possible score—one less 
than the total number of pulses in a bar—in order for the 
results to be independent of the number of pulses in the 
bar and the lowest stratification level chosen. The normal-
ized syncopation will be referred to as NLHL-p. 

 Since the LHL algorithm was proposed for individual 
monophonic sequences, we need a method to compute 
syncopation when several layers of events take place sim-
ultaneously. This is the case of multiple instruments in a 
music ensemble, where a different rhythmic pattern might 
be performed on each instrument. The overall syncopa-
tion of the performance depends on how syncopated each 
one of the patterns is. We will explain the applied method 
by examining the four rhythmic patterns of Table 1 as if 
they were the four parts of a quartet. To obtain an overall 
syncopation measure for the polyphonic sequence we 
combine the maximum values for each metrical position 
and sum them. This results in a syncopation value of 
7/7=1 for our example (last row of Table 1). Note that 
this polyphonic syncopation value can exceed the value of 
1, which follows our musical intuition that the syncopa-
tion of a combination of instruments can be higher than 
their individual maximum values. This polyphonic synco-
pation will be referred to as POLYSYNC in the following 
sections. 

2.2 Sequences of amplitude values. 

We now provide an overview of the syncopation measure 
proposed by Sioros & Guedes in [5] (SG). This algorithm 
can be applied to a more complex representation of 
rhythmic patterns which, in addition to the metrical posi-
tions of the events, also includes their amplitudes. We al-
so discuss the advantages of this kind of representation 
over a binary one with regard to measuring syncopation. 

As in the case of the LHL algorithm described above, 
the SG syncopation measure is also based on a hierar-
chical model of musical meter. It compares a sequence of 
amplitude values to a metrical template similar to the one 
described in [9]. The algorithm is performed in two phas-

 pulses / sequences weights / scores  syncopation 

4/4 in  1 2 3 4 5 6 7 8 0 -3 -2 -3 -1 -3 -2 -3 LHL LHL-p  

Example 1                 0 0 
Example 2         3  1    1  5 5 
Example 3          (-3)   2  1  0 3 
Example 4          (-3)  (-1)     -4 0 

combined 3  1  2  1   7 

Table 1: Computation of the LHL syncopation metric on 4 example sequences. LEFT: the four sequences in binary 
form. RIGHT, the corresponding weights and scores of the pulses. The negative scores are shown in parentheses as they 
are ignored in our LHL-p measure. 



  
 

 

es. First, it tries to identify loud events that do not occur 
regularly on the beat in any metrical level. These isolated 
events contribute to the overall syncopation feel of the 
pattern. The second phase of the algorithm scales this 
contribution according to the potential of each metrical 
position to produce syncopation. The algorithm is per-
formed in five steps (Figure 1). The first phase includes 
steps 1 to 3 and the second phase, steps 4 and 5. We will 
demonstrate the algorithm by calculating step by step the 
syncopation of pulse 5 in Figure 1.  

In the first phase, the events that occur regularly on 
some metrical level are eliminated. Step 1 consists of de-
termining the metrical levels each pulse belongs to, ac-
cording to the time signature of the meter. In the example 
of Figure 1, pulse 5 belongs to the half note metrical level 
(level 1), as well as to all lower ones, i.e. the quarter (2) 
and eighth (3) note levels. In step 2 the amplitude differ-
ences are taken from the neighboring events and are aver-
aged in pairs for each metrical level. The corresponding 
amplitude differences and averages for pulse 5 would be: 
i) at the half note metrical level, pulses 5 – 1 in the cur-
rent bar and 5 – 1 in the next bar; ii) at the quarter note 
level, pulses 5 – 3 and  5 – 7; and iii) at the eighth note 
level, pulses 5 – 4 and 5 – 6. In step 3, the lowest value of 
the calculated averages is taken as the syncopation score 
of the pulse. If the amplitudes of the events in pulses 1, 5 
and 7 of the example are 0.5, 1.0 and 0.5, then the three 
averages are 0.75, 0.75 and 1. Taking the minimum, the 
syncopation score of pulse 5 is 0.75. 

 The second phase of the algorithm (steps 4 and 5) is 
needed to account for the fact that not all the metrical po-
sitions have equal potentials to contradict the prevailing 
meter: the higher the metrical level the lower its syncopa-
tion potential. In step 4 the syncopation potentials are cal-
culated for each pulse as 1-0.5m, where m is the highest 
metrical level the pulse belongs to. In step 5, the syncopa-
tion score for each pulse is multiplied by the correspond-
ing syncopation potential. For pulse 5 of the example m = 
1 and the final syncopation is 0.75 x (1-0.51) = 0.375. The 
final result is calculated as the sum of the syncopation of 
the individual events and is further normalized to the 

maximum possible syncopation for the same number of 
events in the bar. This maximum corresponds to a pattern 
where all events are placed at the lowest metrical level 
and with amplitude equal to 100%. 

The two syncopation measures used in this article have 
an important difference. The SG algorithm is applied to a 
more detailed representation of the rhythmic patterns that 
includes the amplitudes of the events. This makes it pos-
sible for the SG algorithm to measure syncopation in 
drum rolls or arpeggios where events are present in all 
metrical positions and the syncopation arises from accents 
in offbeat positions.  

3. A SMALL STUDY ON SYNCOPATION 

3.1 Methodology 

We applied the NLHL-p and the SG algorithm to two dif-
ferent kinds of MIDI datasets. The MIDI data was im-
ported and quantized to the 16th note metrical grid. Syn-
copation measurements using the SG algorithm were ob-
tained from sequences of amplitudes derived by the MIDI 
note velocities. When more than one note event was 
found at the same metrical position, the one with highest 
velocity was kept. The first dataset, which will be referred 
to as the Loops-dataset, consists of 602 drum loops from 
the following genres: Rock, Funk and Disco/Dance. The 
second dataset, which will be referred to as RWC36, con-
sists of the first 36 songs from the RWC Music Genre1 
dataset that belong to genres of Western popular music. 
In contrast to the Loops-dataset, the RWC dataset con-
tains whole songs, with each instrument part found in a 
different MIDI track. All loops and songs examined in 
here belong to the 4/4 meter, as comparing results be-
tween rhythms in different meters is a difficult and unex-
amined topic which is outside of the scope of this paper.  

 We used the algorithms to analyze the differences in 
the musical genres and instruments in terms of syncopa-
tion. This analysis reveals which of the examined genres 
make most use of rhythmic syncopation, as well as how 
this syncopation is distributed among the various instru-
ments and sections of the songs. It serves as a first to-
wards understanding how syncopation could be measured 
in audio signals. It must be noted that the results cannot 
be evaluated against a ground-truth, as there is no synco-
pation ground-truth available for any music dataset. In-
stead, we verified that the results are consistent with what 
is known about and expected for the syncopation in 
Western popular music. The same qualitative results were 
observed for both algorithms, so we restrict the represen-
tation of the results in sections 3.2 and 3.3 to the NLHL-p 
algorithm. In section 3.4 we make a more detailed com-
parison of the two measures. 

                                                           
1 http://staff.aist.go.jp/m.goto/RWC-MDB/ 

 

Figure 1:  Example of the SG algorithm. Calculation of 
the syncopation of the 2nd half note in a 4/4 meter (pulse 5).   



  
 

 

3.2 Loops-dataset 

 The Loops-dataset contains only short MIDI drum-loops 
of a few bars that use only the general MIDI drums set 
sounds. We measured the syncopation in every bar found 
in the MIDI files of the Loops-dataset, by applying 
NLHL-p algorithm to each bar separately, as if it consti-
tuted an independent loop. We were able to obtain a large 
number of syncopation measurements for three musical 
styles: Dance/Disco (198 bars), Funk (286 bars) and 
Rock/Heavy (484 bars). The histograms of the measured 
syncopation values are depicted in Figure 2. In the upper 
parts of the figure, the measurements were performed on 
the complete group of the general MIDI sounds, in effect 
ignoring MIDI note numbers. In this case, the Dis-
co/Dance genre appears to be almost totally un-
syncopated. While Rock and Funk appear slightly more 
syncopated, they still seem to contradict our expectations 
for higher syncopation. If we examine the rhythmic pat-
terns of the bass-drum/snare-drum pair separately, ignor-
ing all other drum sounds, we get more meaningful results 
as shown in the lower part of Figure 2. These histograms 
show an increasing percentage of syncopated bars from 
Disco/Dance to Rock/Heavy to Funk, as expected from 
these styles. This is a first indication towards the more 
general conclusion of this study that syncopation needs to 
be measured in the individual rhythmic patterns that com-

prise a musical performance, implying that at least a basic 
source/instrument separation is necessary. 

3.3 RWC-dataset 

In contrast to the Loops-dataset, the RWC-dataset con-
tains complete songs, with several instruments, each in its 
own MIDI track. We computed the NLHL-p syncopation 
measure for each track separately and combined the most 
syncopated events to compute the overall syncopation of 
the ensemble, using the POLYSYNC method described in 
Section 2.1. The drum tracks were separated into the fol-
lowing groups: Bass-Drum/Snare, Cymbals, and Open-
hihat. Such a separation was found to be appropriate from 
the analysis of the loops dataset. We also applied the 
same syncopation algorithm to the complete ensemble, 
considering all note events regardless of the tracks or in-
struments (SUMSYNC method). The results for two rep-
resentative songs of the collection are shown Figure 3. 
The two methods clearly give different syncopation re-
sults. They only coincide when a single instrument is syn-
copating while the rest are silent or when all instrument 
play in unison. Computing the syncopation on the whole 
ensemble fails to capture the actual syncopation in the 
song, and only when we combined the syncopation meas-
urements for each individual instrument the results re-
flected the actual performance, as can be seen from the 
POLYSYNC and SUMSYNC curves. Additionally, a 
much stronger syncopation is encountered in the Funk 
song, and with a wider distribution among the instruments 
and among the different sections of the song, as seen in 
the syncopation matrices of Figure 3. 

 The above conclusions are not limited to the two de-
picted examples but are quite common for all 36 songs of 
the collection. In fact, in less than 2% of the total bars 
that have syncopated events in some MIDI track, the two 
methods, the POLYSYNC and SUMSYNC, agree with 
each other. In contrast, almost 90% of the examined bars 
show detectable syncopation when using the POLYSYNC 
method. The syncopation measured in the rhythmic pat-
terns derived from the complete ensemble shows little to 
no syncopation and only when combining information of 
the various individual instruments can we get a realistic 
picture which agrees with our experience. This implies 

 

Figure 2: Histograms of the number of bars each synco-
pation score was calculated by the NLHL-p algorithm, for 
the three most frequent styles in the Loops-dataset. Upper 
row: for the complete drum-set, lower row: only for the 
bass-drum and snare-drum events. 

 
Song 22 : “Get on up and dance” (Funk) 

 
Song 1: ”Wasting Time” (Popular) 

Figure 3: Syncopation scores for two songs of the RWC collection. Top: individual instruments. Bottom: overall syncopation 
for the whole ensemble (SUMSYNC) and as the combination of the scores of the individual instruments (POLYSYNC). 



  
 

 

that detection of syncopation in audio signals is only pos-
sible after at least some basic instrument segregation. 

 Figure 4 shows how the measured syncopation is re-
lated to the density of events per metrical cycle. As ex-
pected for very high density values, the measured synco-
pation is close to zero, as all metrical positions are occu-
pied by an event. Lower than average syncopation values 
are also obtained when only one event exists in a whole 
bar. Interestingly, a low mean NLHL-p value appears for 
bars with eight events. This is related to the fact that we 
only analyzed music in 4/4 where the most typical pattern 
with eight events would be a sequence of 8th notes that 
merely tend to keep the beat and therefore have no synco-
pation. Again, if we would consider the amplitudes of the 
events the average syncopation might increase. 

 Some conclusions about the different music genres in 
the RWC collection and their use of syncopation can also 
be made. They cannot, however, be generalized as the 
number of examined songs was very small. Rap and Funk 
songs are characterized by the highest syncopation values. 
In Rap, syncopation is mainly encountered in the vocals, 
whereas in Funk it is always spread among several in-
struments. Notably, the Modern Jazz pieces were not 
characterized by high mean values, with the lead instru-
ment in the trios always being more syncopated than the 
accompaniment.  

3.4  Comparing NLHL-p and SG measure 

We will now compare the two measures by considering 
the NLHL-p as ground truth, using all separate MIDI 
tracks of the RWC data. Bars were marked as syncopated 
when the NLHL-p measure showed syncopation non-zero 
values. Then we examined how well the SG measure de-
tected those syncopated bars by applying a threshold d to 
the SG measurements, above which the bars were consid-

ered to be syncopated. The comparison was made in 
terms of F-measure, Precision and Recall (Figure 5). 

 The comparison of the two measures shows a good 
agreement between them in detecting syncopation. The 
optimum threshold according to the F-measure is d=0.2 
(F-measure=93.11%). The two measures exhibit a differ-
ent behavior at low threshold values, where the Precision 
(i.e. the ratio between number of correct detections and 
number of all detections) is lower. This is caused by the 
fact that the SG algorithm results in an almost continuous 
syncopation measurement that can distinguish between 
rhythmic patterns based on small differences in the ampli-
tudes of events. In contrast, the LHL measure gives a syn-
copation ranking of 16 steps, as it depends only on the 
existence or not of an event in each of the 16 pulses of a bar.  

 In principle, it is possible to use both algorithms, the 
LHL and the SG, for measuring the syncopation in a mu-
sic performance in real time. As shown here, both result 
in similar syncopation values for most cases, yet, the SG 
algorithm seems to be advantageous when syncopation 
originates from accenting certain notes in a sequence, e.g. 
in drum rolls. Thus, we chose the SG algorithm to devel-
op our system that generates rhythms based on real-time 
syncopation measurements of user performances. 

4.  A SYNCOPATION DRIVEN INTERACTIVE 
MUSIC SYSTEM 

We developed an interactive music system based on real-
time syncopation measurements. The system comprises 
four Max4Live devices—Max/MSP based applications 
that have the form of plugins for the Ableton Live se-
quencer1. Two devices measure the syncopation and den-
sity of events in the input music signal, one maps those 
measurements to any parameter inside the Ableton Live 
environment and the kin.rhythmicator [8] device gener-
ates rhythmic patterns. The input music signal can either 
be MIDI note events directly grabbed from music instru-
ments and MIDI clips, or it can be simple monophonic 
audio that is fed to the [bonk~] [10] object for onset de-
tection. Both MIDI and audio signals should be mono-
phonic, i.e. the result of a performance on a single instru-
ment. Otherwise, the syncopation measurements will not 
reflect the syncopation of the input, as shown in the Sec-
tion 3. The MIDI input or the detected onsets are convert-
ed into a sequence of amplitudes, suitable for measuring 
syncopation with the SG algorithm. The measurements 
are performed against a metrical template automatically 
generated according to the time signature of the Ableton 
Live Set. The implementation of the SG algorithm is simi-
lar to the one used in the kin.recombinator application de-
scribed in [5] with the addition of the normalization de-
scribed in section 2.2. In addition to the syncopation, the 

                                                           
1 http://www.ableton.com; http://www.cycling74.com; 

 

Figure 4: Mean syncopation vs. density of events per bar.  

 

Figure 5: F-measure, Precision, and Recall for the detect-
ed syncopated bars by the SG algorithm with respect to 
the NLHL-p. 



  
 

 

density of events per bar is also calculated. The measure-
ments are then received by a second device that maps 
them to any parameter of any other device that the user 
chooses. The user also controls the exact form of the 
mapping. 

 A device like the kin.rhythmicator can be used to au-
tomatically generate rhythms. The kin.rhythmicatror fea-
tures a real time control over the complexity of the gener-
ated patterns, by controlling the amount of syncopation, 
variation and the strength of the metrical feel. It was cho-
sen exactly for its explicit control of the syncopation. A 
possible “chain” of devices is shown in Figure 6. In this 
way, a user can “prepare” the rhythmicator to interact in 
real time with a musician, e.g. as the musician performs 
more complex and syncopated rhythms the automatically 
generated patterns are more steady and simple, while 
when the musician tends to perform simpler and less 
“dense” rhythms, the generated  patterns become more 
complex,  creating a more syncopated result. 

Simple to complex mappings can be realized, involv-
ing several parameters in several devices and more than 
one performer. The described devices are meant as a way 
of creating direct links between musically meaningful 
qualities of a performance and an automatically generated 
output. 

The Max4Live devices are available at our website:  
http://smc.inescporto.pt/kinetic/ 

5. CONCLUSIONS 

In this paper we presented an interactive music system 
driven by syncopation measurements. In order to better 
understand and be able to reliably measure syncopation in 
an actual music performance, we analyzed two MIDI da-
tasets, one consisting of drum loops, and one of whole 
songs using the NLHL-p and the SG syncopation metrics. 
We concluded that in any musical signal, whether it is a 
MIDI stream or an audio signal, it is important for synco-
pation measurements that it is first separated into the in-
dividual rhythmic layers or the instruments that comprise 
it. Our findings are of particular importance for our future 
research that focuses in computing syncopation in more 
complex music signals in order to drive a meaningful in-
teraction between a musician and a rhythm that is being 
automatically generated. 
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ABSTRACT

In this paper we analyze the reliability of the evaluation
of Audio Melody Extraction algorithms. We focus on the
procedures and collections currently used as part of the
annual Music Information Retrieval Evaluation eXchange
(MIREX), which has become the de-facto benchmark for
evaluating and comparing melody extraction algorithms.
We study several factors: the duration of the audio clips,
time offsets in the ground truth annotations, and the size
and musical content of the collection. The results show
that the clips currently used are too short to predict per-
formance on full songs, highlighting the paramount need
to use complete musical pieces. Concerning the ground
truth, we show how a minor error, specifically a time off-
set between the annotation and the audio, can have a dra-
matic effect on the results, emphasizing the importance of
establishing a common protocol for ground truth annota-
tion and system output. We also show that results based on
the small ADC04, MIREX05 and INDIAN08 collections
are unreliable, while the MIREX09 collections are larger
than necessary. This evidences the need for new and larger
collections containing realistic music material, for reliable
and meaningful evaluation of Audio Melody Extraction.

1. INTRODUCTION

The task of melody extraction has received growing at-
tention from the research community in recent years [4–
7, 10–12]. Also referred to as Audio Melody Extraction,
Predominant Melody Extraction, Predominant Melody Es-
timation or Predominant Fundamental Frequency (F0) Es-
timation, the task involves automatically obtaining a se-
quence of frequency values representing the pitch of the
main melodic line from the audio signal of a polyphonic
piece of music. As the number of researchers working on
the task grew, so did the need for proper means of eval-
uating and comparing the performance of different algo-
rithms. In 2004, the first Audio Description Contest (ADC)
was hosted by the Music Technology Group at Universitat
Pompeu Fabra in Barcelona, Spain. This initiative later
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evolved into the Music Information Retrieval Evaluation
eXchange (MIREX) [3], which is held annually in con-
junction with the ISMIR conference.

MIREX has become the de-facto benchmark for eval-
uating and comparing the performance of melody extrac-
tion algorithms, with over 50 algorithms evaluated since
the first run in ADC 2004. Whilst this is without doubt
an indication of the formalization of the topic as an estab-
lished research area, it has recently been argued that some
of the evaluation procedures employed by the Music Infor-
mation Retrieval (MIR) research community still lack the
rigor found in other disciplines such as Text IR [13]. In
this paper we examine the evaluation of melody extraction
algorithms, as currently carried out in the MIREX Audio
Melody Extraction (AME) task. We focus on three as-
pects of the evaluation: first, we examine the annotation
procedure used for generating a ground truth for evalua-
tion. Specifically, we study the influence of a systematic
error in the annotations, in the form of a fixed time off-
set between the ground truth annotation and the output of
the algorithms. This issue is particularly relevant, as such
an error has actually been detected in past MIREX AME
evaluations. Next, we consider the duration of the audio
excerpts (clips) used for evaluation. Currently all collec-
tions used for evaluation are comprised of short excerpts
taken from full songs. The underlying assumption is that
performance on a short clip is a good predictor for per-
formance on a full song. However to date this assump-
tion has neither been confirmed nor confuted. Finally, we
consider the aspect of collection size. Currently, the size
of most collections used for AME evaluation is relatively
small compared to collections used in other IR tasks, and
so we assess whether this presents any problems or not.
Through these factors, we aim to assess the reliability of
the evaluation procedure, as well as the meaningfulness of
the results and the conclusions that are drawn from them.

The remainder of the paper is as follows. In Section 2
we explain the current evaluation procedure for AME al-
gorithms. Section 3 takes a closer look at the annotation
procedure, assessing the potential influence of a system-
atic error in the annotation process. In Section 4 we study
the relationship between system performance and clip du-
ration. In Section 5 we consider the influence of the size of
the music collection used for evaluation. Then, in Section
6 we provide further insight into the results obtained in the
previous sections, and finally we present the conclusions
in Section 7.



2. MELODY EXTRACTION EVALUATION

We start by describing the current procedure for evaluating
melody extraction algorithms, as carried out in the yearly
MIREX AME evaluation.

2.1 Ground Truth Annotation

The ground truth for each audio excerpt is generated using
the following procedure: first, the annotator must acquire
the audio track containing just the melody of the excerpt.
This is done by using multitrack recordings for which the
separate tracks are available. Given the melody track, the
pitch of the melody is estimated using a monophonic pitch
tracker with a graphical user interface such as SMSTools 1

or WaveSurfer 2 , producing an estimate of the fundamental
frequency (F0) of the melody in every frame. This anno-
tation is then manually inspected and corrected in cases of
octave errors (double or half frequency) or when pitch is
detected in frames where the melody is not present (un-
voiced frames). Finally, the estimated frequency sequence
is saved into a file with two columns - the first contain-
ing the time-stamp of every frame, starting from time 0,
and the second the value of the fundamental frequency in
Hertz. In ADC 2004 a hop size of 5.8 ms was used for the
annotation, and since 2005 a hop size of 10 ms between
frames is used. Frames in which there is no melody present
are labelled with 0 Hz.

2.2 Evaluation Measures

An algorithm’s output for a single excerpt is evaluated by
comparing it to the ground truth annotation on a frame-by-
frame basis, and computing five measures which summa-
rize its performance for the complete excerpt. For a full
music collection, these five measures are computed per
excerpt and then averaged over the entire collection. To
facilitate the evaluation, algorithms are required to pro-
vide the output in the same format as the ground truth.
The only difference between the algorithm’s output and
the ground truth annotation is that for frames estimated as
unvoiced (i.e. no melody present) by the algorithm, the al-
gorithm may return either 0 Hz (as in the ground truth) or
a negative frequency value. The negative value represents
the algorithm’s pitch estimation in case its voicing estima-
tion is wrong and the melody is actually present in that
frame. This allows us to separate two different aspects in
the evaluation - the algorithm’s voicing estimation (deter-
mining when the melody is present and when it is not) and
the algorithm’s pitch estimation (determining the F0 of the
melody). The five evaluation measures currently employed
in MIREX, as defined in [11], are summarized in Table 1.

2.3 Music Collections

Over the years, efforts by different researchers/groups have
been made to generate annotated music collections for AME
evaluation. The combination of the limited amount of multi-
track recordings freely available, and the time-consuming

1 http://mtg.upf.edu/technologies/sms
2 http://www.speech.kth.se/wavesurfer/

Voicing Recall Rate: the proportion of frames labeled as voiced in the
ground truth that are estimated as voiced by the algorithm.
Voicing False Alarm Rate: the proportion of unvoiced frames in the
ground truth that are estimated as voiced by the algorithm.
Raw Pitch Accuracy: the proportion of voiced frames in the ground
truth for which the F0 estimated by the algorithm is within± 1

4
tone (50

cents) of the ground truth annotation.
Raw Chroma Accuracy: same as the raw pitch accuracy, except that
both the estimated and ground truth F0 sequences are mapped into a
single octave, in this way ignoring octave errors in the estimation.
Overall Accuracy: combines the performance of the pitch estimation
and voicing detection to give an overall performance score. Defined as
the proportion of frames (out of the entire excerpt) correctly estimated
by the algorithm, i.e. unvoiced frames that are labeled as unvoiced and
voiced frames with a correct pitch estimate.

Table 1. AME evaluation measures used in MIREX.

Collection Description
ADC2004 20 excerpts of roughly 20s in the genres of pop, jazz and

opera. Includes real recordings, synthesized singing and
audio generated from MIDI files. Total play time: 369s.

MIREX05 25 excerpts of 10-40s duration in the genres of rock,
R&B, pop, jazz and solo classical piano. Includes real
recordings and audio generated from MIDI files. Total
play time: 686s.

INDIAN08 Four 1 minute long excerpts from north Indian classical
vocal performances. There are two mixes per excerpt with
differing amounts of accompaniment resulting in a total
of 8 audio clips. Total play time: 501s.

MIREX09 374 Karaoke recordings of Chinese songs (i.e. recorded
singing with karaoke accompaniment). Each recording is
mixed at three different levels of signal-to-accompaniment
ratio {-5dB, 0dB, +5dB} resulting in a total of 1,122 audio
clips. Total play time: 10,022s.

Table 2. Test collections for AME evaluation in MIREX.

annotation process, means most of these collections are
quite small compared to those used in other MIR disci-
plines. In Table 2 we provide a summary of the music col-
lections used in MIREX for AME evaluation since 2009.

3. GROUND TRUTH ANNOTATION OFFSET

In this section we study the influence of a specific type of
systematic error in the annotation on the results. Whilst
there are other aspects of the annotation process that are
also worth consideration, we find this issue to be of partic-
ular interest, since it was actually identified recently in one
of the music collections used for Audio Melody Extraction
evaluation in MIREX.

As explained in the previous section, all AME evalua-
tion measures are based on a frame-by-frame comparison
of the algorithm’s output to the ground truth annotation.
Hence, if there is a time offset between the algorithm’s
output and the ground truth annotation, this will cause a
mismatch in all frames. Since melody pitch tends to be
continuous, a very small time offset may not be noticed.
However, as we increase the offset between the two se-
quences, we expect it to have an increasingly detrimental
effect on the results.

To evaluate the effect of such an offset, we compiled a
collection of 30 music clips from publicly available MIREX
training sets: 10 from ADC 2004, 9 similar to MIREX05
and 11 similar to MIREX09. We used the ground truth
annotations generated by the original authors of each col-
lection, and ensured that the first frame of each annota-



tion was centered on time 0. For evaluation, we use the
output of six different melody extraction algorithms that
were kindly provided by their authors: KD [4], DR 3 [5],
FL [6], HJ [7], RP [9] and SG [12]. For each algorithm,
we computed the mean raw pitch and overall accuracy for
the entire collection, as a function of a fixed time offset in-
troduced in the ground truth annotation, from -50 ms to 50
ms using 1 ms steps. To emulate offsets smaller than the
hop size of the annotation (10 ms), the ground truth was
upsampled using linear interpolation.

3.1 Results

In Figure 1 we display the results of the evaluation, where
we have subtracted from all values the score at offset 0. In
this way, the graph reflects the absolute difference between
the score at a given offset and the optimal score of the algo-
rithm (assuming it is centered on time 0). Plot (a) contains
the results for the raw pitch measure, and plot (b) for the
overall accuracy.
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Figure 1. Absolute performance drop versus annotation
offset: (a) raw pitch accuracy, (b) overall accuracy.

As can be seen, the effect of the offset is quite dramatic,
causing an absolute drop of up to 25% in the raw pitch
accuracy and 20% in the overall accuracy for the most ex-
treme offset evaluated (50 ms). Though a 50 ms offset is
perhaps an exaggerated case, in 2011 it was discovered that
one of the MIREX collections had a 20ms offset. In our
evaluation, a 20 ms offset would cause the most affected
algorithms to loose 17% in raw pitch accuracy, and 13%
in overall accuracy. Another interesting observation is that
some algorithms do not perform best at offset 0 (most visi-
bly RP, whose peak performance is at -6 ms). This empha-
sizes the fact that it does not suffice for the annotation to
be centered on time 0, but rather, that there must be a strict
convention to which both the annotations and algorithms
adhere. Finally, we found there is a correlation between
absolute performance and the effect of annotation offset:
the higher the absolute performance of the algorithm, the
more sensitive it is to an offset in the annotation. This is

3 The output was computed using a different implementation than that
of the paper, available at: https://github.com/wslihgt/separateLeadStereo

particularly important, since it suggests that the best algo-
rithms are those who will be most affected by this type of
systematic error.

4. CLIP DURATION

A common criticism of evaluation in MIR, and particu-
larly in MIREX, is the use of clips instead of full songs.
One might argue that the use of clips is unrealistic and that
observed performance on those clips may be very different
from performance on full songs [13]. The collections used
in the AME evaluation contain some very short excerpts,
some only 10 seconds long. The use of such small clips is
especially striking in AME: these clips contain primarily
voiced frames, and so the generalization of the results to
full songs should be questioned. We designed an experi-
ment to assess the effect of clip duration on the reliability
of the AME evaluations.

For each of the 30 clips used in the previous experiment
(referred to as the x1 clips), we created a series of subclips:
2 subclips of half the duration, 3 subclips of one third of
the duration, and 4 subclips of one forth of the duration
(referred to as the x1/2, x1/3 and x1/4 subclips). Note that
the x1/4 subclips can also be considered as x1/2 versions of
the x1/2 subclips. This gives us 180 x1/2 subclips, 90 x1/3
subclips and 120 x1/4 subclips, all of which were used to
evaluate the six algorithms. We computed the performance
difference between all subclips and their corresponding x1
versions, leading to a grand total of 2340 data-points.

4.1 Results

In Figure 2 we show the log-scaled distribution of relative
performance differences. Mean differences vary between
13% and 21% for overall accuracy and raw pitch, while
for voicing false-alarm the means are around 50%. We
note that there is a large amount of outliers in the distri-
butions. However, these outliers were not found to corre-
spond to particular songs or algorithms (they are rather ran-
domly distributed). There seems to be a clear correlation:
the shorter the subclips, the larger the performance differ-
ences (all significant by a 1-tailed Wilcoxon test, α=0.01).
In principle, therefore, one would want the clips used for
evaluation to be as long as possible; ideally, the full songs.

In Figure 3 we plot the log-scaled relative performance
differences in overall accuracy, this time as a function of
the log-scaled actual subclip duration (other measures pro-
duce very similar plots). We see that the negative correla-
tion between subclip duration and performance difference
appears to be independent of the duration of the x1 clip. We
fitted a non-linear model of the form diff = a · durationb,
where a and b are the parameters to fit, to the results of
each of the relative durations (x1/2, x1/3, x1/4), and as the
plot shows, they are very similar. In fact, an ANCOVA
analysis revealed no significant difference between them.
This suggests that the error decreases as the clip duration
increases, regardless of the duration of the full song.



●●●●●

●

●
●
●●●●

●
●
●
●●

●
●●

●●●●●
●●
●
●
●
●●

●
●

●

●

●
●
●
●●
●●●●
●●

●●
●●
●
●

●

●

●●

●
●●
●●
●●
●
● ●

●
●
●
●

●●

●

●
●

●●
●
●
●
●
●
●

●
●

●●
●
●

●
●

●
●

●●●●

●●

●

●

●

●●
●

●
●●
●●
●
●●●

●

● ●●●

●

●

●
●
●

●

●
●
●

●
●

●●
●
●
●●
●●

●
●

●●

●
●
●●

●
●
●●
●
●●
●●

●
●●●
●

●

●

●●
●

●

●●●

●

●●●●

●
●
●

●

●
●
●

●●

●

●●●

●

●●●●

●
●
●●
●
●●●

●●●

●
●

●

●

●
●●●●●●

●

●●

●
●

●●

●
●●
●●
●●
●

●
●
●●

●

●

●

●

●
●●
●

●●●

●
●
●
●

●
●●●
●
●

●●●
●●●●
●
●●
●
●
●
●
●
●

●

●

●

●●●

●●
●●●

●●

●●
●
●●
●
●

●

●●
●
●●
●
●

●

●●

●

●

●

●●
●●●
●
●●

●●

●

●
●

●

●●
●

●

●

●
●

●●●●●

●
●
●

●
●
●●
●●
●

●●

●

●●
●
●
●
●

●

●
●

●
●
●
●
●
●

●

●●

●

●
●

●

●

●

●
●
●
●
●●

●
●

●

●
●
●●

●

●

●●
● ●

●

●●
●●

●●

●

●
●

●
●●●

●

●
●●

●

●
●●

●

●●

●●

●
●

●●●●●●

●
●●
●

●●●

●●

●

●

●

●
●

●

●
●
●●

●
●
●●●●

●●

●

●

●
●
●
●

●

●

●●

●●●
●

●
●●●

●●●

●

●●
●

●●
●

●

●

●

●●

●

●
●
●

●●●

●
●
●●

●

●

●
●
●
●
●
●

●
●

●●

●

●

●
●

●
●
●
●

●
●

●

●●

●

●●

●

●●
●

●
●
●
●●●
●

●

●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●●
●●

●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●

●

●
●

●
●●

●
●
●●
●

●

●

●●●●
●

●

●
●

●

●●●

●

●

●

●
●

●

Overall                   Raw                     Voicing 
Accuracy                 Pitch                False−Alarm

Subclip relative duration

%
 o

f p
er

fo
rm

an
ce

 d
iff

er
en

ce

1
10

10
0

10
00

10
00

1/4 1/3 1/2 1/4 1/3 1/2 1/4 1/3 1/2

Figure 2. Releative performance differences between sub-
clips and their corresponding x1 clips. Blue crosses mark
the means of the distributions.
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5. COLLECTION SIZE

Regardless of the effectiveness measure used, an AME ex-
periment consists of evaluating a set of algorithmsA using
a set of songs S. Such an evaluation experiment can be
viewed as fitting the following model:

yas = y + ya + ys + εas (1)

where yas is the score of algorithm a for song s, y is the
grand average score of all possible algorithms over all pos-
sible songs, ya is the algorithm effect (the average devi-
ation of algorithm a from the grand average y), ys is the
song effect and εas is a residual modeling the particular
deviation of algorithm a for song s. In our case, where we
do not consider other effects such as annotators, this εas
residual actually models the algorithm-song interaction ef-
fect: some algorithms are particularly better (or worse) for
particular songs.

When a researcher carries out an AME evaluation ex-
periment, they evaluate how well an algorithm performs
for the set S of songs, but ideally they want to general-
ize from the performance of that specific experiment to
the average score the algorithm would obtain for the pop-
ulation of all songs represented by the sample S, not just
the sample itself. The reliability when drawing such gen-
eral conclusions based on the observations on samples (test
collections) can be measured with Generalizability Theory
(GT) [1, 2].

From the model in Eq. 1 we can identify two sources of
variability in the observed scores: actual performance dif-
ferences among algorithms and difficulty differences among
songs. Ideally, we want most of the variability in yas to be
due to the algorithm effect, that is, the observed effective-
ness differences to be due to actual differences between al-
gorithms and not due to other sources of variability such as
songs, annotators, or specific algorithm-song interactions.
Note that this does not mean a collection should not con-
tain varied musical content. Ideally, we want an algorithm
to work well for all types of musical material, and hence
a varied collection in terms of content does not necessar-
ily imply large performance variability due to the song ef-
fect. However, a small collection that contains songs with
a great degree of variability (in terms of difficulty) is likely
to result in performance variability that is dominated by
the song effect and possibly by algorithm-song interactions
(e.g. algorithm X is especially good for jazz but poor for
rock), thus reducing our ability to claim that the observed
differences between the algorithms can be generalized to
the universe of all songs. Using GT [1, 2], we can mea-
sure the proportion of observed variability that is due to
actual differences between the algorithms. This proportion
reflects the stability of the evaluation, and as such it is also
a measure of efficiency: the higher the stability, the fewer
the songs necessary to reliably evaluate algorithms [1, 8].
GT does not only help evaluate the stability of past collec-
tions, but also estimate the reliability of yet-to-be created
collections as a function of their size. However, the results
of GT only hold if the original data used for the analysis
is representative of the wider population of songs to which
we want to generalize in the future.

5.1 Variance Analysis and Collection Stability

In the model in Eq. 1, the grand mean y is a constant, and
the other effects can be modeled as random variables with
their own expectation and variance. As such, the variance
of the observed scores is modeled as the sum of these vari-
ance components:

σ2 = σ2
a + σ2

s + σ2
as (2)

where σ2
a is the variance due to the algorithm effect, σ2

s is
the variance due to the song effect, and σ2

as is the variance
due to the algorithm-song interaction effect (the residual).
This variance decomposition can be estimated by fitting a
fully-crossed ANOVA model for Eq. 1:

σ̂2
as = EMSas = EMSresidual

σ̂2
a =

EMSa − σ̂2
as

|S|
, σ̂2

s =
EMSs − σ̂2

as

|A|
(3)

where EMSx is the expected Mean Square of component
x. In practice, EMSx is approximated by the Mean Square
of component x as computed with the ANOVA model [1,
2]. Using the estimates in Eq. 3 we can estimate the pro-
portion of variability due to the algorithm effect as per
Eq. 2. The stability of the evaluation can then be quan-
tified with the dependability index Φ:



Overall Accuracy Raw Pitch Voicing False-Alarmbσ2
a bσ2

s bσ2
as

bΦ bσ2
a bσ2

s bσ2
as

bΦ bσ2
a bσ2

s bσ2
as

bΦ
ADC04 27% 27% 46% .879 23% 28% 49% .859 55% 21% 23% .961
MIREX05 11% 47% 42% .758 15% 54% 31% .817 57% 20% 23% .971
INDIAN08 16% 50% 34% .600 24% 57% 19% .721 70% 13% 16% .950
04 + 05 + 08 16% 39% 45% .909 16% 43% 41% .912 56% 21% 23% .986
MIREX09 0dB 52% 20% 28% .998 50% 20% 31% .997 81% 5% 14% .999
MIREX09 -5dB 40% 23% 37% .996 40% 24% 35% .996 82% 5% 13% .999
MIREX09 +5dB 58% 17% 26% .998 48% 18% 34% .997 83% 4% 14% .999

Table 3. Variance components and Φ̂ score for all three measures and all six collections plus the joint 04+05+08 collection.
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Figure 4. Dependability index as a function of the number of songs for Overall Accuracy (left), Raw Pitch (middle) and
Voicing False-Alarm (right). The points mark the actual number of songs per collection.

Φ =
σ2
a

σ2
a + σ2

s+σ2
as

|S|

(4)

which measures the ratio between algorithm variance and
the variance in absolute effectiveness scores (total vari-
ance) [1, 2]. This measure increases with the song set size
(i.e. with an infinite number of songs all the observed vari-
ability would be due to algorithm differences) [8].

5.2 Results

In Table 3 we show the estimated proportion of variability
due to the algorithm, song and algorithm-song interaction
effects. For these calculations we used the results of the
MIREX campaign directly, combining the results of the
five algorithms from MIREX 2010 and ten algorithms from
MIREX 2011. In both years the same six test-collections
were used for evaluation, so we can consider the grouping
of algorithms from both years as a single larger evaluation
round leading to a fully crossed experimental design. We
also joined the three smaller collections into a single larger
one referred to as “04+05+08”, discussed in Section 6.

In general, it can be seen that the estimated variance due
to the algorithm effect is much larger in the MIREX09 col-
lections. For overall accuracy, the average is 50%, while
for the earlier collections it is just 18%, and as low as
11% for MIREX05. These differences show that gener-
alizations of results based on the earlier collections are not
very reliable, especially in the case of the MIREX05 and
INDIAN08 collections, because a large part of the vari-
ability in the scores is due to the song characteristics rather
than differences between the algorithms.

Figure 4 shows the estimated dependability index as a
function of the number of songs used (log scaled). The
points mark the value of Φ̂ for the actual number of songs
in each collection (cf. Table 3). Again we observe that the

MIREX09 collections are considerably more stable than
the earlier collections, especially MIREX05 and INDIAN08,
where Φ̂ is as low as 0.6. More interesting is the fact
that the dependability index in the MIREX09 collections
rapidly converges to 1, and there is virtually no apprecia-
ble difference between using all 374 songs in the collection
or just 100: Φ̂ would only drop from an average of 0.997 to
0.990, showing that most of the variability in performance
scores would still be attributable to the algorithm effect.
However, we must also consider the content validity of this
collection (i.e. whether it is representative or not) [13]. We
discuss this in the next section.

6. DISCUSSION

Starting with the annotation offset issue, we note that there
are two crucial parameters that must be fixed in order to
prevent this problem: the precise time of the first frame,
and the hop size. Since 2005, all the annotations use a
hop size of 10 ms, and all algorithms are required to use
this hop size for their output. However, the exact time of
the first frame has not been explicitly agreed upon by the
community. When the short-time Fourier transform (or any
other transform which segments the audio signal into short
frames) is used, it is common practice to consider the time-
stamp of each frame to be the time exactly at the middle of
the frame. Thus, for the first frame to start exactly at time
zero, it must be centered on the first sample of the audio
(filling the first half of the frame with zeros). Nonetheless,
while this is common practice, it is not strictly imposed,
meaning algorithms and annotators might, rather than cen-
ter the first frame on the first sample, start the frame at this
sample. In this case, the frame will not be centered on time
zero, but rather on an arbitrary time which depends on the
length of the frame. Since different algorithms and annota-
tions use different frame sizes, this scenario could lead to
a different fixed offset between every algorithm and every



annotation, leading to a systematic error in the evaluation.
In terms of clip duration, we saw that there is a clear

correlation between the relative duration of the clip (com-
pared to the full song) and evaluation error, suggesting that
performance based on clips might not really predict per-
formance on full songs. However, Figure 3 suggests that
this correlation is independent of the actual duration of the
full song. That is, there might be a duration threshold of x
seconds for which observed performance on clips does pre-
dict performance on full songs (within some error rate), no
matter how long they are. While counter-intuitive at first,
this result does somehow agree with general statistical the-
ory. How large a sample needs to be in order to reliably
estimate unknown parameters of the underlying popula-
tion, is independent of how large the population actually
is, as long as the sample is representative of the popula-
tion. This usually requires to sample randomly or follow
other techniques such as systematic or stratified sampling.
For AME evaluation it does not make sense to randomly
sample frames of a song, but the results suggest that there
might be a sampling technique such that audio clips, if se-
lected appropriately, can be representative of the full songs.

Regarding the collection size, we observed that the ear-
lier ADC04, MIREX05 and INDIAN08 collections are un-
stable because a larger proportion of the variability in the
observed performance scores is due to song difficulty dif-
ferences rather than algorithm differences. As such, re-
sults from these collections alone are expected to be un-
stable, and therefore evaluations that rely solely on one
of these collections are not very reliable. In Table 3 (and
Figure 4) we see that by joining these collections into a
single larger one (“04+05+08”) the evaluation results are
considerably more stable (Φ̂ > 0.9 for all three measures),
and so we recommend fusing them into a single collec-
tion for future evaluations. On the other hand, we saw
that the MIREX09 collections are in fact much larger than
necessary: about 25% of the current songs would suffice
for results to be highly stable and therefore generalize to
a wider population of songs. However, all MIREX09 mu-
sic material consists of Chinese karaoke songs with non-
professional singers, and therefore we should expect the re-
sults to generalize to this population of songs, but not to the
general universe of all songs (essentially everything that is
not karaoke). Therefore, the AME community is found in
the situation where the collections with sufficiently varied
music material are too small to be reliable, while the ones
that are reliable contain very biased music material.

7. CONCLUSION

In this paper we analyzed the reliability of the evaluation
of Audio Melody Extraction algorithms, as performed in
MIREX. Three main factors were studied: ground truth
annotations, clip duration and collection size. We demon-
strated how an offset between the ground truth and an al-
gorithm’s output can significantly degrade the results, the
solution to which is the definition and adherence to a strict
protocol for annotation. Next, it was shown that the clips
currently used are too short to predict performance on full

songs, stressing the need to use complete musical pieces.
It was also shown that results based on one of the ADC04,
MIREX05 or INDIAN08 collections alone are not reliable
due to their small size, while the MIREX09 collection,
though more reliable, does not reflect real-world musical
content. The above demonstrates that whilst the MIREX
AME evaluation task is an important initiative, it currently
suffers from problems which require urgent attention. As
a solution, we propose the creation of a new and open test
collection through a joint effort of the research community.
If the collection is carefully compiled and annotated, keep-
ing in mind the issues mentioned here, it should, in theory,
solve all of the aforementioned problems that current AME
evaluation suffers from. Furthermore, we could consider
the application of low-cost evaluation methodologies that
dramatically reduce the annotation effort required [14]. Fi-
nally, in the future it would also be worth studying the ap-
propriateness of the evaluation measures themselves, the
accuracy of the manual ground truth annotations and fur-
ther investigate the effect of clip duration.
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ABSTRACT

We present a new system for chord transcription
from polyphonic musical audio that uses domain-specific
knowledge about tonal harmony and metrical position to
improve chord transcription performance. Low-level pulse
and spectral features are extracted from an audio source
using the Vamp plugin architecture. Subsequently, for
each beat-synchronised chromagram we compute a list of
chord candidates matching that chromagram, together with
the confidence in each candidate. When one particular
chord candidate matches the chromagram significantly bet-
ter than all others, this chord is selected to represent the
segment. However, when multiple chords match the chro-
magram similarly well, we use a formal music theoreti-
cal model of tonal harmony to select the chord candidate
that best matches the sequence based on the surrounding
chords. In an experiment we show that exploiting metri-
cal and harmonic knowledge yields statistically significant
chord transcription improvements on a corpus of 217 Bea-
tles, Queen, and Zweieck songs.

1. INTRODUCTION

Chord labels are an indispensable and ubiquitous aid for
modern musicians. Although classically trained perform-
ers still rely mainly on printed scores, describing in high
detail how a piece of music should be performed, the emer-
gence of jazz, improvised, and popular music gave rise to
the need for more flexible and abstract representations of
musical harmony. This led to a notational vehicle often re-
ferred to as a lead sheet. A lead sheet typically contains
only the melody of a composition accompanied with the
essential harmonic changes denoted with chord labels. It
can be considered a rather informal map that guides the
performers and specifies the boundaries of the musical play-
ground. Also, in music theory, music education, composi-
tion, and harmony analysis, chord labels have proven to be
a convenient way of abstracting from individual notes in
a score. Hence, these days chord labels are omnipresent:
there are publishers that specialise in publishing lead sheets,
and many lead sheets circulate on the internet.
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Figure 1. A schematic outline of the MPTREE system.

The many possible applications of chord labels have
sparked research focusing specifically on chords. Many
Music Information Retrieval (MIR) tasks, like similarity
estimation, genre detection, or query by humming, can
benefit from some reduction of the raw audio signal into
a manageable symbolic representation. Although much
progress has been made, multiple fundamental frequency
(F0) estimation, the holy grail in polyphonic music tran-
scription, might still be considered too unreliable and im-
precise for many MIR tasks. Chord transcription, which
deals with transforming polyphonic audio into musically
feasible symbolic annotations, has offered a welcome al-
ternative. For example, in automatic harmony analysis [8],
and similarity estimation [5], chord labels are used as pri-
mary data representation.

In this paper we present a novel system, named
MPTREE, 1 that automatically transcribes chord labels from
a polyphonic musical audio source. This system is differ-
ent from most other chord transcription systems, e.g. [12],
in that it does not rely on statistical learning. Although ma-
chine learning has brought chord transcription (and MIR
in general) many merits, we believe that there is a limit
to what can be learned from musical data alone [6]. Cer-
tain musical segments can only be annotated correctly
when musical knowledge not exhibited in the data is taken
into account as well. Moreover, Hidden Markov Models
(HMMs), frequently used to model the transitions between
chords, model only the transition between a small number
of subsequent chords, and have a bias towards sequences
they have been trained on. Our system, on the other hand,
relies on a knowledge-based model of tonal harmony. The
HARMTRACE 2 harmony model [4] is explicitly designed
for modelling the relations between chords, also over a
long time span. In this paper we show how this harmony
model can be employed to improve chord transcription.

A global outline of the system is presented in Figure 1.
We start by briefly reviewing some important literature in
Section 2. Next, we give a complete outline of the MPTREE

1 (Musical) Model Propelled TRanscription of Euphonic Entities
2 Harmony Analysis and Retrieval of Music with Type-level Represen-

tations of Abstract Chords Entities



system in Section 3. In Sections 4 and 5 we discuss the
experiments and results. Finally, we conclude the paper
by recapitulating the main advantages and disadvantages
of the MPTREE system, and highlight some directions for
future research.

Contribution. In this paper we bridge the gap between
top-down symbolic music analysis and bottom-up audio
feature extraction. We show that exploiting metrical posi-
tion and a model of tonal harmony yields significant chord
transcription improvements on 217 songs by the Beatles,
Queen, and Zweieck.

2. RELATED WORK

The first computational approaches to automatic chord tran-
scription from musical audio emerged at the end of the
1990s. The first audio chord transcription system was de-
veloped by Fujishima [3]. In general, the outline of Fu-
jishima’s system is not so different from the chord tran-
scription systems nowadays developed and also no so dif-
ferent from the system presented here. First, chroma fea-
tures [15] are extracted at every frame, representing the
intensities of the twelve different pitch classes as found in
the spectrum. Next, the chroma vectors are matched with
chord profiles; in Fujishima’s case this is done with an Eu-
clidean distance. Although the used digital signal process-
ing parameters may vary, most approaches towards auto-
matic chord transcription use a chroma feature based rep-
resentation and differ in other aspects, like chroma tuning,
noise reduction, chord transition smoothing, and harmon-
ics removal. For an elaborate review of related work on
automatic chord transcription we refer to Mauch [9].

From 2008 on, chord transcription has received a con-
siderable amount of attention in the yearly benchmarking
challenge MIREX. 3 Each year, between 7 and 19 differ-
ent chord transcription algorithms were evaluated. In 2008,
the system of Bello and Pickens [1], which was the first to
synchronise chroma vectors at every beat, performed the
best. The following year, Mauch et al. [10] presented a
system that gave good results by structurally segmenting
a piece and combining chroma information from multiple
occurrences of the same segment type. In 2010, Mauch et
al. [11] improved their previous results by using an approx-
imate note transcription technique. In 2011, the system of
Ni et al. [12], using only machine learning techniques, gave
comparable results.

3. SYSTEM OUTLINE

An outline of the MPTREE system is shown in the flowchart
of Figure 2. First, we extract chroma features and beat lo-
cations from the audio signal and synchronise the chroma
features at the beat positions (Section 3.1). The chroma
features are used to estimate the global key and possible
modulations in the musical audio (Section 3.4), and for
creating a sequence of chord candidate lists (Section 3.2).
These candidate lists contain the chords that match the
chroma well a particular beat position. If there is a lot

3 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Figure 2. A schematic outline of the MPTREE system. The
boxes with dotted lines denote the high level modules as
outlined in Figure 1.

of uncertainty in the data, these lists might contain mul-
tiple chords; however, if there is a strong match between
the spectrum and one particular chord candidate, the lists
will contain a single candidate. Subsequently, the sequence
of chord candidate lists is segmented (Section 3.5). Fi-
nally, the best matching sequence per segment is selected
by expanding all possible sequences, and preferring the se-
quence with the fewest harmony errors (Section 3.6).

3.1 Feature extraction front-end

Our work depends heavily on the Vamp plugin architec-
ture. 4 As feature extraction front-end we rely on the
NNLS Chroma Vamp plugin 5 developed by Mauch [9].
The NNLS Chroma plugin transforms an audio signal into
two 12-dimensional chroma vectors representing the har-
monic content at each frame. The first chroma vector
(bass) represents the low notes and emphasises the lower
frequencies, while the second (treble) represents the higher
notes, emphasising higher frequencies. The idea behind
this separation is to model the prominent role of the bass
note in chord transcription. We present a brief overview of
the most important properties and parameters of the NNLS
plugin. For specific signal processing details we refer to
Mauch [9].

We use the sonic-annotator 6 (version 0.6) as Vamp host,
and sample the audio tracks at 44,100 Hz. If the audio file
contains two stereo channels, the mean of both channels is
used for analysis. We set the sonic-annotator to use a Hann
window of 16,384 samples and a hop size, i.e. the amount
of samples that overlap between two subsequent frames, of
2,048 samples. Next, the spectrogram is calculated at each
frame using a discrete-time Fourier transform and mapped
to a spectrogram with bins that are linearly spaced in log-
frequency (similar to a constant-Q transform). The NNLS

4 http://www.vamp-plugins.org
5 http://isophonics.net/nnls-chroma
6 http://omras2.org/SonicAnnotator



C:Maj 1 0 0 0 1 0 0 1 0 0 0 0
D:Min 0 0 1 0 0 1 0 0 0 1 0 0

C C] D E[ E F F] G G] A B[ B

Table 1. A binary chord structure of a C major and a D mi-
nor chord, which are matched against the chroma features.

0.93 C7

0.96 Am
0.94 G 0.97 C 0.94 Bm

. . . 1.00 C 1.00 F 1.00 Gm 1.00 Em 1.00 F 1.00 B . . .

. . . 1 2 3 4 1 2 . . .

Table 2. An excerpt of a sequence of chord candidate lists.
The number to the left of the chord label represents its
normalised Euclidean distance to the current beat aligned
chroma vector. Below the candidate lists the beat position
within the bar is printed.

Chroma Vamp plugin also accounts for tuning differences
in the audio signal. Also, the NNLS plugin accounts for
harmonics other then the F0 of chord notes by estimat-
ing which pitch activation generates an interference pattern
that best matches the partials found in a spectrum.

3.2 Beat-synchronous chord probability estimation

After obtaining bass and treble chroma features, we beat-
synchronise them by averaging the feature vectors between
two beats. For this, we obtain a list of beat positions by
using the Queen Mary, University of London, Bar and Beat
Tracker plugin [2]. 7 Besides beat timestamps, this beat
tracker also outputs the position of the beat inside the bar.

To estimate the probability of a particular chord sound-
ing at a beat position, we assemble a dictionary of chords
that we expect to occur in the music. A chord is repre-
sented as a binary 12-dimensional vector in which the si-
multaneously sounding pitch classes are denoted with a 1
(see the examples in Table 1). This allows us to model
any possible chord within one octave. Currently, we use a
limited chord dictionary with three chord structures: ma-
jor, minor, and dominant seventh. We chose these three
chords because they map nicely to the chord classes used
by the HARMTRACE harmony model. In HARMTRACE,
chords are categorised in four classes: major chords, minor
chords, dominant seventh chords, and diminished seventh
chords (see [4, Chapter 4] for details). However, because
diminished seventh chords are not very common in pop
music, we ignored this class in this study. The bass note of
the chord is modelled with an additional 12-dimensional
vector containing only one pitch for the bass note, to match
the bass chroma vector as outputted by the NNLS chroma
plugin. Next, we generate the chord dictionary by cycli-
cally rotating all chord structures for all twelve semitones,
yielding 48 different chord candidates, and a “no chord”
structure containing only 0’s.

Having a matrix of beat-synchronised bass and treble
chromagrams and a chord dictionary, we estimate the prob-
ability of a chord sounding at a particular beat by calcu-

7 http://vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html\#qm-barbeattracker
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Figure 3. An excerpt of the HARMTRACE analysis of
The long and winding road by the Beatles (of which the
ground-truth chord annotations were used for parsing).
The Vd/X represents a diatonic fifth succession, and a
V/X7 denotes a secondary dominant.

lating the Euclidean distance between the chord structures
and the chroma feature. These distances are calculated for
every chord candidate at every beat. Next, we sort the
chord candidates by descending Euclidean distance. To ob-
tain a relative measure of the fit between a chord candidate
and the chroma vector in the range [0,1], the distances are
normalised by dividing them by distance of the best match-
ing chord candidate. In case the information in the spec-
trum clearly favours a certain chord candidate, the initial
differences in normalised distances will be relatively large
and will decrease quickly after the head position. Hence,
we can use these differences as a measure of relative chord
candidate preference. If this preference is very strong, the
top chord candidate will be selected to represent that beat.
If this preference is less pronounced, we use the HARM-
TRACE harmony model to decide which of the chord can-
didates would make most sense, harmonically. Typically,
this results in a sequence of chord candidates similar to the
one shown in Table 2. The selection is performed by cut-
ting off the chord candidate list at a fixed distance. The
cut-off value is an important parameter to the model, in-
fluencing both the speed and the transcription quality of
the system. After some experimentation we found that a
cut-off value of 0.9 gives good results.

3.3 A model of tonal harmony

Given a list of chord candidates, we select a harmonically
sensible sequence by exploiting a formal model of tonal
harmony. This model, which is elaborately explained by
De Haas [4], takes a sequence of symbolic chord labels as
input and automatically derives a tree structure explaining
the function of the chords in their tonal context. Figure 3
depicts an excerpt of the harmony analysis of The long and
winding road by the Beatles.

Extending the ideas of Rohrmeier [13], a piece is mod-
elled as a sequence of tonic and dominant nodes (Ton and
Dom, respectively) that represent the global patterns of har-
monic tension and release. Every Dom node can be pre-
ceded by a subordinate sub-dominant (Sub) building up
the tension towards the dominant. Finally, a branch will
always end in a scale degree node, representing the rela-
tion between the actual chord and the key of the piece, and
the leaves of the tree show the actual input chord labels. On
the path from functional annotation (Ton, Dom, and Sub) to
chord label, various harmonic annotations, like secondary



dominants, tritone substitutions, diatonic fifth chains, di-
minished seventh chord transpositions, etc., can occur, ex-
plaining the role of a chord label in its tonal context. If a
sequence does not match the harmonic specification, like
in the first phrase of Figure 3, an input chord label is au-
tomatically deleted or inserted to match the specification.
Hence, for a sequence of chords we can always derive an
automatic harmonic analysis.

3.4 Key-finding

To be able to use the HARMTRACE harmony model for
the selection of chord sequences that are music theoreti-
cally realistic, we require information about the key of the
piece. To fulfil this requirement, we present a key-finding
algorithm inspired by the ideas of Temperley [14, Chapter
7] and Krumhansl [7, Chapter 4]. Again, for feature extrac-
tion we depend on the NNLS chroma Vamp plugin, which
allows for exporting different kind of audio features. For
key-finding we export a single tuned chroma feature with-
out the NNLS pitch activation estimation.

To estimate the key of a piece and the possible mod-
ulations, we use a key-profiles based algorithm. A key-
profile is a 12 value vector representing the stability of the
twelve pitch classes relative to a given key. The values
of these profiles are based on empirical measurements of
Krumhansl and Kessler [7], in which subjects were asked
to rate how well a pitchclass fits a previously established
tonal context on a 1 to 7 scale. Given the major and minor
key profiles, a key-strength table K is created. This table
stores the estimated strength of all 24 keys at every beat
position. The key strength is estimated by calculating the
Pearson correlation coefficient, r. A value of r close to 0
indicates that there is little to no relation between the key-
profile and chroma vector, whereas a value close to 1 or−1
indicates a positive or negative linear dependence between
the key-profile and the chroma vector, respectively.

Matching the key-profiles at every beat does not yet re-
sult in the desired key assignment; because beat size seg-
ments are rather small, key changes occur too often. To
overcome this problem, we use a simple dynamic program-
ming algorithm based on the algorithm in [14] to smooth
the key changes. We create a table M storing the cumula-
tive key-strength of every key at every beat, and minimise
the number of modulations. Switching to another key, i.e.
changing the column j in M, is penalised. This behaviour
is captured in the following recursive formula:

M[0, j] = K[0, j]

M[i, j] = max
{

M[i−1, j]+K[i, j],
M[i−1, j]+K[i,k]+ p,

where {k | ∀x : K[i,x]6 K[i,k]}

Here, M stores the cumulative key-strength for every ith

beat and every jth key. Similarly, K stores the correlation
between every ith chroma vector and jth key profile. k de-
notes the index of the best matching key at beat i. The
parameter p specifies the modulation penalty. We found a
value of 1 for p to give good results. Finally, we obtain the

definite key assignment by keeping track of the maximum
cumulative key-strength at every beat, and constraining the
key segments to be at least 16 beats long.

3.5 Segmentation and grouping

Given a sequence of chord candidate lists, we analyse all
possible chords sequence combinations with HARMTRACE

and select the simplest analysis with the least amount of er-
rors. However, the number of possible combinations grows
exponentially with the number of candidate lists. Hence, it
is vital to split our sequence of chord candidate lists into
smaller, musically meaningful segments.

Also, from a musical point of view, it is unrealistic to
expect chords to change at every beat. Therefore, we re-
duce the space of analysed sequences by merging subse-
quent chord candidate lists that contain the same chords.
The candidate lists are merged by taking the intersection
between two adjacent lists, if the intersection contains at
least one chord. In this procedure we take into account
that chords are more likely to change on strong metrical
positions by adding two additional constraints: when two
candidate lists are merged, the first and leftmost list must
be positioned either at the first or third beat of the bar. The
merging procedure is executed sequentially, and merged
candidate lists can be merged again with the subsequent
chord candidate list. For example, if the candidate lists at
beat position 1 and 2 are merged, the merged list can again
merge with beat position 3 if the intersection contains at
least one chord. Finally, the probabilities of the merged
candidate lists are summed, and the lists are sorted by de-
scending probability.

Subsequently, the sequence of chord candidate lists is
segmented on the basis of the estimated key, resulting in
segments that contain only a single key assignment. Nev-
ertheless, these sequences are still rather long for analysing
all possible combinations. Within the HARMTRACE har-
mony model, a piece is viewed as a collection of tonics
(Ton) and dominants (Dom) nodes. Hence, from the pars-
ing point of view, splitting a chord sequence into segments
that match the subtrees rooted by a Ton or Dom seems
natural. Because local information about the key is avail-
able, we can calculate the key-relative scale degrees of the
chords and split a sequence at every beat where a I or V
scale degree occurs in a chord candidate list. This gives
us sequences that are short, but still musically meaning-
ful. In case our key-finding method is off the mark, and
we still end up with a rather long sequence, we enforce the
sequences to be no longer than 12 chords, and expand into
no more than 30 different candidate sequences.

3.6 Chord selection by parsing

Now that we have access to both a segmented sequence
of chord candidate lists and local key information, we are
ready to apply the HARMTRACE harmony model. For ev-
ery segment we parse all possible combinations of chord
sequences and select the sequence that has the lowest error-
ratio. The error-ratio is the number of insertions and dele-
tions of the error-correcting parser divided by the number



of chords. When two sequences have the same error-ratio,
we select the most simple solution by picking the sequence
that returns the smallest parse tree. In case the parse tree
size is also identical, we select the sequence returning the
parse tree of least depth.

The harmony model used in MPTREE is not the exact
same model as the one described by De Haas [4, Chap-
ter 4]. The original HARMTRACE harmony model exhibits
a bias towards jazz harmony. Therefore, we made several
adaptations, but the majority of the specifications remained
unchanged. The original harmony model was designed to
do an automatic harmonic analysis of a chord sequences
and could explain a vast amount of exotic harmonic phe-
nomena. Within the pop dataset on which the MPTREE sys-
tem is evaluated, some of these specifications are unnec-
essary. Hence, we remove some of the specifications ac-
counting for jazz-specific chord changes. 8 Furthermore,
we add two rules that account for some blues phenom-
ena. 9 The Haskell code of both the HARMTRACE models
and the MPTREE system is freely available online. 10

4. EXPERIMENTS

To measure the effect of the various modules on chord
transcription performance we evaluate four different ver-
sions of the system described before. The simplest system,
named SIMPLE, always selects the chord that best matches
the bass and treble chroma vectors. The second system,
GROUP, also picks the best matching chord candidate, but
does incorporate the grouping as described in Section 3.5.
The third system is the full MPTREE system, including key-
finding. Finally, we include a fourth system, MPTREEkey,
to measure the effect of the key-finding. MPTREEkey does
not use key-finding, but instead uses ground-truth key an-
notations [10]. All systems are implemented in the func-
tional programming language Haskell and compiled using
the Glasgow Haskell Compiler, version 7.4.1.

We evaluate the quality of an automatic chord transcrip-
tion by comparing it to a transcription of the same piece
made by a human expert. We evaluate our system on 179
songs from 12 Beatles albums, 20 Queen songs, and 18
Zweieck songs [10]. 11 The chord vocabulary for the MIREX
evaluation is limited to 24 major and minor chords aug-
mented with a “no chord” label, to be used for silence or
non-harmonic passages, for instance. In accordance with
MIREX, we also use these 25 classes. The translation from
the three chord classes of HARMTRACE to major and mi-
nor chords is trivial: chords of the major and dominant
class are classified as major, and chords of the minor class
are classified as minor.

Typically in MIREX, the relative correct overlap (RCO)
is used as a measure of transcription accuracy. The RCO
is defined as the total duration of correctly overlapping

8 The specifications with numbers 20, 21, and 22 were removed.
9 Allowing dominant seventh chords at the IV and I scale degree to

function respectively as sub-dominant and tonic, to be precise.
10 http://hackage.haskell.org/package/HarmTrace-2.0
11 http://isophonics.net/content/

reference-annotations

SIMPLE GROUP MPTREE MPTREEkey

RCO 0.688 0.736 0.739 0.741
Running time 5m1s 5m9s 10m23s 7m37s

Table 3. The relative correct overlap and the running times
for the four evaluated chord transcription systems.

chords divided by the total duration of the song. Both the
ground-truth and the automatic chord transcription consist
of a chord label and an accompanying onset and offset
time-stamp. We approximate the RCO by sampling both
the ground-truth and the automatic annotations every 10ms
and dividing the number of correctly annotated samples by
the total number of samples.

5. RESULTS

We have compared the MPTREE, MPTREEkey, GROUP, and
the baseline SIMPLE system on 217 songs of the Beatles,
Queen, and Zweieck. All runs were performed on the same
Intel Core i7-2600 Processor running at 3.40GHz. The
measured differences in RCO and running times are dis-
played in Table 3.

We tested whether the differences in RCO are statis-
tically significant by performing a non-parametric Fried-
man test 12 with a significance level of α = 0.05. The
Friedman ANOVA is chosen because the underlying dis-
tribution of the RCO data is unknown, and, in contrast to
a regular ANOVA, the Friedman does not assume a spe-
cific distribution of variance. To determine which pairs of
measurements differ significantly, a post-hoc Tukey HSD
test is conducted. Within the MIREX challenge the same
statistical procedure is followed. There are significant dif-
ferences between the four systems, χ2(3,N = 217) = 339,
p < 0.0001. Not all pairwise differences between systems
are statistically significant; the difference between GROUP

and MPTREE, and between MPTREE and MPTREEkey are
not significant. All other pairwise differences (including
the difference between MPTREEkey and GROUP) are statis-
tically significant.

Considering the differences between the MPTREEkey

system and the SIMPLE and GROUP systems, we can con-
clude that using the HARMTRACE harmony model for
chord candidate selection improves chord transcription
performance, if correct key information is available. This
difference in performance cannot be attributed to the merg-
ing function described in Section 3.5 alone. However,
clearly a lot of the performance gain must be attributed to
this merging function. Hence, we can conclude that forcing
chords not to change often and mainly at strong metrical
positions improves transcription performance. Although
the difference between MPTREE an MPTREEkey is not sta-
tistically significant, the errors in the key-finding do have
an effect on the transcription performance, since the differ-
ence between GROUP and MPTREE is not, but the difference
between GROUP and MPTREEkey is statistically significant.

The running times as shown in Table 3 exclude the time

12 All statistical tests were performed in Matlab 2011a.



taken by the Vamp feature extraction plugins. The results
show a trade-off between transcription performance and
computation time. However, the running times are accept-
able, less than 3 seconds per song on average.

6. DISCUSSION

In this paper we aim at bridging the gap between bottom-
up audio feature extraction and top-down symbolic mu-
sic analysis. We demonstrate in a proof-of-concept how
automatic chord transcription can be improved by using
domain-specific knowledge about the metrical structure and
tonal harmony. For feature extraction we rely on the NNLS
chroma and the Bar and Beat Tracker Vamp plugin. We
show that preferring harmonically valid combinations of
chords yields better chord transcriptions than just picking
the best matching chord at each beat, even after smooth-
ing the chord changes with a merging function. This result
is good, especially if we consider that we have only con-
nected the different technologies without extensively tun-
ing their parameters.

It is difficult to compare the results of this paper with
current the state-of-the-art in an absolute manner; this must
be done in a next iteration of the MIREX challenge. The
dataset used in this paper closely resembles the one used
in MIREX in 2010 and 2011. However, although the same
ground-truth is used, many different remastered editions
of the Beatles and Queen songs exist, and some editions
are known to deviate from these ground-truth annotations.
We used the LabROSA script to improve the alignment be-
tween our Beatles corpus and the ground-truth, 13 but it is
hard to tell whether the results in Section 4 have been influ-
enced by remastering artifacts. However, if this is the case,
the results of all compared systems are affected equally.

In the 2011 edition of MIREX, all systems were eval-
uated as described in Section 4, yielding RCO values be-
tween 0.126 and 0.829, and a deliberately over-fitted re-
sult yielding an RCO of 0.976. Clearly, a system with
a model trained in this manner will very likely perform
poorly on unseen data. All algorithms that returned an
RCO above 0.740 were HMM-based machine learning ap-
proaches, and it is unclear how much they have over-fitted
on the used dataset. The chances that the HARMTRACE

harmony model is over-fitting the used dataset are very
low. After all, candidate chord sequences are not selected
based on how often they occur in a training sample, but
only based on whether they follow the general rules of
tonal harmony. Another benefit of the knowledge-based
approach presented in this article, is that we can analyse
why certain chord sequences are preferred over others and
reason about whether these choices are justified. An HMM
remains a black box, which does not provide insights into
the choices made.

Nevertheless, there is still room for improvement. Per-
haps that using different signal processing parameters, or
different plugins improve the results. Moreover, we ex-
pect that carefully adjusting the parameters and tailoring

13 http://labrosa.ee.columbia.edu/matlab/beatles_

fprint/

the modules to maximise their interoperability will result
in an increase of performance. Also, Mauch et al. [9] suc-
cessfully improved chord transcription performance by av-
eraging the chroma vectors of segments that were classified
as having very similar harmonies. Such a technique could
possibly improve the results in the MPTREE system as well.
We have shown that connecting state-of-the-art low-level
feature extraction methods to high-level symbolic knowl-
edge systems offers new capabilities to boost the analysis
and retrieval of musical audio. We also expect similar com-
binations to be able to improve other common MIR related
tasks, such as cover-song finding, music transcription, and
structural analysis.
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ABSTRACT 

In this paper we present a method for learning tempo 

classes in order to reduce tempo octave errors. There are 

two main contributions of this paper in the rhythm analy-

sis field. Firstly, a novel technique is proposed to code the 

rhythm periodicity functions of a music signal. Target 

tempi range is divided into overlapping “tempo bands” 

and the periodicity function is filtered by triangular masks 

aligned to those tempo bands, in order to calculate the re-

spective saliencies, followed by the application of the 

DCT transform on band strengths. 

The second contribution is the adoption of Support 

Vector Machines to learn broad tempo classes from the 

coded periodicity vectors. Training instances are assigned 

a tempo class according to annotated tempo. The classes 

are assumed to correspond to “music speed”. At classifi-

cation phase, each target excerpt is assigned a tempo class 

label by the SVM. Target periodicity vector is masked by 

the predicted tempo class range, and tempo is estimated 

by peak picking in the reduced periodicity vector. 

The proposed method was evaluated on the benchmark 

ISMIR 2004 Tempo Induction Evaluation Exchange 

Dataset for both tempo class and tempo value estimation 

tasks. Results indicate that the proposed approach pro-

vides an efficient framework to tackle the tempo estima-

tion task. 

1. INTRODUCTION 

Most tempo estimation systems suffer from detecting the 

correct metrical level, i.e. tend to result in tempi that are 

fractions or multiples of the groundtruth tempo. Such er-

rors are usually found in the literature as “octave errors”. 

Although many methods are reported to achieve accuracy 

over 90% [1-3] when ignoring octave errors, i.e. accuracy 

for finding the exact, double, treble, half or 1/3 of ground-

truth tempo (known as accuracy2 measure), the accuracy 

of these methods decreases to 50~60% for finding the ex-

act tempo (accuracy1).  More details on rhythm analysis 

systems and evaluation measures can be found in [4,5].  

Two certain contemporary aspects arise when consid-

ering the octave error problem. First, when allowing an 

algorithm to make errors that correspond to the different 

metrical levels, one can say that such an approach is more 

close to the notion of perceptual tempo. Different users 

would tap at different metrical levels for the same song. 

Even a single user might tap at different metrical levels 

for the same song at different psychosocial states. Thus, it 

can be claimed that during the evaluation process of a 

tempo estimation system the usage of a single groundtruth 

value is not always feasible. On the other hand, not all 

fractions and multiples can be considered as musically 

correct. 

One solution was the P-score evaluation measure in-

troduced in MIREX 2005 Audio Tempo Extraction Task
1
 

where each excerpt was annotated with two dominant 

tempi, and their relative strength. Algorithms should 

suggest two tempi and the P-score is defined as the mean 

relative strength of the correct estimated tempi within an 

8% tolerance. In this context, deciding the correct metri-

cal level is less crucial. 

However, consider the following example. The 4
th
 

training instance on McKinley’s dataset excerpt, which 

exhibits a 6/8 measure and 126 bpm tempo, was anno-

tated by 40 experts. 10 of them tapped at eight note level, 

while 30 tapped at dotted quarter notes. Thus tempo value 

42 bpm can be considered more salient than musical 

tempo 126 bpm. If these people were asked to character-

ize this excerpt as “slow” or “fast”, probably they would 

judge it as slow. Although the reliability of annotations 

can always be questioned, we can conclude that there is a 

strong relation of the notion of musical “speed” to the 

perceptual tempo (or metrical level). 

Choosing the correct metrical level usually relies on 

incorporating some prior knowledge, mostly in terms of 

calculating prior tempi distribution [2]. Other methods 

adopt metrical models [1,3], inference from inter-onset 

intervals [6] or by considering the most predominant peak 

in periodicity vector as the correct tempo [7]. Seyerlehner 

et al. [8] incorporate instance based learning techniques, 

                                                           
1
http://www.music-ir.org/mirex/wiki/2005:Audio_Tempo 

_Extraction 
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Figure 1. Overview of the proposed method. 

 

where the periodicity vector of the target music piece is 

compared to periodicity functions of other annotated ex-

cerpts. The assigned tempo is equal to tempo of the ex-

cerpt with the most similar periodicity vector. In a similar 

manner, Peeters adopts spectral templates and a learning 

schema for estimating tempo [9]. 

Two recent approaches on characterizing the music 

speed are remarkable. Eronen and Klapuri [10] presented 

a tempo estimation system, where the predicted tempo is 

chosen by comparing scaled versions of the periodicity 

vector of the target excerpt with periodicity vectors of 

tempo annotated pieces. In the same paper, results were 

reported for a classification subsystem that classified mu-

sic excerpts to three categories: slow, medium and fast. In 

[11] Hockman and Fujinaga proposed a system that clas-

sifies music pieces to fast/slow. Annotations were not ex-

tracted with the knowledge of any groundtruth tempo but 

directly from user tags on YouTube videos. Without any 

rhythmic analysis, but based solely on baseline frame-

level features, their method achieved a classification ac-

curacy of 96% by adopting the AdaBoost classifier. In 

[12] Smith proposed a system for identifying octave er-

rors made by a baseline beat tracker. 

In this paper, we present a method of learning tempo 

octaves, i.e. classifying a music excerpt to one of the three 

categories: slow, moderate and fast. The proposed method 

exhibits two key features. Firstly, a coded representation 

of periodicity vector similar to the popular MFCC fea-

tures is proposed. Secondly, we adopt an SVM learner to 

learn tempo octaves. SVM’s has been greatly used in 

classification tasks in the MIR domain such as [13, 14]. 

We applied the proposed octave learning method to a 

baseline tempo estimation method [3] in order to limit the 

target tempi space and enhance tempo extraction accu-

racy. Evaluation results indicate that the proposed tech-

nique enhances greatly the tempo estimation accuracy. 

The rest of the paper is organized as follows. In Sec-

tion 2 an overview of the proposed method is described. 

Section 3 is dedicated to present the periodicity function 

extraction procedure. SVM learning formulation is de-

scribed in Section 4, while in Section 5 the tempo estima-

tion method is presented. Evaluation results and discus-

sion on the proposed method conclude this paper in Sec-

tions 6 and 7 respectively. 

2. SYSTEM OVERVIEW 

Figure 1 shows an overview of the proposed system. In 

training phase, periodicity analysis of the input signal is 

performed. A set of vectors that is supposed to contain all 

rhythmic information of the signal is extracted. Next, the 

extracted periodicity vectors are rescaled in order to pro-

duce more training instances. The periodicity vectors are 

then coded to a more compact representation, and along 

with the respective tempo class (slow, moderate, fast) 

which is inferred from the groundtruth tempo, are used to 

train the SVM model.  

In classification phase, the unknown input signal is 

processed by the periodicity analysis module. Periodicity 

vectors are coded as above and feed the SVM classifier. 

The output class is then combined with the periodicity 

vectors of the input signal to find the tempo value that is 

consistent to the metrical level of the SVM classifier. 

3. REPRESENTING RHYTHMIC CONTENT 

3.1 Periodicity Analysis 

Periodicity analysis is performed by the adoption of the 

method presented in [3]. The constant Q transform is ap-

plied to the signal, and followed by the har-

monic/percussive separation algorithm reported in [15]. 

Two feature multidimensional sequences are extracted by 

the harmonic/percussive parts of the signal respectively. 

Eight band energies from the percussive part, denoted as 

, 1..8
i

x i = and chroma vectors from the harmonic part de-

noted as , 1..12jch j = . Feature sequences are convolved 

with a bank of resonators with oscillation frequencies set 

to the tempo analysis range. Resonators’ outputs are seg-

mented by square windows and the maximum values of 

resonators’ outputs are considered as the salient values of 

each feature sequence to each tempo value. We denote as 



  

 

[ ]feature

np t  the periodicity vectors for the input signal 

where { , 1..12, 1..8}j ifeature ch x j i∈ ∪ = = denotes the 

feature type, n denotes the time index and {30..500}t =  

denotes the tempo analysis range. Reader should note that 

this range is larger than target tempi search space. This is 

due to the fact that periodicity functions contain rhythmic 

information in frequency regions beyond the groundtruth 

tempo.  

3.2 Scaling Training Vectors 

Since there is lack of large amount of annotated tempo 

data, we could produce artificial data by rescaling a music 

signal to faster and slower tempi. However, this approach 

would be computational intensive. To overcome this 

problem we exploit the following property of the perio-

dicity vector, i.e., tempo-scaled versions of a signal, say 

by a value of α, produce inversely scaled versions of the 

periodicity vector by the value of 1/α. Thus, for a music 

signal y[i], with periodicity function [ ]feature

n
p t   

  
[ ]   [ / ].

periodicity analysis feature

n
y i p tα α→  (1) 

This property allows us to rescale directly the periodicity 

vectors, instead of the whole signal, reducing thus the 

complexity of the calculations.  

In the same manner as in [10], all periodicity vectors 

extracted from each music excerpt are rescaled within a 

range of values for α around unity. If a music signal [ ]y i  

is assigned a ground-truth tempo groundT , then all α  

scaled versions of the periodicity vectors [ ]feature

np t  that 

result from [ ]y i  are assigned a tempo value 1

groundTα − . 

Under the assumption of almost constant tempo, perio-

dicity functions are averaged for each feature across all 

segments n in order to capture better the overall rhythmic 

content of the signal as follows 

 
1

1
[ ] [ ]

N
feature feature

n

n

p t p t
N =

= ∑ɶ  (2) 

3.3 Periodicity Coding 

To satisfy the necessity to capture broad classes of tempo, 

it seems that it would be more efficient to use a more 

compact representation for the periodicity vectors. We 

shall exploit the fact that periodicity vectors of similar 

tempo music pieces, will not exhibit the same peaks, but 

may have a similar shape, or they will exhibit peaks in 

nearby tempi. 

Some recent works deal with the spectral modeling of 

rhythmic information. Holzapfel and Stylianou [16] ap-

plied the scale transform to the autocorrelation function of 

music signals to form a rhythmic representation and ex-

ploit aspects of rhythmic similarity. Peeters [17] com-

bines rhythm descriptors in a rhythm classification system 

 

Figure 2. Periodicity vector coding process. ⊗  stands 

for inner product. 

while in [9] the DFT of the accent function is sub-

sampled at frequency bins that correspond to tempo har-

monic series of certain meters. 

In this paper, we introduce a filterbank-like analysis on 

the periodicity vectors, which is illustrated in Figure 2. 

The range of target tempi is divided into K equally tempo 

intervals with a 50% overlap between successive inter-

vals. From each tempo interval, we utilize a symmetric 

triangular weighting mask. 

The strength [ ]features k of the periodicity vector 

[ ]featurep ⋅ɶ  for each of the K  tempo intervals is calculated 

as the inner product with the respective mask: 

 
max

min

[ ] [ ] [ ]
T

feature feature k

t T

s k p t mask t
=

= ⋅∑ ɶ  (3) 

where [ ]kmask ⋅  denotes the mask of k tempo band.  

Henceforth two problems arise from this modeling. 

Firstly, there is a strong correlation between features, 

caused mainly by the overlap of adjacent tempo bands. 

Secondly, different feature type sequences for the same 

piece will result to different periodicity vectors. For ex-

ample energy evolution of lower spectral bands exhibit 

higher values in lower tempi whereas higher spectral 

bands exhibit faster changes, and thus higher tempi. 

Therefore periodicity vectors calculated from different 

features cannot be compared directly and cannot be 

treated in the same manner. To suppress the effects of 

band correlation we apply the Discrete Cosine Transform 

to each tempo-band strength vector [ ]features ⋅ , in order to 

obtain the uncorrelated coefficients [ ]featurem ⋅ : 

 [ ] DCT( [ ])feature featurem l s= ⋅  (4) 

To cope with the different feature behaviour, the 

periodicity representation is finally formed by appending 

all coefficients [ ]featurem ⋅  for each segment n to a single 

20K-dimensional vector m : 
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(5) 

4. LEARNING TEMPO CLASSES 

Let {( , ), }
l l

t l L∈m  denote the vectors extracted from the 

music signals using the method described in Section 3, 



  

 

where tl are the annotated tempi. Depending on the value 

of tl we assign excerpts to one of the following classes:  

 

1,
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3,
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l l slow l fast

l fast
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The thresholds 
slow

T and 
fastT can either be user specified or 

inferred by data and they divide the target tempi range 

into the music speed classes of  slow, moderate and fast.  

We formulate two SVM problems for inferring the 

tempo classes; a classification SVM where we learn each 

class from the training data {( , ), }
l l

c l L∈m and a regres-

sion SVM where we estimate a target tempo function 

from the training data{( , ), }
l l

t l L∈m
 
Then excerpts are 

classified one of the three classes by applying Eq. 6 on 

the estimated tempo value.  

The conceptual difference between the two formula-

tions is that while in classification we learn a function 

from feature space 20K
ℝ  to {slow, moderate, fast}, i.e. 

discretization takes place directly on the training data (Eq. 

6), in the case of regression discretization is applied to the 

regression estimate of the target tempo 
ît  . 

For the classification SVM the multiclass problem is 

split up to binary classification problems by applying the 

“one-vs-one” strategy. There is evidence [18] that the 

one-vs-one strategy is more suitable than the more com-

mon “one-vs-all” strategy, especially when there are 

imbalances between train classes, which is the case of the 

evaluation datasets (see Sec. 6). 

In the case of the regression SVM the continuous 

tempo estimate 
ît  cannot be directly interpreted as an ac-

curate tempo value, since in the signal representation
i

m  

much of the rhythmic information such as the peaks in the 

periodicity vectors are suppressed by the periodicity cod-

ing process. However, the value 
ît  would give a rough 

estimate of the tempo that will be used in Eq. 6 to infer 

the tempo class of the excerpt. 

5. ESTIMATING TEMPO 

To extract the final tempo estimate from the periodicity 

function and the tempo class assigned by the SVM, we 

calculate an overall periodicity function by the superposi-

tion of the individual periodicity functions. In particular, 

the periodicity vectors are summed across the two feature 

types and the resulting vectors are multiplied to give the 

decision periodicity vector: 

 
8 12

1 1

[ ] [ ] [ ]ji
chx

i j

p t p t p t
= =

  
=   
  
∑ ∑   (7) 

Accordingly to the estimated class, [ ]p t  is reduced to the 

corresponding tempi range prescribed by Eq. 6. Final 

tempo estimate is decided as the most predominant peak 

in the reduced periodicity vector. 

6. EVALUATION 

The proposed method was evaluated on the ISMIR 2004 

Tempo Induction Evaluation Exchange Dataset: ballroom 

and songs datasets [4]. Periodicity vectors were rescaled 

in the range [0.8, 1.2] with a 0.02 step. We divided the 

target tempi to classes by setting 80
slow

T =  bpm and 

130fastT = bpm in Eq. (6). Tempo bands number was set 

to K=20, tempo analysis region was set to [30..500] and 

target tempi space to [30..300]. Feature vector values 

where normalized to [-1, 1]. We adopted the LIBSVM 

implementation of SVM [19]. We used an RBF kernel for 

the SVM and parameter γ of the kernel was set to 1/20K. 

For regression, we adopted the ε-support vector regres-

sion method. Experiments were run for various values of 

the parameter C (Eqs. 1 and 9 in [19]). Variations of ε 

(Eq. 9 in [19]) did not affect significantly the overall per-

formance, and was set to 0.1.  

To measure the generalization ability of the proposed 

method we adopted a three fold cross validation ap-

proach. Each evaluation set was split randomly to three 

equal subsets. Each subset was used as a test set and the 

remaining two as the training set. Evaluation measures 

were averaged on every train-test sets combination. 

6.1 Assignment to Tempo Classes 

The first series of experiments involves the classification 

accuracy to tempo classes. Figure 3 (top) illustrates the 

accuracy for various values of the parameter C on ball-

room/songs datasets respectively, for both methods (clas-

sification / regression). The accuracy is almost constant 

for a wide range of C values, say for 10<C<500.  It must 

be noted that SVM classification approach outperforms 

the regression formulation.  It is clear that although the 

tempo discretization process from the assignment of the 

music excerpt to one of the three classes introduces ambi-

guities for ground-truth tempi that are closer to either 
slow

T  

or 
fastT , the classification approach is more efficient than 

the continuous regression approach. This can be ex-

plained by the fact that learning a continuous function on 

a high dimensionality space is much more demanding 

than separating instances into classes. In addition, the 

small number of training instances is probably not suffi-

cient to learn such a function. However, there is no evi-

dence that for larger scale experiments classification 

strategy will be more effective than the regression formu-

lation. 

To get a better insight to classification errors Table 1 

presents the confusion matrix between classes for the 

classification approach (C=100), for both datasets. In the 

ballroom dataset classification fails for slow excerpts,  



  

 

 
Figure 3. Top: Tempo class classification accuracy for 

both datasets/classifiers. Bottom: Accuracy1 for both 

datasets/classifiers. 

 

 Ballroom Songs 

 Slow Mod Fast Slow Mod Fast 

Slow 22 33 44 79 16 5 

Mod 2 86 12 17 82 1 

Fast 1 32 67 46 28 26 

Table 1. Confusion matrix in tempo category classifica-

tion percentages for both datasets. Rows correspond to 

ground-truth and columns to estimates.  

since most of them are classified as fast. This is due to the 

fact that there are very few excerpts with slow tempi. 

Thus, during training phase SVM fails to find reliable 

boundaries for this class. The same effect takes place in 

the case of fast excerpts in the songs dataset.  

Figure 4 illustrates the tempo class error with respect 

to ground-truth tempo, along with dataset tempo distribu-

tion for both datasets. As expected, there are more classi-

fication errors near the tempo boundaries 
slow

T  and 
fastT  

with respect to the total test instances with similar tempo. 

Finding the optimal values for 
slow

T  and 
fastT  is dataset de-

pended and is out of the scope of this paper. 
slow

T , 
fastT  

were chosen arbitrarily based on authors intuition and not 

on tempi distribution across data. For example, choosing 

110
slow

T = and 150fastT = for ballroom dataset would 

give more separable classes (see Fig. 4). However, the 

errors ought to the quantization of tempi values demon-

strate an inherent limitation of the proposed method. 

Figure 3 (bottom) illustrates the accuracy1 measure of 

tempo estimation for both classifiers (classification, re-

gression) for various values of C. As expected by the re-

sults of previous section, the classification approach per-

forms significantly better than regression. Comparing fig-

ures in Fig. 3, we can see that tempo class and tempo val-

ues estimations are very similar for the ballroom dataset: 

accuracy1 is about 4 percent below tempo class accuracy. 

However, this is not the case for songs dataset, where ac-

curacy1 is significantly lower (>10%) than classification 

accuracy. To verify this, we estimated tempo for both 

 

Figure 4. Distribution of classification errors (dark bars) 

with respect to ground-truth tempo compared to the over-

all dataset tempo distribution (light bars). 

 

 Ballroom Songs 

Our Method 75.93 63.87 

Baseline 59.89 58.49 

SE1 [6] 78.51 40.86 

SE2 [6] 73.78 60.43 

Peeters [9] 75.2 - 

Peeters [1] 65.2 49.5 

Klapuri [2,4] 63.18 58.49 

Uhle [4] 56.45 41.94 

Scheirer [4] 51.86 37.85 

Table 2. Accuracy1 of the proposed method compared to 

best performing methods reported on ballroom/songs 

datasets. 

datasets by providing the correct tempo class. Accuracies 

reported are 88% and 76% for ballroom/songs datasets 

respectively. Thus, for the songs dataset, even with prior 

knowledge of the tempo class, periodicity analysis and 

peak-picking are not always adequate. 

Table 2 shows the performance of the proposed 

method compared to the baseline method adopted and the 

best performing algorithms reported in the literature for 

both datasets. It is evident that the proposed method out-

performs all other methods. It should be mentioned that 

although Seyerlehner’s SE1 [8] performs better in ball-

room dataset, results are not directly comparable because 

they adopt a leave-one-out cross validation. Moreover 

SE1 reports very low accuracy for songs dataset. The sig-

nificant performance increase of our method is somewhat 

expected, since it incorporates prior knowledge of the 

datasets. Although the cross-fold validation strategy splits 

data to independent subsets, there is still some prior in-

formation propagated to test sets caused by the uniformity 

of the datasets, i.e. most artists/styles are always present 

in both train/test sets. However the proposed method of-

fers a promising approach to handle large datasets. 



  

 

7. DISCUSSION AND FUTURE WORK 

We presented a method for learning tempo classes with 

Support Vector Machines. Tempo class classification ac-

curacies of 75% were achieved for both datasets, while 

most errors were made for excerpts close to class bounda-

ries. The limitation of the target tempi decision space ac-

cordingly to the tempo class found for a given excerpt, 

reduced octave errors made by a baseline tempo estima-

tion system significantly. Estimation accuracies where in-

creased by a margin of 16% and 5% for ballroom/songs 

datasets respectively. 

It must be noted that classification errors are propa-

gated to the final tempo decision, especially for excerpts 

that have tempo close to the tempo class decision bounda-

ries. A softer classification decision may be more sensi-

ble, as for example providing a confidence measure in-

stead of a hard decision.  Moreover, a different treatment 

of the periodicity function such as analyzing metrical lev-

els considering knowledge of music speed may be proved 

more efficient. These two main aspects of the proposed 

method would be investigated in future research. 

8. REFERENCES 

[1] Peeters G., “Template-based estimation of time-

varying tempo,” in EURASIP Journal on Applied 

Signal Processing, Volume 2007 Issue 1, 2007 . 

[2] Klapuri A., Eronen A. and Astola J., “Analysis of the 

Meter of Music Acoustic Signals,” IEEE Trans. on 

Audio, Speech and Language Processing, Vol. 

14(1), 2006. 

[3] Gkiokas A., Katsouros V., Carayannis G. and 

Stafylakis T., “Music Tempo Estimation and Beat 

Tracking by Applying Source Separation and 

Metrical Relations,” in Proc. of the 37th IEEE 

ICASSP, Kyoto, Japan, March 25-30, 2012. 

[4] Gouyon F., Klapuri A., Dixon S., Alonso M., 

Tzanetakis G., Uhle C., and Cano P., “An 

Experimental Comparison  of Audio Tempo 

Induction Algorithms,” in IEEE Transactions on 

Audio, Speech, and Language Processing, Vol. 

14(5) , September 2006. 

[5] Gouyon F. and Dixon S., “A Review of Automatic 

Rhythm Description Systems,” Computer Music 

Journal, 29:1, pp 34-54, Spring 2005. 

[6] Dixon S., “Automatic Extraction of Tempo and Beat 

from Expressive Performances,” J. New Music 

Research, 30(1):39–58, 2001. 

[7] Alonso M., Richard G. and David B., “Accurate 

Tempo Estimation Based on Harmonic + Noise 

Decomposition,” EURASIP Journal on Applied 

Signal Processing, Volume 2007, Issue 1, January 

2007 

[8] Seyerlehner K., Widmer G., and Schnitzer D., 

“From Rhythm Patterns to Perceived Tempo,” in 

Proc. of ISMIR, Vienna, Austria, 2007. 

[9] Peeters G., “Template-Based Estimation of Tempo: 

Using Unsupervised or Supervised Learning to 

Create Better Spectral Templates,” in Proc. of 

DAFx-10, Graz, Austria, 2010. 

[10] Eronen A. and Klapuri A., “Music Tempo 

Estimation with k-NN Regression,” in IEEE 

Transactions on Audio, Speech, and Language 

Processing, Vol. 18, No. 1, January 2010. 

[11] Hockman, J.A. and I. Fujinaga. “Fast vs slow: 

Learning tempo octaves from user data,” in Proc. of 

ISMIR, Utrecht, Netherlands, 2010. 

[12] Smith L.M., “Beat-Critic: Beat-Tracking Octave 

Error Identification by Metrical Profile Analysis,” in 

Proc. of ISMIR, Utrecht, Netherlands, 2010. 

[13] Mandel M.I., Poliner G.E. and Ellis D.P.W., 

“Support vector machine active learning for music 

retrieval,” Multimedia systems, 12(1):1-11, August 

2006. 

[14] Wack N., Laurier C., Meyers O., Marxer R., 

Bogdanov D., Serrà J., Gómez E. & Herrera P., 

“Music Classification Using High-Level Models,” in 

Proc. of ISMIR, Kobe, Japan, 2009. 

[15] FitzGerald D., “Harmonic/Percussive Separation 

Using Median Filtering,” in Proc. of DAFx-10, Graz, 

Austria, 2010. 

[16] Holzapfel A. and Stylianou Y., "Scale transform in 

rhythmic similarity of music," in IEEE Trans. on 

Audio, Speech and Language Processing, Vol. 

19(1), 2011. 

[17] Peeters G., “Spectral and Temporal Periodicity 

Representations of Rhythm for the Automatic 

Classification of Music Audio Signal,” in IEEE  

Trans. on Audio, Speech and Language Processing, 

Vol. 19 (5), 2011 

[18] Hsu C.W. and Lin C.J., “A comparison of methods 

for multiclass support vector machines,” in IEEE 

Transactions on Neural Networks, Vol. 13(2), 

March 2002. 

[19] Chang C.-C. and Lin C.-J., “LIBSVM : a Library for 

Support Vector Machines,” ACM Transactions on 

Intelligent Systems and Technology, 2:27:1--27:27, 

2011. 



CONTEXT-FREE 2D TREE STRUCTURE MODEL OF MUSICAL NOTES
FOR BAYESIAN MODELING OF POLYPHONIC SPECTROGRAMS

Hirokazu Kameoka1,2, Kazuki Ochiai1, Masahiro Nakano2, Masato Tsuchiya1, Shigeki Sagayama1

1Graduate School of Information Science and Technology, The University of Tokyo
Hongo 7-3-1, Bunkyo, Tokyo, 113-8656, Japan

2NTT Communication Science Laboratories, NTT Corporation
Morinosato Wakamiya 3-1, Atsugi, Kanagawa, 243-0198, Japan

ABSTRACT

This paper proposes a Bayesian model for automatic mu-
sic transcription. Automatic music transcription involves
several subproblems that are interdependent of each other:
multiple fundamental frequency estimation, onset detec-
tion, and rhythm/tempo recognition. In general, simultane-
ous estimation is preferable when several estimation prob-
lems have chicken-and-egg relationships. This paper pro-
poses modeling the generative process of an entire music
spectrogram by combining the sub-process by which a mu-
sically natural tempo curve is generated, the sub-process
by which a set of note onset positions is generated based
on a 2-dimensional tree structure representation of music,
and the sub-process by which a music spectrogram is gen-
erated according to the tempo curve and the note onset po-
sitions. Most conventional approaches to music transcrip-
tion perform note extraction prior to structure analysis, but
accurate note extraction has been a difficult task. By con-
trast, thanks to the combined generative model, the present
method performs note extraction and structure estimation
simultaneously and thus the optimal solution is obtained
within a unified framework. We show some of the tran-
scription results obtained with the present method.

1. INTRODUCTION

Music transcription is the process of automatically convert-
ing a given audio signal into a musical score. Although
there are a number of viable ways of transcribing mono-
phonic music, polyphonic music still poses a formidable
challenge.

Several subproblems must be solved if we are to tran-
scribe polyphonic music automatically, namely source sep-
aration, multiple fundamental frequency estimation (the es-
timation of the fundamental frequencies of concurrent mu-
sical sounds), onset detection (the detection of the position
in the signal where each note begins), and rhythm recog-
nition (the estimation of the tempo, beat locations, and the
note value of each note). The difficulty is that these sub-
problems involve many ambiguities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c⃝ 2012 International Society for Music Information Retrieval.

An audio signal of a musical note typically consists of
many overtones, some of which usually overlap when mul-
tiple notes are played simultaneously. To detect which
notes are present at a certain time instant, we need to know
which musical note each frequency component belongs to.
Since this information is missing for the spectrum of a mix-
ture signal, there can be multiple interpretations of how the
spectrum of each sound should appear as well as which
pitches are present in the mixture. On the other hand, a
music performance often involves temporal fluctuation in
terms of both rhythm and tempo, which means performers
do not always play notes with a perfectly timed rhythm and
constant tempo. Since we cannot define a note value with-
out having a notion for tempo and vice versa, there can be
infinite interpretations regarding what the intended rhythm
was and how the tempo varied if both types of information
are missing.

Many methods have already been developed for poly-
phonic music transcription, most of which try to tackle the
problem by dealing with the abovementioned subproblems
separately [1]. However, the inherent difficulty of the mu-
sic transcription problem lies in the chicken-and-egg inter-
dependency between these subproblems [2]. Firstly, if the
given signal is already decomposed into individual notes, it
is a simple matter to detect their fundamental frequencies.
On the other hand, the decomposition of a given spectro-
gram into individual notes can be accomplished more accu-
rately when the fundamental frequencies of the concurrent
sounds are given. Also, if we know the fundamental fre-
quencies of all the underlying notes in the signal, they can
constitute very useful information for accurately estimat-
ing their onset times and vice versa. Furthermore, as the
onset times of notes are usually governed by the rhythmic
structure of a piece of music, the “chicken and egg” situ-
ation also applies to the detection of note onsets and the
determination of beat locations and tempo. If we know the
beat locations of a piece of music, then it is much easier
to detect the onset times of notes and vice versa, since the
inter-onset times are likely to be multiples or fractions of
the beat period.

Simultaneous estimation is generally preferable when
several estimation problems are interdependent. Thus, we
consider it necessary to introduce a unified model, which
could be used to jointly solve the problems of determining
the pitch and onset time of each musical note, the rhythm
and the overall tempo variation of a piece of music. In this
paper, we take a Bayesian approach (a generative model



approach) as in [3–6] to formulate and solve this simulta-
neous estimation problem.

2. GENERATIVE MODEL OF SPECTROGRAM
2.1 Overview

Motivated by the above, this paper proposes modeling the
generative process of an entire spectrogram of a piece of
music by formulating the following three sub-processes
and combining them into one process: (1) the sub-process
by which the tempo curve of a piece of music is gener-
ated, (2) the sub-process by which a set of note onset po-
sitions (in terms of the relative time) is generated based
on a 2-dimensional tree structure representation of music,
and (3) the sub-process by which a music spectrogram is
generated according to the tempo curve generated by sub-
process 1 and the set of note onset positions generated by
sub-process 2. In the following, we model sub-process 1 in
2.2, sub-process 2 in 2.3 and sub-process 3 in 2.4, respec-
tively. Our aim is to use this complete generative model to
explain how a given spectrogram is generated. The most
likely model parameters given the observation would then
give a musically likely interpretation of what is actually
happening in the spectrogram (i.e., a musical score). To
this end, we employ a Bayesian approach to infer the pos-
terior distributions of all the latent parameters. An approx-
imate posterior inference algorithm is derived, which is de-
scribed in Section 3.

2.2 Sub-process for generating tempo curve

The tempo of a piece of music is not always constant and in
most cases it varies gradually over time. If we use a 1 “tick”
as a relative time notion, an instantaneous (or local) tempo
may be defined as the length of 1 tick in seconds. Now
let us use µd to denote the real duration (in units of sec-
onds) corresponding to the interval between d and d + 1
ticks. Thus, µd corresponds to the local tempo and so the
sequence µ1, . . . , µD can be regarded as the overall tempo
curve of a piece of music. One reasonable way to ensure
a smooth overall change in tempo is to place a Markov-
chain prior distribution over the sequence µ1, . . . , µD that
is likely to generate a sequence µ1, . . . , µD such that µ1 ≃
µ2, µ2 ≃ µ3, . . . , µD−1 ≃ µD. Here, we assume a Gaussian-
chain prior for convenience:

µd|µd−1 ∼ N (µd; µd−1, (σµ)2) (d = 2, . . . , D), (1)

where N (x; µ, σ) ∝ e−
(x−µ)2

2σ2 . If we use ψd to denote
the absolute time (in units of seconds) corresponding to
d ticks, ψd can thus be written as ψd = ψd−1 + µd−1,
which plays the role of mapping a relative time in units
of ticks (integer) to an absolute time in units of seconds
(continuous value).

2.3 Sub-process for generating note onset positions

Here we describe the generative model of the set of some
number R of note onset positions S1, . . . , SR (in units of
ticks). Most people would probably agree that music has

1 Tick is a relative measure of time represented by the number of dis-
crete divisions a quarter note has been split into. So, if we consider 16
divisions per quarter note, for instance, the duration of 40 ticks corre-
sponds to two-and-a-half beats.

Figure 1. Generative model of a 2-dimensional tree struc-
ture representation of musical notes.

a 2-dimensional hierarchical structure. Frequent motifs,
phrases or melodic themes consist of a hierarchy that can
be described as time-span trees. In addition, polyphony of-
ten consists of multiple independent voices. That is, we
can assume that music consists of a time-spanning tree
structure and a synchronizing structure of multiple events
at several levels of a hierarchy. We would like to describe
this 2-dimensional tree structure representation of music in
the form of a generative model. This can be accomplished
by introducing a generative model that is conceptually sim-
ilar to the one proposed in [6].

Fig. 1 shows an example of the generative process of
four musical notes in one bar of 4/4. In this example, a
whole note is first split into two consecutive half notes.
We call this process “time-spanning.” Next, the former
half note is copied in the same location, thus resulting in
a chord of two half notes. We call this process “synchro-
nization.” A chord with an arbitrary number of notes can
thus be generated by successively employing this type of
binary production. Finally, the latter half note is split into a
quaver and a dotted quarter note via the time-spanning pro-
cess. This kind of generative process can be modeled by
extending the idea of the probabilistic context-free gram-
mar (PCFG) [7]. For simplicity, this paper focuses only on
Chomsky normal form grammars, which consist of only
two types of rules: emissions and binary productions. A
PCFG is a pair consisting of a context-free grammar (a
set of symbols and productions of the form A → BC or
A → w, where A, B, and C are called “nonterminal sym-
bols” and w is called a “terminal symbol”) and production
probabilities, and defines a probability distribution over the
trees of symbols. The parameters of each symbol consist
of (1) a distribution over rule types, (2) an emission distri-
bution over terminal symbols, and (3) a binary production
over pairs of symbols.

To describe the generative process shown in Fig. 1,
we must introduce an extension of PCFG. As we explain
later, we explicitly incorporate a process of stochastically
choosing either “time-spanning” or “synchronization” in
the binary production process. Fig. 2 defines the pro-
posed generative process of the set of the onset positions
of some number R of musical notes. In our model, each
node n of the parse tree corresponds to one musical note
(with no pitch information) and a pair consisting of the on-
set position Sn and duration Ln of that note is considered
to be a nonterminal symbol. We first draw a “switching”
distribution (namely, a Bernoulli distribution) ϕT over the
two rule types {EMISSION, BINARY-PRODUCTION} from a
Beta distribution. Next, we draw another “switching” dis-



Draw rule probabilities:
ϕT ∼ Beta(ϕT; 1, βT)
[Probability of choosing either of two rule types]

ϕN ∼ Beta(ϕN ; 1, βN )
[Probability of choosing either of two binary-production types]

For each duration l:
ϕB

l ∼ Dirichlet(ϕB
l ;βB

l )
[Probability of position at which segment of length l is split]

For each node n in the parse tree:
bn ∼ Bernoulli(bn; ϕT)
[Choose either EMISSION or BINARY-PRODUCTION]

If bn = EMISSION
Sr ∼ δSr,Sn

, Lr ∼ δLr,Ln

[Emit terminal symbol]

If bn = BINARY-PRODUCTION

ρn ∼ Bernoulli(ρn; ϕN)
[Choose either SYNCHRONIZATION or TIME-SPANNING]

If ρn = SYNCHRONIZATION
Sn1 ∼ δSn1 ,Sn , Sn2 ∼ δSn2 ,Sn

Ln1 ∼ δLn1 ,Ln , Ln2 ∼ δLn2 ,Ln

[Produce two copies of note n]

If ρn = TIME-SPANNING
Sn1 ∼ δSn1 ,Sn , Sn2 ∼ δSn2 ,Sn+Ln1

Ln1 ∼ δLn1 ,Ln−Ln2

Ln2 ∼ Discrete(Ln2 ;ϕ
B
Ln

)
[Split note n into two consecutive notes n1 and n2]

Figure 2. The probabilistic specification of the present
generative model of a 2-dimensional tree structure rep-
resentation of musical notes. δ denotes Kronecker’s
delta. Thus, x ∼ δx,y means x = y (with prob-
ability 1). Bernoulli(x; y) and Beta(y; z) are defined
as Bernoulli(x; y) = yx(1 − y)1−x and Beta(y;z) ∝
yz1−1(1 − y)z2−1, where x ∈ {0, 1}, 0 ≤ y ≤ 1 and z =
(z1, z2), respectively. Discrete(x;y) and Dirichlet(y; z)
are defined as Discrete(x; y) = yx and Dirichlet(y; z) ∝∏

i yzi−1
i where y = (y1, . . . , yI) with y1 + · · · + yI = 1

and z = (z1, . . . , zI), respectively.

tribution ϕN over the two binary-production types {TIME-
SPANNING, SYNCHRONIZATION} similarly from a Beta dis-
tribution. Finally, we generate a discrete distribution ϕB

l =
(ϕB

l,1, . . . , ϕ
B
l,l) over the position l′ at which the segment

of duration l is split when BINARY-PRODUCTION is chosen.
The shapes of all the Beta distributions and the Dirichlet
distribution in our model are governed by concentration
hyperparameters: βT, βN and βB

1 , . . . , βB
D.

Given a grammar, we generate a parse tree in the fol-
lowing manner: start with a root node that has the desig-
nated root symbol, SRoot = 0 and LRoot = D where D
denotes the overall length of a piece of music in ticks. For
each nonterminal node n, we first choose a rule type bn us-
ing ϕT. If bn = EMISSION, we produce a terminal symbol
Sr with the value of Sn, namely the onset position of note
r. If bn = BINARY-PRODUCTION, we then choose a binary-
production type ρn using ϕN. If ρn = SYNCHRONIZATION,

we produce two nonterminal children n1 and n2 such that
Sn1 = Sn2 = Sn, Ln1 = Ln2 = Ln. This means that the
notes of the child nodes have exactly the same onset and
duration. If ρn = TIME-SPANNING, we produce two nonter-
minal children n1 and n2 with Sn1 = Sn, Ln1 = Ln−Ln2 ,
Sn2 = Sn + Ln1 where Ln2 is drawn from a discrete dis-
tribution ϕB

Ln
. Ln2 corresponds to the position at which

the segment of duration Ln is divided. We apply the pro-
cedure recursively to any nonterminal children and finally
obtain a sequence S1, . . . , SR corresponding to the onset
positions of R musical notes.

None of the notes r yet contains pitch information. We
assign a pitch index κr to each note r in the same way as
an ordinary cluster assignment process:

ϕK
r ∼ Dirichlet(ϕK

r ; αK), (2)

κr ∼ Discrete(κr;ϕK
r ), (3)

where Discrete(x; y) = yx (where y = (y1, . . . , yI) with
y1+ · · ·+yI = 1) and Dirichlet(y; z) ∝

∏
i yzi−1

i (where
z = (z1, . . . , zI)). The k-th element of ϕK

r defines how
likely each pitch index is to be chosen. It should be noted
here that the generative processes of Sr and κr should not
be considered independently, since harmony and rhythm
are in general interdependent of each other. An interesting
direction for future work is the joint modeling of these two
generative processes.

2.4 Sub-process for generating spectrogram

We now turn to describing the sub-process by which a mu-
sic spectrogram is generated. Here, we consider that a mu-
sic spectrogram is generated according to the tempo curve
and the set of note onset positions, that have been gen-
erated by the sub-processes described in 2.2 and 2.3. To
model a spectrogram of a musical audio signal, we make
the following assumptions about musical notes:

(A1) Each musical note has a static spectral profile char-
acterized by a particular pitch.

(A2) The magnitude spectrum of music at a certain time
instant is represented by a superposition of the spec-
tra of multiple musical notes.

(A3) The power of each musical note varies smoothly in
time in the interval between the onset and offset.

From assumption (A1), a magnitude spectrogram of a mu-
sical note r can be described as

Xω,t =
R∑

r=1

Hω,κrWr,t, (4)

where ω and t are frequency and time indices, respectively.
A set consisting of H1,k, . . . , HΩ,k ≥ 0 represents the
static spectrum of the k-th pitch and so a set consisting of
H1,κr , . . . ,HΩ,κr signifies the spectrum of note r. Wr,t ≥
0 denotes the power of note r at time t. As the assumptions
(A1) and (A2) do not always hold exactly in reality, an
actual music spectrogram Yω,t may diverge from the “ideal
model” Xω,t to some extent. One way to simplify this kind
of deviation process is to assume a probability distribution
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Figure 3. Power envelope Wr,t of musical note r.

on Yω,t with the expected value of Xω,t. Here, we assume
that Yω,t follows a Poisson distribution with mean Xω,t:

Yω,t ∼ Poisson(Yω,t; Xω,t), (5)

where Poisson(y; x) = xye−x/y!. It should be noted that
the maximization of the Poisson likelihood with respect to
Xω,t amounts to optimally fitting Xω,t to Yω,t by using
the I-divergence as the fitting criterion [3, 8]. To avoid any
indeterminacy in the scaling of Hω,κr and Wr,t, we assume∑

ω

Hω,k = 1 (k = 1, . . . ,K). (6)

Each spectral profile Hω,k must have the harmonic struc-
ture of a particular pitch. One way of ensuring this is to
assume a prior distribution over Hω,k so that it is likely to
generate a spectrum with a certain harmonic structure of
the k-th pitch. Here, we choose to place a Gamma prior
over Hω,k, namely

Hω,k ∼ Gamma(Hω,k; γH̄ω,k + 1, β), (7)

where Gamma(x; a, b) ∝ xa−1e−bx. The mode of this
prior distribution is given by H̄ω,k, which should be de-
fined such that it corresponds to the most likely spectral
profile for the k-th pitch. β determines the peakiness of
the density around the mode.

To incorporate assumption (A3) into Wr,t, we propose
describing Wr,t using a parametric model expressed as a
sum of Gaussians [8] (Fig. 3):

Wr,t =
M∑

m=1

Gr,m,t, (8)

Gr,m,t =
wrur,m√

2πφ
e−(t−(m−1)φ−τr)2/2φ2

,

where wr is the total energy of note r, and τr is the center
of the first Gaussian, which can be considered the onset
time of note r (in seconds). The centers of the Gaussians
are constrained so that they are equally spaced with the
distance φ, which is equal to the “standard deviation” of
all the Gaussians. ur,1, . . . , ur,M are weights associated
with the M Gaussians, which determine the overall shape
of the power envelope. To avoid any indeterminacy in the
scaling of wr and ur,m, we assume

∀r :
M∑

m=1

ur,m = 1. (9)

The number of consecutive Gaussians with non-zero weights
corresponds to the duration of the note, which we hope to
infer automatically from an observed spectrogram. To this
end, we choose to use a stick-breaking representation [9]
to describe the generative process of ur,1, . . . , ur,M :

Vr,m ∼ Beta(Vr,m; 1, βV
r ) (10)

ur,m = Vr,m

m−1∏
m′=1

(1 − Vr,m′), (11)

which contributes to sparsifying the Gaussian weights.
Now, recall that the onset position Sr (in ticks) of note

r is assumed to have been generated via the generative
process described in 2.3. The onset position τr of note r
should thus be placed near the absolute time into which Sr

is converted. Recall also that ψd, which can be considered
a function that takes a relative time d as an input and re-
turns the corresponding absolute time as an output, is also
assumed to have been generated (via the generative process
described in 2.2). Given Sr and ψd, we find it convenient
to write the generative process of τr as

τr ∼ N (τr; ψSr , (σ
τ )2). (12)

2.5 Expansion of generative process

We can describe an expanded version of the generative pro-
cess of Yω,t as

Cr,m,ω,t ∼ Poisson(Cr,m,ω,t; Hω,κrGr,m,ω,t)

Yω,t ∼ δ
(
Yω,t −

∑
r,m

Cr,m,ω,t

)
, (13)

by introducing an auxiliary variable Cr,m,ω,t. For conve-
nience of analysis, we use this generative process instead
of (5) in the following. Note that it can be readily verified
that marginalizing out Cr,m,ω,t reduces (13) to (5).

3. APPROXIMATE POSTERIOR INFERENCE
3.1 Variational Bayesian approach

In this section, we describe an approximate posterior in-
ference algorithm for our generative model based on vari-
ational inference. The random variables of interest in our
model are

H = {Hω,k}ω,k : spectrum of pitch k,
w = {wr}r : total energy of note r,
V = {Vr,m}r,m : shape of power envelope of note r,
τ = {τr}r : onset time (sec) of note r,
κ = {κr}r : pitch index assigned to note r,
ψ = {ψd}d : absolute time corresponding to d ticks,
µ = {µd}d : local tempo between d and d + 1 ticks,
S = {Sr}r : onset position of note r (in ticks),
L = {Lr}r : duration of note r (in ticks), and
ϕB, ϕT, ϕN, ϕK : rule probabilities,

which we denote as Θ. Our goal is to compute the poste-
rior p(Θ, C|Y ) where Y = {Yω,t} and C = {Cr,m,ω,t}
are sets consisting of observed magnitude spectra and aux-
iliary variables, respectively. By using the conditional dis-
tributions defined in 2.2, 2.3, 2.4, and 2.5, we can write the



joint distribution p(Y,Θ, C) as

p(Y,H,w, V, τ, κ, ψ, µ, S, L, ϕB , ϕT , ϕN , ϕK , C)
= p(Y |C)p(C|H,w, V, τ, κ)p(H)p(V )p(w)

p(τ |ψ, S)p(ψ|µ)p(µ)p(κ|ϕK)p(ϕK)

p(S,L|ϕB , ϕT , ϕN )p(ϕB)p(ϕT )p(ϕN ), (14)

but to obtain the exact posterior p(Θ, C|Y ), we need to
compute p(Y ), which involves many intractable integrals.

We can express this posterior variationally as the solu-
tion to an optimization problem:

argmin
q∈Q

KL(q(Θ, C)∥p(Θ, C|Y )), (15)

where KL(·∥·) denotes the Kullback-Leibler (KL) diver-
gence between its two arguments. Indeed, if we let Q be
the family of all distributions over Θ and C, the solution to
the optimization problem is the exact posterior p(Θ, C|Y ),
since KL divergence is minimized exactly when its two
arguments are equal. Of course, solving this optimization
problem is just as intractable as directly computing the pos-
terior. Although it may appear that no progress has been
made, having a variational formulation allows us to con-
sider tractable choices of Q in order to obtain principled
approximate solutions.

For our model, we define the set of approximate distri-
butions Q as those that factor as follows:

Q =
{
q : q(C)q(H)q(w)q(V )q(τ, ψ, µ)q(κ)

q(S,L)q(ϕK)q(ϕB)q(ϕT)q(ϕN)
}
. (16)

We admit that this is a strong assumption. Its validity and
how it affects the parameter inference result must be inves-
tigated in the future.

3.2 Coordinate ascent

We now present an algorithm for solving the optimization
problem described in (15) and (16). Unfortunately, the op-
timization problem is non-convex, and it is intractable to
find the global optimum. However, we can use a sim-
ple coordinate ascent algorithm to find a local optimum.
The algorithm optimizes one factor in the mean-field ap-
proximation of the posterior at a time while fixing all the
other factors. The mean-field update equations for the vari-
ational distributions are given in the following form:

q(Cω,t) = Multinomial(Cω,t; Yω,t,f
C
ω,t), (17)

q(Hω,k) = Gamma(Hω,k; ξH
ω,k, ζH

ω,k), (18)

q(wr) = Gamma(wr; ξw
r , ζw

r ), (19)

q(Vr,m) = Beta(Vr,m; ξV
r,m, ζV

r,m), (20)

q(τ , ψ, µ) = N (χ; ξχ, ζχ), (21)
q(κr) = Discrete(κr; fκ

r ), (22)

q(ϕK
r ) = Dirichlet(ϕK

r ; ξK
r ), (23)

q(Sr, Lr) = Discrete(Sr, Lr; fSL
r ), (24)

q(ϕB
l ) = Dirichlet(ϕB

l ; ξB
l ), (25)

q(ϕT ) = Beta(ϕT ; ξT , ζT ), (26)
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(b) Detected beat locations along with the estimate of Wr,t

(c) Score transcribed with the proposed method

Figure 4. Transcription result obtained with the proposed
method applied to Morzart: Piano Sonata No. 11 in A ma-
jor, K. 331/300i under the situation where τ1, . . . , τR are
given. In (b), the red and green lines indicate the estimates
of bar lines and the positions of beat locations obtained
with the present method, respectively.

q(ϕN ) = Beta(ϕN ; ξN , ζN ), (27)

where

χ =

τ
ψ
µ

, ξχ =

ητ

ηψ

ηµ

, ζχ =

 ντ ντψ ντµ

ντψ νψ νψµ

ντµ νψµ νµ

.
(25)–(27) are performed only when we want to learn the
rule probabilities. (24)–(27) can be updated using the inside-
outside algorithm. The update formulas of the variational
parameters are all given in analytical form, but they are
omitted here owing to space limitations.

4. EXPERIMENTAL RESULTS

We now present experimental results obtained with our
proposed model. We first conducted a preliminary experi-
ment to confirm that our model can transcribe a score (ap-
propriately estimate the note values of musical notes, beat
locations, and the tempo of a music piece) when the on-
set times of all the musical notes (namely, τr’s) are given.
We then show an example of transcription results obtained
using the complete model directly from an audio spectro-
gram.

For the first experiment, we used a few piano record-
ings (RWC-MDB-C-2001 No. 26, 27, 30) excerpted from
the RWC music database [12]. The data were the first 10 s,
mixed down to a monaural signal and resampled to 16 kHz.
The constant-Q transform was used to compute spectro-
grams where the time resolution, the lower bound of the
frequency range, and the frequency resolution were set at
16 ms, 30 Hz and 12 cents, respectively. In this experi-
ment, all the values τ1, . . . , τR were given manually. The
hyperparameters and initial parameters were set at K =
74,M = 40, φ = 3, αH

ω,k = βH
ω,kH̄ω,k+1, βH

ω,k = 500, αw
r =



(a) Detected beat locations along with the estimate of Wr,t

(b) Score transcribed with the proposed method

Figure 5. Transcription result obtained with the proposed
method applied to Morzart: Piano Sonata No. 11 in A ma-
jor, K. 331/300i. In (a), the red and green lines indicate
the estimates of bar lines and the positions of beat loca-
tions obtained with the present method, respectively. In
(b), the red, green and blue circles indicate the deletion
errors, pitch errors and octave errors, respectively.

βw
r = 0, βV

r,m = 10e−m/8/
∑

m′ e−m′/8, στ = 2, σψ =
1, σµ = 0.5, αr,k = 2, βT = 1, βN = 2. The initial values
of Hω,k and H̄ω,k were set at the value obtained with the
non-netaive matrix factorization [13] applied to the mag-
nitude spectrogram of the piano excerpts from the RWC
musical instrument sound database [11]. We set the res-
olution of the relative time at 4 ticks per quarter note. D
and the initial values of ψd were set at the values obtained
with [10]. The algorithm was run for 10 iterations. After
convergence, we took the expected values of the posteriors
and regarded them as the parameter estimates.

Fig. 4 shows an example of the score we obtained when
we applied the present method to Mozart’s Sonata (RWC-
MDB-C-2001 No. 26). As can be seen from this example,
the note values and the beat locations were appropriately
estimated. We also confirmed that reasonably good results
were obtained for other recordings such as Chopin’s Noc-
turne No. 2 in E♭-maj, Op. 9 (RWC-MDB-C-2001 No. 30).

For the second experiment, we applied our method with-
out providing any information about τ . The experimental
conditions were the same as above except that we assumed
that τ was unknown. Fig. 5 shows an example of the esti-
mates of Wr,t (namely, the power envelope of note r) and
the score obtained with the present method applied to the
same data in Fig. 5. The result showed that many octave
errors had occurred. This kind of error often occurs when
there is a mismatch between a spectrum model and an ac-
tual spectrum. The validity of the assumptions we have
made about the spectra of musical sounds in 2.4 must be
carefully examined in the future.

5. CONCLUSION

This paper proposed a Bayesian model for automatic mu-
sic transcription. Automatic music transcription involves
several interdependent subproblems: multiple fundamental
frequency estimation, onset detection, and rhythm/tempo
recognition. To circumvent the chicken-and-egg problem,

we modeled the generative process of an entire music spec-
trogram by combining the sub-process by which a musi-
cally natural tempo curve is generated, the sub-process by
which a set of note onset positions is generated based on
a 2-dimensional tree structure representation of music, and
the sub-process by which a music spectrogram is gener-
ated according to the tempo curve and the note onset po-
sitions. Thanks to this combined generative model, the
present method performs note extraction and structure esti-
mation simultaneously and thus an optimal solution is ob-
tained within a unified framework. We described some of
the transcription results obtained with the present method.
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ABSTRACT

We present a criterion to generate audible summaries of
music recordings that optimally explain a given track with
mutually disjoint segments of itself. We represent audio
as sequences of beat-synchronous harmonic features and
use an exhaustive search to identify the best summary. To
demonstrate the merit of this approach, we evaluate the cri-
terion and show consistency across a collection of multiple
recordings of different works. Finally, we present a fast
algorithm that approximates the exhaustive search and al-
lows us to automatically learn the hyperparameters of the
algorithm for a given track.

1. INTRODUCTION

One of the classic motivations in the field of music infor-
matics is facilitating the navigation of massive digital mu-
sic collections by human users. Research in this area aims
to develop computational methods of organizing and re-
trieving music recordings —tracks— in the spirit of reduc-
ing the amount of effort necessary to find desired content.
Ultimately, the user must listen to any unfamiliar track to
validate the search results, making the process consider-
ably time consuming.

In digital music storefronts and other kinds of large col-
lections, the traditional solution is to represent a full track
with a single, identifiable excerpt. Known as audio thumb-
nailing, much effort has been invested into the develop-
ment of automatic systems to these ends; for a partial re-
view, we refer to [1, 2, 6, 7]. For some popular music that
is highly repetitive in nature, these methods perform well
in identifying useful thumbnails. Regardless, representing
a full track with a single excerpt presents one unavoidable
deficiency: the defining characteristics of a track are rarely
concentrated in one specific section.

Recognizing this shortcoming, we motivate an alterna-
tive approach to classical thumbnailing that instead creates
a short, listenable audio summary, capturing both the most
unique and representative parts of a track. Specifically, this
paper presents a novel audio summary criterion and an effi-
cient method of automatically generating these summaries
from real music recordings. The criterion is maximal for
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the set of segments that best explain the overall track while
simultaneously exhibiting minimal overlap between them.
Via examples and an experimental study we show how this
measure yields good audio summaries. Furthermore, we
show that it is possible to automatically select the optimal
number and length of the selected subsequences specific to
a given recording.

The remainder of this paper is organized as follows:
Section 2 addresses the topic of feature representation. Sec-
tion 3 defines the music summary criterion and showcases
the measure in practice. Section 4 details a heuristic ap-
proximation to the exhaustive evaluation over the free pa-
rameters. Section 5 presents a systematic evaluation of the
feature representation, heuristic solution and effect of au-
tomatically learning hyperparameters. Finally, we discuss
our conclusions and observations for future work in Sec-
tion 6.

2. FEATURE REPRESENTATION

The goal of developing an appropriate representation is to
capture the information relevant to a given task while dis-
carding unnecessary attributes. With this in mind, we de-
scribe the method of transforming time-domain audio sig-
nals into beat-synchronous sequences of harmonic features
from which audio summaries can be identified.

2.1 Beat-Synchronicity

As a preprocessing stage, a recording is first analyzed by
a beat tracking algorithm adapted from [3] for subsequent
beat-synchronous feature extraction. In the interest of mit-
igating octave errors and producing consistent feature se-
quences across a variety of content, we impose constraints
on the range of possible tempi the system can track. This is
achieved by the following modification: periodicity anal-
ysis of the novelty function ∆n is computed at N log2
spaced frequencies per octave over the range [1 : 8] Hz,
producing the tempogram T as defined in [3]. This time-
frequency representation is then wrapped to a single tempo
octave of N bins and the most likely tempo path is ex-
tracted via the Viterbi decoder. In lieu of static transition
probabilities, the transition probability matrix ptrans is de-
fined as an identity matrix I of rank N convolved with a
1-D, 0-mean Gaussian window N , where the standard de-
viation σn is parameterized by the relative amplitude of the
maximum tempogram as a function of time n, as follows:



ptrans[n] = IN ∗ N
(
µ = 0, σn =

max(|T [n]|)
µ|T [n]|

)
(1)

This has the desirable effect of allowing the tempo es-
timator to adapt when the pulse strength is high, but resist
change when the tempo becomes ambiguous. To find the
best tempo octave to unwrap the path into, we analyzed
a histogram of the chord durations contained in publicly
available chord annotations 1 . Having found that approxi-
mately 95% of the chord durations are greater than 0.5 sec-
onds in duration, we select 2Hz as a natural upper bound
and map the optimal path through the single octave tem-
pogram into the range of 60-120 BPM. At this stage, the
remainder of the implementation follows the reference al-
gorithm.

2.2 Harmonic Representations

Conventional approaches to harmonic analysis tasks in mu-
sic informatics are predominantly built upon the use of
chroma features, and we continue that tradition here. We
also explore the use of tonal centroids, or Tonnetz features,
as a mid-level harmonic representation. Introduced for the
purpose of detecting harmonic change by Harte et al [4],
the intuition for this decision is motivated as follows. First,
typical distance metrics fail to capture musical significance
between chroma vectors. In a pitch class representation,
for example, the L2 distance between a C major triad and
a C] triad is equal to the distance between either triad and
the notes B, B[, and A. Additionally, chroma behaves like
a mass function and it is not immediately apparent how to
best measure the distance between these vectors. A Ton-
netz representation, however, provides a geometric inter-
pretation of pitch collections where distance is better de-
fined as a musical and an Euclidean sense.

To compute both harmonic feature variants, we apply
the constant-Q transform to a frame of audio over the range
of 110–1760 Hz with 12 bins per octave, producing a pitch
vectorX . The length of the analysis window is determined
by the longest filter, and is set to 0.45 seconds. Inspired
by [5], a modified pitch vector Y is produced by standard-
izing the log-coefficients log(λX) and half-wave rectify-
ing the result. The λ scale factor is heuristically set to
1000, but values within an order of magnitude in either
direction produce similar results. Chroma features are de-
rived from Y by wrapping onto a single octave and scaling
by the L2 norm, and Tonnetz features are computed iden-
tically to the method presented in [4].

2.3 Feature Quantization

It is computationally advantageous to quantize the feature
space into a finite number of discrete values. We perform
vector quantization by clustering the feature space via K-
means and replacing each feature vector by its cluster’s
centroid. The pairwise distances between centroids are
precomputed to accelerate distance calculations between

1 https://github.com/tmc323/Chord-Annotations

symbolic feature sequences (see Section 3). Though larger
values ofK more faithfully reproduce the original features,
this might result in an intractable process due to computa-
tion limitations as we see in subsection 3.3.

3. DEFINING AN AUDIO SUMMARY CRITERION

Structure and repetition are fundamental characteristics of
a musical work, and an audio summary should retain the
minimum number of distinct parts that are necessary to
describe it. Therefore, a good summary criterion actu-
ally synthesizes two opposing notions: we seek to lose as
little information as possible, while avoiding overlap be-
tween chosen segments. A summary is defined as the set
Γ = [γN

1 , . . . , γ
N
P ] of P , N -length subsequences that max-

imizes a function Θ over a feature sequence S of length
M , where ∃m s.t. sN

m = γN
i ,m ∈ [1 : M ], sN

m ∈ S, and
i ∈ [1 : P ].

3.1 Compression Measure

The goal of describing a sequence in terms of itself with a
minimal loss of information is fundamentally a data com-
pression problem. Building upon this idea, we define a
compression measure C(Γ|S) that quantifies the extent to
which Γ explains a given S, defined as follows:

C(Γ|S) = 1− 1
PJ

P∑
i=1

J∑
m=1

||γN
i , s

N
m||2 (2)

This measure can be interpreted as a normalized, convo-
lutive Euclidean distance, such that there are J = M−N+
1 element-wise comparisons between a givenN -length sub-
sequence γN

i and all J N -length subsequences sN
m ∈ S.

All distances, taken directly from the precomputed pair-
wise matrix discussed in Subsection 2.3, are then averaged
over the J rotations and P subsequences in Γ. Intuitively,
the compression measure equals 1 when Γ = S and 0 when
Γ 6⊆ S.

3.2 Disjoint Information Measure

In addition to determining how well Γ describes S, it is
necessary to also measure the amount of information shared
between each pair of subsequences in a set. Conversely, a
disjoint information measure I(Γ) seeks to quantify the
uniqueness of each subsequence in Γ relative to the rest,
defined as follows:

I(Γ) =

 P∏
i=1

P∏
j=i+1

Dmin(φ(γN
i ), φ(γN

j ))

 2
P (P−1)

(3)

We achieve shift-invariance by mapping a sequence of
features γN

i to a sequence of shingles ρK
i with length K =

N−L+1 where a shingle is defined as the stacking ofL ad-
jacent feature frames into a single feature vector. The func-
tion φ returns the shingled version of a subsequence. A
modified Euclidean distance function Dmin then measures
the intersection between sequences of shingles, returning
the average minimum distance between the uth shingle in



Figure 1. Search space for C, I and Θ (left, middle, and right respectively) for P = 2 subsequences in the first half of a
performance of the Mazurka Op. 30 No. 2. Black lines split part A and B. Circles mark the maximum value. Each position
in the matrices correspond to a 8-beat subsequence.

ρK
i and all v shingles in a different subsequence ρK

j , de-
fined as follows:

Dmin(ρK
i , ρ

K
j ) =

(
K∑

u=1

minv(ρi[u]− ρj [v])2
)1/2

(4)

There are two important subtleties that must be observed
when calculating this measure. First, distances between
shingles are defined by the element-wise L2 norm based
on the same pairwise distance matrix as before. Addition-
ally, I(Γ) is a geometric mean and only produces large
values when all pairwise distances are also large; any small
distance in the product forces the overall measure toward
zero.

3.3 Criterion Definition and Calculation

Having established measures of compression and disjoint
information for some Γ, we capture both of these traits by
defining a single criterion Θ as follows:

Θ(C, I) =
2CI
C + I

(5)

Noting that C and I are constrained on the interval [0,1]
and converge to one when optimal, computing the criterion
as a harmonic mean enforces the behavior that its value is
only large when both measures are as well.

It is worthwhile at this point to make the observation
that this criterion can —at least theoretically— be evalu-
ated at every unique combination of subsequences Γ over
an entire sequence S. The output of this exhaustive cal-
culation is a P dimensional tensor where each axis is of
length J , and the best summary is given simply by the
argmax of the resulting data structure. From here on-
ward, we use optimal criterion Θmax to refer to the ab-
solute maximum of this tensor, as would be found through
a naı̈ve, exhaustive search of the space. Note that for large
J and P however, evaluating every cell in this tensor be-
comes computationally intractable and efficient approxi-
mations are necessary (see Section 4).

3.4 Case Example

Here we illustrate the behavior of the audio summary cri-
terion by analyzing by the first half of Frédéric Chopin’s
Mazurka Op. 30 No. 2, which exhibits a well-defined AB
structure. For the sake of demonstration, we select a sub-
sequence length of N = 8 and define P = 2 such that
an exhaustive evaluation of Θ produces a J × J matrix.
The result of computing C, I and Θ over all pairs of sub-
sequences is shown in Figure 1.

The compression measure C is shown in the left-most
matrix of Figure 1. This measure quantifies the extent to
which a set Γ explains the overall track independent of
any correlation between subsequences. The optimal C in
this matrix corresponds to the two subsequences at beat in-
dices (48, 59) in the B-B quadrant. These subsequences
correspond to repetitions of the same part, making the in-
formation in Γ redundant.

The center matrix in Figure 1 corresponds to the disjoint
information measure I. This measure captures the degree
of uniqueness between subsequences in Γ. It is clear from
the plot that the measure behaves as expected: repeated
subsequences in the same section (in quadrants A-A or B-B)
produce significantly lower values of I than subsequence
pairs in A-B, where the highest I is found.

Finally, the previous two matrices combine to yield a
third, the criterion Θ. In the example the maximum value
of C corresponds to repetitions of the same part, thus mak-
ing I to be small and forcing the overall Θ to also be small.
Similarly, the position of the maximum value of I at the
boundary between A and B results in a low C value, again
producing a smaller Θ. In this example, Θ is maximized
by the combination of subsequences in A,B that best bal-
ance the two criteria by capturing the midsections of each
part.

4. APPROXIMATING THE OPTIMAL SOLUTION

As mentioned in the previous section, naı̈ve calculation
of the optimal criterion can, in certain scenarios, become



computationally inefficient, impractical, or worse. More
specifically, an exhaustive evaluation and parallel search
of the full Θ tensor of size (J/2)P would result in an algo-
rithm of complexity O((JN log J)P ). In this section, we
present a heuristic approach that approximates the optimal
solution using a much faster implementation.

4.1 Heuristic Search Algorithm

The main idea behind the fast approach is to assume that
the most relevant parts of a song will most likely be uni-
formly spread across time. The pseudocode is found in Al-
gorithm 1. The method EquallySpaced() initializes all P
subsequences into equally spaced time indices and stores
them in the array Υ. We then iterate over the P subse-
quences, fixing all of them except the Pi being processed.
We use a sliding window, operating over the region be-
tween the endpoint of the previous subsequence and the
start of the next one, to find the best local music criterion
θ by calling the function ComputeCriterion(). At every
iteration we check if the sliding window is within the cor-
rect bounds with the method CheckBounds(), and if it is,
we update the best index υ in Υ. Finally, the summary Γ
is obtained by concatenating the subsequences at the time
indices in Υ. This operation is done inside the method Get-
SubseqsFromTimeIdxs().

Algorithm 1 Heuristic Approach
Require: S = {s1, . . . , sM}, P,N
Ensure: Γ = {γN

1 , . . . , γ
N
P }

Υ← EquallySpaced(S, P,N)
for i = 1→ P do
θ ← 0
for j = 1→M do

if CheckBounds(Υ) then
Θ← ComputeCriterion(S,Υ, N, P )
if Θ > θ then
θ ← Θ; υ ← j

end if
Υ[i]← j

end if
end for
Υ[i]← υ

end for
Γ← GetSubseqsFromTimeIdxs(S,Υ)
return Γ

The complexity in time of this algorithm is O(PMJ),
which makes it linear with respect to P . This approach im-
proves the efficiency dramatically and let us explore differ-
ent hyperparameter values of P and N , as we will see in
subsection 5.4.

5. EVALUATION

We now proceed to evaluate multiple facets of the audio
summary criterion. We begin by reviewing the dataset
used for evaluation before presenting three different exper-
iments.

5.1 Methodology

In our experimentation, we use a collection of solo pi-
ano music compiled by the Mazurka Project 2 , comprised
of 2914 tracks corresponding to different recorded perfor-
mances of 49 Mazurkas. For clarity, we use piece or work
when referring to a Mazurka, and reserve track or perfor-
mance to describe an instance of the work as audio. The
motivation for using this dataset is to leverage the sev-
eral performances of a single work to measure the con-
sistency of our criterion. Additionally, this collection con-
tains 301 tracks with human-annotated, ground truth beat
times, which allows us evaluate the impact of beat track-
ing on various dimensions of performance. It also provides
the added benefit that Chopin’s Mazurkas are notoriously
difficult to beat-track via computational means [3].

5.2 Parameter Sweep & Selection

In the interest of selecting a feature space with which to
proceed, an experiment is designed to sweep across the
range of free parameters to identify the optimal configu-
ration. There are three questions to address: Is automatic
beat tracking sufficient? Do chroma and Tonnetz features
perform equivalently, or is one preferable? Does perfor-
mance vary significantly as a function of codebook size?

These three decisions can be resolved by observing how
the optimal criterion behaves across various performances
of the same work, comparing between ground truth and es-
timated beat annotations. Intuitively, a satisfactory audio
summary of the same piece would persist across recorded
versions, so the summaries themselves should be substan-
tially similar.

For those 301 recordings with ground truth beat annota-
tions, we stratify the tracks into five folds for cross valida-
tion such that all but one are used to train the quantizer and
the remaining hold-out is reserved as a test set. Sweeping
across the two beat annotation sources (ground truth, auto-
matic), two harmonic representations (chroma, Tonnetz),
and three codebook sizes (50, 100, 200) produces 12 pos-
sible feature space configurations (see Table 1). Summary
sets Γ are identified by exhaustively computing Θmax over
all possible combinations of subsequences, where segment
length N and number P are fixed at 16 and 4, respectively.
Additionally, a stride parameter ofN/2, analogous to a hop
size in frame based audio processing, is applied to make
the exhaustive search more computationally tractable.

To measure the degree to which summaries of the same
work (intra-class distance) are closer than those from other,
dissimilar works (inter-class distance), the pairwise dis-
tances between summaries of tracks in each fold are com-
puted and the values are treated as empirical distributions
of these two classes. The Fisher ratio, defined by (6),
provides an estimate of the separation between intra- and
inter-class summary distances.

Fratio =
µintra − µinter

σ2
intra + σ2

inter

(6)

2 http://www.mazurka.org.uk



k GT-C GT-T A-C A-T
50 3.64 3.97 2.71 3.89

100 3.84 4.29 2.68 4.20
200 4.09 4.74 2.87 4.45

Table 1. Parameter Sweep. GT: Ground Truth, A: Auto-
matic, C: Chromagram, T: Tonnetz

Intuitively, higher values ofFratio indicate distinct, well-
localized distributions where ‘similar’ items cluster togeth-
er, and translates to more consistency across performances.
Table 1 shows the results of sweeping free parameters in
the feature space. There are a few important observations
to make about these results. First, a Tonnetz representa-
tion produces consistently better results than chroma fea-
tures. Additionally, Tonnetz features computed from au-
tomatically extracted beat times only marginally trail their
ground truth equivalent. Finally, the codebook size K has
a non-trivial impact on performance and is positively cor-
related. Therefore, we can conclude that Tonnetz-features
computed with a beat tracking front-end are the best choice
going forward, and that the parameter K should be large
and ultimately based on practical limitations of the imple-
mentation.

5.3 Heuristic Approximation

We evaluate the performance of the heuristic approach by
comparing the summaries it produces with the optimal so-
lution obtained through exhaustive computation. A second
comparison is made with the expected performance a ran-
dom algorithm, obtained by averaging across all results ob-
served in the course of computing Θmax. This establishes
the upper (optimal) and lower (random) bounds of perfor-
mance and allows us to determine where on this continuum
our heuristic solution lives. We measure the discrepancy
between the optimal Θmax, random Θrand, and heuristic
Θheur solutions by computing the averaged Mean-Squared
Error (MSE) across all tracks in the full dataset. To account
for local variance resulting for a given track, we normalize
the range of Θ such that Θmax = 1 and Θmin = 0. The
normalized MSE can be expressed formally as follows:

MSE(Θ) =
1
S

S∑
i

(1−Θi)2 (7)

Here, a normalized Θmax is always equals 1, Θ rep-
resents a vector of normalized criteria obtained by some
search strategy, and S is the number of songs in the Mazurka
data set.

Setting the hyperparameters to P = 4 and N = 16,
the MSE of the random baseline is approximately 21%,
whereas our heuristic approximation is nearly two orders
of magnitude better, achieving a MSE of slightly over 1%.
It is evident from this contrast that the heuristic search
very closely approximates the results of exhaustive com-
putation, significantly outperforming the random baseline.
Therefore we offer the preliminary conclusion that the heu-

ristic approach is a sufficient approximation, allowing a
more thorough exploration over the space of hyperparam-
eters.

5.4 Automatically Selecting Hyperparameters

Having gained the efficiency to perform a search across
hyperparameters P and N , we can compute Θmax for dif-
ferent combinations and define the maximum over this set
as the optimal summary. In this experiment we explore 9
pairs of P ∈ [2 : 5] and N ∈ [16 : 64] (constraining
N to powers of two), avoiding (P,N) combinations such
as (5, 64) or (2, 16) that would produce summaries that
are too long or short, respectively. These ranges incorpo-
rate prior musical knowledge, as there are typically a small
number of distinct parts in a work and meter is predomi-
nantly binary. It is worthwhile to mention though the best
choice of P and N is signal-dependent and that, in reality,
there is no universally optimal combination for all music.

In light of this, the combination of P and N that yields
Θmax for a given track provides another statistic that should
persist across multiple performances of the same work, as
structure and meter are generally invariant to interpreta-
tion. We evaluate the criterion further by measuring con-
sistency of the optimal (P,N) pair using the entire Mazurka
dataset, and provide qualitative examples of the observed
behavior.

5.4.1 Quantitative Evaluation

A consistency distribution resulting from a sweep across
combinations of P and N is given in Figure 2. The x-
axis represents the proportion of performances for a given
Mazurka that produces the most frequent (P,N) pair at
Θmax, where a value of 1 indicates complete agreement
and 0 complete disagreement. The y-axis represents the
number of works that produce a given consistency value,
and there are 49 in total.

As illustrated by the plot, there is very high consistency
(≥ 90%) for more than half of the data set, resulting in
an average consistency of 87%. This shows that our cri-
terion is able to capture high-level information about the
structure of a work across various performances, validat-
ing its capacity to produce informative audio summaries.
Despite a high average overall, it is of special interest to
qualitatively analyze the Mazurkas that yield different op-
timal configurations of the hyperparameters.

5.4.2 Qualitative Evaluation

Importantly, Figure 2 fails to capture is the degree of con-
trast between Θmax and values for other combinations of
P andN . Upon closer inspection, we find that the structure
of some works is not clearly defined leading to multiple,
equally reasonable interpretations. This manifests explic-
itly in the data, leading to more than one (P,N) with large
Θ values. One such instance of multiple interpretations
occurs for Op. 7 No. 2. The form of this work is ABCA,
but– depending on performance – parts B and C can be
interpreted as one longer part, resulting in an ABA struc-
ture. Consequently, 62% of these performances produced



Figure 2. Evaluating consistency across different perfor-
mances of the same song for the entire Mazurka data-set

a Θmax for P = 2, while 31% of performances occurred
at P = 3.

The other primary cause of inconsistency is due to tempo
modulations and the resulting errors and artifacts caused
by the beat tracker. An example of this is Op. 41 No. 1,
producing the lowest consistency ratio of 49%. Here we
observe a lack of well-defined onsets and liberal rhythmic
interpretations, both within and between performances. This
causes the beat tracker to behave erratically, producing mis-
aligned feature sequences that ultimately yield Θmax val-
ues for different pairs of (P,N).

Alternatively, Op. 24 No. 3, which exhibits a clear ABA
structure and a more stable tempo, achieves 100% consis-
tency for P = 2 andN = 32. The more noteworthy obser-
vation though is that this particular piece is in a ternary me-
ter. Therefore a better summary would likely be obtained
with N being a power of 3, and exploring other values of
N could potentially improve consistency.

6. DISCUSSION & CONCLUSIONS

We have presented a novel audio summary criterion and
established the merit of this approach through data-driven
evaluation and qualitative inspection. We have illustrated
how our criterion consistently produces informative sum-
maries that capture both meaningful harmonic and high-
level structural information. Finally, we have presented a
heuristic approach capable of producing audio summaries
that closely approximates the absolute maximum.

Complementary to the main body of work itself, the
unexpected observation that Tonnetz features definitively
yield better results warrants discussion. One possible ex-
planation, as Tonnetz features live in a continuous-valued
geometric space, is that any beat estimation errors result
in a smooth interpolation of the feature space. Chroma
features, acting as a time-varying probability distribution,
cannot resolve timing errors in the same way. As a result,
a beat tracker does not need to be perfect to be useful given
a suitable feature representation.

As part of future work, we identify the potential of au-
dio summaries to be used for various application where
the data needs to be time normalized. More related to this
work, the next logical step would be to explore the use of
variable length subsequences to generate summaries. Fi-
nally, several example summaries are made available on-
line 3 .
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ABSTRACT

Recently, there has been much interest in automatic pitch
estimation and note tracking of polyphonic music. To date,
however, most techniques produce a representation where
pitch estimates are not associated with any particular in-
strument or voice. Therefore, the actual tracks for each
instrument are not readily accessible. Access to individ-
ual tracks is needed for more complete music transcrip-
tion and additionally will provide a window to the anal-
ysis of higher constructs such as counterpoint and instru-
ment theme imitation during a composition. In this paper,
we present a method for tracking the pitches (F0s) of indi-
vidual instruments in polyphonic music. The system uses
a pre-learned dictionary of spectral basis vectors for each
note for a variety of musical instruments. The method then
formulates the tracking of pitches of individual voices in
a probabilistic manner by attempting to explain the input
spectrum as the most likely combination of musical instru-
ments and notes drawn from the dictionary. The method
has been evaluated on a subset of the MIREX multiple-F0
estimation test dataset, showing promising results.

1. INTRODUCTION

One of the most important classes of information to be re-
trieved from music is its polyphonic pitch content. Re-
cently, many researchers have attempted multiple-F0 esti-
mation (MFE) [11, 14, 18]. (A review of state-of-the-art
MFE systems can be found in [2].) Many current MFE
systems such as [14] restrict themselves to the estimation
of a certain number of F0s for each frame, while ignoring
which instrument/timbre corresponds to each F0. While
approaches for tracking solo melodic voice/timbres exist
[15], the pitch tracking of additional lines and parts in poly-
phonic music opens new possibilities. By exposing the in-
dividual lines produced by each instrument in polyphonic
music, aspects such as counterpoint, the appearance of leit-
motifs across instruments in a piece, and hidden thematic
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references across musical pieces can be uncovered. There-
fore, instruments and their timbres are very important com-
ponents in music and should be tracked along with their
F0s. Moreover, knowing each instrument’s F0 track can
be very beneficial for a variety of MIR user applications,
such as music transcription, score alignment, audio music
similarity, cover song identification, active music listening,
melodic similarity, harmonic analysis, intelligent equaliza-
tion, and F0-guided source separation.

As stated previously, most MFE systems produce low-
level representations of the polyphonic pitch content pre-
sent in music audio which report only what fundamen-
tal frequencies are present at each given time. However
higher-level representations can attempt to track and link
these fundamental frequencies over time to form notes such
as described in [3]. It is important to note that such track-
ing can also improve the accuracy of MFE’s based purely
on individual frames, as reported reported in [18]. In [12] a
classification approach is used to determine singing voice
portions in music audio so as to build the pitch-track corre-
sponding to a vocal melody. In [5, 6], a frame level multi-
F0 estimation method is used followed by a constrained
clustering method that uses harmonic amplitude-based fea-
tures to cluster pitches into pitch tracks. In these cases, to
build instrument or timbre-specific pitch tracks, bottom-up
methods were used that first produced frame-based pitch
estimates and subsequently sometimes attempted to build
note-level representations, which may form solo phrases.

In the method presented in this paper, we use an alter-
native approach. Instead of building timbre tracks from
the pitch content, our proposed approach uses timbre infor-
mation to guide the formation of instrument-specific pitch
tracks. This paper is organized as follows. Section 2 de-
tails the proposed method. Section 3 describes the evalua-
tion datasets, measures, and results. The evaluation results
are discussed in Section 4 and conclusions and future work
covered in Section 5.

2. PROPOSED METHOD

To make a system that tracks pitches attributed to differ-
ent musical instruments, we borrow an idea from the su-
pervised sound source separation domain: using a spectral
library [1, 13]. By training our system on example sounds



from different instruments, we can track them in complex
sound mixtures. The proposed method is based on prob-
abilistic latent component analysis (PLCA) [17]. PLCA
is a variant of non-negative matrix factorization (NMF)
and has been used widely to model sounds in the spec-
tral domain. Its probabilistic interpretation makes it ex-
tensible to using priors and statistical techniques. We use
regular PLCA to build dictionaries of spectra indexed by
F0 and instrument where the spectra are analyzed from
recordings of individual notes of different musical instru-
ments. We extend the model of [16] to represent each
source/instrument not by only one spectral dictionary, but
rather with a collection of dictionaries, each of which is
an ensemble of spectral basis vectors that have the same
F0. We model the input music signal’s spectrum as a sum
of basis vectors from F0-specfic spectrum dictionaries for
different instruments. Update rules are designated to cal-
culate the model parameters, which are estimated proba-
bilities for the occurrence of each spectral basis vector, F0-
spectrum dictionary, and instrument in the input mixture at
a given time. Finally, we perform the Viterbi algorithm [8]
to track the most likely pitch sequence for each instrument.

A sinusoidal model is used for the time-frequency rep-
resentation because of its compactness and also for rep-
resenting each note independent of the intonation errors or
tuning differences between training and test set performers.
We begin by performing a short-time Fourier transform on
the audio signal. Peaks in the spectrum are then deter-
mined using a frequency-dependent threshold as described
in [7]. We then refine each peak’s amplitude and frequency
using a signal derivative method proposed by [4].

2.1 Model

We model the audio input mixture’s spectrum for each fra-
me as a sum of instrument tones where each tone is rep-
resented by a dictionary of spectral basis vectors that are
learned in advance.

It is assumed that all instrument tones have harmon-
ically related frequencies which are integer multiples of
an F0 frequency. It turns out that in a mixture of such
tones there is a high probability that harmonics will over-
lap. The input spectrum can be modeled as a distribu-
tion/histogram over a range of frequencies. E.g., each com-
ponent is viewed as the probability of occurrence of that
particular frequency. The magnitude at any particular fre-
quency can be thought as an accumulation of magnitudes
from various instruments due to component overlapping.
The scaled version of the input mixture spectrum is mod-
eled as a discrete distribution. The generative process is
modeled as follows:

Xt(f) ∼= Pt(f) =
I∑
i

Pt(i)
N∑
n∈pi

Pt(p|i)
K∑

z∈zpi
Pt(z|p)Ppi(f |z) (1)

where Xt(fj) is the spectral magnitude of the peak j at
frequency fj for the observed input mixture spectrum at
time t; Pt(f) is an approximation of the input spectrum;
Pt(i) is the estimated probability of occurrence of instru-
ment i at time t, whereas Pt(p|i) is the estimated prob-
ability that pitch p is produced by instrument i; P (f |z)

is the learned spectral basis vector for the pitch p of in-
strument i; and Pt(z|p) is the probability (weight) of that
basis vector. The above model explains the mixture mag-
nitude spectrum hierarchically as the sum of N individual
pitches from I different instruments where the dictionary
corresponding to each pitch/instrument has K elements.
The independence relationships of the model can be repre-
sented by the graph I→P→Z→F. The process that gener-
ates the frequency components in the observed magnitude
spectrum is as follows: First, an individual instrument li-
brary is selected from a group of instrument libraries. Sec-
ond, a spectrum dictionary is drawn for each pitch from
the instrument library. Third, a spectral basis vector is
drawn from a particular F0-spectrum dictionary for the in-
strument. Fourth, a spectral component at a particular fre-
quency is drawn from the spectral basis vector. Although
it is possible that this spectral component will be generated
by only a single instrument, most often it only contributes
a fraction to the magnitude of the observed spectrum at that
frequency.

2.2 Parameter Estimation

Parameters for the model θ = {Pt(z|p), Pt(p|i), Pt(i)}
can be estimated using an expectation-maximization (EM)
algorithm. In the E-step, current parameter values θold are
used to calculate the posterior distribution.

Pt(i, p, z|f, θold) =
Pt(f |i, p, z)Pt(i, p, z)

Pt(f)
(2)

Because of the structure of the model, Pt(f |i, p, z) = Pt(f |z)
and Pt(i, p, z) = Pt(i)Pt(p|i)Pt(z|p). We can write the
posterior as

Pt(i, p, z|f, θold) = P (f |z)Pt(z|p)Pt(p|i)Pt(i)∑
i
Pt(i)

∑
n∈pi

Pt(p|i)
∑

z∈zpi

Pt(z|p)Ppi (f |z)
(3)

The posterior is used to calculate the expectation of the
complete data log likelihood Q

Q(θ, θold) =
∑
f

Xf

∑
i

∑
n∈pi

∑
z∈zpi

P (i, p, z|f, θold)log(P (i, p, z, f |θ) (4)

In the M-step, new parameters are estimated by maximiz-
ing the above function according to θ, resulting in the fol-
lowing update rules:

Pt(z|p)new ←

∑
f

Pt(i, p, z|f)Xt(f)∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(5)

Pt(p|i)new ←

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(6)

Pt(i)
new ←

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)∑
i

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(7)



We then use the new estimates to calculate the posterior in
an iterative manner and repeat until convergence is achieved.

2.3 Sparsity Prior

At any given time, we expect each instrument active to be
playing a single pitch. Even though the parameter esti-
mation method would allow multiple pitches per frame for
each instrument, in this project our goal is to track a mono-
phonic pitch contour for each instrument. We also expect
that not all instruments are active at the same time.

Enforcing sparsity constraints on note and instrument
probabilities Pt(p|i)’s and Pt(i)’s reinforce this behavior.
We use the following prior (the normalizing constant is
dropped for convenience)

P (φ) =

(∑
φ

(P (φ))
α

)β
(8)

Adding the above prior to the expectation of the complete
data log-likelihood and maximizing it with respect to P (i)
and P (p|i), we arrive at the following update rules

P (p|i)new ←
∑
z∈zpi

∑
f

P (i, p, z|f)Xf +
βp(Pt(p|i))α∑
p∈pi

(Pt(p|i))α (9)

Pt(i)
new ←

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f) +
βp(Pt(i))

α∑
p∈i

(Pt(i))
α (10)

(We have to rescale explicitly so that it sums up to one.)

P (p|i)new ← P (p|i)new∑
p∈pi

P (i)new and P (i)new ← P (i)new∑
i

P (i)new (11)

2.4 Enforcing Continuity

Our goal is to track each instrument’s F0 through time. We
expect the pitch contour to be smooth, not changing drasti-
cally from frame to frame except at note transitions. Using
the Viterbi algorithm, we treat the pitches as hidden states
and pose the instrument tracking problem as one of infer-
ring the most likely pitch state sequence for each instru-
ment. Above estimated pitch distributions (which maxi-
mize the mixture likelihood P (Xt(f)|i, p, z)) for each in-
strument are considered to be the emission probability of
the hidden state in a hidden Markov model (HMM). Tran-
sition probabilities are modeled as normal distributions gi-
ven by

P (pt|p
′

t−1) =
1√
2πσ

e−

(
f0t−f

′
0t−1

)2
2σ2 (12)

where pt denotes the hidden pitch state for instrument i
at time t. f0t denotes the F0 associated with the hidden
pitch state for instrument i at time t. Transitions are calcu-
lated within the same instrument. We empirically choose
σ = 7 + f/100Hz. The above distribution enforces the
continuity of the active notes from frame to frame.

3. EVALUATION ON REAL WORLD DATA

We trained a dictionary for each pitch of each instrument
using the RWC musical instrument database [9] using non-
negative matrix factorization with Kullback-Leibler diver-
gence which is numerically equal to the regular PLCA met-
hod in 2 dimensions [17]. For each pitch from the RWC
dataset, 20 representative spectra were derived from 27 dif-
ferent tones corresponding to 3 players, 3 dynamics (pi-
ano, mezzo, forte), and 3 articulations (normal, staccato,
vibrato). In the pitch tracking stage, we limit the num-
ber of instrument libraries to choose from by designating
the instruments expected to be in the input mixture as in-
put to the algorithm. We also limit the search range for F0
(which F0-spectrum dictionaries to use) of each instrument
by only using the peaks estimated by the sinusoidal model
that are between 50 Hz to 2500 Hz as pitch candidates.

Evaluations are performed at frame level. Multi-F0 track-
ing problem is similar to melody extraction problem ex-
tended to multiple melodies as opposed multi-F0 estima-
tion problem where the estimated number of F0s for each
frame can be different than the ground-truth F0s, which is
not the case in the tracking problem, where the number of
estimated F0s and the reference F0s are simply equal to
total number of frames. We extended the evaluation met-
rics from MIREX melody extraction task to our problem.
Comparing the voiced (nonzero F0) and unvoiced (zero F0)
values for each frame of the estimated and ground-truth
F0 tracks, the counts for true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) are cal-
culated according to Table 1

Estimated
voiced unvoiced

Ground voiced TP FN
truth unvoiced FP TN

Table 1. Evaluation

TP’s further break down into ones with correct F0 and the
ones with incorrect F0 as TP = TPC + TPI . Estimated
voiced F0 is correct if it is within a quarter tone (+-2.93%)
range of a positive ground-truth F0 for that frame.

The precision, recall, F-measure, and accuracy for each
input test file is then calculated over all frames and all in-
struments as:

Precision =

∑
i

∑
t
TPCi,t∑

i

∑
t
TPi,t + FPi,t

(13)

Recall =

∑
i

∑
t
TPCi,t∑

i

∑
t
TPi,t + FNi,t

(14)

F-measure =
2× precision× recall

precision + recall
(15)

Acc. =

∑
i

∑
t
TPCi,t+TNi,t∑

i

∑
t
TPi,t+FPi,t+TNi,t+FNi,t

(16)



where t is the frame index and i is the instrument index.
We tested the proposed method on different datasets. The
ground-truths for these datasets were estimated using mono-
phonic pitch estimators (Wavesurfer, Praat and YIN) on the
single-instrument recordings prior to mixing. The results
of the monophonic pitch estimators are manually corrected
where necessary.

For preliminary testing and development, we applied
the method on a 11 second excerpt taken from a real world
performance by bassoon, clarinet and oboe which was taken
from a MIREX multitrack dataset (standard woodwind quin-
tet transcribed from L. van Beethoven ”Variations for String
Quartet”, Op.18, N.5). The three separate tracks were mixed
to monaural. The results can be seen in Table 2. The pro-
posed method scored 0.83 accuracy on average. Figure 1
shows the multiple-F0 tracks for each instrument. Without
tracking, the F0’s would not be connected from frame to
frame.

Bassoon Clarinet Oboe Ave.
Accuracy 0.76 0.85 0.89 0.83
Precision 0.76 0.85 0.89 0.83
Recall 0.82 0.92 0.90 0.88
F-measure 0.79 0.88 0.89 0.86

Table 2. Evaluation performances for a 11-s woodwind
trio excerpt (bassoon, clarinet, oboe).
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Figure 1. Pitch (in midi note numbers) vs. time using
the proposed system on the 11-s woodwind trio excerpt
(bassoon (lower), clarinet (middle), oboe (upper)). Thin
lines represent the ground-truth.

We then tested the proposed method on two datasets
used in the MIREX multiple-F0 task test set [2]. The first
one is a multitrack recording of the woodwind quintet men-
tioned above [2]. The piece is highly contrapuntal as op-
posed to consisting of a lone melodic voice plus accom-
paniment. The predominant melodies alternate between
instruments. The F0 tracks often cross each other. Five

non-overlapping 30-second sections were chosen from the
recording. Isolated instruments were mixed from solo tracks
to polyphonies ranging from 2 (duo) to 5 (quintet), result-
ing in a total of 20 tracks (4 different polyphonies times
five sections). The average pitch-tracking results over all
tracks for polyphony 2 to 5 are shown in Table 3.

Accuracy Precision Recall F-measure
0.52 0.50 0.56 0.53

Table 3. Average performance on the MIREX woodwind
quintet dataset.

Figure 2 shows a bar graph of the performance of the
method for different polyphonies. Figure 3 shows the av-
erage accuracies for different instruments in various poly-
phonies.
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Figure 2. Performance vs. polyphony for the
MIREX woodwind quintet dataset (Five 30-s segments per
polyphony).
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Figure 3. Ave. accuracy of individual instruments for
different polyphonies for the MIREX woodwind quintet
dataset. (Five 30-s segments)

The second dataset we tested our method on is a record-
ing of a four-part J.S. Bach chorales created by [5] consist-



ing of bassoon, clarinet, saxophone, and viola. Four 30
seconds sections were mixed from duo to quartet, resulting
in 12 tracks (2 different polyphonies times 4 sections). The
average results over all tracks in this dataset can be seen in
Table 4.

Accuracy Precision Recall F-measure
0.59 0.55 0.55 0.55

Table 4. Average performance for the MIREX Bach
chorales dataset

Figure 4 shows a bar graph of the performance of the
method for different polyphonies. Figure 5 shows the av-
erage accuracies of different instruments in various poly-
phonies. The RWC dataset of the MIREX multiple-F0 task
was not evaluated because RWC samples were used for
training. Also the piano dataset was not used because our
project’s goal is to track distinct timbres.
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4. DISCUSSION

The proposed method on average performed with 83% ac-
curacy on identifying the instrument tracks for the trio case
(Figure 1) which was used for the development of the al-
gorithm. Accuracies were 52% and 59% for the MIREX
woodwind quintet and Bach chorales quartet datasets. By
examining the MIREX dataset results, we see that most
problems are caused by an inactive instrument following
the dominant instrument’s F0 track. Some instruments in
this dataset are inactive during 70-80% of the entire dura-
tion of the input. Accuracy-vs.-instrument results for the
MIREX woodwind quintet (Figure 3), indicate that instru-
ments horn and clarinet have lower performance in the 4
and 5 polyphony cases, due to their F0 tracks being highly
sparse. In addition to remaining silent much of the time,
they often play soft notes when they are active.

The tracking system reports note probabilities for every
non-silent frame, which are then used in an HMM to es-
timate the F0 tracks. Voicing decisions are based strictly
on the rms amplitude of the mixture input signal to de-
cide whether the signal is silent. This results in a high
number of false positives when an individual instrument
is silent in parts of a track, a condition which happens of-
ten in the MIREX dataset. This behavior also results in a
very low number of true and false negatives (since the sys-
tem reports very few negatives) resulting in a higher recall
than lower precision which can be seen in Figures 2 and
4. In the future, we would like to explore methods to infer
whether instruments are active or not at any given point in
time.

Another kind of error that frequently occurs is when a
less dominant instrument tracks a more dominant one that
has a similar timbre. This is probably caused by the instru-
ment spectra having significant correlation with each other.
Looking at the performance-vs.-polyphony results for each
instrument in Figure 5, we see that instruments like violin,
which have a unique timbre, have better average accuracy.

Possible solutions include training the instrument spec-
trum dictionaries not in isolation but in combination with
other instrument spectra, which may assist the basis vec-
tors behaving in a more discriminant way. Methods for dis-
criminant non-negative tensor factorizations are explored
in [19]. This issue can also be addressed in the testing part.
Pitch probabilities in EM iterations can be estimated to be
as maximally different as possible, while still explaining
the overall mixture by appropriate use of priors. Another
method that might improve this issue would be to use a
factorial HMM to jointly estimate the pitch tracks.

On average, the proposed method scored 0.53 for Ac-
curacy on the MIREX dataset, which is an improvement
over the only past result (0.21) for the multiple-F0 track-
ing task evaluated at MIREX [10]. However, we note that
the MIREX multiple-F0 task did not offer the opportunity
to utilize instrument names for the mixture input test files.

One reason the proposed method works comparatively
well for the trio and the Bach chorales case (see Table 1
and Figure 1) is that most instruments were active most of
the time. The encouraging results from this case lead us to



believe that the pitch tracking problems can be improved
effectively by addressing the issues discussed above.

Finally, we note that the restriction that sounds must
consist soley of harmonic partials can be relaxed. E.g.,
pitch estimates for instruments like xylophone, which do
not have strict harmonic structures but do have predictable
inharmonic structures, can be determined.

5. CONCLUSION

A new method for pitch and instrument tracking of indi-
vidual instruments in polyphonic music has been designed
and evaluated on an established dataset that has previously
been used for multiple-F0 estimation under MIREX. Cur-
rent results are encouraging, but several problems need to
be resolved (as described in the Discussion section) for the
method to be an effective tool.

As mentioned in the Introduction, knowing the F0 tracks
can be very beneficial for a variety of MIR tasks. In the fu-
ture, we would like to explore the use of voicing detection
to determine which instruments are active. We would also
like to perform instrument identification in the front-end
so the method does not require prior knowledge of the in-
strumentation. We also plan to experiment with different
discriminant learning methods and to re-infer the dictio-
naries based on the input mixture. Finally, we propose to
explore using an automatic key detection algorithm and a
more musicologically informed pitch transition matrix for
the hidden Markov model.
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ABSTRACT

While emotion-based music organization is a natural pro-
cess for humans, quantifying it empirically proves to be a
very difficult task, and as such no dominant feature repre-
sentation for music emotion recognition has yet emerged.
Much of the difficulty in developing emotion-based fea-
tures is the ambiguity of the ground-truth. Even using the
smallest time window, opinions about emotion are bound
to vary and reflect some disagreement between listeners.
In previous work, we have modeled human response la-
bels to music in the arousal-valence (A-V) emotion space
with time-varying stochastic distributions. Current meth-
ods for automatic detection of emotion in music seek per-
formance increases by combining several feature domains
(e.g. loudness, timbre, harmony, rhythm). Such work has
focused largely in dimensionality reduction for minor clas-
sification performance gains, but has provided little insight
into the relationship between audio and emotional associ-
ations. In this work, we seek to employ regression-based
deep belief networks to learn features directly from mag-
nitude spectra. Taking into account the dynamic nature of
music, we investigate combining multiple timescales of ag-
gregated magnitude spectra as a basis for feature learning.

1. INTRODUCTION

The problem of automated recognition of emotional con-
tent (mood) within music has been the subject of increasing
attention among the music information retrieval (Music-
IR) research community [1]. While there has been much
progress in machine learning systems for estimating hu-
man emotional response to music, little progress has been
made in terms of intuitive feature representations. Cur-
rent methods generally focus on combining several fea-
ture domains (e.g. loudness, timbre, harmony, rhythm) and
performing dimensionality reduction techniques to extract
the most relevant informaiton. In many cases these meth-
ods have failed to provide enhanced classification perfor-
mance, and they leave much to be desired in terms of un-
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derstanding the complex relationship between emotional
associations and acoustic content.

The Music Information Retrieval Evaluation eXchange
(MIREX) 1 audio mood classification task provides an ex-
cellent illustration of this. Shown in Figure 1 is the per-
formance of MIREX submissions for each year. The first
year MIREX ran the task it received 9 submissions, and
the best performing system achieved 61.50% performance
on the 6-class problem using a feature space spanning 16-
dimensions [2]. Each year the task has received a larger
number of submissions, with exponentially larger feature
libraries, but have failed to produce significant perfor-
mance gains. Most recently, in 2010 the task received 36
submissions with the best system mining a 70-dimensional
feature space, but achieved only 64.17% [3]. These results
perhaps indicate that the data necessary for informing sys-
tems for this problem is not present in any current feature
set.

Human judgments are necessary for deriving emotion
labels and associations, but individual perceptions of the
emotional content of a given song or musical excerpt are
bound to vary and reflect some degree of disagreement be-
tween listeners. This lack of specificity presents signifi-
cant challenges for developing informative feature repre-
sentations for content-based music emotion prediction. In
previous work we have investigated modeling emotional
responses to music as both a singular point [4] as well as a
stochastic distribution [5] over the arousal-valence (A-V)
space of emotional affect. In this two dimensional repre-
sentation valence indicates positive versus negative emo-
tion and arousal reflects emotional intensity [6].

The ambiguous nature of musical emotion makes it an
especially interesting problem for the application of fea-
ture learning. Using deep belief networks (DBNs) [7] we
develop methods for learning emotion-based acoustic rep-
resentations directly from magnitude spectra. In previous
work, we have found these models to be powerful meth-
ods for generating reduced dimensionality representations
of raw input spectra [8]. In that approach, we learned fea-
tures directly from spectra at the 20msec rate of our win-
dowed Short-Time Fourier Transform (STFT). In doing so,
we provided a direct comparison between the DBN model
for extracting features to standard acoustic representations
such as MFCCs.

1 http://www.music-ir.org/mirex
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Figure 1. MIREX mood classification task performance
by year.

But as humans require a larger time window than
20msec to determine emotions, and building upon that
work we seek to improve our performance by informing
our learned feature representations with spectra aggregated
at multiple timescales. In addition, we investigate a univer-
sal background model (UBM) approach to feature learn-
ing. As DBN training follows an unsupervised pretrain-
ing, we investigate bootstrapping a much larger unlabeled
dataset in developing our models. Given the challenges of
collecting emotion annotated data, pretraining on a limited
dataset is insufficient to form a general music model for
finetuning. By bootstrapping a larger dataset we demon-
strate significant improvement in using our DBN models
for emotion prediction, and modest gains when using our
learned features in a separate supervised machine learning
approach.

We compare the learned feature representations to other
state-of-the-art representations investigated in prior work
[4, 5, 9]. In these experiments, we use the DBN hidden
layer outputs as features to predict the training labels us-
ing a separate linear regression model. In all experiments
we show that the features generated by the DBN outper-
form all other features, and that the topology is especially
promising in providing insight into the relationship be-
tween acoustic data and emotional associations.

2. BACKGROUND

Feature learning has only recently gained attention in the
machine listening community. Lee et al. was the first to ap-
ply deep belief networks to acoustic signals, employing an
unsupervised convolutional approach [10]. Their system
employed PCA to provide a dimensionality reduced repre-
sentation of the magnitude spectrum as input to the DBN
and showed slight improvement over MFCCs for speaker,
gender, and phoneme detection.

Hamel and Eck applied deep belief networks (DBNs) to
the problems of musical genre identification and autotag-
ging [11]. Their approach used raw magnitude spectra as
the input to their DBNs, which were constructed from three
layers, employing fifty units at each layer. The system was
trained using a greedy-wise pre-training and fine-tuned on
a genre classification dataset, consisting of 1000 30-second
clips. The system took 104 hours to train, and as a result
was not cross-validated. Applied to a genre classification

task, the learned features achieved a classification accuracy
of 0.843, which was an increase over MFCCs at 0.790. The
learned model was also used to inform an autotagging al-
gorithm, which scored 0.73 in terms of mean accuracy, a
slight improvement over MFCCs at 0.70.

3. GROUND TRUTH DATA COLLECTION

In prior work, we developed an online collaborative anno-
tation activity based on the two-dimensional A-V model
[12]. In this activity, participants use a graphical inter-
face to indicate a dynamic position within the A-V space
to annotate 30-second music clips. Each subject provides
a check against the other, reducing the probability of non-
sense labels. The song clips used are drawn from the “us-
pop2002” database. 2 Using initial game data, we con-
structed a corpus of 240 15-second music clips, which
were selected to approximate an even distribution across
the four primary quadrants of the A-V space.

In more recent work we have developed a Mechanical
Turk (MTurk) activity to collect annotations on the same
dataset [13]. The purpose of the MTurk activity was to
provide a dataset collected through more traditional means
to assess the effectiveness of the game, specifically to de-
termine any biases created though collaborative labeling.
Overall, the datasets were shown to be highly correlated,
with arousal r = 0.712, and a valence r = 0.846. This
new dataset is available to the research community, 3 and is
densely annotated, containing 4, 064 label sequences in to-
tal, 16.93±2.690 ratings per song. In this work we demon-
strate the application of this densely annotated corpus for
emotion-based feature learning.

4. ACOUSTIC FEATURE COLLECTION

Since our focus is on learning features that are specifi-
cally tuned to emotion prediction, we limit our compar-
isons to features that performed well in previous work.
The features are also commonly used in the machine lis-
tening community and provide a reasonable baseline for
testing. Our collection (Table 1) consists of the two highest
performing features in prior work, Spectral Contrast and
MFCCs [4,5], as well as the Echo Nest Timbre (ENT) fea-
tures.

Feature Description

Spectral Contrast
[14]

Rough representation of the harmonic
content in the frequency domain.

Mel-frequency
cepstral coefficients
(MFCCs) [15]

Low-dimensional representation of
the spectrum warped according to the
mel-scale. 20 dimensions used.

Echo Nest Timbre
features (ENTs) 4

Proprietary 12-dimensional beat-
synchronous timbre feature

Table 1. Acoustic feature collection for music emotion
prediction.

2 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
3 http://music.ece.drexel.edu/research/emotion/moodswingsturk
4 http://developer.echonest.com



5. DEEP BELIEF NETWORKS

A fully trained deep belief network shares an identical
topology to a neural network, though they offer a far-
superior training procedure, which begins with an unsu-
pervised pre-training that models the hidden layers as re-
stricted Boltzman machines (RBMs) [7,16,17] . A graphi-
cal depiction of an RBM is shown in Figure 2. An RBM is
a generative model that contains only a single hidden layer,
and in simplistic terms they can be thought of two sets of
basis vectors, one which reduces the dimensionality of the
data and the other that reconstructs it.

Hidden

Layer

Visible

Layer

Figure 2. Restricted Boltzman machine topology.

RBMs are Markov random fields (MRFs) with hidden
units, in a two layer architecture where we have visible
units v and hidden units h. This has an energy function of
the form,

E(v,h) = −
∑
i∈freq

bivi −
∑

j∈features

cjhj −
∑
i,j

vihjwij (1)

where in this case the input is a spectrogram v ∈ R1×I and
the hidden layer h ∈ R1×J . The model has parameters
W ∈ RI×J , with biases c ∈ R1×J and v ∈ R1×I . Dur-
ing pre-training, we learn restricted Boltzman machines
“greedily,” where we learn them one at a time from the
bottom up. That is, after we learn the first RBM we retain
only the forward weights, and use them to create the input
for training the next RBM layer.

As in the typical approach to deep learning, after pre-
training we form a multi-layer perceptron using only the
forward weights of the RBM layers. However, in typi-
cal approaches the final step is to attach logistic regres-
sion layer to the output of the MLP, and the full system is
fine-tuned for classification using gradient descent. Since
our goal is to learn feature detectors for a regression prob-
lem, we instead attach a simple linear regression layer
and report the prediction error for fine-tuning as the mean
squared error of the estimators. Squared error is chosen
as opposed to Euclidean error for speed and numerical sta-
bility, as both functions have the same minimum. Further-
more, we elect to do our fine-tuning using conjugate gradi-
ent optimization, which we found to outperform gradient
descent for our topology during initial testing.

We trained our DBNs using Theano, 5 a Python-based
package for symbolic math compilation, and Scipy’s opti-
mization toolbox for the conjugate gradient optimization.
Theano is an extremely powerful tool for machine learn-
ing problems because it combines the simplicity of Python

5 http://deeplearning.net/software/theano/

with the power of compiled C, which can target the CPU
or GPU.

6. EXPERIMENTS AND RESULTS

In the following experiments we investigate employing
deep belief networks for emotion-based acoustic feature
learning. In all experiments, the model training is cross-
validated 5 times, dividing the dataset into 50% training,
20% verification, and 30% testing. To avoid the well-
known album-effect, we ensured that any songs that were
recorded on the same album were either placed entirely in
the training or testing set.

All learned features are then evaluated in the context of
multiple linear regression (MLR), as we have investigated
in prior work [4,5,18]. MLR provides extremely high com-
putational efficiency, making it ideal for discriminating be-
tween relative usefulness of many feature domains.

6.1 Short-time Feature Learning

In the first set of experiments, we investigate learning fea-
tures directly from short-time magnitude spectra. We have
investigated this approach in prior work in the context of
a different dataset [4], and we investigate it here to com-
pare performance with the Turk dataset and to provide a
baseline for our further work. As with our previous work,
we use 3 hidden layers in all experiments, each containing
50 nodes. Furthermore, we run pre-training for 50 epochs
with a learning rate of 0.001. During the conjugate gradi-
ent fine-tuning stage we attach an additional multiple linear
regression (MLR) layer to the output of the DBN. As this
stage is supervised, for each input example xi, we train the
model to produce the emotion space parameter vector yi,

yi = [µa, µv]. (2)

Shown in Table 2, are the results for employing the
learned features for multiple linear regression. Features
are first extracted on 20msec intervals, and then appropri-
ately aggregated to match the one second intervals of our
labels. Results for these features which are learned from
single frames are shown as DBN-SF. We additionally show
the KL-divergence for the Gaussian ground-truth represen-
tation used in prior work [5, 18]. Where we develop re-
gressors to predict the parameterization vector yi of a two-
dimensional Gaussian in A-V space,

yi = [µa, µv, σ
2
aa, σ

2
vv, σ

2
av]. (3)

6.2 Multi-frame Feature Learning

While future work on more sophisticated fine-tuning ap-
proaches or better stochastic models in pre-training may
improve performance, the largest issue is the inherent lim-
itation in using a single short-time window. Human emo-
tional associations necessarily require more than a ∼20ms
short-time window, and thus future approaches must take
into account the variation of acoustic data over a larger
period of time. In these experiments we investigate the
development of models that incorporate multiple spectral
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Figure 3. Feature learning system architecture showing the temporal aggregation, deep belief network and subsequent
training of linear regressors to predict multi-dimensional A-V distributions.

windows to derive musical emotion. Taking spectral ag-
gregations of the past one second, past two seconds, and
past four seconds, we concatenate the resulting vectors
as inputs to the system. As each spectrum frame is 257-
dimensional vector, the total DBN input is now 771 di-
mensions. A diagram showing the multi-rate temporal in-
tegration, DBN training and linear regression to the emo-
tion space is shown in Figure 3. Results for multi-frame
(MF) feature learning can be found in Table 2 labeled as
DBN-MF.

For this new approach, we provide visualizations of the
learned features. Figure 4 shows the input spectrogram in
log-magnitude for proper visualization, though we do not
take the log for the actual model input.

Figure 4. Log-magnitude spectrogram of input audio.

In the original spectrogram (Figure 4) we see the verse
transition into the first chorus of the Soulive rendition of
the Beatles song Come Together starting around frame 500.
We see a similar pattern in the spectrogram between frames
1488-1800, which is the only other part of the clip where
the percussion includes cymbals. Shown in Figure 5 are
the resulting features from the intermediary layer outputs.
Note that the structural information in the spectrogram is
retained in the hidden layer outputs rendered in Figure 5.

We also wish to investigate the reconstruction of the
original input aggregated spectrogram from the hidden
layer outputs. Figure 6 depicts this reconstruction which

Figure 5. DBN hidden layer outputs using the aggregate
spectral frames as input.

was generated using the method outlined in previous work
[8]. Due to the concatenations of multiple time scale ag-
gregations, we adjust the y-axis to display the correct fre-
quency values for each. The top contains the last one sec-
ond aggregations, below that is the aggregation from the
last two seconds, and the last four seconds is at the bottom.

6.3 Universal Background Model Feature Learning

In order to improve our results with the multi-frame ap-
proach, we seek to harness the power of our much larger
unlabeled music dataset. As DBN training relies on a two
step training process, the first of which is unsupervised,
there is no reason we should not use every piece of avail-
able data. In training our RBMs with our larger dataset,
we get a much more accurate portrail of the distribution of
music, and therefore create a much more accurate music
model, which we can then finetune for musical emotion,



Figure 6. Reconstruction of the original aggregated spec-
trogram used as the DBN input. Top is last one second
aggregates, middle last 2 seconds, bottom last 4 seconds.

or any other supervised machine learning problem. As this
model is a general music model, we refer to it as a univer-
sal background model (UBM). For our larger dataset we
use the uspop2002 dataset in its entirety, which contains
nearly 8000 songs. Even after aggregating our spectra at
one-second intervals this adds up to ∼26 GB of training
data. Results for the universal background model approach
are shown in Table 2 as DBN-UBM.

Feature Average Mean Average KL
Type Distance Divergence

MFCC 0.140± 0.005 1.28± 0.157
Chroma 0.182± 0.006 3.33± 0.294
Spectral Shape 0.153± 0.006 1.51± 0.160
Spectral Contrast 0.138± 0.005 1.29± 0.160
ENT 0.151± 0.006 1.41± 0.175

DBN-SF Model Error 0.203± 0.009 -
DBN-SF Layer 1 0.138± 0.005 1.25± 0.142
DBN-SF Layer 2 0.133± 0.004 1.19± 0.129
DBN-SF Layer 3 0.133± 0.002 1.21± 0.180

DBN-MF Model Error 0.194± 0.032 -
DBN-MF Layer 1 0.131± 0.006 1.15± 0.106
DBN-MF Layer 2 0.131± 0.004 1.14± 0.107
DBN-MF Layer 3 0.129± 0.004 1.12± 0.114

DBN-UBM Model Error 0.140± 0.015 -
DBN-UBM Layer 1 0.129± 0.006 1.12± 0.091
DBN-UBM Layer 2 0.128± 0.004 1.13± 0.097
DBN-UBM Layer 3 0.128± 0.004 1.11± 0.090

Table 2. Emotion regression results for fifteen second
clips. DBN-SF are features learned from single frames
(SF), DBN-MF are features learned from multi-frame
(MF) aggregations, and DBN-UBM are features learned
with a universal background model (UBM) approach to
DBN pretraining. KL-divergence is not applicable to
model error.

7. DISCUSSION AND FUTURE WORK

In looking at the first set of results for learning features
from single frames (DBN-SF), we see second layer fea-
tures perform best for this method, outperforming spec-
tral contrast, which is the best performing standard fea-
ture. This result is consistent with prior work [8], though

here we find the DBN-SF features to be better than spectral
contrast both in predicting single points and distributions.
In that work we found the DBN features to be more ac-
curate in terms of mean prediction and spectral contrast to
perform slightly better in terms of KL, though we strongly
emphasized an incorrect mean to be a much worse an error
than an incorrectly sized or rotated covariance.

In trying to improve our features by including multiple
timescales we see improvement in mean error from 0.133
to 0.129, which is encouraging. In analyzing the recon-
structed spectra from first layer features, we get a very in-
teresting result, which is similar to our prior work with [8].
The overall representation if very sparse in terms of fre-
quency and seems to target very specific frequencies to
contribute to the overall emotion features. Analyzing the
features in Figure 5, we note that there is most definitely an
emotion change as we progress from the slower and heav-
ily minor sounding verse into the higher tempo rock cho-
rus. We see changes reflected in all three layers’ features
in that area of the clip. We also note that it appears as if the
features don’t exactly line up with the spectrogram, which
is a result of including past data in our feature computa-
tion. When the spectrum changes abruptly it takes several
frames for our model to catch up. We do not see this as a
limitation as humans have a reaction time too, which per-
haps is reflected in the fact that these features are better
suited for time-varying emotion prediction.

At a normalized error of 0.128, our simple MLR
method with DBN features outperforms two of the three
features investigated in our prior work with conditional
random fields (CRFs) [19], which is a much more sophis-
ticated method. Furthermore, while the performance in-
crease between the third layer features of DBN-MF and
DBN-UMB is small, the performance of the DBN model
itself is reduced from 0.194 to 0.140, which we find to be
highly encouraging. These results indicate that UBM pre-
training is providing us a model that is much better suited
for emotion finetuning.

In future work, we plan to investigate shrinking layer
sizes in the UBM approach where we can perhaps take bet-
ter advantage of the dimensionality reduction power of the
RBM. Furthermore, we see that it may be interesting to
investigate multiple stages of finetuning. We would first
follow the approach of [7] for reducing the dimensionality
of unlabeled data. It may be possible to gain a more accu-
rate UBM by applying a finetuning stage that involved un-
raveling the model to reconstruct the unlabeled data. Those
model parameters could then be adapted to emotion, or any
other type of music prediction.
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ABSTRACT 

User evaluation in the domain of Music Information Re-
trieval (MIR) has been very scarce, while algorithms and 
systems in MIR have been improving rapidly. With the 
maturity of system-centered evaluation in MIR, time is 
ripe for MIR evaluation to involve users. In this study, we 
compare user-centered measures to a system effective-
ness measure on the task of retrieving similar songs. To 
collect user-centered measures, we conducted a user ex-
periment with 50 participants using a set of music re-
trieval systems that have been evaluated by a system-
centered approach in the Music Information Retrieval 
Evaluation eXchange (MIREX). The results reveal weak 
correlation between user-centered measures and system 
effectiveness. It is also found that user-centered measures 
can disclose difference between systems when there was 
no difference on system-effectiveness.  

1. INTRODUCTION 

With the rapid growth of digital music, research on Music 
Information Retrieval (MIR) has been flourishing in 
recent years. Many algorithms and systems have been 
developed to facilitate searching and retrieving music 
pieces automatically. As a crucial aspect of system 
development, evaluation of MIR systems has attracted 
continuous attention among researchers. However, so far, 
MIR evaluation has been dominated by system-oriented 
approaches, while users, whom MIR systems would 
ultimately serve, have rarely been considered in MIR 
evaluation. 

The system-centered evaluation approach, also known 
as the Cranfield evaluation [3], has been adopted by the 
Music Information Retrieval Evaluation eXchange 
(MIREX), a community-based annual evaluation 
campaign for MIR. Since its inception in 2005, MIREX 
has evaluated and compared more than a thousand 
systems on various MIR tasks such as genre classification, 
artist identification, query-by-humming, etc. [5]. MIREX 
not only greatly enhances the development of MIR, but 
also provides rich evaluation data on system effectiveness.  

Despite its long tradition and popularity, system-

centered approach has been criticized for excluding users 
from the evaluation process. Researchers argue that the 
goal of MIR systems is to facilitate users’ music 
information tasks, and thus the evaluation of MIR should 
inevitably take users into consideration [8]. Furthermore, 
since music appreciation is more or less a subjective 
process, users’ perceptions about whether a MIR system 
is useful might be different from a system-centered point 
of view. However, there have been no formal studies 
investigating whether there are correlations between user-
centered measures and system effectiveness measures in 
the MIR domain. Thus, people remain puzzled when they 
see the precision and recall numbers of certain systems. 
Would they be helpful to users? Would users be satisfied 
with them? This study aims to fill the research gap and 
answer the following research question: to what extent is 
system effectiveness related to user-centered measures? 

In particular, this study focuses on one MIR task, 
audio music similarity and retrieval where systems search 
for songs similar to a given query song. There are two 
major reasons for choosing this task. First, finding similar 
songs, as a query-by-example scenario, is a prevailing 
music information need. For instance, many people 
search for similar songs to build playlists [4]. Second, the 
MIREX has the same task  and thus provides system-
centered measures needed in this study.  

2. RELATED WORK 

2.1 User Evaluation in MIR 

There have been very few studies on formal user evalua-
tion MIR systems. The Philips Research Laboratories in 
the Netherlands is the leader on this topic. During 2002 to 
2005, they conducted a series of controlled user experi-
ments to evaluate their playlists generation systems 
[9][10][14]. The general approach was to recruit 22 to 24 
participants to use a novel system they developed as well 
as one or two control systems for the task of generating 
playlists in some pre-defined music listening situations 
(e.g., “soft music” and “lively music”). The experiments 
may consist of one to four sessions. The researchers then 
compared the novel system to control systems using user-
centered measures including users’ ratings on playlist 
quality, time spent on the task, number of button presses 
in accomplishing the task, as well as perceived useful-
ness, ease-of-use and preference reported by the users.  

A more recent study by Hoashi and colleagues [7] 
compared the effectiveness of three visualization methods 
for a content-based MIR system. Besides user effective-
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ness and user satisfaction, they also employed self-
reported usability measures on perceived system accura-
cy, explicitness and enjoyability. It is particularly valua-
ble that the authors also advocated for the user-centered 
approach as necessary to evaluate MIR systems.  

2.2 User and System Effectiveness in Text Information 
Retrieval  

Evaluating retrieval systems from the users’ perspective 
has been active in the domain of text Information Re-
trieval (IR). Studies have been done to examine the rela-
tionship between user-centered measures and system-
effectiveness. Hersh et al. investigated this question in the 
tasks of instance recall [6] and question answering [12]. 
They conducted user experiments and found user effec-
tiveness and system effectiveness did not yield the same 
conclusion. More recently, Turpin and Scholer [13] eval-
uated systems with large differences in system effective-
ness and again found no significant relationship between 
user and system effectiveness for precision-based tasks 
and a weak relationship for recall-based tasks. 

In contrast, there were also studies finding significant 
correlations. For instance, Allen et al. [1] studied the task 
of text passage retrieval and found user effectiveness (as 
measured by task completion time and number of rele-
vant passages) was correlated with system effectiveness 
when the latter was either low or high, but not in the 
middle. Last but not least, Al-Maskari et al. [2] controlled 
the variance of system effectiveness and reported signifi-
cant correlations between multiple user-centered 
measures and system effectiveness.    

As a first study investigating the relationship between 
user-centered measures and system effectiveness in the 
MIR domain, this study is inspired by the aforementioned 
previous work in text IR. Many of these studies used 
TREC (Text Retrieval Conference) evaluation results to 
select systems to be evaluated by users and to obtain data 
on system effectiveness. In this study, we resort to 
MIREX, the counterpart of TREC in the MIR domain, for 
obtaining system effectiveness measures and the underly-
ing MIR systems.  

3. METHOD AND RESEARCH DESIGN 

3.1 The AMS Task in MIREX 

The MIREX has included the Audio Music Similarity and 
Retrieval (AMS) task every year except for 2008. In this 
task, systems are given a number of queries (i.e. audio 
song clips) and a large collection of music audio clips. 
The goal of the systems is to retrieve clips from the col-
lection that sound similar to the queries. In 2010, the 
AMS task had 100 queries sampled from 10 different 
genres, and the candidate collection contained 7,000 mu-
sic clips also evenly sampled from the 10 genres. There 
were eight systems evaluated in this task1 and all of them 
were considered in this study except for one system 

                                                           
1

The MIREX 2010 AMS task results: http://www.music-
ir.org/mirex/wiki/2010:Audio_Music_Similarity_and_Retrieval_Results 

(RZ1) which was a random baseline and performed poor-
ly. For each query, the top five song clips retrieved by 
each system were collected for similarity judgment by 
human experts. This is much like the pooling method for 
relevance judgment in TREC [15]. However, unlike 
TREC, the pooled candidates were deliberately random-
ized when presented to the human judges so as to elimi-
nate any cues given by the order of candidates. In the 
2010 cycle of the AMS task, each query candidate pair 
was judged by one assessor. Based on the similarity 
judgments on the pooled candidates, system effectiveness 
measures were calculated for evaluating and comparing 
the systems. 

This study is built upon the 2010 cycle of the MIREX 
AMS task. For each query, two systems were selected 
and user-centered measures on both systems were col-
lected in formal user experiments. Then the research 
question is answered by comparing the user-centered 
measures to system effectiveness.  

3.2 The Systems 

In selecting systems, we adopted the approach proposed 
by Al-Maskari et al. [2]: different systems are selected for 
different queries so that the differences of system effec-
tiveness between systems can be better controlled. As 
there are no previous studies of this kind in the MIR do-
main, we also followed [2] in using average precision 
(AP) as the system effectiveness measure. AP is calculat-
ed as the mean of precisions at the point of each relevant 
document in the ranked sequence. This measure rewards 
relevant documents retrieved at high ranks. In MIREX 
AMS task, human judges evaluated each candidate using 
ternary relevance: very similar, somewhat similar, and 
not similar. In calculating AP scores in this study, we 
convert the judgments into binary relevance by combin-
ing “very similar” and “somewhat similar” into “similar”. 
In the future we will evaluate system effectiveness 
measures based on ternary relevance.   

The AP scores of the seven participating systems vary 
across queries. For 79 out of the 100 queries, the differ-
ences of AP values among systems are from 0.01 to 0.6. 
For the rest of 21 queries, the systems had exactly the 
same AP. Unlike [2] where the best and worst performing 
systems were chosen for each query, we choose the best 
performing system (denoted as the “superior” system in 
this paper) and the second best system (denoted as the 
“inferior” system in this paper) for each query. This is 
because the systems tend to have lower AP than those in 
[2] (99% are lower than 0.5 in this study), and the differ-
ence between the best and worst performing systems can 
be very obvious, making it a trivial task to decide system 
preference. In addition, the worst performing systems 
sometimes are so bad that our pilot testers felt it was bor-
ing to listen to songs very dissimilar to the queries. Final-
ly, using systems with different but close AP scores 
makes it possible to investigate whether user-centered 
measures can differentiate system quality when system 
effectiveness had little difference. For the 21 queries 
without system difference, two systems were randomly 



  
 

selected. Figure 1 shows the AP scores of the two select-
ed systems across queries where the queries are ordered 
by the difference of AP scores between the two systems. 

 
Figure 1. System AP scores across queries. 

3.3 Participants 

50 Japanese undergraduate and graduate students from 13 
different universities were recruited, including 24 females 
and 26 males. Their average age was 21.7 years old 
(standard deviation was 4.30, range from 18 to 50). Their 
majors ranged from engineering, medicine to social sci-
ences and humanities. Statistics of participants’ back-
ground on music knowledge, computer and English 
skills, as well as familiarity with the genres of the songs 
are shown in Table 1. Self-reported English abilities were 
collected because some of the songs had English lyrics 
and the pre- and post- experiment questionnaires were 
written in English. As the songs were associated with 
American genre classification system, the participants’ 
familiarity levels with the genres were collected.    

 Median Max. Min. 
Music knowledge* 4 6 2 
Expertise with computers* 4 6 3 
Expertise with online searching* 5 6 2 
Ability in reading English* 5 7 3 
Ability in listening to English* 4 7 2 
Familiarity with the genres ǂ 3 5 0 

*: in a Likert scale from 1 to 7. 1: novice, 7: expert; ǂ: in a 
Likert scale from 1 to 5. 1: very unfamiliar, 5: very familiar 

Table 1. Statistics of participants’ background. 

3.4  Tasks 

All of the 100 queries in the MIREX AMS tasks are in-
cluded in this study. The queries are evenly distributed 
into ten different genres, namely Baroque, Romantic, 
Classical, Country, Jazz, Blues, RocknRoll, Rap/HipHop, 
Metal, and Edance. Each participant was assigned ten 
queries with one in each genre. Since there are 50 partici-
pants, each query was evaluated by five participants. The 
orders of the ten query genres were distributed to partici-
pants using a Latin Square design so as to reduce the ef-
fect of genre order on results. 

For each query, a participant evaluated the list of can-
didate songs retrieved by the two selected systems. Spe-
cifically, a participant needed to play and listen to the 
query song and indicate his/her familiarity level with it, 

as well as his/her personal preference on the query. Then 
he or she proceeded to listen to each of the five songs re-
turned by one system and indicate whether it sounded 
similar to the query. Just like in MIREX, we used ternary 
similarity scale: participants needed to indicate whether a 
candidate was very similar, somewhat similar or not simi-
lar to the query. In this experiment, the candidate songs 
were presented to users in the original ranked order as 
retrieved by the systems. This setting mirrors a real life 
retrieval system where a higher ranked item is expected 
to be more relevant. In contrast, MIREX human judg-
ments had no information on the rank of the candidates 
nor did they know which candidates were retrieved by the 
same system.   

After evaluating all the five songs returned by one sys-
tem, the participant was asked to indicate his/her satisfac-
tion level towards this system and the perceived task eas-
iness in a Likert scale. Then the participant proceeded to 
the other system. The relative difference of the systems 
was not revealed to the user and the order of two systems 
was randomized. After listening to candidates from both 
systems, the participant was asked to indicate his or her 
preference between the systems and how easy it was to 
compare the two systems. The audio of each song (either 
query or candidate) was 30 second long, but it could be 
paused and/or replayed at any time. A participant could 
also change answers when working with one system. 
However, once proceeding to the other system or the next 
query, a participant could not go back to change answers. 
This is to prevent influences from other systems on users’ 
judgments. A screenshot of the working interface is 
shown in Figure 2. 

 
Figure 2. Screenshot of the evaluation interface. 

3.5 Procedure 

The experiment was conducted in a batch manner, with 5 
to 7 subjects in each batch performing the tasks at the 
same time. Before the experiment started, each subject 
read and signed a consent form. After that, she or he 
filled an online pre-experiment questionnaire with regard 
to demographic information, music background and 



  
 

search experience. Then, the experiment facilitator intro-
duced the experiment system and the experiment proce-
dure in Japanese. The training sessions lasted about 10 
minutes.  

According to our pre-tests of the procedure, the partic-
ipants were given 55 minutes to finish all the 10 assigned 
queries. Most participants finished the process within 45 
minutes. During the process, the experiment system rec-
orded users’ interactions including play and pause queries 
and candidates, answers to each question as well as 
changes of answers. After all queries were finished, each 
subject filled an online post-experiment questionnaire 
which asked for his or her general impression on the 
evaluated music retrieval systems and the experiment in 
general. The entire procedure lasted about 1.5 hours and 
each participant was paid 2000 yen for their participation. 

3.6 User-centered Measures 

The following user-centered measures were collected and 
compared to system effectiveness.  

User effectiveness:  
1) Number of similar songs found using each system. A 
candidate is “similar” to a query if the user chooses “very 
similar” or “somewhat similar” option. 
2) Task completion time: time spent on making judg-
ments on all candidates of one system.  
3) Time spent in finding the first similar song using each 
system. If there is no similar song found among the five 
candidates, the time is assumed to be 3 minutes which is 
the time needed for listening to 6 candidates in full 
length. 
4) Rank of the first similar song using each system. If 
there is no similar song found among the five candidates, 
the rank is assumed to be 6. 

User perception:  
1)  Task easiness in evaluating results of each system.  
2)  User satisfaction with each system.  
3)  Easiness in comparing two systems.  

Each of these measures was on a Likert scale from 1 to 5, 
with 1 indicating very difficult/very dissatisfied and 5 in-
dicating very easy/very satisfied.   

User preference:  
1) The system a user prefers: the superior one, inferior 
one or neither.   

3.7 Hypotheses 

To answer our research question, we compared AP scores 
of the two systems to the aforementioned user-centered 
measures by testing a series of hypotheses: 

H1: When the systems’ AP scores were different, users 
were more effective and more satisfied with the superior 
systems than the inferior systems;  

H2: When the systems’ AP scores were the same, users 
were similarly effective and satisfied with both systems;   

H3: When the systems’ AP scores were different, users 
preferred the superior systems to the inferior systems;  

H4: When the systems’ AP scores were the same, users 
did not have a preference between the systems; 

 H5: User perceived higher easiness level when compar-
ing systems with AP score difference than comparing 
those without AP score difference. 

   To test the correlation between user-centered measures 
and AP score, we examined the following hypotheses:  

H6: User-centered measures are highly correlated with 
AP score; 

H7: When the difference of systems’ AP scores gets larg-
er, users would tend to prefer the superior systems and 
feel it is easier to compare the two systems. 

4. RESULS AND DISCUSSIONS 

4.1 User Effectiveness and Satisfaction 

Table 2 presents means and standard deviations (in paren-
thesis) of AP scores and user effectiveness and perception 
measures for the superior and inferior systems on the 79 
queries where the two systems had different AP scores. In 
order to test H1, we employed the non-parametric Wil-
coxon signed rank sum test because studies have shown 
that system performance data rarely comply with normal 
distribution [5] and the Wilcoxon test does not assume 
normal distribution of tested variables. 

Measure Superior Inferior p value 
average precision 0.30 (0.13) 0.20(0.08) < 0.001* 

number of similar songs 3.53 (0.99) 3.00 (1.07) < 0.001* 

task completion time 
(seconds) 

76.75 (21.99) 77.09 (25.44) 0.688 

time finding first similar 
song (seconds) 

19.91 (14.42) 28.55 (26.74) 0.042* 

rank of first similar song 1.48 (0.63) 1.72 (0.99) 0.047* 

task easiness 3.47 (0.55) 3.48 (0.53) 0.714 

user satisfaction 3.44 (0.73) 3.04 (0.77) < 0.001* 
N=79.     *: significant at p < 0.05 level 

Table 2. Measures for queries with different AP scores. 

As shown in Table 2, the difference between the AP 
scores of the superior and inferior systems was significant 
across the 79 queries. The user-centered measures indi-
cate that, using the superior systems, users found more 
similar songs, spent less time in finding the first similar 
song which had a higher rank, and were more satisfied 
than using the inferior systems. However, there was little 
difference on the time used to judge all the five candi-
dates of each system. In addition, users perceived the 
tasks were about the same easiness level when using both 
systems.  

Therefore, hypothesis H1 is partially supported by 
four out of six user-centered measures under considera-
tion. In other words, when the AP scores were signifi-
cantly different, some user-centered measures could also 
differentiate the systems. The little differences on task 
completion time and perceived task easiness are related to 
each other. If a task is difficult, it will likely take more 
time. The insignificant result indicates systems with 



  
 

higher AP scores did not make the task of music similari-
ty judgment easier.    

Table 3 presents means and standard deviations (in 
parenthesis) of the aforementioned measures and Wil-
coxon test results for the two systems on the 21 queries 
where the two systems had the same AP scores. As can 
be seen from Table 3, H2 is also partially supported by 
four out of six user-centered measures. That is, the two 
systems had no significant difference on number of simi-
lar songs found, task completion time, rank of first simi-
lar songs and perceived task easiness. However, the two 
systems were significantly different in terms of time 
spent finding the first similar songs and users’ satisfac-
tion towards systems, even though the AP scores of the 
two systems were exactly the same. This evidences that 
some user-centered measures can tell the differences be-
tween systems that system-effectiveness cannot. In par-
ticular, the difference on user satisfaction on systems 
with the same AP scores is remarkable since user satis-
faction has been called by IR researchers as a main crite-
rion of IR system evaluation (e.g., [11]). 

Measure System 1 System 2 p value 
average precision 0.20 (0.07) 0.20 (0.07) - 
number of similar songs 3.59 (0.95) 3.46 (1.01) 0.470 
task completion time 
(seconds) 78.61 (21.19) 78.83 (24.49) 0.776 

time finding first similar 
song (seconds) 14.37(10.83) 24.50 (18.27) 0.009* 

rank of first similar song 1.27 (0.47) 1.50 (0.63) 0.197 
task easiness 3.22 (0.43) 3.12 (0.54) 0.616 
user satisfaction 3.37 (0.64) 3.09 (0.61) 0.032* 
N=21. *: significant at p < 0.05 level  

Table 3. Measures for queries with same AP scores. 

4.2 User Preference 

Statistics on user preferences between the systems are 
shown in Table 4. It is interesting to see that users per-
ceived no difference between the two systems 25% of the 
time while the AP scores of the systems were different. In 
contrast, for queries where the two systems had exactly 
the same AP scores, 80% of users thought the systems 
were different.  A Wilcoxon test was conducted on each 
set of the queries to see if the differences on number of 
votes of the two systems were significant. The results 
support both H3 and H4: users preferred the superior sys-
tems when the systems’ AP scores differed (p < 0.001) 
while users did not have significant preferences when the 
systems had the same AP scores (p = 0.06). However, the 
low p value and the low percentage of “no preference” 
votes on queries with the same AP scores (20%) indeed 
suggest that the difference on AP scores may not be a 
good indicator of system preference.  

4.3 Perceived Easiness in Comparing Systems 

The test results on hypothesis H5, perceived easiness lev-
el in comparing the two systems are shown in Table 5. 
The average easiness score is 3.06 (easier) across the 79 
queries with AP difference and 2.81 (harder) across the 

21 queries without AP difference. As the two sample siz-
es are not equal, a two sample unequal variance t-test was 
employed to test the significance of the difference on eas-
iness level. The test result is significant and thus hypothe-
sis H5 is supported: users perceived it was easier to com-
pare the two systems when there were AP differences be-
tween the systems. So far, the results of the analysis gen-
erally support our hypotheses H1 to H5. That is, user-
centered measures tend to agree with system-
effectiveness (as measured by AP score). However, the 
exceptions in H1 and H2 are also noteworthy. In the next 
subsection, we continue to investigate the correlation be-
tween user-centered measures and AP scores. 

79 queries with differ-
ent AP scores Superior Inferior No pref. Total 

Number of pref. votes 190 105 100 395 

Percentage of preference 48.10% 26.58% 25.32% 100% 

21 queries with same 
AP scores 

System 1 System 2 No pref. Total 

Number of pref. votes 48 36 21 105 

Percentage of preference 45.71% 34.29% 20.00% 100% 

 Table 4. Votes of system preferences. 

 With AP dif-
ference 

Without AP 
difference p value 

difficulty level 3.06 (1.26) 2.81(1.29) 0.002* 

sample size 395 105  

*: significant at p < 0.05 level 

Table 5. Perceived difficulty in comparing systems 

4.4 Correlation between User-centered Measures and 
System Effectiveness 

To test Hypothesis H6, Pearson’s correlation coefficients 
were calculated for measures on interval scales: number 
of similar songs, task completion time and time of finding 
the first similar songs. For measures on ordinal scales 
such as rank of first similar songs, task easiness and user 
satisfaction, Spearman's rank correlation coefficient was 
calculated. The results are shown in Table 6.  

Measure Coefficient p value 
number of similar songs  0.111 (Pearson) 0.059 

task completion time -0.069 (Pearson) 0.177 

time finding first similar song -0.142 (Pearson) 0.022* 

rank of first similar song  -0.163 (Spearman) < 0.021* 

task easiness  0.057 (Spearman) 0.423 

user satisfaction 0.246 (Spearman) < 0.001* 

N = 200. *: significant at p < 0.05 level 

Table 6. Correlation between user-centered measures 
and AP score. 

Number of similar songs, task completion time and 
task easiness have no significant correlation with AP 
score while the correlation between AP score and other 
user-centered measures are fairly weak despite being sig-
nificant. Our hypothesis H6 is not supported. The fact 
that there is no significant relationship between perceived 



  
 

task easiness and AP score confirms an earlier finding in 
Section 4.1 that higher AP scores did not make the task of 
music similarity judgment easier. 

Table 7 shows Spearman’s correlation coefficients be-
tween the AP scores difference of the two systems and 
the two user-centered measures related to system compar-
ison: system preference and easiness in system compari-
son. System preference is encoded as an ordinal variable 
with values 1, 0, and -1 indicating preferring the superior 
system, no preference, and preferring the inferior system, 
respectively. From Table 7 we can see that hypothesis H7 
is not supported: the correlations are either insignificant 
or fairly weak. The insignificance between system prefer-
ence and AP score difference helps explain an earlier ob-
servation that 80% of the users indicated system prefer-
ence when there was no difference on the AP scores. 

Measure Correlation with 
AP difference p value 

system preference 
 

0.080 (Spearman) <0.053 

easiness in system comparison 0.174 (Spearman) <0.001* 

N=100. *: significant at p < 0.05 level.  

Table 7. Correlation between user-centered measures and 
AP score difference 

5. CONCLUSIONS AND FUTURE WORK 

This paper presents a user experiment on evaluating re-
sults of music similarity retrieval systems in the AMS 
task in MIREX 2010, with the goal of comparing a well-
accepted system effectiveness measure to user-centered 
measures. Such comparison has rarely been explored in 
the MIR domain. The results revealed none or weak cor-
relations between system effectiveness and eight user-
centered measures. In particular, significant differences 
on two user-centered measures, including user satisfac-
tion, were found between systems with the same system 
effectiveness. As a first study on user-centered vs. sys-
tem-centered measures in MIR, this research prompts 
many interesting observations for future research. More 
user behavior measures can be examined such as number 
of times a query song was played, number of changes a 
user made to his or her answers, as well as measures 
based on ternary relevance judgment. In addition, similar 
evaluations could be done for other MIR tasks such as 
genre and mood classification in the future. 
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ABSTRACT

In experimental sciences, under which we may likely sub-
sume most research areas in MIR, repeatability is one of
the key cornerstones of validating research and measuring
progress. Yet, due to the complexity of typical MIR exper-
iments, ensuring the capability of re-running any experi-
ment, achieving exactly identical outputs is challenging at
best. Performance differences observed may be attributed
to incomplete documentation of the process, slight vari-
ations in data (preprocessing) or software libraries used,
and others. Digital preservation aims at keeping digital
objects authentically accessible and usable over long time
spans. While traditionally focussed on individual objects,
research is now moving towards the preservation of entire
processes. In this paper we present the challenges of pre-
serving a classical MIR process, i.e. music genre classi-
fications, discuss the kinds of context information to be
captured, as well as means to validate the re-execution of a
preserved process.

1. INTRODUCTION

In many natural science disciplines, complex and data driven
experiments form the basis of research. Much of the re-
search activities carried out in the domain of Music Infor-
mation Retrieval can be attributed to this type of research.
Those computationally intensive experiments trigger the
need for verification of the results obtained. In many cases,
however, only the publication as a final result summarises
the entire scientific process, predominantly in the form of
results, with frequently (due to space restrictions or the
complexity of the underlying process) only superficial in-
formation on the actual research and experiment process.
In general, the number of experimental studies in Music
Information Retrieval constitute a high number of MIR re-
search, however, the comparability of the results is poor,
due to complex scenarios, user-dependent evaluation, and
the lack of data sharing. But even the re-evaluation and
repeatability of experiments is low, due to data or remote
services not being available, preprocessing not being docu-
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mented sufficiently, or code not running or libraries utilised
having changed.

A compact illustration of the experiment as it is com-
mon in research papers is not sufficient to trace the com-
plete process of scientific research and all the sources that
contributed to a result. It more often than not does not pro-
vide enough insight to allow for verification of the results
obtained. In many situations it is also not possible to re-
engineer experiments reported on in the literature – impor-
tant details such as which exact software stack and which
version of it were used, and which parameter settings were
applied are often omitted or incomplete.

One step to mitigate this problem was the creation of
benchmark environments. These consist minimally of an-
notated ground truth data as well as evaluation measures
and procedures, with MIREX being the most prominent
such platform in the music IR community, relying on cen-
tral evaluation. To facilitate decentralised evaluation, plat-
forms such as those proposed by [1] and [8] have been pre-
sented. However, none of these provide sufficient docu-
mentation of the process executed during the experiments,
and therefore don’t allow for re-applying the process to
new (larger) data-sets. Publishing source the code of the al-
gorithms used doesn’t fully alleviate this problem, as sub-
tle details in the process configuration (such as parameter
settings) play an important role.

In order to tackle this increasing complexity and the
orchestration of manifold services and systems, the con-
cept of scientific workflows has received increasing atten-
tion within the research community. E-Science projects
profit from the combination of automated processing steps
in workflows in order to perform complex calculations and
data transformations. The advantage of workflows is their
capability of adding structure to a series of tasks. They
can be visualized as graph representations, where nodes
denote processes or tasks and edges denote information or
data flows between the tasks. This adds a layer of abstrac-
tion and helps to clarify interactions between tasks[3]. Dif-
ferent scientific workflow management systems (SWMS)
exist that allow scientists to combine services and infras-
tructure for their research. The most prominent examples
of such systems are Taverna[6] and Kepler[4]. In the MIR
domain, M2K [2] provides a specialised workflow engine,
that allows users to combine certain MIR tasks in a se-
quence. A similar initiative is the Networked Environment
for Music Analysis (NEMA) project [9], which aims at
providing an execution environment for evaluation of MIR



solutions.
Modelling a process in a workflow system alleviate many

of the above mentioned shortcomings of insufficiently de-
tailed experiments, as the exact sequence of processing
steps, the software used and the parameter settings become
explicit in the workflow definition language used. How-
ever, while the repeatability of experiments is in princi-
ple enabled by such workflow management systems, many
of todays data-intensive experiments depend on a num-
ber of services and aspects of the process beyond the con-
trol of the workflow system. These may include simple
aspects such as system updates – new libraries being de-
ployed may cause experimental results to differ. The prob-
lems become even worse when considering external ser-
vice such as web services. These changes are not under the
control of the researcher, and may happen at a system level
beyond the awareness of the individual researcher, such as
e.g. a new library being installed as part of (automatic) sys-
tem maintenance. This may lead to different results from
the workflow, or render the workflow not executable alto-
gether. Preserving the repeatability of such a process in a
changing technological environment is thus a current and
emerging topic in Digital Preservation research.

Digital Preservation is a research discipline that tradi-
tionally has focused on preserving mostly static digital ob-
jects, such as text or multimedia documents. Preserva-
tion aims at keeping these digital objects accessible and
usable over a long period of time, even when technolog-
ical change renders e.g. hardware or a specific operat-
ing system required unavailable, or file formats obsolete
and thus not supported. More recently, digital preserva-
tion has taken steps towards preserving more complex and
dynamic digital objects, among them also complete pro-
cesses. The aim is to make processes archivable and allow
for a later re-execution in a changed environment, while
ensuring authenticity in the process results. Digital preser-
vation of business or E-Science processes requires captur-
ing the whole context of the process, including e.g. depen-
dencies on other computing systems, the data consumed
and generated, and more high-level information such as the
goals of the process.

In this paper, we will first explore how experiments can
be made more repeatable, and will then examine what is
needed to preserve these processes over a longer period of
time. We do this along a case study of a musical genre
classification experiment, where we highlight prototypical
aspects of digital preservation. The remainder of this paper
is organised as follows. In Section 2, we describe the use
case process, for which we then outline aspects of process
preservation in Section 3. Finally, we provide conclusions
and an outlook on future work in Section 4.

2. USE CASE: MUSICAL GENRE
CLASSIFICATION

As an example, we consider a typical process in the MIR
research community – musical genre classification, i.e. cat-
egorisation of unknown music into one of a set of prede-
fined categories. We also consider data and ground truth

Figure 1: Musical genre classification, including fetching
of data, modelled in the Taverna workflow engine

acquisition as part of the experiment, and assume that both
are fetched from remote sources, e.g. a content provider
such as the Free Music Archive 1 .

To simplify the implementation, we assume in this ex-
ample that the data source is a simple Apache directory
listing on a web-server, and the ground truth file is already
compiled and can be fetched from a different web resource
via HTTP. The experiment involves the following steps.
First, the list of available music is fetched from the server,
and each music file is downloaded from the server. For
this music data, the genre assignments is downloaded from
a different server. Then, a web-service is employed (via
REST) to extract features from the audio files; the service
accepts one file at the time. A typical example for such
a service could be the ones provided by The Echonest 2

Next, the features and the genre assignments are combined
into a file with the WEKA ARFF format This file and a
set of parameters form the basis for learning a machine
learning model with WEKA. Finally, the classification ac-
curacy, and a detailed description of the result, are obtained

These steps are usually carried out as a (more or less de-
fined) sequence of calls to different programs via a Linux
shell, also using some constructs built-in into this shell,
such as loops and simple file and string processing.

To move towards more sustainable E-Science process,
we implement this process in the Taverna workflow en-
gine [6]. Taverna is a system designed specifically to ex-
ecute scientific workflows. It allows scientists to combine
services and infrastructure for modelling their workflows.
Services can for example be remote web-services, invoked
via WSDL or REST, or local services, in the form of pre-
defined scripts (e.g. for encoding binaries via Base64), or
user-defined scripts. The latter are usually implemented by
using the Taverna-supported language beanshell, which is
based on the Java programming language.

Implementing such a research workflow in a system like
Taverna yields a complete and documented model of the
experiment process – each process step is defined, as is the

1 http://freemusicarchive.org/
2 http://the.echonest.com



sequence (or parallelism) of the steps. Further, Taverna re-
quires the researcher to explicitly specify the data that is
input and output both of the whole process, as well as of
each individual step. Thus, also parameter settings for spe-
cific software, such as the parameters for the classification
model or feature extraction, become explicit, either in the
form of process input data, or in the script code.

Figure 1 shows the generic process described above as
a specific implementation in the Taverna workflow engine.
We notice input parameters to the process such as the URL
of the MP3 contents and the ground truth, and also an au-
thentication voucher which is needed to authorise the use
of the feature extraction service. The latter is a bit of infor-
mation that is likely to be forgotten frequently in descrip-
tions of this process, as it is rather a technical requirement
than an integral part of the scientific process transforma-
tions. However, it is essential for allowing re-execution of
the process, and may help to identify potential licensing is-
sues when wanting to preserve the process over longer pe-
riods of time, requiring specific digital preservation mea-
sures.

The fist step is t fetch a list of available MP3s, before
each file is downloaded individually. Before sending the
binary MP3 data to the web-service, it needs to be encoded
via base64 to allow for transport via HTTP. The feature
extraction is then called via Taverna’s REST service inter-
face, which requires the user to define an URL pattern for
invoking the service; parameters to the service become ex-
plicit via this definition. The output of the web-service is in
text form. Taverna also allows using WSDL, in which case
it can infer this information from the service description
directly, and the output can be typed. Note that download-
ing and extraction are independent steps for each file, thus
these steps can and are automatically parallelised by Tav-
erna. After a synchronisation point, i.e. when all MP3s are
extracted, the features obtained for each file are merged,
combined with the groundtruth, and converted to WEKA
ARFF format. Finally, the classification step is performed,
and the accuracy measure, and a more detailed classifica-
tion report, are obtained as process outputs.

Implementing for a workflow management system comes
with a certain effort, primarily to understanding the system
and how process steps can be defined. Another significant
effort can be needed to migrate existing scripts into the
ones required by the workflow engine, especially if certain
functionality is not available in both scripting languages.
A positive side-effect of this migration work is that the
process, in principle, becomes independent from the origi-
nal execution platform. The workflow system can in many
cases act as a layer of abstraction, kind of like a virtual
machine, from the underlying operating system and shell
available there.

2.1 Process verifiability with provenance data

During an execution of the workflow, Taverna records so-
called provenance data, i.e. information about the creation
of the objects, on the data transformation happening dur-

ing the experiment. Taverna stores this information in a
database, and allows to export it in the Open-Provenance
Model (OPM) [7], or in the Janus format, and extension on
the OPM that describes more details.

The top section of Listing 1 shows an example of this
provenance data for the process output port ClassificationAc-
curacy. The first RDF description element defines the out-
put port and has a reference to the second RDF description
element, which contains the actual output value of 80.0, the
accuracy measured in percent. The detailed classification
result is then depicted in the bottom section of Listing 1.
It follows the same structure, i.e. the first block defining
the output port, and the second block containing the actual
values, which in this case are a listing of the songs tested,
and their predicted and actual values.

Such data is recorded for the input and output of each
process step. It thus allows to trace the complete data flow
from the beginning of the process until the end, thus en-
abling verification of the results obtained. This is essen-
tial for being able to verify system performance upon re-
execution, specifically when any component of the process
(such as underlying hardware, operating systems, software
versions, etc.) have changed.

3. PROCESS PRESERVATION

While representing the process in the workflow engine in
principle enables repeatability, and allows for tracing and
thus verification of the results, it still does not ensure the
longevity of the process. Our example musical genre clas-
sification process has several dependencies on software and
services that are not under direct control of the researcher.
Most prominently, the audio feature extraction web-service
is operated by a third party, where changes in the function-
ality, or even in the availability of the service, may not be
communicated at all. These thus constitute possible points
of failures that may cause a process execution at a later
stage to yield different results, or not being executable at
all any more.

Preservation of workflows and processes has gained a
lot of attention from researchers in the Digital Preserva-
tion community recently. The goal of process preserva-
tion is to allow re-executing the process at a later stage of
time, when a technological change in the environment of
the process has rendered the original instance of it unus-
able. Digital preservation of business or E-Science pro-
cesses requires capturing the whole context of the process,
including e.g. different or evolved enabling technologies,
different system components on both hardware and soft-
ware levels, dependencies on other computing systems and
services operated by external providers, the data consumed
and generated, and more high-level information such as the
goals of the process, different stakeholders and parties.

To enable digital preservation of business processes, it
is therefore required to preserve the set of activities, pro-
cesses and tools, which all together ensure continued ac-
cess to the services and software which are necessary to
reproduce the context within which information can be ac-
cessed, properly rendered and validated.



<r d f : D e s c r i p t i o n r d f : a b o u t =”{ nsTave rna } / 20 1 0 / workf low /{ idWF} / p r o c e s s o r / M u s i c C l a s s i f i c a t i o n E x p e r i m e n t / o u t / C l a s s i f i c a t i o n A c c u r a c y”>
<j a n u s : h a s v a l u e b i n d i n g r d f : r e s o u r c e =”{ nsTave rna } / 20 1 1 / d a t a /{ i dDa taGrp } / r e f /{ i d D a t a P o r t 0}”/>
<r d f s : comment r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# s t r i n g ”> C l a s s i f i c a t i o n A c c u r a c y </ r d f s : comment>
<j a n u s : i s p r o c e s s o r i n p u t r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# b o o l e a n”> f a l s e </ j a n u s : i s p r o c e s s o r i n p u t>
<j a n u s : h a s p o r t o r d e r r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# long”> 0 </ j a n u s : h a s p o r t o r d e r>
<r d f : t y p e r d f : r e s o u r c e =” h t t p : / / p u r l . o rg / n e t / t a v e r n a / j a n u s # p o r t ”/>

</ r d f : D e s c r i p t i o n>

<r d f : D e s c r i p t i o n r d f : a b o u t =”{ nsTave rna } / 20 1 1 / d a t a /{ i dDa taGrp } / r e f /{ i d D a t a P o r t 0}”>
<r d f s : comment r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# s t r i n g ”> 8 0 . 0 </ r d f s : comment>
<j a n u s : h a s p o r t v a l u e o r d e r r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# long”> 1 </ j a n u s : h a s p o r t v a l u e o r d e r>
<j a n u s : h a s i t e r a t i o n r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# s t r i n g ”> [ ] </ j a n u s : h a s i t e r a t i o n >
<r d f : t y p e r d f : r e s o u r c e =” h t t p : / / p u r l . o rg / n e t / t a v e r n a / j a n u s # p o r t v a l u e ”/>

</ r d f : D e s c r i p t i o n>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
<r d f : D e s c r i p t i o n r d f : a b o u t =”{ nsTave rna } / 20 1 0 / workf low /{ idWF} / p r o c e s s o r / M u s i c C l a s s i f i c a t i o n E x p e r i m e n t / o u t / D e t a i l e d C l a s s i f i c a t i o n R e s u l t s ”>

<j a n u s : h a s v a l u e b i n d i n g r d f : r e s o u r c e =”{ nsTave rna } / 20 1 1 / d a t a /{ i dDa taGrp } / r e f /{ i d D a t a P o r t 1}”/>
. . .

</ r d f : D e s c r i p t i o n>

<r d f : D e s c r i p t i o n r d f : a b o u t =”{ nsTave rna } / 20 1 1 / d a t a /{ i dDa taGrp } / r e f /{ i d D a t a P o r t 1}”>
<r d f s : comment r d f : d a t a t y p e =”{nsW3} / 20 0 1 / XMLSchema# s t r i n g ”>

1 2 : Hip−Hop 2 : Hip−Hop 0 .667 ( 3 . 3 5 9 4 6 1 )
2 2 : Hip−Hop 2 : Hip−Hop 0 .667 ( 3 . 2 9 4 6 8 7 )
3 1 : C l a s s i c a 1 : C l a s s i c a 0 .667 ( 2 . 0 3 2 6 8 7 )
4 3 : J a z z 3 : J a z z 0 .667 ( 2 . 5 3 6 8 4 9 )
5 1 : C l a s s i c a 1 : C l a s s i c a 0 .667 ( 1 . 3 1 7 2 7 )
6 1 : C l a s s i c a 3 : J a z z + 0 .667 ( 3 . 4 6 7 7 1 )
7 3 : J a z z 1 : C l a s s i c a + 0 .333 ( 2 . 1 5 9 7 6 4 )
8 2 : Hip−Hop 2 : Hip−Hop 0 .667 ( 3 . 1 2 7 6 4 5 )
9 3 : J a z z 3 : J a z z 0 .667 ( 3 . 0 1 0 5 6 3 )

10 2 : Hip−Hop 2 : Hip−Hop 0 .667 ( 4 . 6 3 1 3 1 6 )
</ r d f s : comment>

</ r d f : D e s c r i p t i o n>

Listing 1: Provenance data recorded by Taverna for the process outputs (cf. Figure 1). The first RDF Description element defines the output Classifica-
tionAccuracy, the second element contains the actual value “80.0”. The third element defines the output DetailedClassificationResults, the fourth element
contains the actual value, one entry for each file tested, with the actual class and predicted class. Some identifiers have been abbreviated, marked by {...}

(a) (b)

Figure 2: Sections of the Context Model

To address these challenges, we have devised a context
model to systematically capture aspects of a process that
are essential for its preservation and verification upon later
re-execution. The model consists of approximately 240 el-
ements, structured in around 25 major groups. The model
is implemented in the form of an ontology, which on the
one hand allows for the hierarchical categorisation of as-
pects, and on the other hand shall enable reasoning, e.g.
over the possibility of certain preservation actions for a
specific process instance. The ontology is authored in the
Web Ontology Language (OWL). We developed a set of
plug-ins for the Protégé ontology editor to support easier
working with the model.

This context model corresponds to some degree to the
representation information network [5], modelling the re-
lationships between an information object and its related
objects, be it documentation of the object, constituent parts
and other information required to interpret the object. This
is extended to understand the entire context within which a
process, potentially including human actors, is executed,
forming a graph of all constituent elements and, recur-

sively, their representation information. Two sections of
this model are depicted in Figure 2. Each item represents
a class of aspects, for which a specific instance of the con-
text model then creates concrete members, which are then
related to each other with properties.

Figure 2(a) details aspects on software and specifica-
tions. Technical dependencies on software and operating
systems can be captured and described for example via
CUDF (Common Upgradeability Description Format 3 ) for
systems which are based on packages, i.e. where there is a
package universe (repositories) and a package manager ap-
plication. Such an approach allows to capture the complete
software setup of a specific configuration, which then can
be recreated. Related to the software installed, capturing
information on the licences associated to them allows for
verifying which preservation actions are permissible for a
specific scenario. Software and/or its requirements are for-
mally described in specification documents. Specific doc-
uments for a process are created as instances of the appro-
priate class, and related to the software components they
describe. Configuration, also depicted in Figure 2(a), is
another important aspect, closely related to software (and
hardware). Maybe even more than the specific version of a
software utilised might influence the process outcome, can
the specific configuration applied alter the behaviour of an
operating system or software component. Capturing this
configuration might not always be easy, but in systems that
rely on packages for their software, these packages tend to
provide information about default locations for configura-
tion files, which might be a start for capturing tools.

Another important aspect of the context model deals
with several types of data consumed and created by a pro-

3 http://www.mancoosi.org/cudf/



cess, as seen in a section of Figure 2(b). We distinguish be-
tween data that originates from hardware or software, and
whether this data is input to or output of the process, or
created and consumed inside the process, i.e. output from
one process step and input for another. Capturing this data
is an important aspect in verifying that a re-execution of a
process yields the same results as the original process, as
we detailed in Section 2. It may be easily captured if the
process is formally defined in a workflow engine, and this
engine provides provenance data, as it is the case with Tav-
erna. In other cases, it may be more difficult to obtain, e.g.
by observing network traffic or system library calls.

Other aspects of the model cover for example human
resources (including e.g. required qualifications for a cer-
tain role), actors, or legal aspects such as data protection
laws. Location and time-based aspects need to be captured
for processes where synchronisation between activities is
important. Further important aspects are documentation
and specifications, on all different levels, from high-level
design documents of the process, use-case specifications,
down to test documents, etc.

While the model is very extensive, it should be noted
that a number of aspects can be filled automatically – es-
pecially if institutions have well-defined and documented
processes. Also, not all sections of the model are equally
important for each type of process. Therefore, not every
aspect has to be described in most detail.

3.1 Context of the MIR process

We modelled the scientific experiment in the above pre-
sented context model. Figure 3 gives an overview on the
concrete instances and their relations identified as relevant
aspects of the process context.

As this experiment, as most experiments in the MIR do-
main, is a process mostly focusing on data processing, the
majority of the identified aspects are in the technical do-
main – software components, external systems such as the
web service to extract the numerical audio features from,
or data exchanged and their format and specification. How-
ever, also goals and motivations are important aspects, as
they might heavily influence the process. As such, the mo-
tivation for the providers of the external systems is rele-
vant, as it might determine the future availability of these
services. Commercial systems might be more likely to sus-
tain than services operated by a single person for free.

Another important aspect in this process are licences –
depending on which licence terms the components of our
process are released under, different options of preserva-
tion actions might be available or not. For closed-source,
proprietary software, migration to a new execution plat-
form might be prohibited.

A central aspect in the scientific process is the AudioFea-
tureExtractionService, i.e. the remote web-service that pro-
vides the numeric representation for audio files. The ser-
vice needs as input files encoded in the MP3 format (spec-
ified by the ISO standard 11172-3). More specifically, as
they are binary files, they need to be further encoded with
Base64, to allow for data exchange over the HTTP proto-

col. The web-service further accepts a number of parame-
ters that control the exact information captured in the nu-
meric representation; they are specified in the AudioFea-
tureExtractionSpecification, which for example also cov-
ers a detailed information on how the extraction works.
The service requires an authorisation key. The operator
of the web-service provides the service for free, but grants
authorisation keys that are non-transferable between dif-
ferent researchers. Finally, the feature extraction service
provides the numeric description as ASCII file, following
the SOMLib format specification.

As a software component used locally, the WEKA ma-
chine learning toolkit requires a Java Virtual Machine (JVM)
platform to execute. The JVM in turn is available for many
operating systems, but has been specifically tested on a
Linux distribution, Ubuntu “Oneiric” 11.04. WEKA re-
quires as input a feature vector in the ARFF Format, and a
set of parameters controlling the learning algorithm. These
parameters are specified in the WEKA documentation. As
output result, the numeric performance metric “accuracy”
is provided, as well as a textual, detailed description of the
result. WEKA is distributed under the terms of the open-
source GNU Public License (GPL) 2.0, which allows for
source code modifications.

After this experimentation process, a subsequent pro-
cess of result analysis and distillation is normally performed,
taking input from the experiment outcomes, and finally
leading to a publication of the research in the form of e.g. a
conference or journal paper. This, again, may be modelled
either as a single information object (the paper) connected
to the process, and thus to all data and processing steps that
led to the results published, or as a more complex process
in its own, specifically if a paper reports on meta-studies
across several experiment runs.

3.2 Preservation Actions and Evaluation

Preservation Actions are executed to regain or improve ac-
cess to digital information. For process preservation, preser-
vation actions could be cross compilation of software mod-
ules, to enable to run the process on a different platform,
or code migration if the former is not (easily) possible.
Also the emulation of hardware or software utilised in the
process might be a viable option. Further preservation ac-
tions include the (file format) migration of specifications
and documents. For external services such as web-service
digital preservation approaches still need to be developed.
For once, web-services should allow the user to query for
a version, to identify whether something has changed. To
ensure process continuity if a service has indeed changed
or disappeared, re-implementing the service is only a vi-
able option if the specification is known. In other cases,
capturing provenance data as described in Section 2.1 al-
lows to create mock-up service that can replay previously
recorded process executions.

Evaluation of the process is enabled by comparing the
provenance data recorded during the original execution (cf.
Section 2.1) with the one recorded from a modified pro-
cess.



Figure 3: Context Model of musical genre classification process

4. CONCLUSIONS

There is an urgent need to move towards more sustain-
able process in the Music Information Retrieval domain.
Principles of experimental science and traditions are well-
established in other disciplines (biology, chemistry, crys-
tallography). This is very complex to achieve in MIR,
where legal issues associated with the data analysed are
a significant obstacle, but more specifically, fast-changing
technology has a huge impact. In this paper, we have pre-
sented approaches from the Digital Preservation domain
for preserving processes, so that a later execution is en-
abled. We discussed on the example of a typical musical
genre classification process how this can be applied to MIR
tasks. Future work will focus on an integration of digital
preservation methods into benchmark environments such
as the ones proposed by [1] and [8], and evaluation cam-
paigns such as MIREX, forming research infrastructures
for MIR research.
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ABSTRACT

Playlist generation is an important task in music informa-
tion retrieval. While previous work has treated a playlist
collection as an undifferentiated whole, we propose to build
playlist models which are tuned to specific categories or
dialects of playlists. Toward this end, we develop a general
class of flexible and scalable playlist models based upon
hypergraph random walks. To evaluate the proposed mod-
els, we present a large corpus of categorically annotated,
user-generated playlists. Experimental results indicate that
category-specific models can provide substantial improve-
ments in accuracy over global playlist models.

1. INTRODUCTION

Playlist generation, the automated construction of sequences
of songs, is a central component to online music delivery
services. Because users tend to consume music sequentially
in listening sessions, the quality of a playlist generation
algorithm can significantly impact user satisfaction.

Recently, it has been proposed that playlist generation
algorithms may be best viewed as probabilistic models of
song sequences [11]. This viewpoint, borrowed from the
statistical natural language processing literature, enables
the automatic evaluation and optimization of a model by
computing the likelihood of it generating examples of user-
generated playlists. For this method to work, the practi-
tioner must provide a large collection of example playlists,
both for model evaluation and parameter optimization.

Of course, numerous subtleties and difficulties arise
when working with user-generated playlist data. For ex-
ample, the data is often noisy, and the author’s intent may
be obscure. In extreme cases, users may compose playlists
by randomly selecting songs from their libraries. More
generally, different playlists may have different intended
uses (e.g., road trip or party mix), thematic elements (break
up or romantic), or simply contain songs only of specific
genres. While previous work treats the universe of user-
generated playlists as a single language, building effective
global models has proven to be difficult [11].

To better understand the structure of playlists, we advo-
cate a more subtle approach. Rather than viewing naturally
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occurring playlists as a single language, we propose to
model playlists as a collection of dialects, each of which
may exhibit its own particular structure. Toward this end,
we develop dialect-specific playlist models, and evaluate on
a large corpus of annotated, user-generated playlists.

The proposed approach raises several natural questions:

• Is it beneficial to individually model playlist dialects?
• Are some dialects easier to model than others?
• Which features are important for each dialect?

Answering these questions will hopefully provide valuable
insight into the underlying mechanics of playlist generation.

1.1 Our contributions

In this work, our contributions are two-fold. First, we de-
velop a flexible, scalable, and efficient class of generative
playlist models based upon hypergraph random walks. Sec-
ond, we present a new, large-scale, categorically annotated
corpus of user-generated playlist data.

2. HYPERGRAPH RANDOM WALKS

Over the last decade, several researchers have proposed
playlist generation algorithms based upon random walks [9,
11,12]. 1 Random walk playlist models consist of a weighted
graph G = (X , E, w), where the vertices X represent the
library of songs, and the edges E and weights w encode
pairwise affinities between songs. A playlist is then gener-
ated by following a random trajectory through the graph,
where transitions xt xt+1 are sampled according to the
weights on edges incident to xt.

Random walk models, while simple and efficient, carry
certain practical limitations. It is often unclear how to define
the weights, especially when multiple sources of pairwise
affinity are available. Moreover, relying on pairwise inter-
actions can severely limit the expressive power of these
models (if each song has few neighbors), or scalability and
precision (if each song has many neighbors).

To overcome these limitations, we propose a new class of
playlist algorithms which allow for more flexible affinities
between songs and sets of songs.

2.1 The user model

To motivate our playlist generation algorithm, we propose a
simple model of user behavior. Rather than selecting songs

1 There are many approaches beyond random walk models; see [5,
chapter 2] for a survey of recent work.
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Figure 1. An example random walk on a song hypergraph:
vertices represent songs, and edges are subsets of songs.
Each transition xt xt+1 must lie within an edge.

directly from the entire collection X , we assume that the
user first narrows her selection to a subset e ⊆ X (e.g., jazz
songs), from which a song x0 ∈ e is chosen uniformly at
random. For each subsequent transition xt xt+1, the user
selects a subset containing the current song xt, and then
selects xt+1 uniformly from that subset.

This user model is exactly characterized by a random
walk on a hypergraph. Hypergraphs generalize undirected
graphs by allowing an edge e ∈ E to be an arbitrary subset
of the vertices, rather than a pair (Figure 1). For example,
a hypergraph edge may be as general as jazz songs, or as
specific as funk songs from 1977. Edge weights can be
used to encode the importance of a subset: for example,
a model of jazz playlists would assign high weight to an
edges containing jazz songs.

This model has several practically beneficial properties.
First, it is efficient and scalable, in that the only information
necessary to describe a song is its membership in the edge
sets. Similarly, it naturally supports extension to new songs
without having to significantly alter the model parameters
(edge weights). Second, the model can easily integrate dis-
parate feature sources, such as audio descriptors, lyrics, tags,
etc, as long as they can be encoded as subsets. Moreover,
the model degrades gracefully if a song only has partial
representation (e.g., audio but no lyrics or tags). Finally,
the model is transparent, in that each transition can be ex-
plained to the user simply in terms of the underlying edge
taken between songs. As we will see in Section 3, these
edges often have natural semantic descriptions.

2.2 The playlist model

To formalize our model, let H = (X , E, w) denote a hy-
pergraph over vertices (songs) X , edges E ⊆ 2X , and
non-negative weights w ∈ R|E|+ . We assume that the song
library X and edge set E are given, and our goal is to op-
timize the edge weights w. We denote by xet := 1[xt ∈ e]
the indicator that the song xt is contained in the edge e.

Because the selection of the next song xt+1 depends only
on the previous song xt and edge weights w, the model is
a first-order Markov process. The likelihood of a playlist
s = (x0 x1 · · · xT ) thus factors into likelihood of
the initial song, and each subsequent transition:

P(x0 x1 · · · xT |w) = P(x0|w)
T−1∏
t=0

P(xt+1| xt, w).

Given the edge weights w, the distribution over the initial
song x0 can be characterized by marginalizing over edges:

P(x0| w) :=
∑
e∈E

P(x0| e)P(e| w) =
∑
e∈E

xet
|e|

we∑
f∈E wf

.

Similarly, the probability of a transition xt xt+1 is defined
by marginalizing over edges incident to xt:

P(xt+1| xt, w) :=
∑
e∈E

P(xt+1| e, xt)P(e| xt, w)

=
∑
e∈E

1[xt+1 6= xt] · xet+1

|e| − 1
· xetwe∑
f∈E

xft wf

.

Finally, to promote sparsity among the edge weights and
resolve scale-invariance in the model, we assume an IID
exponential prior on edge weights we with rate λ > 0:

P(we) := λ · exp (−λwe) · 1[we ∈ R+].

2.3 Learning the weights

Given a training sample of playlists S ⊂ X ∗, 2 we would
like to find the maximum a posteriori (MAP) estimate of w:

w ← argmax
w∈R|E|

+

logP(w| S)

= argmax
w∈R|E|

+

∑
s∈S

logP(s| w) +
∑
e∈E

logP(we). (1)

The MAP objective (1) is not concave, and it is generally
difficult to find a global optimum. Our implementation uses
the L-BFGS-B algorithm [2] to solve for w, and converges
quite rapidly to a stationary point. Training typically takes
a matter of seconds, even for the large playlist collections
and edge sets described in Section 3.

3. DATA COLLECTION

Previous work on playlist modeling used the Art of the
Mix 3 (AotM) collection of Ellis, et al. [4]. The existing
AotM dataset was collected in 2002, and consists of roughly
29K playlists over 218K songs, provided as lists of plain-
text song and artist names. In this work, we expand and
enrich this dataset into a new collection, which we denote
as AotM-2011. 4 This section describes our data collection,
pre-processing, and feature extraction methodology.

3.1 Playlists: Art of the Mix 2011

To expand the AotM playlist collection, we crawled the site
for all playlists, starting from the first indexed playlist (1998-
01-22) up to the most recent at the time of collection (2011-
06-17), resulting in 101343 unique playlists. Each playlist
contains not only track and artist names, but a timestamp
and categorical label (e.g., Road Trip or Reggae).

2 X ∗ denotes the Kleene star operation.
3 http://www.artofthemix.org
4 http://cosmal.ucsd.edu/cal/projects/aotm2011/.



To effectively model the playlist data, the plain-text song
and artist names must be resolved into a common names-
pace. Following previous work, we use the Million Song
Dataset (MSD) as the underlying database [1, 11]. Rather
than rely on the Echo Nest text-search API to resolve song
identifiers, we instead implemented a full-text index of
MSD song and artist names in Python with the Whoosh 5

library. This allowed both high throughput and fine-grained
control over accent-folding and spelling correction. Each
(artist, song) pair in the raw playlist data was used as a
query to the index, and resolved to the corresponding MSD
song identifier (if one was found). In total, 98359 songs
were matched to unique identifiers.

Because not every song in a raw playlist could be cor-
rectly resolved, each playlist was broken into contiguous
segments of two or more matched song identifiers. Fi-
nally, playlist segments were grouped according to category.
Table 1 lists each of the 25 most popular categories by size.

3.2 Edge features

To fully specify the playlist model, we must define the edges
of the hypergraph. Because edges can be arbitrary subsets
of songs, the model is able to seamlessly integrate disparate
feature modalities. We use the following collection of edge
features, which can be derived from MSD and its add-ons.

Audio To encode low-level acoustic similarity, we first
mapped each song i to a vector xi ∈ R222 using the
optimized vector quantized Echo Nest Timbre (ENT)
descriptors provided by [1, 11]. Audio descriptors
were clustered via online k-means, and cluster assign-
ments were used to produce k disjoint subsets. Re-
peating this for k ∈ {16, 64, 256} provided multiple
overlapping edges of varying degrees of granularity.
All 98K songs receive audio representations.

Collaborative filter To capture high-level similarities due
to user listening patterns, we construct edges from
the taste profile data used in the MSD Challenge [10].
We used the Bayesian Personalized Ranking (BPR)
algorithm [6, 13] to factor the users-by-songs (1M-
by-380K) feedback matrix into latent feature vectors
xi ∈ R32. The BPR regularization parameters were
set to λ1 = λ2 = 10−4. Edges were constructed
by cluster assignments following the procedure de-
scribed above for audio features. 62272 songs (63%)
coincide with the taste profile data.

Era The era in which songs are released can play an impor-
tant role in playlist composition [3, 8]. To model this,
we use the MSD meta-data to represent each song
by its year and half-overlapping decades. For exam-
ple, the song Parliament - Flash Light maps to edges
YEAR-1977, DECADE-1970 and DECADE-1975.
77884 songs (79%) were mapped to era descriptors.

Familiarity Previous studies have noted the importance of
song- or artist-familiarity when composing playlists [3,

5 http://packages.python.org/Whoosh/

11]. We used the artist familiarity data provided
with MSD, which maps each song to the range [0, 1]
(0 being unfamiliar, 1 being very familiar). Edges
were constructed by estimating the 25th and 75th
percentiles of familiarity, and mapping each song to
LOW, MEDIUM, or HIGH familiarity.

Lyrics Previous studies have shown the importance of
lyrics in playlist composition [8]. To compute lyrical
similarity, we applied online latent Dirichlet allo-
cation (LDA) [7] with k = 32 to the musiXmatch
lyrics database. 6 We then constructed three sets of
32 edges (one edge per topic): the first matches each
song to its most probable topic, the second matches
each song to its top three topics, and the third set to
its top five topics. 53351 songs (56%) were found in
the musiXmatch data.

Social tags Previous work incorporated semantic informa-
tion by using the total similarity between bag-of-tags
vectors of songs to determine similarity [11]. Here,
we take a more flexible approach, and model each
tag separately. Using the Last.fm 7 tags for MSD,
we match each song to its top-10 most frequent tags.
Each tag induces an edge (the songs assigned to that
tag). 8 80396 songs (82%) matched to tag edges.

Uniform shuffle Because the features described above can-
not model all possible transitions, we include a uniform
edge that contains all songs. A transition through the
uniform edge can be interpreted as a random restart
of the playlist. The uniform shuffle also provides a
standard baseline for comparison.

Feature conjunctions Some of the features described above
may be quite weak individually, but when combined,
become highly descriptive. For example, the tag
rock and era YEAR-1955 are both vague, but the
conjunction of these two descriptors — rock-&-
-YEAR-1955 — retains semantic interpretability,
and is much more precise. We therefore augment
the above collection of edges with all pair-wise inter-
sections of features. Note that this induces general
cross-modal feature conjunctions, such as Lyrics
topic #4-&-Audio cluster #17, resulting
in an extremely rich set of song descriptors.

4. EXPERIMENTS

To evaluate the proposed method, we randomly partitioned
each of the top-25 categories listed in Table 1 into ten 75/25
train/test splits. For each split, the train (test) sets are col-
lected across categories to form a global train (test) set
ALL, which is used to train a global model. After fitting a

6 http://labrosa.ee.columbia.edu/millionsong/
musixmatch

7 http://last.fm/
8 A similar tag-hypergraph model was proposed by Wang, et al. [14].



Category Playlists Segments Songs Category Playlists Segments Songs
Mixed 41798 101163 64766 Sleep 675 1487 2957
Theme 12813 31609 35862 Electronic Music 611 1131 2290
Rock-Pop 4935 13661 20364 Dance-House 526 1117 2375
Alternating DJ 4334 10493 18083 Rhythm and Blues 432 1109 2255
Indie 4528 10333 13678 Country 398 908 1756
Single Artist 3717 9044 17715 Cover 447 833 1384
Romantic 2523 6269 8873 Hardcore 268 633 1602
Road Trip 1846 4817 8935 Rock 215 565 1866
Punk 1167 3139 4936 Jazz 295 512 1089
Depression 1128 2625 4794 Folk 241 463 1137
Break Up 1031 2512 4692 Reggae 183 403 831
Narrative 964 2328 5475 Blues 165 373 892
Hip Hop 1070 1958 2505 Top-25 86310 209485 97411

Table 1. The distribution of the top 25 playlist categories in AotM-2011. Each playlist consists of one or more segments of
at least two contiguous MSD songs. 948 songs do not appear within the top 25 categories, but are included in the model.

Feature # Edges Feature # Edges
Audio 204 Collaborative filter 93
Era 56 Familiarity 3
Lyrics 82 Tags 201
Uniform 1 All features 640

Feature conjunctions 6390

Table 2. Summary of edges after pruning.

model to each training set, we compute the average (length-
normalized) log-likelihood of the test set S ′:

L(S ′| w) := 1

|S ′|
∑
s∈S′

1

|s|
logP(s| w).

For comparison purposes, we report performance in terms
of the relative gain over the uniform shuffle model wu (all
weight assigned to the uniform edge):

G(w) := 1− L(S
′| w)

L(S ′| wu)
.

To simplify the model and reduce over-fitting effects, we
pruned all edges containing fewer than 384 (98359/256)
songs. Similarly, we pruned redundant conjunction edges
that overlapped by more than 50% with either of their con-
stituent edges. Table 2 lists the number of edges retained
after pruning. On average, each song maps to 76.46±57.79
edges, with a maximum of 218. In all experiments, we fix
the prior parameter λ = 1.

4.1 Experiment 1: Does dialect matter?

In the first set of experiments, we compare the global model
to category-specific models. Figure 2 illustrates the relative
gain over uniform across all categories for four different
model configurations: tags, tags with pairwise conjunctions,
all features, and all features with conjunctions.

Several interesting trends can be observed from Figure 2.
First, in all but two cases — Narrative and Rock under the
all features with conjunctions model — category-specific
models perform at least as well as the global model, and
are often substantially better. As should be expected, the
effect is most pronounced for genre-specific categories that
naturally align with semantic tags (e.g., Hip Hop or Punk).

Note that the larger categories overlap more with ALL,
leaving less room for improvement over the global model.

Not surprisingly, the Mixed category appears to be difficult
to model with similarity-based features. The fact that it is
the single largest category (Table 1) may explain some of
the difficulties observed in previous studies when using a
global model [11]. Similarly, several other categories are
quite broad (Theme, Narrative, Rock), or may be inherently
difficult (Alternating DJ, Mixed).

Also of note are differences across model configurations.
Feature conjunctions generally provide a modest improve-
ment, both in the global and category-specific models. Due
to the large parameter space, some over-fitting effects can
be observed in the smallest categories (Folk, Reggae, Blues).
Interestingly, several categories benefit substantially from
the inclusion of all features compared to only tags (e.g., Hip
Hop, Punk, Jazz).

4.2 Experiment 2: Do transitions matter?

Given the flexibility of the model, it is natural to question
the importance of modeling playlist continuity: could a
model which ignores transition effects perform as well as
the random walk model? To test this, we split each playlist
s = (x0 x1 · · · xT ) into singletons s0 = (x0), · · ·,
sT = (xT ). With this modified corpus, the model treats
each song in a playlist as an independent draw from the
initial song distribution P(x0| w). Consequently, a model
trained on this corpus can fit global trends across playlists
within a category, but cannot enforce local continuity.

Figure 3 illustrates the relative gain for each category
under the stationary distribution with all features and con-
junctions. The results are qualitatively similar for alternate
model configurations. Compared to Figure 2 (bottom-right),
the results are substantially worse for most categories. In
many cases, the stationary model performs worse than the
uniform shuffle. This reflects the importance of transition
effects when modeling playlists, even when the corpus is
confined to genre-specific categories.

4.3 Experiment 3: Which features matter?

As illustrated in Figure 2, certain categories seem to benefit
substantially from the inclusion of non-tag features. To
investigate this effect, Figure 4 illustrates the aggregated
weight for each feature type under each of the category
models. Note that weight is aggregated across feature con-
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Figure 2. The median gain in log-likelihood over the uniform shuffle model, aggregated over ten random splits of the data.
Error bars span the 0.25–0.75 quantiles. Category-specific models generally outperform global models.
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Figure 3. Log-likelihood gain over uniform with the sta-
tionary model (all features and conjunctions). Ignoring
temporal structure significantly degrades performance.

junctions, so the weight for edge DECADE 1955-&-Rock
counts both for Era and Tag.

Tags receive the most weight (64% on average) across all
categories. Audio features appear to be most useful in Hip
Hop, Jazz and Blues (43%–44%, compared to 26% average).
This is not surprising, given that these styles feature rela-
tively distinctive instrumentation and production qualities.
Lyrical features receive the most weight in categories with
salient lyrical content (Folk, Cover, Narrative, Hardcore,
Break Up) and low weight in categories with little or highly
variable lyrical content (Electronic Music, Dance-House,
Jazz). Era and familiarity receive moderate weight (on aver-

age, 22% and 15% respectively), but the majority (20% and
14%) is due to conjunctions.

4.4 Example playlists

Table 3 illustrates samples drawn from category-specific
feature conjunction models. For generative purposes, the
uniform edge was removed after training. The generated
playlists demonstrate both consistency within a single playlist
and variety across playlists. Each transition in the playlist
is explained by the corresponding (incoming) edge, which
provides transparency to the user: for example, Cole Porter
- You’re the Top follows Django Rheinhardt - Brazil because
both songs belong to the conjunction edge AUDIO-3/16-
-&-jazz, and share both high- and low-level similarity.

5. CONCLUSION

We have demonstrated that playlist model performance can
be improved by treating specific categories of playlists in-
dividually. While the simple models proposed here work
well in some situations, they are far from complete, and
suggest many directions for future work. The first-order
Markov assumption is clearly a simplification, given that
users often create playlists with long-term interactions and
global thematic properties. Similarly, the uniform distribu-
tion over songs within an edge set allows for an efficient
and scalable implementation, but allowing non-uniform dis-
tributions could also be an avenue for future improvement.
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Figure 4. Distribution of learned edge weights for each playlist category. Weight is aggregated across feature conjunctions.

Category Edge Playlist

Hip Hop

AUDIO-149/256 Eminem - The Conspiracy (Freestyle)
AUDIO-149/256 Busta Rhymes - Bounce

DECADE-2000-&-rap Lil’ Kim (Featuring Sisqo) - How Many Licks?
old school A Tribe Called Quest - Butter

DECADE 1985-&-Hip-Hop Beastie Boys - Get It Together
AUDIO-12/16 Big Daddy Kane - Raw [Edit]

Electronic Music

AUDIO-11/16-&-downtempo Everything But The Girl - Blame
DECADE 1990-&-trip-hop Massive Attack - Spying Glass

AUDIO-11/16-&-electronica Björk - Hunter
DECADE 2000-&-AUDIO-23/64 Four Tet - First Thing

electronica-&-experimental Squarepusher - Port Rhombus
electronica-&-experimental The Chemical Brothers - Left Right

Rhythm and Blues

70s-&-soul Lyn Collins - Think
AUDIO-14/16-&-funk Isaac Hayes - No Name Bar
DECADE 1965-&-soul Michael Jackson - My Girl
AUDIO-6/16-&-soul The Platters - Red Sails In The Sunset

FAMILIARITY MED-&-60s The Impressions - People Get Ready
soul-&-oldies James & Bobby Purify - I’m Your Puppet

Jazz

AUDIO-14/16-&-jazz Peter Cincotti - St Louis Blues
jazz Tony Bennett - The Very Thought Of You

vocal jazz Louis Prima - Pennies From Heaven
jazz-&-instrumental Django Reinhardt - Brazil

AUDIO-3/16-&-jazz Cole Porter - You’re The Top
jazz Doris Day - My Blue Heaven

Table 3. Example playlists generated by various dialect models. Edge denotes the incoming edge to the corresponding song,
which for transitions, is shared by the previous song. Feature conjunctions are indicated by X-&-Y.
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ABSTRACT

Automatically generated playlists have become an impor-
tant medium for accessing and exploring large collections
of music. In this paper, we present a probabilistic model
for generating coherent playlists by embedding songs and
social tags in a unified metric space. We show how the
embedding can be learned from example playlists, pro-
viding the metric space with a probabilistic meaning for
song/song, song/tag, and tag/tag distances. This enables at
least three types of inference. First, our models can gener-
ate new playlists, outperforming conventional n-gram mod-
els in terms of predictive likelihood by orders of magni-
tude. Second, the learned tag embeddings provide a gener-
alizing representation for embedding new songs, allowing
it to create playlists even for songs it has never observed in
training. Third, we show that the embedding space pro-
vides an effective metric for matching songs to natural-
language queries, even if tags for a large fraction of the
songs are missing.

1. INTRODUCTION

Music consumers can store thousands of songs on their
computer or smart phone. In addition, cloud-based ser-
vices like Rhapsody or Spotify give instant and on-demand
access to millions of songs. While these technologies pro-
vide powerful new ways to access music, they can also
overwhelm users by giving them too much choice [15].

This has created substantial interest in automatic playlist
algorithms that can help consumers explore large collec-
tions of music. Companies like Apple and Pandora have
developed successful commercial playlist algorithms, but
relatively little is known about how these algorithms work
and how well they perform in rigorous evaluations. Com-
parably little scholarly work has been done on automated
methods for playlist generation (e.g., [1,4,10,12,14]), and
the results to date indicate that it is far from trivial to oper-
ationally define what makes a playlist coherent.

Most approaches to automatic playlist creation rely on
computing some notion of music similarity between pairs
of songs. Numerous similarity functions have been pro-
posed and are often based on the analysis of audio con-
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tent [9,13], social tag information [8], web document min-
ing [6], preference-based ratings data [11], or some com-
bination of these data sources. Given a music similarity
algorithm, a playlist is created by finding the most similar
songs to a given seed song or set of seed songs.

In this paper, we explore the idea of learning a playlist
model that does not require an external similarity mea-
sure and that is trained directly on the data of interest,
namely historical playlists. In particular, we extend the
Logistic Markov Embedding (LME) [3] approach to prob-
abilistic sequence modeling to incorporate social tags, uni-
fying song and tag embeddings in a single Euclidean space.
This provides a probabilistically well-founded and con-
structive way to compute meaningful distances between
pairs of songs, pairs of tags, and songs and tags. We show
that this joint embedding is useful not only for probabilis-
tically sound playlist generation, but also for a variety of
other music information retrieval tasks such as corpus vi-
sualization, automatic tagging, and keyword-based music
retrieval.

An efficient C implementation, a demo, and data are
available at http://lme.joachims.org.

2. RELATED WORK

Automatically generated playlists are a key component in
several commercial systems. For example, Pandora relies
on content-based music analysis by human experts [16]
while Apple iTunes Genius relies on preference ratings and
collaborative filtering [2]. What is not known is the mech-
anism by which the playlist algorithms are used to order
the set of relevant songs, nor is it known how well these
playlist algorithms perform in rigorous evaluations.

In the scholarly literature, two recent papers address the
topic of playlist prediction. First, Maillet et al. [10] formu-
late the playlist ordering problem as a supervised binary
classification problem that is trained discriminatively. Pos-
itive examples are pairs of songs that appeared in this order
in the training playlists, and negative examples are pairs of
songs selected at random which do not appear together in
order in historical data. Second, McFee and Lanckriet [12]
take a generative approach by modeling historical playlists
as a Markov chain. That is, the probability of the next
song in a playlist is determined only by acoustic and/or
social-tag similarly to the current song. Our approach is
substantially different from both [10] and [12], since we
do not require any acoustic or semantic information about
the songs.



While relatively little work has been done on explic-
itly modeling playlists, considerably more research has fo-
cused on embedding songs (or artists) into a similarity-
based music space (e.g., [4, 9, 14, 18].) For example, Platt
et al. use semantic tags to learn a Gaussian process kernel
function between pairs of songs [14]. More recently, We-
ston et al. learn an embedding over a joint semantic space
of audio features, tags and artists by optimizing perfor-
mance metrics for various music retrieval tasks [18]. Our
approach, however, differs substantially from these exist-
ing methods, since it explicitly models the sequential na-
ture of playlists in the embedding. Recently and indepen-
dently, [1] also proposed a sequential embedding model.
However, their model does not include tags.

Modeling playlists as a Markov chain connects to a large
body of work on sequence modeling in natural language
processing (NLP) and speech recognition. Smoothed n-
gram models (see e.g. [5]) are the most commonly used
method in language modeling, and we will compare against
such models in our experiments.

3. PROBABILISTIC EMBEDDING OF PLAYLISTS

Our goal is to estimate a generative model of coherent
playlists, which will enable us to efficiently sample new
playlists. More formally, given a collection S = {s1, ..., s|S|}
of songs si, we would like to estimate the distribution Pr(p)
of coherent playlists p = (p[1], ..., p[kp]). Each element p[i]

of a playlist refers to one song from S.
A natural approach is to model playlists as a Markov

chain, where the probability of a playlist p = (p[1], ..., p[kp])
is decomposed into the product of transition probabilities
Pr(p[i]|p[i−1]) between adjacent songs p[i−1] and p[i].

Pr(p) =

kp∏
i=1

Pr(p[i]|p[i−1]) (1)

For ease of notation, we assume that p[0] is a dedicated start
symbol. Such bi-gram (or, more generally, n-gram) models
have been widely used in language modeling for speech
recognition and machine translation with great success [5].
In these applications, the O(|S|n) transition probabilities
Pr(p[i]|p[i−1]) are estimated from a large corpus of text
using sophisticated smoothing methods.

While such n-gram approaches can be applied to playlist
prediction in principle, there are fundamental differences
between playlists and language. First, playlists are less
constrained than language, so that transition probabilities
between songs are closer to uniform. This means that we
need a substantially larger training corpus to observe all of
the (relatively) high-probability transitions even once. Sec-
ond, and in contrast to this, we have orders of magnitude
less playlist data to train from than we have written text.

To overcome these problems, we propose a Markov-
chain sequence model that produces a generalizing repre-
sentation of songs, song sequences, and social tags. Un-
like n-gram models that treat words as atomic units with-
out metric relationships between each other, our approach
seeks to model coherent playlists as paths through a latent

space. In particular, songs are embedded as points in this
space so that Euclidean distance between songs reflects the
transition probabilities. Similarly, each social tag is repre-
sented as a point in this space, summarizing the average
location of songs with that tag. The key learning prob-
lem is to determine the location of each song and tag using
existing playlists as training data. Once songs and tags
are embedded, our model can assign meaningful transition
probabilities even to those transitions that were not seen in
the training data, and it can also reason about tagged songs
that were never seen before.

In the following we start by reviewing the basic LME
model of Pr(p), and then extend this model to incorporate
social tags.

3.1 Embedding Model for Songs

The basic LME model [3] represents each song s as a sin-
gle vectorX(s) in d-dimensional Euclidean spaceM. The
key assumption of our model is that the transition prob-
abilities Pr(p[i]|p[i−1]) are related to the Euclidean dis-
tance ||X(p[i]) − X(p[i−1])||2 between p[i−1] and p[i] in
M through the following logistic model:

Pr(p[i]|p[i−1]) =
e−||X(p[i])−X(p[i−1])||22∑|S|
j=1 e

−||X(sj)−X(p[i−1])||22
(2)

This is illustrated in the figure to the right, showing that
transitioning from s to a nearby point s′ is more likely

s'' 

s' 

s 

than transitioning to a point s′′ that
is further away. We will typically
abbreviate the partition function
in the denominator as Z(p[i−1]),
and the distance ||X(s)−X(s′)||2
between two songs in embedding
space as ∆(s, s′) for brevity. Us-
ing a Markov model with this tran-
sition distribution, we can now define the probability of an
entire playlist of a given length k as

Pr(p) =

kp∏
i=1

Pr(p[i]|p[i−1]) =

kp∏
i=1

e−∆(p[i],p[i−1])
2

Z(p[i−1])
. (3)

The LME seeks to discover an embedding of the songs into
this latent space which causes “good” playlists to have high
probability of being generated by this process. This is in-
spired by collaborative filtering methods such as [7], which
similarly embed users and items into a latent space to pre-
dict users’ ratings of items. However, our approach dif-
fers from these methods in that we wish to predict paths
through the space, as opposed to independent item ratings.

In order to learn the embedding of songs, we use a sam-
ple D = (p1, ..., pn) of existing playlists as training data
and take a maximum a posteriori (MAP) approach to learn-
ing. Denoting with X the matrix of embedding vectors for
all songs in the collection S, this leads to the following
training problem

X= argmax
X∈<|S|×d

∏
p∈D

kp∏
i=1

e−∆(p[i],p[i−1])
2

Z(p[i−1])
·
|S|∏
i=1

e−λ||X(si)||22 , (4)



where we also added a zero-mean Normal prior as regu-
larizer to control overfitting (see term after the dot). The
parameter λ controls how heavily the embedding is regu-
larized. While the optimization problem is not concave, we
have already shown in [3] how to efficiently and robustly
find good optima using a stochastic gradient approach.

3.2 Embedding Model for Songs and Tags

The previous model is very general in that it does not re-
quire any features that describe songs. However, this is
also a shortcoming, since it may ignore available informa-
tion. We therefore now extend the LME to include tags as
prior information. The new model will provide reasonable
embeddings even for songs it was not trained on, and it will
define a unified metric space for music retrieval based on
query tags.

The key idea behind the new model is that the tags T (s)
of song s inform the prior distribution of its embedding
location X(s). In particular, each tag t is associated with
a Normal distribution N (M(t), 1

2λId) with mean M(t).
Here, Id is the d by d identity matrix and we will see soon
that λ again behaves like a regularization parameter. For a
song with multiple tags, we model the prior distribution of
its embedding as the average of the Normal distribution of
its tags T (s), while keeping the variance constant.

Pr(X(s)|T (s)) = N

 1

|T (s)|
∑
t∈T (s)

M(t),
1

2λ
Id

 (5)

Note that this definition of Pr(X(s)|T (s)) nicely gen-
eralizes the regularizer in (4), which corresponds to an
“uninformed” Normal prior Pr(X(s)) = N (0, 1

2λId) cen-
tered at the origin of the embedding space. The tag-based

Tag 1: Pop Music 

Tag 2: 1980’s 

Tag 3: Male vocals 

Actual position  
of “Billie Jean” 

prior distribution is illus-
trated in the figure to the
right. In this example,
the song “Billie Jean” has
the three tags “pop mu-
sic”, “male vocals” and
“1980s”. Each tag has a
meanM(t) as depicted, and
Pr(X(s)|T (s)) is centered
at the average of the tag means, providing the prior for the
embedding of “Billie Jean”. Without any training data, the
most likely location is the center of the prior, but with more
observed training data the embedding may move further
away as necessary.

Let M be the matrix of all tag means, we obtain the
following maximum a posteriori estimate for the tag-based
LME analogous to the basic LME model:

(X,M) = argmax
X,M

Pr(D|X) · Pr(X|M) (6)

= argmax
X,M

∏
p∈D

kp∏
i=1

e−∆(p[i],p[i−1])
2

Z(p[i−1])
·
|S|∏
i=1

e−λ||X(s)−

∑
t∈T(s)

M(t)

|T (s)| ||
2
2

Note that we now optimize jointly over the song locations
X(s) and tag locations M(t). In this way, the tag-based

yes small yes big
Appearance Threshold 20 5

Num of Songs 3,168 9,775
Num of Train Trans 134,431 172,510
Num of Test Trans 1,191,279 1,602,079

Table 1: Statistics of the playlists datasets.

LME model yields a meaningful probabilistic interpreta-
tion of distances not only among songs, but also among
songs and tags. The following experiments exploit this for
locating new songs and for tag-based music retrieval.

4. EXPERIMENTS

The playlists and tag data we used for our experiments are
respectively crawled from Yes.com and Last.fm.

Yes.com is a website that provides radio playlists from
hundreds of radio stations in the United States. By using
the web based API 1 , one can retrieve the playlist record of
a specified station for the last 7 days. We collected as many
playlists as possible by specifying all possible genres and
getting playlists from all possible stations. The collection
lasted from December 2010 to May 2011. This lead to
a dataset of 75,262 songs and 2,840,553 transitions. To
get datasets of various sizes, we pruned the raw data so
that only the songs with a number of appearances above
a certain threshold are kept. We then divide the pruned
set into a training set and a testing set, making sure that
each song has appeared at least once in the training set.
We report results for two datasets, namely yes small and
yes big, whose basic statistics are shown in Table 1.

Last.fm provides tag information for songs, artists and
albums that is contributed by its millions of users. For each
of the songs in our playlists dataset, we query the Last.fm
API 2 for the name of the artist and the song, retrieving the
top tags. We then prune the tag set by only keeping the top
250 tags with the most appearances across songs. Note that
Last.fm did not provide any tags for about 20% of songs.

Unless noted otherwise, experiments use the follow-
ing setup. Any model (either the LME or the base-
line model) is first trained on the training set and then
tested on the test set. We evaluate test performance us-
ing average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set.

4.1 What does the embedding space look like?

Before starting the quantitative evaluation of our method,
we first want to give a qualitative impression of the embed-
dings it produces. Figure 1 shows the two-dimensional em-
bedding of songs and tags according to (6) for the yes small
dataset. The top 50 genre tags are labeled, and the lighter
points represent songs.

Overall, the embedding matches our intuition of what a
semantic music space should look like. The most salient

1 http://api.yes.com
2 http://www.last.fm/api
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Figure 1: 2D embedding for yes small. The top 50 genre
tags are labeled; lighter points represent songs.
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Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes small (left) and yes big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where
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Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes small.

the next song is sampled independently of the previous
songs. The probability p(si) of each song si is estimated
from the training set as p(si) = ni∑

j nj
, where ni is the

number of appearances of si.
The Bigram Model conditions the probability of the

next song on the previous song similar to our LME model.
However, the transition probabilities p(sj |si) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(sj |si), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. λ = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes small. However, it fails to beat
the unigram model on yes big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent
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Figure 4: Log-likelihood of predicting transitions for new
songs for different d and λ.

the generalization performance of the methods depends on
whether (and how often) a test transition was observed in
the training set. The ability to produce reasonable prob-
ability estimates even for transitions that were never ob-
served is important, since even in yes small about 64% of
test transitions were not at all observed in our training set.

For both the LME and the bigram model, the lines in
Figure 3 show the log-likelihood of the test transitions con-
ditioned on how often that transition was observed in the
training set of yes small. The bar graph illustrates what
percentage of test transitions had that given number of oc-
curences in the training set (i.e. 64% for zero). It can
be seen that the LME performs comparably to the bigram
model for transitions that were seen in the training set at
least once, but it performs substantially better on previ-
ously unseen transitions. This is a key advantage of the
generalizing representation that the LME provides, since it
provides an informed way of assigning transition probabil-
ities to all pairs of songs.

4.4 Can the tag model coldstart new songs?

Any playlist generator will encounter new songs it has not
been trained on. Fortunately, it is easy to impute an embed-
ding for new songs in our tag-based LME model. Given a
new song s with tags T (s), the most likely embedding lo-
cation according our probabilistic model is

X(s) =
1

|T (s)|
∑
t∈T (s)

M(t). (7)

To evaluate performance on new songs, we take the yes small
dataset and randomly withhold a subset of 30% (951) of
the songs which have at least one tag each. We test on
these songs and train the tag-based LME on the remaining
songs. In particular, we test on transitions from training to
test songs, having our model predict based on the imputed
test-song location which one of the 951 songs was played.

The only valid baseline for this experiment is the uni-
form model, since we have no history for the testing songs.
The results are shown in Figure 4 for various dimension-
alities and regularization parameters λ. Over all parameter
settings, the LME outperforms the baseline substantially.
Comparing Figure 4 with Figure 2, the gain over uniform
for new songs is still roughly half of that for songs that
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the LME was trained on. This demonstrates that the em-
bedding of the tags captures a substantial amount of the
playlist semantics, generalizing well even for new songs.

4.5 Can the embedding space be used for retrieval?

As already demonstrated in the previous section, a pow-
erful property of our model is that it results in a similar-
ity metric that unifies tags and songs – namely, the Eu-
clidean distance of the corresponding points in the embed-
ding. This leads to a natural method for retrieval of songs
based on query tags: rank songs by their Euclidian dis-
tance to the query tag(s). Note that this method can retrieve
songs even though they are not manually tagged with any
of the query tags.

To evaluate the effectiveness of the embedding space
for retrieval, we now evaluate how well untagged songs
can be retrieved using queries that consist of a single tag.
The experiment is set up as follows. We pooled the train
and test partitions of the yes small dataset and then ran-
domly split all songs with at least one tag into 5 parti-
tions. Following a 5-fold cross-validation setup, we re-
moved the tags from the songs in one of the partitions,
trained the tag-based LME on the now untagged songs plus
the tagged songs from the other 4 partitions, and then com-
puted the query-tag rankings over the untagged songs. For
each query tag, we computed the average (over folds) ROC
Area (AUC) and Precision@10.

Figure 5 shows the results for the LME and for two
baselines: a random ranking of all held-out songs and a
ranking of the held-out songs in order of decreasing fre-
quency of appearance in the data set. We separated (by
hand) each of the 250 query tags into one of five categories:
genre tags (91 tags like rock, hip hop, etc.), emotion tags
(35 tags: sad, happy, dark, upbeat etc.), musical and in-
strumental tags (23 tags: male vocalist, guitar, major key
tonality...), years and decades (17 tags), and other tags (84
tags including awesome, loved, catchy, and favorites). For
brevity, we only report results for a model with dimension
25 and λ = 10. However, similar to the results in Figure 4,
we find that the exact choice of these parameters is not cru-
cial. For example, the best unregularized model was never
more than 4 percentage points worse in AUC than the best
regularized model (though naturally for higher dimensions



regularization becomes more important).
Our method significantly and substantially outperforms

both baselines in every category. Matching our intuition,
it does the best for genre queries, with an AUC of nearly
0.85 and Precision@10 of about 37%. The emotion and
musical categories prove the most difficult, while the year
and other categories are the easiest after genre.

Note that the performance values reported in Figure 5
are extremely conservative estimates of the actual retrieval
quality of our method. This is for three reasons: First,
social tags can be noisy since they result from ad-hoc la-
beling practices by non-experts [17]. Second, we made
no attempt to identify lexicographically similar tags as the
same. For example, consider the following ranking that
our method produces for the tag-query “male vocals”, with
a relevant subset of the tags given for each song:

Daughtry - Home: male vocalists, male vocalist, male
Allen - Live Like We’re Dying: male vocalists, male vocalist
The Fray - How To Save A Life: male vocalists, male vocalist
Aerosmith - Rag Doll: male vocalist, malesinger
Lifehouse - Hanging By A Moment: male vocalists,

male vocalist, male vocals

Here, all five songs are clearly relevant to the query, but
only the last song was considered relevant for the purposes
of our experiments. Third, we only test our method on
songs for which no tags at all were seen during training.
For these reasons, it is important to keep in mind that the
results we report are strict lower bounds on the actual re-
trieval performance of our method.

5. CONCLUSIONS

We presented a method for learning to predict playlists
through an embedding of songs and tags in Euclidian space.
The method not only provides a well-founded probabilis-
tic model for playlist generation, it also produces a dis-
tance metric with a probabilistic meaning for song/song,
song/tag, and tag/tag distances. We show that the method
substantially outperforms conventional sequence models
from NLP, that it can sensibly impute the location of previ-
ously unseen songs, and that its distance metric is effective
for music retrieval even of untagged songs.

The flexibility of the LME approach provides exciting
opportunities for future work, since the model leaves open
the possibility of more complex representations of songs.
For example, instead of representing each song as a single
X(s), one can use two embedding vectors U(s) and V (s)
to model the beginning and ending of a song respectively.
This allows modeling that the ending of song s is com-
patible with the beginning of song s′, but that the reverse
may not be the case. Another interesting direction for fu-
ture work is the modeling of long-range dependencies in
playlists. Such long-range dependencies could capture the
amount of redundancy/repetition that a user may seek, ver-
sus how much a playlist provides variety and explores new
music.

This research was supported in part by NSF Awards IIS-
1217686, IIS-0812091 and IIS-0905467.
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ABSTRACT

By mining user-generated text content we can obtain music-
related information that could not otherwise be extracted
from audio signals or symbolic score representations. In
this paper we propose a methodology for extracting
music-related semantic information from an online
discussion forum, rasikas.org, dedicated to the Carnatic
music tradition. We first define a dictionary of relevant
terms within categories such as raagas, taalas, performers,
composers, and instruments, and create a complex network
representation by matching such dictionary against the fo-
rum posts. This network representation is used to iden-
tify popular terms within the forum, as well as relevant
co-occurrences and semantic relationships. This way, for
instance, we are able to learn the instrument played by a
performer with 95% accuracy, to discover the confusion
between two raagas with different naming conventions, or
to infer semantic relationships regarding lineage or musi-
cal influence. This contribution is a first step towards the
automatic creation of ontologies for specific musical cul-
tures.

1. INTRODUCTION

Understanding music requires (also) understanding how
listeners perceive music, how they consume it or enjoy it,
and how they share their tastes among other people. The
online interaction among users results in the emergence of
online communities. These interactions generate digital
content that is very valuable for the study of many top-
ics, in our case for the study of music. According to [11],
an online community can be defined as a persistent group
of users of an online social media platform with shared
goals, a specific organizational structure, community ritu-
als, strong interactions and a common vocabulary. Our aim
in this paper is to study and analyze an online community
dedicated to the Carnatic music tradition, rasikas.org.

Carnatic music is the art music of south India [12]. This
is a very old and alive tradition with a very engaged and
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active community. The music lovers of Carnatic music are
known as rasikas 1 , and their involvement in music related
activities and events is fundamental for the preservation
and evolution of this music. Interestingly, the interactions
between artists and rasikas can influence the evolution of
the music concepts in the tradition. For instance, raagas 2 ,
often described as collections of phrases, evolve over time
(hence, it is often said that a given raaga today is not the
same as it was a hundred years ago). When a performer
experiments with a new phrase, rasikas respond to show
their appreciation if they believe that the phrase enriched
their experience of the raaga.

Websites and online forums have become very relevant
venues with which to support and sustain the Carnatic mu-
sic tradition. Online communities have emerged in which
groups or rasikas share music content and discuss among
them. Rasikas.org is one such forum in which users engage
in many types of discussions, some of them quite engaged,
covering most relevant Carnatic music related topics. It
clearly does not reflect the whole community of rasikas,
but it is an interesting forum from which to learn about
Carnatic music and about the opinions of some very pas-
sionate and active rasikas. We will be using rasikas.org to
perform the experiments in this paper.

Extracting semantic information from online forums has
become an important area of research in the last few years.
For instance, Yang et al. [15] proposed a method to extract
structured data from all types of online forums. Weimer
et al. [13] and Chen et al. [2] proposed models to iden-
tify high quality posts and topics, respectively. Zhu et
al. [16], on the other hand, generated relation networks for
topic detection and opinion-leader detection. In addition,
a considerable number of approaches devoted to mining
user-generated text content have been proposed in the mu-
sic information retrieval (MIR) community (e.g. [1, 4, 8,
14]). Nevertheless, to the best of our knowledge, none of
the highlighted approaches in MIR has exploited the inner
structure of online discussion forums.

In this paper we propose a method for extracting se-
mantic information from an online Carnatic music forum,
specifically rasikas.org. We define a dictionary of Carnatic
music terms and create a complex network representation
of the online forum by matching such dictionary against

1 Rasika, in sanskrit, literally means “the one who derives pleasure”.
2 A raaga is the fundamental melodic framework for composition and

improvisation in Indian classical music.



the forum posts. We study different network measures re-
lated to the aforementioned network, including node rele-
vance, node co-occurrence and term relations via semanti-
cally connecting words. This allows us to obtain meaning-
ful information from the forum’s discussions.

The rest of the paper is organized as follows. Section 2
presents the studied online forum, rasikas.org, and the gen-
erated Carnatic music dictionary. The methodology for
creating a complex network representation of the forum
text content is described in Section 3. We present and dis-
cuss results related to the aforementioned network mea-
sures in Section 4 and conclude in Section 5.

2. DATA GATHERING

2.1 Dictionary

We first build a dictionary that will help us identify and ex-
tract Carnatic music terms from a text. For that we gather
the editorial metadata of an extensive list of Carnatic mu-
sic CD’s from MusicBrainz.org, an open music encyclope-
dia. The metadata includes names of recordings, releases,
works (compositions), composers/lyricists and performers,
and also information about raagas and taalas 3 , two key
concepts in Carnatic music. To improve our dictionary we
also consider the English Wikipedia as an additional source
of information. Similar to [10], we obtain a list of Carnatic
music terms from dbpedia.org, a machine-readable repre-
sentation of Wikipedia. We start from the seed category
“Carnatic music” and explore the inherent structure of the
dbpedia categorization in order to get all the terms related
to the seed. The final dictionary is then created by merg-
ing MusicBrainz metadata and Wikipedia categories, and
stored as a flat taxonomy of category terms (e.g. raaga–
bhairavi, intrument–mdridangam, etc.).

The main problem of this dictionary is that it suffers
from noisiness/misspelling errors, mainly due to the di-
verse transliterations to English of Indian languages terms.
For instance, the name Tyagaraja (a legendary composer of
Carnatic music) can also be written as Thayagaraja, Thi-
agaraja, Tyagayya, Thiyagaraja, Thagraja, etc. In order
to clean the dictionary, we apply a string matching method
based on a linear combination of the longest common sub-
sequence and Levenshtein algorithms [3] to find all dupli-
cate terms, which we manually filter to maintain a single
common description for each of them.

2.2 The rasikas.org forum

The text we analyze is extracted from rasikas.org, a dedi-
cated forum of Carnatic music lovers. As many discussion
forums, rasikas.org is divided into different sub-forums, 20
in this case. Each forum contains a list of threads and each
thread has a number of posts. Typically, a thread is consid-
ered to contain a topic which is discussed in all the posts
of that thread. It is interesting to note the ratio of number
of posts per thread (Table 1). A median value of 5 means
that half of the threads have only 5 posts or less. Regarding

3 Complementary to raaga, taala is the rhythmic framework for com-
position and improvisation.

Num. topics 16, 595

Num. posts 192, 292

Posts per thread µ = 11.59, σ = 34.49, median = 5

Num. active threads 1362 active in the last 12 months
Num. users 4, 332 (with at least one post)
Num. active users 929 active in the last 12 months

Table 1. Some statistics of rasikas.org forum.

the forum users, even though there are 4,332 users in total,
only a subset of them, 929, have been active in the last 12
months (a user is considered to be active if she has written
at least one post in the lastN months andM posts overall).

We crawled the entire rasikas.org forum and stored it
locally. Not all the sub-forums are of our interest, though.
A few of the sub-forums are not directly related to music,
whilst some others discuss topics from other music cul-
tures (e.g. Hindustani). We finally selected a subset of the
sub-forums that we considered relevant for our study. This
made a total of 11 sub-forums, 14,309 threads and 172,249
posts.

3. METHODOLOGY

3.1 Step 1: Text processing

To extract musically-related semantic information from
rasikas.org we generate a complex network representation
of it. Nonetheless, before building the network, we apply
some text processing techniques to match our Carnatic mu-
sic dictionary against the forum posts. Hence, in the first
step, we iterate over the posts of all the topics for a given
subset of sub-forums. For each post, the text is tokenized
with Penn Treebank, a classical tokenizing technique. The
words are then tagged using the Maxent Treebank part-of-
speech (POS) tagger. We use the NLTK toolkit 4 imple-
mentation of both the tokenizer and the POS tagger. These
methods and implementations are classical choices in nat-
ural language processing and computational linguistics [5].

Once the text is tokenized and tagged, the method pro-
ceeds to match the dictionary of Carnatic music terms
against the list of tagged tokens. Given that some terms
in the dictionary are word n-grams (i.e. terms with more
than one word), the dictionary is sorted by the number
of words, matching the longest terms first. Additionally,
stemmed adjectives and nouns provided by the POS tag-
ging are also included, except for stop words and words
with less than 3 characters. The non-matched words are
not removed from the list of tokens, but rather marked as
non-eligible. For example, the sentence “the difference be-
tween AbhEri and dEvagAndhAram” is converted to “**
difference ** AbhEri ** dEvagAndhAram”, where ** de-
notes a non-eligible word.

4 http://www.nltk.org



Figure 1. A plot of a subnetwork containing Carnatic music terms with the highest degree. The thickness of the edges
represents their weight.

Rank Raagas Taalas Instruments Performers Composers

1 Nata Adi Violin Chembai Tyagaraja
2 Kalyani Rupakam Mridangam Madurai Mani Iyer Annamacharya
3 Bhairavi Chapu Vocal Charulatha Mani Purandara Dasa
4 Ragamalika Jhampa Ghatam Kalpakam Swaminathan Swati Tirunal
5 Kannada Misram Morsing Lalgudi Jayaraman Papanasam Sivan

Table 2. Top-5 nodes with highest betweenness centrality in the network, organized by category.

3.2 Step 2: Network creation

In the second step, an undirected weighted network is cre-
ated by iterating over the processed posts. Each matched
term is assigned to a node in the network, and an edge/link
between two nodes is added if the two terms are close in
the text. The link weight accounts then for the number of
times two matched terms appear close in the text.

Text closeness is defined as the number of intermediate
words between two terms. Thus, we introduce a distance
parameter L that will determine which terms are associ-
ated with each other. Keeping the non-matched words in
the posts (although they are not finally eligible) is impor-
tant for calculating this distance. Using the example from
Step 1, AbhEri and dEvagAndhAram are considered to be
at a distance of L = 2. Our assumption is that words that
are closer in text are more likely to be related.

3.3 Step 3: Network cleaning

The resulting network from step 2 is very dense (it has
24, 420 nodes and 1, 564, 893 links). The average degree
is 128.16, which is very high for such a small network. In
addition, we find that the network contains a lot of noise.
In particular, we find the presence of many spurious nouns
and adjectives. Therefore, we introduce a frequency thresh-
old F , which filters out the nouns and adjectives that ap-
pear less than F times.

Thresholds L and F yield a more sparse network. How-
ever, it could still be possible that some non-statistically
significant term relations were reflected in the network links.
Thus, we decide to apply a sensible filter to the network
topology, the disparity filter [9]. The disparity filter is a lo-
cal filter that compares the weights of all links attached to

a given node against a null model, keeping only the links
that cannot be explained by the null model under a cer-
tain confidence level α 5 . This confidence level α can be
thought of as a p-value (p = 1−α) assessing the statistical
significance of a link.

3.4 Network statistics and parameter configuration

After applying the three aforementioned steps, we obtain
several network configurations depending on the different
parameter values L, F and p. After preliminary assess-
ment, which we omit due to space constraints, we decided
to use L = 5, F = 10 and p = 0.01. Fig. 1 shows a
subset of the obtained network. With this configuration we
obtain a weighted undirected network of 10, 928 nodes (in-
cluding nouns and adjectives) and 39, 067 edges, resulting
in an average degree of 7.15. Furthermore, the network
has an average clustering coefficient of 0.309 and a short-
est path of 3.658, which are very common values for many
other real-world networks [6].

4. RESULTS AND DISCUSSION

4.1 Node betweennes centrality

The resulting weighted network can be analyzed by using
different network measures. One of such measures is be-
tweenness centrality. The betweenness centrality measures
the importance of a node to the network. It does so by find-
ing the number of shortest paths from all the nodes to all
other nodes that pass through that node [6].

5 The null model assumes that the strength of a given node is homoge-
neously distributed among all its links.



Parameter configuration Num. matched Num. matched Hit % MRR
performers performer-instrument

pairs

F = 10, L = 5, p = 0.01 104 63 95.24 95.24
F = 10, L = 10, p = 0.01 114 70 80.00 85.48

Table 3. Predicted performer/instrument pairs using frequent co-occurrences.

Table 2 illustrates the top-5 nodes with highest between-
ness centrality for each term category. Regarding the raa-
gas, Kalyani and Bhairavi (two major raagas in Carnatic
music) are two frequent choices of artists in order to do
a Raagam-Taanam-Pallavi, a complete exposition of their
skills in a given raaga [12]. Ragamalika is not exactly a
raaga per se, but a performance where the performer sings
more than a raaga in a single composition. In practice,
however, since all the combinations are often named as
just Ragamalika, without referring to the constituent raa-
gas, the term Ragamalika ends up being one of the most
frequent ones. Kannada is unfortunately an ambiguous
term. It can refer to a raaga or to the official language of
the south Indian state Karnataka. This is probably why the
term might have acquired more weight than, for instance,
the raaga Thodi, which is in principle more popular. As for
taalas, Adi is the most preferred taala in Carnatic compo-
sitions (511 out of 917 recordings in our Carnatic music
collection in MusicBrainz are performed in Adi taala). In
the case of Carnatic music performers, Lalgudi Jayaraman
is one of the violin trinity of Carnatic music, the three vi-
olinists who are considered the irrefutable masters of the
art. Moreover, he is also a renowned composer in the
modern times, which can explain why he was ranked high
in the betweenness centrality. Finally, regarding Carnatic
composers, Tyagaraja’s compositions constitute a signifi-
cant proportion of the Carnatic music repertoire (102 out
of the 293 works in our Carnatic music collection were
composed by Tyagaraja). Annamacharya is also a com-
poser with a large number of keerthanas, many of which
are sung either at the beginning or towards the end of a Car-
natic music concert. Keerthana is different from, and gen-
erally not as elaborate as, the compositional form called
Kriti. Kriti forms the crux of the compositional repertoire
in Carnatic music, and is considered to have evolved from
Keerthana. Purandara Dasa is called the father of Carnatic
music, both for his compositions and his systematization of
Carnatic music learning process. Papanasam Sivan was a
prominent composer from the state of Tamilnadu. Indeed,
he is often referred to as Tamil Tyagaraja. It happens that
many users of rasikas.org are from that region too.

4.2 Term co-occurrences

In this section we analyze co-occurrences of Carnatic mu-
sic terms. There are two possible ways to measure co-
occurrence of terms in a network. We distinguish between
frequent and relevant co-occurrences.

4.2.1 Frequent co-occurrences

By assuming that terms that co-occur most frequently have
a strong relation we can obtain much knowledge from the
network. As an example, we will show that network co-
occurrent terms allow for correctly guessing the instrument
of a performer. This is a non-trivial task whose accuracy
can be evaluated objectively, since ground truth data is
relatively easy to obtain. In particular, we use the same
sources from which we derived the Carnatic music dictio-
nary, Wikipedia and MusicBrainz. From MusicBrainz, we
get all the relations between performers and recordings. In
the case of Wikipedia, we match a list of instruments (de-
fined in our dictionary) against the text of Wikipedia ab-
stracts. The ground truth is finally filtered by removing
the cases where a performer has more than one instrument
(vocals are also considered instruments here).

To evaluate the instrument-performer pairing task we
use the weight of the links to rank the list of instrument
neighbors for each performer (i.e. to rank connected nodes
representing an instrument). Two measures are then used
to evaluate the predicted instruments in the network: hit
percentage and mean reciprocal rank (MRR). The hit per-
centage refers to correctly predicting the instrument in the
first rank. Sometimes, however, the correct answer does
not fall in the first rank, but rather in the second, third, or
other ranks. This can be measured with MRR, which we
define as

MRR =
100

N

N∑
n=1

rn, (1)

whereN is the number of co-occurring instruments and rn
is 1 if and only if the n-th instrument is the correct one for
a given performer.

As we can observe in Table 3, by considering simple
co-occurrences in the network we already achieve an accu-
racy of 95%, which means that we correctly predict 60 out
of the 63 performer-instrument pairs available. For com-
parative purposes, we also include the results obtained by
increasing the link threshold parameter L, which increases
the density of the network substantially. Even though the
latter configuration increases the number of matched per-
formers and instruments per performers, the accuracy of
the predicted instruments drops significantly, meaning that
a larger value of L is also adding noise to the network.

4.2.2 Relevant co-occurrences

Apart from evaluating co-occurrences by their frequency,
we also compute a relevance score for the co-occurrence.



Raaga Raaga Relevance

Kedaram Gowla 0.121
Bhavani Bhavapriya 0.109
Manavati Manoranjami 0.092
Kalavati Yagapriya 0.088
Nadanamakriya Punnagavarali 0.081

Table 4. Relevant co-occurrences of raagas with other raa-
gas.

Raaga Composer Relevance

Abhang Tukaram 0.159
Yaman kalyani Vyasa Raya 0.149
Pharaz Dharmapuri Subbarayar 0.143
Reethi Gowlai Subbaraya Sastri 0.122
Andolika Muthu Thandavar 0.108

Table 5. Relevant co-occurences of raagas with com-
posers.

In the network, this means that we compute a relevance
weight for the edge between a pair of nodes. The relevance
score Ri,j for a link between nodes i and j is obtained by

Ri,j =
wi,j

1
2 (di + dj)

, (2)

where wi,j is the weight of the link and dx is the degree of
node x. This score is giving more relevance to the nodes
that are more probable to have some relationship [6, 9].

We apply this relevance measure of co-occurrence to
combinations of the previously-mentioned term categories.
In this experiment we study two such combinations: raaga-
raaga and raaga-composer. Tables 4 and 5 show the top-5
more relevant co-occurrences of these two combinations,
which we now comment.

Raaga-raaga By looking back at the rasikas.org discus-
sion forum, we can confirm that the co-occurrences found
in Table 4 are related to discussions between different raa-
gas, or similar raagas with different naming conventions.
For instance, Bhavapriya raaga is also called Bhavani by
disciples of the famous composer Muthuswami Deekshi-
tar. For the co-occurrence of Kalavati and Ragapriya, a
discussion in a forum thread indicates that Kalavati and
Ragapriya are often confused with each other due to a few
historic reasons (e.g. naming convention). Some members
of the forum posted several facts and technical arguments
that are tied to both raagas 6 . It should be noted that al-
though our method helps us to find these important dis-
cussions in the forum, it does not have the knowledge that
they are in fact discussions. We believe that extracting con-
textual information of the co-occurrences in the text could
help to predict the type of relation between two terms.

6 http://www.rasikas.org/forum/viewtopic.php?t=
14435

Raaga-composer Intuitively, a relevant co-occurrence of
a raaga and a composer might mean that a composer is
known by or uses more frequently a particular raaga. In-
deed, that is the case of the relations in Table 5. Vyasa
Raya’s most famous composition, “Krishna Nee Bagane”
is in Yaman Kalyani raaga. Dharmapuri Subbarayar has a
popular composition in Pharaz raaga called “Smara Sun-
daranguni”. It is also the case of “Sevikka Vendumayya”
composition by Muthu Thandavar which is in Andolika
raaga . Contrasting a little bit with these good agreements,
the most relevant raaga-composer co-occurrences include
Abhang, which is a devotional poetry and not a raaga. This
is due to a misleading tag in our vocabulary suggesting that
Abhang is a raaga name, which suggests that a more accu-
rate cleaning process is needed for some terms.

4.3 Term semantic relations

The aim of this last experiment is to extract semantically
meaningful relationships between pairs of Carnatic music
terms. From the network perspective, given a pair of nodes,
we want to find another node that is connected to both
nodes, and that corresponds to a semantically meaningful
relationship concept. We call this node a connecting word.
For this experiment we use a predefined list of connecting
words, including concepts of lineage or family (mother, fa-
ther, husband, uncle, etc.) and musical influence (guru or
disciple) to identify the relationship between pairs of com-
posers and/or performers.

A straightforward approach is to use the same network
as before and match the list of predefined connecting words
in the common neighbors of a pair of nodes. However, the
global nature of the network does not allow to capture the
connecting words correctly, since a connecting word can
be related to any of the two compared terms separately.
Thus, another approach has to be considered. A possi-
ble solution is to apply the proposed methodology locally.
That is, instead of creating a single, global network, the
method described in Sec. 3 can be applied for each post
text individually. For each generated small network, we
identify all the common neighbors of a pair of composers
and/or performers that are related to the concepts of lin-
eage and musical influence. This experiment was evalu-
ated manually using Wikipedia and by asking a Carnatic
music expert.

From a total of 24 relations found in the network, our
method correctly infers 14 (58% of accuracy). A closer
look at the misclassified term relations reveals that many of
the wrong predictions were due to ambiguity problems of
natural language. For example, our method assigns the re-
lation guru for the following pairs of performers:
(Karaikudi Mani, G. Harishankar) and (Karaikudi Mani,
Mysore Manjunath). However, the term guru can also be
used as a prefix name of a person, in this case Guru
Karaikudi Mani. Finally, given for instance the following
sentence, “Abhisek is grandson of Palghat Raghu and dis-
ciple of P.S. Nayaranaswamy”, and since the name Abishek
is not included in our dictionary, our method incorrectly in-
fers a relation of disciple between Palghat Raghu and P.S.



Nayaranaswamy. It is clear that more advanced natural
language processing techniques should be applied in order
to solve these ambiguities. Nevertheless, our method is
already inferring some relations with a certain amount of
confidence, using very simple heuristics.

5. CONCLUSION AND FUTURE WORK

We presented a method for extracting musically-meaningful
semantic information from an online discussion forum, ded-
icated to the Carnatic art music tradition. For that, we de-
fined a dictionary of Carnatic music terms (from concepts
such as raagas, taalas, performers, etc.), and created an
undirected weighted network by matching such dictionary
against the forum posts. Three experiments were ran to
study different characteristics of the resulting network, ex-
tracting valuable information such as term relevance, term
co-occurrence and term relations via semantically connect-
ing words. In the first experiment, nodes with higher be-
tweenness centrality were usually highly correlated with
the popularity of Carnatic music terms. In the second ex-
periment, we showed that our method is able to predict
the instrument of a performer with a 95% of accuracy.
Furthermore, we were able to identify node pairings that
are relevant discussions in the forum, using a relevant co-
occurrence measure. Even though these discussions were
found, our methodology does not have the knowledge that
the co-occurrences are in fact discussions. Extracting con-
textual information of the co-occurrences in the text could
help to predict the type of relation between two terms. In
the last experiment, we showed that with simple heuristics
one can predict semantic relations related to lineage and
musical influence with a certain level of confidence.

There are many avenues for future work. Besides the
extraction of contextual information and the use of more
sophisticated natural language processing techniques, we
plan to explore methods that can capture users’ opinions
using, for instance, algorithms from sentiment analysis [7].
Regarding the forum structure, not all the posts or topics
are relevant enough to be added to the network. There-
fore, we want to find techniques to impose a confidence
value per post, depending on the users’ relevance to the
forum. Another relevant issue to be tackled is the use of
a more complete Carnatic music vocabulary. For that, we
plan to manually improve the metadata that can be found
in MusicBrainz and to use more resources to increment the
size of the dictionary. In order to ease reproducibility of
our work and to stimulate further research on the topic,
the data and code used for these experiments are publicly-
available 7 .
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ABSTRACT

When someone wishes to find the lyrics for a song they
typically go online and use a search engine. There are
a large number of lyrics available on the internet as the
effort required to transcribe and post lyrics is minimal.
These lyrics are promptly returned to the user with cus-
tomary search engine page ranking formula deciding the
ordering of these results based on links, views, clicks, etc.
However the content, and specifically, the accuracy of the
lyrics in question are not analysed or used in any way to
determine the rank of the lyrics, despite this being of con-
cern to the searcher. In this work, we show that online
lyrics are often inaccurate and the ranking methods used
by search engines do not distinguish the more accurate an-
notations. We present an alternative method for ranking
lyrics based purely on the collection of lyrics themselves
using the Lyrics Concurrence.

1. INTRODUCTION

Multiple copies of song lyrics are available on the internet
for almost any song. Due to this free availability, search
engines have become the common tool for finding lyrics.
As lyrics are relatively easy to mine from the web, and
given that the words to a song contain rich semantic infor-
mation, lyrics are also used for information retrieval such
as for karaoke data production, song-browsing, and thumb-
nailing [2, 3, 12, 15, 16]. The content of a song’s lyrics can
indicate the topic of the song [4], which genre it belongs to
[13], or be used for music indexing and artist similarity [8].
Another example of lyric based information retrieval uses
natural language processing to extract language, structure,
categorisation, and similarity from lyrics [11].

A contributing factor to the abundance of lyrics and a
potential problem for research in this area is the lack of
requirements, such as training or language knowledge, that
are typically necessary for professionally annotating lyrics.
Due to these issues, there is a high potential for song lyrics
to contain errors. This can lead to inaccurate lyrics being
presented to those using search engines to find lyrics as
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well as music information retrieval researchers who wish
to mine the rich semantic content within lyrics.

In this paper we are concerned with ranking web based
song lyrics. Whilst previous work has focused on using
multiple sequence alignment to determine the single most
accurate lyrics for a song [5, 6], ours is concerned with
ranking lyrics, so that users can apply their own selection
should the first result not be appropriate. To the best of
our knowledge, lyrics ranking has only previously been at-
tempted as part of more generalised web resource rank-
ing methods [14]. In order to evaluate song lyrics ranking
we first describe a test data set for this purpose and we
then proceed to mine the web for lyrics of the songs in
this dataset. We then formulate a metric to compare each
lyric to the ground truth, as an accuracy measurement, and
to other versions to calculate the Lyrics Concurrence, an
adaptation of the Chords Concurrence and Structure Con-
currence used to rank guitar tablature [10]. We then adapt
the ranking methods outlined previously to evaluate these
methods by measuring their correlation with the lyrics’ ac-
curacy.

2. TEST DATA: THE MUSIXMATCH DATASET

The Million Song Dataset (MSD) 1 is a collection of meta-
data for a million popular music tracks [1] produced by
LabROSA in collaboration with The Echo Nest. A subset
of this data, called the musicXmatch Dataset (MXMD), 2

consists of 237,662 lyrics to songs within the MSD pro-
vided in a Bag-of-words format with the 5000 most com-
mon (stemmed) words.

2.1 Bag-of-words Format

The Bag-of-words format (BOW) is primarily a means of
summarising text by listing the unique words with the num-
ber of occurrences of each word in the text, with all punc-
tuation removed. These word and count pairs are ordered
by their count with the most common coming first. For
example:

“On mules we find two legs behind and two we find before.
We stand behind before we find what those behind be for.”

can be represented in BOW format as:

“we:4, find:3, behind:3, two:2, before:2, on:1, mules:1,
legs:1, and:1, stand:1, what:1, those:1, be:1, for:1”

1 http://labrosa.ee.columbia.edu/millionsong/
2 http://labrosa.ee.columbia.edu/millionsong/musixmatch



Additionally the words are stemmed [9] so that words with
different endings are reduced to their root form, reduc-
ing the number of unique words. Using this BOW format
avoids copyright issues with sharing lyrics for the purposes
of research.

3. LYRICS MINING

For each of the 237,662 tracks in the MXMD we searched
DogPile 3 for lyrics using the following terms:
“<artist><song>lyrics -video”. DogPile was chosen as
it returns results from all the popular search engines and
yet is more easy to data mine. Previous web mining ap-
proaches have used the Google Web API in a similar fash-
ion [5, 6], however we required a search engine with an
unrestricted number of searches. From the list of URLs re-
turned by this search we selected only those that contained
the song title in the URL. This set of URLs provides a sim-
ilar representation of the URLs a user might select when
manually searching for lyrics. 888,745 URLs were found
using this method for the 237,662 tracks. In order to extract
the lyrics from the URLs we separated and analysed each
line to determine whether it contained lyrics-like text and
then selected the longest sequence of lyrics-like text lines
in the page. Any lyrics that were less than three lines or
over 200 lines long were discarded. As we are interested
in comparing with Concurrence, we discarded songs and
their lyrics if they had less than three lyrics associated with
the song. The lyrics extraction process is demonstrated in
Figure 1.

I once had a girl, or should I say, she once had me... 
She showed me her room isn't it good norwegian wood
She asked me to stay and she told me to sit anywhere
So I looked around and I noticed there wasn't a chair
I sat on a rug biding my time drinking her wine
We talked until two and then she said It's time for bed
She told me she worked in the morning and started to laughShe told me she worked in the morning and started to laugh
I told her I didn't and crawled off to sleep in the bath
And when I awoke I was alone this bird had flown
So I lit a fire isn't it good norwegian wood

Figure 1. An example lyrics web page and the lyrics ex-
tracted from it.

4. LYRICS EVALUATION METRICS

In this section we give an overview of the metrics used
in judging the accuracy and similarity of lyrics. The first
method, Levenshtein Edit Distance, is a well known Dy-
namic Programming method for comparing strings. We

3 http://www.dogpile.com/

use the Levenshtein Edit Distance to judge the similarity
of lyrics and this is used later in the Lyrics Concurrence
ranking method.

4.1 Levenshtein Edit Distance

The Levenshtein Edit Distance (LED) [7] counts the num-
ber of “edits” required to transform one string into an-
other. An edit is classed as an insertion, deletion, or sub-
stitution of a single character. LED uses a cost of 0 for
matches and 1 for any edit (insertion, deletion or alter-
ation). As such the LED of “sun” and “sing” is 2 (substi-
tution of the letter ‘u’ for ‘i’ and insertion of the letter ‘g’).
The LED cost is found by calculating a path P (U, V ) =
(p1, p2, ..., pW ) through a matrix of costs between strings
U = (u1, u2, ..., uM ) and V = (v1, v2, ..., vN ). This cost
matrix is described as dU,V (m,n) where m ∈ [1 : M ] and
n ∈ [1 : N ] where each position in the path is designated
as pk = (mk, nk). A simple bottom-up algorithm for cal-
culating the LED in O(N2) time and space is shown in
Algorithm 1. In this example a matrix of edit costs is cal-
culated between two strings, so that the cell in the final row
and column would contain the total number of required ed-
its. Additionally, an example of the “cost matrix” and the
solution this algorithm produces can be seen in Table 1.

Input: String A, String B
Output: Levenshtein Edit Distance LED
Matrix m; m[0, 0] := (A[0] == B[0]? 0 : 1);
for a ∈ [1..A.length] do

m[a, 0] := (A[a] == B[0]? 0 : 1) +m[a− 1, 0];
end
for b ∈ [1..B.length] do

m[0, b] := (B[b] == A[0]? 0 : 1) +m[0, b− 1];
end
for a ∈ [1..A.length] do

for b ∈ [1..B.length] do
m[a, b] := (A[a] == B[b]? m[a− 1, b− 1] :
1 +min(m[a− 1, b],m[a− 1, b−
1],m[a, b− 1]));

end
end
return LED := m[A.length,B.length];

Algorithm 1: The Levenshtein Edit Distance.

4.2 Lyric Accuracy (LA)

In order to calculate the accuracy of the lyrics we first con-
vert the lyrics to the BOW format with the 5000 most com-
mon stemmed words (as designated by the MXMD set) us-
ing the same stemming code the MXMD set used. We de-
scribe the ground truth MXMD BOWG = (g1, g2, ..., gM )
and the lyrics BOW L = (l1, l2, ..., lN ) as sets of word
(wi) and count (xi) pairs where gi = (wi, xi). Each word
in the ground truth BOWG is looked for in the lyrics BOW
L so that if a match is found i.e. gm(w) = ln(w). There-
fore each ground truth word yields an expected word count
gm(x) and a found word count of lk(x) if the word was
present in the lyrics BOW and 0 if not. If the found word



String A: all the other kids
String B: with their pumped up kicks

a l l t h e o t h e r k i d s
w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i 2 2 3 4 5 6 7 8 9 10 11 12 12 13 14
t 3 3 3 3 4 5 6 7 8 9 10 11 12 13 14
h 4 4 4 4 3 4 5 6 7 8 9 10 11 12 13
t 5 5 5 4 4 4 5 5 6 7 8 9 10 11 12
h 6 6 6 5 4 5 5 6 5 6 7 8 9 10 11
e 7 7 7 6 5 4 5 6 6 5 6 7 8 9 10
p 8 8 8 7 6 5 5 6 7 6 6 7 8 9 10
u 9 9 9 8 7 6 6 6 7 7 7 7 8 9 10
m 10 10 10 9 8 7 7 7 7 8 8 8 8 9 10
p 11 11 11 10 9 8 8 8 8 8 9 9 9 9 10
e 12 12 12 11 10 9 9 9 9 8 9 10 10 10 10
d 13 13 13 12 11 10 10 10 10 9 9 10 11 10 11
u 14 14 14 13 12 11 11 11 11 10 10 10 11 11 11
p 15 15 15 14 13 12 12 12 12 11 11 11 11 12 12
k 16 16 16 15 14 13 13 13 13 12 12 11 12 12 13
i 17 17 17 16 15 14 14 14 14 13 13 12 11 12 13
c 18 18 18 17 16 15 15 15 15 14 14 13 12 12 13
k 19 19 19 18 17 16 16 16 16 15 15 14 13 13 13
s 20 20 20 19 18 17 17 17 17 16 16 15 14 14 13

Table 1. An example of a Levenshtein Edit Distance
(LED) requiring 13 edits (with spaces removed).

count is greater than the expected word count, the found
count is replaced as the expected count minus the differ-
ence or 0 if this difference is greater than the expected
count. The LA is calculated as the sum of the found word
counts divided by the sum of the expected word counts
multiplied by 100 and divided by the sum of the ground
truth counts expected, so as to be expressed as a percent-
age. Equation 1 shows this calculation and Table 2 shows
an example of the LA measurement.

LA(G,L) =
∑

max(gm(x)− |gm(x)− lk(x)|, 0)∑
gm(x)

× 100

(1)

Ground Truth: “Are we human or are we dancer? My
sign is vital, my hands are cold”

Lyrics: “Are we human or are we dancers? My signs
are vital, my hands are cold”

Lyrics Accuracy (LA): (12/14)× 100 = 85.7%
(wrong count for “is” and wrong count for “are”)

Table 2. Lyrics Accuracy (LA) example.

4.3 Lyrics Similarity (LS)

The Lyrics Similarity is a measure of how similar two lyrics,
L1 and L2 are. We use the LED of the entire sequence
of characters in both lyrics, not stemmed and with all the
punctuation included. We convert the LED to a similarity

score by normalising to the perfect score, then inverting
and multiplying by 100 to give a value from 0 to 100:

LS(L1, L2) =
(

1− LED(L1, L2)
max(L1, L2)

)
× 100 (2)

For the Lyrics Ranking experiments we additionally tried
a variation of the LS called LSns where spaces are removed
from the input lyrics L1 and L2. The incentive for remov-
ing spaces is that, as the average english word length is 5
characters, spaces make up roughly 1

6 of the text and pos-
sibly contain less relevant information than the rest of the
text. As the LED has quadratic costs, reducing the input
sequences by 1

6 reduces the processing time and memory
requirements of this method by 31%.

Lyrics 1: “On mules we find two legs behind and two
we find before.”

Lyrics 2: “We stand behind before we find what those
behind be for.”

Lyrics Similarity (LS): 43.8%
Lyrics Similarity no spaces (LSns): 45.7%

Lyrics 1: “Are we human or are we dancer?
My sign is vital, my hands are cold’ ’

Lyrics 2: “Are we human or are we dancers?
My signs are vital, my hands are cold”

Lyrics Similarity (LS): 92.9%
Lyrics Similarity no spaces (LSns): 90.9%

Lyrics 1: “Scaramouche, Scaramouche,
will you do the Fandango”

Lyrics 2: “Scallaboosh, Scallaboosh,
will you to the banned tango”

Lyrics Similarity (LS): 69.1%
Lyrics Similarity no spaces (LSns): 66.0%

Lyrics 1: Radiohead - High and Dry
(azlyrics.com/lyrics/radiohead/highdry.html)

Lyrics 2: Jamie Cullum - High and Dry
(azlyrics.com/lyrics/jamiecullum/highanddry.html)

Lyrics Similarity (LS): 86.6%
Lyrics Similarity no spaces (LSns): 86.0%

Table 3. Lyrics Similarity (LS) examples.

5. LYRICS STATISTICS

The final list of lyrics included 358,535 lyrics for 67,156
songs with an average Lyrics Accuracy of 38.6%. The dis-
tribution of the lyrics over these songs can be seen in Fig-
ure 2. This lyrics distribution shows a quick drop off in
the number of lyrics per song after the songs with less than
three lyrics were removed. The range of lyrics accuracy
results can be seen in the histogram in Figure 3. The large
number of low accuracy lyrics and the low average Lyrics
Accuracy suggest the lyrics mining procedure failed to fil-
ter out all the non-text lyrics, however, this is not a triv-
ial task for users browsing the web either and so we al-
low these non lyrics to be considered within the ranking
method experiments as one purpose of these methods is to



differentiate between lyrics and non-lyrics. In Section 7.1
we examine the possibility of removing these non-lyrics
to judge their effect on the ranking experiments. Table 4
shows the top twenty lyrics domains based on their aver-
age Lyrics Accuracy. The increase in Lyrics Accuracy of
these domains over the average suggests that a simple fil-
ter restricting the results to known accurate lyrics domains
would remove most of the non-lyrics.
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Figure 2. A histogram showing the distribution of lyrics
for the 61,755 songs.
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Figure 3. A histogram showing the distribution of the
lyrics accuracies.

LA Domain Lyrics
55.82% www.alivelyrics.com 123
52.75% www.sing365.com 15798
52.53% www.popular-lyrics.com 142
52.43% www.plyrics.com 127
52.34% www.musicsonglyrics.com 3307
52.33% www.lyricspond.com 535
52.25% www.songteksten.nl 1178
51.97% www.lyricsdepot.com 3301
51.93% www.azlyrics.com 7006
51.30% www.1songlyrics.com 253
51.11% www.absolutelyrics.com 1360
51.02% www.lyricsondemand.com 2909
50.85% www.sarkisozum.gen.tr 138
50.72% www.christian-lyrics.net 167
50.62% www.lyricsdomain.com 925
50.57% www.lyricstop.com 235
50.084% www.cowboylyrics.com 1656
49.26% www.lyriczz.com 682
49.08% www.lyricsreg.com 1877
49.01% www.lyricmania.com 155

Table 4. Average accuracy rates for different lyrics do-
mains.

6. LYRICS RANKING METHODS

The following methods describe how we apply the ranking
methods to the lyrics.

6.1 Search Engine Results Page Rank

The lyric’s Search Engine Results Page Rank (SERP Rank)
corresponds to where the URL of the lyric is found in the
ordered list of DogPile’s ranked search results. Values
range from 1 (best) to 100 (worst known), as our mining
was restricted to the top 100 results (see Section 3). All
the lyrics were mined using DogPile and as such had an
associated SERP Rank.

6.2 Date Modified

The Date Modified value is expressed as the number of
milliseconds since 00:00:00 January 1, 1970 GMT. 137,875
of the 358,535 lyrics had an associated last date modified
that was greater than 0. Any value of 0 is ignored as it was
presumed that such a date was unknown.

6.3 Lyrics Concurrence

To determine the extent to which lyrics of songs agree with
a set of lyrics, we measure the Lyrics Concurrence as the
average of the Lyrics Similarities between a lyric Lk and
the other lyrics of the same song Li(i 6= k).

LC(Lk) =
n∑

i=1,i6=k

LS(Lk, Li)/(n− 1) (3)

6.4 Lyrics Concurrence NS (LCns)

Additionally, we measure the Lyrics Concurrence No Spaces
as the average of the LSns between a lyrics’ Lk and the
other Lyrics of the same song Li(i 6= k).

LCns(Lk) =
n∑

i=1,i6=k

LSns(Lk, Li)/(n− 1) (4)

7. LYRICS RANKING EVALUATION

In order to measure correlation we use two alternative mea-
surements, the Pearson Product-Moment Correlation Co-
efficient (PCC), and the Spearman’s Rank Correlation Co-
efficient (SCC). Table 5 shows the correlations found be-
tween the lyrics LA and the 4 ranking methods described
above. Figure 4 shows scatter graphs of the accuracy and
rank of the lyrics using two of the methods: SERP Rank
and Lyrics Concurrence. The correlations show the Lyrics
Concurrence having the strongest correlation, the SERP
Rank having a weak correlation (the negative correlation is
expected as lower values indicate a better SERP Rank) and
the Date Modified having a very low correlation. Compar-
ing LC and LCns we find that discarding spaces improves
the correlation slightly therefore LCns improves perfor-
mance in both accuracy and efficiency. The results of this
experiment show that analysing the content of the meta-
data in comparison to the other metadata available leads to



Figure 4. Scatter graphs showing the trends between LA
and respectively the SERP Rank (above) and Lyrics Con-
currence (below) on 358,535 lyrics.

a better ranking system than methods based on user statis-
tics and link analysis or the date modified.

Ranking Method PCC (r) SCC (ρ) Samples
LA

Lyrics Concurrence 0.654 0.607 358535
Lyrics Concurrence NS 0.657 0.609 358535
SERP Rank -0.206 -0.190 358535
Date Modified 0.016 0.012 137875

Table 5. Number of samples and correlation values be-
tween various ranking methods and the Lyrics Accuracy
(LA).

7.1 To What Extent do Non-Lyrics Affect Ranking
Correlations?

As mentioned previously, the Lyrics data contains many
files that are not lyrics at all (as is evident from the dark
cluster of low accuracy results in Figure 4) and this may
affect the correlations. We therefore repeat the ranking
methods experiment excluding the files that have a Lyrics
Accuracy of less than 10%, the results of which are shown
in Table 6. The ranking methods all see a reduction in the
correlation between rank and Lyrics Accuracy. However,
this difference also suggests that the methods could be used
to help distinguish lyrics from non-lyrics.

Ranking Method PCC (r) SCC (ρ) Samples
LA

Lyrics Concurrence 0.477 0.477 289346
Lyrics Concurrence NS 0.484 0.484 289346
SERP Rank -0.191 -0.191 289346
Date Modified 0.009 0.033 107661

Table 6. A modified version of Table 5 showing corre-
lation values between various ranking methods and the
Lyrics Accuracy (LA) without the lyrics with an LA of less
than 10%.

7.2 Is Lyrics Concurrence Dependent on Sample Size?

To see if the number of lyrics available for a particular
song effects the correlation of Lyrics Concurrence with
lyrics Accuracy, we calculate the correlation between N
(the number of lyrics for a particular song) and C (corre-
lation between LA and LC) for each of the 61,755 songs.
The result, 0.074, is not statistically significant for the sam-
ple size, suggesting that Lyrics Concurrence is a relevant
indicator of accuracy providing the sample size is at least
3 as is the case in these tests.

7.3 Song Lyrics Detection

We also attempt to use the lyrics ranking methods as lyrics
detection systems by taking the highest ranking lyrics for
each of the 61,755 songs. Table 7 shows the average ac-
curacy of the ranking methods. Of the ranking methods,
the Lyrics Concurrence is the most successful feature for
selecting the most accurate lyrics to use.

Detection Method Lyrics Accuracy
Lyrics Concurrence 47.3%
Date Modified 43.6%
SERP Rank 42.5%
Randomly Selected 38.6%

Table 7. The average Lyrics Accuracy of the top ranked
lyrics over 61,755 tracks (41,614 tracks in the case of Date
Modified as 38.5% of the lyrics don’t have an associated
date). The final row shows the average as if the lyrics were
randomly selected.



8. DISCUSSION

In this paper we have examined the need for greater rank-
ing of online music metadata and proposed a solution to
this problem. The Lyrics Concurrence is a method for
ranking music lyrics based on the similarity of its lyrical
content to other lyrics of the same song. The rationale of
the Concurrence factor is that the correctness of metadata,
is determined by agreement of expert human annotators.
We have shown that Lyrics Concurrence is a reliable in-
dicator of accuracy, providing a greater correlation with
the accuracy of the lyrics than the date modified or SERP
Rank. During the time of this experiment there were no
ratings available for the lyrics, however, some lyrics web-
sites have started to incorporate this feature. User ratings
can act as an additional ranking method and future work
could compare this method with those evaluated here, how-
ever, a similar study found user ratings to be a poor ranking
method for guitar tablature [10].

It is hoped that the Concurrence ranking method can be
utilised in search engines to ensure that accurate annota-
tions are ranked more favourably, although the computa-
tional costs involved in comparing hundreds of lyrics with
each other may limit the usage of such a technique to off-
line cases. Future ranking methods might focus on com-
bining Concurrence with SERP Rank, User Rating, or link-
ing lyrics with other sources of metadata such as chords,
in order to improve the correlation of the ranking with the
accuracy. Such an approach may allow a more complete
annotation of a different type to fill out any missing or ab-
breviated segments by repeating the aligned section.
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ABSTRACT 

This paper is a preliminary report of findings in an on-
going study of the role of music in the lives of homeless 
young people which is taking place in Vancouver, British 
Columbia and Seattle, WA. One hundred homeless young 
people in Vancouver took part in online surveys, 20 of 
these young people participated in interviews and 64 
completed design activities. Surveys included demo-
graphic and music questions. Interviews consisted of 
questions about music listening and preferences. In the 
design activities, participants envisioned a music device 
and provided a drawing and a scenario. Since the study is 
on-going, findings are limited to descriptive analysis of 
survey data supplemented with interview data. These 
findings provide initial insights into music listening be-
haviors, social aspects of shared music interests, and pre-
ferred music genres, bands and artists, and moods. 

1. INTRODUCTION 

Homelessness is a pressing problem with lasting social 
and economic consequences. Experts estimate that in a 
given year, 3 million young people age 12-24 experience 
homelessness in the U.S and 50,000-60,000 experience 
homelessness in Canada [11,13]. The number of homeless 
young people and interest in their welfare has prompted 
research into their characteristics and circumstances. This 
extensive research with homeless young people has found 
that these young people are a heterogeneous group rang-
ing from youth to young adulthood, with varying experi-
ences of abuse and neglect [11,13]. Indeed, much is 
known about the psychological and social (psycho-social) 
aspects of homeless young people, but far less is known 
about their everyday lives, including interests in music, 
and associated experiences with technologies. 

Subsequently, since 2007, the first author has investi-
gated the experiences that homeless young people, aged 
up to 30, have with technologies, including music players 
[15,16,17]. One finding arising from this work is that 
homeless young people have a keen interest in music and 

use digital means to find and listen to music and share 
music with others. The current study builds on this prior 
work by taking a general and exploratory stance, asking: 
What role does music play in the lives of homeless young 
people? In response, this paper presents preliminary find-
ings from an on-going study in Vancouver, British Co-
lumbia and Seattle, Washington, reporting on data col-
lected in Vancouver in February and March 2012. 

2. LITERATURE REVIEW 

Consideration of the role that music might play in the 
lives of young people began in antiquity. Writing in 
B.C.E. 350, Aristotle proposed that music “might have 
some influence over the character and the soul” and 
should therefore “be introduced into the education of the 
young” [2]. In the 20th century, the music interests of 
young people living at home have been studied extensive-
ly in the psycho-social literature. For example, over 100 
studies since the 1970s have focused on possible associa-
tions between preferences for particular genres of music 
or types of music-related media use and risk-taking be-
haviors, such as drug and alcohol use, high-risk sexual 
activity, and so on [1]. Despite the high rates of risk-
taking behaviors among homeless young people [11,13] 
and the general lack of knowledge regarding homeless 
young people’s interests in and behaviors related to mu-
sic, after extensive searching only a single study in the 
psycho-social literature was found that had investigated 
music and homeless young people [7].  

In a similar fashion, studies in the domain of music in-
formation retrieval have investigated the music listening 
and sharing behaviors of young people living at home. 
Williams [14] examined issues relating to popular music 
audiences by conducting unstructured small group discus-
sions with teenagers in England. His subjects stated that 
music was important in their lives, but “interestingly, they 
framed its significance in terms of its practical use (of 
music) in their daily routines,” rather than identification 
or self-construction [14]. Laplante and Downie published 
a series of studies examining music related behaviors of 
young adults in Montreal, Canada, specifically on music 
seeking in everyday life [9], relevance judgments [8], and 
outcomes of music seeking [10]. In one study, partici-
pants reported that informal channels such as friends, col-
leagues or relatives played a significant role in obtaining 
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music information [9]. In another study, participant’s rel-
evance judgments were based on a combination of differ-
ent criteria, some pertaining to the music itself, but also 
external factors such as use, disposition, or personal 
knowledge [8]. Finally, further analysis revealed that par-
ticipant’s satisfaction with music depended on both he-
donic (i.e., experiencing pleasure) as well as utilitarian 
outcomes [10]. Carlisle [5] conducted in-depth online in-
terviews with five young Australians, aged 18-22, and 
found that each young person wanted digital music for 
markedly different reasons and had high personal stakes 
in their musical perspective. Taken together, these studies 
provide important insights regarding the needs, uses, and 
music seeking behaviors of young adults in various re-
gions. However, as in the psycho-social literature, search-
ing did not reveal studies with homeless young people. 
Subsequently, the current study aims to increase 
knowledge by providing empirical data on the role of mu-
sic in the lives of homeless young people.     

3. STUDY DESIGN 

When the current study is complete, all procedures will 
have been carried out with equal numbers of participants 
in Vancouver, BC and Seattle, WA. This brief, prelimi-
nary report only includes data from homeless young peo-
ple in Vancouver (collected in February and March 2012) 
since data collection in Seattle is planned to begin in June 
2012. The study uses convenience sampling and is taking 
place in collaboration with two youth service agencies, 
one in each city, that provide assistance and shelter for 
homeless young people. Data in the study is anonymous 
and names of participants are not collected. 

In keeping with the exploratory nature of the goals of 
the research, the study is a broadly conceptualized, mixed 
methods design. The procedures with homeless young 
people include three components: (1) an online survey 
with up to 100 homeless young people in each city; (2) 
individual, semi-structured interviews with up to 20 
homeless young people in each city; and (3) a self-
directed, individual design activity with up to 100 home-
less young people in each city. Following approved hu-
man subjects protocols, young people were recruited by 
staff at a homeless youth service agency while attending 
agency programs. The first author obtained verbal consent 
from all participants, then introduced and conducted or 
moderated the surveys, interviews and design activities. 
The procedures took place sequentially so that a young 
person first engaged in the survey and was then invited to 
take part in an interview - until 20 interviews were com-
pleted. Finally, all young people who took part in the sur-
veys, whether or not they had been interviewed, were in-
vited to complete the design activity. Homeless young 
people were compensated with gift cards, from $5-20 de-
pending on the number of procedures. In sum, 100 home-
less young people in Vancouver, BC completed surveys, 

20 of these people also completed interviews and 64 par-
ticipated in the design activity. 

4. FINDINGS AND DISCUSSION 

4.1 Overview 

The data analyzed in this paper include self-reported sur-
vey responses from 100 homeless young people to ten key 
demographic and music questions (Table 1) with detail 
from four additional survey questions. Homeless young 
people completed surveys on one of three laptop comput-
ers. Time needed to complete the surveys ranged from 15-
65 minutes (M=35 minutes). Importantly, in order to min-
imize stress due to the personal nature of the questions, 
responses to survey questions other than age, gender, 
race, and sexual orientation were voluntary, resulting in 
some no responses. Survey participants were 16-24 years 
old (Mdn=22) and predominately male (63%). Partici-
pants identified as heterosexual (68%), bisexual (21%), 
homosexual (6%), queer (4%), and unsure (1%). Most 
participants reported their race as White (38%), Aborigi-
nal (27%), or Mixed Race (23%). Half of the participants 
(50%) had not completed high school (Table 1).  

Additionally, regarding homelessness, participants re-
ported that they first became homeless between 2 and 23 
years of age (Mdn=16). Participants also reported that 
they had experienced a total between 0 and 132 months 
(11 years) of homelessness during their lifetimes. The “0 
years, 0 months” responses may indicate that, despite at-
tending programs at an agency that provides services ex-
clusively for homeless young people, some of the partici-
pants did not consider themselves to be homeless or they 
had very recently become homeless. However, these 15 
responses should be interpreted cautiously since “0 years, 
0 months” was the default answer. Thus, these responses 
may also indicate skipped questions. If these responses 
are eliminated, the number of months of homelessness 
reported by the remaining 85 respondents was 1 to 132 
months during their lifetimes (M=24 months). 

Regarding music, 97 participants reported that they lis-
tened to music on a daily basis and for many reasons with 
the most frequent responses being related to emotional 
welfare. Notably, for these questions, there were three “I 
don’t listen to music” responses from two participants. 
The first participant gave contradicting responses, indicat-
ing that she listened to music “2-4 hours a day” on one 
question and “I don’t listen to music” on the other. This 
may indicate some change in her music listening behav-
ior, although this was not confirmed. The second partici-
pant, who took part in an interview, was a guitarist and 
singer who performed on the street to make money. Ex-
plaining her responses, she stated, “I don’t listen to music. 
I play music.” 

Approximately one-third of the young people indicated 
that they listened to the same music as their parents, and 



  

 

half indicated other family members. Over half of the 
young people indicated that they listened to the same mu-
sic as friends from home or the streets. Indeed, 17 partici-
pants also indicated that they made decisions about estab-
lishing friendships based on music preferences. More than 
half of the participants listened most often to hip hop, 
rock, and rhythm and blues (R&B), although techno and 
metal were also listened to by nearly half of the partici-
pants.  

4.2 Discussion 

The data presented so far indicate that music does play a 
role in the lives of homeless young people. In order to 
elaborate this role, a discussion follows regarding: (1) 
music-listening behaviors; (2) social aspects of shared 
music interests; and (3) genres, bands/artists and moods. 
The discussion is supplemented with evidence drawn 
from 20 interviews with homeless young people. Since 
names of participants were not collected in order to pre-
serve participant’s privacy, pseudonyms are used to iden-
tify participants as needed. 

Participants in the interviews were 14 young men and 6 
young women, aged 18-24 (Mdn=21). Consistent with 
prior work [16], interview times ranged widely, from 9-70 
minutes (M=45). However, despite homeless young peo-
ple’s general distrust of adults and strangers, with one ex-
ception the participants seemed at ease, speaking willing-
ly and at length. Of the 20 interview participants, 13 peo-
ple had personal music players, such as MP3 players and 
mobile phones, and 15 people reported that they had mu-
sic collections ranging from “11-50” to “over 10,000” 
songs (Mdn=101-500 songs). The size of these song col-
lections may seem surprising. However, in the interviews, 
some participants stated that since they did not have mon-
ey to pay for music, they “stole music” and used a variety 
of “pirate” websites to download songs.  

The interviews with homeless young people included 
questions regarding music listening and preferences, as 
well as questions related to the importance and influence 
of music. The interviews began with an activity where 
young people wrote responses on a 24-hour timeline. 
When writing on the timelines, participants were asked to 
indicate what music they listened to, where they were, 
who they were with, what they were doing, and so on.  

After the timeline was filled in, young people rated the 
importance of music (from very low to very high) and the 
influence of music (from very negative to very positive) 
on 5-point Likert scales. The importance of music was 
rated from low to very high with an average between high 
and very high (4.125 out of 5). The influence of music 
was rated from very negative to very positive with an av-
erage between neutral and positive (3.75 out of 5). As 
part of this rating, young people told stories about a time 
when music was important and a time when music had a 
positive or negative influence. Finally, young people 
shared at least one favorite song using a speaker to play 

songs from music players, or playing videos on YouTube, 
or singing songs that they had composed or memorized. 

4.2.1 Music-listening Behaviors 

In the surveys and interviews, homeless young people re-
ported that they listened to music on a daily basis, more 

DEMOGRAPHICS WHY DO YOU LISTEN  
 n TO MUSIC?* n 
Age 
  16-18 
  19-21 
  22-24   
Gender 
  Male 
  Female 
  Transgender 

Ethnicity  
  White 
  Aboriginal 
  Mixed Race 
  Black 
  Asian 
  Arab 
  Latino 
  Other 

Degree 
  None 
  High school 
  Trade school 
  2 yr  college 
  4 yr college 
  No response 

Current job? 
  Yes 
  No 
  No response 

 
9 

35 
56 

 
63 
36 
1 

 
38 
27 
23 
4 
3 
1 
1 
3 

 
50 
38 
6 
3 
0 
3 

 
26 
73 
1  

    Calm down or relieve tension  
    Help get through difficult times  
    Relieve boredom  
    Get rid of negative feelings/anger  
    Express feelings or emotions  
    Be creative/use imagination  
    Wake myself up  
    Reduce loneliness  
    Separate myself from society 
    Get better playing/writing music  
    Create an image 
    Be trendy or cool  
    Please my friends  
    Please my parents  
    No response 
    I don’t listen to music 

  ON AVERAGE, HOW MANY HOURS      

 A DAY DO YOU LISTEN TO MUSIC? 
    1 hour or less  
    2-4 hours 
    5-8 hours 
    9 hours or more  
    No response  
    I don’t listen to music 

  FRIENDS WITH SOMEONE BASED 
  ON THE MUSIC HE OR SHE LIKES? 
     Yes 
    No 
    No response 

77 
74 
72 
68 
55 
54 
51 
48 
47 
34 
33 
16 
12 
3 
3 
2 

 
 

26 
34 
19 
18 
2 
1 

 
 

17 
80 
3 

  WHAT KINDS OF MUSIC DO YOU LISTEN TO?*  
    Hip hop  
    Rock  
    R&B   
    Techno  
    Metal  
    Pop 
    Reggae  
    Punk  
  Jazz 
  Other (includes Dubstep, Country, Rap, Celtic, etc.) 

70 
65 
56 
49 
47 
42 
38 
35 
30 
44 

  WHO LISTENS TO THE SAME MUSIC AS YOU DO?*  
    Friends or people you know from home  
    Friends or people you know from the streets  
    Brothers, sisters, cousins, or other family members   
    Boyfriend, girlfriend, or sex partner  
    Friends or people you met online  
    Parents (including foster family or step family)  
    Staff at youth agencies  
    Boss or employer at your job  
  No response  

61 
52 
50 
44 
33 
31 
13 
10 
7 

Table 1. Self-reported participant characteristics 
(n=100). *Multiple responses were allowed. 

 



  

 

often for practical purposes than for identification or self-
construction echoing the findings in [14]. For example, on 
the one hand, over 70 of the 100 participants reported that 
they listened to music for practical purposes, such as to 
“calm down or relieve tension,” “help get through diffi-
cult times,” or “relieve boredom.” On the other hand, 
fewer than 50 participants indicated that they listened to 
music in order to “separate myself from society,” “create 
an image,” “be trendy or cool,” or “please my friends 
(parents),” issues related to identity and self-construction.  

As further evidence of the practical aspects of listening 
to music, the timelines from the interviews indicated that 
all 20 respondents listened to music while engaging in 
activities such as waking up and going to sleep, hanging 
out with friends, and looking for work. For example, 
Sheila was 22 and listened to music from the time she 
woke up to the time she went to sleep. Sheila spoke of the 
importance and practical aspects of music while also 
highlighting its impact on her emotions, saying: 

I’ve been through a lot of f**ked up shit in my life and it’s 
nice…to hear people’s opinions…how they dealt with things 
in music … to kind of relate ‘I’m not the only one’…. I just 
think music is part of my life and I don’t think there would 
ever be a point…where I would say, ‘I don’t want to listen to 
music,’ ‘cause I either want to cry to it or I want to be happy 
to it or I want to dance around to it, but there’s always a 
song for no matter what emotion you’re experiencing.  

In another example, Brian, who was 21, listened to 
music throughout the day. However, he said he did not 
listen to music while studying for college classes where 
he had recently begun to learn how to read and write. Bri-
an rated the influence of music as both very positive and 
very negative. Speaking of the positive influence, he said 
that he liked to listen to 1990s rock music such as Bob 
Seger. Brian said that this music “brings you back to the 
positive times growing up,” particularly playing games 
with his brother and friends. More recently, he found that: 

When I’m doing my art I like to listen to MP3. So it kind of 
calms me so I’m into the artistic zone. Art is my hobby. I just 
recently discovered that after I quit drinking. 

On the other hand, he found that even some of his favorite 
songs by the Canadian musician, Matthew Good, could 
have a negative influence on his emotions: 

I have post traumatic stress disorder,… some of the music 
that I listen to kind of triggers me… and makes me feel down. 
Cause some of the songs I do enjoy are really deep and real-
ly sad,… so I get kind of saddened a bit…, so I then actually 
change the song to try to get on a happier page. 

4.2.2 Social Aspects of Shared Music Interests  

Findings in the current study indicate that friends or fami-
ly are sources of music information [9], and that shared 
interests play some role in social relationships. In survey 
and interview responses, homeless young people reported 
that they shared music interests with friends from home as 
well as friends from the street. For some interview partic-

ipants, shared interests with friends led to the desire to 
attend music concerts, which can be difficult for homeless 
young people due to their economic circumstances. How-
ever, Arthur, age 21, a Dubstep fan who played a favorite 
song by Flux Pavilion [6], spoke enthusiastically about 
plans he had to go to an upcoming concert. Arthur and his 
friend Drew, age 20, another Dubstep fan, also talked in 
their individual interviews about going together to raves, 
dance parties where electronic music is played. 

Although for most respondents (80%), music was not a 
determining factor in establishing friendships, 17% re-
sponded positively on the survey when asked, “Do you 
decide whether to be friends with someone based on the 
music he or she likes?” Indeed, for some participants, not 
having shared music interests could be potentially isolat-
ing. For instance, Matthew, age 20, enjoyed death metal 
music, and chose a favorite video by Behemoth to play 
during his interview [4]. Matthew expressed surprise 
when the first author was not put off by the video and said 
he rarely listened to his favorite music with other people 
because they did not share his taste in music. 

Participants also reported shared music interests with 
family. For example, Sheila, introduced above, spoke 
about choosing the music for her mother’s funeral: 

And I had a lot of good stuff like you know like the classic 
“Arms of an Angel” kind of thing, but I also had songs like 
me and her used to listen to that were in it [the funeral], so 
they [the songs] may not have been like funeral appropriate 
but they were what we’d listen to.  

In a second example, Amanda, age 24, said that her 
adoptive mother had introduced her to music and that she 
liked to sing because it made her mother happy. Amanda 
had been homeless for nine years, and earned money by 
singing and playing guitar on the street. A long-time hero-
in user, Amanda recounted how she had recently “got 
clean with my music” when she had been invited to sing 
one of her own songs at a concert. Amanda shared her 
performance via a video, and said she had been clean for 
22 days at the time of the concert, adding: 

She [Amanda’s mother] was sitting right there [in the audi-
ence] and she was crying. Everyone was crying. It was a big 
deal that I was clean. 

4.2.3 Music Genre, Bands/Artists and Mood 

Homeless young people reported their music preferences 
via two different survey questions. One question asked 
what kinds of music were listened to the most (Table 1). 
Hip hop emerged as the most preferred category followed 
by Rock and R&B. However, there is precedence in the 
literature that music preferences may be gender specific 
[3]. When broken down by gender, the top three catego-
ries preferred by young men were Hip hop, Rock, and 
Techno, while the top three categories for young women 
were R&B, Rock, and Hip hop. These differences are po-
tentially noteworthy given that associations between Hip 



  

 

hop (i.e., Rap) music and risk-taking, and the emotional 
use of music, such as R&B, have been investigated [1].  

However, while genre has been used traditionally in 
studies as a way of gauging young people’s music prefer-
ences, genre can only go so far in typifying music prefer-
ences. Subsequently, in a second question participants 
named their three favorite bands/artists, resulting in 192 
unique responses (out of a possible 300). Table 2 lists the 
top 17 responses, chosen by three or more participants, 
and includes mainstream artists, such as Eminem, as well 
as “underground” bands such as Insane Clown Posse. 

 

Band or Artist Style [12] Total M F 
 Eminem  Hardcore Rap 11 7 4 

 2Pac  Gangsta Rap 9 6 3 

 Marianas Trench   Punk-Pop 5 2 3 

 Wiz Khalifa  East Coast Rap 4 3 1 

 Lady Gaga  Pop 4 2 2 

 Dr. Dre  Gangsta Rap 3 3 0 

 AC/DC  Hard Rock 3 2 1 

 The Notorious B.I.G.  Gangsta Rap 3 2 1 

 Insane Clown Posse  Rap-Metal 3 2 1 

 Iron Maiden  Heavy Metal 3 2 1 

 Korn  Heavy Metal 3 2 1 

 Skrillex  Dubstep 3 2 1 

 Lil Wayne  Southern Rap 3 1 2 

 Nicki Minaj  Hardcore Rap 3 1 2 

 Nickleback  Heavy Metal 3 1 2 

 Adele  Pop/Rock 3 0 3 
 Deadmau5  Club/Dance 3 0 3 

Table 2. Favorite bands and musical artists, by 
male (M) and female (F).  

Given that homeless young people reported that listen-
ing to music can have an impact on emotional well-being, 
moods associated with bands/artists were analyzed. Using 
allmusic.com, 176 unique mood labels were found for 
155 of the 192 bands/artists [12]. Of the top 20 moods 
(Table 3), aggressive and confrontational appear to have 
strong negative valence, while energetic, confident, rous-
ing, brash, fun, playful, freewheeling, intense, par-
ty/celebratory and boisterous appear to indicate high lev-
els of energy or intensity. While no claims can be made 
about effects of these moods on homeless young people, 
it appears that the moods in music may be related to rea-
sons for listening to music (Table 1). Recall that Sheila 
noted how listening to songs with themes related to diffi-
cult life experiences could be cathartic; reducing her feel-
ings of isolation and that Brian found that certain songs 
could trigger his post-traumatic stress disorder symptoms. 

Additionally, Marvin, age 24, explained a cathartic ef-
fect of his favorite music, saying:   

Do you ever get mad?, you kind of get pissed off and you just 
go to your room and you listen to music. It’s either that or 
you punch your little brother out or something.  

Table 3. Top 20 moods corresponding to 155 
bands and artists. 

Finally, music with high energy/intensity moods may 
play a relatively straightforward, practical role as home-
less young people move through their daily lives. For in-
stance, recall that on the surveys, participants indicated 
that they listened to music in order to “wake myself up” 
and “reduce boredom,” and similar answers were given 
when interview participants completed timelines. 

5. CONCLUSION AND FUTURE WORK 

In prior and on-going work, findings have revealed that 
homeless young people have ordinary interactions with 
technology which are conditioned by the extraordinary 
circumstances of homelessness [15,16,17]. In this report, 
we have presented further evidence that indicates aspects 
of the ordinary and extraordinary. For homeless young 
people who participated in this study in Vancouver, Brit-
ish Columbia, music appears to play a role in daily life 
that may be fairly ordinary. Like most young people their 
age, homeless young people listen daily to a variety of 
music and music plays a part in their relationships with 
friends and family. Yet, for homeless young people in this 
study, experiences with music were also extraordinary. 
Sheila found comfort in songs that resonated with her dif-
ficult life experiences. Amanda played music to make 
money while living on the street and as part of overcom-
ing her drug addiction. Brian listened to music to regulate 
aspects of post-traumatic stress disorder, a common result 
of problematic circumstances during childhood [13]. 

Importantly, as these results are preliminary, further 
work is needed to fully elaborate the role of music in the 
lives of homeless young people. Once the study is com-
pleted in Seattle, a comprehensive thematic analysis of 
the interview data, including the themes of music listening 
behaviors and social aspects of shared musical interests, 
with independent cross-coding will take place. Addition-
ally, associations between preferred music, bands and art-
ists, moods and risk-taking behaviors will be analyzed. 
Finally, results from the design activity where participants 
envisioned a music device that could help homeless 

Mood Count Mood Count 

  Energetic 68   Intense 38 

  Aggressive 66   Party/Celebratory 38 

  Confident 63   Boisterous 36 

  Rousing 63   Dramatic 36 

  Brash 51   Stylish 36 

  Fun 42   Earnest 35 

  Playful 42   Reflective 34 

  Confrontational 41   Passionate 34 

  Freewheeling 41   Rebellious 33 
  Fiery 39   Visceral 33 



  

 

young people (Figure 1) will be analyzed and inde-
pendently cross-coded. Results from this design activity 
analysis will provide context and additional evidence of 
the role of music and associated technologies in the lives 
of homeless young people. 

 
So I was sitting one day on granville + georgia st, chilling 
out after a long day of walking. My bags sitting at my side 
trying to get enough change for a bite to eat. When some la-
dy dropped this thing that looked like an iPod. I ran to pick 
it up, gave it back to her + being the kickass lady she was 
she gave the player to me + said it would be better use to me. 
I asked her what it was + why she was being so nice. She 
told me she bought it brand new the day before + it wasn’t to 
her likeing [sic]. She said it has lists of shelters + places to 
get food + their phones numbers in it. So she wanted to help 
someone out.  

I was so greatful [sic]. I was able to escape from reality 
with beautiful music for a little while. Then it came time for 
me to find another tree to sleep under. All of a sudden I re-
membered about the shelter listings on the MP3. (the [sic] 
lady called it a Musik Monster) First place that came up was 
[the collaborating agency]. I called, did an intake + now am 
living happily in my own home. Looking for the next person 
to help with my Musik Monster. 

Figure 1. Design activity drawing and scenario. 
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ABSTRACT

We report the results of a survey on music listening and
management behaviours. The survey was conducted online
with 222 participants with mostly technical backgrounds
drawn from a college age population. The median size
of offline music collections was found to be roughly 2540
songs (sum of physical media and digital files). The major
findings of our survey show that elements such as famil-
iarity of songs, how distracting they are, how much they
match the listener’s mood, and the desire of changing the
mood within one listening session, are all affected by the
activity during which music is listened to. While people
want to have options for manipulating the above elements
to control their experience, they prefer a minimal amount
of interaction in general. Current music players lack such
flexibility in their controls. Finally, online recommender
systems have not gained much popularity thus far.

1. MOTIVATION

Since the advent of mp3 files and the fast spread of high
bandwidth Internet connectivity, there has been an extreme
increase in the number of songs listeners can have im-
mediate access to. In the past decade, the size of per-
sonal digital music libraries has seen a similar fast growth.
Moreover, subscription based on-demand streaming ser-
vices like Spotify have made millions of songs readily avail-
able to their users. Many studies exist on music listening
and management behaviours [2,4,10,11], but with the im-
mense speed at which technology advances, new questions
frequently arise on how listeners interact with the immense
amount of music available to them.

As Downie et al. [6] point out, one of the main chal-
lenges that ISMIR currently faces is encouraging the par-
ticipation of potential users of Music Information Retrieval
(MIR) systems. In this study we investigate the issues such
users have in their day-to-day interaction with music. We
first divide music interaction into two main categories: (a)
music listening, and (b) management of music collections.

Music listening comprises the process of deciding what
to listen to in a music listening session and the kind of
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control exerted by the user on the played music. Man-
agement includes obtaining music, managing tags, creating
and maintaining playlists, sorting, and so on. Music listen-
ing can be both a personal or a social experience. Here, we
concentrate on personal music listening. Methods of play-
back range from low control methods like shuffling one’s
whole collection along with skipping songs, to higher con-
trol ones like having pre-compiled playlists for various oc-
casions or even choosing songs one after another.

Although the amount of user studies on music informa-
tion retrieval and browsing has been growing as of late,
there is a lack of studies when it comes to understanding
what factors influence a user’s music listening choices in
various contexts, what methods of playback are used and
why, and what devices and services are more frequently
used. Previous studies have focused mainly on users’ in-
formation seeking behaviours [1,7,9], discovering new mu-
sic [3], digital music library management [4, 11], use of
physical or digital media [2], playlist generation behaviours
[10], music listening contexts [2, 5, 8, 10], reasons for lis-
tening [5,8], and social aspects of music consumption [10].

In this study, we focus on the act of music listening
by investigating our participants’ listening behaviours, and
trying to understand influential factors in their choice of
playback method, and the amount of control and interac-
tion they desire. We compare some of our results regard-
ing playback methods and playlist creation to what Vig-
noli [11] and Stumpf and Muscroft [10] found. We also
study our participants’ use of music recommendation ser-
vices like Grooveshark, iTunes Genius, and Last.fm. Fi-
nally, we discuss some implications for the design of future
music listening tools.

2. RELATED WORK

There is a close relation between searching (or browsing)
and managing libraries, in the sense that the most frequently
used cues and properties in searching and browsing can be
a good basis for organizing a personal library. This is to
some extent confirmed by similar observations by Bain-
bridge et al. [1], Lee and Downey [9], and Vignoli [11]. In
the first two studies, which focus on finding music or mu-
sic information, the most used properties are reported to
be “performer” and “song title”. Vignoli [11] asks partici-
pants about the attributes they mostly use when retrieving
songs from their personal libraries, and again artist name
and song title come out on top.

The study by Vignoli [11] is one of the very few that
discusses issues relating to the acts of music listening as



well as collection management. Vignoli asks participants
how often they use various playback methods and reports
that the most favorite method is “I choose one or more al-
bums”, while “I search for a single song” ranks second.
It is notable that these two are both highly controlled ex-
periences, compared to choosing an artist or shuffling the
whole collection. Also, users liked to create playlists as
opposed to using existing ones, which is also indicative of
the higher level of control desired.

Regarding how these playlists are created, a recent pa-
per by Stumpf and Muscroft [10] reports that the concepts
most frequently mentioned by participants in a think-aloud
playlist creation task were tempo and mood. However, the
study had only 7 participants, so a generalization is diffi-
cult. In this paper, among other things, we also discuss
our own results regarding these attributes and playback
methods for listening to music during various activities,
and look for similarities with what Vignoli, Stumpf, and
Muscroft observed.

3. METHODS

Our online survey included a total of 32 questions covering
both collection management (13 questions), music listen-
ing (14 questions) and demographics (5 questions). The
Likert scale is the most used question format throughout
the survey. Medians and modes are used for reporting the
results of Likert scales, as opposed to averages.

The survey population consisted mostly of Simon Fraser
University’s (Canada) Computing Science and Engineer-
ing faculty and students who were invited to take part in the
survey with mailing lists. We also initiated snowball sam-
pling by encouraging the respondents to spread the word to
their friends and family. The questionnaire went through
several revisions and was pilot tested with a total of 10
respondents before being sent out to participants. The re-
sults presented in this paper were gathered in two stages.
The first stage, which targeted only Computing Science
graduate students and faculty, had 79 participants. After
the first stage, we analyzed the results for questions with
low response rates and revised three of them for the second
stage, which had 143 participants (Computing Science un-
dergraduates and Engineering students). We present aggre-
gate results for all of the 222 participants in case of identi-
cal questions, and stage 2 results for revised questions.

Our participants had an average age of 25.85 with a
standard deviation of 9.02, and a median of 23. The ma-
jority of our participants (73%) were males, and 95% had
a Computing Science or Engineering background.

4. RESULTS

In this section, we present an overview of the results for
major questions, in both listening and management cat-
egories. Naturally, not all participants answered all the
questions, so for each question, only the participants that
have answered it are included in computing averages, me-
dians, etc. Whenever we look at results of two or more
questions together, we only include the subset of partici-
pants who have answered all of them.

4.1 Music Listening

Average hours of music listening per day (both active
and passive): During active listening, one is listening to
music for the sake of listening, not doing other activities.
Passive listening happens when music is listened to dur-
ing other activities to get in and out of moods, to cancel
out ambient noise, to go through boring activities, and so
on [5]. Average hours (per day) of active and passive lis-
tening were asked in form of ranges. For active listening,
these ranges were: Less than 1 hour, 1-2, 2-4, 4-8, and
more than 8 hours. In case of passive listening, since it
generally happens more than active listening, the choices
were changed to cover a larger range: less than 1, 1-2, 2-4,
4-6, 6-8, 8-10, 10-12, and more than 12 hours. For the 174
participants that answered these questions, the median and
mode choice for number of active listening hours per day
was “less than 1 hour”. Both median and mode jump to
“2-4 hours” in case of passive listening.
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Figure 1. Activities ranked based on their portions of a
participant’s overall passive listening hours (based on 178
responses).

To understand during what activities passive listening
happens, we asked participants to rank 4 activities: com-
muting, exercising, work, and housework. These are also
the top activities reported by Lamont and Webb in [8], ex-
cept for exercising. This is because we considered exercis-
ing as an activity which is reliant on playlists more than the
other 3 and could thus broaden our scope when we later ask
about playback methods during these activities. As seen in
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Figure 2. Preferred methods of playback for various si-
multaneous activities (passive listening) and active listen-
ing.
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Figure 3. Results for questions regarding familiarity, importance, and mood variance of songs.

Figure 1, commuting and work take similarly large chunks
of the first rank, with exercise and housework following
on ranks two and three. We also provided a comment sec-
tion for the corresponding question to be able to pinpoint
other important activities that we might have missed. Surf-
ing the Internet, playing video games, and during/before
sleep were the three activities most often mentioned (13,
10, and 6 times, respectively). Brown et al. [2] found out
that the most popular places for listening to music were the
car (82% of the time), the living room (61%), and work
(38%). Our results show a shift towards work. The reason
can be both our population’s age and technical background
and the fact that with the rapid growth of technology since
2001, nowadays much of people’s work happens on their
computer which also contains a large collection of music.
One distinction between the different activities comes from
the amount of attention they need and the amount of con-
trol on the music a listener would want. These factors in-
fluence the chosen playback methods.

Preferred playback methods for each activity: We
study the methods of playback our participants preferred
for the same list of activities as before, namely commut-
ing, exercising, work, and housework, along with active
listening. For each activity, the respondent was asked to
choose one of 6 playback methods. In Figure 2 we see the
percentages for each activity and method out of all 169 par-
ticipants who answered this question. Respondents were
told not to choose any method if an activity didn’t apply to
them, therefore the sum of the columns isn’t always 100%.

Choosing song after song dominates the active listen-
ing portion and this is not surprising. To figure out which
method is generally preferred for passive listening, we ex-
clude active listening results, sum the total number of times
each method was chosen and divide that by the number
of all the choices made by all participants. We observe
that the overall preferred method is “a prepared playlist or
folder of songs” with a 29% share. “Picking an artist, al-
bum, or genre” and “a shuffle on your whole collection”
are second and third with 22% and 19% shares. “Radio,
including online stations”, “song after song”, and “online
recommendation services” end up with quite small shares
of 8%, 5%, and 4%, respectively. For the same reason as
above, the sum of these percentages isn’t necessarily 100.
In comparison, Vignoli [11] observed that “I choose one

or more albums” was the top choice, which is in line with
what we see here: an overall preference for higher control.
“I search for a single song” is second there, which could
be because Vignoli does not classify methods based on ac-
tivities, resulting in active listening skewing the results.

Importance, familiarity, and mood of songs, and in-
teraction tolerance: As mentioned earlier, a distinction
between activities during which music is listened to can
be the amount of attention the activities need. We believe
that work and commuting (if it is not driving) can lie on
two opposing ends of this spectrum, with work needing
very high attention from the listener and commuting need-
ing much less. As both these activities contribute heavily
in our participants’ listening hours, it is crucial to have a
better understanding of listening behaviours during each.
We hypothesized that having to pay (or not) pay attention
to the activity will affect the following 4 aspects:

(a) How familiar the songs are.
(b) How picky the listener usually is (we call this impor-

tance of songs)
(c) If a constant mood is preferred or if there need to be

various moods (in one session of listening).
(d) What the maximum amount of desired interaction is.

Our questionnaire contained a question on each of the
above for both activities that need attention (we will call
these “attention activities”) and those that do not (we will
call these “non-attention activities”).

Figure 3(a) shows that familiar songs are generally pre-
ferred for both attention and non-attention activities, and
in case of attention activities, participants strongly pre-
ferred familiar songs with nearly 0% preferring new ones.
Figure 3(b) shows that while it is important that the music
during attention activities does not distract the listener, a
large fraction of participants expressed a need for matching
moods and choosing each song carefully, even during at-
tention activities. This is expected for non-attention activ-
ities, but is somewhat surprising for attention ones, and in-
dicates a general preference for high control on the music.
This is in agreement with our results for playback methods
discussed earlier. Figure 3(c) shows that although constant
mood was the dominant choice for attention activities, still
nearly 40% preferred various moods.

To target issue d (maximum amount of desired interac-
tion), we asked participants what their maximum amount
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Figure 4. Results from questions on amount of interaction
with music player (based on 82 responses).

of desired interaction would be if they wanted to change
the mood. One metric for “amount” of interaction can
be the amount of time it takes for the user to perform it.
Choices included examples that gave our respondents an
idea of this time. These were: (a) “very low interaction”:
e.g. skipping tracks; (b) “low”: e.g. specifying your de-
sired change in mood but not having to find any particular
song; (c) “medium”: e.g. switching to another playlist; (d)
“high”: e.g. finding specific songs one after another.

The question was more complex in the first stage. Due
to high non-response, it was changed to the one described.
The results discussed here are from the second stage.

For attention activities (see Figure 4), although a pref-
erence for lower interaction is expected, it is interesting to
see that along with “very low interaction”, “low interac-
tion” was also acceptable by a large margin. During non-
attention activities, participants preferred to have higher
control on the music source with the medium and high
choices dominating the scene.

Use of online music services: It is clear from the above
results that online recommendation services are not popu-
lar at all even among our survey population which consists
mostly of college-age people with technical backgrounds.
Indeed, when asked about what music services they have
ever used, 33.8% (75 out of 222) said they haven’t ever
used any of the provided choices (Last.fm, iTunes Genius,
Grooveshark, Zune Smart DJ, Pandora, Spotify, iLike, and
Musicovery) and didn’t provide any other service in the
“other” comment section. For the remaining 147 partici-
pants, Grooveshark, iTunes Genius, and Last.fm were the
most prevalent choices with 46%, 45%, and 42%. 23% had
used Pandora, and 7% Spotify. YouTube was the most pop-
ular “other” choice with 6 participants (3%). When asked
about their favourite service, 61% of participants who an-
swered the question said they didn’t normally use these
services. The rest of the responses reflect what we have
above, with Grooveshark, iTunes Genius, and Last.fm be-
ing the top three. This result, however, seems to be more
dependent on the popularity of these services than con-
scious choice as we had only a small number of partici-
pants that had tried all or almost all services. For an in-
depth analysis more than our 222 participants are needed.

4.2 Management of Music Collections

Primary sources of music (CD, mp3 player, radio, etc.):
Participants were asked to choose between 5 frequency ad-
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Figure 5. Popularity of music sources. Y axis: 1=Never;
2=Rarely; 3=Sometimes; 4=Often; 5=Very Often. X axis:
number of participants who chose each option with the
darker bars being the median choice.

verbs in a Likert scale. In Figure 5, the number of partic-
ipants who chose each choice for each source is shown,
with the darker bars being the median for each source.
While offline collections on portable devices score the high-
est, we need to keep in mind that most of our participants
have a technical background.

Collection statistics: Our participants had a median of
15 pieces of physical media and 2000 digital songs 1 . Most
participants (65%) said they were likely to correct inaccu-
rate tags that they find in their collections. The median
respondent maintained between 2 to 4 playlists.

Handling of digital collections (manually with a folder
structure, or using an application like iTunes): Almost
half of the respondents (83 out of 155: 53%) preferred to
manually manage their music folders rather than relying on
an application. Applications ended up second with 26%,
and 21% said they used both. It appears that management
using applications has gained much more traction since Vi-
gnoli’s study [11] in 2004, which reports that all the 7 par-
ticipants used manual folders. Participants were also asked
about what application they preferred for managing their
libraries, with the choices offered being Windows Media
Player, iTunes and “other”. In Figure 6 we see the choices
made by the 144 participants who answered the question,
along with the difficulties expressed with each of these ap-
plications.

Important factors for managing music collections (al-
bum, artist, genre, etc.): Participants were asked to spec-
ify how important various factors were for them in man-
aging their collections by choosing between “Very Impor-
tant”, “Important”, “Somewhat Important”, and “Not Im-
portant” for each factor. Artist, with a median of “Very
Important” was the top choice here. This confirms the
findings reported by Vignoli [11] and Bainbridge et al. [1].
Second were album and genre with a median of “Impor-

1 For digital collections, participants had a choice of providing number
of songs or gigabytes. In cases were gigabytes were provided, they were
converted to number of songs, assuming 4 megabytes per song.
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Figure 6. Applications used for library management and difficulties faced with them. Each column shows the perceived
lack of support for a task among each application’s users. The right-most column shows the number of respondents who
chose each application.

tant” and a mode of “Very Important”. These were also
among the top factors in both the above studies, along with
song title.

Important factors in creating playlists: We also asked
participants who said they created and managed playlists,
about important factors in doing so. Due to high non-
response, this question was altered for stage 2 and only
stage 2 results are reported in this paper. The format was a
three-choice Likert scale for ”importance” of factors. This
and the question regarding factors important in managing
collections were located far apart from each other in the
questionnaire. We also altered the choices to not be sim-
ilar to those offered in the management question, so as to
prevent participants from recalling their management an-
swers. The choices for each factor were one of “Not Im-
portant”, “Somewhat Important”, and “Very Important”.
Mood came out on top with both a median and mode of
“Very Important”. Genre, artist, and tempo all had a me-
dian of “Important” and a mode of “Very Important”. In
case of mood, our results confirm Stumpf and Muscroft’s
findings [10], but not for tempo. They reported that tempo
was actually the most important factor for their partici-
pants, with mood and rhythmic quality being 2nd and 3rd.
Here, tempo is only 4th.

To summarize all the results for important factors in
management and playlist creation, we scale all of them to a
range between 1 and 4 were 4 is the highest score possible
for each factor. The results are shown in Table 1.

playlist creation management
mood 3.42 (1st) 2.39
genre 3.17 (2nd) 2.52 (3rd)
artist 2.95 (3rd) 3.54 (1st)
tempo 2.80 1.90
album 2.31 2.73 (2nd)
instruments 2.25 1.78

Table 1. Factors important in playlist creation and man-
agement of music collections. Scores are out of 4.

5. DISCUSSION

Understanding our participants’ listening behaviours starts
from knowing when they listen to music. Commuting and
work were the most popular activities making up our par-
ticipants’ listening hours. A good music listening tool has
to cater to at least the most prominent activities by support-
ing the playback methods that best fit them.

In Figure 2, we can see that more controlled methods
like a playlist or choosing certain artists, albums, or genres
are generally more popular than less controlled methods
like shuffle, radio, and online recommendation services,
and this is more pronounced for ”work” and ”exercising”.
This is expected, because exercising requires very specific
tempo and rhythm, and work generally needs high atten-
tion, so with a shuffle on one’s whole collection, the songs
are unlikely to satisfy the needed degrees of familiarity,
mood, and not being distracting.

But the question is: Are these conventional playback
methods enough? According to Figure 3(c), nearly 40% of
our participants expressed a desire to have various moods
even during attention activities. To achieve this, listeners
have to resort to switching playlists (assuming they even
have prepared ones), applying various filters of artist, al-
bum, genre, etc. while listening, or even creating a playlist
every time, not to mention choosing songs one after an-
other. According to Figure 4, all of these require amounts
of interaction more than what a person would normally
want to have with the music source during attention activ-
ities. It is interesting to note that 71% of our participants
were OK with very low or low interaction. Having in mind
that very low interaction is essentially a shuffle on one’s
collection and that shuffle is not appropriate for many ac-
tivities, we see a need for novel interaction methods in the
”low interaction” range.

We set out to understand what the users would want to
have control over, in a Utopian music player. We hypothe-
sized that the familiarity of the songs, their mood and how
distracting they are, and if they should have similar moods
or not, are among the elements that are affected by the kind
of activity during which music is listened to. Judging by
Figure 3 and Figure 4 we claim that our hypothesis was
confirmed with all the results showing notable differences
between attention and non-attention activities.



One could say that online recommendation services like
Last.fm, Pandora, and Grooveshark support low interac-
tion while also introducing the listener to new music. Our
results show that these services have not really gained trac-
tion with users. Several reasons can be speculated for that,
like price, sub-par interfaces, availability (different coun-
tries), accessibility (computer only or mobile too?). For
instance, accessibility can be the reason why online ser-
vices are used mostly during ”work”, which is in case of
our survey population, mostly done on the computer while
online. But there is also the quality of recommendations.
Right now, all the noteworthy online recommendation ser-
vices operate on the basis of similarity to a seed song or a
user’s library of favourite songs. The maximum control the
listener has is skipping songs or in some services, inserting
songs into the playlist (e.g. Grooveshark). The listener can
have no control over what aspects of the songs are taken
into account for computing the “similarity”. It is evident
from our results that, contrary to the idea behind playlists
which are pre-compiled lists for various occasions, there
seems to be an inherent impulsiveness in the choice of mu-
sic. That is, at any point during a session of listening, the
listener might want to steer the experience to a new di-
rection. The elements mentioned above are only some of
the aspects that should be controllable in this “steering”
act. Spotify apps like Moodagent or EchoNest’s steerable
playlist API are promising developments in this regard.

6. CONCLUSION

The results of studying our 222 participants’ music man-
agement and listening behaviours were reported and anal-
ysed. We discussed how our participants manage their mu-
sic collections, during what activities they listen to music,
how many hours a day they listen to music, if and how
they manage playlists, what methods of playback they pre-
fer, what their primary sources of music are, and if they
use online recommendation services.

The most important attributes of songs for collection
management were artist, album, and genre, which is in
agreement with the findings by Vignoli [11] and Bainbridge
et al. [1]. We found that mood, genre, and artist were
most important for creating playlists, which partly con-
firms what Stumpf and Muscroft [10] found with 7 par-
ticipants. They reported that tempo was actually the top
choice, with mood and rhythmic quality being 2nd and
third, and genre 5th. The median size of personal music
collections was found to be 2540 songs. Participants lis-
tened to these collections on portable devices and comput-
ers more than any other source. This was mostly during
commuting and work. Only half of the respondents said
they only used manual folder structures for managing their
collections rather than applications such as iTunes. This
is in contrast with what Vignoli [11] reports from 2004,
where all the respondents only used manual folders. The
very limited popularity of online music services was sur-
prising to us, considering our population’s mostly technical
backgrounds and young ages.

Overall, for passive listening (listening to music during

other activities), more controlled playback methods like
prepared playlists and filters of album, artist, etc. were
more popular than shuffling. We discussed these in rela-
tion to elements such as familiarity of songs, how distract-
ing they are, how much they match the listener’s mood, and
if various moods are desired in a session of listening or not,
and concluded that there’s a need for novel interfaces with
easy and efficient support for manipulating these elements
dynamically and with a low amount of required interaction.

We would like to note that one issue with our current
results is the heavy focus on participants with technical
background. To have more reliable results, we are cur-
rently extending the survey to other population groups.
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ABSTRACT

Automatic music transcription is considered by many to
be the Holy Grail in the field of music signal analysis.
However, the performance of transcription systems is still
significantly below that of a human expert, and accuracies
reported in recent years seem to have reached a limit, al-
though the field is still very active. In this paper we analyse
limitations of current methods and identify promising di-
rections for future research. Current transcription methods
use general purpose models which are unable to capture
the rich diversity found in music signals. In order to over-
come the limited performance of transcription systems, al-
gorithms have to be tailored to specific use-cases. Semi-
automatic approaches are another way of achieving a more
reliable transcription. Also, the wealth of musical scores
and corresponding audio data now available are a rich po-
tential source of training data, via forced alignment of au-
dio to scores, but large scale utilisation of such data has
yet to be attempted. Other promising approaches include
the integration of information across different methods and
musical aspects.

1. INTRODUCTION

Automatic music transcription (AMT) is the process of
converting an audio recording into some form of musical
notation. AMT applications include automatic retrieval of
musical information, interactive music systems, as well as
musicological analysis [28]. Transcribing polyphonic mu-
sic is a nontrivial task and while the problem of automatic
pitch estimation for monophonic signals can be considered
solved, the creation of an automated system able to tran-
scribe polyphonic music without restrictions on the degree
of polyphony or the instrument type still remains open. In
this work we will be addressing the problem of polyphonic
transcription; for an overview of melody transcription ap-
proaches the reader can refer to [39].
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The core problem for creating an AMT system is the
detection of multiple concurrent pitches. In past years the
majority of multi-pitch detection methods employed a com-
bination of audio feature extraction and heuristic techniques,
which also produced the best results in the MIREX multi-
F0 (frame-wise) and note tracking evaluations [5,33]. One
commonly used technique of these methods is the iterative
spectral subtraction approach of [27]. The best performing
method in the MIREX multi-F0 and note tracking task is
the work by Yeh [45], who proposed a joint pitch estima-
tion algorithm based on a pitch candidate set score func-
tion, which is based on several audio features.

Another set of approaches formulates the frame-wise
multiple-F0 estimation problem within a statistical frame-
work. The problem can then be viewed as a maximum a
posteriori (MAP) estimation problem:

ĉ = argmax
c∈C

L(c|x) (1)

where c = {F 1
0 , . . . , F

N
0 } is a set of fundamental frequen-

cies, C is the set of all possible F0 mixtures, and x is the
observed audio signal within a single analysis frame. If
no prior information is specified, the problem can be ex-
pressed as a maximum likelihood (ML) estimation prob-
lem using Bayes’ rule, e.g. [11, 14]. A related method
was proposed in [37], using a generative model with a non-
homogeneous Poisson process.

Finally, the majority of recent transcription papers utilise
and expand spectrogram factorisation techniques (e.g. [7,
10]). Non-negative matrix factorisation (NMF) is a tech-
nique first introduced as a tool for music transcription in
[43]. In its simplest form, the NMF model decomposes an
input spectrogram X ∈ RK×N

+ with K frequency bins and
N frames as:

X = WH (2)

where W ∈ RK×R
+ contains the spectral bases for each

of the R pitches and H ∈ RR×N
+ is the pitch activity

matrix across time. An alternative formulation of NMF
called probabilistic latent component analysis (PLCA) has
also been employed for transcription (e.g. [22]). In PLCA
the matrices in the model are considered to be probability
distributions, thus allowing for a model that can be easily
extended and formalised. Additional transcription meth-
ods have been proposed in the literature, employing sparse
coding techniques (e.g. [1]), genetic algorithms (e.g. [40]),
and machine learning algorithms (e.g. [38]), which due to
space limitations cannot be detailed here.

For note tracking, hidden Markov models (HMMs) are
frequently used at a postprocessing stage (e.g. [38]). Other



Participants 2009 2010 2011
Yeh and Roebel 0.69 0.69 0.68
Dressler - - 0.63
Benetos and Dixon - 0.47 0.57
Duan, Han, and Pardo 0.57 0.55 -

Table 1. Best results using the accuracy metric for the
MIREX Multi-F0 estimation task, from 2009-2011. De-
tails about the employed metric can be found in [33].

techniques include temporal smoothing (e.g. using a me-
dian filter) and minimum duration pruning [10].

In the remainder of this paper we analyse limitations of
current approaches and identify promising directions for
overcoming the obstacles in current performance.

2. CHALLENGES

Despite significant progress in AMT research, there ex-
ists no end-user application that can accurately and reli-
ably transcribe music containing the range of instrument
combinations and genres available in recorded music. The
performance of even the most recent systems is still clearly
below that of a human expert, who requires multiple takes,
makes extensive use of prior knowledge and complex in-
ference, and produces imperfect results. Furthermore, cur-
rent test sets are limited in their complexity and coverage.
Table 1 gives the results for the frame-based multiple-F0
estimation task of the MIREX evaluation [33]. Results
for the note tracking task are much inferior, in the range
of 0.2–0.35 average F-measure with onset-offset detection
and 0.4–0.55 average F-measure with onset detection only.
As we propose in Section 3, informing transcription via
user-assistance or by providing a draft score in some ap-
plications are ways to increase systems’ performance and
overcome the observed plateau.

Currently proposed systems also fall short in flexibility
to deal with diverse target data. Music genres like classical,
heavy metal, hip-hop, ambient electronic and traditional
Chinese music have little in common. Furthermore styles
of notation vary with genre. For example Pop/Rock no-
tation might represent melody, chords and (perhaps) bass
line, whereas a classical score would usually contain all the
notes to be played, and electroacoustic music has no stan-
dard means of notation. The task of tailoring AMT systems
to specific styles has yet to be addressed. In Section 4 we
propose systems focusing on instrument- or genre-specific
transcription.

Algorithms are developed independently to carry out in-
dividual tasks such as multiple-F0 detection, beat tracking
and instrument recognition. Although this is necessary,
considering the complexity of each task, the challenge re-
mains in combining the outputs of the algorithms, or better,
combining the algorithms themselves to perform joint es-
timation of all parameters, in order to avoid the cascading
of errors when the algorithms are combined sequentially.
In Section 5, we propose the fusion of information across
multiple musical aspects and the combination of methods
targeting the same feature.

Another challenge concerns the availability of data for

training and evaluation. Although there is no shortage of
transcriptions and scores in standard music notation, hu-
man effort is required to digitise and time-align them to
the recordings. Except for the case of solo piano, data
sets currently employed for evaluation are small: a small
subset from the RWC database [20] which contains only
12 tracks is commonly used (although the RWC database
contains many more recordings) and the MIREX multi-F0
recording lasts only 54 seconds. Such small datasets can-
not be considered representative; the danger of overfitting
and thus overestimating system performance is high. It has
been observed for several tasks that dataset developers tend
to attain the best MIREX results [33]. In Section 6, we dis-
cuss ways to generate more training data.

At present, there is no established single unifying frame-
work for music transcription as HMMs are for speech recog-
nition. Likewise, there is no standard method for front end
processing of the signal, with various approaches includ-
ing STFT, constant Q transform [8] and auditory models,
each leading to different mid-level representations. The
challenge in this case is to characterise the impact of such
design decisions on the AMT results. In Section 7, we con-
sider the implications and steps required to progress from
existing systems to complete transcription.

In addition to the above, the research community shares
code and data on an ad hoc basis, with poor management
and restrictive licensing limiting the level of re-use of re-
search outputs. Many PhD students, for example, start
from scratch spending valuable time “reinventing wheels”
before proceeding to address current research issues. The
lack of standard methodology is a contributing factor, with
the multiplicity of approaches to AMT making it difficult
to develop a useful shared code-base. The Reproducible
Research movement [9], with its emphasis on open soft-
ware and data, provides examples of best practice which
are worthy of consideration by our community.

Finally, present research in AMT introduces certain chal-
lenges in itself that might constrain the evolution of the
field. Advances in AMT research have mainly come from
engineers and computer scientists, particularly those spe-
cialising in machine learning. Currently there is minimal
contribution from computational musicologists, music psy-
chologists or acousticians. Here the challenge is to inte-
grate knowledge from these fields, either from the litera-
ture or by engaging these experts as collaborators in AMT
research.

AMT research is quite active and vibrant at present, and
we do not presume to predict what the state of the art will
be in the next years and decades. In the remainder of the
paper we propose promising techniques that can be utilised
and further investigated in order to address the aforemen-
tioned limitations in transcription performance. In Fig. 1
we provide a general diagram of transcription, incorporat-
ing techniques discussed in the following sections.

3. INFORMED TRANSCRIPTION

3.1 Semi-automatic Approaches

Semi-automatic or user-assisted transcription refers to ap-
proaches where the user provides a certain amount of prior
information to facilitate the transcription process [26]. Al-



though such systems are not applicable to the analysis of
large music databases, they can be of use for musicians,
musicologists, and—if a suitable synthesis method exists—
for intelligent audio manipulation.

AMT systems usually have to solve a number of tasks,
the nature of which depends on the type of music anal-
ysed and the level of detail required for the score repre-
sentation. While some of these tasks might be quite easy
for a human listener, it is often difficult to find an algo-
rithmic formulation. The advantage of semi-automatic ap-
proaches is the fact that certain tasks that are inherently
difficult to solve algorithmically can be assisted by the user
of the system. Semi-automatic transcription systems might
also pave the way for more robust fully-automatic ones,
because the possibility of replacing the human part by an
equally-performing computational solution always exists.

In principle any acoustic or score-related information
that can facilitate the transcription process can act as prior
information for the system. However, to be of use in a
practical application, it is important that it does not require
too much time and effort, and that the required information
can be reliably extractable by the user, who might not be
an expert musician.

Depending on the expertise of the targeted users, infor-
mation that is easy to provide could include key, tempo
and time signature of the piece, structural information, in-
formation about the instrument types in the recording, or
even asking the user to label a number of notes for each
instrument. Although many proposed transcription sys-
tems -often silently- make assumptions about certain pa-
rameters, such as the number or types of instruments in the
recording, not many published systems explicitly incorpo-
rate prior information from a human user. In the context of
source separation, Ozerov et al. [36] proposed a framework
that enables the incorporation of prior knowledge about
the number and types of sources, and the mixing model.
The authors showed that by using prior information, a bet-
ter separation can be achieved than with completely blind
systems. A system for user-assisted music transcription
was proposed in [26], where the user provides informa-
tion about the instrument identities or labels a number of
notes for each instrument. This knowledge enabled the
authors to sidestep the error-prone task of source identi-
fication or timbre modelling, and to evaluate the proposed
non-negative framework in isolation.

3.2 Score-informed Approaches

Contrary to speech, only a small fraction of music is fully
spontaneous, as musical performances are typically based
on an underlying composition or song. Although transcrip-
tion is usually associated with the analysis of an unknown
piece, there are certain applications for which a score is
available, and in these cases the AMT system can exploit
this additional knowledge [42]. For example in automatic
instrument tutoring [6, 44], a system evaluates the perfor-
mance of a student based on a reference score and pro-
vides feedback. Thus, the correctly played passages need
to be identified, along with any mistakes made by the stu-
dent, such as missed or extra played notes. Another exam-
ple application is the analysis of expressive performance,
where the tempo, dynamics, and timing deviations relative

User Interaction
Prior Information

(genre etc.)

Transcription Method(s)

Supporting Tools

Audio Score

Acoustic and

musical models

Training
Data

Figure 1. General overview of transcription. Supporting
tools refer to techniques which can facilitate transcription,
e.g. key estimation, instrument recognition.

to the score are the focus of the analysis. There are of-
ten small differences between the reference score and the
performance, and in most cases, the score will not contain
the absolute timing of notes and thus will need to be time-
aligned with the recording as a first step.

One way to utilise the automatically-aligned score is for
initialising the pitch activity matrix H in a spectrogram
factorisation-based model (see Eq. (2)), and keeping these
fixed while the spectral templates W are learnt, as in [16].
After the templates are learnt, the gain matrix can also be
updated in order to cater for note differences between the
score and the recording.

4. INSTRUMENT- AND GENRE-SPECIFIC
TRANSCRIPTION

Current approaches for AMT usually employ instrument
models that are not restricted to specific instrument types,
but applicable and adaptable to a wide range of musical
instruments. In fact, most transcription algorithms that
are based on heuristic rules and those that employ human
sound perception models even deliberately disregard spe-
cific timbral characteristics in order to enable an instrument-
independent detection of notes. Even many so-called pi-
ano transcription methods are not so much tailored to pi-
ano music as tested on such music; they do not implement
a piano-specific instrument model. Similarly, the aim of
many transcription methods is to be applicable to a broad
range of musical genres.

The fact that only a small number of publications on
instrument- and genre-specific transcription exist, is par-
ticularly surprising when we compare AMT to the more
mature discipline of automatic speech recognition. Con-
tinuous speech recognition systems are practically always
language-specific and typically also domain-specific, and
many modern speech recognisers include speaker adapta-
tion [24].

Transcription systems usually try to model a wide range
of musical instruments using a single set of computational
methods, thereby assuming that those methods can be ap-
plied equally well to different kinds of musical instruments.



However, depending on the sound production mechanism
of the instruments, their characteristics can differ consid-
erably and might not be captured equally well by the same
computational model or might at least require instrument-
specific parameters and constraints if a common model
is used. Furthermore, acoustic instruments incorporate a
wide range of playing styles, which can differ notably in
sound quality. On the other hand we can revert to the ex-
tensive literature on the physical modelling of musical in-
struments. A promising direction is to incorporate these
models in the transcription process or at least use them as
prior information that can then be adapted to the record-
ing under analysis. Some examples of instrument-specific
transcription are for violin [29], bells [30], tabla [19] and
guitar [3].

The application of instrument-specific models, however,
requires the target instrumentation either to be known or
inferred from the recording. Instrument identification in
a polyphonic context, as opposed to monophonic, is ren-
dered difficult by the way the different sources blend with
each other, with a high degree of overlap in the time-fre-
quency domain. The task is closely related to sound source
separation and as a result, many systems operate by first
separating the signals of different instruments from the mix-
ture or by generating time-frequency masks that indicate
spectral regions that belong only to a particular instrument
which can then be classified more accurately [13]. There
are also systems that try to extract features directly from
the mixture or by focusing on time-frequency regions with
isolated note partials [4]. A review of instrument identifi-
cation methods can be found in [34, sect. IV].

The advantage of restricting a transcription system to a
certain musical genre lies in the fact that special (expert)
knowledge about that genre can be incorporated. Musico-
logical knowledge about structure (e.g. sonata form), har-
mony progressions (e.g. 12-bar blues) or specific instru-
ments (e.g. Irish folk music) can enhance the transcrip-
tion accuracy. Genre-specific AMT systems have been de-
signed for genres such as Australian aborginal music [35].
In order to build a general-purpose AMT system, several
genre-specific transcription systems could be combined and
selected based on a preliminary genre classification stage.

5. INFORMATION INTEGRATION

5.1 Fusing information across the aspects of music

Many systems for note tracking combine multiple-F0 esti-
mation with onset and offset detection, but disregard con-
current research on other aspects of music, such as instru-
mentation, rhythm, or tonality. These aspects are highly
interdependent and they could be analysed jointly, combin-
ing information across time and across features to improve
transcription performance.

A human transcriber interprets the performed notes in
the context of a metrical structure consisting of a semi-
regular, hierarchical system of accents. Extensive research
has been performed into tempo induction, beat tracking
and rhythm parsing [21], but transcription rarely takes ad-
vantage of this knowledge. An exception is the use of beat-
synchronous features in chord transcription [31], where the
audio is segmented according to the location of beats, and

features are averaged over these beat-length intervals. The
advantage of a more robust feature (less overlap between
succeeding chords) is balanced by a loss in temporal res-
olution (harmonic change is assumed not to occur within
a beat). For note transcription, it is unrealistic to assume
that notes do not change within beats, but a promising ap-
proach would be to use a similar technique at a lower (i.e.
sub-beat) metrical level, corresponding to the fastest note
sequences. The resulting features would be more robust
than frame-level features, and advantage could be taken of
known (or learnt) rhythmic patterns and effects of metrical
position.

Key is another high-level musical cue that, if known
or estimated from the signal, provides useful prior infor-
mation for the extraction of notes and chords. Key can
be modelled as imposing a probability distribution over
notes and chords for different metrical positions and du-
rations. Therefore, by specifically modelling key, tran-
scription accuracy can be improved, e.g. by giving more
weight to notes which belong to the current key. Genre
and style are also influential factors for modelling the dis-
tribution of pitch classes in a key. Several key estimation
approaches have been proposed, but these are rarely ex-
ploited for AMT, with the exception of [41], which gave
the best results for the MIREX 2008 note tracking task.

Likewise, local harmony (the current chord) can be used
to inform note transcription. The converse problem, de-
termining the chord given a set of detected notes, is also
a transcription task. A chord transcription system which
uses a probabilistic framework to jointly model the key,
metre, chord and bass notes is presented in [31].

Finally, information can also be integrated over time.
Most AMT systems to date have modeled only short-term
dependencies, often using Markov models to describe ex-
pected melodic, harmonic and rhythmic sequences. As a
notable exception, [32] utilized structural repetitions for
chord transcription. Also the musical key establishes a
longer-term (tonal) context for pitch analysis.

5.2 Combining methods targeting the same feature

Information could also be integrated by combining multi-
ple estimators or detectors for a single feature, for instance
combining two multi-pitch estimators, especially if these
are based on different acoustic cues or different processing
principles. This could help overcome weak points in the
performance of the individual estimators, offer insight on
the weaknesses of each and raise the overall system accu-
racy. In a different context, several pitched instrument on-
set detectors, which individually have high precision and
low recall, have been successfully combined in order to
obtain an improved detection accuracy [23]. For classifi-
cation, adaptive boosting (AdaBoost) provides a powerful
framework for fusing different classifiers in order to im-
prove the performance [17].

5.3 Joint transcription and source separation

Source separation could be of benefit to transcription-related
tasks such as instrument identification, where both tasks
are interdependent, and accomplishing one of them could
significantly ease the other. In this spirit, joint source sepa-
ration and musical instrument identification methods have



been proposed using signal model-based probabilistic in-
ference in the score-informed case [25]. Also, ideas and al-
gorithms from the field of source separation can be utilised
for AMT, especially regarding the exploitation of spatial
information, if this is available [12, 36].

However, for most AMT tasks there is only one or two
mixture signals available, and the number of sources is
larger than the number of mixtures. In this case, the sep-
aration task is underdetermined, and can only be solved
by requiring certain assumptions to hold for the sources.
These could include sparsity, non-negativity and indepen-
dence or they could involve structured spectral models like
NMF models [22], spectral Gaussian scaled mixture mod-
els (Spectral-GSMMs) [2] or the source-filter model for
sound production. Further constraints such as temporal
continuity or harmonicity can be applied on spectral mod-
els. Techniques that employ spectral source modelling or
an NMF-based framework that explicitly models the mix-
ing process of the sources have been shown to perform well
because they exploit the statistical diversity of the source
spectrograms [2].

Finally, source separation can be fully utilised in a semi-
supervised system like [12], where the user initially selects
the desired audio source through the estimated F0 track
of that source and subsequently the system refines the se-
lected F0 tracks, and estimates and separates the relevant
source.

6. CREATING TRAINING DATA

A large subset of AMT approaches perform experiments
only on piano data, e.g. [10, 14, 38]. One reason is be-
cause it is relatively easy to create recordings with aligned
ground-truth using e.g. a Disklavier. However, this em-
phasis on piano music sometimes leads to models that are
tailored for pitched percussive instruments and could also
be a cause for overfitting. Thus, ground-truth for multiple-
instrument recordings is crucial for the further develop-
ment of sophisticated transcription systems.

If musical scores become widely available in digital form
(for example via crowd-sourced transcriptions), they pro-
vide valuable side-information for signal analysis, and in
the extreme cases reduce the transcription task to the align-
ment of an existing score to the input audio, although it
should be noted that different renditions of a song often
vary considerably in their instrumentation and arrangement.
One such example is the set of syncRWC annotations 1 .

Most of the current AMT methods involve a training
stage, where the parameters of the method are optimised
using manually annotated data. The availability of recorded
music with the exact underlying score opens up huge and
largely unutilised opportunities for training complex mod-
els. In the case of genre- and instrument-specific transcrip-
tion, separate parameter sets can be trained for different
target material.

7. TOWARDS A COMPLETE TRANSCRIPTION

Most of the aforementioned transcription approaches tackle
the problems of multiple-F0 estimation and note onset and

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
AIST-Annotation/SyncRWC/

offset detection. However, in order to fully solve the AMT
problem and have a system that provides an output that
is equivalent to sheet music, additional issues need to be
addressed, such as metre induction, rhythm parsing, key
finding, note spelling, dynamics, fingering, expression, ar-
ticulation and typesetting. Although there are approaches
that address many of these individual problems, there ex-
ists no ‘complete’ AMT system to date.

Regarding typesetting, current tools produce readable
scores from MIDI data only (e.g. Lilypond 2 ), however,
cues from the music signal could also assist in incorpo-
rating additional information into the final score (e.g. ex-
pressive features for note phrasing). As far as dynamics
are concerned, in [15] a method was proposed for estimat-
ing note intensities in a score-informed scenario. However,
estimating note dynamics in an unsupervised way has not
been tackled. Another issue would be the fact that most ex-
isting ground-truth does not include note intensities, which
is difficult to annotate manually, except for datasets created
using reproducing pianos (e.g. [38]), which automatically
contain intensity information such as MIDI note velocities.

Recent work [3] addresses the problem of automatically
extracting the fingering configurations for guitar record-
ings in an AMT framework. For computing fingering, in-
formation from the transcribed signal as well as instrument-
specific knowledge is needed. Thus, a robust instrument
identification system would need to be incorporated for
computing fingerings in multi-instrument recordings.

For extracting expressive features, some work has been
done in the past, mostly in the score-informed case. In [18]
a framework for extracting expressive features both from
a score-informed and an uninformed perspective is pro-
posed. For the latter, an AMT system is used prior to the
extraction of expressive features. It should be mentioned
though that the extracted features (e.g. auditory loudness,
attack) do not necessarily correspond to expressive nota-
tion. Thus, additional work needs to be done in order to
provide a mapping between mid-level features and actual
expressive markings in a transcribed music score.

8. CONCLUSIONS

Automatic music transcription is a rapidly developing re-
search area where several different approaches are still be-
ing actively investigated. However from the perspective
of evaluation results, the performance seems to converge
towards a level that is not satisfactory for all applications.

One viable way of breaking the glass ceiling is to insert
more information into the problem. For example, genre- or
instrument-specific transcription allows the utilisation of
high-level models that are more precise and powerful than
their more general counterparts. A promising research di-
rection is to combine several processing principles, or to
extract various types of musical information, such as the
key, metrical structure, and instrument identities, and feed
that into a model that provides context for the note detec-
tion process. To enable work in this area, sharing code and
data between researchers becomes increasingly important.

Note detection accuracy is not the only determining fac-
tor that enables meaningful end-user applications. Often

2 http://lilypond.org/



it is possible to circumvent the limitations of the under-
lying technology in creative ways. For example in semi-
automatic transcription, the problem is redefined as achiev-
ing the required transcription accuracy with minimal user
effort. It is important to have end-user applications that
drive the development of AMT technology and provide it
with relevant feedback.
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ABSTRACT

Personalized and context-aware music retrieval and recom-
mendation algorithms ideally provide music that perfectly
fits the individual listener in each imaginable situation and
for each of her information or entertainment need. Al-
though first steps towards such systems have recently been
presented at ISMIR and similar venues, this vision is still
far away from being a reality. In this paper, we investi-
gate and discuss literature on the topic of user-centric mu-
sic retrieval and reflect on why the breakthrough in this
field has not been achieved yet. Given the different exper-
tises of the authors, we shed light on why this topic is a
particularly challenging one, taking a psychological and a
computer science view. Whereas the psychological point
of view is mainly concerned with proper experimental de-
sign, the computer science aspect centers on modeling and
machine learning problems. We further present our ideas
on aspects vital to consider when elaborating user-aware
music retrieval systems, and we also describe promising
evaluation methodologies, since accurately evaluating per-
sonalized systems is a notably challenging task.

1. WHY CARE ABOUT THE USER?

In our discussion of the importance and the challenges of
development and evaluation in Music Information Retrieval
(MIR) we distinguish between systems-based and user-cen-
tric MIR. We define systems-based MIR as all research
concerned with experiments existing solely in a computer,
e.g. evaluation of algorithms on digital databases. In con-
trast, user-centered MIR always involves human subjects
and their interaction with MIR systems.

Systems-based MIR has traditionally focused on com-
putational models to describe universal aspects of human
music perception, for instance, via elaborating musical fea-
ture extractors or similarity measures. Doing so, the ex-
istence of an objective “ground truth” is assumed, against
which corresponding music retrieval algorithms (e.g., play-
list generators or music recommendation systems) are eval-
uated. To give a common example, music retrieval ap-
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proaches have been evaluated via genre classification ex-
periments for years. Although it was shown already in
2003 that musical genre is an ill-defined concept [1], genre
information still serves as a proxy to assess music similar-
ity and retrieval approaches in systems-based MIR.

On the way towards user-centered MIR, the coarse and
ambiguous concept of genre should either be treated in a
personalized way or replaced by the concept of similar-
ity. When humans are asked to judge the similarity be-
tween two pieces of music, however, certain other chal-
lenges need to be faced. Common evaluation strategies
typically do not take into account the musical expertise and
taste of the users. A clear definition of “similarity” is of-
ten missing too. It might hence easily occur that two users
apply a very different, individual notion of similarity when
assessing the output of music retrieval systems. While a
first person may experience two songs as rather dissimilar
due to very different lyrics, a second one may feel a much
higher resemblance of the very same songs because of a
similar instrumentation. Similarly, a fan of Heavy Metal
music might perceive a Viking Metal track as dissimilar to
a Death Metal piece, while for the majority of people the
two will sound alike.

The above examples illustrate that there are many as-
pects that influence what a human perceives as similar in a
musical context. These aspects can be grouped into three
different categories according to [29]: music content, mu-
sic context, and user context. Examples for each category
are given in Figure 1. It is exactly this multifaceted and
individual way of music perception that has largely been
neglected so far when elaborating and evaluating music re-
trieval approaches, but should be given more attention, in
particular considering the trend towards personalized and
context-aware systems.

A personalized system is one that incorporates infor-
mation about the user into its data processing part (e.g.,
a particular user taste for a movie genre). A context-aware
system, in contrast, takes into account dynamic aspects of
the user context when processing the data (e.g., location
and time where/when a user issues a query). Although
the border between personalization and context-awareness
may appear fuzzy from this definition, in summary, person-
alization usually refers to the incorporation of more static,
general user preferences, whereas context-awareness refers
to the fact that frequently changing aspects of the user’s en-
vironmental, psychological, and physiological context are
considered.
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Figure 1. Factors that influence human music perception.

The remainder of this paper is organized as follows.
Section 2 reviews approaches that, in one way or the other,
take the user into account when building music retrieval
systems. Evaluation strategies for investigating user-centric
MIR are discussed in Section 3. In Section 4, we eventu-
ally summarize important factors when creating and eval-
uating user-aware music retrieval systems.

2. HOW TO MODEL THE USER?

Existing user-aware systems typically model the user in a
very simplistic way. For instance, it is common in collab-
orative filtering approaches [22, 28] to build user profiles
only from information about a user u expressing an inter-
est in item i. As an indicator of interest may serve, for
example, a click on a particular item, a purchasing transac-
tion, or in MIR the act of listening to a certain music piece.
Such indications, in their simplest form, are stored in a bi-
nary matrix where element r(u, i) denotes the presence or
absence of a connection between user u and item i. In com-
mon recommendation systems, a more fine-grained scale
for modeling the user interest in an item is typically em-
ployed – users frequently rate items according to a Likert-
type scale, e.g., by assigning one to five stars to it. Matrix
factorization techniques are subsequently applied to rec-
ommend novel items [19].

Taking a closer look at literature about context-aware

retrieval and recommendation in the music domain, we can
see that approaches differ considerably in terms of how the
user context is defined, gathered, and incorporated. The
majority of approaches rely solely on one or a few aspects
(temporal features in [7], listening history and weather con-
ditions in [21], for instance), whereas comprehensive user
models are rare in MIR. One of the few exceptions is Cun-
ningham et al.’s study [8] that investigates if and how var-
ious factors relate to music taste (e.g., human movement,
emotional status, and external factors such as temperature
and lightning conditions). Based on the findings, the au-
thors present a fuzzy logic model to create playlists.

There further exists some work that assumes a mobile
music consumption scenario. The corresponding systems
frequently aim at matching music with the current pace of
a walker or jogger, e.g., [3, 24]. Such systems typically try
to match the user’s heartbeat with the music played [23].
However, almost all proposed systems require additional
hardware for context logging, e.g., [8, 9, 11].

In [15] a system that matches tags describing a partic-
ular place with tags describing music is presented. Em-
ploying text-based similarity measures between the multi-
modal sets of tags, Kaminskas and Ricci propose their sys-
tem for location-based music recommendation. Baltrunas
et al. [2] suggest a context-aware music recommender sys-
tem for music consumption while driving. Although the
authors take into account eight different contextual factors



(e.g., driving style, mood, road type, weather, traffic con-
ditions), their application scenario is quite restricted and
their system relies on explicit human feedback, which is
burdensome.

Zhang et al. present CompositeMap [34], a model that
takes into account similarity aspects derived from music
content as well as social factors. The authors propose a
multimodal music similarity measure and show its appli-
cability to the task of music retrieval. They also allow a
simple kind of personalization of this model by letting the
user weight the individual music dimensions on which sim-
ilarity is estimated. However, they do neither take the user
context into consideration, nor do they try to learn a user’s
preferences.

In [26] Pohle et al. present preliminary steps towards
a simple personalized music retrieval system. Based on a
clustering of community-based tags extracted from last.fm,
a small number of musical concepts are derived using Non-
Negative Matrix Factorization (NMF) [20,32]. Each music
artist or band is then described by a “concept vector”. A
user interface allows for adjusting the weights of the indi-
vidual concepts, based on which artists that match the re-
sulting distribution of the concepts best are recommended
to the user. Zhang et al. propose in [34] a very similar kind
of personalization strategy via user-adjusted weights.

Knees and Widmer present in [17] an approach that in-
corporates relevance feedback [27] into a text-based music
search engine [16] to adapt the retrieval process to user
preferences. The search engine proposed by Knees et al.
builds a model from music content features (MFCCs) and
music context features (term vector representations of artist-
related Web pages). To this end, a weight is computed for
each (term, music item)-pair, based on the term vectors.
These weights are then smoothed, taking into account the
closest neighbors according to the content-based similarity
measure (Kullback-Leibler divergence on Gaussian Mix-
ture Models of the MFCCs). To retrieve music via natu-
ral language queries, each textual query issued to the sys-
tem is expanded via a Google search, resulting again in
a term weight vector. This query vector is subsequently
compared to the smoothed weight vectors describing the
music pieces, and those with smallest distance to the query
vector are returned.

Nürnberger and Detyniecki present in [25] a variant of
the Self-Organizing Map (SOM) [18] that is based on a
model that adapts to user feedback. To this end, the user
can move data items on the SOM. This information is fed
back into the SOM’s codebook, and the mapping is adapted
accordingly.

In [33] Xue et al. present a collaborative personalized
search model that alleviates the problems of data sparse-
ness and cold-start for new users by combining informa-
tion on different levels (individuals, interest groups, and
global). Although not explicitly targeted at music retrieval,
the idea of integrating data about the user, his peer group,
and global data to build a social retrieval model might be
worth considering for MIR purposes.

The problem with the vast majority of approaches pre-

sented so far is that evaluation is still carried out without
sufficient user involvement. For instance, [7, 25, 26] seem-
ingly do not perform any kind of evaluation involving real
users, or at least do not report it. Some approaches are
evaluated on user-generated data, but do not request feed-
back from real users during the evaluation experiments.
For example, [16] makes use of collaborative tags stored
in a database to evaluate the proposed music search en-
gine. Similarly, [21] relies on data sets of listening his-
tories and weather conditions, and [33] uses a corpus of
Web search data. Even if real users are questioned dur-
ing evaluation, their individual properties (such as taste,
expertise, or familiarity with the music items under inves-
tigation) are regularly neglected in evaluation experiments.
In these cases, evaluation is typically performed to answer
a very narrow question in a restricted setting. To give an
example, the work on automatically selecting music while
doing sports, e.g. [3,23,24], is evaluated on the very ques-
tion of whether pace or heartbeat of the user does synchro-
nize with the tempo of the music. Likewise Kaminskas
and Ricci’s work on matching music with places of inter-
est [15], even though it is evaluated by involving real users,
comprises only the single question whether the music sug-
gested by their algorithm is suited for particular places of
interest. Different dimensions of the relation between im-
ages and music are not addressed. Although this is per-
fectly fine for the intended use cases, such highly specific
evaluation settings are not able to provide answers to more
general questions of music retrieval and recommendation,
foremost because these settings fail at offering explana-
tions for the (un)suitability of the musical items under in-
vestigation.
An evaluation approach that tries to alleviate this short-
coming is presented in [4], where subjective listening tests
to assess music recommendation algorithms are conducted
using a multifaceted questionnaire. Besides investigating
the enjoyment a user feels when listening to the recom-
mended track (“liking”), the authors also ask for the user’s
“listening intention”, whether or not the user knows artist
and song (“familiarity”), and whether he or she would like
to request more similar music (“give-me-more”). A simi-
lar evaluation scheme is suggested in [12]. However, Firan
et al. only investigate liking and novelty.
In summary, almost all approaches reported are still more
systems-based than user-centric.

3. HOW TO EVALUATE USER-CENTERED MIR?

In what follows we will argue that whereas evaluation of
systems-based MIR has quite matured, evaluation of user-
centered MIR is still in its infancy. Let us start by re-
viewing what the nature of experiments is in the context
of MIR. The basic structure of MIR experiments is the
same as in any other experimental situation: the question
is whether there are effects of the variation of the indepen-
dent variables (also called factors) on the dependent vari-
ables. In the case of systems-based MIR, independent vari-
ables are e.g. type and certain parameter characteristics of
the algorithms used or type and characteristics of the data



set in question. Typical dependent variables are various
performance measures like accuracy, precision, root mean
squared error or training time. A standard computer exper-
iment is genre classification where the independent vari-
able is the type of classification algorithm, say algorithm A
and B, and the dependent variable is the achieved accuracy.
Statistical testing is used to ensure that the observed effects
on the dependent variables are caused by the varied inde-
pendent variables and not by mere chance, i.e. to ascertain
that the observed differences are too large to attribute them
to random influences only. Besides using the proper statis-
tical instruments to establish statistical significance of re-
sults it is equally important to make sure to control all im-
portant factors in the experimental design. Any factor that
is able to influence the dependent variables has to be part of
the experimental design. E.g. if algorithm A, compared to
algorithm B, works better for electronic dance music than
for rock music then any experimental design not contain-
ing dance music will obscure differences between A and
B. The important thing to note is that for systems-based
MIR which uses only computer experiments it is compara-
bly easy to control all important factors which could have
an influence on the dependent variables. This is because
the number of factors is both manageable and controllable
since the experiments are being conducted on computers
and not in the real world.

Already early on in the history of MIR research, gaps
concerning the evaluation of MIR systems have been iden-
tified. Futrelle and Downie [14], in their review of the first
three years of the ISMIR conference published in 2003,
identify two major problems: (i) no commonly accepted
means of comparing retrieval techniques, (ii) few if any at-
tempts to study potential users of MIR systems. The first
problem concerns evaluation of computer experiments and
the second problem the barely existing inclusion of users
in MIR studies. Flexer [13], in his review of the 2004
ISMIR conference [5], argues for the necessity of statis-
tical evaluation of MIR experiments. He presents mini-
mum requirements concerning statistical evaluation by ap-
plying fundamental notions of statistical hypotheses test-
ing to MIR research. His discussion is concerned with
systems-based MIR, the example used throughout the pa-
per is that of automatic genre classification based on audio
content analysis. The MIR community is criticized for the
lack of statistical evaluation it uses, e.g. only two papers
in the ISMIR 2004 proceedings [5] employed a statistical
test to prove significance of their results. These ongoing
discussions about evaluation of MIR experiments have led
to a first evaluation benchmark taking place at the ISMIR
conference 2004 [6] and further on to the establishment of
the annual evaluation campaign for MIR algorithms (Mu-
sic Information Retrieval Evaluation eXchange, MIREX)
[10]. In 2011, MIREX consisted of 16 tasks ranging from
audio classification, cover song identification, audio key
detection to structural segmentation and audio tempo es-
timation. All but two tasks are concerned with systems-
based MIR and a purely computer-based evaluation of al-
gorithms. The two exceptions using human evaluations in

a more real-world setting are Audio Music Similarity and
Retrieval and Symbolic Melodic Similarity. Starting with
the MIREX 2006 evaluation [10] statistical tests are being
used to analyze results.

The situation concerning evaluation of user-centric MIR
research is far less well developed. In a recent comprehen-
sive review [31] of user studies in the MIR literature by
Weigl and Guastavino, papers from the first decade of IS-
MIR conferences and related MIR publications were ana-
lyzed. A central result is that MIR research has a mostly
systems-centric focus. Only twenty papers fell under the
broad category of “user studies” which is an alarmingly
small number given that 719 articles have been published
in the ISMIR conference series alone. To make things
worse, these user studies are “predominantly qualitative in
nature” and of “largely exploratory nature” [31]. The ex-
plored topics range from e.g. user requirements and infor-
mation needs, insights into social and demographic factors
to user-generated meta-information and ground truth. This
all points to the conclusion that evaluation of user-centered
MIR is at its beginning and that especially a more rigorous
quantitative treatment is still missing.

In discussing the challenges of quantitative evaluation
of user-centered MIR we like to turn to an illustrative ex-
ample: the recent 2011 Audio Music Similarity and Re-
trieval task 1 within the annual MIREX [10] evaluation
campaign. Each of 18 competing algorithms was given
7000 songs (30 second audio clips) for which they com-
puted similarity rankings. The data consisted of 10 equally
sized genre classes ranging from classic music to rock to
hip-hop. From the 7000 songs, “100 songs were randomly
selected from the 10 genre groups (10 per genre) as queries
and the first 5 most highly ranked songs out of the 7000
were extracted for each query (after filtering out the query
itself, returned results from the same artist were also omit-
ted). Then, for each query, the returned results (candi-
dates) from all participating algorithms were grouped and
were evaluated by human graders” 1 . For each individual
query/candidate pair, a single human grader provided both
a FINE score (from 0 (failure) to 100 (perfection)) and a
BROAD score (not similar NS, somewhat similar SS, very
similar VS) indicating how similar the songs are in their
opinion. The independent variable here is the type of algo-
rithm used to compute the similarity rankings. The depen-
dent variables are the subjects’ broad and fine appraisal of
the perceived similarity. But since this is a real-world ex-
periment involving human subjects there is a whole range
of factors that have not been assessed. E.g. there are social
and demographic factors that might clearly influence the
user’s judgment of music similarity: their age, gender, cul-
tural background and especially their musical history, ex-
perience and knowledge. But also factors concerning their
momentary situation during the actual listening experiment
might have an influence: time of day, mood, physical con-
dition. Not to forget more straightforward variables like
type of speakers or headphones used for the test. As al-

1 The 2011 results and details can be found at:
http://www.music-ir.org/mirex/wiki/2011:
Audio Music Similarity and Retrieval Results



ready mentioned in section 1, even the choice of depen-
dent variable is debatable. After all, what does “similar”
really mean in the context of music? Timbre, mood, har-
mony, melody, tempo, etc might all be valid answers for
different people. This points to a certain lack of rigor
concerning the instruction of subjects during the experi-
ment. This enumeration of potential problems is not in-
tended to badmouth this MIREX task which still is a valu-
able contribution and an applaudable exception to the rule
of computer-only evaluation. But it is meant as a warn-
ing and to highlight the explosion of independent variables
and factors that might add to the variance of observed re-
sults and might obscure significant differences. In princi-
ple, all such factors have to be recorded and made indepen-
dent variables in the overall experimental design.

If MIR is to succeed in maturing from purely systems-
based to user-centered research we will have to leave the
nice and clean world of our computers and face the often
bewilderingly complex real world of real human users and
all the challenges this entails for proper design and evalu-
ation of experiments. To make this happen it will be nec-
essary that our community with a predominantly engineer-
ing background opens up to the so-called “soft sciences”
of e.g. psychology and sociology which have developed
instruments and methods to deal with the complexity of
human subjects.

4. DISCUSSION AND CONCLUSIONS

Incorporating real users in both the development and as-
sessment of music retrieval systems is of course an expen-
sive and arduous task. However, recent trends in music
distribution, in particular the emergence of music stream-
ing services that make available millions of tracks to their
users, call for intelligent personalized and context-aware
systems to deal with this abundance. Concerning the de-
velopment of such systems, we believe that the following
two reasons have prevented major breakthroughs so far: (i)
a general lack of research on user-centered systems, (ii) a
lack of awareness concerning the complexity of evaluation
of user-centered systems. In designing such systems, the
user should already be taken into account at an early stage
during the development process. We need to better un-
derstand what the user’s individual requirements are and
address these requirements in our implementations. Other-
wise it is unlikely that even the spiffiest personalized sys-
tems will succeed (without frustrating the user). We hence
identify the following four key requirements for elaborat-
ing user-centric music retrieval systems:

Personalization aspects have to be taken into account.
In this context, it is important to note the highly subjec-
tive, cognitive component in the understanding of music
and judgement of its personal appeal. Therefore, designing
user-aware music applications requires intelligent machine
learning techniques, in particular, preference learning ap-
proaches that relate the user context to concise, situation-
dependent music preferences.

User models that encompass different social scopes are
needed. They may aggregate an individual model, an in-

terest group model, a cultural model, and a global model.
Furthermore, the user should be modeled as comprehen-
sively as possible, in a fine-grained and multifaceted man-
ner. With today’s sensor-packed smartphones and other in-
telligent devices it has become easy to perform extensive
context logging. Of course, privacy issues must also be
taken seriously.

Multifaceted similarity measures that combine differ-
ent feature categories (music content, music context, and
user context) are required. The corresponding represen-
tation models should then not only allow to derive simi-
larity between music via content-related aspects, such as
beat strength or instruments playing, or via music context-
related properties, such as the geographic origin of the per-
former or a song’s lyrics, but also to describe users and
user groups in order to compute a listener-based similarity
score.

Evaluation of user-centric music retrieval approaches
has to include all independent variables that are able to in-
fluence the dependent variables into the experimental de-
sign. In particular, such factors may well relate to indi-
vidual properties of the human assessors. Furthermore, it
is advisable to make use of recent approaches that mini-
mize the amount of labor required by the human assessors,
while at the same time maintaining the significance of the
experiments. This can be achieved, for instance, by em-
ploying the concept of “Minimal Test Collections” in the
evaluation of music retrieval systems [30].

By paying attention to these advices, we are sure that
the exciting field of user-centric music information retrieval
will continue to grow and eventually provide us with al-
gorithms and systems that offer personalized and context-
aware access to music in an unintrusive way.
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ABSTRACT 

Most Music Information Retrieval (MIR) researchers will 
agree that understanding users' needs and behaviors is 
critical for developing a good MIR system. The number 
of user studies in the MIR domain has been gradually in-
creasing since the early 2000s reflecting the need for 
empirical studies of users. However, despite the growing 
number of user studies and the wide recognition of their 
importance, it is unclear how large their impact has been 
in the field; on how systems are developed, evaluation 
tasks are created, and how we understand critical 
concepts such as music similarity or music mood. In this 
paper, we present our analysis on the growth, publication 
and citation patterns, and design of 155 user studies. This 
is followed by a discussion of a number of is-
sues/challenges in conducting MIR user studies and dis-
tributing the research results. We conclude by making 
recommendations to increase the visibility and impact of 
user studies in the field. 

1. INTRODUCTION 

Understanding users is a fundamental step in developing 
successful Music Information Retrieval (MIR) systems 
and services. Most MIR researchers will agree with this 
idea, and furthermore, it is not uncommon to hear various 
speakers at MIR related conferences specifically arguing 
for the importance of user studies, academically as well as 
commercially. Despite the growing number of user 
studies and the wide recognition of their importance in the 
MIR domain, it is unclear as to what impact these studies 
have really made. Have these studies in fact changed how 
MIR systems are developed or evaluation tasks are 
designed? Have they really changed how we understand 
critical concepts such as music similarity or music mood? 
For MIR researchers specializing in user studies to move 
forward in this domain, it is necessary to understand our 
past: what have we been doing and what kind of impact 
have we made or not? In order to lay the foundation for 
this discussion, we collected 155 user studies related to 
music, reviewed the content, and analyzed the publication 
and citation patterns, and research design of these studies.  

2. STUDY DESIGN 

2.1 Definition of “User Studies” 

Our first challenge was to define and set the boundaries 
for “user studies.” From our analysis of relevant literature, 
we found two major categories of user studies: “studies of 
users” (e.g., music information needs) and “studies 
involving users” (e.g., usability testing). Weigl and 
Guastavino [7], in their recent review article of user 
studies in MIR literature, defined user studies as 
“documents report(ing) on empirical investigations of 
user requirements or interactions with systems primarily 
aimed at providing access to musical information, 
including musical recordings, scores, lyrics, photography 
and artwork, and other associated metadata (p. 335).” In 
this study, we adopt a broader definition of “user studies” 
as studies reporting on 1) empirical investigation of needs, 
behaviors, perceptions, and opinions of humans, 2) 
experiments and usability testing involving humans, 3) 
analysis of user-generated data, or 4) review of the studies 
above. This is because a broader definition will allow for 
a comparison of these different types of user studies and 
enable us to see patterns of concentration with regards to 
particular types of user studies related to MIR. 

2.2 Data Collection 

We conducted an extensive literature search in multiple 
domains related to music (e.g., MIR, Library and 
Information Science (LIS), Human Computer Interaction 
(HCI), Computer Science (CS), Engineering, Psychology, 
Musicology) to identify these studies. We conducted 
searches in multiple databases including WorldCat, 
EBSCO, Web of Knowledge, IEEE Xplore, ACM DL, 
InfoPsych, and Google Scholar. We used the different 
combinations of the following search terms: music, user, 
human, people, need, use, behavior, testing, involvement, 
learning, interaction, design, accessibility, usability, user-
centered, etc. After retrieving the relevant studies, we also 
followed the citations in order to broaden our search. In 
total, we found 155 studies related to music users. 

3. PUBLICATION PATTERNS OF USER STUDIES 

3.1 Growth of the Publications 

First, we analyzed several aspects related to the publica-
tion patterns of the user studies. We examined the publi-
cations dates of the user studies in order to learn more 
about the growth pattern. Figure 1 shows the distribution 
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of the number of user studies published by year. We can 
observe the steady increase in the number of publications 
over the years. There were a small number of user studies 
pre-dating 2000, but the substantial growth started in 
early 2000s when the need for empirical user studies was 
pointed out in works such as [1], [2], and [3]. There was 
also a noticeable increase in 2009 and we expect that this 
growth pattern will continue for the coming years, at least 
in the near future. Although this growth pattern is encour-
aging, when compared with the number of studies focus-
ing on the system aspect of MIR, the overall number of 
user studies is still relatively small [7].  

 
Figure 1. Distribution of the number of user stud-
ies by the year of publication 

3.2 Types of Publications 

We also examined the publication venues of these studies. 
Of the 155 studies, there were 91 conference publications, 
56 journal articles, 6 workshop papers, 1 book chapter, 
and 1 white paper. There were a total of 83 different ven-
ues where music user studies appeared. The primary 
source of user studies was the ISMIR conference proceed-
ings with 41 user studies, and all the other journals and 
conference proceedings included 5 or fewer user studies. 
65 of the 155 user studies (42%) were the only music user 
study published in the particular venue. This pattern of 
concentration in a small number of core publications can 
be explained by Bradford’s law which characterizes the 
pattern of diminishing returns in searching for references 
in scholarly publications [1]. The concentration of MIR 
user studies in the ISMIR proceedings is perhaps stronger 
than Bradford’s predicted 1:n:n2 ratio of journals (where 
each proportion contains approximately the same number 
of articles). The top sources in the order of number of rel-
evant papers are: ISMIR (41); ACM Conference on Hu-
man Factors in Computing Systems (5); ACM Interna-
tional Conference on Multimedia (4), ACM/IEEE-CS 
Joint Conference on Digital Libraries (4), International 
Conference on Information Visualization (4); Internation-
al Conference on Mobile and Ubiquitous Multimedia (4), 
Journal of New Music Research (3), Music Perception 
(3), Psychology of Music (3), IEEE International Confer-
ence on Multimedia and Expo (3), etc.  

The skewed distribution of publications poses a chal-
lenge for researchers of user studies as well as readers 
who are interested in finding these studies. We confirmed 

that it is in fact impossible to find all these studies using a 
single database or search engine. Also many researchers 
tend to conduct their literature search in their own do-
main, which will exclude many relevant works published 
in other domains (e.g., psychology scholars not citing 
MIR literature in CS domain). Although the ISMIR pro-
ceedings are freely available on the Web, a large number 
of other publications are fee-based. Unless the research-
ers’ or readers’ institutions have subscriptions to these 
different publications, it will be difficult and expensive to 
access these works. This also raises a question about dis-
tributing our knowledge to the general public who are 
simply interested in music and also people who are in mu-
sic industry. Much of the MIR research aims to not only 
contribute to improving the general knowledge of music 
and how people interact with music, but also to create 
better systems and services related to music. If there is a 
barrier for general public and people outside of academia 
to access these works, then without a doubt, the impact 
we can make in the field will also be diminished.  

3.3 Co-authorship Analysis 

We performed a co-authorship analysis to further under-
stand the patterns of publication. Figure 2 shows the co-
authorship graph generated by using NodeXL, a tool for 
visualization and exploration of networks [6]. The graph’s 
vertices were grouped based on the Clauset-Newman-
Moore cluster algorithm and the graph was laid out using 
the Harel-Koren Fast Multiscale layout algorithm. The 
nodes represent the authors and the line connecting the 
nodes represents the co-authorship between the two au-
thors. The size of the node is scaled based on the number 
of publications by a particular author, and the width of the 
line connecting two nodes is scaled based on the number 
of times the pair of authors have co-authored a user study.  

A few strong networks emerged. The most notable 
network is grouped around Sally Jo Cunningham, J. Ste-
phen Downie, Jin Ha Lee, David Bainbridge and 20 other 
scholars. The two networks formed around Jukka Holm 
and Arto Lehtiniemi, and Charlie Inskip, Andrew 
MacFarlane, and Pauline Rafferty are also very promi-
nent. These strong networks seem to be forming based on 
the particular lab/university and regions: University of 
Illinois at Urbana-Champaign and University of Waikato 
for the first group, Finland for the second group, and UK 
for the third group. Another notable network formed 
around Adrian C. North and David Hargreaves in UK 
represents many user studies published in psychology. 
Another aspect to note is that the network is very discon-
nected, with a large number of small components, each 
consisting of a small number of authors. Part of the reason 
for this pattern could be because MIR is still a relatively 
new field, and there have not been many opportunities for 
cross-institutional ties to be formed. Or, it may reflect the 
widespread appeal of music as a subject for research 
(which is corroborated by the number and diversity of 
publication venues surveyed for this study). Further anal-
ysis will be necessary to determine the reasons for seeing 
this kind of co-authorship patterns.   



  
 

 
Figure 2. Co-authorship network among the authors 

4. CITATION PATTERNS OF USER STUDIES 

As part of the effort in understanding the impact of these 
studies, we investigated how often they were cited as of 
April 24, 2012 using the citation data from Google Schol-
ar (GS). The reason for using GS is because the major 
publications in the field such as ISMIR conference pro-
ceedings are not indexed in other major databases such as 
EBSCO, Web of Science, etc. Also since we are interest-
ed in the scholarly as well as commercial impact of the 
user studies, being able to search for patents in addition to 
scholarly work on GS was deemed useful. We found a 
total of 3097 citations of 154 user studies in research pub-
lications and patents (one study did not show up). Figure 
3 shows the distribution of the citation counts of the user 
studies in other materials. The X-axis represents the num-
ber of citations and the Y-axis represents the number of 
user studies that had the specified range of citation counts. 
The average number was 20.1 with the standard deviation 
of 44.5, the median of 5.5, and the maximum of 348. 

  
Figure 3. Distribution of the number of references 
of the user studies in other articles and patents 

 
Figure 4. Distribution of the number of years for 
user studies to get cited 

We were also interested in how long it takes for user 
studies to get cited. Figure 4 shows the distribution of the 
number of years it took for the user studies to get cited. 
This is based on the publication dates of the 2864 out of 
the 3097 citing articles and patents we were able to 
retrieve on GS. The X-axis represents the number of years 
passed after the publication of user studies and the Y-axis 
represents the number of citing articles/patents. The nega-
tive numbers (-1,-2) represent the cases where the author 
was self-citing a study that was yet to be published, or cit-
ing a study that was made available online before the 
print publication. The mean number of years was 5.48 
with the standard deviation of 0.10, median of 5, and 
maximum of 90. About 40% (1144 out of 2864) were cit-
ed in 3 years or less after the user study was published 
and about 60% (1710) in 5 years or less. The citation pat-
tern gradually decreases, and only about 15% (422) were 
cited after 10 years or more, and about 4% (119) after 15 
years or more. The citation pattern suggests that the “per-
ceived” relevance of the results quickly diminishes over 



  
 

time. Since the majority of the user studies were pub-
lished after 2000, for a more complete picture, this analy-
sis will have to be replicated in 10 or 20 years.   

 
Figure 5. Distribution of the citing articles/patents 
by the publication year of citing articles/patents 

Figure 5 shows the distribution of the citing articles/ 
patents by their publication dates. Overall the numbers of 
citing articles/patents are showing a pattern of steady in-
crease. Figure 3, 4, and 5, altogether seem to suggest that 
the user studies are in fact making growing impact to the 
field, although the impact of the studies tend to quickly 
diminish over time based on citation patterns. 

Author/Year Title Ref 
McNab  
et al./96 

Towards the digital music library:  
tune retrieval from acoustic input 

348 

Berenzweig  
et al./04 

A large-scale evaluation of acoustic and 
subjective music-similarity measures 

230 

North et al./00 The importance of music to adolescents 224 
Levitin, D. 
J./94 

Absolute memory for musical pitch:  
evidence from the production of learned 
melodies 

184 

Voida et al./05 Listening in: practices surrounding 
iTunes music sharing 

121 

Ellis &  
Whitman/02 

The quest for ground truth in musical 
artist similarity 

111 

North et al./04 Uses of music in everyday life 111 
Boltz et al./ 91 Effects of background music on the  

remembering of filmed event 
100 

Pauws &  
Eggen/03 

Realization and user evaluation of an 
automatic playlist generator 

100 

Lee &  
Downie/04 

Survey of music information needs,  
uses, and seeking behaviours:  
preliminary findings 

82 

Table 1. The top 10 most cited user studies  

Table 1 presents the top 10 most cited user studies in 
the field. There is a mix of user experiments, evaluation 
of particular systems, studies of information behaviors 
and user-generated data, etc. The most heavily cited user 
study was by McNab et al. In this study, 10 users were 
asked to sing 10 songs from memory which were taped 
for analysis of key, pitch, contour, etc. The article was 
published in Proceedings of the First ACM International 
Conference on Digital Libraries and was cited widely in 
various papers on content-based music retrieval systems 
and measures. We believe that the heavy citation of this 
paper and also Levitin was at least partly due to the fact 
that they were early papers which dealt with content-

based MIR, a topic which has dominated MIR research 
for the past decade. Studies by Berenzweig et al. and Ellis 
& Whitman explore measures for generating ground truth 
based on user data which is strongly relevant to the 
evaluation of algorithms, another big accomplishment of 
the past decade (i.e., MIREX). Studies of more general 
user needs and behaviors (North et al., Lee & Downie) 
may have had a broader impact to multiple areas related 
to music. The popularity of particular music application 
(Voida), association of music and other multimedia (Boltz 
et al.), and particular organizational measures (Pauws & 
Eggen) also seem to affect the heavy citation patterns.        

5. RESEARCH DESIGN OF USER STUDIES  

Lastly, we examined the studies more deeply in order to 
learn more about the research design of these user studies.  
We analyzed the content of the studies to discover the 
types and frequency of the various methods used (Fig. 6). 

 
Figure 6. Research methods used in user studies 

Experiment and usability testing were most commonly 
used (42%). The predominance of these methods may 
suggest that we are heavily focusing on evaluating what is 
out there rather than focusing on deeper problems or 
questions, a similar issue noted in other areas such as HCI 
[5]. These studies are primarily evaluating performance 
(e.g., error rate/time to perform task with a new system); 
identifying usability issues (i.e., interface design 
problems); or investigating acceptability of new system/ 
interface. The full user-centered design process should 
include stages supporting coming to an understanding of 
the users, development of system prototype(s), and 
evaluation of the prototypes with users. However, 
relatively few papers presenting a new system include 
both an initial user requirements elicitation study and a 
follow-up performance/usability/acceptability study.  

We also investigated the scale of these user studies by 
tabulating how many human subjects were involved in 
these studies. 124 user studies involved human subjects, 
and 26 analyzed human-generated data such as queries, 
tags, etc. 7 studies did not directly involve human sub-
jects or human-generated data, as they were papers based 
on literature review, meta-analysis, or theoretical reason-
ing. Figure 7 shows the distribution of the number of hu-
man subjects included in the studies of real users. Many 
studies are of fairly small scale: 57 of the 124 studies 
(46%) involve 20 or fewer human subjects, and 102 stud-



  
 

ies (82%) involve 100 or fewer subjects.  
Note that the active involvement of participants is lim-

ited for lab experiments and usability tests, which typical-
ly run at most a couple of hours. Ethnographic observa-
tions are constrained by the time available to the re-
searcher to conduct observations. Interviews, surveys, and 
focus groups are attractive in that they may invite intro-
spection and comment on music-related behavior over the 
long term, but at the cost of relying primarily on retro-
spection rather than direct, measurable experience. Only 
data analysis and the diary study naturally offer the op-
portunity to examine authentic music information behav-
ior over the long term, though 'long term' studies are 
mainly of one to four weeks. In evaluations of specific 
systems, the common finding is that the users like the new 
system and find the new interface entertaining or novel-—
but it is generally unclear how or whether participant be-
havior may change after the novelty effect wears off. 

 
Figure 7. Number of subjects in user studies 

6. DISCUSSION 

Based on the results of our analyses as well as our own 
experiences in conducting music user studies, we provide 
a list of challenges/issues facing researchers who conduct 
music user studies which require further discussion. We 
believe that these issues are stemming from the unique-
ness of the subject and the research domain.     

6.1 Fast-changing Field 

We believe that the speed with which the MIR field has 
evolved has had a strong affect on both the scale of user 
studies as well as the longevity of the research findings of 
these studies. The rapid development of tools and tech-
nologies for music storage, distribution, and experience in 
the past few decades has been remarkable. Some of the 
most popular music related services today such as Spotify 
or YouTube launched less than 6 years ago. This implies 
that how our users envision and expect from music ser-
vices are most likely changing rapidly as well. Most of 
the young adults today probably never had to deal with 
physical media and grew up with various music streaming 
services. The results from studies that investigated how 
people find and purchase music on such physical media 
will have limited applicability today.   

We conjecture that the fast-changing field is at least 
one of the reasons for the prevalence of small-scale 
studies. Large-scale studies take longer, in terms of 

recruiting human subjects, as well as collecting and 
processing data, in particular if researchers want to 
incorporate a qualitative component. Longitudinal studies 
are by definition time-consuming. Due to the rapidly 
changing environment, researchers are constantly under 
pressure to conduct and publish studies swiftly. This can 
be especially true for those who are trying to test a partic-
ular system or methods for providing access to music, as 
there is a good chance that by the time the research gets 
published in a journal, the results are already outdated. 
This may also explain a large proportion of user studies 
being published in conference or workshop proceedings.  

6.2 Issue of Generalization  

A large proportion of MIR user studies are small to mod-
erate scale studies investigating a limited number of 
users. How does the scale of the study affect the general-
izability of its results? Can we in fact make any reasona-
ble inferences from studies of this scale that are 
generalizable to a larger user population? In addition, at 
least in certain parts of the world, it is not possible to ob-
tain a comprehensive list of email addresses for the pur-
pose of survey due to privacy concerns. This means that 
we often have to resort to convenience sampling, and 
study participants are in fact most frequently drawn from 
students or co-workers of the researchers which again 
can negatively affect the generalizability of our findings.      

A point worth noting here is that researchers of music 
users are trying to grapple with this nebulous idea of 
users. Who really are our users? Where do we draw the 
boundaries? Music is so pervasive in our lives that it is 
difficult to know who is and is not affected by music. 
Moreover music is often enjoyed and sought out across 
different regions and cultures. Many of the MIR systems 
and services are now being used by global user base. 
Thus researchers of music users, in some sense, are ex-
pected to derive findings that can potentially have global 
implications on a wide range of users across space and 
time. Then how do we define and randomly sample this 
population in a practical sense? Even if we draw an 
artificial boundary and try to sample a smaller population, 
the subjects who participate in our studies will most likely 
be people who are interested in music to some degree. In 
this sense, the results are always likely to be biased.  

Due to these issues, we believe that rather than aiming 
for generalizing the research findings, it might be helpful 
to take an alternative approach to understanding the pur-
pose of these studies that each of these studies is discov-
ering some piece of information about the users that is 
correct, but not comprehensive. When multiple pieces are 
put together, common themes emerge which we can gen-
eralize over multiple groups of users, as well as unique 
themes that can only apply to a particular user group.    

6.3 Lack of Systematic Synthesis of Research Results  

Although a large proportion (26%) of user studies were 
published in the proceedings of ISMIR conference, other 
studies were published in journals and conferences in 
multiple domains including LIS, HCI, Musicology, Psy-



  
 

chology, etc. We had to repeat our search in multiple da-
tabases in order to retrieve all these studies scattered in 
multiple domains. Despite of our best efforts, we would 
not be surprised if there were studies we were not able to 
find. We suspect that this is probably one of the reasons 
hindering the synergic impact of these studies. Without 
being able to easily find all the previous user studies that 
have dealt with similar research questions and user popu-
lations, we will essentially reinvent the wheel every time. 
In order to resolve this issue, there is a need for addition-
al review articles such as [7] and also an archive of all 
the citation information of user studies related to music. 
As the first step, we made our list of user studies with full 
citation available on the web1. However, a static webpage 
is far from an ideal way for collecting and sharing this 
type of information. We believe a more sustainable solu-
tion is needed, managed by multiple stakeholders.  

6.4 The Disconnect Between System/Evaluation Task 
Designers and User Studies Researchers  

In MIREX, the evaluation task is typically proposed by 
researcher(s) who are involved in developing algorithms 
related to the task. In the MIR domain, however, 
researchers who conduct user studies are not always al-
gorithm developers themselves; this is especially true for 
researchers engaged in studies of music users focusing on 
information needs or behaviors. This disconnect may be 
one of the reasons why we have not seen a significant 
change in the way evaluation tasks have been run over 
the past seven years since MIREX started in 2005. Some 
of the suggestions made in the user studies might be lo-
gistically impossible to implement, or the evaluators 
might not even agree with those suggestions. Without a 
more thorough investigation asking the system develop-
ers and the organizers of evaluation tasks, it will be 
premature to determine what the exact reasons are.  

7. CONCLUSION AND FUTURE WORK 

In this paper, we reflected on how music user studies have 
been conducted and published, and what impact these 
studies have had on the field. Findings from our analysis 
suggest that there may be multiple layers of barriers for 
the user studies to make a strong impact: lack of findabil-
ity due to the scattered patterns of publication, weak con-
nections among scholars, dominance of small scaled stud-
ies that are difficult to generalize, etc. The purpose of this 
work is to provide an opportunity for starting a discussion 
at the ISMIR where many stakeholders involved in MIR 
research can together explore potential solutions to the 
issues raised in this paper. Thus, we want to conclude our 
paper with a set of questions that need further discussion: 

For researchers conducting user studies: 

 How can we provide systematic and intelligent access 
to the work we produce? Is there a sustainable meth-
od? Maybe a collaboratively managed resource?  

                                                           
1 http://www.jinhalee. com/miruserstudies  

 Is it necessary to change our research questions, 
methods, study populations, or venues in increase 
impact and affect change in the field? 

For system and evaluation task designers/developers: 

 How do you find out about new research on users and 
keep yourself updated? Are there particular kinds of 
publications do you seek often?  

 What kinds of user studies do you find most and least 
useful? What do you see as the grand challenge in the 
area of MIR user studies? 

In our future studies, we plan to survey and interview 
designers/developers of music related services and sys-
tems as well as organizers of MIREX evaluation tasks in 
order to more deeply understand the impact of these user 
studies. Specifically, we are interested in how the infor-
mation on users are disseminated and diffused in the MIR 
domain, and how that knowledge may or may not affect 
the ways music services/systems are designed and modi-
fied. A deeper understanding on what kind of user infor-
mation is actually sought by system designers/developers 
will be significant for researchers of MIR user studies.  
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Mel is a MIR researcher (the audio type) who's always 
been convinced that his field of research had something 
to contribute to the study of music cognition. His feeling, 
however, hasn't been much shared by the reviewers of the 
many psychology journals he tried submitting his views 
to. Their critics, rejecting his data as irrelevant, have fru-
strated him - the more he tried to rebut, the more defen-
sive both sides of the debate became. He was close to 
give up his hopes of interdisciplinary dialog when, in one 
final and desperate rejection letter, he sensed an unusual 
touch of interest in the editor's response. She, a cognitive 
psychologist named Ann, was clearly open to discussion. 
This was the opportunity that Mel had always hoped for: 
clarifying what psychologists really think of audio MIR, 
correcting misconceptions that he himself made about 
cognition, and maybe, developing a vision of how both 
fields could work together. The following is the imagi-
nary dialog that ensued. Meet Dr Mel Cepstrum, the MIR 
researcher, and Prof. Ann Ova, the psychologist.    
     

1. ON AUDIO FEATURES 
 
Ann Ova: Let me start with a tentative definition of what 
we, music cognition researchers, are interested in. To me, 
cognition is like digestion: a chain of transformations af-
fecting a stimulus (e.g. a piece of music reaching the 
ears), transforming it, breaking it into blocks and even-
tually metabolizing it to produce a behavior (an emotion-
al reaction, recognition, learning, etc.). As researchers, 
we are seeking to understand this mechanism of "stimulus 
digestion": what in the signal triggers it, how it is acti-
vated, what brain/mind functions are required.  
Mel Cepstrum: When I hear this, I form the impression 
that your collective goal is not very different from ours in 
Music Information Retrieval. First, we study the same 
behaviors: the recognition of music into melodies, artists, 
styles, genres, or the prediction of emotional reactions. 
Second, we too are looking for mechanisms, which we 
prefer to call algorithms, and we conceptualize them us-
ing similar steps: sensory transformations first (we'd call 
this the signal processing front-end or feature extraction), 
then linking to memory and learning (we'd say databases 
and statistical models). It is therefore surprising to me 
that a lot of work in music cognition tends to rely on au-
dio characteristics that can be extracted "by ear", thus ig-
noring much of our work in the past 10 to 15 years on 

musical signal processing. For instance, of the nearly 
1,000 pages of the Handbook of Music and Emotion [14], 
not a single one is devoted to computerized signal analy-
sis, but examples abound of research asking participants 
to subjectively evaluate a musical extract's tempo, com-
plexity, height etc. on scales from 1 to 5, so these charac-
teristics can be correlated with what you call "behavior". 
While I understand this may have been the only approach 
available to, say, Robert Francès in 1958 [10], surely you 
do realize that all of this (pitch extraction, beat tracking, 
etc.) can now be automated with computer algorithms? 
What's the superiority of doing it by hand?    
A.O. This is true, much of what we study is analyzed by 
hand, or rather "by ear", by participants. I believe the ad-
vantage of doing so is that we only consider as possible 
acoustic correlates of a given behavior constructs that can 
be cognitively assessed by the participants themselves. 
We want to use what they really hear, not what a com-
puter thinks they hear, and the best way to do this is to 
simply ask them.   
M.C. But you'll agree that there are unique advantages to 
automatic analysis: it's fast and cheap, you can process a 
large number of stimuli in just minutes, while it would 
take a large number of participants to do the same by ear. 
A.O. I understand this is an important criteria in your 
field - certainly one does not want to index iTunes by 
hand, but this is not an important concern for us. If a par-
ticular experimental design is expensive in terms of expe-
rimenter and participant time, but it is the design of 
choice, so be it.  
M.C. Right - but isn't automatic signal analysis also more 
objective? It can extract physical properties from the sig-
nal, e.g. the root-mean-square that qualifies its physical 
energy or the zero-crossing-rate which describes the noi-
siness of the waveform - without mediating these by cog-
nitive judgments. It can also realistically simulate the au-
dio processing chain of the peripheral auditory system. 
For instance, Mel-Frequency Cepstrum Coefficients, a 
mathematical construct derived from the signal's Fourier 
transform, are designed to reproduce the non-linear tono-
topic scale of the cochlea and the dynamical response of 
the hair cells of the basilar membrane.  
A.O. This is only partly correct, you see. If you look at 
MFCCs closely (take Logan [23], say), you see that parts 
of the algorithm were designed to improve their computa-
tional value for machine learning, and not at all to im-
prove their cognitive relevance. That final discrete cosine 
transform, for instance, is used to reduce correlations be-
tween coefficients, which would make their statistical 
modeling more complex. Now, one could argue I guess 
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that the brain uses a similar computational trick - authors 
like Lewicki [19] are thinking along these lines, I suppose 
- but you'll agree that the responsibility rests on us, re-
searchers, to prove that correct. Until then, MFCCs are 
maths. Useful maths for you perhaps, but irrelevant to our 
concerns.  
M.C. Wait, that's a bit harsh.  How about that study by 
Terasawa, Slaney and their colleagues at Stanford [31]: 
they resynthesized sounds from MFCCs and showed that 
human timbre dissimilarity ratings between sounds corre-
lated exactly with the MFCCs. Doesn't that prove some-
thing?  
A.O. Good one. This is indeed an important study, per-
haps the first to tackle this problem diligently. But what 
does this prove, you ask? That an algorithmic construc-
tion, the MFCC, closely predicts a cognitive judgement. 
Should we conclude the brain implements a discrete co-
sine transform? Probably not. Just like fitting reactors on 
an airplane and seeing it take off should not lead us to 
conclude anything about how birds fly. Don't you think?  
M.C. You're killing me. Are you seriously rejecting 10 
years' worth of results as mere coincidences? Our find-
ings that, say, taking the derivative of MFCCs improve 
genre classification by 10%, or that periodicities in the 
range 1-10 seconds (the rhythm fluctuation patterns of 
Pampalk [27]) are enough to account for timbre similari-
ty, shouldn't that, at least, give you some sort of intuition 
about how these behaviors are cognitively produced?   
A.O. Sorry if I sounded dismissive. In theory, you're 
right, and actually, we have been paying attention to your 
work (initiative like the MIRToolbox [17] have helped). 
But in practice, it's been really difficult to use your work, 
or to derive useful intuitions from it. Let me show you 
what I mean here, precisely. I'm looking at this data pro-
duced in my lab, a series of emotional valence and arous-
al judgements produced by participants listening to very 
short musical extracts (shorter than 500ms). At this level, 
it is unlikely that emotional reactions result from a cogni-
tive analysis of say, melody or harmony, because the ex-
tracts are too short to even include a single note. The 
question for us is therefore to understand what low-level 
features of the raw sound are responsible for the emotion. 
It's the classical Gjerdingen & Perrott scenario [12], isn't 
it? This, if I understand correctly, is the ideal use-case for 
MIR features: a quasi-stationary signal, mostly important 
by its timbre quality. Well, let's have a look.  
Table 1 reproduces the results of a multivariate regression 
we computed between the stimuli's valence and arousal 
and the whole batch of features offered by the MIRTool-
box [17]. Let's see what intuition I, the cognition re-
searcher, should derive from this. We see stimulus va-
lence is very well explained by, let me get this right, the 
entropy of the period of the magnitude of the maximum 
peak detected every 50ms in the signal's chromagram (a 
chromagram, as you know,  gives at each successive time 
position the energy observed at the frequency correspond-
ing to each note - c, c#, d, etc., of each octave). Similarly, 
stimulus arousal seems to result from the standard devia-
tion of the 6th MFCC and the mean of the 

Table 1: Top MIR features in a regression of valence 
and arousal emotional judgements 

 
3rd, and - mind you - not the opposite. 
M.C. Hmm. This seems a bit too complicated maybe?  
A.O. See what I mean? That surely fits well to the data, 
but I'm sure you realize it does not actually explain any-
thing. Even if we took it literally, this would be a formid-
able mix-bag of an explanation. We have here an emo-
tional reaction, valence, of which neuroscience tells us it 
is at least partly pre-attentive and subcortical, and which 
we explain here with constructs requiring memory and 
statistical learning ("entropy"), rhythmic entrainment 
("period"), temporal integration ("maximum peak"), har-
monic analysis ("chromagram") and arguably a partici-
pant's musical training in a western culture (because the 
chromagram relies on the 12-tone western pitch system).     
M.C. Well, you got a point. But isn't this exactly the 
same problem when psychologists rely on features eva-
luated subjectively by their participants? When they study 
cultural differences between western and Indian classical 
music, Balkwill & Thompson [2] argue emotions are re-
lated to their stimuli's musical complexity, which they 
measure by asking participants, I quote, "to evaluate how 
much was going on melodically in the except - was there 
a lot of repetition as in "Mary had a little lamb?". Now, 
isn't that carrying a lot of assumptions too? The construct 
of  "being like Mary had a little lamb?" is probably only 
derivable at a cortical level, using a lot of cognitive func-
tions such as memory, melodic representations, etc. and 
certainly presupposes the participants know of that song 
in the first place. Are these assumptions realistic knowing 
what we know of emotions?  
A.O. Well, you're probably right. And I guess one could 
even add that MIR has the advantage of not hiding these 
assumptions under their apparent lexical simplicity. But 
still, you have to admit that the logics behind your typical 
MIR signal feature is difficult for us to follow. If we want 
to use it to prove anything, it is crucially important for us 
to know what we're dealing with: a physical measure? a 
cognitive model? Let's have a look. In the MIR bestiary, 
we find, first, features deriving from traditional psy-
choacoustics: for instance, the spectral centroid which is 
the traditional correlate for the first perceptual dimension 
identified by MDS studies of timbre [13] or the log attack 
time, which correlates with the second most-important 
dimension; then, your field offers quite a lot of mathe-
matical variants of these same characteristics, which 
seem to be justified only by the fact that they are concep-



  
 

tually close (for instance, spectral skewness, the 3rd spec-
tral moment, which seems to be included because of the 
special status of the first moment, the above-mentioned 
centroid) or even that they are easy enough to compute 
(spectral entropy, obtained by multiplying the Fourier 
spectrum with its logarithm); other features seem to start 
their career as intermediary steps in the processing chain 
of another feature, gain special status and then a name of 
their own (for instance, the "fluctuation pattern" you 
mentioned earlier [27], which was originally an interme-
diary step in a tempo extraction algorithm); or even, as 
by-products of other algorithms, like some measures of 
pulse clarity [16] which are in fact the error estimation in 
the output of a beat-tracking algorithm. And the list goes 
on, growing every year: the sole MIRToolbox library of-
fers more than 300 features, very few of which having a 
clear epistemological status. Now, I do not doubt they 
serve your purpose well, but I hope you see it is unclear 
whether they can serve ours.  
 

2. ON PRECISION AND GROUNDTRUTH 
 

M.C. I do. And I have to admit it never occurred to me 
that our drive to optimize our features for precision (de-
riving such features, selecting variants that work, recom-
bining them, etc.) had taken us so far from the cognitive 
reality. Still, isn't it paradoxical that this same process is 
taking us closer and closer to the actual phenomenon, in 
terms of percentage of precision? I mean, work like Liu 
& Zhang  [21] simulate with more than 95% precision the 
human judgements of "depression" and "contentement" 
made when listening to more than 250 extracts of music, 
by combining features describing timbre (e.g. spectral 
centroid), rhythm (e.g. average autocorrelation peak) and 
intensity (e.g. rms). Even if their algorithm has no pre-
tense of being a cognitive model, the fact that it agrees 
with humans 95% of the time on hundreds of stimuli can 
only make us think it captures a large share of the physi-
cal and sensory features used by human cognition - right?  
A.O. Let me ask a question. Isn't this definition of preci-
sion, relative to a so-called ground truth, a bit illusionary? 
Does everybody, in every culture, have the same exact 
definition of what is, say, "rock music", or of 2 songs that 
"sound the same"?  
M.C. I see where you're going with this. We, MIR re-
searchers, have always been uneasy about this point, to be 
honest. We're stuck between 2 research traditions: one, 
machine learning, which is interested in the capacity of 
algorithms to learn from a set of examples, whatever 
these examples are. For this tradition, whether the ground 
truth is meaningful or not is irrelevant. It is just taken as a 
temporary gold standard, relative to which different algo-
rithms can be compared. Whether "rock" is indeed "rock" 
or "jazz" does not matter - actually, we want algorithms 
that have the flexibility to also learn that "jazz" is "rock" 
if we like them to. However, we also have the second re-
search goal of being useful to electronic music distribu-
tion systems. Now, in this world, defining a unique 
ground truth is suddenly very relevant, but you soon real-

ize it is also close to impossible: we have plenty of exam-
ples where what some call "rock", others will call "pop" 
or "jazz" and so on. I guess that's what you would call 
individual variations. Most of our recent research tries to 
address this paradox: for instance, how tags learned on 
one dataset generalize to other datasets [24], how to per-
sonalize music recommendations [5] or even letting uses 
define their own personal categories in interaction with 
the system [26]. But one cannot just rule out the idea of 
precision. After all, you psychologists also have to rely 
on the same concept: take the psychoacoustics of musical 
timbre. What these studies do is, similarly, consider aver-
age similarity ratings over many users (not that many, 
incidentally, compared with the thousands of samples we 
are routinely dealing with in MIR), and select features 
that explain the best percentage of the data's variance - 
finding, for instance, that the spectral centroid of an ex-
tract correlates at 93% with the first principal component 
of the human-constructed timbre space. But why should 
we accept spectral centroid as an important "psychologi-
cally-validated" characteristics of timbre, and simulta-
neously reject, say, Liu & Zhang's average autocorrela-
tion peak [21] (or Alluri & Toiviainen's 6th band spectral 
flux [1]) when it allows to classify emotions at 95%? 
Sometimes, I wonder if you have a bit of a "not-invented-
here" bias...  
A.O. You may be right. Perhaps we have been disregard-
ing advances in signal processing just because they look 
complicated and we can't be bothered to follow what 
you've been doing. Signal features produced by recent 
MIR research could and probably should be integrated to 
modern psychoacoustics, especially for those problems 
that could not yet be solved, such as dissonance [28], and 
you'll have to teach us on that. However, your using the 
example of psychoacoustics is interesting. I don't know if 
you realize that the psychoacoustics methodology is de-
signed to investigate percepts, i.e. the immediate psycho-
logical gestalts corresponding to those few physical cha-
racteristics that define an auditory object, regardless of 
the listener and its culture. A musical sound has pitch, 
loudness and timbre. These are percepts. The same sound, 
however, does not have genre or emotion - these are con-
structed cognitively; their value could change (e.g. if you 
start calling the sound "pop" instead of "rock") without 
changing the physical definition of a sound. Now, to be 
honest, the frontier between what's a percept and what's a 
cognitive construction has been challenged in recent 
years, with the realization that action and perception are 
intertwined, but still most cognition researchers would 
agree a fundamental difference remains between the two. 
I'm worried you're applying the psychoacoustics meta-
phor to behaviors (genres, emotions, etc.) for which it 
does not apply.  
M.C. This is fascinating. I realize just now that, all these 
years, I have been using the terms psychoacoustics and 
music cognition is a nearly interchangeable way. The 
more I think about it, the more I realize that indeed MIR 
takes a psychoacoustics approach to, as you say, genres 
and emotions, treating these as if they were a set of phys-
ical properties of the sound. What's surprising is that it 



  
 

works so well. In fact, we're not capturing "rock" or "sad" 
music, we're capturing things that sound like "rock", or 
things that sound like a "sad song". Because music is a 
structured human activity, there are a lot of regularities 
there: most "sad" music indeed sounds the same (dark 
timbre, low pitch, what have you). But these features do 
not make the music sad - 
A.O. - or at least, you're not testing whether they do - 
M.C. right. We can potentially find music that is sad 
without exhibiting any of these features.  
A.O. Take, say, that Dixieland upbeat tune they play at 
funerals in New Orleans.  
M.C. Exactly. For these songs, our models will fail com-
pletely. But because such songs are rare (or at least 
they're rare in our test databases), say there are maybe 5% 
of them, we can still reach 95% performance without ac-
tually modeling anything specific about how, say, genre 
is cognitively constructed. 
 

3. ON PHYSICAL AND COGNITIVE MODELS 
 

A.O. It's a possibility, indeed. But you make it sound 
worse than it is, I think. It's not that your approach is bet-
ter or worse than ours, but it's important that we under-
stand the difference, and how we can be complementary. 
You're interested in the result, and how much algorithms 
and humans agree on it. In music cognition, I think we're 
less interested in the result than we are in the process. If 
we were to design computer algorithms to do maths, say, 
we're not interested in building machines that can multip-
ly numbers as well and as fast as humans, but rather in 
doing them in such a way that multiplying 8*7 is more 
difficult than 3*4, as it is for humans.  
M.C. This is indeed a true difference between our discip-
lines. We're happy when we see our algorithms duly clas-
sify as "rock" certain songs that are clearly on the border 
of that definition (Queen's Bohemian Rapsody, say) ... 
A.O. ... whereas we would rather understand what makes 
a song more prototypically "rock" than another, or how 
much "rock" does one have to listen to form a stable re-
presentation of what that genre is.  
M.C. But your problem in that case is how to measure 
prototypicality, because if you ask the same participants 
to judge it subjectively then your argument becomes 
completely tautological...   
A.O. You're right 
M.C. ... whereas MIR gives you a tool to do just this: a 
measure, let's say a physical measure, of the "rockness" 
of a song. How much it sounds like rock.   
A.O. This, what you just said, is really interesting. The 
key word here is "physical". I believe that music cogni-
tion would gain a lot indeed if it had a more complete and 
powerful arsenal of tools to control stimuli physically. 
Tools that do not have the pretense of infringing into 
cognitive thinking, just purely, state-of-the-art physical 

modeling. If we start seeing MIR in this way, a lot of re-
search avenues open I think.   
M.C. In sum, in order to be useful to cognition, we 
should stop trying to do any ourselves.  
 

4. ON FOLK PSYCHOLOGY 
 
A.O. I can sense the irony, you know. This said, if I can 
make a small request, and I'm saying this in part jokingly 
but not solely, it would help indeed if you guys could at 
least stop using the word "semantics".  
M.C. Wait... What?  
A.O. "Semantics" - as in "a semantic model" of genre 
classification, "mixing acoustics with semantic" informa-
tion, "semantic gap". Just, what do you mean by this?  
M.C. Well, I suppose we take it as the "high-level" mean-
ing of music, like saying "rock" is semantically related to 
youth and rebellion, electric guitars, all that linguistic and 
social knowledge around music. All which is where per-
ception stops and, err..., cognition kicks in? Activating 
the semantic networks of musical concepts, err...  
A.O. See: that. We hate it where you do that. Folk psy-
chology. Like there is a box in our head somewhere with 
a knowledge base, and some kind of process that acti-
vates this or that depending on the input. You lose us in-
stantly with that kind of thinking. If you browse the psy-
chology literature, you will not find a single cognitive 
model which uses a "semantic" layer. That single word, 
let alone your using it assuming that it will appeal to us, 
does probably more harm to the dialogue between our 
disciplines than the mathematical complexity of your 
work. The "entropy of the period of the magnitude", I can 
deal with; "semantics", I sincerely have no idea. It literal-
ly drives me away.   
M.C. Interesting - that certainly explains some reviewer 
reactions when I tried to communicate MIR results in 
psychological journals! Now, on the question of musical 
genre, you have to admit, conversely, that research in 
cognition does not have much to say about the links be-
tween social, lexical, sensory categories - all that we 
wrongly call "semantics". Neuroscience research has 
shown for instance that Wagner operas could prime rec-
ognition on such words as heroism, courage, etc. [15]. 
This has probably profound implications for everyday 
music perception. How come music cognition research is 
not studying this?   
A.O. You're right. Most of us would consider that musi-
cal genre, as an object of study, is too complex, i.e. we 
know in advance that studying it won't help us isolate ex-
perimentally any particular process that could constitute 
it. For instance, if one wants to understand the sensory 
process by which a rock song is recognized as rock, it is 
simpler, more elementary if you will, to study the same 
process in the case of the recognition of environmental 
sounds. This latter case is less plagued by cultural learn-
ing, ambiguity, subjectivity that musical genre.  



  
 

M.C. I see. Unfortunately, we in MIR don't have that 
luxury. If iTunes users want rock music, we cannot easily 
justify to study hammer noises instead.  
A.O. Naturally. Once again, your discipline is interested 
in the result, and we are interested in the process.   
   

5. INSPIRING EXAMPLES 
 

M.C. But I'd like to backtrack a bit to your argument that 
MIR could contribute to cognition as a tool for physical 
modeling. This sounded promising.  
A.O. Yes, I believe there is room to invent a methodolo-
gy to use MIR tools to build a scientific proof in cogni-
tion. Precisely, MIR can be used, I think, as a physical 
measure of the information available for human cognition 
in the musical signal for a given task. And this measure 
can be used to control our stimuli and separate what's in 
the signal from what's constructed out of it by cognition.   
M.C. I think there is work that already goes in the direc-
tion. In the speech domain, de Boer & Kuhl [8] for in-
stance have shown that speech recognition algorithms 
(hidden Markov models) have better word recognition 
performance when they are trained and tested on infant-
directed speech (IDS, or "motherese") than adult speech, 
which they claim validates the argument that the deve-
lopmental value of IDS is to bootstrap language learning.  
A.O. It's a lovely result, and indeed a very good example 
of how to integrate a physical, holistic recognition algo-
rithm into a cognitive argument. What's important here is 
that the algorithm is not presented as a cognitive model: 
nobody here is pretending that the human brain imple-
ments a hidden Markov model. It only gives a proof of 
feasibility: from a purely physical point of view, the in-
formation exists in the IDS signal to allow for an easier 
treatment than adult speech. It would be very difficult to 
replace the machine by a human measure in this argument 
- computer modeling was really the clever thing to use.  
M.C. There are a few other examples. For instance, Kap-
lan and colleagues [25] show that machine learning can 
classify dog barks into contexts like being afraid, playful, 
etc. This was taken to indicate, for the first time, that dog 
vocalizations contain communicative features. Like you 
said, from a purely physical, objective point of view, the 
point is to show that the information exists in the signal 
to allow for a potential communicative use.  
A.O. I think we have discovered a design pattern here: 
one could probably imagine a similar application with 
music.  
M.C. Let's see. Could we show for instance with a ma-
chine's good recognition performance that there exist 
enough harmonic information in, say, Indian classical 
music to explain the good performance (e.g. [2]) of west-
ern listeners when they are asked to classify emotions in 
raags (even though they are not familiar with this musical 
tradition)?  
A.O. I confirm: this is exactly the type of question that's 
interesting for us, music cognition researchers, and in-

deed, I wouldn't know how to prove this without MIR. 
Provided the algorithm uses a representation of "harmo-
ny" which is both plausible biologically and agnostic cul-
turally, of course. Some low-level measure of conson-
ance/dissonance rather than a chromagram, perhaps?  
M.C. Studying this would be pretty interesting from our 
point of view too. These characteristics found "enough to 
explain" a behavior would allow us to improve the per-
formance of our algorithms in cross-cultural contexts, 
which are becoming a key issue in MIR. A recent interna-
tional project, CompMusic [29], has even brought forth 
the question whether our most trusted algorithms have a 
western bias, because they were "evolved" with corpuses 
composed mostly of western music. By the way, you see, 
we're perhaps less naive than you first thought... 
 

6. A SECOND LOOK AT BIOLOGICAL 
PLAUSIBILITY 

 
A.O.  I agree a lot of questions overlap between our 2 
disciplines, perhaps more than I had first assumed. On the 
other hand, you'll also have to recognize that we are less 
hermetic to computational modeling than you think. I al-
ready mentioned the MIRToolbox, which is gaining in-
terest among music psychologists. But most of our recent 
work include some element of computational modeling, 
often inspired by neuroscience. For instance, recent stu-
dies in harmonic priming [3] rely on fairly advanced 
computational models of auditory short-term memory 
[18]. Recently, human performance in tempo tracking 
was even explained in Journal of Experimental Psycholo-
gy by a non-linear oscillation model [22].  
M.C. This is true. Curiously, we MIR researchers are 
aware of these algorithms (auditory models by Leman 
[18], Large [22] or Cariani [4]), but for some reason they 
are not widely used. The criteria here is, again, precision. 
In our experience, when we first try them, "cognitively 
plausible" algorithms tend to work less well than brute-
force engineer solutions, so they quickly drift into obli-
vion before we spend much time with them. One example 
was Lidy and Rauber's study [20] applying a wide range 
of "psychoacoustical" optimizations for genre recognition 
and finding very little improvement, if any. So we con-
clude, a bit hastingly maybe, that they're below our stan-
dards. But we've already discussed the difference be-
tween optimizing precision and modeling an underlying 
cognitive process.    
A.O. Indeed. But even if you consider precision alone, 
the claim that cognitively plausible models will always 
perform poorly is not necessarily true, I think. In the im-
age processing community, models which follow biologi-
cal constraints radically are now giving comparable per-
formance to their non-biologically-plausible alternatives 
(e.g. Serre, Poggio and colleagues [30]), and even faster 
learning rates. Now, you could argue that more is known 
in the psychophysiology of the visual cortex than for the 
auditory cortex, and it is therefore logical that machine 
vision should be ahead, but it is less and less the case, I 
reckon. We now have a good understanding of the re-



  
 

sponse patterns of neurons throughout the auditory path-
way (see e.g. the idea of spectro-temporal receptive fields 
[11]), and computational models even exist to model 
them [6].       
M.C. That's right. I have seen one application of these 
models to instrument timbre classification, but this was 
by researchers outside the MIR community [9], and I 
don't think we have really picked it up. I guess we should 
look into these more seriously.   
A.O. I think we should indeed. The potential is not only 
better precision, but better interdisciplinary dialogue. 
Again, let's turn to machine vision for an example. The 
visual cognition community has now started to take inspi-
ration from models like Serre's [30] to explain experi-
mental results. For instance, I'm looking at a recent paper 
by Crouzet, Thorpe and colleagues [7], finding that hu-
mans are capable of ultra-fast face categorization. The 
authors write: "Our ability to initiate directed saccades 
toward faces as early as 100–110 ms after stimulus onset 
clearly leaves little time for anything other than a feed-
forward pass. [Conveniently,] there is recent evidence 
(Serre et al. 2007) that such a purely feed-forward hie-
rarchical processing mechanisms may be sufficient to ac-
count for at least some forms of rapid categorization". In 
terms of interdisciplinary collaboration, I look at this with 
envy.  
M.C. This is inspiring indeed! Let's work together so 
that, in a few years' time, we can write similar arguments 
in a similar article, linking a MIR model with some as-
pect of music cognition to derive a common scientific 
conclusion.  
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ABSTRACT

The short history of content-based music informatics re-
search is dominated by hand-crafted feature design, and
our community has grown admittedly complacent with a
few de facto standards. Despite commendable progress in
many areas, it is increasingly apparent that our efforts are
yielding diminishing returns. This deceleration is largely
due to the tandem of heuristic feature design and shallow
processing architectures. We systematically discard hope-
fully irrelevant information while simultaneously calling
upon creativity, intuition, or sheer luck to craft useful rep-
resentations, gradually evolving complex, carefully tuned
systems to address specific tasks. While other disciplines
have seen the benefits of deep learning, it has only re-
cently started to be explored in our field. By reviewing
deep architectures and feature learning, we hope to raise
awareness in our community about alternative approaches
to solving MIR challenges, new and old alike.

1. INTRODUCTION

Since the earliest days of music informatics research (MIR),
content-based analysis, and more specifically audio-based
analysis, has received a significant amount of attention from
our community. A number of surveys (e.g. [8, 22, 29])
amply document what is a decades-long research effort
at the intersection of music, machine learning and signal
processing, with wide applicability to a range of tasks in-
cluding the automatic identification of melodies, chords,
instrumentation, tempo, long-term structure, genre, artist,
mood, renditions and other similarity-based relationships,
to name but a few examples. Yet, despite a heterogeneity
of objectives, traditional approaches to these problems are
rather homogeneous, adopting a two-stage architecture of
feature extraction and semantic interpretation, e.g. classi-
fication, regression, clustering, similarity ranking, etc.

Feature representations are predominantly hand-crafted,
drawing upon significant domain-knowledge from music
theory or psychoacoustics and demanding the engineering
acumen necessary to translate those insights into algorith-
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mic methods. As a result, good feature extraction is hard
to come by and even more difficult to optimize, often tak-
ing several years of research, development and validation.
Due in part to this reality, the trend in MIR is to focus on
the use of ever-more powerful strategies for semantic in-
terpretation, often relying on model selection to optimize
results. Unsurprisingly, the MIR community is slowly con-
verging towards a reduced set of feature representations,
such as Mel-Frequency Cepstral Coefficients (MFCC) or
chroma, now de-facto standards. This trend will only be-
come more pronounced given the growing popularity of
large, pre-computed feature datasets 1 .

We contend the tacit acceptance of common feature ex-
traction strategies is short-sighted for several reasons: first,
the most powerful semantic interpretation method is only
as good as a data representation allows it to be; second,
mounting evidence suggests that appropriate feature rep-
resentations significantly reduce the need for complex se-
mantic interpretation methods [2, 9]; third, steady incre-
mental improvements in MIR tasks obtained through per-
sistence and ingenuity indicate that the the costly practice
of manual feature optimization is not yet over; and fourth,
task-specific features are ill-posed to address problems for
which they were not designed (such as mood estimation
or melody extraction), thus limiting their applicability to
these and other research areas that may emerge.

In this paper we advocate a combination of deep sig-
nal processing architectures and automatic feature learn-
ing as a powerful, holistic alternative to hand-crafted fea-
ture design in audio-based MIR. We show how deeper ar-
chitectures are merely extensions of standard approaches,
and that robust music representations can be achieved by
breaking larger systems into a hierarchy of simpler parts
(Section 3). Furthermore, we also show that, in light of ini-
tial difficulties training flexible machines, automatic learn-
ing methods now exist that actually make these approaches
feasible, and early applications in MIR have shown much
promise (Section 4). This formulation provides several
important advantages over manual feature design: first, it
allows for joint, fully-automated optimization of the fea-
ture extraction and semantic interpretation stages, blurring
boundaries between the two; second, it results in general-
purpose architectures that can be applied to a variety of
specific MIR problems; and lastly, automatically learned
features can offer objective insight into the relevant mu-
sical attributes for a given task. Finally, in Section 5, we

1 Million Song Dataset: http://labrosa.ee.columbia.edu/millionsong/



conclude with a set of potential challenges and opportuni-
ties for the future.

2. CLASSIC APPROACHES TO CLASSIC
PROBLEMS

2.1 Two-Stage Models

In the field of artificial intelligence, computational percep-
tion can be functionally reduced to a two-tiered approach
of data representation and semantic interpretation. A sig-
nal is first transformed into a data representation where its
defining characteristics are made invariant across multiple
realizations, and semantic meaning can subsequently be in-
ferred and used to assign labels or concepts to it. Often the
goal in music informatics is to answer specific questions
about the content itself, such as “is this a C major triad?”
or “how similar are these two songs?”

More so than assigning meaning, the underlying issue
is ultimately one of organization and variance. The better
organized a representation is to answer some question, the
simpler it is to assign or infer semantic meaning. A rep-
resentation is said to be noisy when variance in the data
is misleading or uninformative, and robust when it pre-
dictably encodes these invariant attributes. When a rep-
resentation explicitly reflects a desired semantic organiza-
tion, assigning meaning to the data becomes trivial. Con-
versely, more complicated information extraction methods
are necessary to compensate for any noise.

In practice, this two-stage approach proceeds by feature
extraction – transforming an observed signal to a hope-
fully robust representation – and either classification or re-
gression to model decision-making. Looking back to our
recent history, there is a clear trend in MIR of applying
increasingly more powerful machine learning algorithms
to the same feature representations to solve a given task.
In the ISMIR proceedings alone, there are twenty docu-
ments that focus primarily on audio-based automatic chord
recognition. All except one build upon chroma features,
and over half use Hidden Markov Models to stabilize clas-
sification; the sole outlier uses a Tonnetz representation,
which are tonal centroid features derived from chroma.
Though early work explored the use of simple binary tem-
plates and maximum likelihood classifiers, more recently
Conditional Random Fields, Bayesian Networks, and Sup-
port Vector Machines have been introduced to squeeze ev-
ery last percentage point from the same features.

If a feature representation were truly robust, the com-
plexity of a classifier – and therefore the amount of vari-
ance it could absorb – would have little impact on per-
formance. Previous work in automatic chord recognition
demonstrates the significance of robust feature representa-
tions, showing that the appropriate filtering of chroma fea-
tures leads to a substantial increase in system performance
for the simplest classifiers, and an overall reduction of per-
formance variation across all classifiers [9]. Additionally,
researchers have for some time addressed the possibility
that we are converging to glass ceilings in content-based
areas like acoustic similarity [2]. Other hurdles, like the is-

sue of hubs and orphans, have been shown to be not merely
a peculiarity of the task but rather an inevitability of the
feature representation [20]. As we consider the future of
MIR, it is necessary to recognize that diminishing returns
in performance are far more likely the result of sub-optimal
features than the classifier applied to them.

2.2 From Intuition to Feature Design

Music informatics is traditionally dominated by the hand-
crafted design of feature representations. Noting that de-
sign itself is a well-studied discipline, a discussion of fea-
ture design is served well by the wisdom of “getting the
right design and the design right” [6]. Reducing this apho-
rism to its core, there are two separate facets to be con-
sidered: finding the right conceptual representation for a
given task, and developing the right system to produce it.

Consider a few signal-level tasks in MIR, such as onset
detection, chord recognition or instrument classification,
noting how each offers a guiding intuition. Note onsets are
typically correlated with transient behavior. Chords are de-
fined as the combination of a few discrete pitches. Classic
studies in perception relate timbre to aspects of spectral
contour [12]. Importantly, intuition-based design hinges
on the assumption that someone can know what informa-
tion is necessary to solve a given problem.

Having found conceptual direction, it is also necessary
to craft the right implementation. This has resulted in sub-
stantial discourse and iterative tuning to determine better
performing configurations of the same basic algorithms.
Much effort has been invested in determining which fil-
ters and functions make better onset detectors [3]. Chroma
– arguably the only music-specific feature developed by
our community – has undergone a steady evolution since
its inception, gradually incorporating more levels of pro-
cessing to improve robustness [28]. Efforts to characterize
timbre, for which a meaningful definition remains elusive,
largely proceed by computing numerous features or, more
commonly, the first several MFCCs [11].

In reality, feature design presents not one but two chal-
lenges – concept and implementation – and neither have
proven easy to solve. First off, our features are ultimately
constrained to those representations we can conceive or
comprehend. Beyond relatively obvious tasks like onset
detection and chord recognition, we can only begin to imag-
ine what abstractions might be necessary to perform rather
abstract tasks like artist identification. Furthermore, recog-
nizing that feature extraction is still an open research topic,
the considerable inertia of certain representations is cause
for concern: 19 of 26 signal-based genre classification sys-
tems in the ISMIR proceedings are based on MFCCs, for
example, many using publicly-available implementations.
While sharing data and software is a commendable trend,
now is a critical point in time to question our acceptance
of these representations as we move toward the widespread
use of pre-computed feature collections, e.g. the Million
Song Dataset. Finally, above all else, the practice of hand-
crafted feature design is simply not sustainable. Manually
optimizing feature extraction methods proceeds at a glacial



pace and incurs the high costs of time, effort and funding.
Somewhat ironically, the MIR community has collectively
recognized the benefits of automatically fitting our classi-
fiers, but feature optimization – the very data those meth-
ods depend on – remains largely heuristic.

Alternatively, data-driven approaches in deep learning

have recently shown promise toward alleviating each and
every one of these issues. Proven numerical methods can
adapt a system infinitely faster than is attainable by our cur-
rent research methodology, and the appropriate conceptual
representations are realized as a by-product of optimizing
an objective function. In the following section, we will il-
lustrate how robust feature representations can be achieved
through deep, hierarchical structures.

3. DEEP ARCHITECTURES

3.1 Shallow Architectures

Time-frequency analysis is the cornerstone of audio sig-
nal processing, and modern architectures are mainly com-
prised of the same processing elements: linear filtering,
matrix transformations, decimation in time, pooling across
frequency, and non-linear operators, such as the complex
modulus or logarithmic compression. Importantly, the com-
bination of time-domain filtering and decimation is often
functionally equivalent to a matrix transformation – the
Discrete Fourier Transform (DFT) can be easily interpreted
as either, for example – and for the sake of discussion, we
refer to these operations collectively as projections.

Now, broadly speaking, the number of projections con-
tained within an information processing architecture deter-
mines its depth. It is critical to recognize, however, that
the extraction of meaningful information from audio pro-
ceeds by transforming a time-varying function – a signal
– into an instantaneous representation – features; at some
specificity, all signals represent static concepts, e.g., a sin-
gle piano note versus the chorus of a song. Therefore, the
depth at which a full signal is summarized by a stationary
feature vector is characteristic of a signal processing archi-
tecture, and is said to be particularly shallow if an entire
system marginalizes the temporal dimension with only a
single projection.

This is a subtle, but crucial, distinction to make; fea-

ture projections, lacking a time dimension, are a subset of
signal projections. As we will see, shallow signal process-
ing architectures may still incorporate deep feature projec-
tions, but the element of time warrants special attention. A
signal projection that produces a finite set of stationary fea-
tures attempts to capture all relevant information over the
observation, and any down-stream representations are con-
strained by whatever was actually encoded in the process.
Importantly, the range of observable signals becomes infi-
nite with increasing duration, and it is progressively more
taxing for signal projections – and therefore shallow archi-
tectures – to accurately describe this data without a sub-
stantial loss of information.

To illustrate the point further, consider the two signal
processing architectures that produce Tonnetz and MFCC
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Figure 1: Tonnetz and MFFCs from Shallow Architectures

features. As shown in Figure 1, the processing chains are
nearly identical; note that the penultimate representation
when computing Tonnetz features is chroma. Both begin
with a signal projection that maps a time-domain signal to
an instantaneous estimation of frequency components, and
conclude with a feature projection that reorganizes the esti-
mated frequencies in task-specific ways. The overwhelm-
ing majority of music signal processing architectures op-
erate in this paradigm of shallow signal transformations.
Subject to the Fourier uncertainty principle, these systems
exhibit time-frequency trade-offs and are constrained in
practice to the analysis of short observations.

The vast majority of musical experiences do not live in
short signals however, and it is therefore necessary to char-
acterize information over longer durations. Previous ef-
forts recognize this deficiency and address it through one
of a few simple methods: a bag of frames (BoF) models
features as a probability distribution, shingling concate-
nates feature sequences into a vector, or delta-coefficients

represent low-order derivatives calculated over local fea-
tures. These naive approaches are ill-posed to characterize
the temporal dynamics of high-level musical concepts like
mood or genre, and arguably contribute to the “semantic
gap” in music informatics. It will become clear in the fol-
lowing discussion why this is the case, and how deeper
architectures can alleviate this issue.

3.2 Motivating Deeper Architectures

This previous discussion begs a rather obvious question:
why are shallow architectures poorly suited for music sig-
nal processing? If we consider how music is constructed,
it is best explained by a compositional containment hier-

archy. The space of musical objects is not flat, but rather
pitch and intensity combine to form chords, melodies and
rhythms, which in turn build motives, phrases, sections and
entire pieces. Each level uses simpler elements to produce
an emergent whole greater than the sum of its parts, e.g., a



melody is more than just a sequence of pitches.
In a similar fashion, deeper signal processing structures

can be realized by stacking multiple shallow architectures,
and are actually just extensions of modern approaches. For
a signal projection to marginalize time with a minimal loss
of information, the observation must be locally stationary,
and clearly this cannot hold for long signals. Sequences
of instantaneous features, however, are again time-varying
data and, when appropriately sampled, are themselves lo-
cally stationary signals. There are two remarkable conclu-
sions to draw from this. First, everything we know about
one-dimensional signal processing holds true for a time-
feature signal and can be generalized thusly. And further-
more, simply cascading multiple shallow architectures re-
laxes previous constraints on observation length by pro-
ducing locally stationary signals at various time-scales.

This hierarchical signal processing paradigm is at the
heart of deeper architectures. There are many benefits de-
tailed at length in [4], but two are of principal importance
here: one, multi-layer processing allows for the emergence
of higher-level attributes for two related reasons: deep struc-
tures can break down a large problem into a series of eas-
ier sub-problems, and each requires far fewer elements to
solve than the larger problem directly; and two, each layer
can absorb some specific variance in the signal that is dif-
ficult or impossible to achieve directly. Chord recognition
captures this intuition quite well. One could define every
combination of absolute pitches in a flat namespace and
attempt to identify each separately, or they could be com-
posed of simpler attributes like intervals. Slight variations,
like imperfect intonation, can be reconciled by a composi-
tion of intervals, whereas a flat chord-space would need to
address this explicitly.

Both of these benefits are observed in the successful ap-
plication of convolutional neural networks (CNN) to hand-
written digit classification [25]. Most prior neural network
research in computer vision proceeded by applying multi-
layer perceptrons (MLP) directly to a pixel values of an im-
age, which struggles to cope with spatial variation. Adopt-
ing a CNN architecture introduces a hierarchical decom-
position of small, locally-correlated areas, acting as signal
projections in space rather than time. Emergent properties
of images are encoded in the visual geometry of edges, cor-
ners, and so on, and the architecture is able to develop an
invariance to spatial translations and scaling.

Within audio signal processing, wavelet filterbanks, as
cascaded signal projections, have been shown to capture
long-term information for audio classification [1]. These
second-order features yielded better classification results
than first-order MFCCs over the same duration, even al-
lowing for convincing signal reconstruction of the original
signals. This outcome is evidence to the fact that deeper
signal processing architectures can lead to richer repre-
sentations over longer durations. Observing that multi-
layer architectures are simply extensions of common ap-
proaches, it is fascinating to discover there is at least one
instance in MIR where a deep architecture has naturally
evolved into the common solution: tempo estimation.
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Figure 2: Tempo Estimation with Deep Signal Processing
Architectures.

3.3 Deep Signal Processing in Practice

Upon closer inspection, modern tempo estimation archi-
tectures reveal deep architecture with strong parallels to
CNNs and wavelets. Rhythmic analysis typically proceeds
by decomposing an audio signal into frequency subbands
[31]. This time-frequency representation is logarithmically
scaled and subbands are pooled, reducing the number of
components. Remaining subbands are filtered in time by
what amounts to an edge detector, rectified, pooled along
subbands and logarithmically scaled to yield a novelty func-
tion [23]. A third and final stage of filtering estimates
tempo-rate frequency components in the novelty signal,
producing a tempogram [13].

Over the course of a decade, the MIR community has
collectively converged to a deep signal processing archi-
tecture for tempo estimation and, given this progress, it is
possible to exactly illustrate the advantages of hierarchical
signal analysis. In Figure 2, two waveforms with identi-
cal tempi but different incarnations – a trumpet playing an
ascending D major scale and a series of bass drum hits,
set slightly out of phase – are shown at various stages of
the tempo estimation architecture. It is visually apparent
that each stage in the architecture absorbs a different type
of variance in the signal: pitch and timbre, absolute ampli-
tude, and phase information, respectively. By first breaking
the problem of tempo estimation into two sub-tasks – fre-
quency estimation and onset detection – it becomes possi-
ble to characterize subsonic frequencies at both lower sam-
pling frequencies and with a fewer number of components.

Realistically though, progress in tempo estimation is the



result of strong intuition that could guide system design.
The inherent challenge in building deep, hierarchical sys-
tems is that intuition and understanding quickly depart af-
ter more than even a few levels of abstraction. Therein lies
the most exciting prospect of this whole discourse; given a
well-defined objective function, it is possible to automati-
cally learn both the right conceptual representation and the
right system to produce it for a specific application.

4. FEATURE LEARNING

4.1 From Theory to Practice

For some time, a concerted effort in computer science has
worked toward the development of convex optimization
and machine learning strategies. Unfortunately, the initial
surge of activity and excitement surrounding artificial in-
telligence occurred well before technology could handle
the computational demands of certain methods, and as a
result many approaches were viewed as being intractable,
unreasonable, or both. Over the last two or so decades, the
state of affairs in machine learning has changed dramati-
cally, and for several reasons feature learning is now not
only feasible, but in many cases, efficient.

Almost more importantly than its success as an image
classification system, the work in [25] proved that stochas-
tic gradient descent could be used to discriminatively train
large neural networks in a supervised manner. Given a suf-
ficient amount of labeled data, many applications in com-
puter vision immediately benefited from adopting these ap-
proaches. Such datasets are not always available or even
possible, and recent breakthroughs in unsupervised train-
ing of Deep Belief Networks (DBNs) have had a similar
impact [17]. This work has also been extended to a convo-
lutional variant (CDBNs), showing great promise for deep
signal processing [26]. Additionally, auto-encoder archi-
tectures are a recent addition to the unsupervised training
landscape and offer similar potential [21].

The significance of ever-increasing computational power
is also not to be overlooked in the proliferation of auto-
matic feature learning. Steady improvements in processing
speed are now being augmented by a rise in parallel com-
puting solutions and toolkits [5], decreasing training times
and accelerating research. Taken together, these strategies
encompass a set of deep learning approaches that hold sig-
nificant potential for applications in music informatics.

4.2 Early Efforts in Music Informatics

It is necessary to note that leveraging data to automatically
learn feature representations is not a new idea. The earliest
effort toward automatic feature learning is that of [7, 33],
where genetic algorithms were used to automatically learn
optimized feature transformations.Though not a deep ar-
chitecture in the classic sense, this work formally recog-
nized the challenge of hand-crafting musical representa-
tions and pioneered feature learning in MIR.

With respect to deeper architectures, the first successful
instance of deep feature learning is that of CNN-based on-
set detection by [24]. More recently, CNNs have been ap-

Figure 3: Learned Features for Genre Recognition
(Reprinted with permission)

plied to automatic genre recognition [27], instrument clas-
sification [19] and automatic chord recognition [18]. Alter-
natively, DBNs have seen a noticeable rise in frame-level
applications, such as instrument classification [15], piano
transcription [30], genre identification [14] and mood pre-
diction [32], out-performing other shallow, MFCC-based
systems. Incorporating longer time-scales, convolutional
DBNs have also been explored in the context of various
speech and music classification tasks in [26], and for artist,
genre and key recognition [10]. Predictive sparse coding
has also been applied to genre recognition, earning “Best
Student Paper” at ISMIR 2011 [16].

The most immediate observation to draw from this short
body of work is that every system named above achieved
state-of-the-art performance, or better, in substantially less
time than it took to get there by way of hand-crafted rep-
resentations. Noting that many of these systems are the
first application of deep learning in a given area of MIR,
it is only reasonable to expect these systems to improve in
the future. For instance, DBNs have been primarily used
for frame-level feature learning, and it is exciting to con-
sider what might be possible when all of these methods are
adapted to longer time scales and for new tasks altogether.

A more subtle observation is offered by this last ef-
fort in genre recognition [16]. Interestingly, the features
learned from Constant-Q representations during training
would seem to indicate that specific pitch intervals and
chords are informative for distinguishing between genres.
Shown in Figure 3, learned dictionary elements capture
strong fifth and octave interval relationships versus quar-
tal intervals, each being more common in rock and jazz,
respectively. This particular example showcases the po-
tential of feature learning to reformulate established MIR
tasks, as it goes against the long-standing intuition relating
genre to timbre and MFCCs.

5. THE FUTURE OF DEEP LEARNING IN MIR

5.1 Challenges

Realistically speaking, deep learning methods are not with-
out their own research challenges, and these difficulties are
contributing factors to limited adoption within our commu-
nity. Deep architectures often require a large amount of
labeled data for supervised training, a luxury music infor-



matics has never really enjoyed. Given the proven success
of supervised methods, MIR would likely benefit a good
deal from a concentrated effort in the curation of sharable
data in a sustainable manner. Simultaneously, unsuper-
vised methods hold great potential in music-specific con-
texts, as they tend to circumvent the two biggest issues fac-
ing supervised training methods: the threat of over-fitting
and a need for labeled data.

Additionally, there still exists a palpable sense of mis-
trust among many toward deep learning methods. Despite
decades of fruitful research, these approaches lack a solid,
foundational theory to determine how, why, and if they will
work for a given problem. Though a valid criticism, this
should be appreciated as an exciting research area and not
a cause for aversion. Framing deep signal processing archi-
tectures as an extension of shallow time-frequency analysis
provides an encouraging starting point toward the develop-
ment of more rigorous theoretical foundations.

5.2 Impact

Deep learning itself is still a fledgling research area, and it
is still unclear how this field will continue to evolve. In the
context of music informatics, these methods offer serious
potential to advance the discipline in ways that cannot be
realized by other means. First and foremost, it presents
the capacity for the abstract, hierarchical analysis of music
signals, directly allowing for the processing of information
over longer time scales. It should come as no surprise that
determining the similarity of two songs based on small-
scale observations has its limitations; in fact, it should be
amazing that it works at all.

More practically, deep learning opens the door for the
application of numerical optimization methods to accel-
erate research. Instead of slowly converging to the best
chroma transformation by hand, an automatically trained
system could do this in a fraction of the time, or find a bet-
ter representation altogether. In addition to reframing well-
known problems, deep learning also offers a solution to
those that lack a clear intuition about how a system should
be designed. A perfect example of this is found in auto-
matic mixing; we know a “good” mix when we hear one,
but it is impossible to articulate the contributing factors in
a general sense. Like the work illustrated in Figure 3, this
can also provide insight into what features are informative
to a given task and create an opportunity for a deeper un-
derstanding of music in general.
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ABSTRACT

Many solutions for the reuse and remixing of MIR meth-
ods and the tools implementing them have been introduced
over recent years. Proposals for achieving the necessary
interoperability have ranged from shared software libraries
and interfaces, through common frameworks and portals,
to standardised file formats and metadata. Each proposal
shares the desire to reuse and combine repurposable com-
ponents into assemblies (or “workflows”) that can be used
in novel and possibly more ambitious ways. Reuse and
remixing also have great implications for the process of
MIR research. The encapsulation of any algorithm and its
operation – including inputs, parameters, and outputs – is
fundamental to the repeatability and reproducibility of any
experiment. This is desirable both for the open and reliable
evaluation of algorithms (e.g. in MIREX) and for the ad-
vancement of MIR by building more effectively upon prior
research. At present there is no clear best practice widely
adopted throughout the community. Should this be consid-
ered a failure? Are there limits to interoperability unique to
MIR, and how might they be overcome? In this paper we
assess contemporary MIR solutions to these issues, align-
ing them with the emerging notion of Research Objects for
reproducible research in other domains, and propose their
adoption as a route to reuse in MIR.

1. INTRODUCTION

The integration of tools for Music Information Retrieval
(MIR) into a “complete system” has been repeatedly iden-
tified as a key – if not the grand – challenge [5, 6] for our
community. This stems from the predominance of tools
that are designed to solve a specific task, often developed in
different frameworks, and usually with incompatible for-
mats for input, output, and parameters. Production of any
more sophisticated application that combines several tech-
niques therefore requires either a full reimplementation and
combination of the constituent algorithms, potentially with-
out source code or a sufficient published description of the
method, or development of a mechanism through which
the original tools can be reused or interoperate.
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The benefits of the latter approach appear multiple and
desirable, that is to:
1. realise any number of “complete systems” assembled
from building block components; specialised versions of
our tools for different music-related end-user communities.
2. “stand on the shoulders of giants” and advance research
by building upon and reusing prior methods and results.
3. optimise systems through reuse of data, as well as func-
tionality, at points of interoperability, e.g. to reuse already
calculated features.
4. build distributed systems [12] through reuse of network
exposed interoperability.
5. reuse the mechanisms of interoperability for the pur-
poses of transparent comparability in evaluation systems
such as those undertaking MIREX.

Yet despite the steady production of frameworks and
toolkits over many years a de facto standard has failed to
emerge. In this paper we assess reuse through considera-
tion of MIR research as a data intensive scientific method,
and assess how a selection of MIR tools might meet the
requirements of scientific workflow systems. As such it is
not a study of MIR capabilities or algorithms, but rather
of the cogs and levers that together enable MIR systems to
operate – of the effectiveness of our research processes and
the scalability of MIR methods and data.

2. CHARACTERISING WORKFLOWS AND
REUSE

To characterise reuse we draw on experience from the sci-
entific workflow systems – tools that assist the composi-
tion and execution of computational or data manipulation
steps. As a key tool for overcoming the issues of scale and
usability associated with ad-hoc scripting when applied to
data-driven science, Gil [9] identifies three requirements
for assisted workflow composition: workflows described
at different levels of abstraction to support varying de-
grees of reuse and repeatability; expressive descriptions
of workflow components describing data input and out-
put, constraints on interactions between components (in-
teroperability), and relationships between alternate com-
ponents; and flexible workflow composition mechanisms
to assist the user in construction of complete executable
flows. The principles of reuse and the deployment of sci-
entific workflow systems go hand-in-hand: adherence to
the latter encourages structured system design and interop-
erability, providing the principled framework within which
the metadata and provenance required to support the for-



mer can be gathered.
Bechhofer et al. [1] go on to introduce seven character-

istics required to satisfy reuse of the data and method that
comprise an experimental workflow, capturing the motiva-
tions raised in the previous section through the notion of
Research Objects: (i) reuse or redeployment as a whole or
single “black box” entity; (ii) repurposable elements that
can be reused independently of the whole; (iii) sufficient
information describing data and method that the study is
repeatable; (iv) the repeating of an experiment to repli-
cate a result, bringing with it the need for comparability;
(v) replayable examination of provenance of data and re-
sults (how they came to be); (vi) referencable and retriev-
able versions to support unambiguous citation of results;
(vii) revealable provenance for auditing the integrity of the
digitally captured data and method.

3. REUSABILITY OF MIR SYSTEMS

To inform our discussion of reuse within MIR we have
studied many of the tools used across the community, ex-
amining publications, software documentation, and source
code during our evaluation. There is a wide spectrum of
purpose and architecture between these systems and as such
direct implementation-level comparison becomes unwieldy
and uninformative; rather, we make our judgement within
the context characterised in Section 2, i.e. primarily with
regard to reusability, workflow, and for interoperability.

We perform our comparison through the identification
of what we have termed realised abstractions, summaris-
ing these for ten systems in Table 1 with further points of
discussion within this Section.

A realised abstraction can take several forms: for a soft-
ware library this might be a function or class definition,
for a service a remote-procedure call or file serialization,
or on the semantic web an ontology; but it must be, in
some sense, a tangible resource that might be repurposed
or called upon with or by other MIR software components.
A realised abstraction is not synonymous with functional-
ity implemented by the software: a framework or toolset
might provide functionality in a manner completely practi-
cal and appropriate for its own use cases, but which is not
recognised as a realised abstraction because we have been
unable to identify a principled abstraction of the function-
ality that could be reused or that is suitable for interoper-
ability. Neither is the study intended to be comprehensive
– it is an illustrative sample of typical practice from across
the community.

3.1 Implementation and scope

There is significant variety in the interaction by which a re-
searcher or developer will reuse the provided functionality
of the tools and systems in Table 1.

The implementation environment and language have
a strong bearing on this. libXtract [3], for example, is a
portable C library with Python and Java bindings provid-
ing feature extraction primitives, but requiring a developer
to write the enacting skeleton of the software. jMIR [13]

provides an extensible suite of components written in Java,
while MIR Toolbox [11] and supporting toolboxes (Signal
Processing, Auditory, Netlab and SOM) are written for the
high-level MATLAB numerical computing environment.
ChucK [22] is a programming language and environment
using a time-based concurrent model designed with com-
puter music in mind.

Some software provides a framework in which devel-
opers can structure reuse and extensions of existing code.
Marsyas (C++ with Ruby, Python, and Java bindings) pro-
vides a comprehensive architecture for creating, manag-
ing, and visualising dataflows of audio, signal processing,
and machine learning [20, 21]. sMIRk provides a toolkit
of reusable functions for ChucK [8]. Once a developer
has written a VAMP plugin (in C/C++; Python bindings
available) it can be hosted and executed within the Sonic
Annotator and Sonic Visualiser applications [4] – one such
plugin exposes functionality from libXtract. The NEMA
system [23] provides a language agnostic environment lim-
ited only by the Operating System and architecture of the
underlying (virtual) machines: its framework uses the Me-
andre workflow system for distribution and execution of
virtually any MIR algorithm (typically written using one of
the other tools described here) and a Java-based data model
for exchanging and consolidating inputs and outputs.

Scope of systems also varies, often depending on
whether a general or specialised approach has been taken,
and if it is operated as a stand-alone platform or in con-
junction with other tools. Weka [10], for example, is a gen-
eral purpose Java-based data-mining and machine learning
toolset favoured within the MIR community for its experi-
mentation environment and range of classifiers. AudioDB
[18], on the other hand, is a specialised piece of database
infrastructure for content-based similarity searches that re-
lies upon the import of features extracted by other tools.

3.2 Reusable Method

At a basic level any piece of software with source code (or
indeed machine code) can be considered reusable, along
with the methods it embodies. In this study, we require
more explicit recognition and encoding of concepts. In
the first section of Table 1 we look for such realised ab-
stractions representing MIR methods that are reusable and
repurposable (and, for novel solutions, potentially refer-
encable). Even when not developed for a workflow sys-
tem we have also tried to identify the key characteristics of
workflow components: different levels of abstraction, and
explicit description of input, output, parameters, and inter-
operability. These are, of course, the same attributes that
enable reuse at the level of a software library or develop-
ment framework and which typically emerge from a prin-
cipled software engineering effort to recognise the realised
abstractions and encourage their reuse through implemen-
tation of, for example, a documented API.

Reusable MIR methods can be broadly grouped into
three categories: signal processing derived feature extrac-
tion, within which we subdivide more deterministic signal
features from less clearly defined music features; metric
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METHOD
Signal Feature Extraction

Basic signal • • • • • • •
Basic maths • • • • •
Basic filters • • • • • •

Envelopes and windowing • • • • •
Spectral distribution • • • • • •

Error rate • •
Power • • • • •

Transforms • • • •
Linear Predictive Coding • •

MFCC • • • • •
Music Feature Extraction

Pitch • • • •
Beat • • •

Correlation and Distance
Correlation • • •

Distance • • •
Dimensional reducers • •

Classification
Predictive modelling • • • •

Regression • • •
Clustering • • • •

Association Rule Learning • •
WORKFLOW

Components ◦ ◦ • ◦ ◦ • •
Workflows ◦ ◦ • ◦ ◦ • • •

DATA EXCHANGE
Abstract Signal • • • • •
Signal (values) • • • • •

Audio (playback, I/O) • • • • •
Abstract Feature • • • • •
Feature (values) • • • • • •

Events / scheduling • • •
Abstract Classifier • • • •

Classification (values) • • •
Aggregation (signal, feature) • ◦ • • •

Annotation • • •

◦ caveat described in Section 3. 1 including fftextract tool and AudioDB API library. 2 including jAudio, ACE, and ACE XML.
3 including MIR toolbox, Signal Processing Toolbox, Auditory toolbox, Netlab toolbox, SOM toolbox.
4 distribution including example plugins and Sonic Annotator.

Table 1: Presence of Realised Abstractions in MIR systems and tools.

based correlation and distance measures; and machine-
learning based classification, which broadly includes any
method taking as input features or distances and outputting
item groupings. Coverage of these methods through re-
alised abstractions varies widely between systems and is
often a reflection of the intended scope and specialism of
the tool: few have comprehensive coverage beyond a core
competency, while others present no specialisation and rely
on the ecosystem provided by their framework for method

implementation, e.g. NEMA hosting of standalone algo-
rithms, VAMP use of plugins, and toolboxes in Matlab. In
these latter cases it also highlights a limitation of the sur-
vey, since including only a subset of extensions creates an
artificial limit on methods unrepresentative of the tool’s ca-
pabilities.

This highlights an opportunity for interoperable and re-
placeable workflow components when considering MIR sys-
tems as a single ecosystem, and starts to identify the group-



ing of methods for which expressive descriptions (Section
2) would be required to effect this process (a more compre-
hensive taxonomy of features, without the filter of realised
abstractions, can be found in [15]).

3.3 Workflow

The second section of Table 1 appraises realised abstrac-
tions for the constituent parts of scientific workflow sys-
tems: the structure of workflows themselves, and the en-
capsulation of reusable components within them.

Several of the surveyed systems adopt a workflow ap-
proach in spirit: the dataflow and patching model at the
core of Marsyas, and ACE (jMIR) Coordinator and Exper-
imenter, provide facilities for chaining and adapting func-
tionality but are strongly tied to their respective environ-
ments and do not easily generalise (Marsyas, for example,
is tied to a synchronous tick model). MIRtoolbox follows a
user centric procedural model with abstractions well suited
to the MATLAB environment, but reflecting the process
a (human) MIR researcher performs, rather than one that
might map cleanly to a (machine-driven) workflow system.

Others tools embody more explicit examples of work-
flow technique: M2K [7] and NEMA build upon exist-
ing general purpose workflow environments (D2K and Me-
andre respectively) and their graphical management inter-
faces. However, with the exception of a genre classifica-
tion proof of concept, NEMA has not made use of work-
flow components to encode a deconstructed method at the
level described in the previous subsection, rather it utilises
the distribution and scheduling features of the workflow
systems when performing the MIREX evaluation. VAMP,
a system designed for MIR but offering many traditional
workflow system features, uses hosts such as Sonic An-
notator which provide a flexible and extensible environ-
ment in which to compose and execute workflows consist-
ing of VAMP plugin components. sMIRk and ChucK are
also strongly workflow oriented, with their pervasive time-
centric concurrent model providing ample illustration of
how workflows can be applied across radically different
approaches.

3.4 Data Exchange

Realised abstractions of specific methods and workflow el-
ements can identify reuse within the bounds of a common
environment (e.g. particular toolkit or software library).
For reuse to occur between systems there must also be a
mechanism for a mapping of method and workflow be-
tween systems, performed through some process of data
exchange. To move beyond ad-hoc workflows components
must be sufficiently described to support workflow com-
position. We have identified these higher-level concepts
in the third section of Table 1 and, as in previous sub-
sections, marked systems in which a realised abstraction
correlates with the concept. The presence of a realised ab-
straction does not indicate an implementation of data ex-
change, merely that, within the software design, there is an
explicit abstraction of the concept which could, in theory,
form a basis for interoperability.

For Signals, Features, and Classifiers we highlight the
need to represent both the abstract concept – required for
flexible workflow composition and the provision of generic
mechanisms for referencable and revealable reuse – and
the values associated with an instance of that concept (sig-
nal input, feature data, classifier results) for repeatable and
replayable reuse. The conceptual recognition of events and
scheduling is also necessary for exchange of the temporal
semantics often used in MIR applications. Aggregation of
resources – be it collections of audio for analysis, com-
puted features, or classified results – is a common require-
ment for scientific workflows systems and critical to sys-
tems interoperability, reuse (of data and results), and eval-
uation (including repeatability) in MIR. A particular facet
of music, included here due to its common occurrence, is
the explicit notion of exchange or playback of audio data.

The level at which the abstraction is found reflects the
differing scope of the systems: for signal libXtract uses
named pointers to data structures, whereas ChucK includes
a sample primitive, and VAMP uses the Signal class from
the Music Ontology [17]; for feature values Marsyas writes
out from (the somewhat overloaded) realvec, jMIR defines
a DataSet class, ChucK uses the (timesliced) unablob, while
VAMP applies the Audio Features ontology. In all cases
there is, if not a full model, a principled abstraction to-
wards one.

Abstractions used for interoperability through serialisa-
tion of data to either file and network are a relevant sub-
topic. Serialisation can raise a number of requirements
distinct from those considered purely for information mod-
elling, including the reduction of parsing and transmission
(size) overheads and the incorporation of mechanisms for
efficient error checking. Several of the systems reviewed
deploy abstractions designed with serialisation in mind, in-
cluding ACE XML [14], the WEKA Attribute Relationship
File Format (ARFF), and to a lesser extent the Audio Fea-
tures Ontology used by VAMP. That these serialisations
may not be optimal for data exchange beyond serialisation
reinforces the need for varying levels of abstraction (Sec-
tion 2) when building workflow systems – it is unlikely that
a single abstraction will be appropriate for all operations.

4. REFLECTION

4.1 Reusable MIR: success or failure?

A superficial glance over Table 1 might highlight a signif-
icant level of duplication between MIR systems with an
associated failure of reuse. This is not a failure. It is the
mark of a strong and vibrant community that can support
multiple toolkits catering to different preferences in devel-
opment and deployment. There is no automatic benefit –
nor apparent desire – to “standardise” on a single platform,
toolkit, or programming language; indeed the rich variety
of sophisticated software tailored to MIR specific problems
indicates, if anything, the exact opposite.

Such a view would also overlook the successful soft-
ware reuse exemplified in our study by libXtract, where a
small well designed library with multi-language bindings



has been reused by tools such as ChucK and VAMP. But
more significantly, this would be a mischaracterisation of
reuse which, as we have explored, goes beyond the rede-
ployment and compatibility of source code.

4.2 Adoption of reuse

While our study has shown that no single MIR system pro-
vides comprehensive coverage across all notions of reuse,
it also raises plentiful opportunities for systems that share
common concepts to use these as a basis for abstraction
and interoperability. Yet ISMIR proceedings indicate lit-
tle cross-fertilization of most systems beyond the “home”
lab and close collaborators. An explanation for this dis-
crepancy might be the difference between the potential for
reuse and the overhead of actual implementation: while we
have highlighted the points at which there is conceptual
alignment between systems, any implemented interoper-
ability through the surveyed tools would require adoption
of a software library, toolkit, or service, and the associated
costs of building that interface.

At the level of an individual researcher selecting a tool,
interoperability does not automatically follow reuse. The
prevalence of Matlab – 52% of MIREX submissions in
2011 – demonstrates the preference for a familiar envi-
ronment with a large body of basic methods, despite the
lack of wider interoperability. Conversely, the authors of
M2K believe the choice of Java was an unpopular one that
limited uptake even through the system provided a work-
flow creation environment. In both cases the provision of
interoperability, or the lack thereof, has not provided a suf-
ficient motivation to override other preferences.

One approach, then, might be to lower interoperability
overheads by switching from an “all or nothing” adoption
model to something more akin to “pick and choose”: se-
lectively implementing interoperability where the benefits
are clear and well scoped. Scientific workflow approaches
can provide the principled framework to assist such con-
version, exemplified at a technical level by the deployment
of NEMA to run the MIREX evaluations: whilst wedded to
a single implementation, the complexity of interoperability
has been reduced to a single data abstraction appropriately
selected and scoped for the evaluation and presentation of
task results.

Another promising and flexible approach to reuse is the
adoption of an agnostic modelling substrate upon which
MIR specific abstractions can be developed. A prominent
example of this is the use of RDF and other Semantic Web
technologies in Sonic Annotator, VAMP plugins, and the
the tools and ontologies they interoperate with and through.
The use of a modelling layer that bridges into domains be-
yond MIR brings further benefits: the common model and
distribution mechanism afforded by RDF and Linked Data
can enable reuse and exchange of related data beyond that
produced and consumed by the MIR system alone [16].

The uptake of Linked Data in industry and academia,
including the scientific workflow and publishing commu-
nities, provides an opportunity to reuse and adapt tools
and software developed elsewhere for similar purpose – al-

though the burden and utility of adding compatible layers
to MIR tools should not be overlooked. Nor, given its im-
portance, should we ignore the task of selecting and scop-
ing the appropriate level of abstraction for a model; it is not
a panacea in itself, as evidenced by the lengthy gestation of
standardised models such as MPEG-7.

4.3 Workflow centric research

We have presented our review of reuse within MIR through
the lens of requirements originating in the scientific work-
flow community. We have seen that workflow systems are
explicitly used as the basis for several MIR frameworks,
and implicitly as an approach in others, however in both
cases they are primarily employed for the distribution and
scheduling of “black box” workflow components.

The increase in data driven science and the associated
introduction of scientific workflow systems has led to a re-
flection on the nature of scientific method and its dissemi-
nation in a digital world – the question of how we can open
these “black boxes”. The principles for reuse outlined ear-
lier in Section 3 are also the defining characteristics of a
Research Object [1] – a semantically rich principled ag-
gregation of resources bringing together the essential in-
formation relating to an experiment or investigation. This
includes not only the data used, the methods employed to
produce and analyse that data, but also the people involved
in the investigation.

In our study of contemporary MIR systems we have
surveyed for the principles of reuse, repurposing, and re-
peatability. While providing a foundation for data-driven
research, it is when they are supplemented to encompass
replication, replay, referencing and revealability that we
see how the method and provenance captured by Workflow-
centric Research Objects [2] can radically enhance the re-
search environment and process.

By identifying realised abstractions for method, work-
flow, and data exchange in MIR systems we have demon-
strated that the underlying conditions for Research Objects
in MIR are already present: one can easily imagine a future
in which MIREX entries are developed, submitted, evalu-
ated and published as Research Objects.

5. CONCLUSIONS

Interoperability has not been – and should not be – achieved
through the adoption of a single portal, toolkit, or program-
ming language. Plurality of systems and the different ap-
proaches they embody is as important in avoiding skewed
research and results as the plurality of datasets.

MIR embodies a process of digital research. While work-
flows provide a platform for principled reuse, they are also
the building blocks for Research Objects, and through these
the opportunity to conduct our research in new transparent,
reusable, repurposable, and repeatable ways. In this paper
we have demonstrated MIR is well positioned to take ad-
vantage of these approaches.

Workflows and Research Objects can provide a frame-
work, but as a community we must define the levels of



reuse and interoperability we wish to achieve through them.
This does not imply a single level of abstraction nor an as-
sociated single level of modularised software, but multiple
models appropriate to each task at hand. As the survey
in this paper has shown, the basis for these encapsulations
already exists at different levels within MIR systems.

Adopting a “pick and choose” approach to reuse, the
identification of boundary objects [19] – points of shared
understanding through standardised method and transla-
tion between viewpoints – may prove helpful. So too can
MIREX as a process through which the community must
reach consensus regarding tasks and output – and where
the benefits of reuse might be most keenly felt. In this con-
text we suggest a first step should be taken at the data level:
describing and exchanging input, output, and parameters
using community agreed vocabularies encoded in RDF.
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ABSTRACT

For the task of semi-automatic music transcription, we ex-
tended our framework for shift-variant non-negative matrix
deconvolution (svNMD) to work with multiple templates
per instrument and pitch. A k-means clustering based learn-
ing algorithm is proposed that infers the templates from the
data based on the provided user information. We experi-
mentally explored the maximum achievable transcription
accuracy of the algorithm and evaluated the prospective
performance in a realistic setting. The results showed a
clear superiority of the Itakura-Saito divergence over the
Kullback-Leibler divergence and a consistent improvement
of the maximum achievable accuracy when each pitch is
represented by more than one spectral template.

1. INTRODUCTION

Automatic music transcription describes the process of
transforming a recording of a piece of music into a score
or an intermediate score-like representation. It has been
an active area of research over the last decades and a mul-
titude of approaches has been proposed. An overview of
the main computational techniques for music transcription
can be found in [1]. Despite this long research history, the
accuracy of fully automatic music transcription systems is
still considerably below the accuracy achieved by trained
musicians.

As a step towards a more accurate transcription system,
we address the task of user-assisted or semi-automatic mu-
sic transcription. These terms refer to systems in which
the user provides a certain amount of information about the
recording under analysis which can then be used to guide
the transcription process. In this paper, we assume that
the user labels a certain number of notes for each instru-
ment, which is then used to build instrument models that
are tailored to the specific instruments in the mixture. In
a practical application, the user could either be presented
with a magnitude spectrogram and be asked to graphically
mark a few fundamental frequency trajectories, or — if a
more musical approach is desired — with the result of a
fully-automatic transcription system for which he is asked
to assign some of the detected notes to the instruments.

We address this task by means of a non-negative matrix
deconvolution framework. Since the introduction of non-
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negative matrix factorisation (NMF) [2] which was first ap-
plied to music analysis by Smaragdis and Brown [3], a num-
ber of modifications to this algorithm have been proposed.
In this work, we build on our shift-variant non-negative ma-
trix deconvolution (svNMD) framework [4] which is itself
a modification of Schmidt and Mørup’s NMF2D model [5].
In the svNMD framework, a single spectral template for
each pitch of each instrument is estimated which is then
used to detect fundamental frequencies in the constant-Q
magnitude spectrogram of the recording. Here, we extend
the model to work with multiple templates per pitch. The
motivation for having multiple templates per pitch is given
by the fact that the spectral shape of a particular note can
vary based on dynamics or playing style and to model a
time-varying spectral envelope of a note.

Other related work can be found in NMF-based ap-
proaches to score-informed source separation, where mid-
level score representations are used to infer models for the
source instruments. Hennequin et al. [6] modify the NMF
model to work with parametric spectral templates. The
model allows templates to be shifted in frequency while
preserving the overtone amplitudes. The parameters are
learned by initialising the NMF gain matrix and succes-
sively applying update functions for the template parame-
ters and the gains. In [7], Ganseman et al. use a synthesised
and time-aligned score as priors for the PLCA system pro-
posed in [8]. In addition to note information, this approach
requires knowledge about the timbre of each source in order
to facilitate a fast convergence.

The remainder of this paper is organised as follows:
In the following section we present our extension to the
svNMD framework that works with multiple templates per
pitch (Sect. 2.1) and illustrate the algorithm for learning
these templates (Sect. 2.2). In Sect. 3 we evaluate the
proposed algorithm in two different experiments and discuss
the results. Conclusions are finally drawn in Sect. 4.

2. MULTIPLE-TEMPLATE SHIFT-VARIANT
NON-NEGATIVE MATRIX DECONVOLUTION

In this section we present our non-negative matrix deconvo-
lution framework which decomposes a constant-Q spectro-
gram into a structured dictionary of instrument templates
and corresponding gain values (see Sect. 2.1). The frame-
work represents each pitch of each instrument by a prede-
fined number of spectral templates. Furthermore, in Sect.
2.2 we describe a procedure that allows us to extract multi-
ple templates for each note previously labelled by the user.
This procedure is applicable to polyphonic material where
partials might overlap.
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Figure 1: svNMD framework with multiple templates per
instrument and pitch.

2.1 Framework

The proposed non-negative matrix deconvolution frame-
work decomposes a constant-Q spectrogram into 4-dimen-
sional structures for the basis functions and the gains, re-
spectively. Figure 1 illustrates the framework graphically.
Each instrument in the mixture under analysis is represented
by a 3-dimensional structure (tensor) that contains a fixed
number of basis functions for each pitch. The pitch res-
olution is determined by the frequency resolution of the
constant-Q spectrogram under analysis and the number of
templates per pitch can be chosen arbitrarily. Likewise,
for each instrument a 3-dimensional structure contains the
corresponding gains for the spectral templates. Each layer
displayed on the right-hand side of Fig. 1 contains the gain
trajectories at a fixed template index over time. In order
to arrive at a single pianoroll-like representation for each
instrument, the gains of the layers can be summed up verti-
cally.

In mathematical terms, we denote the constant-Q magni-
tude spectrogram by V ∈ RN×M+ , where N is the number
of frequency bins and M the number of frames. The matrix
Wφ,i ∈ RN×T+ contains in its columns the spectral tem-
plates of instrument i at pitch φ (see Fig.1). T denotes the
specified number of spectral templates. All templates have
their first partial at the first row index of Wφ,i and likewise
all other partials appear each roughly at their corresponding
row index due to the use of the constant-Q spectrogram.
Hφ,i ∈ RT×M+ on the other hand denotes the matrix that
contains the corresponding gains for the templates of instru-
ment i at pitch φ over time. Note that in Fig. 1, this matrix
corresponds to a slice through one of the banks of layers,
as shown in the figure.

Given these matrices we approximate our original spec-
trogram V by

V ≈ Λ =
I−1∑
i=0

Φ−1∑
φ=0

φ↓
Wφ,iHφ,i, (1)

where Λ ∈ RN×M+ has the same dimensions as V. Here, I
denotes the number of instruments in the mixture and Φ the

number of pitches. Φ and N do not necessarily need to be
the same, in our case, however, they are. The operator φ↓
denotes a downward shift of the matrix elements by φ rows
while the upper φ rows are filled with zeros. This mixture
model shifts each spectral template to the correct frequency
position and scales them by the corresponding gains at each
frame.

Update equations were derived for both Wφ,i and Hφ,i

by computing the gradient of the β-divergence between V
and Λ. The β-divergence is given by

Cβ =
N∑
n=1

M∑
m=1

[V]
β
n,m

β(β − 1)
+

[Λ]
β
n,m

β
−

[V]n,m [Λ]
β−1
n,m

β − 1
,

(2)
for β ∈ R\{0, 1} and

C0 =
N∑
n=1

M∑
m=1

[V]n,m
[Λ]n,m

− log

(
[V]n,m
[Λ]n,m

)
− 1 (3)

C1 =
N∑
n=1

M∑
m=1

[V]n,m log

(
[V]n,m
[Λ]n,m

)
+[Λ]n,m−[V]n,m .

(4)

The update equations are given by

Wφ,i ←Wφ,i •

(
φ↑
V •

φ↑
Λβ−2

)[
Hφ,i

]T
φ↑

(Λβ−1) [Hφ,i]
T

(5)

Hφ,i ← Hφ,i •

[ φ↓
Wφ,i

]T (
V •Λβ−2

)
[ φ↓
Wφ,i

]T
Λβ−1

(6)

In these equations, • denotes an elementwise multiplica-
tion and all divisions and power operations are likewise
carried out per element. We can obtain the well-known
least squares (LS), Kullback-Leibler (KL) and Itakura-Saito
(IS) cost functions by setting β = 2, β = 1 and β = 0,
respectively. The derivation of Eqs. 5 and 6 is provided in a
supplementary document [9].

2.2 Learning the basis functions

Figure 2 illustrates the iterative procedure of learning a
number of templates for a single note labelled by the user.
The user provides information about the start frame, the end
frame and the pitch φ0 of a note of a particular instrument
i0. This information can be illustrated by a pianoroll that
contains a single line representing the note, as shown on the
left-hand side of panel (a). Given this information, we can
identify the matrix Wφ0,i0 in which the learned templates
will be stored and the matrix Hφ0,i0 that contains the gains
for each of the templates over time (grey-shaded matrices
on the right-hand side of panel (a)). Since only those two
matrices Wφ0,i0 and Hφ0,i0 are relevant for learning the
templates from the labelled note, we isolate them from their
tensors when illustrating the learning algorithm in panels
(b)–(f).

Panels (b)–(f) display the algorithmic steps for estimat-
ing the spectral templates. This procedure is in fact very



similar to applying k-means clustering to the spectra of a
note at all time frames within the spectrogram V. In this
analogy, each spectral template corresponds to a cluster
mean and thus represents a set of spectra at different time
frames. Since the learning procedure is carried out within
the nonnegative framework, the correponding k-means clus-
tering steps might not be obvious. For that reason, we
illustrate these on the right hand side of panels (b)–(f). In
these graphs, each data point corresponds to a spectrum of
the note at a particular time frame in the N -dimensional
space which is here for the sake of illustration reduced to 2
dimensions.

1. Initialisation: The algorithm starts by initialising the
spectral templates in Wφ0,i0 with nonnegative random
values (panel (b)). In the gain matrix Hφ0,i0 each frame
of the note is randomly assigned to exactly one spectral
template by setting the corresponding gains to a value of
1 while all other entries of the matrix are set to 0. In the
k-means example, this corresponds to assigning the data
points randomly to one of the three clusters: crosses,
circles and squares.

2. Update: In the second step (panel (c)), we update the
spectral templates in Wφ0,i0 based on the gains that
were set in the previous step. This modifies the spec-
tral templates in such a way that the resulting templates
minimise the β-divergence at the assigned frames. Thus,
each resulting spectral template can be seen as an av-
erage of the instrument spectra at the time frames that
were assigned to it. In k-means clustering terms, this is
equivalent to computing the average of the data points
that were assigned to the same class. Note that in order
to eliminate scale-ambiguities in the nonnegative frame-
work, all spectral templates in Wφ0,i0 are scaled to have
a power of 1 and the gains are adjusted accordingly.

3. Assignment: In order to assign the spectra of the note
at all frames to the template that best resembles their
spectral shape, we set the template gains at each note
frame to equal values (panel (d)) and update the gains
based on the given spectral templates (panel (e)). This
way, the gain matrix contains the contributions of each
template to the audio spectra of each time frame when
linearly combining the templates. This can be seen as a
similarity measure between the templates and the spectra.
We assign each frame to the template with the highest
gain value, here indicated by the grey-shaded entries. In
the k-means clustering example, this corresponds to the
assignment step, in which each data point is assigned
to the closest mean. We setup a new matrix Hφ0,i0

(panel (f)) that contains at each frame and each assigned
template index the gains from step 2 (cf. panel (d)).

The algorithm iterates over steps 2 and 3.
The reason for assigning each frame to just a single

spectral template in step 1 and 3 is that we want to avoid the
partials of a note to be split among the different templates.
A template that only contains a subset of partials might be
used by the algorithm to explain partials of other notes from
the same or another instrument. An intuitive example for
this case would be a spectral template that only contains
a single partial (i.e. a single spectral peak) which can be
used by the algorithm to approximate a partial of any note
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Figure 2: Learning algorithm

at that position of the same or another instrument. This
would produce a gain value either at the wrong fundamental
frequency or the wrong instrument or both and thereby
adulterate the transcription accuracy.

In k-means clustering, there is a chance of producing
empty clusters when assigning the data points to the new
means. The same problem applies to our proposed learn-
ing algorithm. In our algorithm this problem can occur in



panel (e), when for a certain template none of the frames
contains the largest gains. In this case, we detect the largest
cluster (i.e. the template with the largest number of assigned
frames) and randomly assign half of its frames to the empty
cluster. The spectral template of the empty cluster is then
discarded and replaced by a duplicate of the spectral tem-
plate of the largest cluster.

Although the learning procedure was here illustrated
by an individual note of a single instrument, the proce-
dure is applicable to and intended for polyphonic audio.
A MATLAB implementation of the learning algorithm
is available at http://code.soundsoftware.ac.
uk/projects/svnmdmt.

3. EVALUATION

The evaluation of the proposed framework and the tem-
plate learning algorithm was carried out in two experiments.
In the first experiment (Sect. 3.3) we explored the upper
limit of performance of the algorithm when used for semi-
automatic transcription. The results of this experiment
provide some intuition about the potential of the framework
to accurately approximate a spectrogram. The second exper-
iment (Sect. 3.4) looked at a more realistic semi-automatic
transcription setting in which only a part of the notes are
employed for learning the templates which are then applied
to transcribe the remainder of the recording.

3.1 Dataset

For both experiments described below, the same dataset
as in [4] was used. The dataset was based on monophonic
recordings of musical phrases from 12 different instruments,
each with a length of approximately 30s. Mixtures of 2 to 5
instruments were produced by combining the monophonic
signals. For each polyphony level (2 to 5 instruments), 50
different combinations were generated. At the same time,
the hand-annotated notes of the 12 monophonic files were
available in MIDI format. Those MIDI files acted as the
ground truth for the evaluation.

In addition to that, we evaluated the algorithm on more
harmonically related instrument parts and computed results
for a wind quintet excerpt (cf. [10]). This example had a
length of 54s and for each instrument part hand-annotated
MIDI ground-truth was available.

3.2 Accuracy

In order to measure the transcription accuracy, we refrained
from using the common measures precision, recall or F-
score. Those measures are used to compare detected note
events to ground truth notes. Combining gains into note
objects, however, would require a subsequent note-tracking
algorithm which will have an influence on the results. Our
aim is here to study the performance of the proposed algo-
rithm in isolation.

As an accuracy measure, we therefore compute the per-
centage of energy in the gain matrices that is concentrated
in the ground truth fundamental frequencies. This is done
for each instrument individually. In order to achieve that, a
summary gain matrix Gi is computed for each instrument i
in the mixture by[

Gi
]
φ,n

=
T∑
t=1

[
Hφ,i

]
t,n
. (7)

Intuitively, in Fig. 1 this corresponds to summing all the
displayed gain layers for each instrument. Based on the
summary gain matrices Gi, the per-instrument accuracies
Acci are computed by

Acci =

N∑
n=1

∑
φ∈Fn

([
Gi
]
φ,n

)2

N∑
n=1

Φ∑
φ′=1

(
[Gi]φ′,n

)2
. (8)

In this equation, Fn denotes the set of frequency bins of
the annotated pitches in the n-th frame. Since the test set
only contains monophonic instruments, Fn only contains
the bins of at most one note at each time frame. Ideally, we
would like to see all energy concentrated in the fundamen-
tal frequencies which would make it easy to detect notes
within the gain matrices. This case would correspond to an
accuracy Acci of 1.

3.3 Experiment 1: Exploring the upper performance
limit

In the first experiment we explored the upper performance
limit of the nonnegative framework when used for a semi-
automatic transcription task. The upper performance limit
is given when a user labels all notes of all instruments in
the mixture under analysis. Although this scenario may
seem trivial, because no transcription algorithm would be
required if all notes were known beforehand, this evaluation
provides an intuition about the expressivity of the algorithm
and reveals any methodological flaws.

3.3.1 Experimental setup

For each file in the dataset, we extracted T = 1, 3 and 5
templates per pitch, by running 50 iterations of the tem-
plate learning algorithm described in Sect. 2.2. The user
information was given by the ground truth MIDI files of
the instruments contained in the mixture which contained
onset, offset and pitch information of the notes of the in-
struments. Once the basis functions were learned from the
constant-Q magnitude spectrogram of the recording, the
gain matrices were computed. This was done by randomly
initialising all matrices Hφ,i with nonnegative values and
applying 10 iterations of the update equation for the gains
(Eq. 6). Transcription accuracies were computed as de-
scribed in Sect. 3.2. The experiment was conducted for the
IS-divergence (β = 0) and the KL-divergence (β = 1).

3.3.2 Results

The results of this experiment are displayed in Fig. 3. The
upper panels display the results obtained by using the Itakura-
Saito (IS) divergence, the lower panels the results of the
Kullback-Leibler (KL) divergence. From left to right, the
panels show the results of the different polyphony levels
— from 1 to 5 instruments — and on the right-hand side
the results of the wind quintet. In each panel, we compare
the per-instrument transcription accuracies of all instru-
ments of all files when represented with different numbers
of templates per pitch. The results are displayed as box-
plots: the upper and lower edges of the box represent the
first (Q1) and third quartile (Q3), the median is displayed
in between. The whiskers extend to the data points that



Figure 3: Results of experiment 1. The upper and lower rows display the per-instrument accuracies for the IS-divergence
and KL-divergence, respectively. From left to right, the panels contain the accuracies for different polyphony levels and for
the wind quintet. Within each panel the results for different numbers of templates per pitch are presented as boxplots.

are furthest away from the median, but within the inter-
val [Q1 − 1.5 · (Q3 −Q1) . . . Q3 + 1.5 · (Q3 −Q1)]. All
data points outside that range are marked by crosses and
considered as outliers.

When comparing the different cost functions for the
random instrument mixtures, it becomes obvious that the
Itakura-Saito divergence outperforms the Kullback-Leibler
divergence in all cases. A possible explanation for the good
performance of the IS-divergence is its scale-invariance
property (cf. [11]) which is in compliance with Weber’s
law applied to the perception of loudness. An interesting
aspect we found here is that by using the IS-divergence, the
accuracies do not even noticeably decay when the number
of instruments is increased.

When we compare the results for different numbers
of spectral templates per pitch, a clear tendency towards
higher accuracies can be observed when more templates
are learned for each note. The improvement is consistent
when the number of templates is increased from 1 to 3 and
ranges between 2% and almost 10% for different poyphony
levels when considering the median accuracies for the IS-
divergence. Increasing the number of templates from 3 to
5 improves the accuracy even further, but not in the same
consistent way as from 1 to 3.

The results of the wind quintet generally confirm the
above findings, particularly the increasing accuracy when
multiple templates are used. The median accuracy is how-
ever slightly lower than for the data set of random instru-
ment mixtures, which can be attributed to the larger number
of overlapping partials.

3.4 Experiment 2: Real case scenario

In the second experiment, we estimated the performance of
a semi-automatic transcription system in a more realistic
environment. We assumed that the user had labelled a
certain number of notes for each instrument, which we use
to estimate template spectra at the corresponding pitches.
These template spectra are then used to build complete
models for the instruments which are then applied to the
remainder of the piece in order to obtain the transcription.

3.4.1 Experimental setup

For this experiment, we split each file in the dataset in two
halves, each containing approx. 15 s of audio. We assumed
that the user had labelled all notes of all instruments in
the first half and used these to learn the basis functions as
described above. The basis functions were then replicated
at the surrounding pitches to cover the whole pitch range
and were applied to estimate the gains of the second half of
the audio.

As in the first experiment, we applied all combinations of
cost functions (IS-divergence and KL-divergence), number
of instruments (1–5) and number of templates per pitch (1,3
and 5). We again ran 50 iterations of the learning algorithm
and 10 iterations for the estimation of the gain matrices.

3.4.2 Results

Figure 4 shows the results for the second experiment. The
order of the results is the same as for the previous results.

For the random instrument mixtures, the results of this
experiment differ from the results of the previous experi-
ment. In general, there is a considerably larger variance in
the results for each configuration. Several trends are clearly
visible in the diagram: For both cost functions, the accuracy
decreases when the number of instruments in the mixture
is increased. The impression from the first experiment that
the IS-divergence generally yields better results than the
KL-divergence is here confirmed, the only exception being
the polyphony level of one instrument. However, since the
results for the monophonic audio files are only based on 12
accuracies, this fact needs to be put in perspective.

In terms of the different numbers of templates per pitch,
the results for 1, 3 and 5 templates consistently stay in
the same range and no clear trend can be found. It has to
be considered here that the results of this experiment are
not only influenced by the number of templates, but also
by the fact that templates of non-annotated pitches were
estimated by replicating adjacent pitches. It seems that the
error introduced by this rough assumption outweighs the
gain of having multiple templates per pitch.

The results for the quintet recording only show a small
loss in accuracy to the previous experiment. The reason for



Figure 4: Results of experiment 2. The results are displayed in the same order as the ones in Fig. 3.

this can be seen in the fact that in this excerpt large parts of
the first half are repeated in the second half, so that almost
the same pitch range was covered for training and testing.

The experiments show a certain discrepancy between the
maximum achievable accuracy and the accuracies that can
be expected in a more realistic setting. There are several
explanations for the fact that the accuracy of the second ex-
periment is decreased: First, there was twice more training
data in experiment 1. Second, in the first experiment the
basis functions will have been better adjusted to the spectra
of the second half of the audio files, which were not used in
the learning process in the second experiment. And third,
as indicated above, filling the gaps in the basis function
tensors by merely replicating the estimated basis functions
in the second experiment leads to a loss in accuracy.

4. CONCLUSION

We presented a shift-variant non-negative matrix deconvo-
lution (svNMD) framework that represents each note of
each instrument by multiple spectral templates. A learning
algorithm was presented that allows the different templates
to be estimated within the svNMD framework. The steps
of this algorithm are comparable to a k-means clustering
algorithm. We investigated the use of the framework for
the task of semi-automtic music transcription in which the
user provides a priori information about some notes in the
mixture under analysis. Two experiments were carried out.
In the first experiment, the upper performance limit of the
algorithm was investigated which is given when the user
provides information about all notes of all instruments. The
results showed the superiority of the IS-divergence over the
KL-divergence and a consistent improvement when more
than one template per pitch was used. The second experi-
ment expoited a more realistic use case in which the user
merely labels a subset of the notes. Here, the superiority of
the IS-divergence could be confirmed. In this experiment,
however, no improvement could be found by using multiple
templates per pitch.
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E. Gómez, J. Salamon
Universitat Pompeu Fabra, Spain

{emilia.gomez, justin.salamon}@upf.edu

ABSTRACT

The purpose of this paper is to present an algorithmic pi-
peline for melodic pattern detection in audio files. Our
method follows a two-stage approach: first, vocal pitch se-
quences are extracted from the audio recordings by means
of a predominant fundamental frequency estimation tech-
nique; second, instances of the patterns are detected di-
rectly in the pitch sequences by means of a dynamic pro-
gramming algorithm which is robust to pitch estimation
errors. In order to test the proposed method, an analysis
of characteristic melodic patterns in the context of the fla-
menco fandango style was performed. To this end, a num-
ber of such patterns were defined in symbolic format by
flamenco experts and were later detected in music corpora,
which were composed of un-segmented audio recordings
taken from two fandango styles, namely Valverde fandan-
gos and Huelva capital fandangos. These two styles are
representative of the fandango tradition and also differ with
respect to their musical characteristics. Finally, the strat-
egy in the evaluation of the algorithm performance was
discussed by flamenco experts and their conclusions are
presented in this paper.

1. INTRODUCTION

1.1 Motivation and context

The study of characteristic melodic patterns is relevant to
the musical style and this is especially true in the case of
oral traditions that exhibit a strong melodic nature. Fla-
menco music is an oral tradition where voice is an es-
sential element. Hence, melody is a predominant feature
and many styles in flamenco music can be characterized
in melodic terms. However, in flamenco music the pro-
blem of characterizing styles via melodic patterns has so
far received very little attention. In this paper, we study

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2012 International Society for Music Information Retrieval.

characteristic melodic patterns, i.e., melodic patterns that
make a given style recognizable.

In general, it is possible to adopt two main approaches
to the study of characteristic melodic patterns. According
to the first approach, music is analysed to discover cha-
racteristic melodic patterns [2] (distinctive patterns in the
terminology of [2]); see, for example, [3] for a practical ap-
plication of this approach to finding characteristic patterns
in Brahms’ string quartet in C minor. Typically, the de-
tected patterns are assessed by musicologists to determine
how meaningful they are. Therefore, this type of approach
is essentially an inductive method. The second approach
is in a certain sense complementary to the first one: spe-
cific melodic patterns, which are known or are hypothe-
sized to be characteristic, are tracked in the music stream.
The results of this type of method allow musicologists to
study important aspects of the given musical style, e.g., to
confirm existing musical hypotheses. The techniques to
carry out such tracking operations vary greatly depending
on the application context, the adopted music representa-
tion (symbolic or audio), the musical style and the avail-
able corpora. This type of approach can be termed as de-
ductive.

In this paper, we adopted the second approach. Specifi-
cally, certain characteristic melodic patterns were carefully
selected by a group of flamenco experts and were searched
in a corpus of flamenco songs that belong to the style of
fandango. Tracking patterns in flamenco music is a chal-
lenging task for a number of reasons. First of all, flamenco
music is usually only available as raw audio recordings
without any accompanying metadata. Secondly, flamenco
music uses intervals smaller than a half-tone and is not
strict with tuning. Furthermore, due to improvisation, a
given abstract melodic pattern can be sung in many dif-
ferent ways, sometimes undergoing dramatic transforma-
tions, and still be considered the same pattern within the
flamenco style. These facts obviously increase the com-
plexity of the melody search operation and demand for in-
creased robustness.

Preliminary work on detecting ornamentation in flamen-
co music was carried out in [6], where a number of pre-
defined ornaments were adapted from classical music and
were looked up in a flamenco corpus oftonásstyles. In [9]



a melodic study of flamenco a cappella singing styles was
performed.

1.2 Goals

Two main goals were established for this work: the first
one was of technical nature -transcription of music and lo-
cation of melodic patterns-, and the second one of musico-
logical nature -the study of certain characteristic patterns
of the Valverde fandango style.

From an algorithmic perspective, two major problems
had to be addressed. The first problem was related to the
transcription of music, since flamenco is an oral music tra-
dition and transcriptions are meagre. In addition, our cor-
pus consisted of audio recordings that contained both gui-
tar and voice and predominant melody (pitch) estimation
was applied in order to extract the singing voice. The out-
put of this processing stage was a set of pitch contours rep-
resenting the vocal lines in the recordings. Note that even
though we use a state-of-the-art algorithm, theses lines will
still contain estimation errors, and our algorithm must be
able to cope with them. The second problem was related
to the fact that the patterns to be detected were specified
by flamenco experts in an abstract (symbolic) way and we
had to locate the characteristic patterns directly on the ex-
tracted pitch sequences. To this end, we developed a trac-
king algorithm that operates on a by-example basis and ex-
tends the context-dependentdynamic time warping scheme
[10], which was originally proposed for pre-segmented data
in the context of wind instruments.

Musicologically speaking, the goal was to examine cer-
tain melodic patterns as to being characteristic of the Val-
verde fandango style. Those patterns were specified in a
symbolic, abstract way and were detected in the corpus.
Both the pattern itself and its location were important from
a musicological point of view. The tracking results were
reviewed and assessed by a number of flamenco experts.
The assessment was carried out with respect to a varying
similarity threshold that served as means to filter the re-
sults returned by the algorithm. In general, the subjective
evaluation of the results (experts’ opinion) was consistent
with the algorithmic output.

2. THE FANDANGO STYLE

Fandango is one of the most fundamental styles in fla-
menco music. In Andalusia, there are two main regions
where fandango has marked musical characteristics: Malaga
(verdiales fandangos) and Huelva (Huelva fandangos).

Verdiales fandangos are traditional folkcantesrelated
to dance and a particular sort of gathering. The singing
style is melismatic and flowing at the same time [1].

Huelva fandangos are usually sung in accompaniment
with a guitar. The oldest references about Huelva fan-
dangos date back to the second half of the XIX century.
At present, Huelva fandangos are the most popular ones
and display a great number of variants. They can be clas-
sified based on the following criteria: (1) Geographical
origin: from the mountains (Encinasola), from Andévalo

(Alosno), from the capital (Huelva capital fandango); (2)
Tempo: fast (Calañas), medium (Santa Barbara), or slow
(valientes from Alosno); (3) Origin of tradition: village
(Valverde), or personal, i.e., fandangos that are attributed
to important singers (Rebollo and other important singers,
for example). More information on the different styles of
fandango can be found in [7].

From a musicological perspective, all fandangos have
a common formal and harmonic structure which is com-
posed of an instrumental refrain in flamenco mode (major
Phrygian) and a sung verse orcopla in major mode. The
interpretation of fandangos can be closer to the folkloric
style, or to the flamenco style, with predominant melis-
mas and greater freedom in terms of rhythm. The reader
may refer to [5] for further information on their musical
description.

The study of the fandangos of Huelva is of particular
interest for the following reasons: (1) Identification of the
musical processes that contribute to the evolution of folk
styles to flamenco styles; (2) Definition of styles according
to their melodic similarity; (3) Identification of the musical
variables that define each style; this includes the discovery
of melodic and harmonic patterns.

3. THE CHARACTERISTIC PATTERNS OF
FANDANGO STYLES

Patterns heard in the exposition (the initial presentation of
the thematic material) are fundamental to recognizing fan-
dango styles. The main patterns identified in the Valverde
fandango style are shown in Figure 1 (chords shown in Fig-
ure 1 are played by the guitar; pitches are notated as inter-
vals from the root) . These patterns are named as follows:
exp-1, exp-2, exp-4, andexp-6. The number in the name
of the pattern refers to the phrase in which it occurs in the
piece.

Patternexp-1is composed of a turn-like figure around
the tonic. Patternexp-2basically goes up by a perfect
fifth. First, the melody insists on the B flat, makes a minor-
second mordent-like movement, and then rises with a leap
of a perfect fourth. Patternexp-4is a fall from the tonic
to the fourth degree by conjunct degrees followed by an
ascending leap of a fourth. Patternexp-6 is a movement
from B flat to the tonic. Again, the B flat is repeated, then
it goes down by a half-tone and raises to the tonic with
an ascending minor third. The rhythmic grouping of the
melodic cell is ternary (three eighth notes for B flat and
three eighth notes for A).

Again, notice that this is a symbolic description of the
actual patterns heard in the audio files. Any of these pat-
terns may undergo substantial changes in terms of dura-
tion, sometimes even in pitch, not to mention timbre and
other expressive features.

3.1 The Corpus of Fandango

The corpus of our study was provided byCentro andaluz
de flamenco de la Junta de Andalucı́a, an official institution
whose mission is the preservation of the cultural heritage



Figure 1. Characteristic patterns in the Valverde fandango
style.

of flamenco music. This institution possesses around 1200
fandangos, from which 241 were selected. The selection
was based on the following four criteria: (1) Audio files
must contain guitar and voice; (2) Audio files are of ac-
ceptable recording quality to permit automatic processing;
(3) Fandangos must be interpreted by singers from Huelva
or acknowledged singing masters; (4) The time span of
the recordings must be broad and in our case it covers six
decades, from 1950 to 2009.

The corpus was gathered for the purposes of a larger
project that aims at investigating fandango in depth. The
sample under study is broadly representative of styles and
tendencies over time. The current paper is an attempt to
study 60 fandangos in total (30 Valverde fandangos and
30 Huelva capital fandangos). In this experimental setup
we excluded Valientes of Huelva fandangos, Valientes de
Alosno fandangos, Calañas fandangos, and Almonaster fan-
dangos. All recordings were available in PCM (wav) single-
channel format, with a 16 bit-depth per sample and 44 kHz
sampling rate.

4. COMPUTATIONAL METHOD

4.1 Audio Feature Extraction

As mentioned earlier, written scores in flamenco music are
scattered and scant. This can be explained to some ex-
tent by the fact that flamenco music is based on oral trans-
mission. Issues related to the most appropriate transcrip-
tion method have been quite controversial in the context of
the flamenco community. Some authors, like Hurtado and
Hurtado [8], are in favour of Western notation, whereas

others propose different methods, e.g., Donnier [4], who
advocates the use of plainchant neumes. In view of this
controversy, we adopted a more technical approach that is
based on audio feature extraction.

We now describe how the audio feature extraction algo-
rithm operates. Our goal was to extract the vocal line in an
appropriate, musically meaningful format that would also
serve as input to the pattern detection algorithm. The audio
feature extraction stage was mainly based on predominant
melody (fundamental frequency, from now onF0) estima-
tion from polyphonic signals. For this, we used the state-
of-the art algorithm proposed by Salamon and Gómez [11].
Their algorithm is composed of four blocks. First, they
extract spectral peaks from the signal by taking the local
maxima of the short-time Fourier transform. Next, those
peaks are used to compute a salience function representing
pitch salience over time. Then, peaks of the salience func-
tion are grouped over time to form pitch contours. Finally,
the characteristics of the pitch contours are used to filter
out non-melodic contours, and the melodyF0 sequence
is selected from the remaining contours by taking the fre-
quency of the most salient contour in each frame. Further
details can be found in [11].

4.2 Pattern Recognition Method

The pattern detection method used in this paper builds upon
the “Context-Dependent Dynamic Time Warping” algo-
rithm (CDDTW) [10]. While standard dynamic time war-
ping schemes assume that each feature in the feature se-
quence is uncorrelated with its neighboring ones (i.e. its
context), CDDTW allows for grouping neighboring fea-
tures (i.e. forming feature segments) in order to exploit
possible underlying mutual dependence. This can be use-
ful in the case of noisy pitch sequences, because it permits
canceling out several types of pitch estimation errors, in-
cluding pitch halving or doubling errors and intervals that
are broken into a sequence of subintervals. Furthermore,
in the case of melismatic music, the CDDTW algorithm
is capable of smoothing variations due to the improvisa-
tional style of singers or instrument players. For a more
detailed study of the CDDTW algorithm, the reader is re-
ferred to [10].

A drawback of CDDTW is that does not take into ac-
count the duration of music notes and focuses exclusively
on pitch intervals. Furthermore, CDDTW was originally
proposed for isolated musical patterns (pre-segmented data).
The term isolated refers to the fact that the pattern that is
matched against a prototype has been previously extracted
from its context by means of an appropriate segmentation
procedure, which can be a limitation in some real-world
scenarios, like the one we are studying in this paper. There-
fore, we propose here an extension to the CDDTW algo-
rithm, that:

• Removes the need to segment the data prior to the
application of the matching algorithm. This means
that the prototype (in our case the time-pitch repre-
sentation of the MIDI pattern) is detected directly in
the pitch sequence of the audio stream without prior



segmentation, i.e. the pitch sequence that was ex-
tracted fromthe fandango.

• Takes into account the note durations in the formu-
lation of the local similarity measure.

• Permits to search for a pattern iteratively, which means
that multiple instances of the pattern can be detected,
one per iteration.

A detailed description of the extension of the algorithm
is beyond the scope of this paper. Instead, we present the
basic steps:

Step 1: The MIDI pattern to be detected is first con-
verted to a time-pitch representation

P = {[f1, t1]
T , [f2, t2]

T , . . . , [fJ , tJ ]
T },

wherefi is the frequency of thei-th MIDI note, mea-
sured in cents (assuming that the reference frequency is 55
Hz) andti is the respective note duration (in seconds), for
a MIDI pattern ofJ notes.

Step 2: Similarly, the pitch sequence of the audio record-
ing is converted to the above time-pitch representation,

R = {[r1, tr1]
T , [r2, tr2]

T , . . . , [rI , trI ]
T },

whereri is a pitch value (in cents) andtri is always equal
to the short-term step of the feature extraction stage (10ms

in our case), for an audio recording ofI notes. In other
words, even if two successive pitch values are equal, they
are still treated as two successive events, each of which
has a duration equal to the short-term step of the feature
extraction stage. This approach was adopted to increase
the flexibility of the dynamic time warping technique at the
expense of increased computational complexity. For the
sake of uniformity of representation, each time interval that
corresponds to a pause or to a non-vocal part is inserted
as a zero-frequency note and is assigned a respective time
duration.

Step 3: SequencesR andP are placed on the vertical
and horizontal axis of a similarity grid, respectively. The
CDDTW algorithm is then applied on this grid, but, this
time, the cost to reach node(i, j) from an allowable prede-
cessor, say(i − k, j − 1), depends both on the pitch inter-
vals and the respective note durations. More specifically,
the interpretation of the transition(i − k, j − 1) → (i, j)
is that the pitch intervals in the MIDI pattern and audio
recording are equal tofj − fj−1 andri − rk−1, respec-
tively. Note that on the y-axis, the pitch interval only de-
pends on the end nodes of the transition and not on any
intermediate pitch values, hence the ability to cancel out
any intermediate pitch tracking phenomena. In the same
spirit, the time duration that has elapsed on thex−axis and
y−axis is equal totj and

∑i

i−k+1
trk, respectively. It is

worth noticing that we do not permit omitting notes from
the MIDI pattern, and therefore any allowable predecessor
of (i, j) must reside in columnj − 1. The pitch intervals
and respective durations are fed to the similarity function

of Eq. (1), that yields a score,S(i−k,j−1)→(i,j) , for the
transition(i− k, j − 1) → (i, j), i.e.,

S(i−k,j−1)→(i,j) = 1− f(

∑i

i−k+1
trk

tj
)

−g(ri − rk−1, fj − fj−1)

(1)

where

f(x) =




(1 − x)1.1, 1 ≤ x ≤ 4
1.51.1(1− x)1.1, 1

3
≤ x < 1

3− 6x, 0 < x < 1

3

∞, otherwise

and

g(x1, x2) =

{
(1− x1

x2

)0.7, if 0.98 ≤ x1

x2

≤ 1.02

∞, otherwise

The interpretation of this function is that it penalizes ex-
cessive time warping and does not tolerate much deviation
in terms of pitch intervals. More specifically,f(x) is a
piecewise function that operates on the basis that duration
ratios are not penalized uniformly and that any ratio out-
side the interval[ 1

3
, 1) should receive a stronger penalty.

Similarly, functiong(x) implies that, taking the music in-
terval of the MIDI pattern as reference, the respective sum
of intervals of the audio recording exhibits at most a2%
deviation. The scalars involved in the formulae off(x)
andg(x) are the result of fine-tuning with respect to the
corpus under study. The computation of the transition cost
is repeated for every allowable predecessor of(i, j). In the
end, one of the predecessors is selected to be the winner
by examining the sum of the similarity that has been gen-
erated by the transition with the accumulated similarity at
the predecessor.

Step 4: After the accumulated cost has been computed
for all nodes in the grid, the maximum accumulated cost
is selected and normalized and, if it exceeds a predefined
threshold, a standard backtracking procedure reveals which
part of the audio recording has been matched with the pro-
totype; otherwise, the algorithm terminates.

Step 5: All nodes in the best path are marked as stop-
nodes, i.e. forbidden nodes and Steps 1-4 are repeated in
order to detect a second occurrence of the prototype and so
on, depending on how many patterns (at most) the user has
requested to be detected.

5. EVALUATION

5.1 Methodology

Four different exposition patterns were defined by the ex-
perts, which are distinctive of the Valverde style. The Val-
verde fandango has 6 exposition phrases in eachcopla(sung
verse), where 1, 3 and 5 are usually the same pattern, and
2, 4 and 6 have different patterns each. Therefore, 4 expo-
sition patterns (1, 2, 4, and 6) were chosen to be put to the



test. Again, we insist that these patterns are abstract rep-
resentations of the actual patterns heard in the audio recor-
dings. Our algorithm was then run to locate those four pat-
terns in the corpus of Valverde fandangos and Huelva ca-
pital fandangos. Therefore, our ground-truth in this study
consists of all the melodic patterns plus their specific loca-
tions. For example, exposition pattern 1 has to be located
90 times, as it occurs three times in each of the 30 pieces
that make up the corpus of the Valverde fandangos. If this
pattern is found elsewhere (not in the exposition phrase),
then it will be considered as a true negative. Once the re-
sults of the experiments were obtained, they were manually
checked by the flamenco experts, both in terms of pattern
occurrence and respective position.

5.2 Results

Results are summarized in Tables 1 and 2 with respect
to the similarity threshold, which is a user-controlled vari-
able. Once the threshold is set to a specific value, the algo-
rithm filters out any patterns whose similarity score does
not exceed the threshold. In our study, we experimented
with values of the similarity threshold ranging from30%
to 80%. In Table 1,Te stands for the total number of ex-
pected occurrences of each pattern in the corpus of Val-
verde fandangos (based on the ground truth that is provided
by the musicological knowledge),Tf is the total number of
detected instances (both true and false),Tp is the number
of true positives,Fp is the number of false positives, and
Prec., Rec. andF are the values of precision, recall and
theF -measure, respectively. In Table 2, we focus on the
corpus of Huelva fandangos.

Figure 2 shows the averageF -measure (over all pat-
terns) as a function of similarity threshold. The maximum
value is obtained at threshold50%.

Figure 2. AverageF -measure (over all patterns) with re-
spect to the similarity threshold.

Next, we attempt to detect the Valverde patterns in the
Huelva collection. Hence, one would expect that it would
be otiose to reproduce computations like those in Table 1,
as the total expected number of occurrences would be zero.
However, Table 2 summarizes the detection results in the
corpus of the Huelva capital fandangos for the four expo-

Valverde fandangos
Sim. Te Tf Tp Fp Prec. Rec. F

E
xp

-1 30% 90 38 32 6 84% 36% 0.5
40% 90 36 32 4 89% 36% 0.5
50% 90 31 30 1 97% 33% 0.49
60% 90 25 24 1 96% 27% 0.41
70% 90 15 15 0 100% 17% 0.28
80% 90 6 6 0 100% 7% 0.12

E
xp

-2 30% 30 13 13 0 100% 43% 0.6
40% 30 13 13 0 100% 43% 0.6
50% 30 13 13 0 100% 43% 0.6
60% 30 13 13 0 100% 43% 0.6
70% 30 7 7 0 100% 23% 0.37
80% 30 1 1 0 100% 3% 0.06

E
xp

-4 30% 30 27 11 16 41% 37% 0.38
40% 30 26 11 15 42% 37% 0.39
50% 30 21 11 10 52% 37% 0.43
60% 30 16 9 7 56% 30% 0.39
70% 30 11 6 5 54.5% 20% 0.29
80% 30 3 3 0 100% 10% 0.18

E
xp

-6 30% 30 34 14 20 41% 47% 0.43
40% 30 31 14 17 45% 47% 0.46
50% 30 27 13 14 48% 43% 0.45
60% 30 15 10 5 66.6% 33% 0.44
70% 30 8 8 0 100% 27% 0.42
80% 30 3 3 0 100% 10% 0.18

Table 1. Experimental results for Valverde fandangos.

sition patterns under study and we make an attempt to pro-
vide an interpretation of the detected occurrences.

Huelva capital fandangos
30% 40% 50% 60% 70% 80%

Exp-1 7 4 1 1 0 0
Exp-2 1 0 0 0 0 0
Exp-4 29 27 23 17 8 4
Exp-6 27 22 19 17 9 5

Table 2. Experimental results for the Huelva capital fan-
dangos.

Overall, from a quantitative point of view, the algorithm
has exhibited a reasonably good performance in finding the
patterns in the melody, despite the problems posed by the
polyphonic source, the highly melismatic content, and the
note-duration variation. Regarding performance measures,
on the one hand, precision is quite high, but, on the other
hand, recall is low. Most of the values ofF -measure are
around0.3− 0.45, with a few isolated exceptions. In other
words, the algorithm is capable of detecting well localized
occurrences of the patterns, but fails to locate a significant
number of occurrences. The best performance of theF -
measure occurs with a threshold of50%.

From a qualitative point of view, we make the following
remarks.

Exp-1: This pattern is the exposition of the first phrase
of the fandango. Interestingly enough, not only does the al-



gorithm detect the pattern correctly in the first phrase of the
Valverde fandango, but also in other phrases, as expected.
Indeed, it identifies the pattern as a leit-motiv throughout
the piece. This pattern was detected only a few times by
the algorithm in the Huelva capital fandangos.

Exp-2: This is the pattern of the second exposition ph-
rase in Valverde fandangos. This is the musical passage
with the amplest tessitura. The algorithm detects it with
high precision in the Valverde corpus (even for a similarity
threshold equal to30%), and very few matches are encoun-
tered in the Huelva capital fandangos.

Exp-4: In the Valverde corpus, for a threshold equal
to 80%, the algorithm only detects the pattern incantes
sung by women who have received music training in fla-
menco clubs in Huelva. These clubs are calledpeñas fla-
mencasand organize singing lessons. Women frompeñas
are trained to follow very standard models of singing and
therefore do not contribute to music innovation like other
fandango performers e.g., Toronjo or Rengel). For a70%
similarity threshold (and below), the pattern is also de-
tected in the voices of well-known fandango singers.

In the Huelva capital fandango corpus this pattern is fre-
quently detected by the algorithm in the transition between
phrases. Note that we can state that the pattern is there,
more or less blurred or stretched, but it is present, so these
are not considered to be false positives.

Exp-6: This pattern is used to prepare the final cadence
of the last phrase. In the Valverde corpus, irrespective of
the similarity level, the algorithm returns correct results,
although as stated above, many occurrences fail to be de-
tected. In the Huelva capital corpus and when the threshold
is low, the algorithm detects the pattern in the first, the mid-
dle and the final section. When the threshold is raised to
80%, it is only located in the final cadence.

6. CONCLUSIONS

In this paper we presented an algorithmic pipeline to per-
form melodic pattern detection in audio files. The overall
performance of our method depends both on the quality of
the extracted melody and the precision of the tracking al-
gorithm. In general, the system’s performance, in terms of
precision and recall of detected patterns, was measured to
be satisfactory, despite the great amount of melismas and
the high tempo deviation. From a musicological perspec-
tive, we carried out a study of fandango styles by means
of analyzing archetypal melodic patterns. As already men-
tioned, written scores are not in general available for fla-
menco music. Therefore, our approach was to design a
system that operated directly on raw audio recordings and
circumvented the need for a transcription stage. In the fu-
ture, our study could be extended to other Huelva fandango
styles. A more ambitious goal would be to carry out the
analysis for the whole corpus of fandango music. Also,
other musical features could be taken into account and thus
perform a more general analysis, i.e., embrace more than
what melodic descriptors can offer.
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ABSTRACT

The task of novelty detection with the objective of detect-
ing changes regarding musical properties such as harmony,
dynamics, timbre, or tempo is of fundamental importance
when analyzing structural properties of music recordings.
But for a specific audio version of a given piece of mu-
sic, the novelty detection result may also crucially depend
on the individual performance style of the musician. This
particularly holds true for tempo-related properties, which
may vary significantly across different performances of the
same piece of music. In this paper, we show that tempo-
based novelty detection can be stabilized and improved by
simultaneously analyzing a set of different performances.
We first warp the version-dependent novelty curves onto a
common musical time axis, and then combine the individ-
ual curves to produce a single fusion curve. Our hypothesis
is that musically relevant points of novelty tend to be con-
sistent across different performances. This hypothesis is
supported by our experiments in the context of music struc-
ture analysis, where the cross-version fusion curves yield,
on average, better results than the novelty curves obtained
from individual recordings.

1. INTRODUCTION

Music is highly structured data. Structure in music arises
from repetitions, contrasts and homogeneity in musical
aspects such as melody, dynamics, harmony, timbre or
tempo [12]. The extraction of the musical structure from
audio recordings is an important task in the field of music
information retrieval. It consists of a segmentation prob-
lem, where the goal is to find the boundaries that mark the
transitions between two structural parts, and a musically
meaningful labeling (e.g. chorus, verse, first theme, sec-
ond theme) of the segments, see [3, 12] for an overview.
In many cases, segment boundaries are accompanied by a
change in instrumentation, dynamics, harmony, tempo, or
some other characteristics. The task ofnovelty detection
is to specify points within a given audio recording where a
human listener would recognize such a change [6,9,14,15].
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Such points of novelty are not only of musical relevance,
but also allow for speeding up further music analysis
tasks [11].

In this paper, we present a general approach for stabiliz-
ing novelty-based segmentation techniques. Following [6],
we first convert the audio signal into a suitable feature rep-
resentation, compute a self distance matrix, and derive a
novelty curve by detecting 2D corner points in this ma-
trix. The choice of features (e. g. MFCCs, chroma fea-
tures, tempogram features) depends on the musical aspects
(e. g. timbre, harmony, tempo) of interest [9]. In the fol-
lowing, we consider the aspect of tempo using the cyclic
tempogram features as proposed in [7] as an illustrative
example. Particularly in classical music, there often exist
many different recordings for a given piece of music. Even
though all recordings follow the same musical score, two
distinct versions may differ significantly in performance
aspects regarding tempo, dynamics, or timbre. This is the
reason why novelty detection results often vary across dif-
ferent audio versions.

The main contribution of this paper is to apply the nov-
elty detection simultaneously to a set of different perfor-
mances of a given piece. To this end, using a score-based
MIDI reference, we convert the physical time axis (in sec-
onds) of all version-dependent novelty curves into a com-
mon musical time-axis (in measures) . Then we combine
the individual curves into a cross-version fusion curve, see
Figure 1 for an overview. Assuming that the musically in-
teresting points of novelty are consistent across the differ-
ent versions, we expect the fusion curve to be more stable
and musically meaningful than the individual curves. Ap-
plying our cross-version novelty detection approach for lo-
cating segment boundaries in music structure analysis, we
show that the fusion curves yield, on average, better re-
sults than the version-dependent novelty curves of individ-
ual recordings. This effect becomes more prominent, when
there is a high performance variance across the recordings,
which is typically the case for the aspect of tempo.

Cross-version strategies have previously been applied
for other music analysis tasks. For example, multiple per-
formances are used in [1] to support tempo tracking, in [10]
to stablize chord labeling, and in [8] to detect critical pas-
sages in a piece of music that are prone to beat tracking
errors.

The remainder of this paper is organized as follows.
In Section 2, we describe the various steps of our cross-
version novelty detection procedure. Then, in Section 3,
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Figure 1: Overview of the cross-version novelty detection
pipeline for Chopin’s Mazurka Op. 7 No. 4.(a) Waveforms
of several performances.(b) Individual novelty curves (color-
coded) for43 performances. Each row of the matrix corresponds
to one novelty curve.(c) Individual novelty curves warped to
a common musical time axis (in measures).(d) Fusion novelty
curve.(e) Annotated structure and segment boundaries.

we give a detailed quantitative evaluation of our proce-
dure within a structure analysis scenario for Chopin’s Pi-
ano Mazurkas. Furthermore, we critically assess the results
by a musically informed discussion of concrete examples.
Finally, we conclude with Section 4 indicating future work.

2. CROSS-VERSION NOVELTY DETECTION

In this section, we describe the pipeline for our cross-
version approach to novelty detection. For the purpose
of illustration, we concentrate on the musical aspect of
tempo using a cyclic tempogram feature representation
(Section 2.1). As for the novelty detection, we follow a
standard procedure based on 2D corner detection in self
distances matrices (Section 2.2). Applying music syn-
chronization techniques, we show how to warp the novelty
curves onto a version-independent musical time axis (Sec-
tion 2.3). Finally, we describe how to merge the novelty
curves based on a late-fusion strategy (Section 2.4). This
pipeline is also illustrated by Figure 1.

2.1 Cyclic Tempogram Features

In a first step, the given audio recording is transformed
into a suitable feature representation that captures the mu-
sical aspects of interest. As an example, we consider the
case of tempo-based novelty detection, even though our

cross-version approach is applicable to any kind of fea-
ture representation. In the following, we revert to cyclic
tempogram features as introduced in [7]. These features
constitute a robust mid-level representation encoding local
tempo information. In a first step, we capture changes in
the signal’s energy and spectrum [2] and then apply win-
dowed autocorrelation methods [4]. Afterwards, the lag-
axis is converted into a tempo axis specified in beats per
minute (BPM), yielding a tempogram as shown in Fig-
ure 2c. Forming tempo equivalence classes by binning
tempi that differ by a power of two and quantizing the val-
ues of the resulting cyclic tempogram yields an even more
robust feature representation, see Figure 2d. In our exper-
iments we use a feature resolution of 5 Hz (five feature
vectors per second) and a feature dimension of10 (ten fea-
ture values per vector). A free MATLAB implementation
of these features is part of the tempogram toolbox.1 For
further details we refer to [7].

2.2 Novelty Curve

Let X = (x1, . . . , xN ) denote the resulting feature se-
quence. To compute a novelty curve from this sequence,
we employ a standard approach introduced by Foote [6].
To this end, anN × N self distance matrixD(n,m) :=
d(xn, xm) is computed using the local distance function

d(xn, xm) = 1− exp

(
〈xn, xm〉

‖ xn ‖‖ xm ‖
− 1

)
,

for 1 ≤ n,m ≤ N . Then, D is analyzed by correlat-
ing a kernel along its main diagonal. The kernel consists
of anM × M matrix (with M < N ) which has a2 × 2
checkerboard-like structure weighted by a Gaussian radial
function. This yields anovelty curve, the peaks of which
indicate changes in the musical aspect represented by the
feature type (in our case, tempo changes), see Figure 2e.
We further process the novelty curve by subtracting a lo-
cal average, see Figure 2f. In our experiments, a valueM

corresponding to7 seconds has turned out to be suitable,
see Section 3.2 and Figure 3 for a further discussion of the
parameterM .

2.3 Time Axis Conversion

The computed novelty curve depends on the performance
characteristics of the underlying music recording. To make
novelty curves comparable across different recordings of
the same piece of music, we convert the version-dependent
physical time axis (in seconds) to a version-independent
musical time axis (in measures). To this end, we assume
that we are given a score-like MIDI version of the piece
with explicit beat and measure positions. Then, for a given
music recording, we apply music synchronization tech-
niques to automatically align the MIDI version with the
audio version.2 The alignment result allows for transfer-
ring the beat and measure positions specified by the MIDI

1 www.mpi-inf.mpg.de/resources/MIR/tempogramtoolbox
2 In our implementation, we revert to the high-resolution music syn-

chronization approach described in [5].
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Figure 2: Novelty detection for a recording of Chopin’s Mazurka
Op. 68 No. 3. (a) Measures29-36. (b) Waveform. (c) Tem-
pogram. (d) Quantized cyclic tempogram.(e) Novelty curve
(solid line) and its local average curve (dashed line).(f) Post-
processed novelty curve.(g) Time axis conversion.(h) Resam-
pled novelty curve.(i) Color-coded representation of (h).

version to the corresponding time positions in the audio
version. Based on this information, we locally stretch and
contract the time axis of the novelty curve computed from
the recording to obtain a musical time axis, see Figure 2g.
Finally, we interpolate and resample the novelty curve to
obtain one value for each beat position of the piece of mu-
sic, see Figure 2h and Figure 2i.

2.4 Fusion Novelty Curve

Being based on the same musical time axis, one can now
directly compare novelty curves from different perfor-
mances of the same piece of music. As an example, Fig-
ure 1b shows the original novelty curves (in some color-
coded form) for43 different performances of Chopin’s
Mazurka Op. 7 No. 4. No correlations across the different
performances are visible. After the time axis conversion,
as shown in Figure 1c, strong correlations between the dif-
ferent novelty curves become evident. For example, there
is a tempo change at measure52 for basically all perfor-
mances.

To fuse the information across all novelty curves, we
basically compute the average of the novelty curves. To
become more robust to outliers, we first remove the20%
smallest and largest novelty values for each beat position
among all performances, and then compute thefusion nov-
elty curve by taking the beat-wise arithmetic mean of the
remaining values. The crucial observation is that a fusion
novelty curve reveals a local maximum (peak) at those po-
sitions where a large number of individual novelty curves
also possess a local maximum. In other words, the fusion
novelty curve expresses the consistencies in the peak struc-
tures across the various recordings, see also Figure 1d.

3. EXPERIMENTS

Even though there are often significant differences in the
way musicians interpret a piece of music, tempo changes
are not arbitrary and there are musical reasons for a speed
up or slow down. Our hypothesis is that the tempo changes
that can be observed across a large number of different per-
formances are of particular musical importance. There-
fore, we conjecture that peaks of the fusion novelty curve
are more relevant than the peaks of the individual novelty
curves. To investigate our hypothesis, we have conducted
various experiments on a dataset consisting of Chopin’s
Mazurkas (Section 3.1). Our quantitative evaluation in
the context of music structure analysis (Section 3.2) as
well as a discussion of various representative examples
(Section 3.3) demonstrate that cross-version fusion curves
yield, on average, better results than the novelty curves ob-
tained from individual recordings.

3.1 Dataset and Annotations

We conduct our experiments on a Mazurka dataset,
which consists of2792 recorded performances for the49
Mazurkas by Frédéric Chopin. These recordings were col-
lected in the Mazurka Project3 and have been previously
used, e. g., for the purpose of performance analysis [13].
For each of the49 Mazurkas, there are on average57 dif-
ferent recordings (ranging from the early stages of music
recording until today), as well as a MIDI file that represents
the piece in an uninterpreted symbolic form. In particular,
measure and beat positions are known in the MIDI file.

The Chopin Mazurkas are short piano compositions
with a 3/4 time signature. These pieces have a relatively

3 mazurka.org.uk



clear musical structure, where certain parts are repeated
more or less in the same way. We have manually anno-
tated each score-like MIDI file according to its musical
structure. On average this leads to9.4 segment boundaries
per Mazurka (disregarding segment boundaries at the be-
ginning and end of the piece) and an average duration of
11.9 measures per musical part, see also Table 1 for more
details.

3.2 Quantitative Evaluation

As is the case for romantic piano music, most Mazurka
performances reveal numerous local tempo changes which
often indicate transitions of musical importance. Many of
these transitions occur near segment boundaries between
musical parts, where one can often observe tempo changes.
Even though not all segment boundaries are characterized
this way, we use them for a first quantitative evaluation to
indicate the behavior of our cross-version fusion novelty
curves. LetB denote the set of segment boundaries (spec-
ified in musical beats) for a given Mazurka.

For a novelty curve (with time axis given in musical
beats), we perform some peak picking to determine a set
P of relevant peak positions. Here a position is consid-
ered relevant if the novelty curve assumes at this position
a global maximum over a window of lengthλ centered at
the corresponding position. In our experiments, the value
λ = 19 beats has turned out to be meaningful, see also
Figure 3. A peak position inP is considered to betrue
if there is a segment boundary inB in a δ-neighborhood,
otherwise it is considered to befalse. This allows to define
a precision (P), recall (R), and F-measure (F) for the setP
relative toB . In our experiments, we chooseδ = 3 beats
corresponding to a musical measure. In our evaluation,
we further ignored all boundaries and all peaks in the first
four and last four measures of a piece of music. The main
reason for excluding these measures is that many of the
recordings start and end with non-musical content such as
silence or applause, which leads to spurious peaks at the
positions where the music starts or ends. Also, synchro-
nization errors typically occur in these regions.

Before we investigate the role of the various parameters,
we first look at the results for a fixed parameter setting as
indicated by Table 1. To better understand the effect of the
cross-version approach, we computed P/R/F-measures in
two different ways. First, for a given Mazurka, we com-
puted individual P/R/F-measures for each performance us-
ing the version-dependent novelty curves and then aver-
aged over all performances to obtain averaged individ-
ual P/R/F-measures. Secondly, we computed these mea-
sures from the fusion novelty curve to obtain cross-version
P/R/F-measures. Table 1 shows the resulting averaged in-
dividual as well as cross-version P/R/F-measures for all of
the49 Mazurkas. Furthermore, the last row of the table in-
dicates the overall values averaged over all Mazurkas. As
the main result, one can see that the overallF -measure
obtained from individual novelty curves isF = 0.39,
whereas the overallF -measure obtained from the fusion
novelty curves isF = 0.52. In other words, the tempo-

Ind.-Version Cross-Version
Piece #P #M #B P R F P R F
M06-1 49 112 7 0.29 0.60 0.39 0.50 1.00 0.67
M06-2 51 96 9 0.42 0.63 0.50 0.47 0.89 0.62
M06-3 47 98 12 0.23 0.31 0.26 0.13 0.18 0.15
M06-4 46 40 9 0.65 0.40 0.49 0.83 0.63 0.71
M07-1 55 104 9 0.30 0.52 0.38 0.44 0.89 0.59
M07-2 51 120 14 0.40 0.45 0.42 0.36 0.36 0.36
M07-3 65 105 11 0.31 0.44 0.36 0.47 0.64 0.54
M07-4 43 60 7 0.51 0.60 0.55 0.75 0.86 0.80
M07-5 46 20 12 0.61 0.35 0.44 1.00 0.60 0.75
M17-1 52 100 10 0.25 0.35 0.29 0.07 0.10 0.08
M17-2 55 68 3 0.21 0.65 0.32 0.25 1.00 0.40
M17-3 51 168 10 0.26 0.64 0.37 0.42 1.00 0.59
M17-4 93 132 10 0.23 0.49 0.31 0.35 0.67 0.46
M24-1 61 96 10 0.30 0.40 0.34 0.46 0.60 0.52
M24-2 66 120 16 0.38 0.48 0.42 0.50 0.64 0.56
M24-3 55 79 6 0.26 0.46 0.33 0.45 0.83 0.59
M24-4 76 186 20 0.42 0.59 0.49 0.65 0.85 0.74
M30-1 50 53 4 0.34 0.57 0.42 0.50 0.75 0.60
M30-2 60 64 7 0.48 0.60 0.53 0.78 1.00 0.88
M30-3 63 111 10 0.30 0.45 0.36 0.50 0.60 0.55
M30-4 65 139 14 0.34 0.51 0.40 0.47 0.62 0.53
M33-1 55 48 4 0.43 0.62 0.51 0.50 0.75 0.60
M33-2 70 143 16 0.34 0.47 0.39 0.33 0.44 0.38
M33-3 50 48 3 0.28 0.61 0.38 0.33 1.00 0.50
M33-4 74 224 19 0.24 0.40 0.30 0.27 0.37 0.31
M41-1 56 139 14 0.26 0.39 0.32 0.19 0.29 0.23
M41-2 63 68 7 0.43 0.57 0.49 0.75 0.86 0.80
M41-3 40 78 13 0.44 0.45 0.44 0.57 0.73 0.64
M41-4 45 74 9 0.42 0.58 0.48 0.62 0.89 0.73
M50-1 49 104 6 0.18 0.48 0.26 0.20 0.50 0.29
M50-2 58 127 10 0.31 0.56 0.40 0.56 0.90 0.69
M50-3 74 208 10 0.18 0.57 0.27 0.21 0.70 0.33
M56-1 42 204 13 0.18 0.41 0.25 0.11 0.23 0.15
M56-2 53 92 8 0.31 0.60 0.41 0.54 1.00 0.70
M56-3 57 220 15 0.23 0.51 0.32 0.30 0.67 0.42
M59-1 63 142 9 0.19 0.42 0.26 0.17 0.44 0.25
M59-2 63 111 4 0.10 0.41 0.16 0.20 0.75 0.32
M59-3 66 154 11 0.20 0.44 0.28 0.30 0.55 0.39
M63-1 46 102 9 0.26 0.46 0.33 0.27 0.44 0.33
M63-2 65 56 4 0.33 0.61 0.43 0.38 0.75 0.50
M63-3 88 76 8 0.41 0.55 0.47 0.78 0.88 0.82
M67-1 44 60 7 0.23 0.31 0.26 0.14 0.17 0.15
M67-2 41 72 6 0.33 0.54 0.41 0.45 0.83 0.59
M67-3 46 56 3 0.30 0.75 0.43 0.43 1.00 0.60
M67-4 59 112 6 0.26 0.71 0.38 0.40 1.00 0.57
M68-1 46 84 11 0.53 0.63 0.57 0.50 0.50 0.50
M68-2 65 84 11 0.49 0.54 0.51 0.77 0.91 0.83
M68-3 51 60 9 0.61 0.55 0.57 0.78 0.78 0.78
M68-4 63 63 7 0.35 0.37 0.36 0.47 0.58 0.52
∅ 57.0 103.7 9.4 0.33 0.51 0.39 0.45 0.69 0.52

Table 1: Overview of the Mazurka dataset and precision (P), re-
call (R), and F-measures (F) for two different settings. The first
four columns specify the Mazurka (e.g.M06-1 refers to Mazurka
Op. 6 No. 1), the number of performances (#P), the number of
measures (#M), and the number of annotated segment bound-
aries (#B). The next three columns show the average individ-
ual P/R/F-measures obtained from individual performances and
the last three columns show cross-version P/R/F-measures ob-
tained from the fusion novelty curves. The used parameters are:
M ∼ 7 seconds, λ = 19 beats, δ = 3 beats.

based novelty detection can indeed be improved when si-
multaneously analyzing a set of different performances.

In the next experiments, we investigate the role of the
kernel size parameterM (see Section 2.2) and the neigh-
borhood parameterλ used in the peak picking. Figure 3
shows the cross-version P/R/F-measures averaged over all
49 Mazurkas for various combinations ofM andλ. Gener-
ally, when increasingλ, the precision increases (Figure 3a)
and the recall decreases (Figure 3b). This is not surpris-
ing, since an increase inλ imposes stricter conditions on
the peak picking (and the set of relevant peaks becomes
smaller). The remaining peaks tend to be true (increase in
precision), while fewer segment boundaries inB are de-
tected (decrease in recall). The kernel size parameterM

has a minor influence on the final results. Only for large
values ofλ, smaller kernel sizes tend to be favorable. As
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Figure 3: Average cross-version P/R/F-measures for different
parameter settings.(a) Average precision values.(b) Average
recall values.(c) Average F-measure values. The red circle indi-
cates the parameter setting used in Table 1.
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Figure 4: Novelty curves forM68-3. (a) Individual novelty
curves (color-coded, musical time axis) for51 performances.(b)
Fusion novelty curve. True peaks are indicated by green discs
and false peaks by red crosses. The gray areas at the beginning
and end are left out in the evaluation. The thin gray curve indi-
cates the peak picking condition introduced by the neighborhood
parameterλ. (c) Annotated structure and segment boundaries.

for our main experiments, we favored comparatively larger
kernel sizes (resulting in smoother novelty curves) and a
smallerλ (being less restrictive in the peak picking) choos-
ing M ∼ 7 seconds andλ = 19 beats. However, as
also indicated by Figure 3c, the specific paramter setting is
not of crucial importance and slightly changing the settings
yields similar experimental results.

3.3 Qualitative Evaluation

For some Mazurkas this improvement is significant. For
example, for the Mazurka Op. 7 No. 4 shown in Figure 1,
the F-measure increases fromF = 0.55 (individual) to
F = 0.80 (cross-version). Also for the Mazurka Op. 68
No. 3 (Figure 4) the cross-version fusion approach stabi-
lizes the tempo-based novelty detection improving the F-
measure fromF = 0.57 (individual) toF = 0.78 (cross-
version).

However, there is also a number of Mazurkas where one
has rather low P/R/F-measures—for the individual curves
as well as for the fusion novelty curves. For example,
for the Mazurka Op. 56 No. 1 shown in Figure 5, the F-
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Figure 6: Detailed example onM07-2. (a) Fusion novelty curve.
(b) Annotated structure and segment boundaries.(c) Score ex-
cerpt of measures29-34. (d) Fusion novelty curve excerpt of
measures29-34.

measure even decreases fromF = 0.25 (individual) to
F = 0.15 (cross-version). In this piece, the annotated seg-
ments are rather long in comparison to the other Mazurkas.
Listening to the performances reveals that eachA-part con-
sists of several phrases, which are shaped by most pi-
anists using a characteristic tempo progression with a slow
down and speed up at phrase boundaries. These tempo
changes lead to a large number of consistent peaks, which
are not reflected by our structure annotations (even though
the peaks are musically meaningful) and sometimes also
not captured by our peak picking (λbeing too restrictive).
Also, in the other parts there are a number of false positive
peaks of less musical significance. As this Mazurka shows,
annotated segment boundaries do not need to go along
with tempo changes and, vice versa, musically meaning-
ful tempo changes may also occur within musical parts.
Therefore, our quantitative evaluation within the structure
analysis context, even though indicating meaningful gen-
eral tendencies, is an oversimplification.

We now discuss some further typical examples where
the fusion novelty curve reveals musically relevant tempo
changes that do not concur with segment boundaries. Let
us look at the fusion novelty curve for Mazurka Op. 7 No. 2
as shown in Figure 6a. Here one can notice strong peaks in
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Figure 7: Detailed example onM56-2. (a) Fusion novelty curve.
(b) Annotated structure and segment boundaries.(c) Score ex-
cerpt of measures29-36. (d) Fusion novelty curve excerpt of
measures29-36.

theA2-parts andA3-parts located roughly two measures
before segment boundaries, so that these peaks are con-
sidered false positives in our evaluation. Looking at the
score of the piece reveals that there is actually a tempo in-
structiona Tempo just two measures before the respective
segments boundaries, see Figure 6c. Most pianists realize
this instruction by speeding up their performances, which
leads to the musically relevant peaks captured by our cross-
version novelty curve. As another example, let us look at
the fusion novelty curve of Mazurka Op. 56 No. 2, see Fig-
ure 7. Here, two of the false peak positions in the fusion
novelty curve are located in the middle of the twoD-parts,
see Figure 7a. A manual investigation showed that each of
the eight-measureD-parts consists of two repeating four-
measure phrases. This substructure is not reflected by our
structure annotations. The pianists, however, shape the
phrases by a pronounced tempo change. Furthermore, in
the middle of theC-parts and theF -part, Figure 7 also
shows some false positive peaks of no musical relevance.
Here, an improved peak picking may remedy this problem.

4. CONCLUSIONS

In this paper, we introduced a cross-version approach for
novelty detection capturing consistencies across different
performances of a piece. Applying this concept to tempo-
related audio features, we showed that the resulting fusion
novelty curves perform better in revealing musically mean-
ingful points of novelty than the individual curves. In the
future, we plan to conduct similar experiments using dif-
ferent audio features that reflect not only tempo, but also
harmony, timbre, and dynamics. Also, the described cross-
version approach is generic in the sense that it can also be
applied to other music analysis tasks beyond novelty detec-
tion. A stabilization effect has also been reported for chord
labeling and beat tracking, and we plan to apply this con-
cept to general structure analysis. Finally, we discussed
that our evaluation of the novelty detection results based
on segment boundaries indicates interesting general ten-
dencies, but also constitutes an oversimplification. Here,

future work must address the evaluation problem by in-
cluding more musicological knowledge, e. g. by looking at
expected tempo changes in the score, annotated by musi-
cally trained experts. On the other hand, our cross-version
approach might not only be used for the task of audio seg-
mentation, but may also aid as a performance analysis tool
for musicologists.
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ABSTRACT

In this paper we present a novel algorithm that, given a
short snippet of an audio performance (piano music, for the
time being), identifies the piece and the score position. In-
stead of using audio matching methods we propose a com-
bination of a state-of-the-art music transcription algorithm
and a new symbolic fingerprinting method. The resulting
system is usable in both on-line and off-line scenarios and
thus may be of use in many application areas. As the eval-
uation shows the system operates with only minimal lag
and achieves high precision even with very short queries.

1. INTRODUCTION

Over the last few years efficient systems for content-based
audio retrieval have been a major topic in music infor-
mation retrieval research. These systems allow the user
to browse and explore large music collections without the
need for meta-data and other external information sources.
In this context methods to automatically retrieve all pieces
(and/or all the excerpts of the pieces) matching a given ex-
ample query (in the form of a short audio clip) play an
important role (and actually are in everyday commercial
use). This task, most commonly called audio identifica-
tion or audio fingerprinting, can be considered as solved
(see e.g., [5, 10]).

Audio identification by definition only finds exact repli-
cas of the query in the database, possibly distorted in some
ways (e.g., compression artefacts, noise). Especially for
classical music, this is not sufficient, because there are gen-
erally large numbers of different performances of the same
piece, all different in terms of tempo, expressive timing,
and other performance aspects. The relationship between
these performances (that they derive from a common mu-
sical score) in general goes unnoticed by an audio identi-
fication algorithm. In this paper we propose a method for
score identification: instead of identifying a particular per-
formance it returns the musical score on which the query
snippet is based. For example, if we present an audio ex-
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cerpt of Vladimir Horowitz playing Chopin’s Nocturne Op.
55 No. 1 to the system, it will return the name and data of
the piece (Nocturne Op. 55 No. 1 by Chopin) rather than
the data of the specific performance. Moreover, the sys-
tem we propose returns not only the corresponding score,
but also the exact position within the score. Accordingly,
the database for this task does not contain audio record-
ings, but symbolic representations of musical scores (i.e.,
to identify the piece being played, the system only uses the
symbolic score and has no information about the specific
performance by Horowitz in the database).

This task is related to cover song identification (see [9]
for an overview), where the goal is to identify different
versions of one and the same song, in order to detect cover
songs in popular music for commercial applications. To
perform this task algorithms have to cope with large vari-
ations in parameters like timbre, tempo, timing and struc-
ture between different performances. Score identification
can be seen as a special case of cover song identification.
A MIDI version of the score of a classical piece of music
can be synthesized and then be treated as a “normal” per-
formance in this task, i.e., performances become “cover
songs” of the synthesized version of the score. Still, the
difference to our approach to score identification is that for
our system very short queries (e.g., 5 seconds) are suffi-
cient, while cover song identification algorithms generally
assign similarity values to whole pieces of music.

As an alternative to our symbolic approach audio match-
ing can be considered (see e.g., [7]). In this case the score
is again first transformed into an audio file (or a suitable
in-between representation). Then an audio matching al-
gorithm, most commonly based on dynamic programming
techniques, retrieves all excerpts from a database which
musically correspond to a short query clip. In contrast
to audio fingerprinting methods audio matching can also
cope with (non-linear) timing deviations. The downside
of audio matching is that in general these methods are very
slow compared to fingerprinting methods. To cope with the
computational costs, [6] presented clever indexing strate-
gies that greatly reduce the computation time. Still, due
to the coarse feature resolution, relatively large query sizes
are needed.

Another related task, especially regarding the on-line
capabilities of the proposed algorithm, is score following
(see e.g., [3,8] for state-of-the-art score following systems).
In contrast to the algorithm presented in this paper, a score



follower needs to know a-priori which piece the perform-
ers are playing, and then tracks the on-going performance
and continuously returns the current score position. To do
so it relies both on access to the complete performance (up
to the current point in time) and on the performers closely
following the score (i.e., without any additional repeats or
any jumps). It contrast to this, the algorithm presented in
this paper is able to identify the piece being played, and to
identify the actual (or at least an identical) score position
from only a small, arbitrary snippet of the performance.

In the following we will describe a new symbolic ap-
proach to score identification. Instead of creating an audio
representation of the score we create the database directly
from the symbolic score information. Then we transform
the audio query into a symbolic representation – a list of
note onset times with their respective pitch – and use a
symbolic fingerprinting algorithm, inspired by the algo-
rithm described in [10], to find matching positions in the
score database. This process is very fast, can be used in
real-time, on-line applications, and yields very high preci-
sion (as can be seen in Section 4). Note that our algorithm
involves music (audio) transcription – which is still basi-
cally an unsolved problem – as a query preprocessing step.
For our system we use a state-of-the-art music transcrip-
tion system for piano music which, despite many errors,
provides us with transcriptions of sufficient quality for the
robust symbolic fingerprinting algorithm. Still, this also
means that our system currently only works for piano mu-
sic (because of specific properties of the transcription sys-
tem).

2. BUILDING THE SCORE DATABASE

Before actually processing queries the score database has
to be built. In our system we use deadpan MIDI files as the
basis for the score database. The duration of these MIDI
files is similar to the duration of a ‘typical’ performance
of the respective piece, but without encoded timing varia-
tions. From these files a simple ordered list of note events
is extracted where for each note event the exact time in
seconds and the pitch as MIDI note number is stored.

Next, for each piece fingerprint tokens are generated. In
contrast to [10] we create them from 3 successive events
according to some constraints (also see Figure 1) to make
them tempo independent. Given a fixed event e we pair it
with the first n1 events with a distance of at least d seconds
“in the future” of e. This results in n1 event pairs. For
each of these pairs we then repeat this step and again pair
them with the n2 future events with a distance of at least
d seconds. This finally results in n1 ∗ n2 event triplets. In
our experiments we used the values d = 0.05 seconds and
n1 = n2 = 5. Also inspired by [10] we further constrain
the pair creation steps to notes which are at most 2 octaves
apart.

Given such a triplet consisting of the events e1, e2 and
e3 the time difference td1,2 between e1 and e2 and the
time difference td2,3 between e2 and e3 are computed. To
get a tempo independent fingerprint token we compute the
time difference ratio of the time differences: tdr =

td2,3

td1,2
.

Pi
tc
h

Time

>d >d

Figure 1. Fingerprint Token Generation: Example of 1
generated Token

This finally leads to a fingerprint token [pitch1 : pitch2 :
pitch3 : tdr ] : pieceID : time : td1,2, where the hash key
[pitch1 : pitch2 : pitch3 : tdr ] can be stored in a 32 bit in-
teger. The purpose of storing td1,2 in the fingerprint token
will be explained in the description of the search process
itself (see Section 3.2 below).

The result of the score preprocessing is our score data-
base; a container of fingerprint tokens which provides quick
access to the tokens via hash keys.

3. QUERYING THE DATABASE

3.1 Preprocessing: Transcribing the Query

Before querying the database the query (an audio snippet
of a performance) has to be transformed into a symbolic
representation. The algorithm we use to transcribe musical
note onsets from an audio signal is based on the system de-
scribed in [2], which exhibits state-of-the-art performance
for this task. It uses a recurrent neural network to simulta-
neously detect the pitches and the onsets of the notes (see
Figure 2 for an illustration of the algorithm).

For its input, a discretely sampled audio signal is split
into overlapping blocks before it is transferred to the fre-
quency domain with two parallel Short-Time Fourier Trans-
forms (STFT). Two different window lengths have been
chosen to achieve both a good temporal precision and a
sufficient frequency resolution for the transcription of the
notes. Phase information of the resulting complex spec-
trogram is discarded and only the logarithm of the magni-
tude values is used for further processing. To reduce the
dimensionality of the input vector for the neural network,
the spectrogram representation is filtered with a bank of
filters whose frequencies are equally spaced on a logarith-
mic frequency scale and are aligned according to the MIDI
pitches. The attack phase of a note onset is characterized
by a rise of energy, thus the first order differences of the
two spectrograms are used as additional inputs to the neu-
ral network.

The neural network consists of a linear input layer with
324 units, three bidirectional fully connected recurrent hid-
den layers, and a regression output layer with 88 units,
which directly represent the MIDI pitches. Each of the
hidden layers uses 88 neurons with hyperbolic tangent ac-
tivation function. The use of bidirectional hidden layers
enables the system to better model the context of the notes,
which show a very characteristic envelope during their de-
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Figure 2. The Transcription System

Detection Window Precision Recall F-measure
20 ms 0.586 0.489 0.533
40 ms 0.812 0.678 0.739
60 ms 0.851 0.710 0.774
80 ms 0.864 0.720 0.786
100 ms 0.869 0.725 0.790

Table 1. Results of the On-line Transcription Algorithm,
for different detection window sizes.

cay phase.
The network is trained with supervised learning and early

stopping. The network weights are initialized with ran-
dom values following a Gaussian distribution with mean 0
and standard deviation 0.1. Standard gradient descent with
backpropagation of the errors is used for training. The
network was trained on a collection of 281 piano pieces
recorded on various pianos, virtual and real (seven dif-
ferent synthesizers, an upright Yamaha Disklavier, and a
Bösendorfer SE grand piano).

To make the transcriber applicable also in on-line sce-
narios, instead of preprocessing the whole piece of audio at
a time, the signal is split into blocks of 11 frames centered
around the actual frame. The use of 11 frames is a trade-off
between keeping the system’s ability to model the context
of the notes and to keep the introduced delay at a mini-
mum. In the current system the constant lag caused by the
query preprocessing amounts to about 210 ms.

Table 1 shows the on-line transcription results for the
complete test set described later on in Section 4.1. A note
is considered to have been discovered correctly if its posi-
tion is detected within a ‘detection window’ of given size
around the annotated ground truth position. As can be seen
in the table, the results are far from perfect (though they are
very good, considering the state of the art). If the proposed
fingerprinting system is used in an off-line scenario, the
use of an off-line transcription algorithm is an option to
slightly improve the results.

3.2 Querying the Database

The transcription of the query results in a list of note pitches
with timestamps. This list is then processed in the same
way as described in Section 2 above to produce query to-
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Figure 3. a) scatter plot of matching tokens and b) com-
puted histogram for diagonal identification

kens. Of course in this case no piece ID is known and
furthermore each query starts at time 0. These query fin-
gerprint tokens are now used to query the database. The
method described below is again very much inspired by
the audio fingerprinting method proposed in [10].

The general idea is to find regions in the score database
which share a continuous sequence of tokens with the query.
To do so first all the score tokens which match the query
tokens are extracted from the database. When plotted as a
scatter plot against their respective time stamps (see Figure
3a) matches will be indicated by (rough) diagonals (i.e.,
these indicate that the query tokens match the score tokens
over a period of time). As identifying these diagonals di-
rectly would be computationally expensive we instead use
a simpler method described in [10]. This is based on his-
tograms (one for each piece in the score database, with a
time resolution of 1 second) into which the matched tokens
are sorted in a way such that peaks appear at the start points
of these diagonals (i.e., the start point of a query, see Fig-
ure 3b). This is achieved by computing the bin to sort the
token into as the difference between the time of the score
token and time of the query token. The complete process
will be explained in more detail below.

For each of the query tokens qt with [qpitch1 : qpitch2 :
qpitch3 : qtdr ] : qtime : qtd1,2 the following process
is repeated. First, matching tokens are extracted from the
score database via the hash key. To allow for local tempo
differences we permit the normalized time difference to be
within 1

4 of qtdr . This normally results in a large num-
ber of score tokens [spitch1 : spitch2 : spitch3 : stdr ] :
spieceID : stime : std1,2. Unfortunately directly sort-
ing these tokens into bin round(stime − qtime) of the
histogram spieceID does not necessarily make sense be-
cause of the query possibly having a different tempo than



Data Description Number of Pieces Notes in Score Notes in Performance Performance Duration
Chopin Corpus 154 325,263 326,501 9:38:36
Mozart Corpus 13 42,049 42,095 1:23:56
Additional Pieces 16 68,358 – –
Total 183 435,670

Table 2. Pieces in Database

Query Length in Notes
5 10 20 30 40 50 60

Corr. Piece as Top Match 22.55% 78.33% 94.07% 96.70% 97.50% 98.01% 98.42%
Corr. Piece in Top 2 29.23% 83.22% 96.07% 97.67% 98.28% 98.64% 98.87%
Corr. Piece in Top 3 33.00% 85.50% 96.74% 98.12% 98.57% 98.91% 99.09%
Corr. Piece in Top 4 35.33% 86.88% 97.15% 98.32% 98.76% 99.09% 99.22%
Corr. Piece in Top 5 37.24% 87.86% 97.44% 98.49% 98.87% 99.17% 99.32%
Corr. Position as Top Match 14.41% 60.47% 80.35% 84.63% 84.86% 83.91% 83.70%
Corr. Position in Top 2 21.94% 75.09% 91.11% 93.39% 93.77% 93.39% 93.17%
Corr. Position in Top 3 25.77% 79.70% 93.69% 95.36% 95.73% 95.85% 95.84%
Corr. Position in Top 4 28.20% 81.94% 94.69% 96.14% 96.61% 96.84% 96.93%
Corr. Position in Top 5 30.02% 83.29% 95.22% 96.55% 97.05% 97.34% 97.47%
Mean Query Duration 0.60 sec 1.33 sec 2.78 sec 4.21 sec 5.63 sec 7.04 sec 8.48 sec
Mean Query Exec. Time 1.71 ms 5.13 ms 11.76 ms 16.86 ms 20.76 ms 26.36 ms 31.89 ms

Table 3. Results of the proposed piece and score position identification algorithm on the test database. Each estimate is
based on 50,000 random audio queries.

expected by the score.
As an illustration let us assume a slower tempo for the

query than for the respective score. Then the diagonal in
Figure 3a would be steeper and when computing the bins
via round(stime−qtime) the first few tokens may fall into
the correct bins. But soon the tokens, despite belonging to
the same score position, would get sorted into lower bins
instead.

Thus we first try to adapt the timing by estimating the
tempo difference between the score token and the query
token. First we compute the tempo ratio of both tokens
r =

std1,2

qtd1,2
and then adapt the time of the query event

when computing the bin to sort the token into: bin =
round(stime − qtime ∗ r).

We now have a number of histograms, one for each
score in the database, and need a way of deciding on the
most probable score position(s) (and, by implication, the
most probable piece), for the query. We did experiments
with different methods of computing the matching score
but in the end simply taking the number of tokens in each
bin as the score produced the best results.

4. EVALUATION

4.1 Dataset Description

For the evaluation of our algorithm a ground truth is needed.
We need exact alignments of performances of classical mu-
sic to their respective scores such that we know exactly
when each note given in the score is actually played in the
performance. This data can either be generated by a com-

puter program or by extensive manual annotation but both
ways are prone to annotation errors.

Luckily, we have access to two unique datasets where
professional pianists played their performances on a com-
puter-controlled piano 1 and thus every action (e.g., key
presses, pedal movements) was recorded in a symbolic way.
The first dataset (described in [11]) consists of performan-
ces of the first movements of 13 Mozart piano sonatas by
Roland Batik. The second, much larger, dataset consists
of nearly the complete solo piano works by Chopin per-
formed by Nikita Magaloff [4]. For the latter set we do
not have the original audio files and thus replayed the sym-
bolic performance data on a Yamaha N2 hybrid piano and
recorded the resulting performances.

As we have both symbolic and audio information about
the performances, we know the exact timing of each played
note in the audio files. The performances were manually
aligned to electronic (symbolic) versions of the original
sheet music. To build the score database we converted the
sheet music to MIDI files with a constant tempo such that
the overall duration of the file is similar to a ‘normal’ per-
formance of the piece.

In addition to these two datasets we added some more
scores to the database, solely to provide for more diversity
and to make the task even harder for our algorithm (these
include, amongst others, the Beethoven Symphony No. 5,
the Mozart Oboe Quartet KV370, the First Mephisto Waltz
by Liszt and Schoenberg Op. 23 No. 3). To the latter,
we have no ground truth, but this is irrelevant since we

1 Bösendorfer SE 290
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do not actively query for them with performance data in
our evaluation runs 2 . See Table 2 for an overview of the
complete dataset.

4.2 Results

An evaluation of the transcription stage (query preprocess-
ing) was already presented in Section 3.1 above. As Table
1 shows the results of this stage are rather noisy. Still, the
quality of the transcription is sufficient to be used with our
robust fingerprinting technique.

We tested the algorithm with different query lengths: 5,
10, 20, 30, 40, 50 and 60 notes (in number of transcribed
notes during the preprocessing step). For each of the query
lengths, we generated 50,000 queries by picking random
points in the performances of our test database, and used

2 Additionally we performed some non-systematic experiments with
data from different sources (e.g., Youtube videos, both by amateurs and
by professional pianists, with differing recording qualities (including
noisy ‘old’ recordings and noisy amateur recordings)), for which we have
no ground truth data. The general impression is that the system works
well too in these scenarios, but of course the performance worsens in the
presence of noise.

Score Tempo
Normal Double Half

Corr. Pos. as Top M. 84.63% 83.30% 85.15%
Corr. Pos. in Top 2 93.39% 92.61% 92.70%
Corr. Pos. in Top 3 95.36% 95.06% 94.42%
Corr. Pos. in Top 4 96.14% 96.11% 95.00%
Corr. Pos. in Top 5 96.55% 96.55% 95.26%

Table 4. Results of the algorithm with score representa-
tions with altered tempi. The results are based on query
lengths of 30 notes.

them as input for the proposed algorithm.
The results of this experiment are shown in Table 3.

In this table we present two measures: the percentage of
correctly identified pieces, and the percentage of cases in
which both the piece and the exact position in the score
were correctly identified.

For the evaluation a score position X is considered cor-
rect if it marks the beginning (+/- 1.5 seconds) of a score
section that is identical in note content, over a time span
the length of the query (but at least 30 notes), to the note
content of the ‘real’ score situation corresponding to the
audio segment that the system was just listening to (we
can establish this as we have the correct alignment be-
tween performance time and score positions — our ground
truth). This complex definition is necessary because musi-
cal pieces may contain repeated sections or phrases, and it
is impossible for the system (or anyone else, for that mat-
ter) to guess the ‘true’ one out of a set of identical passages
matching the current performance snippet, given just that
performance snippet as input. We acknowledge that a mea-
surement of musical time in a score in terms of seconds is
rather unusual. But as the MIDI tempos in our database
generally are set in a meaningful way, this seemed the best
decision to make errors comparable over different pieces,
with different time signatures – it would not be very mean-
ingful to, e.g., compare errors in bars or beats over different
pieces.

As can be seen, even queries of only a length of 5 notes
lead to a surprising number of correct position identifica-
tions, and already for a query length of 20 notes (which
corresponds to a mean query duration of 2.78 seconds)
the correct position in the score is contained in the top 5
matches for more than 95% of the cases.

To show the tempo independence of our method we
also ran experiments with big tempo differences between
the score and the performance. We simulated this by ma-
nipulating the scores to have double and half the original
tempo. The results for these experiments are shown in
Table 4. As can be seen the performance only decreases
slightly and the proposed algorithm still recognizes the cor-
rect position in the vast majority of the cases.

A flaw of the current approach is that it cannot cope
with non-linear tempo deviations (i.e., with tempo varia-
tions within a query). As we are using very short queries
and a rather coarse resolution in the histograms this is only



a minor problem. But for longer queries (e.g., with dura-
tions of over 10 seconds) explicitly dealing with non-linear
tempo deviations becomes more of an issue. To make our
approach useable with longer queries we propose to split
the long query into smaller, overlapping queries (e.g., of
size 30 notes with 15 notes overlap) and then use some
simple tracking and scoring algorithm to combine the indi-
vidual results into a single score. Preliminary experiments
with this approach suggest that this leads to a very robust
and accurate algorithm.

5. CONCLUSION

5.1 Applications

The proposed system is useful in a wide range of applica-
tions. For the off-line case it may either be used stand-
alone or as a preprocessing step to audio alignment al-
gorithms. This enables fast and robust (inter- and intra-
document) searching and browsing in large collections of
musical scores and corresponding performances.

Originally this work was motivated by an on-line sce-
nario (see [1]). In connection with an on-line score fol-
lowing algorithm we are currently building a system that
we somewhat immodestly call ‘the ultimate classical mu-
sic companion’ (see Figure 4 for a sketch of the system).
This system will be able to recognize arbitrary pieces of
classical music, immediately identify the position in the
score, provide meta-information, track the piece via an on-
line score following algorithm, display the score, and vi-
sualize musical aspects of the performance like the struc-
ture of the piece, tempo and expressive timing deviations
– all done on-line with minimal delay. This ultimate mu-
sic companion may be used to enhance the listening ex-
perience but may also be of use for performers, especially
during rehearsal. Besides this very specific application the
proposed algorithm may also be of use in any application
which requires monitoring of an audio stream of classical
music on-line with minimal delay.

5.2 Future Work

Regarding the improvement of the algorithm, we see some
future work in making it better useable with longer queries
including tempo variations. As already mentioned above a
combination of small overlapping subqueries with simple
tracking of the results seems to be the way to go. Also a
larger scale evaluation of the algorithm (with thousands of
classical piano scores) has to be done.

The algorithm in the current state is able to recognize
the correct piece and the score position even for very short
queries of piano music. Based on this algorithm we have
already implemented a real-time on-line piece and score
position identification system that shows a level of perfor-
mance that even human experts in classical music will find
hard to match. This will be demonstrated live at the con-
ference. We are now working on the integration of the pro-
posed algorithm in our score following system as a next
step towards our ultimate goal: ‘the ultimate classical mu-
sic companion’.
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ABSTRACT

Moving music indexing technologies developed in a re-
search lab to their integration and use in the context of
a third-party search and navigation engine that indexes
music files, archives of TV music programs and video-
clips, involves a set of choices and works that we re-
late here. First one has to choose technologies that per-
form well, which are scalable (in terms of computation
time of extraction and item comparison for search-by-
similarity), and which are not sensitive to media quality
(being able to process equally music files or audio tracks
from video archives). These technologies must be applied
to estimate tags chosen to be understandable and useful for
users (the specific genre and mood tags or other content-
descriptions). For training the related technologies, rele-
vant and reliable annotated corpus must be created. For
using them, relevant user-scenarios must be created and
friendly Graphical User-Interface designed. In this paper,
we share the experience we had in a recent project on inte-
grating six state-of-the-art music-indexing technologies in
a multimedia search and navigation prototype.

1. INTRODUCTION

The objective of the MSSE project (Multimedia Search
Services for European Portals) is to develop a multimedia
search and navigation prototype, which gives access to sev-
eral types of contents (catch-up TV, archives, videos, mu-
sic) and which illustrates the benefits of advanced audio-
video analysis technologies. The prototype is organized
around three use-cases:

• Searching recently broadcasted TV programs
(“Catch-up TV”); navigating inside the videos by
chapters or keywords.
• Searching video extracts on a specific topic related

to recent news and culture; browsing in relevant
translated foreign videos and in public TV archives.
• Searching and exploring music pieces with the help

of tags, music structure, summaries and similarity.
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2012 International Society for Music Information Retrieval.

The prototype is based on video indexing, speech recog-
nition and music indexing technologies. In this paper, we
describe the works performed for the music indexing tech-
nologies. Those have to deal with three types of content:

• A music collection
• A collection of video clips from the W9 TV channel
• A collection of video archives of music programs

from the INA 1 collection. (only the audio track of
the video is processed by our indexing modules).

In this paper, we propose to review the technologies
integrated into this search and navigation prototype, why
they were chosen and how they were developed and inte-
grated as well as the corresponding user-evaluations and
GUI developed. We believe that sharing the experience of
this work could provide a good example of integration of
research modules in a real application scenario.

While many papers have been published on the inde-
pendent elements this paper deals with (content-based, se-
mantic tags, corpus creation, GUI, user-tests), few of them
deal with all these elements as a whole to create a sys-
tem. Among exceptions are the works made for the Mu-
sic Browser [1], FM4-Soundpark [2], Musicream [3], Mu-
sicBox [4] or PlaySOM [5]. Our work differs from the
previous in the number of integrated technologies, the in-
tegration into a whole video and music search engine ac-
cessible through a web-browser and the simplicity of the
GUI.

2. OVERALL DESIGN PROCESS

Figure 1 represents the various elements of work (and in-
teraction/dependency between them), needed for integrat-
ing the music technologies in the prototype.

The starting point is a set of requirements from the
third-party developer and its users 2 −in terms of func-
tionalities (such as searching-by/ filtering-by tags, search-
by-similarity or summarization) and −in terms of types of
content-description (genre, mood, instrumentation).

From this, a set of potential technologies are studied in
terms of performances and scalability 3 . Candidate tech-
nologies are tested over the years in internal benchmark-
ing or in public ones such as MIREX. For example, from

1 French National Audio Visual Archiving Institution
2 During the project, 1 or 2 user tests per year were performed, each

corresponding to a new version of the prototype (see part 6).
3 By scalability we mean computation time of content-extraction and

of items comparison for search-by-similarity.
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Figure 1. Interaction/dependency between the various el-
ements of work needed integrating music technologies.

our tests in MIREX between 2008-2011, it appears that us-
ing Universal Background Model (UBM) to model audio
features [6] has many advantages over other techniques:
it achieves performances among the best for both auto-
tagging [7] and similarity tasks [8]; it allows to share the
same front-end for both tasks; it allows easy scalability in
the case of similarity (items comparison remains in an Eu-
clidean space). Therefore, we chose UBM for these tasks.

In parallel, the design of the GUI starts. Since the GUI
directly infers on the usability of the functionalities, its de-
sign is mainly driven by those. It is also driven by the
outputs of user-tests and by extra outputs that technologies
can provide without extra-costs. For example, when com-
puting audio summaries, music structures are estimated as
an internal step. Therefore, it can easily be integrated to
provide new functionalities (display interactive player).

In a latter stage, annotated corpora need to be created
for each of the requested content description (genre, mood,
instrumentation). This part forms a close feedback loop
between: − annotation of a corpus, − measuring the re-
liability of the annotations (this can highlight the fact that
some required concepts may appear unclear), − redefin-
ing the types of content with the third-party. After sev-
eral iterations, this loop-process leads to a much clearer
set of content-description concepts (the specific definition
of genre, mood, instrumentation) and more accurate anno-
tated corpora (their specific use for music tracks).

These annotated corpora are then used to the train the
corresponding technologies and optimization is performed
to reduce computation time, disk access and memory load.

The resulting prototype is then submitted to global user
tests (testing both functionalities, the GUI and the underly-
ing technologies to achieve the functionalities). The whole
process is then started again (once a year in our project).

3. TECHNOLOGIES INTEGRATED

Resulting from the process explained in part 2, six different
music-content-based technologies have been selected:

• auto-tagging based on training (for genre, mood, in-
strumentation tags and singing segmentation),

• two technologies for auto-tagging based on dedi-
cated models (for tempo and key/mode tags),

• search by similarity (for music recommendation),
• music structure (for interactive browsing),
• audio summary creation (for content preview).

These modules are either applied to mp3 files or to the au-
dio part of video archives or clips. The inter-connections
between the various modules are indicated in Figure 2. It
should be noted that the first five technologies were evalu-
ated very positively in the recent MIREX-11 evaluations.

3.1 Audio feature extraction

In order to decrease the total computation time, auto-
tagging based on training and search-by-similarity are
based on the same audio features front-end. The audio fea-
tures front-end is described in Figure 2 and corresponds to
the proposals made in [8], [7] or [9]. It is based on two
modeling techniques coming from speech processing:
• Universal Background Model (UBM) [6] [10]. The

aim of this technique is to represent the “world” of fea-
tures using a GMM and then deform 4 this “world” to rep-
resent a new feature vector. The resulting representation is
the concatenation of the adapted µ-vectors of the GMM,
the size of which depends on the dimensionality D of the
initial feature vectors and the number m of mixtures used
for the GMM. These concatenated-vectors are denoted by
“Super-Vectors” (SV) in the following.
• Multivariate Auto-Regressive Model (MAR) [11].

As for the mono-dimensional AR-model, the goal is to rep-
resent the dependency of the values of a signal over time
by an all-pole filter of order K 5 . In the case of the MAR,
we consider the dependencies in time and between the var-
ious D dimensions of the feature vectors. The results of
this is a matrix of coefficients α

k,d
.

The input to these two modeling techniques is a fea-
ture set made of 13 Mel Frequency Cepstral Coefficients
and 4 Spectral Flatness Measure coefficients, extracted us-
ing a 40 ms Blackman window with a 20ms hop size.
From those, two modeled feature sets are computed:
(1) Super-Vector of MFCC/SFM, which we denote by
SV(mfcc/sfm), (2) MAR of MFCC/SFM, which we denote
by MAR(mfcc/sfm). The two modelings are performed us-
ing − either the whole set of features inside a track (in
case of search-by-similarity and global auto-tagging) − or
the set of feature inside successive windows of 2s duration
(in case of segmentation, such as singing voice location).
In each case, the UBM has been previously trained on a
representative database. This training is the most time-
consuming part but needs only to be performed once. The
UBM configuration is a set of m = 64 (for search-by-
similarity) or m = 32 (for auto-tagging) mixtures, each
with a diagonal covariance matrix. The order of the MAR
model is K = 4.

4 Deforming means here adapting the µ-vectors of the GMM using an
Expectation Maximization algorithm.

5 s(n) =
∑K

k=1 αks(n− k)+ ε where s is a signal, n discrete time,
ε a residual.
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Auto-tagging based on training
Categories Configuration Tags
Genre single-label Classical, Other Genres, NA
Other Genres multi label Pop/Rock, Blues, Elec-

tronica, Metal/Punk,
Reggae, Jazz, Rap,
Soul/Funk, Rhythm &
Blues, Latin/Bossa

Mood single label Happy, Sad, NA
single label Dynamic, Calm, NA
single label Romantic, NA

Instrumenta-
tion

multi label Brass, String, Piano, Elec-
tronic, Acoustic

Drum Kit single label No drum, Electronic,
Pop/Rock, Hard/Metal

Guitar single label No guitar, Acoustic Guitar,
Electric Guitar

Live Studio segmentation
+ single label

Live, Studio

Singing segmentation Singing voice

Table 1. Categories, configurations and tags of the various
classifiers used for the Auto-tagging modules

3.2 Search by similarity

As explained in [8], the main goal of using UBM and
MAR for modeling the features (instead of the usual
MFCC/GMM with EMD Kullback-Leibler divergence) is
to remain in an Euclidean space. In the case of search
by similarity, it therefore allows the use of standard tech-
niques to decrease the search time in the database. In order
to avoid hubs and orphans, various techniques have also
been proposed. We have used the UCS-norm (UBM Cen-
tered Spherical normalization) and the MCS-norm (Mean
Centered Spherical) proposed in [8]. Both techniques con-
sist in projecting the features vector on a unit sphere (ei-
ther centered on the mean of the UBM, or the mean of
the database). After this, each track of the database sees
the rest of the database with the same point of view (unit
sphere). Using those, the similarity between two tracks is
simply the correlation of their vectors. Two similarity ma-
trices, corresponding to the two feature sets are then com-
puted and combined linearly (late-fusion).

3.3 Auto-tagging based on training

Auto-tagging based on training aims at providing the tags
indicated in Table 1. Tags can be exclusive (such as “dy-
namic” and “calm”) or inclusive (“pop/rock” and “elec-
tronica”). In our system, all problems are solved using
multi-label classifiers in a one-against-all strategy (true
versus false class). For this, all problems are decomposed
as set of binary SVM classifiers (with an RBF-kernel, σ=1)
[12] [7]. The input to the classifiers is the concatenation of
SV(mfcc/sfm) and MAR(mfcc/sfm) (early fusion).

Global Classifiers: Music genre classifier is a set of
11 binary classifiers (one for each genre) trained and eval-
uated independently. A given track t is said to belong to
a tag-class c if the affinity-output ac(t) of the correspond-
ing SVM classifier is above a threshold Ac. The estima-
tion of each threshold Ac is based on the Recall/Precision
curve obtained on a training set. Considering that the es-
timated tags are to be used as search criteria, it was de-
cided to favor Precision over Recall: we chose the lowest
Ac leading to a Precision greater than 0.8. In terms of us-
ability, we also decided to make “classical music” mutu-
ally exclusive to the “other genres” (see Table 1). For a
given track t, if both aclass(t) and several aother(t) are
above their respective threshold, the choice is based on
the maximum between aclass(t) and max(aother(t)). In
case max(aother(t)) is selected, the corresponding sub-
genres above their respective thresholds are returned. The
same process is applied for the 5 mood classifiers. In this
case, the mutually exclusive classes are “happy” / “sad”
and “calm” / “dynamic”. The auto-tagging module also re-
turns three view-points related to the instrumentation of
the track: (1) a global instrumentation based on dominant
instruments (brass, string, piano, electronic instruments,
acoustic instruments), (2) a detailed description of the per-
cussive part (electronic drum, pop/rock drum, hard/metal
drum) (3) a detailed description of the guitar part (acoustic
guitar, electric guitar).

Segmentation: The segmentation is obtained by detect-
ing class-changes over time. For this, the same system as
presented above is used, but the UBM/MAR models are
applied to the set of features inside a succession of win-
dows of 2s duration (hop size of 1s). Each 2s features is
then classified using SVM classifiers. This segmentation
is used to provide singing/non-singing segmentation over
time. In order to avoid spurious class transitions over time,
a 3rd-order median filter is applied to the estimated classes
over time before segmentation. This segmentation is to be
used to display singing segments in the interface.
We also use this segmentation to perform the “live/studio”
auto-tagging. In our case, “live” is defined as the pres-
ence of “applauses, whistling . . . ” of audience in a bar,
concert-hall, stadium. Since those do not occur over the
whole time-duration of the track (usually at the beginning,
ending or during a break), the decision is based on frame-
classification. We use a minimum threshold of 26s frames
being classified as “live” for the track to be classified as
“live”. A similar approach has been used in [13].

Each tag has also an associated “reliability” defined in
the interval [0, 1] (low/high reliability). For this, the affin-



ity of each SVM is passed through a sigmoid and centered
on its respective threshold. This reliability is to be used by
the GUI for sorting the list of results.

3.4 Auto-tagging based on dedicated algorithms

For each track, we also estimate its global tempo in beats-
per-minute. Note that this estimation does not rely on the
set of UBM/MAR features but on a dedicated algorithm.
We have used the algorithm proposed in [14]. We also as-
sign a “reliability” to this estimated tempo. For this we
used the “periodicity” features proposed by [15] (measure-
ments of the amount of periodicity in the track).

We also estimate the global (most dominant over time)
key/mode among a set of 24 key/mode classes (C Maj, C
min . . . B Maj, B min). We have used the algorithm pro-
posed in [16]. The “reliability” of the output is here es-
timated as the distance between the most-likely key/mode
and the second most likely.

3.5 Music Structure and Summary

This module aims at providing two functionalities: (1) to
display a map of the temporal organization of the track
(music structure) which allows user to interact with it (skip
forward/backward by parts) [17], (2) to provide a meaning-
ful preview of the track content (music audio summary).
The estimation of the music structure and of the audio
summary are based on the same front-end. This front-
end combines the three similarity matrices corresponding
to MFCC, Spectral-Contrast and Spectral-Valley [18] mea-
sures and Chroma/Pitch-Class-Profile (see [19] for details).

Music Structure Estimation: For robustness reasons,
the structure is estimated using a “state” approach. For
this, a segmentation of the similarity matrix is first per-
formed using a “checker-board” kernel [20]. The segments
obtained are then grouped using a constrained hierarchical
agglomerative clustering. The distance used for this clus-
tering is a linear combination of− the distance between the
average values inside the two segments (centroid linkage)
− the smallest possible distance between one of the diago-
nals they may contain (sequence approach) − a constraint
to minimize the departure of the duration of the merged
segments from the average segment durations.

Music Audio Summary Generation: The technique
used for the summary creation is based on an extension of
the summary score of [21]. In this extension, the method
of [21] is iteratively applied to the combined matrix of
[19]. At each iteration, the two time corridors in the self-
similarity-matrix corresponding to the previously chosen
audio extract are canceled to avoid further re-uses. To gen-
erate the final audio signal, the selected segments are con-
catenated using a Downbeat Synchronous OverLap-Add
(DSOLA) techniques.

4. ANNOTATED CORPORA FOR TRAINING

4.1 Corpus creation for the UBM training

Since both auto-tagging and search-by-similarity modules
rely on Super-Vectors, the corresponding UBM needs to

be trained in advance. The training of which needs to take
into account the various types of contents (various genres
and various audio qualities) that the system will need to
deal with. For this, a large database of audio files has been
used: including clean mp3 files at various bit-rates and au-
dio tracks of TV archives.

4.2 Annotated corpora for the auto-tagging problems

For the auto-tagging modules, statistical models (SVMs
and related thresholds) need to be trained for each tag
(genre, mood, instrumentation, singing, live). We explain
here the data used for the training. For the creation of the
list of genres, several attempts have been made: − from
a purely acoustic definition of genres (pop-rock synthed,
poprock hard, electronica ambient, electronica beat . . . )
which guarantees a close proximity to content-based es-
timation algorithms but may be difficult to understand by
users − to a purely application oriented definition. The fi-
nal list indicated in Table 1 is the results of a feedback-loop
between the two. The training-set has then been obtained
by selecting tracks among a large music collection consid-
ered as prototypical of the chosen genres. By prototypi-
cal, we mean tracks representative of the exact genre and
not cross-over between several genres. For the other tags
(mood, instrumentation), 4000 tracks have been manu-
ally annotated by two individual professional annotators.
Only labels for which the annotators agreed on the ma-
jority of the tracks are considered. For these labels, only
tracks for which both annotators agreed have been selected
for the training. This process lead to the five moods and
three view-points on instrumentation indicated in Table 1.
“Live” classifier has been trained on a dedicated training-
set made of the concatenation of all possible audience
noise derived from real recording. The singing segment
classifier has been trained using the Jamendo corpus [22].

5. GRAPHICAL USER INTERFACE

The GUI is the central element that allows user to interact
with the prototype and to test the proposed use-cases. Its
design is crucial since a bad GUI can hinder a good tech-
nology or a good use-case. Its design must follow a close
user-feedback loop (see part 6). The current GUI (see Fig-
ure 3) is organized in three main panels: the interactive-
player (top), the current play-list (left), the various tag-
clouds (right).

The player panel displays the classical editorial meta-
data (track-title, artist-name, album-title) and the cover. A
large horizontal time-line displays the estimated structure
of the tracks. In this, parts with similar content are in-
dicated by rectangle with similar colors. The user can
browse through parts by directly clicking on the corre-
sponding colored rectangle. The time-line also indicates
the segments used for the audio summary by highlighting
the corresponding parts (independently of the color). Once
selected (using the play-list panel), a track automatically
starts playing in the player either in full-duration or in au-
dio summary mode. This choice is based on user prefer-
ences. A search-by-text panel is placed on the top of the
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Figure 3. GUI of the Music Interface of the prototype

interface. It allows either full-database search or search
over restricted criteria (title, artist, album).

The play-list panel indicates the currently selected
tracks which correspond either to− the results of a search-
by-text, a search/filtering using the tag-clouds or a search-
by-similarity,− or a previously stored play-list 6 . For each
track, the estimated tags (genre, mood, instrumentation)
are also indicated. The musical note icon next to each track
allows performing search-by-similarity.

The tag clouds panel indicates the various viewpoints
on the content: genre, mood, and instrumentation. The
tags that are currently active in the filtering are indicated
by highlighted colors. Next to each tag-name is indicated
the number of corresponding items. It should be noted that
the tags inside a cloud are not mutually exclusive.

6. USER TESTS

We define user experience as “the combination between the
quality of the technology, the functionality based on it and
the way to present it on Human Machine Interface”. Dur-
ing the project, 1 or 2 user tests per year were performed,
each corresponding to a new version of the prototype.

Many of the outputs of user-tests relate to the usability
of the GUI: naming of the fields, their spatial organization,
layout of the tag-clouds . . . This is of course essential; es-
pecially considering that the music search part is only one
part of the whole search engine (which also includes TV
and Web-Video search) and the presentation of the various
search engines must be as much as possible homogeneous.
User-tests are performed using two methods.

6 The playlist, tempo and key/mode functionalities are not discussed
here since their are currently subject to modifications of the GUI.

6.1 Qualitative tests

The first method consists in performing qualitative tests.
Qualitative tests have three focuses: (1) to asses the us-
ability of HMI (2) to asses users’ judgment of functional-
ities (3) to imagine with users new use cases and maybe
new functionalities based on the music technology. For
this, users were asked to perform various scenario: “use
the search engine to create a music play list of a specific
mood”, “to discover new music” . . . This is followed by in-
terviews, which allows highlighting problem in the usabil-
ity of the GUI, collecting judgments of functionalities (au-
dio summary, genre, mood and similarity are found highly
relevant while music structure displaying less relevant).
This has also allowed highlighting missing functionalities.
Displaying singing segments was one of those.

6.2 Quantitative tests: the case of audio summary

The second method consists in performing quantitative
tests to compare several variations of a technology. An
example of this are the ”audio summary” user-tests.

For the creation of the summary, a set of user tests have
been performed in order to select the best summary strat-
egy. For this we have compared four different types of
summary: −a 30s extract at the beginning of the file, −a
random 30s extract, −the most representative 30s extract
(denoted by 1x30), −a downbeat-synchronous concatena-
tion of the three most representative 10s extracts (denoted
by 3x10) [17]. 24 users had to listen to tracks of music
they knew (7 tracks) and music they didn’t know (6 tracks).
Half of the songs were in their native language (French),
the other half in English. They were then asked the ques-
tions - “which technique better summarized the track” (for
music they knew), - “which technique is the most informa-
tive of its content” (for music they didn’t know). In both
cases, the 3x10 summary was judged better.

A quantitative evaluation has also been performed to
compare the 1x30 and 3x10 summary. Over a 160-tracks
database, we have measured the number of tracks for
which each technique allowed to include the track title in
the summary (the track title is considered here as the most
memorable part of the track). The 3x10 summary achieved
95% correct location, while the 1x30 achieved 90%.

A user evaluation of the acoustical quality of the multi-
parts (3x10) summary has also been performed. We have
compared four configurations of the audio construction:
−complete DSOLA −partial DSOLA (the loudness of the
audio decreases during the transitions between parts to
highlight them), −DSOLA with sound insertion (a proto-
typical sound is introduced at each transition to highlight
them), −partial DSOLA with visual feedback. This exper-
iment highlighted the fact that in some cases (especially
Rap music), the complete DSOLA leads to an audio that
sounds exactly like a real track. However, users prefer to
feel a separation between the three 10-second parts to avoid
having the feeling of listening to a new mix from a DJ. We
also decided to add a visual presentation to increase the
understanding of this summary functionality. This visual
presentation consists in 3 highlighted segments of the com-



plete music timeline corresponding to the three 10-second
parts of the summary. The play cursor “jumps” from part
to part. With these choices and modifications, user experi-
ence of the summary was improved.

7. INTEGRATION

The back-office of the prototype is based on a Service Ori-
ented Architecture (SOA). This kind of architecture is flex-
ible and particularly adapted for the integration of numer-
ous and distant technologies. The main elements of this ar-
chitecture are: −Metadata collectors, which collect meta-
data coming from content providers (TV Programs, INA
archives, Web videos, music); −Technological modules,
accessible as Web services (e.g. speech to text, named
entities extraction, music analysis); −An XML transverse
metadata base, which stores all metadata coming from col-
lectors and technological modules; −An ESB (Enterprise
Service Bus), which connects the metadata collectors, the
technological modules and the metadata base; −A specific
XML “pivot” format for all metadata manipulated by the
ESB and the XML database. The search engine indexes
are fed by the XML database through a metadata exporter.
The search engine is directly connected to the application.

8. CONCLUSION

In this paper, we wanted to share our experience on inte-
grating music-content indexing technologies, as developed
in a research lab, into a third-part search and navigation
engine. For this, we provided a panorama of the various
elements of works implied and how they interact.

The lessons we learned from this experience is that
this integration involves much more than good signal pro-
cessing and machine learning technologies, which are of
course essential. A side from the technical constraints (ro-
bustness, scalability), many of the works to be performed
relate to make these technologies usable. This involves
first proposing useful and understandable tags for users
and creating the related annotated corpus to train the algo-
rithms. This also involves tuning and modifying technolo-
gies: to favor precision over recall; or to provide reliability
for all estimations (which is difficult for descriptions such
as tempo or key). User tests allows to highlight new chal-
lenges, such as the need for a list containing only the simi-
lar items and not just a ranked-list from the most to the less
similar items; or the fact that some innovative technologies
may be found too specialized for users (music structure).
We hope the information provided here would help the re-
search community when trying to move from research ap-
plications to third-party applications.
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ABSTRACT

We present an audio chord recognition system based on
a generalization of the Hidden Markov Model (HMM) in
which the duration of chords is explicitly considered - a
type of HMM referred to as a hidden semi-Markov model,
or duration-explicit HMM (DHMM). We find that such
a system recognizes chords at a level consistent with the
state-of-the-art systems – 84.23% on Uspop dataset at the
major/minor level. The duration distribution is estimated
from chord duration histograms on the training data. It is
found that the state-of-the-art recognition result can be im-
proved upon by using several duration distributions, which
are found automatically by clustering song-level duration
histograms. The paper further describes experiments which
shed light on the extent to which context information, in
the sense of transition matrices, is useful for the audio
chord recognition task. We present evidence that the con-
text provides surprisingly little improvement in performance,
compared to isolated frame-wise recognition with simple
smoothing. We discuss possible reasons for this, such as
the inherent entropy of chord sequences in our training
database.

1. INTRODUCTION AND BACKGROUND

The problem of audio chord recognition has been explored
for over a decade and thus there exists an established ba-
sic framework that is widely used. First, a chroma feature,
or its variation is computed, followed by classifiers or se-
quential decoders to recognize the chord sequence. Certain
enhancements to the basic feature computation and classi-
fication algorithms have been found to be useful.

The chromagram, a sequence of 12-dimensional vectors
that attempts to represent the strength of each pitch class,
is computed using a log-frequency spectrogram, estimated
with a constant-Q transform (CQT). Several methods have
been proposed to refine the basic features. Non-Negative
Least Square estimation [1] and Harmonic Product Spec-
trum [2] reduce the power of non-octave overtones in the
spectrum. Harmonic-Percussive Source Separation [3] de-
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creases the power of percussive sounds, which typically do
not contain chord information [4], [5]. The CRP chroma
algorithm [6] attempts to produce a timbre-invariant fea-
ture and has been applied in [5] and [7]. Background Sub-
traction [1] removes the running mean of a given spec-
trum, which is based on the same principle as the CRP
chroma algorithm in that they both conduct long-pass fil-
tering on audio signal, damping timbral information in fea-
tures. Loudness-based chroma performs A-weighting [5]
on log-frequency spectrogram. Besides chroma, a 6-di-
mensional feature called “tonnetz”, based on Neo-Rieman-
nian theory, is also commonly used and has proven to be
helpful [8], [9]. Finally, a machine-learned transformation
matrix that converts log-frequency spectrogram to chroma-
gram is shown to outperform an arbitrary transformation
matrix in [10].

Structural information has also been utilized to help au-
dio chord recognition. Many systems use beat-synchronous
chromagrams that are computed over a beat or half-beat,
rather than short frames [1], [9], [11], [12]. In [7], the au-
thors smoothed the chromagram based on a regressive plot.
In [11], the authors demonstrate that an attempt to find ex-
plicit repetition in a piece can improve performance.

In the domain of classifiers or decoders, many published
works use Hidden Markov Models (HMMs). Recent pa-
pers have used Dynamic Bayesian Network (DBN) in con-
junction with separate bass and treble chromas for recog-
nition [1], [5]. In the past, two methods implementing key
detection to assist chord recognition have been proposed.
The first method builds a group of key-specific models [4],
[9], while the other treats key information as one of the
layers in its graphical model [1], [5]. In some cases, tran-
sition matrices were based on, or initialized, using princi-
ples from music theory rather than learned from the train-
ing set [12]. Apart from HMMs, a Pitman-Yor Language
Model [13] has also been used to build a vocabulary-free
model for chord recognition. Finally, another popular ap-
proach is the use of chroma templates of chords [14], [15].

In this paper, we present our approach which proposes
a novel method to compute the chroma, and uses duration-
explicit HMMs (DHMMs) for chord recognition. DHMMs
are discussed in [16], but have rarely been used in MIR
research. We also try to answer an important question:
how much can transitional context knowledge (i.e. chord
progressions) contribute to increasing the accuracy of the
model?

This paper is organized as follows: Section 2 describes



the chroma feature that we use, emphasizing on a novel
way of computing chromagram; Section 3 presents the DHMM
and its implementation; Section 4 evaluates our models and
analyzes the contribution of duration constraints and tran-
sitional context knowledge; Section 5 presents the conclu-
sions and sheds light on future research.

2. CHROMA FEATURE

Our chroma feature is based on the 60 dimensional log-
frequency spectrogram computation proposed in [5], which
uses perceptual loudness scaling of the spectrogram. We
set our frame length to 512 ms with a hop size 64 ms. We
only consider the energy within 5 octaves between 55 Hz
and 1760 Hz. We propose a new method to compute the
chromagram from the spectrogram.

2.1 Chroma Based On Linear Regression

Chroma is typically calculated by “folding” the spectrum
into one octave and summing over frequencies correspond-
ing to a quarter-tone around a given pitch-class. In [10], the
authors show that a machine-learned transformation matrix
outperforms this basic method. We developed a method
with similar motivation. The ground truth chord label is
converted into a 24 dimensional chroma template logical
vector, where the first 12 dimensions represent whether
one of the 12 notes exists in the bass label, and the last
12 dimensions represent whether one of the 12 notes exists
in the chord label. For an example, a “C:maj/5” is con-
verted to
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0].

The target vectors are the chroma templates and we fit
a transformation matrix which converts the log-frequency
spectrum to a chroma vector that is as close to the chroma
template as possible. Similar to [10], we explored the use
of neural networks, experimenting with various activation
functions including sigmoid, logistic, linear and quadratic.
We found that sigmoid and logistic functions compress the
outputs, leading to additional confusion between 0 and 1.
Linear and quadratic regressions return nearly the same re-
sults without compressing the output. Consequently, we
chose linear regression to fit the transformation matrix. The
regressed matrix shown in Figure 1 transforms a 60 di-
mensional log-frequency spectrum into a 24 dimensional
chroma vector, which is a concatenation of the bass and
treble chroma. It is worth noticing that the transformation
matrix has weights for both base frequency and harmon-
ics, leading to a certain degree of inhibition of harmonics
in the final chroma. We have additionally tried some other
proposed methods to inhibit harmonics (e.g. NNLS [1],
HPS [2]), but none of them returned an improvement on
the final results. Since the matrix relies on ground truth
chord labels in the training set, the linear regression is per-
formed every time we train the model.

2.2 Tonnetz Feature for Bass

The chromagram we have obtained through the aforemen-
tioned method is not full rank. This is because the infor-
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Figure 1. The transformation matrix for calculating
chroma from CQTed-spectrum.

mation about the root note occurs in both bass and treble
chroma templates. Given the common knowledge that bass
chroma contains less chord related information than treble
chroma, it might be more suitable for a lower-dimensional
representation. So, we convert a bass chroma (i.e. the first
12 dimensions) into a 6-dimensional tonnetz feature, de-
scribed in detail in [8]. We explored converting the treble
chroma into tonnetz, but we did not observe any improve-
ment on accuracy, which is consistent with [5]. Our fea-
ture vector is thus 18 dimensional, consisting of the treble
chroma and the tonnetz features from bass chroma.

2.3 Beat Level Feature

In popular music, chord changes usually occur at beat and
bar boundaries and thus, beat information can be useful
in determining likely boundaries. We beat-tracked the au-
dio using the dynamic programming approach of Ellis [17].
However, we extended the algorithms to allow for tempo
variation within a song. A dynamic programming process
was used to estimate the tempo before finding beat posi-
tions, similar to a method described by [18]. This resulted
in a slight improvement in chord recognition accuracy.

We explored three approaches to calculate beat level
features: (1) calculate chroma on the entire beat (large win-
dow for CQT); (2) calculate chroma on the frame level,
then average over the frames in the beat; (3) calculate chroma
on frame level, then take the median of each dimension
within a beat. We found that approach (2) worked the best.
In our experiments, we explore the use of both the frame
level and beat level features in the HMMs.

3. DURATION-EXPLICIT HIDDEN MARKOV
MODEL (DHMM)

In this section, we present a detailed discussion of the DHMM
and its implementation, at the beat level. DHMMs estimate
the chord sequence by simultaneously estimating chord la-
bels and positions, which can be thought of as estimating
on the chord level (See Figure 2). Initially, we applied
DHMM hoping to reveal transitional context knowledge
since at the frame and the beat level, self-transition is dom-
inant. However, as we show in section 4.2, transitional
context knowledge is not as important as we had hypothe-
sized. Yet, modeling the duration of chords contributes to
the majority of our improvement.
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Figure 2. Frame level, beat level and chord level. Hori-
zontal axis is frame level feature vector index; vertical axis
is feature dimension index.

We adopt the notation used in [16]. To better under-
stand the following expressions, readers are encouraged to
briefly review III.A and III.B of [16]. In chord recogni-
tion, T is the number of beats in a song; observation se-
quence O = {O1O2 . . . OT } is the time sequence of fea-
ture vectors; state sequence Q = {q1q2 . . . qT } is the hid-
den chord label sequence;N is the number of chords being
considered (i.e. the total number of states of the HMM);
S1S2 . . . SN are possible states; qt ∈ {S1S2 . . . SN}; π is
the vector of initial probabilities; A = {aij} is the chord
transition matrix, which denotes the probabilities of transi-
tions from Si to Sj ; B = {bi(Ot)} is the emission matrix,
which denotes the probabilities of emitting Ot from Si;
p = {pi(d)} is the duration distribution, which denotes the
probabilities of Si spanning d beats.

The model λ comprises of π, A, B and p. In our ex-
periments, we found that π is unimportant so we set it to
uniform distribution. A is trained by counting all the chord
changes. A small value (0.05) is added to the diagonal of
A before normalization, in order to bring the Viterbi algo-
rithm back to sync when the actual duration has zero prob-
ability in p. A multivariate normal distribution is trained
for each chord in order to calculate B. p is computed by
counting the durations (i.e. number of beats) of each chord.
The same duration distribution is used for all chords. How-
ever, the notation pi(d) is retained for better generalization.
We limit the maximum duration D to 20 beats.

3.1 Viterbi Algorithm

Viterbi algorithm is a dynamic programming algorithm that
finds the globally optimal state sequenceQ∗ = {q∗1q∗2 . . . q∗T }
explaining an observation sequence, given the model λ.
We denote

δt(i) = max
i
P (S1S2 . . . Si ends at t|λ)

A. Initialization (t ≤ D):

δ∗ =
t−1
max
d=1

N
max

j=1,j 6=i
δt−d(j)ajipi(d)

t∏
s=t−d+1

bi(Os)

δt(i) = max{πipi(t)
t∏

s=1

bi(Os), δ
∗}

B. Recursion (D < t ≤ T ):

δt(i) =
D

max
d=1

N
max

j=1,j 6=i
δt−d(j)ajipi(d)

t∏
s=t−d+1

bi(Os)

In addition to δt(i), we need two other variables: ψt(i)
to track the last optimal state, and φt(i) to track optimal
duration. If Si ends at t, the optimal duration of Si would
be φt(i), and the optimal last state would be ψt(i).

In initialization and recursion, we can get the index ĵ
and d̂ that produce δt(i), then

ψt(i) = ĵ
φt(i) = d̂

If δt(i) equals πipi(t)
∏t

s=1 bi(Os) in initialization, then

ψt(i) = i
φt(i) = t

C. Termination:
q∗T = arg max

1≤i≤N
δT (i)

D. Backtracking:
d = φT (q

∗
T )

t = T
while t > d do
qt−d+1 . . . qt−1 = qt
qt−d = ψt(qt)
t = t− d
d = φt(qt)

end while
q1 . . . qt−1 = qt

3.2 Probability of Observation Sequence

In some cases, it is necessary to know P (O|λ), the proba-
bility that a model λ generates an observation sequence O.
The computation of this probability is detailed in [16]. We
applied the scaling method to prevent the probability from
going below the machine precision.

The forward variable is defined as
αt(i) = P (O1O2 . . . Ot, Si ends at t|λ)

A. Initialization (t ≤ D):

α∗ =
t−1∑
d=1

N∑
j=1,j 6=i

αt−d(j)ajipi(d)
t∏

s=t−d+1

bi(Os)

αt(i) = πipi(t)
t∏

s=1

bi(Os) + α∗

ct =
1

t∑
s=1

N∑
i=1

αs(i)

αs(i) = αs(i)ct, s = 1 . . . t

B. Recursion (D < t ≤ T ):

αt(i) =

D∑
d=1

N∑
j=1,j 6=i

αt−d(j)ajipi(d)
t∏

s=t−d+1

bi(Os)

ct =
1

t∑
s=t−D+1

N∑
i=1

αs(i)

αs(i) = αs(i)ct, s = t−D + 1 . . . t



without	  clustering	  

clustering	  1	  

clustering	  2	  

clustering	  3	  

clustering	  4	  

Figure 3. Top panel: Global duration distribution trained
using the whole training set. Panel 2-5: Clustered duration
distributions.

C. Termination:

logP (O|λ) = −
T∑

t=1

log ct

Another precision problem (which does not exist in an
ordinary HMM) is caused by

∏
bi(Os). Our solution is to

divide all bi(Os)’s by the maximum value of B.

3.3 Time Signature Clustering

As will be shown in section 4.2, a global duration model
has a limited contribution towards the accuracy improve-
ment, because we train one single duration distribution us-
ing the whole training set. In fact, popular music is com-
posed using a limited number of time signatures (e.g. 4/4,
6/8), and usually keeps its time signature unchanged for
the whole length.

In other words, we train multiple duration distributions
so that we have multiple models λ1, λ2 . . . λm (where only
their p’s are different), and we calculateP (O|λ1), P (O|λ2)
. . .P (O|λm) and choose the model which maximizes like-
lihood, before running the Viterbi algorithm.

In order to train multiple duration distributions, we cal-
culate a duration distribution for each song in the training
set, and then cluster all the duration distributions into c
categories using k-means algorithm (in our experiments,
c = 4). We don’t manually annotate time signatures be-
cause beat tracking algorithm is very likely to double or
triple the tempo. Through clustering, we don’t need to ac-
tually know the true time signature, and can account for
potential errors caused by beat tracking. Figure 3 gives
an example of clustered duration distributions compared
to the global duration distribution.
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Figure 4. Left: Putting prior distribution to all rows of
transition matrix. Right: Adding 3 to the diagonal of the
matrix on the left and normalize each row.

4. EVALUATION

4.1 Experiments

We evaluate our models on two datasets: Beatles set by
Harte [8] and Uspop set by Cho [7]. 44 songs in Uspop
were excluded because we couldn’t find audio of a length
that matched the corresponding annotation. 12 songs were
excluded from Beatles for reasons such as audio being off
tune, or inconsistent time offsets of annotations. (See http://
www.weibinshen.com/ISMIR2012Table.html for a full list
of songs that were not used in this study).

We perform a 4-fold cross-validation experiment and
report the average chord recognition accuracy on 24 ma-
jor/minor chords. During training, all chord labels are re-
mapped to 24 major/minor chords as in [5]. Each chord is
trained with a single Gaussian distribution and corresponds
to one state in HMM. During testing, each frame or beat is
recognized as one of the major/minor chords. During eval-
uation, recognized labels on beat level are transformed to
the frame level, and only frames with major/minor labels
in the ground-truth annotations are counted for evaluation.
The recognition accuracy metric is the frame-based recall
rate - the number of frames that are recognized correctly,
divided by the total number of frames, same as the evalua-
tion metric used in MIREX evaluations.

In order to determine the contribution of chord progres-
sion information to the improved performance, we also
baseline with Bayesian-type classifiers, where a chord pre-
diction is determined by a MAP classifier independently at
each frame or beat. We implement Bayesian-type classi-
fiers by simply replacing every row of a transition matrix
with the prior chord distribution, obtained by counting the
unconditional occurrence of each chord (Figure 4).

4.2 Results

We compare the accuracy of different models in Table 1.
In “Bayes”, we train the transition matrix by applying the
prior distribution to all the rows. In “Bayes+smooth”, we
apply a “majority” filter on the Bayesian classifier’s out-
put, in order to remove short-term deviations. In “Mod.
Bayes”, we add a relatively large number (arbitrarily, 3)
to the diagonal elements of the “Bayes” transition matrix,
and then normalize each row (see Figure 4-Right). In or-
der to compare it with the state of the art, we also run the



Harmony Progression Analyser (HPA) proposed by Ni et.
al [5] on the same datasets. It is a state of the art model
using a three-layer HMM with key, bass note and chord
estimation.

Level Model Uspop Beatles

Frame level
Bayes 0.7518 0.7206

Bayes+smooth 0.8285 0.8204
HMM 0.8096 0.7966

Beat level
Bayes 0.7867 0.7733

Mod. Bayes 0.8340 0.8331
HMM 0.8365 0.8361

Duration model
Bayes 0.8371 0.8398

DHMM 0.8377 0.8352
Time signature clustered Bayes 0.8410 0.8413
duration model DHMM 0.8423 0.8419

HPA [5] 0.8401 0.8278

Table 1. A comparison of Accuracy

4.3 Analysis

We see that we achieve a performance comparable to the
state of the art [5]. At the frame level, Bayesian classifier
has a fairly low accuracy (75.18% on Uspop and 72.06%
on Beatles). With smoothing (82.85% and 82.04%), it out-
performs the basic frame-level HMM (80.96% and 79.66%).
At the beat level, the Bayesian classifier attains a recogni-
tion rate of 78.67% for Uspop. However, when the self-
transitions are emphasized in the “Modified Bayes” method,
accuracy is on par with the beat-level HMM. Smoothing,
as well as emphasizing self-transitions, essentially incor-
porate the knowledge that most chords last for more than a
few frames or beats.

For DHMMs, duration information is decoupled from
the transition matrix and results for the Bayesian classi-
fier (83.71% and 83.98%) and the DHMM (83.77% and
83.52%) are similar. Using multiple duration models after
clustering raises accuracy to 84.23% on Uspop, which is
comparable the current state of the art.

The results suggest that the primary reason why HMMs
are more effective than Bayesian classifier is that the strong
self-transition probabilities emphasize continuity, rather than
the knowledge of the chord progression represented in the
transition matrix. In other words, when continuity is enforc-
ed by smoothing, or modeling durations separately, HMMs
perform no better than a Bayesian classifier. Although
there have been past works stating an improvement by us-
ing smoothing [22], we did not find any previous work dis-
cussing if the reason for HMMs outperforming Bayesian
Classifiers is because of the smoothing effect of its transi-
tion matrix, or if the context information was really useful.

To further understand the contribution of chord progres-
sion knowledge we constructed an “oracle” condition in
which the true transition matrix for a song was revealed
(i.e. the transition matrix was computed using the ground
truth labels for a particular song). This transition matrix
was then used by the DHMM. The results are summa-
rized in Table 2 and can be interpreted as an upper bound
for chord recognition accuracy using a first-order DHMM.

These results suggest that even in the case where the chord
transitions are exactly known for a song, accuracy improves
no more than 2%.

Level Model Uspop Beatles

Duration model
Bayes 0.8735 0.8726
DHMM 0.8863 0.8919

Table 2. Upper bound on performance

Why doesn’t knowledge of the chord progression give
greater improvements? In most cases, it seems the evi-
dence provided in the local chromagram feature is quite
strong, minimizing the need for top-down information. On
the other hand, when the feature is noisy or ambiguous, it
seems that the the prior imposed by the transition matrix
is not very strong. In other words, chords progressions are
less predictable than they seem.

We tested this hypothesis by estimating the entropy of
chord progressions in the training set using a Variable Leng-
th Markov Model (VLMM) [19], [20]. In other words,
given the context, we tested how sure we can be of the
next symbol, on an average. A VLMM is an ensemble of
Markov models which effectively captures variable length
patterns in the chord sequence. A VLMM was used, as op-
posed to a first-order Markov model, because we wanted
to ensure that long patterns were captured in addition to
local chord transitions. Given the true symbol sequence
till the current time frame, we obtain a predictive distribu-
tion over the chord labels for the next time frame, which is
used to obtain the cross entropy of the test sequence. Using
a VLMM, the minimum cross-entropy obtained was 3.74
on the Uspop dataset and 3.67 on the Beatles dataset (at a
maximum VLMM order 2), in a leave-one-out cross vali-
dation experiment. It was found that the cross-entropy in-
creased beyond order 2 in both datasets. An entropy value
of 3.74 corresponds to a perplexity of 13.4, which can be
interpreted as the average number of symbols the system
was confused between. Thus, knowing the chord history
does not, in general, narrow the possibilities greatly, and is
unlikely to overcome a noisy or ambiguous feature vector.

5. CONCLUSIONS

In this paper, we presented an implementation of DHMMs
and applied them to the chord recognition task. This model
decouples the duration constraints from the transition ma-
trix. We then build separate models for duration distribu-
tions that indicate different time signatures to improve the
duration constraint in each model. Using this method, a
comparable performance to the state of the art is demon-
strated.

Though duration-explicit HMMs don’t produce ground-
breaking results, we believe that the proposed model may
benefit other MIR tasks in the future, e.g. melody esti-
mation and structural segmentation. Perhaps most impor-
tantly we show that state of the art results can be obtained
using simple classifiers that do not use transition informa-
tion. Further attempts to fully incorporate key and chord-
progression knowledge (at least for popular songs of this



type) using techniques such as high-order HMMs, are un-
likely to yield significant improvements.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0855758.
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ABSTRACT

Folk songs are typically composed of repeating parts - stan-
zas. To find such parts in audio recordings of folk songs,
segmentation methods can be used that split a recording
into separate parts according to different criteria. Most
audio segmentation methods were developed for popular
and classical music, however these do not perform well
on folk music recordings. This is mainly because folk
song recordings contain a number of specific issues that
are not considered by these methods, such as inaccurate
singing of performers, variable tempo throughout the song
and the presence of noise. In recent years several meth-
ods for segmentation of folk songs were developed. In this
paper we present a novel method for segmentation of folk
songs into repeating stanzas that does not rely on additional
information about an individual stanza. The method con-
sists of several steps. In the first step breathing (vocal)
pauses are detected, which represent the candidate begin-
nings of individual stanzas. Next, a similarity measure is
calculated between the first and all other candidate stanzas,
which takes into account pitch changes between stanzas
and tempo variations. To evaluate which candidate begin-
nings represent the actual boundaries between stanzas, a
scoring function is defined based on the calculated simi-
larities between stanzas. A peak picking method is used in
combination with global thresholding for the final selection
of stanza boundaries. The presented method was tested
and evaluated on a collection of Slovenian folk songs from
EthnoMuse archive.

1. INTRODUCTION

Folk music is receiving increased attention of the music
information retrieval (MIR) community, as our awareness
of the need for preserving cultural heritage and making it
available to the general public grows. In order to process
large quantities of folk song recordings gathered in ehtno-
musicological archives, automated methods for analysis of
these recordings need to be developed. Usually, such anal-
ysis starts with segmentation of recordings. Namely, folk
songs are typically found within field recordings, which
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are integral documents of the process of folk music gather-
ing and can, besides music, contain other kinds of content
such as interviews with performers and background infor-
mation. High-level segmentation of field recordings from
EthnoMuse archive [13] into individual units can be done
manually or by using automated methods [7].

For accurate analysis of individual songs, further seg-
mentation into shorter parts is desirable. As folk songs
typically consist of repetitions of melodically similar stan-
zas, segmentation boils down to finding the boundaries be-
tween repeating stanzas. This is quite different to segmen-
tation of popular music, where songs typically consist of
different parts, such as intro, verse, bridge and chorus.

While the structure of a popular song is usually more
complex than the structure of a typical folk song, the seg-
mentation of folk songs contains other challenges. While
popular music is recorded by professional musicians in stu-
dios, folk songs are recorded in an everyday noisy envi-
ronment (talking in the background, wind and other en-
vironmental noises, clapping . . . ) and singers are mostly
untrained and usually older people that may sing out of
tune, forget parts of lyrics or melody, interrupt their per-
formances, switch to speaking etc.

In this paper, a novel approach for segmentation of folk
songs into stanzas is presented. The algorithm is based on
finding the vocal pauses in a folk song recording, derive the
likely candidates for stanza beginnings from the pauses,
score these candidates and select the best matching ones to
obtain the final segmentation.

2. RELATED WORK

Most segmentation algorithms were developed for segmen-
tation of popular or classical music. A broad overview
of implemented methods is given in [11], where authors
present state-of-the-art approaches and results of segmen-
tation and structure discovery in music recordings. Typi-
cally approaches are based on calculating different sound
features, which are used for construction of similarity or
self-similarity matrices. First use of such matrices in MIR
is presented in [4]. By finding repeating parts in matri-
ces the structure of a musical piece can be inferred. Ap-
proaches use different features for construction of self-si-
milarity matrices, two of the more popular are Mel-fre-
quency cepstral coefficients [2, 5, 12] and chroma vectors
[1, 6].

In recent years, several approaches to segmentation of
folk music were presented. In [10] authors present a method
for robust segmentation and annotation of folk songs. The



Figure 1. Outline of the proposed segmentation method.

presented approach uses chroma vectors in combination
with a newly defined distance function for calculating the
distance between individual stanzas and provided MIDI
template. The method uses a MIDI representation of a
single stanza to determine the length and expected pitch
of each individual stanzas. Authors also present enhance-
ments of the presented method, in which shifted chroma
vectors are used to improve similarity between parts with
shifted pitch.

A newer approach for detecting repetitive structures in
music, presented in [9], introduces a novel fitness measure
for defining the most representative part of song with the
use of enhanced self-similarity matrix constructed from a
variation of chroma-based audio features.

In [14], authors do not perform segmentation to search
for repeating structure in folk songs, but are rather look-
ing for their meaningful parts. Meaningful parts of folk
songs are taken to be separated by breathing pauses, which
are defined as parts of audio recording without detectable
pitch.

EthnoMuse archive is a collection of audio field record-
ings, images, video recordings and metadata from Sloven-
inan folklore. Archive contains more than 13.000 manu-
scripts, 1000 dance recordings, photos and more than 300
field recordings. Archive is not publicly accessible with
exception of selected content. However parts of archive
are published in book collections.

3. METHODOLOGY

Our segmentation method takes a folk song recording, as
its input and outputs a set of boundaries, representing be-
ginnings of individual stanzas in the recording. The method
takes into account that performers are not professional sin-
gers, which may lead to pitch drifting over the duration of
the piece, as well as considerable differences in tempo of
individual stanzas.

The method consists of several steps: preprocessing,
search for vocal pauses, search for possible beginnings of
stanzas and selection of actual stanza beginnings. The gen-
eral diagram of the suggested method is shown in Figure 1.

3.1 Preprocessing

The input audio signal is mixed from stereo to a single
channel, the sample rate reduced to 11025 Hz and the am-
plitude normalized.

3.2 Detecting vocal pauses

Performers of folk songs are typically amateur singers which
make characteristic breathing pauses, reflected in audio re-
cordings as silence. These pauses are longer between stan-
zas, so they can be used to detect boundaries between stan-
zas. We use three approaches for detection of vocal pauses:
short-term signal energy, amplitude envelope of the signal
and the detected pitch. One can confirm such assumptions
by listening to audio data from presented collection. This
holds for solo and choir singing music, but does not hold
for instrumental music.

3.2.1 Detecting vocal pauses according to signal energy

Vocal pauses in the audio signal are determined as parts
of the signal where energy is below an experimentally de-
termined threshold. Energy of the signal is computed on
200 ms long frames and the threshold is set to ξ1 = E

120 ,
where E is the average energy of the signal. Consequent
frames with energy values below the specified threshold
are merged into one vocal pause. Vocal pauses shorter than
ξ2 = 0.7 times the average detected vocal pause length are
ignored, to avoid the detection of short breathing pauses
during singing. Parameter ξ2 was also determined experi-
mentally. Endings of detected vocal pauses, displayed red
in Figure 2(a) (green are beginnings of vocal pauses), are
later used as candidates for beginnings of stanzas.

3.2.2 Detecting vocal pauses according to signal
envelope

The amplitude envelope of a signal is obtained by filtering
the full-wave rectified signal using 4th order Butterworth
filter with a normalized cutoff frequency of 0.001. Vo-
cal pauses are parts of the signal where the envelope falls
below the threshold ξ3 = −60dB, which was determined
experimentally. Such parts of the signal are similarly as
before merged into a single vocal pause, whereby we ad-
ditionally merge all non-consequent parts that are less than
ξ4 = 0.5s apart, where the value ξ4 was defined experi-
mentally as well. As in the previous case, endings of de-
tected vocal pauses are used as candidates for beginnings
of stanzas and are displayed red in Figure 2(b) (green are
the beginnings of vocal pauses).

3.2.3 Detecting vocal pauses according to relative
difference of pitch

For detecting parts of the signal without any detectable
fundamental frequency we are using the approach presented
in [14]. The input signal is first resampled to fs = 1024Hz.
The resampled signal is then used as input for the YIN
algorithm [3] that calculates fundamental frequencies for
each frame of the signal. Fundamental frequencies are
smoothed with a low-pass filter. Parts of the signal that
differ more than 20 semitones from the average signal fre-
quency are selected as vocal pauses.

In our approach we are merging vocal pauses longer
than an experimentally obtained value ξ5 = 4ms, while
shorter vocal pauses are ignored. We are also taking into
account the minimal length of a vocal pause which is in



our case ξ6 = 250ms. Again, endings of vocal pauses are
used as candidates for stanza beginnings. In Figure 2(c) the
detected vocal pauses are shown (green are the beginnings
and red are endings) for a sample recording.

(a) Detected parts with low energy.

(b) Detected parts with low amplitude envelope.

(c) Parts with no detectable fundamental frequency.

(d) All detected stanza boundary candidates.

Figure 2. Comparison of methods for vocal pause detec-
tion. In images (a), (b) and (c) green are beginnings of
vocal pauses and red are vocal pauses endings. In image
(d) green are candidates for stanza boundaries and red is
the value of fitness function for the candidates.

3.3 Finding candidates for stanza boundaries

In search for candidates for stanza boundaries we merge
all sets of vocal pauses obtained with the previously de-
scribed methods. An example of such a merged set is dis-
played in Figure 2(d) where the beginnings of vocal pauses
are omitted and only their endings, which we consider as
candidates for stanza boundaries, are shown in green. If
candidates are present in several sets before merging, they
are merged into a single candidate boundary.

We assume that the first candidate from the set repre-
sents the actual beginning of the first stanza. We then
calculate the distance of the first ξ7 = 10s of this first
stanza to the 10s beginnings of all other stanza candidates
determined by the candidates for stanza boundaries. The
value of ξ7 was chosen to represent approximately half of
the average stanza length in our dataset. The calculation
of distances between different stanza candidates takes the
pitch drifting and tempo variations into consideration and
is composed of four steps and is illustrated in Figure 3.

3.3.1 Step 1

We calculate 12 dimensional chromagrams, as defined in
[8], for all stanza candidates using a window size of 50ms.

Figure 3. Outline of the algoritm for evaluating candidate
stanza beginnings.

3.3.2 Step 2

We define a distance function between each pair of 12 di-
mensional chroma vectors as the root mean square (RMS)
distance, which was also used for chorus detection in [6]:

c(a,b) =

√
(
∑

i(ai − bi)2√
12

, (1)

where c is the distance function between two chroma vec-
tors a and b, ai and bi are i-th elements of chroma vectors.

3.3.3 Step 3

The defined distance function is used by the Dynamic Time
Warping (DTW) algorithm for calculation of the total dis-
tance between the selected stanzas as:

cp(p1, p2) =
L∑

l=1

c(p1(l), p2(l)) (2)

where p1 and p2 are candidate stanza beginnings. p1(l) and
p2(l) are the corresponding chroma vectors (previously la-
beled as a and b), the index l takes values from the first
(1) to the last (L) chroma vector in the selected audio part.
The DTW is used for calculating the total distance between
two stanza candidates:

cmin(dj) = DTW (d0, dj) = min{cp(d0, dj)}, (3)

where cmin is the minimal cost between parts d0 and dj .
A similar approach that uses DTW for calculating the cost
was used in [10].

3.3.4 Step 4

To account for pitch drifting during singing, we also calcu-
late distances between stanza candidates with shifted chr-
oma vectors. The chroma vectors are circularly shifted up
to two semitones up and down to compensate for the out-
of-tune singing. We then select the lowest DTW distance
as:

distmin(d0) = 0,

distmin(dj) = min
df
j ,f∈[−2,2]

{cmin(d0, d
f
j )}, (4)



Figure 4. Fitness function for evaluating the candidate
stanza beginnings.

where dfj represents a rotation of chroma vectors for the
selected stanza candidate from two semitones downwards
to two semitones upwards in steps of one semitone.

Finally, we define a fitness function for scoring the can-
didate stanza beginnings ki as:

p(i) =

{
0, dj /∈ D
1− (

distmin(dj)
maxj distmin(dj)

)2, dj ∈ D
. (5)

Figure 4 shows such a fitness function (Eq. 5) plotted on
top of the audio signal. As the function is inversely pro-
portional to the distance between the first stanza and a
stanza candidate, higher fitness function values correspond
to stanza boundaries which are more likely - stanzas are
more similar and the candidate thus more likely represents
a repetition of the original first stanza.

3.4 Selection of actual stanza beginnings

The selection of actual stanza beginnings is made with a
simple peak picking algorithm in combination with a global
threshold. In the defined fitness function, peaks represent
the most likely stanza beginnings, so all peaks above a
global threshold, corresponding to the average value of the
fitness function, are picked as the actual boundaries be-
tween stanzas.

4. EXPERIMENTS AND RESULTS

The proposed method was tested on a set of folk songs
from an ethnomusicological archive labeled as solo or choir
singing, totalling 190 minutes in length and containing 135
units of solo or choir singing with an average duration of
100 seconds per unit. The average number of stanzas per
unit was approximately 4, the average length of a stanza 18
seconds.

4.1 Evaluation of developed method

We performed an evaluation of vocal pause detection algo-
rithms, as well as an evaluation of the whole segmentation
method using the different detection algorithms.

The values of algorithm parameters ξ1 . . . ξ7, used in
vocal pause detection algorithms, were determined on a
small set of recordings by evaluating a range of parameter
values and choosing the ones for which the segmentation
algorithm performed best. The algorithm itself is not very
sensitive to changes in these parameters.

4.1.1 Evaluation of vocal pause detection

We evaluated individual approaches for detecting vocal pau-
ses on the dataset containing 545 annotated vocal pauses.
A detected vocal pause was considered as correctly de-
tected, if it was within 2 seconds of the annotated vocal
pause. Table 1 shows precision, recall and F-Measures of
detection for individual methods and their combination. As
shown in the table, combining all of the methods yields
high recall and low precision. This is what we are aim-
ing for at this first stage of the segmentation algorithm,
because the second stage of the algorithm removes irrele-
vant vocal pauses and thus finding as many vocal pauses as
possible is a priority.

Table 1. Comparison of vocal pause detection algorithms.
Algorithm Precision Recall F-Measure

Energy 0,3336 0,8276 0,4755
Amplitude 0,5066 0,3729 0,4296
NoPitch 0,2793 0,5908 0,3793

Combination 0,0894 0,9866 0,1639

4.1.2 Evaluation of the method as a whole

Table 2 shows accuracy of the whole segmentation algo-
rithm by using the four approaches to vocal pause detec-
tion described previously. One can see that the method,
which uses the combination of all vocal pause detection al-
gorithms, significantly outperforms the others. This result
is expected, since individual vocal pause detection algo-
rithms have lower recall, which means that we are already
missing a number of annotated segment boundaries.

Table 2. Segmentation accuracy with different vocal pause
detection algorithms.

Method Precision Recall F-Measure
Energy 0,7592 0,4430 0,5595

Amplitude 0,6886 0,2574 0,3747
NoPitch 0,7447 0,3597 0,3597

Combination 0,6773 0,6435 0,6600

Our method performs well on songs that have strong vo-
cal pauses, songs that consist of melodically similar stan-
zas and songs where the singing is approximately in tune.
One can see an example of such vocal pause detection in
Figure 5(a) where our method finds 9 out of 10 annotated
vocal pauses. The 10th vocal pause is also clearly seen in
the plotted fitness function, however the global threshold-
ing prevents its detection.

The method fails on songs where the first stanza is in-
correctly detected, because all stanzas are always com-
pared to the first stanza. It also has difficulties in cases
where stanzas are melodically very different, because com-
parison of chroma vectors relies on melodically similar
stanzas. An example of such failure is shown in Figure 5(b).



In this example song consists of melodically significantly
distinguished parts. First part of the song consists of three
melodically similar parts that are also detected by our met-
hod, while same is true for the second part, its repeating
parts are not similar to first part of the song.

(a) An example where our method performs well.

(b) An example where our method fails to find any annotated vocal pauses.

Figure 5. The figure shows an example where our method
performs well (a) and an example where our method fails
(b). The sound signal is plotted in blue, the fitness function
is plotted in orange, true stanza beginnings are plotted with
green stars (*) and the detected beginnings are plotted with
pink plus signs (+).

4.2 Comparison with existing methods

We compared the proposed method with two existing folk
song segmentation methods, results are shown in Table 3.
The first method [14] only relies on detection of vocal pauses
for segmentation and does not consider repetitions. Thus,
the method covers most of the annotated vocal pauses (high
recall), however it also detects many false positives, result-
ing in low precision.

We also compared our method with the method pre-
sented in [10] that uses symbolic transcription of a typical
stanza as its input. Due to this additional prior knowledge,
the method outperforms ours by a significant margin, as
the approximate stanza melody and length are known to
the algorithm. But, as this prior knowledge is not always
available, the method cannot be used in all cases.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a novel method for finding re-
peating stanzas in recordings of folk songs. The method re-
lies on the detection of vocal pauses, which represent can-
didate stanza beginnings, which are then evaluated accord-

Table 3. Comparison of our method to other approaches.
Method Precision Recall F-Measure

Kranenburg 0,149 0,930 0,257
Mueller (∆fluc) 0,865 0,748 0,802

Our method 0,442 0,646 0,525

ing to melodic similarity with the first stanza. The vocal
pause detection algorithms and the method as a whole are
separately evaluated on a dataset of folk song recordings.
The method performs well, however several extensions are
planned.

Our future work will include improvements with detec-
tion of the first stanza and processing of the fitness func-
tion, as well as adaptation of the method to instrumental
tunes, where vocal pauses are not present. We also plan
to integrate the developed method with our algorithm for
high-level field recording segmentation, where it could be
used to improve the accuracy of high-level segmentation.
We will also try using more advanced preprocessing of the
audio signal for environmental noise reduction. Other pos-
sibility is to try extracting pitch from the raw audio data
and try finding repeating stanzas in symbolic domain.
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ABSTRACT

Fugues alternate between instances of the subject and of
other patterns, such as the counter-subject, and modula-
tory sections called episodes. The episodes play an impor-
tant role in the overall design of a fugue: detecting them
may help the analysis of the fugue, in complement to a
subject and a counter-subject detection. We propose an al-
gorithm to retrieve episodes in the fugues of the first book
of Bach’s Well-Tempered Clavier, starting from a symbolic
score which is already track-separated. The algorithm does
not use any information on subject or counter-subject oc-
currences, but tries to detect partial harmonic sequences,
that is similar pitch contour in at least two voices. For this,
it uses a substitution function considering “quantized par-
tially overlapping intervals” [14] and a strict length match-
ing for all notes, except for the first and the last one. On
half of the tested fugues, the algorithm has correct or good
results, enabling to sketch the design of the fugue.

1. INTRODUCTION

A fugue is a polyphonic piece built in imitation, where all
voices appear successively sharing the same initial melodic
material: a subject and, in most cases, a counter-subject.
These patterns are repeated throughout the piece, either in
their initial form or more often altered or transposed, build-
ing a complex harmonic texture. Many composers wrote
fugues, or included fugal parts in larger pieces. The two
books of Bach’s Well-Tempered Clavier are a particularly
consistent corpus, exploring the 24 major and minor tonal-
ities in 48 preludes and fugues.

Fugues are often viewed as one of the pinnacle forms of
Western music, and they are also used for pedagogical pur-
poses, in music analysis as in composition. Their structure
may look very formal, but still enable high levels of cre-
ativity. There are many treatises on fugues, or, more gener-
ally, on counterpoint, as for example [13] or [18]. Some of
them include a complete musicological analysis of Bach’s
Well-Tempered Clavier, as the books of S. Bruhn [3, 4].
The fugues are thus perfect candidates for Music Informa-
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tion Retrieval (MIR) research, stimulating the development
of algorithms on symbolic scores.

A first way to analyze fugues can be to use generic tools
detecting repeating patterns or themes, possibly with ap-
proximate occurrences. Similarity between parts of a piece
may be computed by the Mongeau-Sankoff algorithm [17]
and its extensions, or by other methods for approximate
string matching [6, 7, 19], allowing a given number of re-
stricted mismatches. Several studies focus on finding max-
imal repeating patterns, limiting the search to non-trivial
repeating patterns, that is discarding patterns that are a sub-
pattern of a larger one with the same frequency [10,12,15].
Other studies try to find musically significant themes, with
algorithms considering the number of occurrences [20],
but also the melodic contour or other features [16].

More specifically, some MIR studies already focused
on fugues. The study [21] builds a tool to decide if a piece
is a fugue or not, with a method to find occurrences of
thematic materials. The bachelor thesis [2] contains meth-
ods to analyze fugues, including voice separation. It pro-
poses several heuristics to help the selection of repeating
patterns inside the algorithms of [10] which maximizes the
number of occurrences. The web site [9] also produces an
analysis of fugues, extracting sequences of some repeating
patterns, but without precise formal analysis. Finally, we
proposed in [8] a method to detect subjects and counter-
subjects, based on an analysis of repeating patterns with a
diatonic substitution function and a specific length match-
ing. This method finds the precise ends of these patterns
in the majority of the fugues of the first book of Bach’s
Well-Tempered Clavier.

The subject and the counter-subject are focus of musi-
cal cognition, and will often be what is remembered from
a fugue. However, the link between the different exposi-
tions of these patterns occurs in transitional sections called
episodes that modulate from one tonality to another [13,
18]. The episodes have a part in the development of ten-
sion during the fugue.

To our knowledge, no previous MIR study was devoted
to analysis of episodes. Episodes can be detected by the
absence of subjects and counter-subjects: A perfect detec-
tion of subjects and counter-subjects should yield a perfect
episode detection. In this paper, we try to retrieve episodes
without using any information on subject or counter-subject
occurrences. We thus look for a positive identification of



episodes. Starting from a symbolic score which is already
track-separated, we propose an algorithm to retrieve episo-
des containing partial harmonic sequences, that is similar
pitch contour in at least two voices. Harmonic sequences
are commonly used to modulate, and are thus an essential
feature of many episodes.

As in [8], the algorithm uses a strict length matching for
all notes, except for the first and the last one. We tested sev-
eral substitution functions to have a sensible and specific
approximate matching. Our best results use the “quantized
partially overlapping intervals” (QPI), introduced by Lem-
ström and Laine in [14], that can be also seen as one case
of the “General Pitch Interval Representation” defined by
Cambouropoulos in [5].

The paper is organized as follows. Section 2 gives def-
initions and some background on fugues, Section 3 details
our algorithm for episode detection through partial har-
monic sequences, and Section 4 details the results on 21
fugues of the first book of Bach’s Well-Tempered Clavier.
These results were evaluated against a reference musico-
logical book [4]. On half of the tested fugues, the algo-
rithm has correct or good results, enabling to sketch the
design of the fugue. The other cases are fugues where
the episodes do not show enough harmonic sequences, or
where the sequences are too short or too much altered.

2. PRELIMINARIES

A note x is described by a triplet (p, o, `), where p is the
pitch, o the onset, and ` the length. The pitches can de-
scribe diatonic (based on note names) or semitone infor-
mation. We consider ordered series of notes x1 . . . xm,
that is x1 = (p1, o1, `1), . . . , xm = (pm, om, `m), where
1 ≤ o1 ≤ o2 ≤ . . . ≤ om (see Figure 1). The se-
ries is monophonic if there are never two notes sounding
at the same onset, that is, for every i with 1 ≤ i < m,
oi+`i ≤ oi+1. To be able to match transposed patterns, we
consider relative pitches, also called intervals: the interval
series is defined as ∆x2 . . .

∆xm, where ∆xi = (∆pi, oi, `i)
and ∆pi = pi − pi−1.

Figure 1. A monophonic series of notes (start of Fugue #2,
see Figure 4), represented by (p, o, `) or (∆p, o, `) triplets.
In this example, onsets and lengths are counted in six-
teenths, and pitches and intervals are counted in semitones
through the MIDI standard.

Fugue. We now introduce some notions about fugue anal-
ysis. These concepts are illustrated by Fugue #2 of the first
book of Bach’s Well-Tempered Clavier. This fugue has a
very regular construction.

A fugue is given by a set of voices, where each voice is a
monophonic series of notes. In Bach’s Well-Tempered Cla-
vier, the fugues have between 2 and 5 voices, and Fugue
#2 is made of 3 voices.

The fugue is built on a theme called subject. The first
three occurrences of the subject in Fugue #2 are detailed
in Figure 4: the subject is exposed at one voice (the alto),
beginning on a C, until the second voice enters (the so-
prano, measure 3). The subject is then exposed at the sec-
ond voice, but is now transposed to G. Meanwhile, the first
voice continues with the first counter-subject that com-
bines with the subject. Figure 3 shows a sketch of the en-
tire fugue. The fugue alternates between other instances
of the subject together with counter-subjects and develop-
ment and modulatory sections called episodes.

Episodes and sequences. The episodes “effect a smooth
transition from one key to the next [and] provide variety,
as well as relief from a constant emphasis on the subject as
a whole” [13]. They are often built on portions of material
from the subjects of counter-subjects. S. Bruhn lists three
roles for an episode in the design of the fugue: “It can
link two subject statements by leading from one towards
the next; it can be conclusive by resolving tension that was
built up by the preceding subject statement; it can represent
a different register, appearing basically independent of its
surroundings and serving as a color contrast.” [4].

The Figure 3 shows the two first episodes of Fugue #2.
Note that the term “episode” can also be restrained to the
ones after the exposition of all voices, the first episode be-
ing called codetta [18].

The episodes can include cadential passages for the re-
lease of tension. However, they are often composed with
harmonic sequences, which are passages where a pattern
is consecutively repeated starting on a different pitch. Fig-
ure 2 shows a simple harmonic sequence, outside of a fugue.
Sequences can be diatonic (keeping the same key signa-
ture, possibly modulating to a neighbor tonality) or real
(possibly gaining or losing some sharps or flats, often mod-
ulating to some other tonality).

Figure 2. A simple diatonic sequence [1]. The values in-
dicate the intervals from the preceding note of the same
voice, in number of semitones. The occurrences #1 and
#3 have exactly the same semitone intervals. The occur-
rence #2 is identical to these occurrences when one con-
siders only diatonic information.



Figure 3. Analysis of Fugue #2 in C minor in the first book of Bach’s Well-Tempered Clavier (BWV 847). Top: ground
truth (analysis by S. Bruhn, used with permission [4], [4, p. 80]). Bottom: the two lines named “detected sequences”
show the output of the proposed algorithm, detecting partial harmonic sequences in 5 out of the 6 episodes and 68% of
the concerned measures. The only false positive is the end of the second episode: at measure 11, it overlaps with the next
occurrence of the subject (S) and counter-subject (CS).

Figure 4. Start of Fugue #2 in C minor (BWV 847), showing the ground truth for the first two episodes. Non-episodic
parts are grayed. The notes starting the initial patterns and the occurrences of the sequences are circled.



3. EPISODE DETECTION

We propose here to detect episodes containing partial har-
monic matches in at least two voices. For this, we con-
sider consecutively repeating patterns under a substitution
function using a relaxed similarity for pitch intervals, and
enforcing length equalities of all notes but the first one and
the last one. These are very conservative settings, to have
as few false positives as possible.

Consecutively repeating patterns. Formally, in a given
voice x, we look for consecutively repeating patterns of
p notes, starting at note xe. The pattern xe...xe+p−1 has
a candidate second occurrence xe+p...xe+2p−1, and, for
larger episodes, we also check for a third (xe+2p...xe+3p−1)
and fourth (xe+3p...xe+4p−1) occurrences.

The score I(x, e, p, r) between the pattern xe...xe+p−1

and its candidate occurrence number r (r = 2, 3 or 4) is
defined by the number of intervals matched between the
pattern and its candidate occurrence:

I(x, e, p, r) = δ(∆xe+1,
∆xe+(r−1)p+1)

+ δ(∆xe+2,
∆xe+(r−1)p+2)

+ · · ·
+ δf (

∆xe+p,
∆xe+rp)

As in [8], we propose to use a strict length matching for
all notes, except for the first and the last one – the length
of these notes, at the extremities of the pattern, being more
frequently altered. The substitution function δ checks thus
pitch intervals and lengths, whereas the substitution func-
tion, δf , for the last note, only considers pitch intervals:

δ((∆p, o, `), (∆p′, o′, `′)) =
+1 if ∆p ≈ ∆p′ and ` = `′

0 if ∆p 6≈ ∆p′ and ` = `′

−∞ otherwise (` 6= `′)

δf ((
∆p, o, `), (∆p′, o′, `′)) ={

+1 if ∆p ≈ ∆p′

0 otherwise (∆p 6≈ ∆p′)

The actual comparison of lengths (` = `′) also checks
the equality of the rests that may be immediately before
the compared notes. The length of the first note of the pat-
tern (xe against xe+(r−1)p) is never checked, as the score
actually compares the series of intervals ∆xe+1 . . .

∆xe+p

against ∆xe+(r−1)p+1 . . .
∆xe+rp.

The relation≈ is a similarity relation on pitch intervals.
We use here the “quantized partially overlapping intervals”
(QPI) [14], that defines short intervals (from one to three
semitones), medium intervals (from three to seven semi-
tones), and large intervals (starting from six semitones).

These classes can be considered for upward or down-
wards intervals, giving, with the unison intervals, a total
of 7 different interval classes. Two pitch intervals ∆p and
∆p′ will be considered as similar if there exists one class
containing both of them.

There is an exact occurrence of the consecutively re-
peating pattern if I(x, e, p, r) = p−1. For example, on the
sequence depicted on Figure 2, for any of the four voices x
and for r ∈ [2, 3], we have I(x, 1, 4, r) = 3, since intervals
are perfectly similar under the QPI similarity relation. An
approximate occurrence can be detected if I(x, e, p, r) is
at least equal to a given threshold τ(p).

Here the score I(x, e, p, r) only considers substitution
operations, and can be computed in time O(p). The score
can be extended to consider other edit operations, with
computation through dynamic programming.

Episode detection through partial sequences. On the be-
ginning of the Fugue #2, the consecutively repeating pat-
terns are as follows:

• the second episode fits perfectly into an sequence:
I(soprano, 58, 7, 2) = 6, I(alto, 76, 7, 2) = 6 and
I(tenor, 21, 16, 2) = 15.

• the first episode has two complete occurrences, as
I(soprano, 21, 5, 2) = 4 and I(alto, 41, 6, 2) = 5.
There is no complete third occurrence, as the lengths
do not match for one voice: I(alto, 41, 6, 3) = −∞.

The complete algorithm computes I(x, e, p, r) for every
voice x, every note xe starting right after a quarter beat,
several periods (1 quarter, and 1/2, 1 and 2 measures) and
for r ∈ {2, 3, 4} occurrences. The algorithm reports an
episode every time that at least two different voices contain
a consecutively repeating pattern after the same onset (with
τ(p) = 0.5 × p). Overlapping episodes with the same
period are merged into an unique episode. The result on
the Fugue #2 is depicted at the bottom of Figure 3.

For testing purposes, we used a naive implementation
running in O(n2) worst time, where n is the total number
of notes in the fugue. Even if similarities between occur-
rences in a sequence could be computed with tools in exist-
ing frameworks (such as the simil tool in the Humdrum
toolkit [11, 19]), we coded our own implementation to be
able to handle some specificities (specific length matching,
partial detection in two voices).

4. RESULTS AND DISCUSSION

Results can be asserted in two different ways:

• We can count the sequences that are located com-
pletely or partially in episodes of the ground truth;

• More precisely, we can look at the total length of de-
tected sequences, and compare it to the total length
of all ground truth episodes, computing a ratio called
length sensibility. This sensibility can be seen as a
coverage of episodes by harmonic sequences: it will
not reach 100%, as some episodes do not have se-
quences, and as the sequences may not be spanning
all the episodes. We also compute a length speci-
ficity as the ratio between the lengths of true positive
measures and of detected measures.



The result on Fugue #2 is shown at the bottom of Fig-
ure 3. Here 5 episodes out of 6 are detected with partial
harmonic sequences. This is musically relevant, since the
last episode (measures 29-31) is a cadential end, with a last
exposition on the subject on a bass pedal. The ground truth
has 14 1/2 measures of episodes. The algorithm outputs 10
measures (length sensibility of 68%) and falsely marks one
half measure (2 quarters) as an episode (length specificity
of 96%).

The false negatives are: 1 measure at the codetta (due
to the shift between the two voices, only 2 occurrences are
detected), 2 measures and a half at measure 24 (including
a change of voices, see below), and all the 3 measures of
the last episode (discussed above). The only false positive
is the end of the second episode, which is extended 2 quar-
ters below the next subject occurrence at measure 11, the
soprano and the bass voices continuing the sequence (see
Figure 4, last measure).

The complete test contains 21 fugues of the first book of
Bach’s Well-Tempered Clavier (fugues #1, #4 and #9 not
showing significant episodic material). We started from
.krn Humdrum files [11], available for academic pur-
poses at http://kern.humdrum.org/. The output
of the algorithm on all these 21 fugues is available at http:
//www.lifl.fr/˜giraud/fugues. We checked all
detected episodes, and Table 1 summarizes the results. On
the 1098 measures of this test set, the algorithm labels
about 20% of the measures as episodes, and finally identi-
fies 43% of all episodes. A subjective quality assessment
on the predictions, looking on the detailed output of each
run, gives a good mark on 6 fugues, and a correct mark for
5 out of the 21 fugues.

False positives. There are very few false positives: less
than 5% of the partial harmonic sequences overlap with
subject and counter-subject occurrences. As for the mea-
sure 11 in Fugue #2, this is often because the texture of the
episode fades into the next section.

False negatives. The length sensibility, that is the cover-
age of the episodes (in the ground truth) by the prediction
of harmonic sequences is, in average, only 36%. These
false negatives can be explained by several facts:

• As mentioned above, the sequences often not cover
all the episodes. Moreover, there are some episodes
with no harmonic sequence: It is often the case for
the last episode, which is thus almost always missed
by the proposed method;

• There are some episodes with changes of voices (Fig-
ure 5), in which the consecutive occurrences of a pat-
tern are not in a same voice;

• Finally, the algorithm fails to detect some partial har-
monic sequences that are too much altered to be rec-
ognized with the current threshold, or too short to be
discovered.

Figure 5. Partial sequence with a change of voices: the
pattern is heard at the soprano, then, transposed, at the alto
(measure 24 of Fugue #2).

5. CONCLUSIONS

We proposed an algorithm retrieving some episodes in the
first book of Bach’s Well-Tempered Clavier, starting from
a symbolic score which is already track-separated. To our
knowledge, this is the first MIR study on episodes in fugues.
The algorithm, relying only on partial harmonic sequences
detection, gives very few false positives, and already gives
good results on some fugues. Enabling voice changes in-
side harmonic sequences should naturally detect more epi-
sodes, but may produce more false positives.

Many improvements are possible to have a better anal-
ysis of episodes. Detection of other positive features of
the episodes (such as cadential passages) or, most of all, of
some negative features (subject and counter-subject occur-
rences) could probably lead to a complete fugue analysis
pipeline with better results.

The algorithm could also be tested on other corpus of
fugues. As an example, the web page http://www.
lifl.fr/˜giraud/fugues shows the output of the
proposed algorithm in the fugue of Mozart’s Adagio and
Fugue in C minor, K 546. Finally, partial or full harmonic
sequence detection could be used to help the analysis of
other genres.
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ABSTRACT

We improve upon our simple approach for learning the
“associational meaning” of chord sequences from lyrics
based on contingency statistics induced over a set of lyrics
with chord annotations. Specifically, we refine this pro-
cess by using word alignment tools developed for statis-
tical machine translation, and we also use a much larger
set of chord annotations. In addition, objective evaluation
measures are included. Thus, this work validates a novel
application of lexicon induction techniques over parallel
corpora to a domain outside of natural language learning.
To confirm the associations commonly attributed to major
versus minor chords (i.e., happy and sad, respectively), we
compare the inferred word associations against synonyms
reflecting this dichotomy. To evaluate meanings associated
with chord sequences, we check how often tagged chords
occur in songs labeled with the same overall meaning.

1. INTRODUCTION

Chords are the foundation of western music, providing the
harmony for music and also influencing the melody (given
close relation to musical keys). Chords are not simply three
or more notes simultaneously played but also involve pre-
cise relationships among the notes. For example, the notes
in a major chord consist of the root (lowest frequency),
a note a third above the root (i.e., two whole steps), and
a note a fifth above the root (e.g., three whole steps and
a half). An example would be the CMaj chord, which
consists of the notes C, E and G. Likewise, chord se-
quences generally have precise definitions. For example,
the popular 12-Bar Blues Progression commonly uses the
following scheme: 〈I, I, I, I, IV, IV, I, I, V, IV, I, I〉, where
Roman numerals refer to chord intervals [16]. In the key
of C, this would be as follows: 〈C, C, C, C, F, F, C, C,
G, F, C, C〉. Given such precise relationships to musical
intervals, meanings typically attached to chord sequences
are unlikely to be completely arbitrary. This paper demon-
strates how to learn the associational meaning [8] of chord
sequences (e.g., in terms of word associations).
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Parallel text corpora were developed primarily to serve
multilingual populations but have proved invaluable for in-
ducing lexicons for machine translation [2, 5]. Similarly, a
type of resource intended for musicians can be exploited
to associate meaning with music. Guitarists learning new
songs often rely upon tablature notation (“tabs”) provided
by others to show the finger placement for a song measure
by measure. Tabs often include lyrics, enabling note se-
quences to be associated with words. They also might in-
dicate chords as an aid to learning the sequence (as is often
done in scores for folk songs). In some cases, the chord an-
notations for lyrics are sufficient for playing certain songs
(e.g., accompaniment by guitar strumming).

There are several web sites with large collections of tabs
and chord annotations for songs (e.g., about 250,000 via
www.chordie.com). These build upon earlier Usenet-based
guitar forums (e.g., alt.guitar.tab). Such repositories pro-
vide a practical means to implement unsupervised learn-
ing of the meaning of chord sequences from lyrics. As
these resources are willingly maintained by thousands of
guitarists and other musicians, a system based on them can
be readily kept current. This paper investigates how to uti-
lized such resources for associating meaning with chords.

A motivation for this work comes from the context of
songwriting. Given lyrics one has written, the challenge is
to come up with the structure of the accompaniment, such
as chord sequences that might be strummed and/or a series
of notes to be played at various points of the song. Al-
though the main consideration is in composing music that
sounds good when played, it is often desirable for the mu-
sic to convey a mood that complements the lyrics. The ap-
proach used here could be used to suggest chord sequences
that might convey moods suitable for a particular set of
lyrics. It could also aid in the reverse direction to aid song-
writers who proceed from melody to lyrics, but this would
require elaborate natural language generation support [7]
to produce coherent lyrics. This is a follow-up to our previ-
ous work [15], which presents a simple approach for learn-
ing the meaning of chord sequences from associated lyrics.
There, co-occurrence statistics are maintained over chord
sequences and meaning tokens to determine significant as-
sociations. To improve the associations between chords
and lyrics, we use tools developed for machine transla-
tion, which rely upon word alignments discovered in par-
allel corpora. This is not to suggest that learning mean-
ing from chords is simply a matter of “translating” chord
sequences into text. Our hypothesis is simply that word



associations over a large collection of lyrics with chord an-
notations provide an effective basis for chord meanings.
Given the relatively small number of chords used in prac-
tice compared to words, this is a many-to-few type of as-
sociation (i.e., course-grained). Text categorization can be
used to produce more constrained associations, as done in
our previous work [15], which is more suitable for music
recommendation.

We first discuss related work (§2). Subsequent sections
provide details on the methodology (§3), an overview of
the data (§4), and experimentation results (§5). We con-
clude with a summary and directions for future work (§6).

2. BACKGROUND

There has been a variety of work in music information re-
trieval on learning the meaning of music. Most approaches
have used supervised classification in which user tags serve
as ground truth for machine learning algorithms. A few
have inferred the labels based on existing resources. The
approaches differ mainly on the types of features used.
Whitman and Ellis [20] combine audio features based on
signal processing with features based on significant terms
extracted from reviews for the album in question, thus an
unsupervised approach relying only upon metadata about
songs (e.g., author and title). Turnbull et al. [19] use sim-
ilar types of audio features, but they incorporate tagged
data describing the song in terms of genre, instrumentality,
mood, and other attributes. Hu et al. [6] combine word-
level lyrics and audio features, using tags derived from
social media, filtered based on degree of affect, and then
revised by humans (i.e., partly supervised). McKay et al.
[11] combine class-level lyric features (e.g., part of speech
frequencies and readability level) with ones extracted from
user tags from social media, specifically via Last.fm. 1 They
also include features for general term co-occurrence via
web searches for the task of genre classification.

There has been other recent work in analyzing symbolic
chord annotations. Macrae and Dixon [9] extract online
chord annotations and show how they can be ranked ac-
cording to sequence similarity to help filter bad annota-
tions. McVicar et al. [13] use chord sequences from on-
line sources to augment the task of chord recognition from
audio via Hidden Markov Models (HMM’s). Barthet et
al. [1] extract chord annotations to augment a guitar tutor
program (e.g., to illustrate chord fingering).

Lastly, there are a few approaches addressing the re-
lations between lyrics and audio, rather than using them
as separate features. Torres et al. [18] use a correlation-
based approach referred to as Canonical Correlation Anal-
ysis (CCA) to associate lyrics with audio features. Under
the CCA methodology, songs are represented in two fea-
ture spaces: a semantic annotation feature space and an
audio feature space. For each space, the CCA identifies
a one dimensional projection that maximizes the correla-
tion between the projected data. The identified projections
are used to construct and refine a musically meaningful vo-

1 See http://www.last.fm.

Overall process

1. Obtain large collection of lyrics with chord annotations
2. Extract lyrics proper with annotations from dataset
3. Convert into tab-delimited chord annotation data format
4. Determine best chord-word associations

Simple approach

4a. Fill contingency table: chord(s)/word co-occurrences
4b. Determine significant chord(s)/word associations

Preferred approach

4a. Invoke GIZA to produce chord(s)/word alignments
4b. Filter extraneous alignments

Figure 1. Process in learning meanings for chord se-
quences. The meanings are via individual words; and,
chord(s) is a single chord or a four-chord sequence.

cabulary applied to assigning meaning to music. In addi-
tion, they present an approach to infer the projections un-
der the assumption that the vector spaces are sparse. More
recently, McVicar et al. [12] apply CCA to assess the cor-
relation between lyrics and audio features as a part of an
unsupervised system for quantifying mood. The system
exploits a special dictionary on affect, specifically with
ratings for valence (e.g., ‘pleased’ vs. ‘frustrated’) and
arousal (e.g., ‘excited’ vs. ‘sleepy’). Both approaches deal
with meaning at the song level, but we address the issue
of assigning meaning to smaller units. Furthermore, rather
than audio features, we assign meanings to musical units
more commonly used in music theory (e.g., chord progres-
sions), making the results more accessible to musicians.

Parallel corpora are vital for machine translation. Gale
and Church [5] show how translation lexicons can be in-
duced via co-occurrence statistics over contingency tables
derived from such corpora. Parallel corpora have also been
exploited to develop statistical machine translation systems,
following pioneering work by IBM [2]. This incorporates
sophisticated statistical models to account not only for co-
occurrence, but also word order and degree to which align-
ment with multiple words are allowed (i.e., “fertility”, which
can account for phrasal alignments). Och and Ney [14]
show that these models outperform other approaches for
alignment (using GIZA, their implementation of them).

3. METHODOLOGY

Figure 1 lists the steps involved in the overall process
for learning the meaning of chord sequences. First, a web-
site for guitar instruction is downloaded to obtain a large
sample of lyrics with chord annotations. The resulting data
then is passed through a filter to remove extraneous text
associated with the lyrics (e.g., transcriber notes). Next,
the data is converted into a tabular format reflecting the
chord/lyrics correspondences.

There are two approaches for obtaining the chord/word



Alternating lines:

C F
They’re gonna put me in the movies
C G
They’re gonna make a big star out of me

C
We’ll make a film about a man that’s sad

F
and lonely
G7 C

And all I have to do is act naturally

In-line chords:

[C] They’re gonna put me in the [F] movies
[C] They’re gonna make a big star out of [G]

me
We’ll [C] make a film about a man that’s sad

and [F] lonely
And [G7] all I have to do is act

[C] naturally

Figure 2. Chord annotation sample. Lyrics are from
“Act Naturally” by Johnny Russell, with chord annotations
for the song as recorded by Buck Owens.

associations. In the simple approach, the data is converted
into contingency tables from which co-occurrence statis-
tics [10] are computed (e.g., Dice and mutual informa-
tion). In the preferred approach (i.e., current NLP “best
practice”), the data is formatted as a parallel corpus file
and fed into a statistical word alignment system, such as
GIZA. Afterwards, extraneous alignments are filtered.

3.1 Lyric Chord Annotation Data

The most critical resource required is a large set of lyrics
with chord annotations. These annotations are often spec-
ified with alternative lines for chords and for the lyrics.
They can also be specified with chords in-line with the
lyrics. Figure 2 shows some examples of both formats.
The popular website Chordie is used to obtain the data. 2

The website is crawled, and all the songs in the chord.pere
directory are extracted (other directories are for user song-
books, etc.). There are over 65,000 files, but preprocessing
complications reduces this to about 10,000 usable songs.
After all processing, over 2 million distinct chord annota-
tions are obtained. The chord annotation data is used as is
(e.g., without normalization into key of C). We are working
on transposing into the key of C, but we have run into key
detection issues with the standard approach using key pro-
files [17]: presumably, that relies upon support from notes
in the melody (omitted from chord annotations).

After the chord-annotated lyrics are downloaded, post-
processing is needed to ensure that user commentary and
other additional material are not included. This is based
on a series of regular expressions. 3 The lyrics are all con-
verted into a tabular format that more directly reflects the

2 See www.chordie.com; this was crawled in September of 2011.
3 The Perl code for reproducing the experiments is available at

www.cs.txstate.edu/%7Eto17/chord-meaning-from-lyrics.

C They’re gonna put me in the
F movies <l>
C They’re gonna make a big star out of
G me <l> We’ll
C make a film about a man that’s sad and
F lonely <l> And
G7 all I have to do is act
C naturally <l> <v>

Figure 3. Sample chord annotations extracted from
lyrics. Each chord instance in figure 2 has a separate line.

Contingency Table Cells
X\Y + -

+ XY X¬Y
- ¬XY ¬X¬Y

G versus ‘film’
+ -

+ 14 231,223
- 85 1,557,047

Table 1. Contingency tables. The left shows the general
case, and the right shows the data for chord G and ‘film’.

line-level alignment of chords and the corresponding text.
Specifically, this uses a tab-separated format with the cur-
rent chord name along with words from the lyrics for which
the chord applies. There will be a separate line for each
chord change in the song. Figure 3 illustrates this format.
This shows that special tokens are also included to indicate
the end of the line and verse.

3.2 Chord Sequence Token Co-occurrence

As mentioned above, the simple approach to deriving word
associations is based on co-occurrence statistics. Several
metrics have been proposed to measure this [4]; for exam-
ple, Chi Square analysis determines the extent to which co-
occurrence counts differs from that due to chance (e.g., dif-
ference of joint probability from the product of the marginals).

Given the tabular representation of the chord annota-
tions with lyrics words, the next stage is to compute the co-
occurrence statistics. This first tabulates the contingency
table entry for each pair of chord and target token, as il-
lustrated in table 1. (Alternatively, chord sequences can
be of length four, as discussed later. These are tabulated
using a sliding window over the chord annotations, as in
n-gram analysis.) This table shows that the chord G co-
occurred with the word ‘film’ 14 times, out of the 231,237
total instances for G. The word itself had 99 occurrences,
and there were 1,557,047 instances where neither the word
‘film’ nor the chord G occurred. Next, a variety of co-
occurrence metrics are derived using these tabulations, in-
cluding Dice, Jaccard, mutual information, Chi square, and
G2 log likelihood [4, 10]. These are defined as shown in
figure 4.

3.3 Alignment via GIZA

Using the IBM models [2] for word alignment has been
shown to outperform simple co-occurrence metrics [14].
For this, we use the GIZA toolkit (specifically GIZA++
version 2). Given its development for machine translation,



Dice(X, Y ) =
2× P (X = 1, Y = 1)
P (X = 1) + P (Y = 1)

Jaccard(X, Y ) =
f(X = 1, Y = 1)

f(X = 1, Y = 1) + f(X = 1, Y = 0) + f(X = 0, Y = 1)

MI(X, Y ) = log2
P (X = 1, Y = 1)

P (X = 1)× P (Y = 1)
AvgMI(X, Y ) =

P
x

P
y

P (X = x, Y = y)× log2(P (X = x, Y = y))
P (X = x)× P (Y = y)

χ2(X, Y ) =
P

i,j

P (obs[ij]− exp[ij])2

exp[ij]
G2(X, Y ) = 2 ∗

P
i,j exp[ij]× log(

obs[ij]
exp[ij]

)

Dice(G, film) = 0.000121; Jaccard(G, film) = 0.000061; MI(G, film) = 0.129199
AvgMI(G, film) = 0.0000001; X2(G, film) = 0.129045; G2(G, film) = 0.125770

Figure 4. Common co-occurrence metrics. Using the counts shown in table 1, these statistics can be directly computed,
resulting in the values shown for the chord G and word ‘film’.

C F They’re gonna put me in the movies<l>
C G They’re gonna make a big star ... me<l>
C F We’ll make a film about a man that’s \\

sad and lonely<l>
F G7 C And all I have ... act naturally<l>

Figure 5. Alternative chord annotations extracted from
lyrics. Chords for same verse line in figure 3 are together.

GIZA requires the specification of the source and target
languages. Most work in statistical MT treats English as
the source language and another language like French as
the target. For the experiments discussed here, the chords
are treated as the source and the target the words (mostly
English). In our case, running the tool with the reverse di-
rection produces negligible differences. In addition, GIZA
normally includes a preprocessing stage that groups tokens
in classes based on similar usages. However, that stage is
omitted here because there is no context with which to de-
termine the classes.

IBM Model 1, the simplest one in GIZA, follows: [2]
Pθ(t, a|s) = Pθ(l|s)Pθ(a|l, s)Pθ(t|a, l, s)

where s is the source language, t is the target language, l
is target sentence length, a is the alignment, and θ are the
overall parameters. The alignments are hidden and esti-
mated via an HMM.

Prior to using GIZA, each column is put into separate
files. Then, the toolkit preprocessing utilities convert them
into a combined sentence file. (To avoid problems, lines
that are too long or that contain garbage are discarded us-
ing the toolkit’s utility to clean the input files.) GIZA only
relies upon line correspondence in the two files when es-
tablishing alignments. Figure 5 shows how the input might
be formatted. In addition, an optional step is used to group
chords on the same line into sequences of four chords (e.g.,
C D C D), which are treated as individual tokens in the
alignment.

4. OVERVIEW OF DATA

Before discussing the experiments, we present characteri-
zations of the data involved. Naturally, lyrics are different
from general English. Table 2 illustrates some differences
in relative frequency for the top words. Comparing the two
word frequency listings, we can see some peculiarities with

General Lyrics General Lyrics
Word Freq Word Freq Word Freq Word Freq
the .057 i .033 with .007 is .005
and .028 the .028 as .006 all .005
of .027 a .028 at .005 for .005
to .026 you .024 this .005 we .005
a .023 and .018 they .005 can .004
in .019 to .017 be .005 but .004
that .013 in .011 are .005 so .004
i .011 it .010 have .005 don .004
it .010 me .010 we .005 re .004
is .010 my .009 but .005 ll .004
for .009 of .008 his .005 d .004
you .008 on .007 from .004 love .004
was .008 that .007 not .004 no .004
he .007 your .006 n’t .004 she .004
on .007 be .005

Table 2. Top words in corpus. General word frequencies
based on Corpus of Contemporary American English [3],
and word frequencies for lyrics based on Chordie.

respect to lyrics, such as the most common word being ‘I’
rather than ‘the’ and that ‘you’ moves up to the top 5. The
word ‘love’ moves up in rank dramatically (271 to 27), and
the word ‘your’ moves up a bit as well (from 69 to 14).

Frequency information for common chords and for chord
sequences is shown in table 3. This illustrates that the ma-
jor chords dominate the others, accounting for 64% of to-
tal occurrences. The B chord is an oddball, occurring less
frequently than both of the minor chords Am and Bm, as
well as being just a little more frequent than its minor. Note
that the top of the sequence listing is skewed towards ma-
jor chords; minor chords do occur in about half of the se-
quence types.

5. EXPERIMENTS

Two separate groups of experiments are performed. We
first present an evaluation of the meanings attached to in-
dividual chords, using the common happy-versus-sad at-
tribution regarding major versus minor chords. We also
evaluate arbitrary chord sequences, using external annota-
tions for songs meanings. External song-level annotations



Single Sequence Single Sequence
Ch. Freq Seq. Freq Ch. Freq Seq. Freq
G .154 CGCG .005 G7 .010 CFCF .003
C .124 GCGC .005 D7 .008 DCGD .003
D .124 EEEE .004 A7 .008 GCGD .002
A .094 DGDG .004 E7 .007 DAGD .002
E .068 GDGD .003 Gm .006 GCDG .002
F .061 GDCG .003 Eb .006 AGDA .002
Am .053 EAEA .003 Em7 .006 AEDA .002
Em .047 DADA .003 Am7 .005 DGCG .002
B .026 ADAD .003 Cm .005 GDAG .002
Bm .022 AEAE .003 B7 .005 CGDG .002
Dm .019 CGDC .003 C7 .005 DAED .002
Bb .015 FCFC .003 Cadd9 .004 GDEmC .002

Table 3. Chord frequency. This shows the frequency of
chords and sequences (i.e., 4-grams) in Chordie.

happy: happy, blessed, blissful, bright, golden, halcyon,
prosperous, laughing, riant, cheerful, contented, content,
glad, elated, euphoric, felicitous, joyful, joyous, felicitous,
fortunate, glad, willing, well, chosen, felicitous

sad:, sad, bittersweet, doleful, mournful, heavyhearted,
melancholy, melancholic, pensive, wistful, tragic, tragical,
tragicomic, tragicomical, sorrowful, deplorable, distress-
ing, lamentable, pitiful, sorry, bad

Figure 6. Synonyms for happy & sad. Via WordNet 2.1.

are used in order to keep the evaluation objective, as there
is no available resource with segment-level annotations.

5.1 Results for individual chords

The first evaluation covers the meaning attached to individ-
ual chords, such as that Cmaj is ‘bright’ whereas Cmin
is ‘somber’). To confirm the typical associations attributed
to major versus minor chords (i.e., happy and sad, respec-
tively), we compare the inferred word associations with
synonyms reflecting this dichotomy. Figure 6 shows the
synonyms for ‘happy’ and ‘sad’ from WordNet. 4 The idea
is to check the most common chord associated with each
of these synonym sets, seeing how often a major chord is
chosen for a happy word versus a minor chord for a sad
word.

Specifically, we tabulate the average metric assigned to
true and false positives for major versus minor chords. Fig-
ure 7 summarizes the result. For major chords, synonyms
for ‘happy’ are assigned an average score of 81.1 (using
X2), whereas synonyms for ‘sad’ are assigned an average
score of 39.2. Likewise, for minor chords, synonyms for
‘sad’ have an average score of 77.7, compared to 62.1 for
‘happy‘. As a baseline, a random value was used in place
of the co-occurrence metric. As shown in the figure, there
are much fewer true positives for the major chords (e.g.,
average scores for good versus bad nearly the same).

4 See http://wordnet.princeton.edu.

Total
186 cases with score 12541.236 (avg 67.426)

Major
good: 81 with 6573.275 (avg 81.152) (A,contented)
bad: 35 with 1326.313 (avg 37.895) (C,wistful)
baseline: average scores 52.4 and 51.4, respectively

Minor
good: 19 with 1476.133 (avg 77.691) (Bm,tragic)
bad: 51 with 3165.515 (avg 62.069) (Am,bright)
baseline: average scores 32.9 and 43.7, respectively

Figure 7. Evaluation of individual chord meanings.
This tests how well the metric decides whether synonyms
for ‘happy’ (‘sad’) should go with a major (minor) chord.

5.2 Results for chord sequences

To evaluate the performance in learning chord sequence
meaning, we compare the output against the Mood Tag
Dataset (MTD) prepared by Hu et al. [6]. 5 Table 4 lists
the meaning categories used in the MTD, along with the
words used to define the categories. For example, category
G11 is for sincerity and is defined in terms of ‘earnest’ and
‘heartfelt’. This data set only provides song-level annota-
tions, so we count how often the inferred chord sequence
meanings match the song-level meanings for all the songs
incorporating the chord sequence. For example, if a par-
ticular song contains 10 distinct chord sequences, and if
six of the sequences were labeled with the meaning cate-
gory corresponding to the song annotation, then the score
for the song would be 0.6. As the MTD categories are de-
fined in terms of words, we check for word overlap from
the top words associated with a chord sequence with those
from the meaning category. Although a lenient measure,
the word-chord alignment process being evaluated has the
handicap of dealing with over 10,000 meaning categories
(i.e., all lyric words).

To test against the MTD, we just need the chord anno-
tations for each of the songs covered. The annotations are
for specific combinations of artist and album, so the songs
are downloaded individually via the web interface to en-
sure the right version is used (if available). Out of 3,470
songs that are annotated, only 2,160 chord annotation files
were obtained. Songs can be labeled with more than one
category. If so, when verifying whether a chord is a match,
we check the associated word for membership in any of the
lists. The results are promising when using GIZA for the
alignment using special tokens for chord sequences. The
resulting alignment shows high precision, specifically at
89.5% (1,779 chord sequences out of 1,987). However,
this comes at the expense of recall, with no suggestions
for many of the chord sequences. In comparison, using
average mutual information yields about 70,000 more tag-
gings, but the precision drops to 20%. The baseline for
this is 25.9%, which is the relative frequency for the most
common category (G12).

5 This dataset was used in MIREX-2011. See www.music-
ir.org/mirex/wiki/2011:Audio Tag Classification.



Label Freq Examples
G12 .259 calm, comfort, quiet, ... tranquility
G15 .182 sad, sadness, unhappy, ..., sad song
G5 .115 happy, happiness, ..., mood: happy
G32 .095 romantic, romantic music
G2 .084 upbeat, gleeful, ...
G16 .073 depressed, blue, dark, ... gloomy
G28 .039 anger, angry, choleric, ...
G17 .028 grief, heartbreak, ... sorrowful
G14 .022 dreamy
G6 .022 cheerful, cheer up, ... sunny
G8 .018 brooding, contemplative, ... wistful
G29 .018 aggression, aggressive
G25 .012 angst, anxiety, ... nervous
G9 .009 confident, encouraging, ... optimistic
G7 .007 desire, hope, hopeful, ...
G11 .006 earnest, heartfelt
G31 .006 pessimism, cynical, pessimistic, ...
G1 .005 excitement, exciting, exhilarating, ...

Table 4. Mood Tag Dataset. Categories for MTD along
with sample words used to define them. Freq gives rela-
tive frequency, out of 6,490 total assignments.

6. CONCLUSION

This paper has demonstrated how to learn the meaning of
chord sequences from lyrics annotated with chords. Two
separate approaches have been illustrated. The simple ap-
proach uses co-occurrence statistics derived from contin-
gency tables. The preferred approach uses word alignment
tools designed for statistical machine translation.

For future work, we will look into additional aspects of
music as features for modeling meaning (e.g., tempo and
note sequences). In addition, as this approach could be
used to suggest chord sequences that convey moods suit-
able for a particular set of lyrics, future work will investi-
gate its use as a songwriting aid; in fact, this was the origi-
nal motivation for the research.

By using resources intended for guitarists, the current
work is more suitable for popular music than other types
(e.g., classical). A long-term research goal is to develop
a framework for learning similar associations from scores
that include lyrics (e.g., operas). Other long-term aspects
to be addressed include getting access to more data and
integrating audio analysis into the process. In principle,
voice recognition over lyrics could ameliorate sparse data
problem, provided that the natural noise in songs can be
sufficiently filtered.
Acknowledgments Hupahu Ballard helped validate our experi-
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ABSTRACT

The Million Song Dataset (MSD), a collection of one
million music pieces, enables a new era of research of Mu-
sic Information Retrieval methods for large-scale applica-
tions. It comes as a collection of meta-data such as the
song names, artists and albums, together with a set of fea-
tures extracted with the The Echo Nest services, such as
loudness, tempo, and MFCC-like features.

There is, however, no easily obtainable download for
the audio files. Furthermore, labels for supervised machine
learning tasks are missing. Researchers thus are currently
restricted on working solely with these features provided,
limiting the usefulness of MSD. We therefore present in
this paper a more comprehensive set of data based on the
MSD, allowing its broader use as benchmark collection.
Specifically, we provide a wide and growing collection of
other well-known features in the MIR domain, as well as
ground truth data with a set of recommended training/test
splits.

We obtained these features from audio samples provided
by 7digital.com, and metadata from the All Music Guide.
While copyright prevents re-distribution of the audio snip-
pets per se, the features as well as metadata are publicly
available on our website for benchmarking evaluations. In
this paper we describe the pre-processing and cleansing
steps applied, as well as feature sets and tools made avail-
able, together with first baseline classification results.

1. INTRODUCTION

Music Information Retrieval (MIR) research has histori-
cally struggled with issues of publicly available benchmark
datasets that would allow for evaluation and comparison
of methods and algorithms on the same data base. Most
of these issues stem from the commercial interest in mu-
sic by record labels, and therefore imposed rigid copyright
issues, that prevent researchers from sharing their music
collections with others. Subsequently, only a limited num-
ber of data sets has risen to a pseudo benchmark level, i.e.
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where most of the researchers in the field have access to
the same collection.

Another reason identified as a major challenge for pro-
viding access to research data in general is the lack of
esteem and valuation of these kind of activities. While
preparing, maintaining and providing access to massive
data collections requires significant investments in terms
of system maintenance and data (pre-)processing, it is con-
sidered administrative rather than research work (in spite
of several even research-affine challenges emerging dur-
ing such activities), and thus does not gain acceptance in
classical research-oriented publication venues. Such lack
of career rewards is one of the many factors, next to legal
limitations and lack of expertise, limiting sharing of re-
search data [7]. Several initiatives have been started in the
Research Infrastructures area to mitigate this problem and
foster collaborative research. These areas span across vir-
tually all topical areas, from Astronomy, via meteorology,
chemistry to humanities 1 .

A recent effort in the MIR domain has lead to the com-
pilation of the Million Song Dataset [3] (MSD). It provides
a database of meta-data for a collection of one million
songs, such as the song name, artists and album. In ad-
dition, a number of descriptive features extracted with the
services from The Echo Nest 2 are provided. These fea-
tures include tempo, loudness, timings of fade-in and fade-
out, and MFCC-like features for a number of segments.
Moreover, a range of other meta-data has been published
recently, such as song lyrics (for a subset of the collection),
or tags associated to the songs from Last.fm 3 .

The MSD enables researchers to test algorithms on a
large-scale collection, thus allowing to test them on more
real-world like environments. However, there are no easily
obtainable audio files available for this dataset, and there-
fore, researchers are practically restricted to benchmarking
on algorithms that work on top of features, such as recom-
mendation of classification, but can not easily develop new
or test existing feature sets on this dataset. The availabil-
ity of just one feature set also does not allow an evaluation
across multiple feature sets. As previous studies showed,
however, there is no single best feature set, but their per-
formance depends very much on the dataset and the task.

We therefore aim to alleviate these restrictions by pro-

1 http://ec.europa.eu/research/infrastructures/
2 http://the.echonest.com
3 http://www.last.fm
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viding a range of features extracted for the Million Song
Dataset, such as MFCCs and a set of low-level features ex-
tracted with the jAudio feature extraction software as well
as the Marsyas framework [13], and the Rhythm Patterns
and derived feature sets [9]. To this end, we first obtained
audio samples for the MSD by using the content provider
7digital.

A second shortcoming of the MSD is that it does not,
at the moment, contain a mapping to categorisation such
as genres. Thus, experimental evaluations such as musical
genre classification, a popular task in MIR research, are
not possible. We therefore further propose a partitioning
of the dataset into a set of genres obtained from the All
Music Guide 4 . Specifically, we created a partitioning on
two levels of detail, with 13 top-level-genres and 25 sub-
genres, and propose a number of splits for training and test
sets, with different filters, allowing several tasks for evalu-
ation.

Both the feature sets and the partitioning into genres are
available from our website 5 . The features are stored in
the WEKA Attribute-Relation File Format (ARFF) [14],
with one attribute being the unique identifier of the song in
the MSD. We further provide a set of scripts to match the
features with the genre mapping so that they can be used
for classification experiments.

The remainder of this paper is structured as follows.
Section 2 introduces the dataset and the properties of the
audio samples, while Section 3 describes the sets of fea-
tures extracted from them. Section 4 gives details on the
genre assignment obtained, and in Section 5, we describe
benchmark partitions and how we aim to facilitate excha-
nge between researchers. Finally, we provide conclusions
in Section 6

2. THE DATASET

The Million Song Dataset contains in the meta-data a uni-
que identifier for an audio sample at the content provider
7digital 6 . For some songs no sample could be downloaded,
as the identifier was unknown to 7digital. We thus obtained
a total of 994,960 audio samples, i.e. a coverage of 99.5%
of the dataset; the list of missing audio samples is available
on the website. This points to an important issue related to
the use of external on-line resources for scientific experi-
mentation. Especially when the provider is not genuinely
interested in the actual research performed, there is little
motivation to maintain the data accessible in unmodified
manners, and is thus susceptible to changes and removal.
Thus, maintaining a copy of a fixed set of data is essential
in benchmarking to allow the evaluation of newly devel-
oped feature sets, and for acoustic evaluation of the results.

In total, the audio files account for approximately 625
gigabyte of data. The audio samples do not adhere to a
common encoding quality scheme, i.e. they differ in length
and quality provided. Figure 1 shows a plot of the sample
lengths; please note that the scale is logarithmic. It can

4 http://allmusic.com
5 http://www.ifs.tuwien.ac.at/mir/msd/
6 http://www.7digital.com

Figure 1: Distribution of sample length

be observed that there are two peaks at sample lengths of
30 and 60 seconds with 366,130 and 596,630 samples, re-
spectively, for a total of 96,76% of all the samples. These
shorter snippets normally contain a section in the middle of
the song. Many other well-known collections in the MIR
domain as well contain only 30 second snippets, and fea-
ture extraction algorithms normally deal with this.

Table 1: Audio properties of 7Digital Samples

Samplerate
22 768,710 77,26%
44 226,169 22,73%
other 81 0,01%
Bitrate
128 646,120 64,94%
64 343,344 34,51%
other (VBR) 5,494 0,55%
Channels
Mono 6,342 0.64%
Stereo 150,779 15.15%
Joint stereo / dual channel 837,839 84.21%

Table 1 gives an overview on the audio quality of the
samples. The majority, more than three quarters, of the
audio snippets have a sample rate of 22khz, the rest has a
sample rate of 44khz (with the exception of 81 songs, of
which the majority have 24 and 16khz). Regarding the bi-
trate, approximately two-thirds of the songs are encoded
with 128kbit, the majority of the rest with 64kbit; only
about half a percent of the songs come with higher (192
or 320kbps) or variable bitrates (anywhere between 32 and
275kpbs). Almost all samples are provided in some form
of stereo encoding (stereo, joint stereo or dual channels) –
only 0.6% of them have only one channel. As these charac-
teristics, specifically the sample rate, may have significant
impact on the performance of the data analysis algorithms,
we must consider these for stratification purpose when de-
signing the benchmark splits.

3. FEATURE SETS

We extracted a wide range of audio features from the sam-
ples provided, namely features provided by the jAudio fea-
ture extraction software (which is a part of the jMIR pack-



Table 2: Overview on features extracted from the MSD samples. Dim. denotes the dimensionality, Deriv. derivatives
computed from the base features

# Feature Set Extractor Dim Deriv.
1 MFCCs [12] MARSAYS 52
2 Chroma [6] MARSAYS 48
3 timbral [13] MARSAYS 124
4 MFCCs [12] jAudio 26 156
5 Low-level spectral features [11] (Spectral Centroid, Spectral Rolloff Point, Spectral Flux,

Compactness, and Spectral Variability, Root Mean Square, Zero Crossings, and Fraction of Low Energy Win-
dows)

jAudio 16 96

6 Method of Moments [11] jAudio 10 60
7 Area Method of Moments [11] jAudio 20 120
8 Linear Predictive Coding [11] jAudio 20 120
9 Rhythm Patterns [9] rp extract 1440
10 Statistical Spectrum Descriptors [9] rp extract 168
11 Rhythm Histograms [9] rp extract 60
12 Modulation Frequency Variance Descriptor [10] rp extract 420
13 Temporal Statistical Spectrum Descriptors [10] rp extract 1176
14 Temporal Rhythm Histograms [10] rp extract 420

age [11]), the MARSYAS feature extractor [13], and the
Rhythm Patterns family of feature sets [9]. An overview
on these features is given in Table 2.

The jAudio software provides a range of 28 features as-
sociated with both the frequency and time domains. It in-
cludes several intermediate-level musical features, mainly
related to rhythm, as well as lower-level signal processing-
oriented features. It also provides an implementation of
MFCC features [12], using 13 coefficients. jAudio com-
putes in general mean and standard deviations over the
sequence of frames, and provides for most measures also
derivatives, i.e. additional statistical moments over the ba-
sic measures. For the extraction, we utilised jAudio as bun-
dled in the jMIR 2.4 release 7 .

A very popular audio feature extraction system is MAR-
SAYS, one of the first comprehensive software packages to
be available to MIR researchers. A very popular set from
this audio extractor is the so-called “timbral” set, which is
composed of 13 MFCC coefficients, and the twelve chroma
features and the average and minimum chroma value, and
the four low-level features zero crossings, and rolloff, flux
and centroid of the spectrum. For these 31 values, four sta-
tistical moments are computed, resulting in a 124 dimen-
sional vector. For the extraction, we utilised MARSYAS
version 0.4.5 8 .

The Rhythm Patterns and related features sets are ex-
tracted from a spectral representation, partitioned into seg-
ments of 6 sec. Features are extracted segment-wise, and
then aggregated for a piece of music computing the median
(Rhythm Patterns, Rhythm Histograms) or mean (Statisti-
cal Spectrum Descriptors, Modulation Frequency Variance
Descriptor) from features of multiple segments. For the ex-
traction, we employed the Matlab-based implementation,
version 0.6411 9 .

7 available from http://jmir.sourceforge.net/
8 available from http://sourceforge.net/projects/

marsyas/
9 available from http://www.ifs.tuwien.ac.at/mir/

It is intentional that we provide two different versions
of the MFCCs features, as this will allow for interesting in-
sights in how these implementations differ on various MIR
tasks.

3.1 Publication of Feature Sets

All features described above are available on our website
for download, encoded in the WEKA Attribute-Relation
File Format (ARFF) [14]. The features are available un-
der the Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 Generic License 10 .

To allow high flexibility when using them, we provide
one ARFF file for each type of features; these can then be
combined in any particular way when performing exper-
imental evaluations. A set of scripts is provided as well
on the website for this. In total, the feature files account
for approximately 40 gigabyte of uncompressed text files.
The feature files contain the numeric values for each fea-
ture, and additionally the unique identifier assigned in the
MSD. This way, it is possible to generate various feature
files with different ground truth assignments; we again pro-
vide scripts for this. The proposed assignment into genres
for genre classification tasks is described in Section 4.

Further feature sets to be extracted and provided will
include e.g. MIRtoolbox [8] or M2k [5].

4. ALLMUSIC DATASETS

The All Music Guide (AMG) [4] was initiated by an archiv-
ist in 1991 and emerged 1995 from its book form into a
database which can be accessed through the popular com-
mercial Web page allmusic.com. The Web page offers a
wide range of music information, including album reviews,
artist biographies, discographies well as classification of

downloads.html
10 http://creativecommons.org/licenses/by-nc-sa/

2.0/



albums according to genres, styles, moods and themes. In-
formation is provided and curated by experts.

Genre information is very coarse, provided as a single
tag for each album. Further the two main categories Pop
and Rock are combined into a single genre ’Pop/Rock’.
Additionally to genre labels, style tags are provided al-
lowing for a more specific classification. Usually multi-
ple style tags are applied for each album, but unfortunately
no weighting scheme can be identified and in many cases
only one tag is provided. Style tags also tend to be even
more generic than genre labels. Especially non-American
music is frequently tagged with labels describing country
or region as well as the language of the performing artist.
Instrumentation, situational descriptions (e.g. Christmas,
Halloween, Holiday, etc.) as well as confessional or gen-
der attributes (e.g. Christian, Jewish, Female, etc.) are also
provided. Unfortunately these meta-descriptive attributes
are not used as isolated synonyms, but are concatenated
with conventional style information (e.g. Japanese Rock,
Christian Punk, Classic Female Blues, etc.).

Allmusic.com assembles styles to meta-styles which can
be interpreted as sub genres used to diversify the major
genre labels. Meta-styles are not distinctive and are used
overlapping in many meta-styles (e.g. Indie Electronic is
contained in the meta-styles Indie Rock, Indie Pop and Al-
ternative/Indie Rock).

4.1 Data Collection

Data was collected automatically from Allmusic.com us-
ing direct string matching to query for artist-release com-
binations. From the resulting Album Web page genre and
style tags were collected.

We were able to collect 21 genre labels for 62,257 al-
bums which initially provided genre tags for 433,714 tracks.
Style tags were extracted attributing only 42,970 albums
resulting in 307,790 labeled tracks. An average of 3.25
tags out of a total of 905 styles were applied to each al-
bum, but 5,742 releases were only tagged with a single
style label. The most popular genre with 32,696 tagged
albums, was Pop/Rock - this is 10% more as the sum of
all other genres. Referring to tracks the difference rises to
30%. Further, the granularity of Rock is very scarce, in-
cluding Heavy Metal, Punk, etc. A similar predominating
position of this genre as well as was also reported by [2].
The most popular style tag is Alternative/Indie Rock ap-
plied to 12,739 albums, which is more than twice as much
as the second popular style Alternative Pop/Rock. About
120 tags describe the country of the performing artist or the
language of the interpretation - the most common among
them is Italian Music which has been applied to 610 al-
bums.

4.2 Allmusic Genre Dataset

The Allmusic Genre Dataset is provided as an unoptimized
expert annotated ground truth dataset for music genre clas-
sification. We provide two partitions of this set. The MSD
Allmusic Genre Dataset (MAGD) assembles all collected
genres including generic and small classes.

Table 3: MSD Allmusic Genre Dataset (MAGD) - up-
per part represents the MSD Allmusic Top Genre Dataset
(Top-MAGD)

Genre Name Number of Songs
Pop/Rock 238,786
Electronic 41,075
Rap 20,939
Jazz 17,836
Latin 17,590
R&B 14,335
International 14,242
Country 11,772
Reggae 6,946
Blues 6,836
Vocal 6,195
Folk 5,865
New Age 4,010
Religious 8814
Comedy/Spoken 2067
Stage 1614
Easy Listening 1545
Avant-Garde 1014
Classical 556
Childrens 477
Holiday 200
Total 422,714

The second partition - MSD Allmusic Top Genre Data-
set (Top-MAGD) - consists of 13 genres - the 10 major gen-
res of Allmusic.com (Pop/Rock, Jazz, R&B, Rap, Country,
Blues, Electronic, Latin, Reggae, International) including
the three additional genres Vocal, Folk, New Age (see Ta-
ble 3). Generic genres as well as classes with less than 1%
of the number of tracks of the biggest class Pop/Rock are
removed. Due to the low number of tracks, the Classical
genre is also removed from the Top Genre dataset.

4.3 Allmusic Style Dataset

The Allmusic Style Dataset attempts to more distinctively
separate the collected data into different sub-genres, al-
leviating predominating classes. For the compilation of
the dataset genre labels were omitted and solely style tags
were used. In a first step metastyle description as presented
on the Allmusic.com Web site were used to map multiple
style tags to a single genre name - in this case we used the
metastyle name. This simple aggregation approach gen-
erated a total of 210 genre labels many of them highly
generic or hierarchical specializing (e.g. Electric Blues
and Electric Chicago Blues. The MSD Allmuisc Metastyle
Dataset - Multiclass (MAMD) was derived from these 210
resulting metaclasses. Each track was matched to one or
more metaclasses according to its style tags. In a second
step we removed from the initial set of 905 style tags all
confessional, situational and language specific entries. Re-
gional tags were discarded if they do not refer to a specific
traditional cultural music style (e.g. African Folk). Pop-
ular music attributed with regional information was dis-



Table 4: The MSD Allmusic Style Dataset (MASD)

Genre Name Number of Songs
Big Band 3,115
Blues Contemporary 6,874
Country Traditional 11,164
Dance 15,114
Electronica 10,987
Experimental 12,139
Folk International 9,849
Gospel 6,974
Grunge Emo 6,256
Hip Hop Rap 16,100
Jazz Classic 10,024
Metal Alternative 14,009
Metal Death 9,851
Metal Heavy 10,784
Pop Contemporary 13,624
Pop Indie 18,138
Pop Latin 7,699
Punk 9,610
Reggae 5,232
RnB Soul 6,238
Rock Alternative 12,717
Rock College 16,575
Rock Contemporary 16,530
Rock Hard 13,276
Rock Neo Psychedelia 11,057
Total 273,936

carded due to extensive genre overlaps (e.g. Italian Pop
ranges from Hip-Hop to Hard-Rock). Finally, we succes-
sively merged these genres into general descriptive classes
until we finalized the dataset into the MSD Allmusic Style
Dataset (MASD) presented in Table 5. For completeness
we also provide the MSD Allmuisc Style Dataset - Multi-
class (Multi-MASD). This set contains the pure track-style
mapping as collected from Allmusic.com.

5. BENCHMARK PARTITIONS

Influenced by the tremendous experience in the text clas-
sification domain, specifically with the landmark Reuters-
21578 corpus, we provide a number of benchmark parti-
tions that researcher can use in their future studies, in order
to facilitate repeatability of experiments with the MSD be-
yond x-fold cross validation. We also encourage and pro-
vide a platform for exchange of results obtained and new
partitions created via our website.

We provide the following categories of splits:

• Splits with all the tow ground truth assignments into
genre and style classes, described in Section 4.

• Splits with just the majority classes from these two
ground truth assignments.

• Splits considering the sample rate of the files, i.e.
only the 22khz samples, only the 44khz samples, and
a set with all audio files.

Table 5: Classification results on MSD Allmusic Guide
Style dataset (MASD), 66% training set split

Dataset NB SVM k-NN DT RF
MFCC (4) 15.04 20.61 24.13 14.21 18.90
Spectral (5) 14.03 17.91 13.84 12.81 17.21
Spectral Derivates (5) 11.69 21.98 16.14 14.09 19.03
MethodOfMoments (6) 13.26 16.42 12.77 11.57 14.80
LPC (8) 13.41 17.92 15.94 11.97 16.19
SSD (10) 13.76 27.41 27.07 15.06 20.06
RH (11) 12.38 17.23 12.46 10.30 13.41

In particular, we provide the following size partitions:

• “Traditional” splits into training and test sets, with
90%, 80%, 66% and 50% size of the training set, ap-
plying stratification of the sampling to ensure having
the same percentage of training data per class, which
is important for minority classes.

• A split with a fixed number of training samples, eq-
ually sized for each class, with 2,000 and 1,000 sam-
ples per class for the genre and style data sets, re-
spectively. This excludes minority classes with less
than the required number of samples.

Finally, we apply stratification on other criteria than just
the ground truth class, namely:

• Splits into training and test sets with an artist filter,
i.e. avoiding to have the same artist in both the train-
ing and test set; both stratified and non-stratified sets
are provided

• As above, but with an album filter, i.e. no songs from
the same album appear in both training and test set,
to account for more immediate production effects

• As above, but with a time filter, i.e. for each genre
using the earlier songs in the training set, and the
later releases in the test set.

Full details on the results for predictions for the differ-
ent tasks outlined above are available on our website. In
this paper, we discuss the results of a musical genre clas-
sification experiment on the MSD Allmusic Guide Style
Dataset (MASD) with a frequently-used 2/3 training and
1/3 test set split.

Table 5 shows classification accuracies obtained with
five different classifiers using the WEKA Machine Learn-
ing Toolkit [14], version 3.6.6. Specifically, we employed
Naı̈ve Bayes, Support Vector Machines (polynomial ker-
nel with exponent 1), k-nearest Neighbours with k=1, a
J48 Decision Tree, and Random Forests, with the default
settings. Due to space limitations, we selected the most
interesting of the feature sets. The number in parentheses
after the feature set name corresponds to the number given
in Table 2. Bold print indicates the best, italics the second
best result per feature set (column-wise).

For this classification task, we have 25 categories, for
which the biggest “Pop Indie” accounts for 6.60% of the
songs, which is thus the lowest baseline for our classifiers.
It can be noted from the results that the jMIR MFFC fea-
tures provide the best results on the Naı̈ve Bayes classifier,



followed by the jMIR low-level spectral features. How-
ever, all results on this classifier are just roughly twice as
good as the baseline identified above, and low in abso-
lute terms. Better results have been achieved with Support
Vector Machines and k-NN classifiers, on both the Statisti-
cal Spectrum Descriptors achieve more than 27% accuracy.
Also on the other two classifiers, Random Forests and De-
cision Trees, the SSD feature set is the best, followed by
either the derivatives of the jMIR spectral features, or the
jMIR MFFC implementation.

6. CONCLUSION AND FUTURE WORK

Benchmarking is an important aspect in experimental sci-
ences – results reported by individual research groups need
to be comparable. Important aspects of these are common
platforms to exchange these results, and datasets that can
be easily shared among researchers, together with a set
of defined tasks. The MIR community has traditionally
suffered from only few (and small) data collections be-
ing available, also complicated by stringent copyright laws
on music. Recently, the publication of the Million Song
Dataset has aimed at alleviate these issues. The dataset
comes with associated metadata and a basic set of features
extracted from the audio. Other modalities such as lyrics
have subsequently been provided for (parts of the) collec-
tion.

To increase the usefulness of the dataset, we presented
a wide range of other features extracted from the audio sig-
nals, and enabled musical genre classification tasks by pro-
viding a ground-truth annotation to a significant part of the
dataset. To foster exchange between different researchers,
we defined a number of tasks by providing standardised
splits between training and test data.

Our goal is to create a collaborative research environ-
ment for sharing data and adding new features (by inviting
other researchers to submit their algorithms), also for other
data sets besides the MSD. We will extend the features pro-
vided also by features for each short segment of the audio
analysed, similar to the Echonest features currently avail-
able for the MSD, which will allow for time-based analysis
over a song. The platform shall also allow sharing of re-
sults. This is an important aspect in experimental research,
as researchers normally know well how to tune their own
algorithms and to optimise parameters to achieve better re-
sults – but when they utilise other algorithms for compari-
son, we often simply apply the default parameter settings,
which does not create a realistic baseline Such a collabo-
rative platform will allow fairer comparisons, relieving re-
searchers from the need to run all permutations of feature
extractions and settings, and will enable moving towards
evaluation platforms as described in [1].
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ABSTRACT

This paper addresses the problem of determining tempo
and timing data from a list of beat annotations. Whilst
an approximation to the tempo can be calculated from the
inter-beat interval, the annotations also include timing vari-
ations due to expressively timed events, phase shifts and er-
rors in the annotation times. These deviations tend to prop-
agate into the tempo graph and so tempo analysis meth-
ods tend to average over recent inter-beat intervals. How-
ever, whilst this minimises the effect such timing devia-
tions have on the local tempo estimate, it also obscures the
expressive timing devices used by the performer. Here we
propose a more formal method for calculation of the opti-
mal tempo path through use of an appropriate cost function
that incorporates tempo change, phase shift and expressive
timing.

1. INTRODUCTION

Musicologists are interested in how individual perform-
ers convey musical expression, which can manifest it-
self through control of dynamics, instrumental timbre and
through tempo and timing variation. Honing [9] describes
performed rhythm as consisting of three aspects: the rhyth-
mic pattern, the tempo or speed of the performed pattern,
and expressive timing deviations. Whilst the tempo can
be understood as the rate at which beats occur, the onset
time of a note is also dependent upon deviation from strict
metrical time. Indeed, deviation from the score is a crucial
aspect of musical performance and these variations have
been found to be systematic [15]. Vercoe [16] characterises
the relationship between score and performance “as if the
musical score acts as a carrier signal for other things we
prefer to process”.

Gouyon and Dixon [8] present the difficulty of
analysing performance data in that “the two dimensions
of tempo and timing are projected onto the single axis of
time”. At the extreme, any tempo change can be repre-
sented as a sequence of timing changes and vice-versa.
One simple way to represent tempo is to use the instanta-
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Figure 1. Four time lines illustrating the difference be-
tween the different timing variations (after Gouyon and
Dixon [8]).

neous inter-beat interval, but in doing so all expressive tim-
ing information has also been included. Desain and Hon-
ing [6] criticise the use of such “tempo curves” as mean-
ingful representations of timing, arguing that expressive
features, such as rubato, do not scale linearly with tempo,
and that timing must be understood in relation to musical
structure and phrasing. Whilst a simple moving average
can help to smooth this estimate, these other timing devia-
tions remain hidden within the tempo data and there is no
explanation how these two aspects of timing might relate
to each other.

Despite these difficulties, it is still possible to attribute
values to the tempo as it changes over throughout a piece,
albeit with some inherent uncertainty. In rock and pop
music, where the tempo is often approximately steady,
beat trackers are successfully used to track tempo changes
and when evaluated do so relatively well when compared
with human listeners performing the same task [13]. The
Performance Worm [7] provides real-time visualisation of
tempo and dynamics by clustering inter-onset intervals.
For scored music, Müller et al. [14] generate a tempo graph
by aligning a “neutral” MIDI file, in which the tempo is
constant, to the audio recording through the matching of
chroma-onset features [14]. The tempo graph is calculated
by using using windowing techniques to compute the aver-
age tempo in each local region.

1.1 Timing variations

Our model makes use of a framework provided by Gouyon
and Dixon [8], who enumerate three types of timing vari-
ation: expressively timed events, local tempo variation or
phase shift, and global tempo variation or tempo change.
Figure 1 shows their illustration of each of these types for a



single late event where the preceding events are a series of
regularly spaced events. It should be noted that at the point
in time where the event happens, it is unknown which type
of timing variation has occurred.

In the case of expressively timed events, the event hap-
pens early or (in this case) late, but subsequent events are
unaffected with respect to timing. The displacement oc-
curs merely for the expressively timed event, but the un-
derlying sequence is constantly spaced. In a local tempo
change (or phase shift), there is a displacement for both
the event and all subsequent events. So whilst the time be-
tween events, the underlying tempo, remains constant, the
phase shift represents a variation in the interval. The global
tempo change (or tempo variation) occurs when there is a
change to the interval duration which continues in all sub-
sequent intervals. This would be heard as a slowing down
or speeding up of the events.

2. METHODOLOGY

Intuition might suggest that once the beat times in a record-
ing are annotated that the instantaneous tempo is thereby
known directly. We can calculate the tempo at annotation i
at time ti from the beat period ti−ti−1. If these annotation
times are in milliseconds, the tempo in beats per minute
(BPM) is 60000/(ti − ti−1). However, in practice, such
a tempo graph is often jagged and then requires smooth-
ing to extract what is taken to be the underlying tempo.
The reason for this is the conflation of tempo and timing
(phase) variations, described above. Thus a local tempo
change or phase shift will be represented by first a global
tempo change in one direction and then a reverse change
in the other. The smoothing process discards information
about expressively timed events and phase shifts, as there
is no explicit interpretation of the annotations in terms of
potential timing variations.

Here, we propose a formal solution to this problem,
which calculates the optimal timing variations according
to a set of associated cost functions designed to penalise
tempo change, expressive timing and phase shifts. By cal-
culating the accumulated cost across a multitude of tem-
poral locations (phases) and tempi, we can use the well-
known dynamic programming technique to then trace the
solution with least cost back through the song.

2.1 Input: Annotated beat times

For simplicity, we describe here how the method works for
annotations at the beat level. However, the input can also
be annotations at the note level, in which case the input
contains both the event time and the quantised event loca-
tion in beats and bars.

We shall assume that exact beat annotations exist for the
audio recording. These take the form of a list of beat times,
in seconds, and may have been generated either algorithmi-
cally or by hand. One program allowing the creation of an-
notated audio data is Sonic Visualiser [2] [1], designed to
provide visualisation of audio analysis features using the
VAMP plugin format. One such plugin is a beat track-
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Figure 2. Illustration of the costs incurred by a sequence
of isochronous pulses (circles) relative to the sequences of
annotated beats {x1, x2, ...}. The cost for the pulse at an-
notation time t2 is illustrated as the distance between the
pulse and the annotation time.

ing algorithm, based on work by Davies and Plumbley [5],
which automatically labels the beats. It is also possible
to manipulate these annotations, so that in cases where the
beat is not exactly correct, it may be pushed earlier or later.
Sonic Visualiser also supports the creation of hand anno-
tated audio data by tapping the keyboard or use of a MIDI
interface. This data may then be exported as a text file.

The analysis proceeds on the assumption that the an-
notations indicate where the event actually occurred. The
act of tapping along by hand, and use of the algorithmic
beat tracker described above, will actually smooth the data
by placing the beat towards the general trend rather than
where each note onset happens. Thus if one wants to ex-
tract information about precise timing variations via this
method, it would be advisable to then edit by hand so that
the beat annotations are as close as possible to where the
onsets occur in the audio. In the literature, a correspond-
ing difference can also be found between predictive beat
trackers which place beats causally and therefore smooth
the output, and descriptive ones which place the beat after
analysing the whole file and provide the ground truth of
where the beat occurred [8].

2.2 Timing Transition costs

Given a set of annotated beat times as input, {t0, t1, t2, ..},
we evaluate a total cost for each possible path of tempo and
timing variations.

Let us define a beat path as consisting of a sequence of
event times {θ0, θ1, θ2, ...}, each with an associated beat
period of τi ms. These event times define the underlying
beat and involve transitions in tempo and phase which in-
cur costs. We can express each point on the path as a pair
consisting of a phase location (the time of the event) and a



tempo (as a beat period). Thus the point on the path cor-
responding to annotated time ti is (θi, τi). Now we shall
define the cost for this path and for the possible timing
variations within it.

Firstly, the annotated beat time ti might be expressively
timed relative to this beat path, and the cost incurred is
|θi − ti|, equivalent to the time difference in ms. In Figure
2, we see the cost of an annotated path relative to a series
of isochronous pulses. The cost is simply the sum of the
error between the two.

Secondly, the path may involve a phase shift or local
tempo change. A tempo and phase pair (θi−1, τi−1) at an-
notation time ti−1 naturally implies that the next point on
the path at annotation time ti will be at (θi−1+τi−1, τi−1).
However, there may occur a phase shift of xms, so that the
next phase θi is in fact θi−1 +τi−1 +x. Then an additional
cost is incurred of αx, where α is a parameter set by hand.

Thirdly, the path may involve a tempo change. Suppose
we change from tempo of period τi−1 to a tempo of τi−1 +
x, making this the next tempo τi, we incur a cost of βx.
The predicted point for such a transition would also have
a phase location of θi−1 + τi−1 + x, although in this case
due to the change in tempo.

To reflect the fact that we wish to penalise phase shifts
and tempo changes, we set α and β by hand to values
greater than 1. We have chosen α to be 1.4, and β to be 1.8
in practice although there is no definitive ‘correct’ value.

2.3 Updating the cost matrix

Let us define the cost matrix Γi to be all possible pairs of
tempo and phase values, each with an associated cost. For
each point (θ, τ) in Γi, we must consider all the possible
transitions from points in Γi−1.

Supposing there was no change in tempo or phase, then
a point (θ, τ) in Γi−1 naturally suggests the next beat loca-
tion at time ti to be θ + τ with the beat period remaining
τ ms. We will employ dynamic programming to choose
the minimum cost so far incurred on a path to (θ, τ) in
Γi. This is done by working out the respective costs for all
phase shifts and tempo changes to our new point and then
choosing the minimum.

Observe that the point (θ, τ) in Γi can be reached from
(θ − x − y, τ − y) in Γi−1 by a tempo transition of y ms
(from τ − y to τ ) and a subsequent phase shift of x ms,
from the predicted event time of θ − x to θ. These incur
costs of βy and αx respectively. We also need to compute
the additional cost for the point, which is given by |θ− ti|,
the discrepancy between the location of the beat and the
annotation time. Then our full update equation is

Γi(θ, τ) = minx,y{Γi−1(θ−x−y, τ−y)+αx+βy}+|θ−ti|.
(1)

2.4 Backwards Path calculation

Having calculated the cost matrix Γi for each annotated
beat times, ti, we find the minimum point in the final
matrix and the corresponding backwards path. Thus, we

choose
(θN , τN ) = minθ,τΓN (θ, τ) (2)

Then we iterate back to find each previous point in the ma-
trix that was chosen by Equation 1. This gives the com-
plete path through the annotated beat times with the lowest
cost for our parameters α and β. This path can be seen as
the optimal explanation of the sequence of annotated beat
times as a combination of tempo changes, phase shifts and
expressively timed events.

2.5 Computational considerations

For our tempo analysis to be reasonably quick, we made
use of some simplifications to reduce the computation
time. By considering only those phase locations within
occur within a fixed range either side of the beat annota-
tion, we can discard points in the cost matrix which would
almost certainly never occur. Similarly the tempo range
was determined to be a fixed range either side of the inter-
val between the two most recent annotations. These two
ranges can be set by hand, depending on the nature of the
piece.

Also, our data has a fixed temporal resolution. By
choosing integers to represent note onset times, we have
thereby chosen to use a precision of 1 ms for the resolu-
tion of both phase and beat period. However, by changing
this to 2 ms or higher, the computation time can be reduced
to a few seconds for a whole song without any significant
degradation of the output.

3. PERFORMANCE ANALYSIS

The resulting tempo path is significantly more helpful
when seeking to understand the global tempo changes in
a performance than simply plotting the inter-beat intervals.
We visualise the data using a standard tempo curve which
plots the graph of tempo, or beat period, against the beat
annotation index, i.e. plotting τi. Expressive timing infor-
mation can be shown by placing a dot above or below this
point (i, τi), whereby if the beat annotation occurs x ms
after the location of the path point, then the dot is x ms
above the tempo curve. In the figures below, for simplicity
of presentation we have translated the beat period into the
more commonly found representation as BPM. Whilst this
thereby omits specific units for the expressive timing and
phase shift information, we consider the benefits in under-
standing the tempo information to make this worthwhile.

3.1 The Beatles Dataset

An example of this can be seen in Figure 3. The input data
was used was ground-truth annotations to the Beatles’ song
‘Taxman’ from the album ‘Revolver’ [12]. The annotations
were created in a semi-automatic manner, via the use of
a beat tracking algorithm and then corrected by hand [4].
The fact that an algorithm was used does mean that some
smoothing has taken place, however, our proposed decod-
ing process still provides timing data that offers insightful
information for musicologists.
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chorus I
(‘cause I’m 
the Taxman..’)

chorus II
 (‘cause I’m 
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(‘Let me tell you 
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(‘Should five percent 
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(BPM)
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Figure 3. Tempo graph for The Beatles’ ‘Taxman’.

This analysis of the song indicates considerable com-
plexity in Ringo Starr’s time-keeping. He is both sensitive
and in control of small fluctuations in tempo that generate
a ‘feel’ to the different sections of the song. The decoded
timing data displays clear small rises in tempo during the
snare rolls that precede both the first and second choruses.
There are then clear drops in tempo for both choruses of
approximately 2 BPM, and this remains the case for later
choruses beyond the scope of the Figure.

One can also observe a general trend in the expressive
timing such that the timing of the second and fourth beats
of the bar appears to be marginally later than the ‘1’ and
the ‘3’. On these beats, the song tends to feature the snare
backbeat, as is common in rock music [10], and a regu-
lar guitar motif consisting of a staccato chord. Calculating
the mean over the whole song confirms this, with the mean
offsets being 0.25, 3.86, 0.82 and 2.18 ms for the respec-
tive beats. Drummers consider that placing the snare hit
on ‘2’ and ‘4’ fractionally later, results in a more relaxed
feel [11]. Such analysis supports the hypothesis that trends
in microtime deviation lend a particular ‘feel’ to a song.

3.2 Beethoven’s Moonlight Sonata

Chew [3] presents a detailed analysis of the timing varia-
tions in three different performances of Beethoven’s Piano
Sonata No. 14 in C Sharp Minor, Op. 27 No. 2: I. Ada-
gio sostenuto, known as the ‘Moonlight Sonata’. These
recordings, by Daniel Barenboim 1 , Artur Schnabel 2 and
Maurizio Pollini 3 , were initially used in an invited lec-
ture by Jeanne Bamberger. This piece consists of repeated
groups of four triplets in the right hand, with a movement
between different chords. Such a repetitive structure suits
it for revealing the tendencies of different performers with

1 On Beethoven: Moonlight, Pathtique and Appassionata Sonata CD
Hamburg, Germany: Deutsche Grammophon GmbH.

2 On Artur Schnabel CD United Kingdom: EMI Records Ltd.
3 On Beethoven Piano Sonatas: Moonlight and Pastorale CD, Ham-

burg, Germany: Deutsche Grammophon GmbH.

respect to their tempo and microtime variations. We have
used of the same hand-annotated data, created using Sonic
Visualiser.

In creating the tempo graphs, Chew comments on the
necessity of smoothing to make the data understandable by
the human eye, whilst warning that over-smoothing can re-
sult in important details being obscured. By use of the pro-
posed method, we obtain smooth tempo graphs, but also
preserve information about expressive timing and phase
shifts.

The tempo graph for Pollini’s performance is shown
in Figure 4. Chew notes how the local minima of the
tempo graph all occur on the bar boundaries. Bamberger
contrasts this with the rendition by Schnabel, explaining
that whereas other performers appear to ‘stop’ with each
bass note at the beginning of the bar, Schnabel progresses
through until the end of the first complete phrase after four
bars “as if in one long breath”. The extracted tempo and
timing information for Schnabel’s performance can be seen
in Figure 5. Later in the piece, we can recognise a simi-
lar pattern to that exhibited by Pollini, whereby there is a
slowing at the beginning of each bar.

This example can also serve to demonstrate some ad-
vantages of our proposed decoding method. The resulting
tempo graph has less of the jagged edges that are still found
in Chew’s smoothed tempo graph. This is due to the pro-
jection of other timing data, expressive timing and phase
shifts, onto the tempo curve. Instead, these quantities are
made explicit and removed from the tempo curve, and
thereby allowing us to calculate data relating to the phras-
ing of the notes. In this piece, we can observe that the third
triplet eighth note exhibits a tendency to be marginally ear-
lier than the first two notes of the bar. This would indicate
that it thus begins earlier and is held fractionally longer.
We have calculated the average deviation for each note and
these results are presented in Table 1.



Bars

Figure 4. Tempo graph for Pollini’s recording of Beethoven’s Moonlight Sonata. The lighter vertical lines indicate crotchet
boundaries and the darker vertical lines indicate bar boundaries. The expressive timing information is represented by the
dots and phase shifts are represented by lines. Where the dot is above the tempo graph, the event is late relative to the time
predicted by the underlying tempo; where the dot is below the event is early. Similarly a phase shift later is represented
by a vertical line upwards from the tempo graph and a phase shift early by a line below the tempo graph. The tempo is
indicated by BPM values to the left in 8 BPM intervals. The expressive timing and phase shift quantities are such that the
equivalent markers correspond to 20 ms intervals.

Bars

Figure 5. Tempo graph for Schnabel’s recording of Beethoven’s Moonlight Sonata. Again the lighter vertical lines indicate
crotchet boundaries and the darker vertical lines indicate bar boundaries. the end of the first phrase is after four bars.

4. IMPLEMENTATION

The program was written in C++, using openFrameworks
to provide visualisation using openGL libraries. The code
is freely available for download at the Sound Software

website 4 , thereby allowing other researchers to import an-
notations. Both the resulting timing information and a file
of the processed beat location times can then be exported as
text files. Sonic Visualiser supports the loading of the pro-
cessed annotations, which can then be sonified. In informal

4 https://code.soundsoftware.ac.uk/projects/performance-timing-
analyser



Triplet note index
Performer 1 2 3
Barenboim 7.27 2.56 0.83
Pollini 6.48 5.11 2.50
Schnabel 5.20 4.45 0.76

Table 1. Average deviation by triplet eighth note position
in ms for the three performances.

tests, our processing algorithm appeared to have smoothed
the data well, elimating timing errors whilst preserving the
timing variations we are interested in.

5. CONCLUSION

In this paper, we present a new method for extracting the
optimal tempo and timing path from a list of onset anno-
tations. The output contains both tempo and expressive
timing information for the optimal path according to our
cost parameters. Such information enables a detailed musi-
cological analysis of how performance timing data relates
to musical structure. We have investigated how such data
might be used in a classical case with the study of three
performances of Beethoven’s Moonlight Sonata, and in the
rock and pop case through studying the timing of songs by
The Beatles.

In future, we seek to extend our application of this
method to the analysis of other annotated audio and de-
velop a better understanding of how musicians make use
of tempo and timing variations in expressive performance.
We envisage that such work might also lead to improve-
ments in the expressivity of computer-generated parts.

6. ACKNOWLEDGEMENTS

Thanks to Elaine Chew for making available the annota-
tions for the Beethoven piano sonata recordings. Thanks
to the EPSRC and the Royal Academy of Engineering for
supporting this research.

7. REFERENCES

[1] C. Cannam, C. Landone, and M. Sandler. Sonic Vi-
sualiser: An open source application for viewing,
analysing, and annotating music audio files. In Pro-
ceedings of the ACM Multimedia 2010 International
Conference, Firenze, Italy, October 2010., pages 1467–
1468, 2010.

[2] Chris Cannam, Chris Landone, Mark B. Sandler, and
J.P. Bello. The Sonic Visualiser: A visualisation plat-
form for semantic descriptors from musical signals.
In Proceedings of the 7th International Conference on
Music Information Retrieval (ISMIR-06), 2006.

[3] Elaine Chew. About time: Strategies of performance
revealed in graphs. Visions of Research in Music Edu-
cation, 20, 2012.

[4] M. E. P. Davies, N. Degara, and M. D. Plumbley. Eval-
uation methods for musical audio beat tracking algo-
rithms. technical report c4dm-tr-09-06. Technical re-
port, Queen Mary University of London, Centre for
Digital Music., 2009.

[5] M. E. P. Davies and M. D. Plumbley. Context-
dependent beat tracking of musical audio. IEEE Trans-
actions on Audio, Speech and Language Processing,
15(3):1009–1020, 2007.

[6] Peter Desain and Henkjan Honing. Tempo curves con-
sidered harmful: A critical review of the representation
of timing in computer music. In Proceedings of Inter-
national Computer Music Conference, pages 143–149,
1991.

[7] Simon Dixon, Werner Goebl, and Gerhard Widmer.
The Performance Worm: Real time visualisation based
on langner’s represen- tation. In Proceedings of the In-
ternational Computer Music Conference, 2002.

[8] Fabien Gouyon and Simon Dixon. A review of au-
tomatic rhythm description systems. Computer Music
Journal, 29(1):34–54, 2005.

[9] Henkjan Honing. From time to time: The representa-
tion of timing and tempo. Computer Music Journal,
25(3):50–61, 2002.

[10] Tommy Igoe. In the Pocket. Essential Grooves. Part 2.
Funk. Modern Drummer, July 2006.

[11] Vijay Iyer. Microstructures of Feel, Macrostructures
of Sound: Embodied Cognition in West African and
African-American Musics. PhD thesis, University of
California, Berkeley, 1998.

[12] M. Mauch, C. Cannam, M. Davies, S. Dixon, C. Harte,
S. Kolozali, D. Tidhar, and M. Sandler. Omras2 meta-
data project 2009. In Late-breaking session at the 10th
International Conference on Music Information Re-
trieval (ISMIR 2009), 2009.

[13] M. F. McKinney, D. Moelants, M. E. P. Davies, and
A. Klapuri. Evaluation of audio beat tracking and mu-
sic tempo extraction algorithms. Journal of New Music
Research, 36(1):1–16, 2007.

[14] Meinard Müller, Verena Konz, Andi Scharfstein, Se-
bastian Ewert, and Michael Clausen. Toward auto-
mated extraction of tempo parameters from expressive
music recordings. In Proceedings of the International
Society for Music Information Retrieval Conference
(ISMIR), Kobe, Japan., 2009.

[15] Bruno H. Repp. Patterns of expressive timing in per-
formances of a beethoven minuet by nineteen famous
pianists. Psychology of Music, 22:157–167, 1995.

[16] Barry Vercoe and Miller Puckette. Synthetic Rehearsal,
training the Synthetic Performer. In Proceedings of
the International Computer Music Conference (ICMC
1985), pages 275–278, 1985.



UNSUPERVISED CHORD-SEQUENCE GENERATION FROM AN AUDIO
EXAMPLE

Katerina Kosta 1,2, Marco Marchini 2, Hendrik Purwins 2,3

1 Centre for Digital Music, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
2 Music Technology Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain

3 Neurotechnology Group, Berlin Institute of Technology, 10587 Berlin, Germany
marco.marchini@upf.edu, katkost@gmail.com, hpurwins@gmail.com

ABSTRACT

A system is presented that generates a sound sequence from
an original audio chord sequence, having the following
characteristics: The generation can be arbitrarily long, pre-
serves certain musical characteristics of the original and
has a reasonable degree of interestingness. The proce-
dure comprises the following steps: 1) chord segmentation
by onset detection, 2) representation as Constant Q Pro-
files, 3) multi-level clustering, 4) cluster level selection,
5) metrical analysis, 6) building of a suffix tree, 7) gen-
eration heuristics. The system can be seen as a computa-
tional model of the cognition of harmony consisting of an
unsupervised formation of harmonic categories (via multi-
level clustering) and a sequence learning module (via suf-
fix trees) which in turn controls the harmonic categoriza-
tion in a top-down manner (via a measure of regularity). In
the final synthesis, the system recombines the audio ma-
terial derived from the sample itself and it is able to learn
various harmonic styles. The system is applied to various
musical styles and is then evaluated subjectively by mu-
sicians and non-musicians, showing that it is capable of
producing sequences that maintain certain musical charac-
teristics of the original.

1. INTRODUCTION

To what extent can a mathematical structure tell an emo-
tional story? Can a system based on a probabilistic con-
cept serve the purpose of composition? Iannis Xenakis dis-
cussed the role of causality in music in his book “Formal-
ized Music, Thought and Mathematics in Composition”,
where it is mentioned that a fertile transformation based
on the emergence of statistical theories in physics played a
crucial role in music construction and composition [20].

Statistical musical sequence generation dates back to
Mozart’s “Musikalisches Würfelspiel” (1787) [8], and more
recently to “The Continuator” by F. Pachet [14], D. Con-
klin’s work [3], the “Audio oracle” by S. Dubnov et al.
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[6] and the “Rhythm Continuator” by M. Marchini and
H. Purwins (2010) [13]. The latter system [13] learns the
structure of an audio recording of a rhythmical percussion
fragment in an unsupervised manner and synthesizes mu-
sical variations from it. In the current paper this method
is applied to chord sequences. It is related to work such
as a harmonisation system described in [1] which, using
Hidden Markov Models, it composes new harmonisations
learned from a set of Bach chorals.

The results help to understand harmony as an emergent
cognitive process and our system can be seen as a music
cognition model of harmony. “Expectation plays an im-
portant role in various aspects of music cognition” [18]. In
particular, this holds true for harmony.

2. CHORD GROUPING

Harmony is a unique feature distinguishing Western music
from most other predominantly monophonic music tradi-
tions. Different theories account for the phenomenon of
harmony, mapping chords e.g. to three main harmonic
functions, seven scale degrees, or even finer subdivisions
of chord groups, such as separating triads from seventh or
ninth chords. The aim of this paper is to suggest an unsu-
pervised model that lets such harmonic categories emerge
from samples of a particular music style and model their
statistical dependencies.

As Piston remarks in [15] (p. 31), “each scale degree
has its part in the scheme of tonality, its tonal function”.
Function theory by Riemann concerns the meanings of the
chords which progressions link. The term “function” can
be used in a stronger sense as well, for specifying a chord
progression [10]. A problem arises from the fact that scale
degrees cannot be mapped to the tonal functions in a unique
way [4] [16] (p. 51-55). In our framework, the function of
a chord emerges from its cluster and its statistical depen-
dency on the other chord clusters.

It is considered that the tonic (I), dominant (V) and
subdominant (IV) triads constitute the tonal degrees since
“they are the mainstay of the tonality” and that the last two
give an impression of “balanced support of the tonic” [15].
This hierarchy of harmonic stability has been supported by
psychological studies as well. One approach involves col-
lecting ratings of how one chord follows from another. As
it is mentioned in [11], Krumhansl, Bharucha, and Kessler



used such judgments to perform multidimensional scaling
and hierarchical clustering techniques [9]. The psycholog-
ical distances between chords reflected both key member-
ship and stability within the key; “chords belonging to dif-
ferent keys grouped together with the most stable chords
in each key (I, V, and IV) forming an even smaller clus-
ter. Such rating methods also suggest that the harmonic
stability of each chord in a pair affects its perceived rela-
tionship to the other, and this depends upon the stability of
the second chord in particular” [9].

3. METHODOLOGY

The goal of this system is the analysis of a chord sequence
given as audio input, with the aim of generating arbitrar-
ily long, musically meaningful and interesting sound se-
quences maintaining the characteristics of the input sam-
ple.

From audio guitar and piano chord sequences, we de-
tect onsets, key and tempo, and group the chords, applying
agglomerative clustering. Then, Variable Length Markov
Chains (VLMCs) are used as a sequence model. In Fig-
ure 1 the general architecture is presented.

audio
input

   chord 
segments

  chord 
grouping

   onset 
detection

clustering
   model

CQ-profiles

 audio
output

re-shuffle
  chords

VLMC
model

new chord
sequence 

Figure 1. General system architecture.

3.1 Onset Detection

In order to segment the audio into a sequence of chords
we employed an onset detection algorithm. Different ap-
proaches have been considered since a simplified onset de-
tection method based only on the energy envelope would
not be sufficient. After trying a bunch of available algo-
rithms from the literature we found that the complexdo-
main from Aubio [21] was suited for our propose.

A crucial parameter of this algorithm is the sensitivity
which required an ad hoc tuning. We selected a piano
performance of Bach’s choral ”An Wasserflussen Babylon
(Vergl. Nr. 209) in G major - from here on referred as
“test -Bach choral” - as a ground truth test set for onset de-
tection. Although with an optimal sensitivity we were still
obtaining an incorrect merge of two consecutive segments
in the 5.88% of the cases out of a total of 68 segments con-
sidered. In Figure 2, the first five segments that were ob-
tained for the test-Bach choral are presented. An example
of incorrect merge is shown on the 5th segment, the two

consecutive chords of which get still gathered together, as
their common notes are still resonating during the passing.

1 2 3 4 5

Figure 2. The first 5 segments of the test - Bach choral us-
ing Aubio [21] for onset detection. The fifth excerpt should
be splitted into two parts -vertical black line- since two dif-
ferent kind of chords are identified and could be used sep-
arately.

3.2 Constant Q Profiles and Sound Clustering

From the audio input we extract chroma information based
on Constant Q (CQ) profiles, which are 12 - dimensional
vectors, each component referring to a pitch class. The
idea is that every profile should reflect the tonal hierarchy
that is characteristic for its key [2].

The calculation of the CQ profiles is based on the CQ
transform; as decribed by Schorkhuber and Klapuri in [19],
“it refers to a time-frequency representation where the fre-
quency bins are geometrically spaced and the Q factors
which are ratios of the center frequencies to bandwidths,
of all bins are equal”. This is the main difference between
the CQ transform and Fourier transform. In our implemen-
tation we have used 36 bins per octave, the square root of
a Blackman-Harris window and a hop size equal to 50%
of the window size. The CQ profiles are closely related
to the probe tone ratings by Krumhansl [17]. Also the sys-
tem employs a method described by Dixon in [5] for tempo
estimation.

In the clustering part, as each event is characterized by
a 12-dimensional vector, they can thus be seen as points in
a 12-dimensional space in which a metric is induced by the
Euclidean distance. The single linkage algorithm has been
used to discover event clusters in this space. As defined
in [13], this algorithm recursively performs clustering in a
bottom-up manner. Points are grouped into clusters. Then
clusters are merged with additional points and clusters are
merged with clusters into super clusters. The distance be-
tween two clusters is defined as the shortest distance be-
tween two points, each in a different cluster, yielding a bi-
nary tree representation of the point similarities. The leaf
nodes correspond to single events. Each node of the tree



occurs at a certain height - level, representing the distance
between the two child-nodes (cf. [7] p. 517-557 for de-
tails).

Then the regularity concept described in [13] is com-
puted for each sequence of each clustering level. Firstly,
we compute the histogram of the time differences (CIOIH)
between all possible combinations of two onsets. What we
obtain is a sort of harmonic series of peaks that are more
or less prominent according to the self-similarity of the se-
quence on different scales. Secondly, we compute the au-
tocorrelation ac(t) (where t is the time in seconds) of the
CIOIH which, in case of a regular sequence, has peaks at
multiples of its tempo. Let tusp be the positive time value
corresponding to its upper side peak. Given the sequence
of m onsets x = (x1, . . . , xm) we define the regularity of
the sequence of onsets x to be:

Regularity(x) =
ac(tusp)

1
tusp

∫ tusp

0
ac(t)dt

log(m)

This regularity is then used to select the most regular level
for tempo detection and a small amount of representative
levels for the VLMC generation.

In Figure 3, there is a tree representation of the cluster-
ing results for the audio test - Bach choral. The system has
selected 10 clustering levels, and the cluster hierarchy for
the levels 1 - 6 is presented. We have only considered the
clusters with more than one element.

1 2 3 4 5 6 7 8

Level 2

Level 3

Level 4

Level 5

Level 6

9

12

10

11

13

14

15

16
17

18
19

Figure 3. Base line: the clusters generated at Level 1 as
circles; the black ones contain one single element.

In Table 1, the clustering results on levels 1 - 4 of the
analyzed Bach choral are shown in more detail. It is noti-
cable that we get a rich group, containing a large amount
of G Major dominant chords.

3.3 Statistical Model for Sequence Generating

Having the segments of the input sound categorized prop-
erly, the next step is to re-generate them in a different or-
der than the original one, taking into account that they are
not independent and identically distributed, but dependent
on the previous segments. For implementing this idea it

Cluster # of Elements Recognition
Level 1:

cl. 1 3 2 G I, 1 G V
cl. 2 3 1 G I, 1 a V, 1 d IV
cl. 3 2 2 G IV
cl. 4 2 1 G I, 1 G V
cl. 5 10 5 G V, 1 a I, 1 d I,

1 d VI, 1 d V, 1 G I
cl. 6 2 1 G IV, 1 a I
cl. 7 4 1 G II, 1 a V, 1 a I,

1 d V
cl. 8 2 2 G V

Level 2:
cl. 9 (cl.5)+2 6 G V, 1 a I, 2 d I,

1 d VI, 1 d V, 1 G I
cl. 10 (cl.2+cl.7)+1 1 G I, 2 a V, 1 d IV,

1 G II, 1 a I, 1 d V
cl. 11 (cl.4)+1 2 G I, 1 G V
cl. 12 (cl.1+cl.6)+1 2 G I, 1 G V, 1 G IV,

1 a I
Level 3:
cl. 13 (cl.11)+1 3 G I, 1 G V
cl. 14 (cl.3+cl.9+cl.10) 2 G I, 1 G II, 2 G IV,

+2 6 G V, 2 a I, 2 a V,
2 d I, 1 d IV, 2 d V,

1 d VI
Level 4:
cl. 15 (cl.8+cl.13+cl.14) 9 G V, 5 G I, 1 G II,

+ 2 2 G IV, 2 a I, 2 a V,
3 d I, 1 d IV, 2 d V,

2 d VI

Table 1. the clustering results on levels 1 - 4 of the an-
alyzed Bach choral. At the first column, we define each
cluster by a number and at the second column we present
the number of elements inside that cluster. At the third col-
umn we recognize these elements and label them based on
our score’ s harmonic analysis for each one separately (for
example: “2 G I” means “2 of the elements are the root
of G major” and “5 a V” means “5 of the elements are the
dominant of A minor”).

would be impractical to consider a general dependence of
future observations on all previous observations because
the complexity of such a model would grow without limit
as the number of observations increases. This leads us to
consider Markov models in which we assume that future
predictions are independent of all but the most recent ob-
servations.

A VLMC of order p is a Markov chain of order p, with
the additional attractive structure that its memory depends
on a variable number of lagged values [12]. This can be
evaluated on our system as follows; Let’s assume that we
have, as an input, two sequences of events - elements of a
categorical space having length ` = 4. Be (A,B,C,A) and
(B,C,C,D), which are parsed from right to left. As seen in
[14], context trees are created where a list of continuations
encountered in the corpus are attached to each tree node.



The ”continuations” are integer numbers which denote the
index of continuation item in the input sequence. In Fig-
ure 4, the procedure of the context tree creation based on
sequences (A,B,C,A) and (B,C,C,D) is shown, where the
index numbers show with which element one can proceed.
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Figure 4. Top left and right: Context trees built from the
analysis of the sequences (A B C A) and (B C C D) respec-
tively. Bottom: Merge of the context trees above.

Exploring the final graph in Figure 4, where the trees
above are merged, we have all the possible sequence sit-
uations, following each path that is created from bottom
to up and considering the index number of the first ele-
ment. For example, if we want to find which is the next
element of the sequence (A,B,C), we follow this specific
path from the bottom of the tree and then we see the in-
dex number of the first element, A, so we take the element
with this index number, which is A and the sequence now
becomes (A,B,C,A). For ”e” (the empty context) we con-
sider a random selection of any event. Also the length `
can be variable.

For the generation we use the suffix trees for all previ-
ously selected levels. If we fix a particular level, the con-
tinuation indices are drawn according to a posterior proba-
bility distribution determined by the longest context found.
Depending on the sequence, it could be better to do pre-
dictions based either on a coarse or a fine level. In order
to increase recombination of blocks and still provide good
continuation we employ the heuristics detailed in Section
3.1. in [13] taking into account multiple levels for the pre-
diction.

4. EVALUATION

Five audio inputs have been selected to evaluate the method:
a guitar chord sequence based on the song “If I fell in
love with you” by the Beatles, a Bach choral played on
the piano, part of the “Funeral March” by Chopin, a guitar
flamenco excerpt and a piano chord sequence by a non-
musician (Examples No.1-5).

The next step was to create generations, using these five
different piano and guitar audio inputs followed each one
by generations of one minute duration. All the audio ex-
amples, some meta data, as well as the generations, and the

results of the evaluation are available on the web site [22].
There are two carefully selected generations presented per
piece, except for Example No. 5, where there is only one.
The following characteristics of the system are assessed:
the selected clustering level, the similarity between the in-
put sample and the generation, and how many times an
event is followed by another event in the generation that
is not the event’s successor in the original (i.e. how many
“jumps” the generated sound contains).

Since the opinion of a musician rather than an objective
measure is a more suitable evaluation measure for the aes-
thetic value of a generated music sample, a questionnaire
for each input and its generations was created and given to
five musicians 1 and five non-musicians at ages between 22
and 28. They had to listen to and rate each audio (from 1-
“not at all” to 5- “very much”) for their familiarity with the
piece and the interestingness of the piece. In addition, the
subject had to select the most interesting 10-second parts
of it and they had to determine a similarity value compar-
ing two audio examples. Original and the generations were
presented without indicating which was which. For Ex-
amples 2 and 3 (Bach and Chopin) another question was
added, asking to rate how clear the structure of the piece
is.

Through the results of this experiment (details in Table
2), we can highlight that only 3% of the responses found
the generation example as not similar to the original input.
Also through the Examples 1, 4 and 5 we notice that 20%
of the responses found the generation example more inter-
esting than the original and 26% of the responses found
the generation example less interesting, although the range
from the rate of the original one is not big.

In general the cumulative results for the similarity mod-
ule show small differences between musician’s and non-
musician’s replies. Another measure of comparison be-
tween these groups is their response concerning the 10
most interesting seconds; ten groups of overlapping sec-
onds have emerged and seven of these groups were indi-
cated by both musicians and non-musicians.

The comments made by the subjects gave us additional
insight into the behaviour of the system. Metrical phase er-
rors have been spotted in the generations of Example No.
4, resulting in rhythmic pattern discontinuities. Some of
the musician subjects considered these sections as “confus-
ing” and some others as “intriguing expertise”. Another
important issue is the quality of the generation, in terms of
its harmonic structure. A representative comment on Ex-
ample No.5 is: “In the second audio (i.e. the Original) I
could hear more harmonically false sequences”.

5. DISCUSSION AND CONCLUSION

The system generates harmonic chord sequences from a
given example, combining machine learning and signal pro-
cessing techniques. As the questionnaire results highlight,
the generation is similar to the original sample, maintain-

1 They are defined as individuals, having at least five years of music
theory studies and instrument playing experience.



ing key features of the latter, with a relatively high degree
of interestingness.

An important extension of this work would incorporate
and learn structural constraints as closing formulae and
musical form. Other future work comprises an in-depth
comparison of the chord taxonomies generated by the sys-
tem and taxonomies suggested by various music theorists,
e.g. Riemann, Rameau, or the theory of jazz harmony and
possibly the experimental verification of such harmonic
categories in the brain, e.g. in an EEG experiment.

However, for an automatic music generation system,
there remains still a long way to go in order to comply with
the idea of music as Jani Christou puts it: ”The function of
music is to create soul, by creating conditions for myth, the
root of all soul”.
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Example 1 Musicians Non-musicians
Familiarity Interesting Familiarity Interesting

Original 2,1,3,1,4 2,2,4 (22-30s),4 (11-16s),3 2,2,3,2,4 3,4(38-42s),4 (22-32s),2,3
Generation 1 2,1,3,1,3 2,2,3,5 (4-12s),2 2,3,2,2,2 4 (1-11s),3,3,2,3
Generation 2 5,1,3,1,2 2,2,3,2,3 3,3,4,2,4 2,5 (48-58s),4 (40-50s),2,

4 (45-55s)
Similarity Org.-Gen.1 Org.-Gen.2 Org.-Gen.1 Org.-Gen.2

Not similar
Somewhat similar ++ ++ ++ +++

Very similar +++ +++ +++ ++

Example 2 Musicians Non-musicians
Familiarity Familiarity

Original 4,4,4,5,4 3,3,4,2,5
Clearness Interesting Clearness Interesting

Generation 1 4,5,5,3,2 3,5 (30-40s),4 (30-40s),2,1 4,5,4,4,4 4 (1-11s),5 (1-11s),
4 (45-55s),4 (30-40s),3

Generation 2 5,4,3,2,3 1,4 (23-32s),3,3,2 4,4,3,3,3 2,3,4,2,4
Similarity Org.-Gen.1 Org.-Gen.2 Org.-Gen.1 Org.-Gen.2

Not similar + +
Somewhat similar + + ++ +++

Very similar ++++ +++ ++ ++

Example 3 Musicians Non-musicians
Familiarity Familiarity

Original 5,5,4,5,5 4,5,5,5,5
Clearness Interesting Clearness Interesting

Generation 1 5,5,5,3,2 5 (0-10s),5 (43-53s),3,3,1 5,5,3,4,3 5 (33-43s),5 (43-48s),3,3
,5 (30-40s)

Generation 2 5,4,4,2,4 5 (34-44s),4 (43-51s),4,3,2 4,5,3,5,4 5 (17-24s),5 (34-44s),4 (45-52s),
4 (20-30s),4 (40-50s)

Similarity Org.-Gen.1 Org.-Gen.2 Org.-Gen.1 Org.-Gen.2
Not similar

Somewhat similar ++ ++++ ++
Very similar +++ + +++++ +++

Example 4 Musicians Non-musicians
Familiarity Interesting Familiarity Interesting

Original 1,2,1,5,2 4 (0-10s),2,4 (34-38s), 3,2,3,2,4 4 (1-8s),3,3,1,3
4 (28-38s),4 (10-20s)

Generation 1 1,2,1,5,2 4 (0-10s),2,3,4 (8-14s), 4,1,4,2,5 3,3,3,1,4 (10-20s)
4 (9-13s)

Generation 2 1,2,1,5,2 1,2,5 (7-15s),3,3 2,1,3,2,5 3,3 (32-42s),4 (45-55s),1,3
Similarity Org.-Gen.1 Org.-Gen.2 Org.-Gen.1 Org.-Gen.2

Not similar
Somewhat similar +++ + ++++

Very similar +++++ ++ ++++ +

Example 5 Musicians Non-musicians
Familiarity Interesting Familiarity Interesting

Original 1,2,1,3,4 1,2,2,2,4 (20-30s) 1,1,3,3,3 2,2,2,2,3
Generation 1,2,1,4,4 1,2,3,3,4 (11-16s) 1,1,2,3,2 2,2,3,2,3
Similarity Org.-Gen. Org.-Gen.

Not similar +
Somewhat similar +++++ +++

Very similar +

Table 2. We present the questionnaire responses for Examples 1 - 5; the ratings (from 1 to 5) that both musicians and non musicians
have given for each audio thus the rate for similarity comparing specific audio couples are shown. At the interesting part, there is a
potential mention of the most interesting 10 seconds, in case the response in that section was 4 or 5.
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ABSTRACT

We examine the effect of listening level, i.e. the abso-
lute sound pressure level at which sounds are reproduced,
on music similarity, and in particular, on playlist gener-
ation. Current methods commonly use similarity metrics
based on Mel-frequency cepstral coefficients (MFCCs), which
are derived from the objective frequency spectrum of a
sound. We follow this approach, but use the level-dependent
auditory spectrum, evaluated using the loudness models of
Glasberg and Moore, at three listening levels, to produce
auditory spectrum cepstral coefficients (ASCCs). The AS-
CCs are used to generate sets of playlists at each listen-
ing level, using a typical method, and these playlists were
found to differ greatly. From this we conclude that music
recommendation systems could be made more perceptu-
ally relevant if listening level information were included.
We discuss the findings in relation to other fields within
MIR where inclusion of listening level might also be of
benefit.

1. INTRODUCTION

The auditory system can be thought of, in signal processing
terms, as a level-dependent filter bank, where each compo-
nent is known as an auditory filter [15]. Incoming sound
is first processed by the frequency and direction depen-
dent filter of the pinna (outer ear), before passing through
the ear canal, which acts as a narrowband resonant ampli-
fier. The acoustic pressure at the ear-drum is mechanically
transmitted, via the amplifying stage of the middle-ear os-
sicles, to the fluid of the cochlea (inner ear) via the oval
window [19]. Due to continuous variation in mass and
stiffness along the basilar membrane, the cochlea provides
a tonotopic representation (arranged in order of frequency)
of sound energy spectrum that is broadly consistent with
Fourier analysis.

Within the cochlea, inner hair cells are tonotopically ar-
ranged along the basilar membrane. The inner hair cells are
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innervated with neurons that provide the firing-rate coded
signal that is sent to the brain via the auditory nerve. The
inner hair cells are accompanied by respective outer hair
cells. Pressure gradients in the cochlear fluid cause the
inner hair cells at any given location to be deflected in a
shearing motion which results from place-frequency de-
pendent resonance of the basilar membrane. At the same
time, the motile outer hair cells act in phase-locked syn-
chrony to amplify the excitation. This system is known as
the cochlear amplifier.

Each inner hair cell is innervated with a population of
neurons that code the local signal in terms of the rate-level
function (the function that relates the rate of neuron fir-
ing to the perceived intensity level). The stochastic firing
rate-level function of a neuron, or a population of neurons,
can be thought of as having three distinct stages: sponta-
neous firing, threshold, and saturation. Below threshold,
the neuron fires randomly at a low rate. Between threshold
and saturation, the function is close to linear and provides
a good coding of level. Above saturation point, increase
in level does not result in a proportional increase in firing
rate. Thus, with increase in sound pressure level, an in-
creasing area of inner hair cells on the basilar membrane
are excited beyond neural threshold. Within the context of
the excitation pattern model described above, this is known
as spread of excitation.

The action of the cochlear amplifier gives rise to strongly
level-dependent tuning of the auditory filter. At low levels,
the phase-locked action of outer hair cells provides tono-
topically localised amplification, which results in a narrow
auditory filter. At high sound pressure levels, the cochlear
amplifier is not able to contribute amplification, due to me-
chanical limits, and so the auditory filter becomes broader
with increase in level.

The parameters of the human auditory filter have been
determined using psychophysical methods [17] and are rep-
resented in terms of equivalent rectangular bandwidth (ERB).
Within the music information retrieval (MIR) community,
the auditory filters are typically more broadly represented
in terms of the approximately analogous Mel frequency
scale [21]. The Mel scale is defined in terms of equal pitch
distance. Both scales produce a “non-linear mapping” of
the frequency domain.

Mel-frequency cepstrum coefficients (MFCC), derived
using the discrete cosine transform, have been used for



speech recognition [9], music modelling [13] and music
similarity [12]. The ERB scale has been used to improve
speech feature extraction [20]. Other related work [9] used
a gammatone auditory filter-bank [8] (derived from non-
human physiology) in the place of ERBs. The resulting
coefficients were referred to as EFCCs.

Thus far, although the MFCCs and EFCCs applied to
MIR problems have made some attempt to address the ques-
tion of perception in terms of frequency warping, no at-
tempt has been made to demonstrate the major level-dependent
effects of cochlear processing: (i) absolute threshold, (ii)
spread of excitation, (iii) compression, and (iv) masking.
In other words, the major parameter of listening level has
not been investigated.

At present, MIR is usually based on recordings, which
listeners can reproduce at any listening level. Whilst we
acknowledge the immediate practical difficulty that this
imposes, we believe it is important to determine whether
the effects of listening level may be significant. In this arti-
cle, we use a psychoacoustic model to produce level depen-
dent spectrograms, which incorporate the effects of (i) ab-
solute threshold, (ii) spread of excitation and (iii) compres-
sion, and which can be used to evaluate level dependent
similarity metrics. The similarity ratings are compared for
each listening level to determine whether specific applica-
tions of MIR, such as music playlist generation, may be
listening level dependent. This article also serves to begin
a more general discussion as to the relevance and impor-
tance of listening level for other areas within MIR.

2. MODELLING

The loudness models [7, 16] provide a means to predict
time and level dependent excitation patterns for time-varying
acoustic stimuli. The outer and middle ear stages are mod-
elled as a single FIR filter. Next, a bank of parallel fil-
ters is used to calculate spectral magnitude over specific
frequency bands. The resulting excitation pattern is then
transformed into instantaneous specific loudness (ISL) ac-
cording to a compressive nonlinearity designed to model
the action of the cochlea. The instantaneous specific loud-
ness is essentially a level dependent spectrogram with the
frequency axis in the ERB scale. We refer to it as an audi-
tory spectrogram.

We collected a random subset of 500 recordings from
the Magnatagatune data set [10]. Magnatagatune is a col-
lection of over 56,000, 30-second music clips from the
Magnatune catalogue, with matching tags collected from
Law’s TagATune game. Our subset of 500 clips has ap-
proximately the same proportion of genres as the full data
set, including roughly 22% Classical, 17% each of Pop/Rock,
Electronic and “Ethnic” or World music, and the rest from
assorted genres. The clips, all 44.1kHz, 32kbps mono mp3
files, were obtained using the “Source Only” version of the
Magnatagatune data set.

Using the auditory model, auditory spectrograms were
estimated at three listening levels for each recording. A
20 ms normalised Hanning window was used with a 50%
overlap. The frequency axis was split into ERB bands,

which gave 53 discrete frequency bins. The listening lev-
els were characterised by peak sound pressure levels of 40,
80 and 120 dB SPL. The input to the loudness model is a
waveform in Pascals (Pa), where a pressure of 1 Pa cor-
responds to 94 dB SPL. Therefore, in order to convert a
normalised digital recording (peak amplitude is 1), sd, into
a pressure signal sp with a peak level of X SPL, we use,

sp = 10
(X−94)

20 sd. (1)

Figure 1 shows the auditory spectrograms for a ran-
domly selected recording played at each listening level. At
40 dB SPL it becomes relatively narrow-band due to the
high and low frequency energy falling below the absolute
thresholds of audibility. At 80 dB the majority of the en-
ergy is above absolute threshold and the auditory spectro-
gram is similar to the objective spectrogram. At 120 dB
SPL the spread of excitation causes smearing of the energy
across the frequency range, and the recording becomes rel-
atively broadband.

Figure 1. The auditory spectrograms of a randomly se-
lected recodring with peak play-back intensity levels from
left to right of: 40, 80 and 120 dB SPL respectively.

3. ANALYSIS

An acoustic model of musical timbre is often a core com-
ponent of content-based MIR systems. It is fundamental in
tasks such as content-based music recommendation [13],
playlist generation [18], genre classification [23] and in-
strument recognition [5]. In our experiments, we choose to
follow a deliberately simple, yet widely adopted method of
modelling the overall timbre of a recording first by extract-
ing frame-wise cepstral coefficients, and then modelling
the overall timbre distribution by fitting a single Gaussian
to the resulting coefficient vectors [13]. In order to be able
to take the effect of listening level into account, we use
a set of auditory spectra cepstral coefficients (termed AS-
CCs), computed from auditory spectra, calculated using
the method outlined in Section 2.

Similarly to MFCCs, the computation of this feature is
derived from the computation of the real Cepstrum shown
in Equation 2, where X(ω) represents the Fourier trans-
form of the analysed signal. The cepstrum separates the
slowly varying components of a signal from superimposed
higher frequency and noise like components. It can be
viewed as a rearranged spectrum, such that relatively few
coefficients are sufficient to characterise the spectral enve-
lope; however, the higher the number of coefficients, the



more spectral detail is retained.

c(n) =
1

2π

∫ π

−π
log |X(ω)| ejωndω (2)

In many applications, including speech recognition and
audio similarity analysis, it has become common to char-
acterise short audio segments using a set of cepstral coeffi-
cients, such that non-linear frequency warping is used to
emphasise perceptually relevant frequencies correspond-
ing to auditory bands. Mel-scaling is the most widely adopted
method for this purpose.

Our feature extraction follows a common procedure of
computing MFCCs [4]; however instead of using Mel-scaled
magnitude spectra, we use auditory spectra estimated at
three different listening levels. The auditory spectrograms
are logarithmically compressed and then decorrelated us-
ing the Discrete Cosine Transform (DCT) given in Equa-
tion 3.

C(n) =
M∑
i=1

X(i) cos
n(i− 0.5)π

M
,with n = 1, 2..., J,

(3)

where M is the number of auditory filters, J is the num-
ber of ASCCs (typically J < M ), and X(i) is the log-
magnitude output of the i-th filter. These coefficients are
then modelled using a single Gaussian characterising the
distribution of ASCCs over a song in our collection.

This method makes several simplifying assumptions. For
one, it ignores musical structure, and also the fact that the
distribution of timbre features is not necessarily Gaussian.
A solution to these problems may be the use of Gaussian
mixture models (GMM) or a sequence of Gaussians fitted
on coherent segments, for instance, a single Gaussian rep-
resenting each bar or each structural segment of the music,
for modelling a track. However, approaches to estimate
similarity between these models such as Monte Carlo sam-
pling are computationally expensive. Detailed discussions
on timbre models and the effects of the above assumptions
can be found, for instance, in [1], [2] and [3]. Besides mod-
elling recordings using a single Gaussian, a further simpli-
fying assumption is introduced by using Gaussians with
diagonal covariance. Although modelling timbre using a
single Gaussian is a very simple approach, it was shown
in [14] that it can perform comparably to mixture models
when computing similarity between recorded audio tracks.
It was also shown to be effective and computationally ef-
ficient for finding similar songs in personal music collec-
tions in [11]. An important advantage of using this model
is that the similarity between two tracks can be estimated
using closed form expressions, such as the Jensen-Shannon
(JS) or Kullback-Leibler (KL) divergences. Here, we use
the symmetrised KL divergence given in Equation 4, where
p and q are Gaussian distributions, with µ mean and Σ co-
variance, and d is the dimensionality of the feature vectors.

KLs(p‖q) = 2KL(p‖q) + 2KL(q‖p)
= tr(Σ−1

q Σp + Σ−1
p Σq)

+(µp − µq)T (Σ−1
q + Σ−1

p )(µp − µq)
−2d (4)

Using this simple model, we calculate symmetric dis-
tance matrices holding pair-wise KL-divergences (similar-
ity estimates) between all recordings in our collection. For
each distance matrix computation, different sets of ASCCs
are used that are calculated from the auditory spectra esti-
mated for different listening levels. The distance matrices
are then individually analysed using the methods described
in Section 4.1 and 4.2, and the results produced at three
different levels are compared.

4. RESULTS

The data set is analysed as per Section 3 to produce a KL
divergence rating per pair of recordings at each listening
level. To illustrate the approach, 25 tracks from the set
(n=500) were selected at random and KL divergence matri-
ces computed at each listening level (40, 80, 120 dB SPL).
Figure 2 shows the matrices. Blue indicates low values
(similar) and red indicates high values (dissimilar). Fig-
ure 3 shows a box-plot of the matrix data. Figs. 2 and 3
clearly illustrate that the similarity ratings are strongly de-
pendent on the listening level. At low level, the set shows
a high mean similarity with relatively small variance. At
high level the mean similarity is lower and the variance is
larger. At the medium level the variance lies between the
low and high listening levels.

Figure 2. The normalised KL divergence matrices for a
subset of recordings with peak intensity levels from left
to right of: 40, 80 and 120 dB SPL respectively. Blue
indicates low values (similar) and red indicates high values
(dissimilar).

Whilst Fig. 2 shows that the similarity ratings are de-
pendent upon the listening level, it is important to deter-
mine whether these differences are significant in MIR ap-
plications. The application we choose to study is music
recommendation. Music recommendation tools generate
playlists based on similarity ratings, typically derived from
MFCCs. We compared the similarity data across the three
intensity levels in two ways: (i) by comparing the ordering
of distances within triples, and (ii) by comparing the mem-
bers of playlists with different seed recordings, and with
different playlist sizes.
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Figure 3. Boxplots of the KL divergence matrices (Fig. 2)
at each listening level. Low values correspond to similar
recordings and high values to dissimilar recordings.

4.1 Triple analysis

We analysed all subsets of 3 recordings from the dataset
and the pair of recordings with minimum distance (in terms
of the KL divergence feature space), was identified. The
data was compared across listening level, and changes in
the closest identified pairs were recorded. For example, if
a given triplet (I,J,K) showed that at 40 dB SPL recordings
I and J were closest together, but that at 80 dB SPL I and K
were closest together, this was recorded as a change. The
percentage changes were calculated across all triples and
are shown in Table 1. We see around a 30% change in the
ordering of triples. This suggests that MIR applications
that use similarity metrics, such as playlist generation, will
be affected by listening level.

% Change in Triplet Order
40 vs 80 40 vs 120 80 vs 120

32 29 27

Table 1. The percentage change in the closest identified
pair within each set of triples. The column headers refer to
the listening levels between which the comparisons were
made, i.e. 40 vs 80 relates to comparison of triplet data
from the 40 dB SPL and 80 dB SPL sets.

4.2 Playlist generation

Playlists were generated by assigning a seed song, and then
identifying the (n−1) closest songs in the similarity space,
where n is the size of the playlist. The playlists were
compared across listening levels. For example, if a five
song playlist is generated for seed song A, where identi-
fied songs are (T,U,S,X) at 40 dB SPL, but at 80 dB SPL
are (W,T,U,S), the percentage change would be 25%. We
do not consider a playlist to have changed if the order of
the chosen songs is different.

The mean and 95% confidence intervals are calculated
for playlist changes across all seed songs. The mean data
are shown in Table 2 using the first 20 ASCCs. Playlist
change data using first 12, 20 and 29 ASCCs are plotted in

Figure 4. The changes range from 80% for small playlists,
to 50% for large playlists.

In order to verify the significance of these changes, an
equivalent process is followed but comparisons are made
between playlists generated using different numbers of AS-
CCs at each listening level. These data are shown in Figure
5. The changes range from 50% for small playlists, to 10%
for large playlists. For a 10 song playlists, the average
change (in the songs added) is: 62% caused by listening
level (Fig. 4), and 22% caused by the number of ASCCs
used (Fig. 5).

N. Songs Mean % Change in Playlist Members
40 vs 80 40 vs 120 80 vs 120

1 74 67 80
2 69 64 78
3 68 62 76
4 66 59 75
5 66 58 75
6 65 57 74
7 64 56 73
8 63 55 73
9 62 54 72
10 61 53 71
11 61 52 70
12 60 52 70
13 60 51 69
14 59 51 68
15 58 50 68
16 58 49 67
17 58 49 67
18 57 48 66
19 57 47 66
20 57 47 65
21 57 46 65
22 56 46 65
23 56 46 64
24 55 45 64

Table 2. The percentage change in the recommended
playlists using the first 20 ASCCs. The column headers re-
fer to: the length of playlist (excluding seed song), (n−1),
and the listening levels between which the comparisons
were made, i.e. 40 vs 80 relates to comparison of playlists
from the 40 dB SPL and 80 dB SPL sets.

5. DISCUSSION

We have demonstrated that the effect of listening level is
larger than that of variation of the number of ASCCs used
in the playlist generation. The large percentage change in
playlist members shown for the comparison between 40-
80 dB SPL is perhaps most relevant to the typical MIR end
user - such variation in listening levels may be typical in
the home (e.g., for radio broadcast). The equally large per-
centage change shown in the results for the highest sound
pressure level (120 dB SPL) may be relevant for the live
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Figure 4. The percentage change in playlist members with
listening level as a function of the length of playlist (ex-
cluding seed song). The data shown are the mean and 95%
confidence intervals across all seed songs. The square, cir-
cle and triangle markers show comparisons between: 40 to
80, 40 to 120 and 80 to 120 dB SPL respectively. Figs. (a)
to (c) show comparisons using the first 12 ASCCs, (d) to
(f) use the first 20, and (g)-(i) use the first 29.

sound (or disc jockey) context, where sound levels tend to
be higher.

Another conclusion that may be drawn from the anal-
ysis is that low listening levels may be considered to pro-
duce a homogenization effect by limiting bandwidth (due
to absolute thresholds). A similar effect is seen at high lev-
els, where saturation and upward spread of excitation limit
the effective number of independent ASCCs. It is conceiv-
able that, given a larger set from which playlist members
are drawn, the trends shown in Figs. 4 and 5 would re-
solve to a more signal or method dependent function, for
example, it may be shown that the effect of listening level
is more significant on certain genre. Future work should
include modelling with larger sets of data.

Although demonstrated here using a music similarity
study, the effect of listening level on auditory spectra may
have wide ranging implications for MIR theory and prac-
tice in general, and initiating this debate was a primary aim
of this article. It seems unlikely that changes in listening
level will manifest changes in MIR properties relating to
musical score (e.g., notation) or structure (e.g., segmen-
tation). However, where MIR methods rely on spectrum
(e.g., timbre) some effects of listening level may be ex-
pected. For example, speech (or even speaker) recogni-
tion in a high noise environment might be enhanced by the
proper masking (noise suppression) effects of loud speech
in the auditory model. In a more general sense, loudness it-
self may be a useful perceptual feature for MIR problems.
For example, in the creation of a playlist, using a simi-
lar procedure to that described in the present paper, loud-
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Figure 5. The percentage change in playlist members with
the number of ASCCs used as a function of the length of
playlist (excluding seed song). The data shown are the
mean and 95% confidence intervals across all seed songs.
The square, circle and triangle markers show comparisons
between: 12 to 20, 12 to 29, and 20 to 29 ASCCs respec-
tively. Figs. (a) to (c) show comparisons at 40 dB SPL, (d)
to (f) at 80 dB SPL and (g)-(i) at 120 dB SPL.

ness and loudness dynamic range may be used to produce
a sequence of songs which is tailored for smooth loudness
transitions between tracks, and for similar loudness dy-
namics. Furthermore, incorporation of complete psychoa-
coustic listening conditions within listening tests designed
to validate such perceptual similarity metrics may lead to
more meaningful ground truth data.

6. CONCLUSIONS

In this paper we have presented a computational analysis of
the effect of listening level on a perceptual music spectrum
similarity metric. The similarity matrices and statistical
data have shown that the metric is strongly level depen-
dent. The playlist data shows similarly striking effects of
listening level. Some general discussion has been given
on the immediate implications of the use of listening-level
dependent auditory models in MIR and loudness itself has
been suggested as possible future similarity feature. The
results of this study suggest that more complete data about
sound [22] and about music production [6] may be useful
to future context specific MIR applications.
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ABSTRACT

This work deals with pitch content visualization tools for
the analysis of music performance from audio recordings.
An existing computational method for the representation
of pitch contours is briefly reviewed. Its application to mu-
sic analysis is exemplified with two pieces of non-notated
music: a field recording of a folkloric form of polyphon-
ic singing and a commercial recording by a noted blues
musician. Both examples have vocal parts exhibiting com-
plex pitch evolution, difficult to analyze and notate with
precision using Western common music notation. By us-
ing novel time-frequency analysis techniques that improve
the location of the components of a harmonic sound, the
melodic content representation implemented here allows
a detailed study of aspects related to pitch intonation and
tuning. This in turn permits an objective measurement of
essential musical characteristics that are difficult or impos-
sible to properly evaluate by subjective perception alone,
and which are often not accounted for in traditional mu-
sicological analysis. Two software tools are released that
allow the practical use of the described methods.

1. INTRODUCTION

Most of the established techniques for musical analysis
do not work directly on the acoustic signal, but on some
kind of symbolic representation of it [1]. This representa-
tion reduces the continuous and complex sound flow into
a set of discrete events, usually determined by their most
salient parameters, such as temporal location, duration and
pitch. Applications of spectrographic analysis of sound to
the development of new techniques of musical analysis be-
gan to be explored systematically with the work by Robert
Cogan [3]. Using time-frequency representations of the au-
dio signal, Cogan proposes an analytical method applica-
ble to both structural and local aspects of a musical piece,
that exemplifies analyzing music from very varied corpus.
Recently, techniques based on sonographic representation
have been applied extensively to the analysis of electroa-
coustic music [8]. These tools are also being applied to no-
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tated music or music from traditions not based on scores,
to discuss aspects of music not represented in symbolic no-
tation by the analysis of recordings. This may include both
components that depend on the performance [7] (such as
temporal and tuning micro-deviations), or the precise de-
termination of the tuning system of a certain music [6].

Different software tools for computer-aided analysis, vi-
sualization and annotation of recorded music have been
developed, for instance Sonic Visualiser.1 They typical-
ly include traditional time-frequency representations and
digital signal processing tools intended for music informa-
tion retrieval, such as onsets or pitch detection. Some mid-
level representations are also available, i.e., signal transfor-
mations that tend to emphasize higher semantics than the
energy in the time-frequency plane [4]. Those mid-level
representations are usually devised to facilitate the sub-
sequent feature extraction and processing of an automat-
ic algorithm. However, as suggested in [5], they can also
be used by humans to study performance nuances such as
pitch modulations or expressive timing.

In this article, examples are given of the type of anal-
ysis that can be done with an implementation of the pitch
salience representation proposed in [2] by an end-user with
a musicological background (first author). In addition, two
graphical software tools are released that allow the practi-
cal use of the described methods by the research commu-
nity. The representation proposed, called F0gram, is based
on the Fan Chirp Transform (FChT) [13] and seeks two
main goals: firstly, the precise time-frequency location of
the components of a complex sound, using recent analysis
techniques that overcome the limitations of the classical
tools; secondly, the automatic grouping of all the compo-
nents that are part of the spectrum of a single harmonic
source, highlighting the fundamental frequency,f0. This
makes it possible to obtain an accurate graphical represen-
tation of the temporal evolution of the melodic content of
a music recording, that allows the detailed study of perfor-
mance aspects related to pitch intonation and timing (e.g.
tuning system, vibrato, glissando, pitch slides).

The remaining of the document is organized as follows.
Sections 2 and 3 briefly describe the time-frequency anal-
ysis and the pitch salience computation respectively. Ex-
amples of performance music analysis using the released
tools are provided in section 4. The paper ends with some
discussion on this work and ideas for future research.

1 http://www.sonicvisualiser.org/



2. TIME-FREQUENCY ANALYSIS

Music audio signals often exhibit ample frequency mod-
ulation,such as the typical rapid pitch fluctuations of the
singing voice. Precisely representing such modulations is
a challenging problem in signal processing. It is reason-
able to look for a signal analysis technique that concen-
trates the energy of each component in the time-frequency
plane as much as possible. In this way, the representation
of the temporal evolution of the spectrum is improved and
the interference between sound sources is minimized, sim-
plifying the task of higher level algorithms for estimation,
detection and classification.

The standard method for time-frequency analysis is the
Short Time Fourier Transform (STFT), which provides con-
stant resolution in the time-frequency plane. A typical al-
ternative for multi-resolution analysis is the Constant Q
Transform (CQT). Both representations produce a Carte-
sian tiling of the time-frequency plane, as depicted in Fig-
ure 1. This may be inappropriate for non-stationary sig-
nals, for instance a frequency modulated sinusoid, namely
a chirp. The virtue of the FChT is that it offers optimal
resolution simultaneously for all the partials of a harmonic
linear chirp, i.e. harmonically related chirps of linear fre-
quency modulation. This is well suited for music analysis
since many sounds have a harmonic structure and their fre-
quency modulation can be approximated as linear within
short time intervals.

The FChT can be formulated as [2],

X(f, α) ,

∫
∞

−∞

x(t) φ′

α(t) e
−j2πfφα(t)dt, (1)

whereφα(t) = (1 + 1

2
α t) t, is a time warping function.

The parameterα, called the chirp rate, is the variation rate
of the instantaneous frequency of the analysis chirp. No-
tice that by the variable changeτ =φα(t), the formulation
can be regarded as the Fourier Transform of a time warped
version of the signalx(t), which enables an efficient im-
plementation based on the FFT. If a harmonic chirp is ana-
lyzed and the correctα value is selected for the transform,
the warping yields sinusoids of constant frequency so the
spectral representation is a set of very narrow peaks.

Figure 1. Time-frequency tiling sketch for the STFT, the
Short Time CQT and the Short Time FChTand the result-
ing resolution for a two-component harmonic linear chirp.

A time-frequency representation can be built by com-
puting the FChT for consecutive short time signal frames,
namely a Short Time FChT (STFChT). This requires the
determination of the optimalα value for each signal frame.

For polyphonic music analysis there is no single optimalα

value, so the approach followed in [2] is to compute sev-
eral FChT instances with differentα values. This yields a
multidimensional representation made up of various time-
frequency planes. The selection of theα values that pro-
duce the better representation of each sound present is per-
formed by means of pitch salience. A comparison of the
STFT and the STFChT applied to a polyphonic music au-
dio clip is provided in Figure 2.
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an excerpt from the example of section 4.1.The chirp rate
of the most prominent sound source is selected for each
frame. Note the improved representation obtained for this
source while the rest is blurred. Below: F0grams obtained
from the DFT and FChT. Rapid pitch fluctuations are better
represented in the latter.

3. PITCH SALIENCE REPRESENTATION

A representation intended for visualizing the pitch con-
tent of polyphonic music signals should provide an indica-
tion of prominence or salience for all possible pitch values
within the range of interest. A common approach for pitch
salience calculation is to define a fundamental frequen-
cy grid, and compute for each frequency value a weight-
ed sum of the partial amplitudes in a whitened spectrum
[5,13]. A method of this kind was used in [2] and is briefly
described in the following.

Given the FChT of a frameX(f, α), salience of fun-
damental frequencyf0 is obtained by summing the log-



spectrum at the positions of the corresponding harmonics,

ρ(f0, α) =
1

nH

nH∑
i=1

log |X(if0, α)|, (2)

wherenH is the number of harmonicslocated up to a cer-
tain maximum analysis frequency. This is computed for
each signal frame in a certain range off0 values.

Some postprocessing steps are carried out in order to at-
tenuate spurious peaks at multiples and submultiples of the
true pitches, and to balance different fundamental frequen-
cy regions [2]. Finally, for each f0 in the grid, the highest
salience value is selected among the different availableα

values. In this way, a representation that shows the evolu-
tion of the pitch of the harmonic sounds in the audio signal
is obtained, namely an F0gram. Examples of the resulting
representation are depicted in Figure 3 for two short audio
clips. The F0gram produces a fairly precise pitch evolu-
tion representation, contrast balanced and without spuri-
ous noticeable peaks when no harmonic sound is present.
Note that simultaneous sources can be correctly represent-
ed, even in the case that they coincide in time and frequen-
cy if their pitch change rate is different. Figure 2 shows
a comparison of the F0gram obtained from the DFT and
the FChT. The improvement in time-frequency localization
provides a more accurate representation of pitch.
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Figure 3. Above: F0gram examples for audio excerpts of
pop1.wavandopera fem4.wavfrom the MIREX melody
extraction test set. Below: Detailed visualization. Crossing
pitch contoursare well resolved, and simultaneous sources
and rapid pitch fluctuations are precisely represented.

4. CASE STUDIES

In order to exemplify the application of these techniques
to musicological analysis, we have selected two pieces of
non-notated music, both of them with vocal parts exhibit-
ing complex pitch evolution, very difficult or downright
impossible to notate with precision using Western common
music notation: a field recording of a folkloric female vocal
trio from west-central Bulgaria, and a commercial record-
ing by noted blues singer and guitarist Muddy Waters.

4.1 Diaphonic chant of the Shope country

Throughout the world, folkloric forms of polyphonic
singing are relatively scarce, one of the most notable ex-
ceptions being the diaphonic singing of the Shope region in
west-central Bulgaria. A closely related form can be found
in the Pirin region in the south-west of the country, and
extending into the Republic of Macedonia.

As a general rule, these polyphonic songs are performed
by female singers, and the sound itself of the voices is usu-
ally enough to impress listeners not familiar with this id-
iom. But the treatment of pitch in these two-part songs, or
dvuglas, also has some unique characteristics.

In a typical setting, the melody part is sung by one singer,
and the second part by two or sometimes more. The up-
per part has several classified melodic gestures, one of the
most characteristic being a sort of—usually fast—glottal
trill called tresene. Another characteristic gesture is the
izvikvane, a form of ending the phrases with a fast upward
leap on the vowel sound“eee”. The second part is more
static, and has been described as a “drone” or pedal. It usu-
ally stays on the tonic of the mode, with occasional devi-
ations to the sub-tonic when the melody descends to the
tonic. Both parts join, however, to perform theizvikvane
together. Apart from some fast swoops, the melody part
moves within a very limited range, especially in the Shope
region. This results in a preponderance of narrow intervals
between the voices [9,10].

For our case study, a commercially available field record-
ing of a folkloric group from the Shope region was used
[12]. The recording is identified, without further informa-
tion, as a “Harvest Song” performed by a female vocal trio
from the village of Zheleznitsa. The recording date can be
placed around 1980. The song consists of 9 short phrases
of similar duration (ca. 10∼12 s), structured as three varia-
tions of a group of three distinct phrases.

Figure 4 shows an F0gram of the third of these phras-
es, exhibiting all the characteristics described above: the
second part begins in the sub-tonic and soon moves to the
tonic for the rest of the phrase, while the first part moves
both above and below the tonic, singing a more embel-
lished melody that includes faster and slowertresene. The
cadentializvikvanecovers a narrow octave before descend-
ing back to the tonic area, and sounds like a unison of the
three voices, in accordance with the prevailing description
of izvikvane. The F0gram allows us to appreciate, however,
that there is actually a slight separation of the voices, very
difficult to perceive by listening alone.
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An analysis of the simultaneities confirms that narrow
intervals prevail, and a variety of intervals can be found
between the unison and the major third. The F0gram ob-
tained from the FChT permits a precise measurement of
these type of intervals, as can be appreciated in Figure 2.
Of special interest was the location of the sub-tonic, and
the interval most frequently found lies half-way between
one and two semitones below the tonic (sec. 23–24). This
same kind of “second” can often be found above the tonic,
in the upper part (sec. 28–29). The speed and range of the
tresenecan also be assessed with good precision. Typical
rates are around 8∼9 Hz (sec. 26–27), but slower rates can
also be found (sec. 30–31). The width is variable, extend-
ing through intervals of up to three semitones (sec. 26).

So far, the analysis of the F0gram confirms—and per-
mits a better measurement of—the characteristics described.
Observing the second part with more detail, however, its
behavior should be striking: instead of remaining on a fixed
note, as its supposed character of “drone” would suggest,
it performs a slow upward glissando, covering roughly the
equivalent of a semitone (from F to F♯) during approxi-
mately 7 seconds. This displacement of the tonic not only
occurs in various degrees in all the phrases throughout the
song, but it also covers different pitch areas in each one
(e.g., between E and F, or F♯and G), resulting in a sort of
“roving” tonic. Field recordings from different villages in
the Shope region were analysed, and a similar behaviour
was found in most of them, with glissandi of the “pedal”
notes typically spanning between 50 cents and a semitone
within a phrase. In the course of the song, the intonation of
the local “tonics” can vary as much as three semitones.

The implications are two-fold and of paramount impor-
tance: unlike a typical drone or pedal point, essentially stat-
ic, this second part has a dynamic character, and this kind
of slowly ascending movement imposes on the polyphony
a very particular tension and expressiveness. Additional-
ly, the fact that the “tonic” varies between phrases, turns
somewhat fuzzy the idea itself of modal tonic.

This phenomenon is not mentioned in the consulted bib-
liography and is not represented in the available transcrip-

tions, although it was found in various degrees in several
recordings analysed, suggesting that these traits conform
a characteristic feature of the Shope musical idiom and
should be considered an essential component of the power-
ful expressiveness of this particular form of folkloric poly-
phonic singing. These analysis techniques should be ap-
plied to a wider corpus to properly assess the importance
of this performance practice.

4.2 Muddy Waters - Long Distance Call

The Blues is a genre of popular music deeply rooted in
the African-American folksong tradition of the rural South
of the United States, and as such it shows several traits
that differ considerably from those found in the traditional
European musical system. The most characteristic of these
traits are the so-called“blue notes”, the precise definition
of which has been elusive and even somewhat controver-
sial. A simplistic but widely circulating definition reduces
them to the use of the minor third and minor seventh de-
grees (sometimes also the diminished fifth) in a major-
key context, for example, E♭and B♭ in C major. Actual-
ly, this performance practice is much more complex, and
entails two related but distinct aspects: the use of pitches
that lie outside the standard Western tuning system, and
continuous variations of pitch within certain tonal regions.
Rather than fixed tones in a discrete scale system, blue
notes would be flexible areas in the pitch space. For the
analysis of the behaviour of these pitch complexes in ac-
tual performance, we chose a recording by Muddy Waters,
one of the most important blues musicians of all time, re-
garded as an unsurpassed performer both as a guitaristand
as a singer.

On January 23, 1951 he recorded his own composition
“Long distance call” for Chess Records. He sings and plays
electric guitar, and is accompanied by Marion “Little Wal-
ter” Jacobs on harmonica and Willie Dixon on double bass.
The song is a standard 12-bar, three-line stanza blues, where
the second line in each verse repeats the first, and the third
is a rhyming conclusion. After a 4-bar introduction, the
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Figure 5. Muddy Waters, “Long distance call” (1951): F0gram showing continuous pitch contours of the voice, and ap-
proximate musical transcription informed by the analysis of the F0gram.

first stanza extends from measure 5 to 16. Figure 5 shows
the F0gram and the transcription of the six measures where
Muddy Waters sings the lyrics: mm. 5-6, 9-10 and 13-14.
Each of these 2-bar vocal phrases is followed by a 2-bar
instrumental response, omitted in the figure.

The musical transcription offered here is informed by
the analysis of the F0gram,2 and differs in many substan-
tial details from published transcriptions [11], as well as
from what was perceived by highly trained musicians that

2 Just as with pitches, Muddy Waters’treatment of durations is equally
flexible. The note values chosen for the transcription are approximate, and
the vertical alignment with the F0gram is not always perfect.



were asked to listen to the recording. Observing the F0gram
it is easy to see why: the melody consistsmostly of con-
tinuously varying pitches, with few moments of stability
other than the resolution on the tonic, and these exhibit
a wide terminal vibrato. In this context, the perception of
definite notes requires a decision on the part of the listener,
that is partly subjective. For example, the first three notes
(“You say you”) are normally perceived as F-A♭-F, but a
closer inspection reveal that the first note is actually a fast
“scoop” around a slightly high E♭, and the second a con-
tinuous glide from below A♭to around A♮. This behavior
is consistent when the phrase is repeated (m. 9). A simi-
lar treatment of the third as a blue note (i.e., as a flexible
pitch area) can be observed on the word “phone” on mm. 6
and 10. The previous words (“call me on the”), also move
within a continuous pitch region, this time around the 4th
and 5th degrees (B♭and C). The long notes that begin the
second half of each line (“plea-se” around E♭on the first
and second line, and “ea-se” around C on the third) exhib-
it all the same arch-like melodic contour, with wider and
faster ascending and descending movements at the begin-
ning and the end of the note, and a slow curve during the
sustain part. A particularly expressive effect results from
the fact that the C is hardly reached for an instant at the
peak of the arch, the rest of the time the melody is kept
moving slowly around a somewhat flat fifth. The F0gram
also shows, through different shades in the grayscale, that
the dynamics of the phrase follow a similar arch-like con-
tour. The most ambiguous moments in terms of pitch are
the endings of the first and second lines (“sometime”), with
fast portamentos into the lower register that give these pas-
sages a speech-like quality.

In many Western vocal practices, continuous inflections
of pitch are common when connecting the different —sta-
ble—notes of a melody (legatosinging), as well as in the
form of vibrato, fluctuations of pitch around a central per-
ceived note. The application of the analysis tools proposed
here permits a clear visualization of two salient traits of
this passage: a melody consisting mostly of time varying
pitches with relatively few moments of stability, and the
establishment of continuous tonal regions non reducible to
single pitches in a discrete scale.

5. DISCUSSION AND FUTURE WORK

By means of the analysis of two music recordings, the
usefulness of the introduced techniques for computer aided
musicology was illustrated, in particular for discussing ex-
pressive performance nuances related to pitch intonation.
The result of the analysis by itself reveals important as-
pects of the music at hand, difficult to asses otherwise.
The computational techniques implemented are oriented
towards the precise representation of pitch fluctuations.

Two graphical software tools are released with this work
to allow the application of the described methods by the re-
search community.3 One of them is a Vamp plugin4 for

3 Available, as well as the audio clips, fromhttp://iie.fing.
edu.uy/investigacion/grupos/gpa/ismir2012

4 http://www.vamp-plugins.org/

Sonic Visualiser that computes the pitch contours repre-
sentation. Within this application several other features are
available that can assist the analysis. A MatlabR© GUI is al-
so released that includes additional functionalities and in-
formation, better suited for signal-processing researchers.

The improvement of the pitch contours representation
and its application to different music scenarios are the fol-
lowing directions for future research.
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ABSTRACT

The tonic is a fundamental concept in Indian classical mu-
sic since it constitutes the base pitch from which a lead
performer constructs the melodies, and accompanying in-
struments use it for tuning. This makes tonic identification
an essential first step for most automatic analyses of Indian
classical music, such as intonation and melodic analysis,
and raga recognition. In this paper we address the task
of automatic tonic identification. Unlike approaches that
identify the tonic from a single predominant pitch track,
here we propose a method based on a multipitch analysis of
the audio. We use a multipitch representation to construct
a pitch histogram of the audio excerpt, out of which the
tonic is identified. Rather than manually define a template,
we employ a classification approach to automatically learn
a set of rules for selecting the tonic. The proposed method
returns not only the pitch class of the tonic but also the pre-
cise octave in which it is played. We evaluate the approach
on a large collection of Carnatic and Hindustani music, ob-
taining an identification accuracy of 93%. We also discuss
the types of errors made by our proposed method, as well
as the challenges in generating ground truth annotations.

1. INTRODUCTION

One of the fundamental concepts in Indian classical mu-
sic is the tonic. The tonic is a base pitch chosen by the
performer, and serves as the foundation for the melodic
tonal relationships throughout the performance. Every per-
former chooses a tonic pitch which best allows them to
fully explore their vocal (or instrumental) pitch range for a
given raga exposition [3]. Consequently, all accompanying
instruments are tuned with relation to the tonic chosen by
the lead performer.

Since the entire performance is relative to the tonic (cor-
responding to the Sa note of the raga), the lead performer
needs to hear the tonic pitch throughout the concert. This
is provided by a constantly sounding drone which plays in
the background and reinforces the tonic. The drone may be
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c© 2012 International Society for Music Information Retrieval.

produced by a variety of instruments such as the Tanpura,
the electronic Shruti box, or by the sympathetic strings of
an instrument such as the Sitar or Veena. Along with the
tonic, the drone typically produces other important notes
in the raga such as the Pa (fifth) or the Ma (fourth), and
slightly less often the seventh (Ni), depending on the choice
of raga. This drone serves as the reference sound that es-
tablishes all the harmonic and melodic relationships during
a given performance. Other notes used in the performance
derive their meaning and purpose in relation to the Sa and
the tonal context established by the particular raga [2].

When considering the computational analysis of Indian
classical music, it becomes evident that identifying the tonic
is a crucial first step for more detailed tonal studies such as
intonation [9], motif analysis [13] and raga recognition [1].
This makes automatic tonic identification a fundamental
research problem. However, despite its importance in In-
dian classical music, the problem of automatic tonic identi-
fication has received very little attention from the research
community to date.

To the best of our knowledge, all previous approaches
for automatic tonic identification are based on applying
monophonic pitch trackers to the audio recording, meaning
they solely use the information proportioned by the pre-
dominant melody [16]. In some cases a monophonic pitch
tracker is used even though the audio recording contains
several instruments playing simultaneously [12]. These
approaches have also been fairly restricted in terms of the
musical content studied: in [16] only the Alap sections
of 118 solo vocal recordings are used for evaluation, and
in [12] the evaluation material is restricted to Sampurna
raga. Both approaches also restrict the allowed frequency
range for the tonic to a single octave, a limitation which
can not be imposed if we wish to devise a single method
for tonic identification for both male and female vocal per-
formances.

In this paper we propose a method for tonic identifica-
tion in Indian classical music based on a multipitch anal-
ysis of the audio signal. The motivation for a multipitch
approach is twofold: first, the music material under inves-
tigation often includes several instruments playing simulta-
neously. Apart from the lead performer, recordings contain
the drone instrument, and may also include other predom-
inant instruments such as the violin, as well as percussive
instruments. Second, we know that the tonic is continually
reinforced by the drone instrument, an important fact that
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Figure 1. Spectrogram of an excerpt of Hindustani mu-
sic with two clearly visible types of harmonic series, one
belonging to the drone and the other to the lead voice.

is not exploited if we only extract a single pitch estimate
for each frame of the recording. To illustrate this point, in
Figure 1 we display the spectrogram for an excerpt of Hin-
dustani music [2]. Two types of harmonic series are clearly
visible in the spectrogram: the first type of harmonic series,
which consist of almost perfectly flat lines, belong to the
notes of the drone instrument (playing Sa and Pa). The sec-
ond type of harmonic series (which starts roughly at time
2s) belongs to the voice of the lead performer. Evidently, if
we only consider the pitch of the lead performer, we loose
the pitch information proportioned by the drone instrument
which in this case is a better indicator of the tonic pitch.

At the outset of this study, we defined three goals for
the method to be developed: first, it should be applicable
to a wide range of performances, including both the Car-
natic [18] and Hindustani musical styles, male and female
singers, and different recording conditions. Second, the
approach should identify the tonic pitch in the correct oc-
tave, without restricting the allowed frequency range to a
single octave. Finally, the approach should be able to iden-
tify the tonic using a limited segment of the full recording,
and this segment can be taken from any part of the piece.

The structure of the remainder of the paper is as fol-
lows. In Section 2 we present our proposed tonic identi-
fication method. In Section 3 we describe the evaluation
methodology employed in this study, including the music
collection used for evaluation and the annotation procedure
used to generate the ground truth. Then, in Section 4 we
present and discuss the results of the evaluation, and finally
in Section 5 we provide some conclusions and proposals
for future work.

2. PROPOSED METHOD

The proposed method is comprised of four main blocks: si-
nusoid extraction, salience function, candidate generation
and tonic selection. The first two blocks of the system were
originally proposed as part of a predominant melody ex-
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Figure 2. Block diagram of the proposed tonic identifica-
tion method.

traction system [14, 15], and have been adapted here for
the task of tonic identification. In the following sections
we describe the processing steps involved in each of the
four blocks of the system. A block diagram of the pro-
posed method is provided in Figure 2.

2.1 Sinusoid Extraction

In the first step of the method, we extract sinusoidal com-
ponents, i.e. spectral peaks, from the audio signal. The
sinusoid extraction process is divided into two stages as
depicted in Figure 2: spectral transform and sinusoid fre-
quency/amplitude correction.

We start by applying the Short-Time Fourier Transform
(STFT) given by:

Xl(k) =
M−1∑
n=0

w(n) · x(n+ lH)e−j 2π
N kn, (1)

l = 0, 1, . . . and k = 0, 1, . . . , N − 1

where x(n) is the time signal, w(n) the windowing func-
tion, l the frame number, M the window length, N the
FFT length and H the hop size. We use the Hann window-
ing function with a window size of 46.4ms, a hop size of
2.9ms and a ×4 zero padding factor, which for data sam-
pled at fS = 44.1kHz gives M = 2048, N = 8192 and
H = 128. Given the FFT of a single frame Xl(k), spectral
peaks are selected by finding all the local maxima km of
the magnitude spectrum |Xl(k)|.

The location of the spectral peaks is limited to the bin
frequencies of the FFT, which for low frequencies can re-
sult in a relatively large error in the estimation of the peak
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Figure 3. Peaks of the salience function for an excerpt of
Hindustani music.

frequency. To overcome this quantisation, in the second
stage of this block we apply the approach described in [4],
in which the phase spectrum φl(k) is used to calculate the
peak’s instantaneous frequency (IF) and amplitude, which
provide a more accurate estimate of the peak’s true fre-
quency and amplitude.

2.2 Salience Function (Multipitch Representation)

We use the extracted spectral peaks to compute a salience
function – a multipitch time-frequency representation of
pitch salience over time. The salience computation is based
on harmonic summation similar to [8], where the salience
of a given frequency is computed as the sum of the weighted
energies found at integer multiples (harmonics) of that fre-
quency. Peaks of the salience function at each frame repre-
sent salient pitches in the music recording. Note that whilst
the concepts of pitch (which is perceptual) and fundamen-
tal frequency (which is a physical measurement) are not
identical, for simplicity in this paper we will use these two
terms interchangeably.

Our salience function covers a pitch range of nearly five
octaves from 55Hz to 1.76kHz, quantized into 600 bins
on a cent scale (10 cents per bin). The reader is referred
to [14, 15] for further details about the mathematical for-
mulation of the salience function. In Figure 3 we plot the
peaks of the salience function for the same excerpt from
Figure 1. The tonic (Sa) pitch which is played by the drone
instrument is clearly visible, as well as the upper and lower
fifth (Pa), and the pitch trajectory of the voice.

2.3 Tonic Candidate Generation

As explained earlier, the peaks of the salience function rep-
resent the pitches of the voice and other predominant in-
struments present in the recording at every point in time.
Thus, by computing a histogram of the pitch values for the
entire excerpt, we obtain an estimate of which pitches are
repeated most often throughout the excerpt. Though pitch
histograms have been used previously for tonic identifica-
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Figure 4. Pitch histogram for an excerpt of Hindustani
music.

tion [12], they were constructed using only the most pre-
dominant pitch at each frame, which means that in many
cases the tonal information provided by the drone instru-
ment is not taken into consideration.

We start by taking the peaks of the salience function at
each frame. Since the frequency range for the tonic pitch
selected by singers in Indian classical music is relatively
limited, we can reduce the range from which salient pitches
are selected. To ensure we cover the complete range for
both male and female singers, we consider salient pitches
with a fundamental frequency ranging from 110 Hz to 370
Hz. Importantly, note that this range spans almost 2 oc-
taves, meaning the system must be able to identify not only
the correct tonic pitch class, but also the octave in which it
is played. Within this range, at each frame we take the top
five peaks (pitches) of the salience function.

The selected pitches are used to construct a pitch his-
togram. As the drone is usually weaker than the lead voice,
we avoid weighting each peak by its magnitude. The re-
sulting pitch histogram goes from 110 Hz to 370 Hz and
has a resolution of 10 cents. Peaks of the histogram repre-
sent the most frequent pitches in the excerpt, one of which
will be the tonic. In Figure 4 we present the histogram
computed from the complete 3 minute excerpt used in the
previous examples. The pitch axis is plotted in cents, and
the histogram is normalised by the magnitude of its highest
peak. For the excerpt under consideration, we note three
clear peaks: the tonic Sa (2040 cents), the upper Pa (2740
cents) and the tonic again, one octave up (3240 cents). This
illustrates one of the challenges the system will have to
deal with – selecting the tonic at the correct octave. It also
highlights another important issue – the peak correspond-
ing to the tonic will not always be the highest peak in the
histogram, meaning the (perhaps naı̈ve) approach of select-
ing the highest peak of the histogram would not provide
satisfactory results.

2.4 Tonic Selection

As the tonic will not always be the highest peak of the his-
togram, we take the top 10 peaks of the pitch histogram
pi (i = 1 . . . 10), one of which represents the pitch of the
tonic. As mentioned in the introduction, all other notes
present in the musical piece are tuned with relation to the
tonic. Bearing this in mind, we hypothesize that the tonic
can be identified based on the pitch intervals between the



most frequent notes in the recording and their rate of occur-
rence. For example, in the excerpt in Figure 3, the drone
plays the tonic alongside the lower and upper fifth. Thus,
a fifth relationship between two frequent notes might serve
as a good indicator for the tonic.

In the study of Western music, templates learned from
music cognition experiments have been used for the re-
lated task of key detection, where a pitch histogram (de-
rived from a symbolic representation of the musical piece)
is matched against templates representing the probability
of different pitch classes given a certain tonal context [10].
Approaches based on training a classifier to determine the
key of a musical piece using chroma features automati-
cally extracted from the audio signal have also been pro-
posed [5]. In this study, we propose a classification ap-
proach to automatically learn the best set of rules for se-
lecting the tonic, based on the pitch intervals between the
most frequent notes in the piece and their relative rate of
occurrence (as indicated by the magnitude of the peaks of
the pitch histogram).

We start by annotating for each piece the rank i = I
of the tonic (in terms of peak magnitude) out of the top 10
peaks pi of the pitch histogram. Then, we encode the 10
tonic candidates as the distance (in semitones) between ev-
ery candidate pi and the highest candidate in the histogram
p1. This gives us a set of features fi (i = 1 . . . 10), where
fi represents the distance (in semitones) between pi and
p1. The features fi and the annotated rank of the tonic I
are used to train a classifier for selecting the tonic. That
is, we pose the task of tonic identification as a classifica-
tion problem where we have 10 classes (10 candidates) and
the classifier must choose the rank of the candidate corre-
sponding to the tonic. Note that for all files in our collec-
tion the tonic was always amongst the top 10 peaks pi of
the pitch histogram.

For classification we use the Weka data-mining soft-
ware [7]. We start by performing attribute selection using
the CfsSubsetEval attribute evaluator and BestFirst search
method [6] with a 10-fold cross validation, only keeping
features that were used in at least 80% of the folds. The
selected features were: f2, f3, f5, f6, f8 and f9. Then, we
train a C4.5 decision tree [11] in order to learn the optimal
set of rules for selecting the tonic based on the pitch inter-
vals between the tonic candidates. Note that we also evalu-
ated other classification algorithms, namely support vector
machines (SMO with polynomial kernel) and an instance-
based classifier (k*) [19]. However, the accuracy obtained
using the decision tree was significantly higher (6% better
than SVM and 5% better than k*), and so for the rest of
the paper we will focus on the results obtained using this
classifier. Additionally, using a decision tree has the ad-
vantage that the resulting classification rules can be easily
interpreted and, as shall be seen, are musically meaningful.

The resulting tree is presented in Figure 5. As it turns
out, only 3 features are finally used: f2, f3 and f5. Another
interesting observation is that the pitch intervals used by
the tree for making decisions correspond quite well to the
intervals between the notes commonly played by the drone

instrument: 5 (i.e. 500 cents) corresponds to the interval
between the lower Pa and the tonic Sa, and 7 (700 cents)
to the interval between the Sa and upper Pa. Note that a
distance of 500 cents may also correspond to the distance
between the Sa and upper Ma, which might be a cause for
confusion in our system, and we will assess this when we
analyse the results.

Examining the rules of the tree, we see that the most
important relationship is between the top two peaks of the
histogram. When the second highest peak is more than
500 cents above the highest peak, the latter is chosen as
the tonic. Examining the data we found that this almost al-
ways corresponds to one of two cases – the second peak is
either Pa (i.e. Pa tuning) or Sa one octave above the tonic.
Branching left, the tree checks whether the highest peak is
actually Pa (700 cents above the tonic). To confirm this it
checks if the third peak is found 500 cents above the high-
est peak (thus corresponding to Sa one octave above the
tonic). In this case the highest peak is indeed Pa, and the
second highest peak is the tonic. Otherwise, we have a
case of Ma tuning (the second peak is tuned to Ma), and
the highest peak is the tonic. Similar interpretations can be
made for the remaining rules of the tree.

f2 

f2 

f3  f3 

f5 2nd  1st  3rd 

4th  5th 

1st 

> 5 <= 5 

> -7 <= -7 

> -6 <= -6 > 5 <= 5 

> -11 <= -11 

Figure 5. Obtained decision tree for tonic identification.

3. EVALUATION METHODOLOGY

3.1 Music Collection

The music collection used to evaluate the proposed ap-
proach was compiled as part of the CompMusic project
[17]. It consists of 364 excerpts of Indian classical music
including both Hindustani (38%) and Carnatic (62%) mu-
sic. The excerpts were extracted from 231 unique perfor-
mances by 36 different artists, including both male (80%)
and female (20%) singers. Every excerpt is 3 minutes long,
and extracted from either the beginning, middle or end of
the full recording (for recordings longer than 12 minutes
we are able to extract all 3 excerpts, for shorter record-
ings a single excerpt from the beginning of the piece was
taken). Including excerpts from sections other than the be-
ginning of the piece is important, since in both the Hin-
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Figure 6. Distribution of tonic frequency for male and fe-
male vocal performances in our music collection.

dustani and Carnatic music traditions different sections of
a performance can have very different acoustic character-
istics. In Figure 6 we display the distribution of tonic fre-
quencies in our collection for both male and female singers.

3.2 Annotation Procedure

The tonic frequency for each excerpt was manually anno-
tated by the authors. To assist the annotation process, we
used the candidate generation part of our proposed method
to extract 10 candidate frequencies for the tonic in the range
of 110 Hz to 300 Hz. The annotator could then listen to the
candidate frequencies one by one together with the original
recording in order to identify the tonic frequency. Note that
for all excerpts in our collection the true tonic frequency
was present in one of the 10 candidates provided by the
system.

It is worth noting that as part of the annotation process,
the listener must determine the octave in which the tonic
is played. Since the drone instrument may play the tonic
pitch in two octaves simultaneously, the octave of the tonic
is determined by the vocal range of the singer rather than
the drone instrument directly. Whilst in most cases the cor-
rect octave is fairly unambiguous for vocal performances,
we encountered a small number of cases in which deter-
mining the octave of the tonic was more difficult. In future
work, we intend to study the relation between performer
and drone instrument in greater depth, as well as conduct
listening tests to assess the degree of agreement between
listeners when asked to determine the octave of the tonic.

4. RESULTS

We evaluate the proposed classification-based approach us-
ing 10-fold cross validation. The experiment is repeated 10
times, and the average results for all 10 repetitions are re-
ported. In Figure 7 we present the classification accuracy
obtained for our collection of 364 excerpts, as well as a
breakdown of the results based on musical style and gen-
der of the lead performer.

We see that the proposed approach obtains a classifica-
tion accuracy (hence tonic identification accuracy) of 93%
for our complete collection. Importantly, since the allowed
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Figure 7. Classification accuracy for the proposed ap-
proach. All excerpts 93%, Hindustani 98%, Carnatic 90%,
Male 95% and Female 88%.

tonic frequency range spans more than one octave, it means
we are correctly identifying not only the pitch-class of the
tonic, but also the octave at which it is played. Next, we ex-
amine the results depending on the musical style. We see
that we have almost perfect classification for Hindustani
music (98%), whilst for Carnatic music the performance
is somewhat lower (90%). When examining the data, we
noted that in the Carnatic excerpts there were more cases
where the Tanpura was quite weak (in terms of loudness).
Consequently, this results in frames where the pitch corre-
sponding to the tonic does not have a prominent peak in
the salience function. This in turn means the peak of the
pitch histogram which corresponds to the tonic has a fairly
low rank, leading to incorrect identification of the tonic.

When considering identification accuracy as a function
of the gender of the lead performer, we see that the system
performs better for pieces performed by male singers com-
pared to those performed by female singers. A possible
cause for this is the different amount of male and female
performances in our collection. Since there are consider-
ably more male performances, the rules learned by the sys-
tem are better suited for identifying the tonic in this type
of musical material. Another factor that was identified as
influential was the frequency range used to compute the
pitch histogram. Whilst our frequency range covers the
entire range in which we expect to find the tonic for both
male and female cases, for high frequency tonics this range
will not include the higher Sa one octave above the tonic.
As it turns out, the presence of a higher Sa is one of the
cues used by the system, and for many female excerpts it
is outside the range of the pitch histogram. In the future,
we intend to experiment with different frequency ranges
for the pitch histogram, as well as consider separate ranges
for male and female performances to see whether perfor-
mance can be improved by including this extra piece of
information prior to classification.

As a final step in our analysis of the results, we checked
what types of errors were the most common in our evalu-
ation. We found that for male singers the most common
error was selecting the higher Pa or Ma as the tonic, whilst
for females it was selecting the lower Pa or Ma. This is un-
derstandable, as these are two important notes that are of-
ten played by the drone instrument in addition to the tonic.
The difference in tonic frequency for males and females,



together with the frequency range used for the pitch his-
togram, explains why for males we erroneously select a
higher note, whilst for females we select a lower one. Ad-
ditionally, for female singers we found that the confusion
was often caused due to the use of Ma tuning (Sa - Ma - Sa)
of the drone instrument. If the higher Sa is not present, the
Ma tuning is equivalent to a rotated version of Pa tuning,
resulting in the wrong rule being applied.

5. CONCLUSION

In this paper we presented a novel approach for tonic iden-
tification in Indian classical music. Our method is based
on a multipitch analysis of the audio signal, in which the
predominant pitches in the mixture are used to construct
a pitch histogram representing the most frequently played
notes in the piece. In this way, our representation also cap-
tures the notes played by the drone instrument, and not
only the pitch of the lead performer. Using a classification
approach, we were able to automatically learn the best set
of rules for tonic identification given our pitch histogram
representation. The resulting decision tree was evaluated
on a large collection of excerpts consisting of a wide selec-
tion of pieces, artists and recording conditions, and was
shown to obtain high tonic identification accuracy. Im-
portantly, the approach is suitable for both Hindustani and
Carnatic music, male and female performances, and only
requires a short excerpt of the full performance. In addi-
tion, the rules learned by the system are easy to interpret
and musically coherent.

Following presentation of the results, we discussed the
types of errors most commonly made by the proposed tonic
identification method, and the main causes for these errors
where identified. Finally, we proposed some directions
for future work, including a study of tonic octave percep-
tion, considering different frequency ranges for the pitch
histogram in our proposed method, and devising gender-
specific tonic identification approaches.
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ABSTRACT 

Common Western music notation is traditionally orga-
nized on staves that can be grouped into systems. When 
multiple systems appear on a page, they are arranged 
from the top to the bottom of the page, similar to lines of 
words in a text document. Encoding music notation doc-
uments for printing requires this arrangement to be cap-
tured. However, in the music notation model proposed 
by the Music Encoding Initiative (MEI), the hierarchy of 
the XML sub-tree representing the music emphasizes the 
content rather than the layout. Since systems and pages 
do not coincide with the musical content, they are encod-
ed in a secondary hierarchy that contains very limited 
information. In this paper, we present a complementary 
solution for augmenting the level of detail of the layout 
of musical documents; that is, the layout information can 
be encoded in a separate sub-tree with cross-references 
to other elements holding the musical content. The major 
advantage of the proposed solution is that it enables mul-
tiple layout descriptions, each describing a different vis-
ual instantiation of the same musical content. 

1. INTRODUCTION 

Common Western music notation is a system made up of 
structured symbols organized upon a group of horizontal 
lines, commonly called a “staff”, which acts as a bi-
dimensional reference system. The horizontal axis repre-
sents time while the vertical axis indicates pitch. Staves 
can be grouped into systems, where the systems contain 
concurrent streams of musical events aligned vertically 
and where each staff encompasses a defined pitch range. 
Systems are arranged across as many pages as necessary 
to accommodate the musical content. When multiple sys-
tems appear on a page, multiple systems are arranged 
from the top of the page to the bottom, similar to para-
graphs in a text document. 

Numerous schemes have been developed for encoding 

music notation [8]. Over the last decade, XML has been 
increasingly used for defining encoding schemes, for ex-
ample, in the MusicXML1 interchange format [2]  and the 
IEEE15992 standard [6]. More recently, with a major re-
lease in 2010 and with the upcoming 2012 release, the 
music notation model proposed by the Music Encoding 
Initiative3 (MEI) has begun to take a leading role. Devel-
oped by a community of scholars, it acts as an extensible 
music document encoding framework that can be custom-
ized for specific needs [5].1 2 3 

For XML encoding schemes, such as MEI, that aim to 
take into account the graphical context of the notation, 
the organization of the notation into staves, systems, and 
pages often needs to be captured. Whereas a page-based 
approach will have the page at the top of the XML hierar-
chy, a content-based approach will place an element with 
semantic meaning at the top of the hierarchy, relegating 
the visual appearance to a secondary role. Music notation 
itself is obviously multi-hierarchical, and both approaches 
reflect valid perspectives. However, a basic principle of 
XML design is that it requires a single hierarchy to be-
come the primary ordering mechanism of the music nota-
tion description. Other hierarchies inherent in music nota-
tion may then be implemented using alternative tech-
niques such as standoff markup. 

Currently, MEI emphasizes the logical content of the 
notation. For example, in the case of CMN, it employs 
measures at the top of the hierarchy. Pages and systems 
are captured using the same milestone technique that TEI 
offers; that is, page and system breaks are represented by 
the empty elements <pb/> and <sb/> respectively. It is 
fairly easy to convert between measure-based and page-
based hierarchies using XSLT stylesheets, analogous to 
MusicXML’s conversion between time-based and part-
based file organization. However, there are additional 
complicating factors in the case of MEI. For example, 
when multiple sources are described within a single en-
coding, which is a significant design goal of MEI, the 
sources do not necessarily agree with regard to page and 
system breaks. Furthermore, they might use a different 

                                                             
1 <http://www.makemusic.com/musicxml> 
2 <http://www.mx.dico.unimi.it> 
3 <http://www.music-encoding.org > 
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score order or map instruments to staves differently. Even 
the number of instruments or staves may differ between 
multiple sources. Although MEI is currently capable of 
dealing with these circumstances, the markup is often 
verbose, repetitive, and difficult to comprehend quickly. 
In this paper, we present a complementary module for 
MEI that provides for more detailed capture of layout in-
formation and better separation of musical content and 
visual presentation. The next section describes the objec-
tives pursued, followed by a section on related work. We 
then present the module we developed for MEI and con-
clude the paper with remarks on future work. 

2. OBJECTIVES 

There are at least two use-cases that would benefit from 
a clearer separation of layout-related information and the 
musical content as proposed in this paper. The first use-
case is when precise descriptions in the encoding of ex-
isting source materials are required. A typical example is 
the use of MEI as an output of and archival format for 
optical music recognition (OMR) software applications 
[4]. In such a use, it is necessary to be able to record the 
exact position of the elements on the page. In OMR tran-
scriptions, each note, each music symbol, but also each 
staff and each system requires its coordinate to be stored 
in the MEI encoding. Diplomatic transcriptions with ex-
act coordinates are not only useful as interchange and 
training data for adaptive OMR software applications, 
but they can also be used in digital edition environments 
for producing transcription image overlays. A diplomatic 
transcription can be shown directly on top of the original 
source, either for highlighting a particular aspect of the 
source or simply for facilitating its readability. Examples 
already exist for text editions [7], and a similar approach 
for music could very well be envisaged with MEI. 

Such a model would also serve the second use-case, 
which is the preparation of different renditions from the 
same musical material, the typical case being an edition 
of the full score and, in parallel, an edition of the per-
formers’ parts. While it is relatively easy to extract parts 
from a score encoded in MEI, there will always be cases 
where human intervention will be required to finalize the 
layout of the parts, whatever the automatic layout capa-
bilities of the rendering software application used. The 
modifications can include additional dynamic markings, 
lyrics, directives and similar musical information encoded 
in nearby staves. The ideal solution is to encode only the 
layout modifications applied to the parts so that addition-
al changes to the score would automatically be reflected 
in the parts. This means that a <note> element for which 
only the stem direction is changed in the layout need not 
be duplicated. Features like this already exist in some 
music notation software applications, such as in Sibeli-
us©, which includes a so-called Dynamic Parts™ func-
tionality. However, they are not designed to handle mul-
tiple sources. Having an option to record this type of lay-

out information in an optimized manner would certainly 
be valuable. 

2.1 Requirements 

In order optimally to increase the level of detail of the 
documents encoded in MEI, it is necessary to achieve a 
solution that will not overload the logical sub-tree that 
holds the musical content. When mingled with notation 
content, page and system milestone markers complicate 
the encoding of content. Adding more detailed layout 
information, such as page size, results in further compli-
cation. 

The solution should avoid overlapping hierarchy prob-
lems whenever possible. Page breaks and system breaks 
embedded in the content sub-tree represent a non-
concurrent hierarchy. Multiple sources requiring different 
presentation exacerbate the problem by creating multiple 
instances of non-concurrent hierarchies. 

Furthermore, it is important for the solution to limit 
strictly the amount of duplicated data in the encoding. For 
example, in the case of “score and parts” editions, when 
the data for the parts duplicates that of the score, the 
score data and the parts data may become desynchro-
nized. However, since the duration of a note in the parts 
should be the same as in the score, employing a reference 
system eliminates this possibility. 

The proposed solution should not require the user to 
choose between content-based or page-based approaches 
but should supplement the current content-focused repre-
sentation of MEI instead. With that in mind it becomes 
clear that the use of this additional layout information has 
to be optional – for users, but also for applications. This 
means that applications unaware of this proposal may 
safely ignore it, that the additional information provided 
by this proposal must leave the musical content sub-tree 
untouched as much as possible, and that links added be-
tween the content and the layout elements must not pre-
clude the encoding and decoding of the musical content 
on its own. 

3. RELATED WORK 

For some aspects, the problem described above is similar 
to what is achieved by OMR software applications such 
as Photoscore© that extend MusicXML in order to store 
exact positioning information. However, it is done in a 
non standard way and is application dependent. There are 
also several standard existing encoding strategies and 
formats that seem to be relevant to the problem described 
above. The following section will introduce them briefly 
and discuss their applicability for describing multiple 
renditions or sources of the same musical content. 

3.1 TEI Encoding Model for Genetic Editions 

The aim of providing a detailed model of  how content is 
laid out on the page is similar to the goal pursued by the 
TEI Workgroup on Genetic Editions [3]. Their model 



  
 

essentially follows a document-centric approach, as op-
posed to the traditional text-centric approach for TEI. 
The alternative hierarchy of this model privileges the 
document and is organized as follows: 
 
• Document 

• Writing surface (page, double page, folium, etc.) 
• Zone 

• Text, lines or tables 
 

The model is designed for encoding complex cases of 
manuscripts in various stages of creation. Its purpose is to 
trace and encode their genesis. In that regard, it is differ-
ent from what we hope to achieve for MEI because this 
model aims principally for a chronological ordering of 
zones in one document rather than transcribing or defin-
ing the layout of multiple documents separately. 

Furthermore, the TEI encoding model for genetic edi-
tions is an alternative model for encoding a document. It 
is not designed to be applied on top of an existing, tradi-
tional TEI encoding. Links are not maintained between 
the textual content of the document and separately encod-
ed layout information. For this reason, some TEI projects 
adopt a cumbersome double-encoding approach, with one 
encoding for the representation of the source text(s) and a 
second encoding for the documentary edition [1], which it 
would be desirable to avoid.  
3.2 XSL:FO 

One of our design goals is to offer a method that pro-
vides a description of how the content of an encoding 
should be presented. This mechanism must be capable of 
describing different rendering outputs of the same musi-
cal content. XSL:FO (eXtensible Stylesheet Language: 
Formatting Objects) appears to be useful in this context 
as it allows a set of rules to be specified for the transfor-
mation of the content of an encoded document using a 
defined page layout. For this purpose, it uses templates 
which are instantiated as often as necessary during pro-
cessing, until the entire content is rendered. Using 
XSL:FO <block> elements for systems, staves, and lay-
ers, the general layout of pages containing music nota-
tion can be described. XSL:FO can define the margins of 
the page, padding between and size of systems and 
staves, and so on. 

Despite its initial promise, because XSL:FO is content-
agnostic it cannot be used to adjust the layout in response 
to the content as required by music notation. For instance, 
in opera or other equally large scores, it is quite common 
that only the staves of the active voices or instruments be 
present. This leads to variation in the size and content of 
systems that is only achievable in XSL:FO by providing a 
large number of separate templates for each distinct case. 
Additionally, these templates need to be called explicitly 
by the user, so that a fully automatic rendering of the con-
tent is no longer possible. Furthermore, XSL:FO does not 

provide mechanisms for capturing the coordinate infor-
mation necessary for diplomatic transcription of the 
sources. For these reasons, a template-driven language 
such as XSL:FO is not suitable for the description of con-
tent-dependent layout. 

3.3 Scalable Vector Graphics 

Instead of using templates for laying out pages, a de-
scription of the already laid-out pages could be another 
possibility. A legitimate approach for this would be to 
use Scalable Vector Graphics (SVG) markup to describe 
individual pages. There are already processors that gen-
erate SVG output from MEI markup. The problem with 
using SVG, however, is that it makes it nearly impossi-
ble to maintain a connection to the logical content. Be-
cause the SVG markup represents the graphical primi-
tives of music notation (lines, note head shapes, etc.) and 
not the semantic information, changes in the content re-
quire the primitives to be recalculated. For example, the 
SVG markup for the representation of a beam would be 
made up of filled parallelogram shapes, one for each 
beam line, with their size and position on the page. 
Changing the pitch of a single note within the <beam> 
element in the MEI data would require the size and posi-
tion of all the graphical components of the beam to be 
recomputed. Since SVG describes already-processed da-
ta, it is inappropriate for storing layout information in a 
flexible way despite its utility as an output format. 

4. THE MEI LAYOUT MODULE 

As mentioned above, XSL:FO offers general instructions 
on how to process data, whereas SVG is more appropri-
ate for already-processed data. The ideal solution for 
MEI lies between the two: a description of what is in a 
source, or what should appear on every page in a ren-
dered edition, without duplicating the content and with-
out requiring additional processing of the data. 

4.1 General organization 

A solution to this problem is to store the layout infor-
mation in a dedicated sub-tree separate from the musical 
content. The sub-tree is represented by a <layoutGrp> 
element within the <music> element. It may contain an 
arbitrary number of <layout> elements, each of them de-
scribing a different visualization of the same musical 
content.  

For example, for the case illustrated in Figure 1 with 
two sources A and B, the musical content of both sources 
will be encoded following the traditional approach of 
MEI, in a single hierarchy with <app> elements for en-
coding their differences. At the same time, each source 
will be described further by its own layout sub-tree, if 
need be in parallel with its related facsimile. 

 



  
 

 

Figure 1. An example of two sources as organized with 
the layout module in MEI. While they share the same 
musical content, each layout is described in its own sub-
tree. 

The <layout> element is expected to have a @type at-
tribute for indicating whether it is intended for “transcrip-
tion” or “rendering”. The <layout> element contains a 
sequence of <page> elements, each with page-level 
metadata and nesting <system>, <laidoutStaff> and 
<laidoutLayer> child elements that can precisely repre-
sent how each of them is positioned on the page. The hi-
erarchy can be summarized as follows: 

 
• layoutGrp 

• layout (‘transcription’ or ‘rendering’) 
• page 

• system 
• laidoutStaff 

• laidoutLayer 
 
At the lowest level, the <laidoutLayer> element con-

tains a list of <laidoutElement> children. Each 
<laidoutElement> acts as a generic container that can re-
fer to any element within the corresponding <layer> ele-
ment in the musical content sub-tree. 

The <system>, <laidoutStaff>, <laidoutLayer> and 
<laidoutElement> elements all have attributes for storing 
their coordinate position (@lrx, @lry, @ulx and @uly) in 
“transcriptional” layouts. 

4.2 Referencing system 

The links that are established between the layout and the 
elements in the musical content sub-tree are a keystone 
of the module. Every <page> and <system> in the layout 
sub-tree is linked to its related <pg> and <sb> elements 
in the musical content sub-tree. In order to limit the mod-
ifications of the musical content sub-tree as much as pos-
sible, the links operate deliberately from the layout to-

wards the content, and not the reverse. Each <page> el-
ement is expected to have a @pbrefs attribute with the 
list of XML IDs of <pb> elements in the musical content 
sub-tree to which it applies, as illustrated in Figure 2. 
Similarly, <system> elements have a @sbrefs attribute 
containing a list of <sb> elements. Therefore, the correct 
insertion of <pb> and <sb> elements is the only change 
to the logical tree required for this proposal. 

For the <laidoutStaff> and <laidoutLayer> elements, 
the link with the musical content sub-tree is established 
using a @staff attribute that refers to the @n attribute of a 
<staff> element in the musical content sub-tree. Finally, 
<laidoutElement> elements have a @target attribute for 
referencing elements in the musical content sub-tree. 

!

<music> 
  <facsimile source="A"> 
    <!-- facsimile for source A --> 
  </facsimile> 
  <facsimile source="B"> 
    <!-- facsimile for source B --> 
  </facsimile> 
  <layoutGrp> 
    <layout source="A" type="transcription"> 
      <page pbrefs="pb-A-1"> 
        <!-- the page layout in source A --> 
      </page> 
    </layout> 
    <layout source="B" type="transcription"> 
      <page pbrefs="pb-B-1"> 
        <!-- the page layout in source B --> 
      </page> 
    </layout> 
  </layoutGrp> 
  <body> 
    <mdiv> 
      <score> 
        <scoreDef barplace="mensur" key.sig="0"> 
          <staffGrp> 
            <staffDef clef.shape="C" clef.line="3"/> 
          </staffGrp> 
        </scoreDef> 
        <section> 
          <staff n="1"> 
            <layer n="1"> 
              <pb xml:id="pb-A-1" source="A"/> 
              <pb xml:id="pb-B-1" source="B"/> 
              <sb xml:id="sb-A-1-1" source="A"/> 
              <sb xml:id="sb-B-1-1" source="B"/> 
              <!-- the musical content in A and B --> 
            </layer> 
          </staff> 
        </section> 
      </score> 
    </mdiv> 
  </body> 
</music>  

Figure 2. The scaffold encoding for the example given 
in Figure 1. The <pb> elements in the score are refer-
enced from the <page> elements in the layout. 

4.3 Overlapping hierarchies 

As we have seen, a fundamental reason why it is advan-
tageous to keep the layout information in a separate sub-
tree is because the layout represents a distinct hierarchy 
that might overlap with the content hierarchy. A typical 
case is when a system break occurs in the middle of a 
measure. In such a situation, the same system is indicat-
ed in MEI by several <sb> elements, one in every layer 
where the system break occurs. The encoding in Figure 3 
gives an example for such a case with a fictitious system 
break introduced in the middle of measure number five. 
In practice, this system break could be present in one or 
more sources, or it could be desired in a specific render-



  
 

ing. Notice that there are two <sb> elements, one for 
each layer. 

As illustrated in Figure 4, in the corresponding layout 
sub-tree of this example, the second system references the 
two new <sb> elements via its @sbrefs attribute. 

!

 
<measure n="5" xml:id="m5"> 
  <staff n="1" xml:id="m5s1"> 
    <layer n="1" xml:id="m5s1l1"> 
      <beam> 
        <note xml:id="m5s1e1" pname="g" oct="5" dur="16"/> 
        <note xml:id="m5s1e2" pname="f" oct="5" dur="16"/> 
        <note xml:id="m5s1e3" pname="d" oct="6" dur="16"/> 
        <note xml:id="m5s1e4" pname="c" oct="6" dur="16"/> 
      </beam> 
      <sb xml:id="sb-X-2-1" source="X"/> 
      <beam> 
        <note xml:id="m5s1e5" pname="b" oct="5" dur="16"/> 
        <note xml:id="m5s1e6" pname="a" oct="5" dur="16"/> 
        <note xml:id="m5s1e7" pname="g" oct="5" dur="16"/> 
        <note xml:id="m5s1e8" pname="f" oct="5" dur="16"/> 
      </beam> 
    </layer> 
  </staff> 
  <staff n="2" xml:id="m5s2"> 
    <layer n="1" xml:id="m5s2l1"> 
      <note xml:id="m5s2e1" pname="d" oct="4" dur="4"/> 
      <sb xml:id="sb-X-2-2" source="X"/> 
      <rest xml:id="m5s2e2" dur="8" dots="1"/> 
      <note xml:id="m5s2e3" pname="b" oct="3" dur="16"/> 
    </layer> 
  </staff> 
  <slur staff="1" startid="#m5s1e1" endid="#m5s1e2"/> 
</measure> 
<sb xml:id="sb-Y-2-1" source=Y"/> 
  

Figure 3. The customary encoding of measure 5 with an 
additional internal <sb>. The beginning of the new sys-
tem is represented by two <sb> elements in the content 
sub-tree. 

!

<page n="1"> 
  <system n="1"> 
    <laidOutStaff staff="1"> 
      <laidOutLayer> 
        <!-- previous measures --> 
        <!-- first half of measure 5 --> 
        <!-- musical content up to the sb --> 
      </laidOutLayer> 
    </laidOutStaff>              
    <laidOutStaff staff="2"> 
      <laidOutLayer> 
        <!-- previous measures --> 
        <!-- first half of measure 5 --> 
        <!-- musical content up to the sb --> 
      </laidOutLayer> 
    </laidOutStaff>              
  </system> 
  <system n="2" sbrefs="sb-X-2-1 sb-X-2-2"> 
    <laidOutStaff staff="1"> 
      <laidOutLayer> 
        <!-- second half of measure 5 --> 
        <!-- musical content from the sb --> 
        <!-- next measures --> 
      </laidOutLayer> 
    </laidOutStaff>   
    <laidOutStaff staff="2"> 
      <laidOutLayer> 
        <!-- second half of measure 5 --> 
        <!-- musical content from the sb --> 
        <!-- next measures --> 
      </laidOutLayer> 
    </laidOutStaff>   
  </system> 
</page> 

 
Figure 4. The proposed encoded layout for the example 
given in Figure 3. The second <system> contains refer-
ences to the two <sb> elements.  

4.4 Content selection 

Implicitly, we expect the <laidoutLayer> element to in-
clude all elements contained in the corresponding <lay-
er> element of the musical content sub-tree. This means 
that in the example illustrated by Figures 3 and 4, the 
content of the measure will be rendered implicitly up to 
the <sb> element for the system that ends in the middle 
of measure five and from the <sb> element for the next 
system. The use of <laidoutElement> for each element is 
optional for rendering layouts, but it is required for tran-
scription layouts because in that case, we need to be able 
to store the coordinate positions of the elements. 

In some cases, however, a more granular way of se-
lecting content might be required. For example, it might 
be necessary to hide an element in a specific layout. For 
this purpose, the <laidoutElement> element has an 
@ignore attribute. 

The selection of content can also be performed at the 
<laidoutStaff> level. For example, a layout for only one 
staff in the score will have only a single <laidoutStaff> 
element in each <system> element. Implicitly, all the oth-
er staves will not be included in that layout. Similarly, it 
is possible to change the order of the staves in a specific 
layout just by modifying the order of the <laidoutStaff> 
elements. 

4.5 Textual and layout variants 

In MEI, all variants are traditionally encoded with <app> 
and <rdg> elements in the music content sub-tree. In 
some cases, however, variants do not necessarily repre-
sent a textual difference between the sources because the 
musical content represented by the notation is identical. 
In Figure 5, we can see two examples of the beginning of 
Beethoven’s “Waldstein” sonata. The right hand is writ-
ten on the lower staff in the autograph and on the upper 
staff in the edition of Breitkopf & Härtel. Traditionally, 
this difference could be regarded as a variant in music 
critical editing even though the musical content is actual-
ly the same. However, it would not be possible to “hear” 
the difference between the two versions. 
 

 
Autograph manuscript 

 

 
Leipzig, Breitkopf & Härtel, (Serie 16, Plate B.144) 

Figure 5. The beginning of Beethoven’s “Waldstein” so-
nata No. 21. The right hand is written on the lower staff 
in the manuscript and on the upper one in the edition. 



  
 

The layout module is designed in such a way that it is 
possible to encode purely presentational differences be-
tween sources at the layout level. In the <laidoutStaff> 
element, following a content selection method as de-
scribed above, it is possible to retrieve content from an-
other staff of the musical content sub-tree. In our example, 
this means that the lower <laidoutStaff> in the layout of 
the manuscript would pull the content from the first staff, 
assuming that the music content is encoded as in the edi-
tion. Even at its current experimental stage, this practice 
could represent a significant conceptual change in critical 
editing. The layout encoding itself becomes the way to 
represent layout variants, reserving the traditional <app> 
and <rdg> elements in the musical content sub-tree for 
textual differences. 

5. CONCLUSION AND FUTURE WORK 

We believe that the proposed solution is a novel method 
of encoding MEI documents because it creates a separa-
tion between the content of music notation and its possi-
ble realizations. Multiple realizations of the same musi-
cal content can be stored in parallel, each with its own 
specific layout information. The layout information can 
also provide additional functionality. It can be used for 
specifying how the content appears in an already-
existing source, but it can also be used for specifying 
how the content must be rendered when creating a new 
edition. The first use is particularly interesting for OMR 
software applications and for producing image overlays 
for displaying a transcription directly on top of the fac-
simile image of the original source. The second use is 
particularly convenient for storing refined layout infor-
mation for the parts of an encoded full score. The pro-
posed module lays the basis for a new way of organizing 
the information contained in an existing MEI encoding. 

This approach, however, also raises an interesting 
question regarding the line between content and presenta-
tion in music notation that we hope will receive more at-
tention. There is clearly no fixed border because in music 
notation layout is a constituent component. The proposed 
layout module does not attempt to define an absolute 
boundary, but is intended to be flexible. In practice, the 
more varied the layout of the sources and the more de-
tailed the layout information recorded, the less it will be 
desirable to keep layout information in the musical con-
tent sub-tree as has been MEI practice so far.  With these 
changes, the musical content sub-tree may become a 
more abstract representation of the music. 

The next step will be to finalize the module in prepara-
tion for the next official release of MEI, including prepar-
ing guidelines for its usage. We also expect to have to 
add more features at the <laidoutElement> level depend-
ing on thorough testing. For example, it would be logical 
to expect the module to handle the transposition of in-
struments when generating parts. 

Because creating an encoding with multiple layouts in 
a general purpose XML editor will be unmanageable, 
tools that implement at least some of the features of this 
new module will be a high priority. Currently, the module 
is being implemented in the Aruspix software application, 
which will be used for prototyping and providing some 
more actual examples. 

The authors believe that this proposal has great poten-
tial to enhance MEI’s interoperability, to accelerate its 
further adoption by the scholarly community, and thus to 
reinforce its leading role in the digital humanities. 

5.1 Availability 

The module is available in the incubator of the MEI pro-
ject.1 It needs to be compiled with the Roma processor 
[5]. 
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ABSTRACT 

This paper introduces the Automatic Music Performance 
Analysis and Comparison Toolkit (AMPACT), is a 
MATLAB toolkit for accurately aligning monophonic 
audio to MIDI scores as well as extracting and analyzing 
timing-, pitch-, and dynamics-related performance data 
from the aligned recordings. This paper also presents the 
results of an analysis performed with AMPACT on an 
experiment studying intonation in three-part singing. The 
experiment examines the interval size and drift in four 
ensembles’ performances of a short exercise by 
Benedetti, which was designed to highlight the conflict 
between Just Intonation tuning and pitch drift. 

1. INTRODUCTION 

In the early 20th century, psychologist Carl Seashore and 
his colleagues at the University of Iowa undertook exten-
sive work in performance analysis of singing, examining 
dynamics, intonation, and vibrato [22]. Their analyses 
were based on amplitude and frequency information ex-
tracted from recordings with phonophotographic apparati. 
These manual methods were extremely labourious and 
limited the number of recordings that could be accurately 
analyzed. Recent developments in digital signal pro-
cessing have allowed for many of these manual processes 
to be performed computationally.  

The MATLAB-based Automatic Performance Analy-
sis and Comparison Toolkit (AMPACT) collects existing 
tools and introduces a new MIDI-audio alignment algo-
rithm. The alignment algorithm is able to accurately iden-
tify onsets and offsets in the difficult cases of the singing 
voice and instruments with non-percussive onsets and can 
be trained to work on recordings of a range of voice types 
and instruments. The analysis portion of the toolkit in-
cludes tools for extracting of various performance param-
eters related to timing, pitch, and dynamics. AMPACT 
also includes tools for comparing data across multiple 
performances. The purpose of the toolkit is to facilitate 
empirical analysis of musical performance for those 
without extensive technical training. 

This paper also presents an experiment on intonation 
in three-part singing, which used AMPACT to extract 
and analyze the intonation data. The experiment uses a 
short exercise by a music theorist, Benedetti (1530–
1590), designed to result in varying amounts of pitch drift 
when different idealized tunings are applied to it. The ex-
ercise was performed numerous times by four different 
ensembles and the resultant recordings were analyzed in 
terms of melodic/vertical interval tuning and pitch drift. 

2. PREVIOUS WORK 

2.1 Automatic Performance Data Extraction 

Currently, there are no robust automated methods for 
estimating note onsets and offsets in the singing voice. 
Although much work has been done in the area of note 
onset detection [1], accurate detection of onsets for the 
singing voice and other instruments without percussive 
onsets is not a solved problem. Collins used a pitch 
detector for estimating non-percussive onset detection 
[3]. He improved on the number of onsets detected within 
a 100 ms tolerance window over the phase deviation 
approach described in [1] (58% versus 45%), with 
comparable false positives (36% versus 37%), Friberg, 
Schoonderwaldt, and Juslin developed an onset and offset 
detection algorithm that was evaluated on electric guitar, 
piano, flute, violin, and saxophone [10]. They reported an 
onset estimation accuracy of 16 ms and an offset 
estimation accuracy of 146 ms. Toh, Zhang, and Wang 
describe a system for automatic onset detection for solo 
singing voice that accurately predicts 85% of onsets to 
within 50 ms of the annotated ground truth [23]. These 
algorithms often require a significant amount of manual 
correction to obtain sufficient accuracy for performance 
analysis. Furthermore, offset detection is required for 
measurements related to duration, intonation, vibrato, and 
dynamics, but most of these algorithms do not provide it.  

2.2 Studies of Intonation in Vocal Ensembles 
In the absence of robust automated methods for estimat-
ing note onsets and offsets, studies of the singing voice 
have relied on manual annotation of notes’ onsets and 
offsets. Vurma and Ross studied 13 professional singers’ 
melodic intonation in their performances of short exercis-
es using PRAAT for F0 analysis [2]. They observed that 
ascending and descending semitones were smaller than 
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equal temperament and that ascending and descending 
fifths were larger than equal temperament [25]. Howard 
studied two a cappella SATB quartets and found that 
they used non-equal temperament with a tendency to-
wards, though not full compliance with, Just-Intonation 
[13]. He also argued that in pieces with modulation, that 
since the ensembles used non-equal temperament, pitch 
drift is necessary for choirs to stay in tune [14]. Howard 
used electroglottographs to obtain F0 estimates in order to 
avoid the complication of polyphonic F0 estimation.  

3. AMPACT 

3.1 Overview 

AMPACT 1  automatically analyzes performance data 
from monophonic or quasi-polyphonic recordings. The 
algorithms included in the toolkit make use of the infor-
mation available in the score about what notes are ex-
pected in the performance and the order in which they 
will occur. AMPACT provides estimates of note onsets 
and offsets for tones with non-percussive onsets (e.g., vo-
calists) that are more robust than existing blind onset de-
tection or alignment algorithms. The analysis portion of 
the toolkit allows for the extraction of various perfor-
mance parameters: inter-onset intervals between notes; 
tempo information; relative dynamic level between notes; 
mean frequency for each note and interval sizes in cents; 
and vibrato rate and depth. The statistical tools allow 
comparisons of different performances of the same musi-
cal material or piece. A schematic of the analysis compo-
nents of AMPACT is shown in Figure 1. 

 
Figure 1. Schematic of the Automatic Performance and 
Analysis Toolkit (AMPACT). 
                                                             
1 Available for download at www.ampact.org 

3.2 MIDI-Audio Alignment 

AMPACT uses a MIDI-audio alignment algorithm in or-
der to identify the beginning and ending of all of the 
notes in a performance. A MIDI version of the score, 
which is a quantized version of all of the pitch and timing 
information in the audio, is adjusted so that its timing in-
formation corresponds to that of the audio. The algorithm 
in AMPACT refines the results of an existing Dynamic 
Time Warping (DTW) approach, described in [18], with a 
hidden Markov model (HMM). The HMM is trained on 
the acoustic properties of the melodic line being aligned 
and, in the case of the singing voice, is guided by the lyr-
ics in the score. The HMM both increases the accuracy of 
the initial alignment and labels transient and steady-state 
sections of each note. Identification of the steady-state 
sections of notes is important because they correspond to 
the pitched sections.  

3.2.1 Hidden Markov Model 

This section describes the details of the HMM, with a 
particular focus on modelling the solo singing voice, 
namely the observations, states, transition probabilities, 
and use of a DTW alignment as a prior. The observed 
variables modelled by the HMM are the square root of 
periodicity, power, and F0 estimates provided by the YIN 
algorithm [5] for each frame. The F0 estimates from YIN 
are a somewhat noisy cue, especially for the silence and 
transient states, but are important because they assist 
alignment when the note changes under a single vowel.  

The three acoustic events are modelled in the HMM: 
silence, transient, and steady state. In the singing voice, 
transients occur when a consonant starts or ends a sylla-
ble, while vowels produce the steady-state portion of the 
note. In instruments, the occurrences of transients are in-
fluenced by articulation. The transition probabilities were 
calculated from example recordings of the singing voice. 
Two versions of the state sequences are implemented. 
The first allows each state to be visited, shown in Figure 
2. The second is modified by the lyrics in the score; tran-
sients were only inserted when an unvoiced consonant 
began or ended a syllable and silences were inserted only 
at the end of phrases, shown in Figure 3. 

The initial DTW alignment is used as a prior to guide 
the HMM. The use of the DTW alignment obviates the 
need to encode information about the score in the HMM. 
By assuming that the DTW alignment is roughly correct, 
it is not necessary to rely excessively on noisy F0 esti-
mates in the HMM. This simplifies the design of the 
HMM and allows the same HMM seed to be used for 
each note. One issue with this approach is that it cannot 
adjust the initial alignment by more than one note, so the 
initial alignment has to be relatively accurate.  

 



  
 

The HMM was implemented in MATLAB with Kevin 
Murphy’s HMM Toolbox [17] and uses Alain de Chevei-
gné’s MATLAB implementation of the YIN algorithm 
[4] as well as Dan Ellis’ MATLAB implementation of 
DTW MIDI-audio alignment [9]. An evaluation of the 
alignment algorithm is described in [7]. 

 

Figure 2. Three-state basic state sequence seed in the 
HMM: steady state (SS), transient (T), silence (S). The 
ending transient (ET) and the beginning transient (BT) 
both have the same observation distribution. 

 

Figure 3. State sequence adapted to sung text.  

3.2.2 Performance Data Analysis and Comparison 

The alignment algorithm provides information about the 
note onset and offset times, which AMPACT saves in the 
MIDI toolbox’s note-matrix format [24] from which a 
MIDI file can be saved. The onset and offset locations 
also delineate the starting and ending points for calculat-
ing pitch- and dynamics-related parameters of each note. 
Onset and offset information is also saved in as an Au-
dacity-readable label file [15], which allows for manual 
correction of any alignment errors AMPACT may make. 

The YIN algorithm is used for F0 estimation. One ad-
vantage of YIN is that it allows for specification of min-
imum and maximum expected F0s, which AMPACT sets 
according to the note information in the aligned score. 
The maximum F0 is set to one whole tone above the cor-
responding note in the score and the minimum F0 is set to 
one whole tone below. This is a very useful feature for 
recordings that are not strictly monophonic, such as re-
cordings from close miking in ensemble performance.  

Perceived pitch is calculated using a weighted mean 
based on the F0’s rate of change [12]. This mean is calcu-
lated by assigning a higher weighting to the frames where 
the F0 has a lower rate of change and a lower weighting 
to those with a higher rate of change. The threshold be-
tween high and low rates of change is set at 1.41 oc-
taves/second, based on the vibrato rate and depth values 
reported in [20; 21]. Vibrato is calculated by finding the 

dominant frequency of the FFT of the pitch contour. Dy-
namics are calculated using the implementation in Gene-
sis Acoustics Loudness Toolbox for MATLAB [11] of 
Glasberg and Moore’s model for estimating loudness in 
time-varying sounds [16]. AMPACT also includes tools 
for statistical comparison of performances through a 
wrapper for various t-test, ANOVA, and linear regression 
functions in MATLAB. 

4. INTONATION EXPERIMENT 

AMPACT was used to extract and analyze intonation da-
ta in an experiment on four three-part vocal ensembles. 
The ensembles’ performances were analyzed with regard 
to melodic whole-tone tunings, a range of vertical interval 
tunings, and overall pitch drift. A pre-release version of 
AMPACT was used by the authors in larger-scale exper-
iment on solo singing in [6]. 

4.1 Method 

4.1.1 Experimental Material 

The experimental material is a three-part chord progres-
sion written by Bendedetti that was designed to show that 
singers would not tune Justly with the current sustained 
note since strict adherence to Just Intonation would result 
in a significant pitch drift that is not observable in per-
formances of the progression [19]. The progression is 
built from a seed two-measure progression that is repeat-
ed four times. If the singers were to tune in Just Intona-
tion to the sustained note, rather than the bass note, the 
ensemble would drift up a syntonic comma (21.5 cents) 
by the end of each seed, resulting in a total upwards drift 
of 86 cents by the end of the four repetitions. In contrast, 
if the singers were to tune to the bass in each vertical so-
nority, with D, A, or G in the bass, there should be no 
drift. The calculations for both tuning scenarios are 
shown in Figure 4. 

 

Figure 4. Theoretical tuning for Benedetti progression 
used as experimental material. The numbers in the tables 
at the top and bottom of the figure indicate the tuning in 
relation to the starting pitch in the bass. 



  
 

4.1.2 Participants 

Four three-part ensembles participated in this experiment. 
Ensemble 1 served as a pilot study with semi-professional 
alto, tenor, and bass singers who performed without a 
conductor. The ensemble had an average age of 26 years 
(SD = 3.6), with an average of 6.5 years of private voice 
lessons (SD = 4.5) and 6.5 years of regular practice (SD = 
2.5). Ensembles 2, 3, and 4 consisted of professional 
singers who regularly sang together with the conductor 
used in the experiment. These ensembles had an average 
age of 42 years (SD = 9), an average of 7.75 years of pri-
vate voice lessons (SD = 0.5) and 24 years of regular 
practice (SD = 10). The singers in both ensembles were 
experienced in singing a cappella Renaissance music and 
were asked to sing with their normal tuning. 

Ensembles 2 and 4 consisted of alto, tenor, and bass 
singers while Ensemble 3 consisted of soprano, alto, and 
tenor. Ensembles 1 and 2 were recorded in a 4.85m x 
4.50m x 3.30m lab with low-noise, minimal reflections, 
and short reverberation time. The singers were miked 
with cardioid headband mics (DPA 4088-F). The micro-
phones were run through an RME Micstasy 8-channel 
microphone preamplifier and an RME Madi Bridge into a 
Mac Pro computer for multi-track recording. Ensembles 3 
and 4 were recorded on the altar of St. Mathias‘ Church, a 
church in Montreal dating from 1912 with wooden floors, 
limestone walls, and seating for 350 people. As with the 
lab environment, the singers were miked with cardioid 
headband mics, although a portable Zaxcom Deva 16 dig-
ital recorder was used for the rest of the recording setup.  

4.2 Results 

4.2.1 Interval Size 

The mean and standard deviation of the interval sizes for 
the melodic whole tones are shown in Table 1. The ma-
jority of the means were within one standard deviation of 
the equal tempered 200 cent tuning. The main exception 
to this was Ensemble 1 where the whole tone tended to be 
smaller. In particular, the middle voice whole tones, 
which were closer to the 182 cent Minor Just Intonation 
whole tone. Just over half of the singers’ whole tones 
(12/20) were within one standard deviation of the Py-
thagorean/Major Just Intonation (204 cents) whole tone.  

Vertical intervals were calculated for each half-
measure between all of the voices: lowest voice to middle 
voice, lowest voice to upper voice, and middle voice to 
upper voice. The onset and offset times for the vertical 
intervals were determined by the upper voice. Overall, 
there were 51 vertical intervals in each rendition: 4 Minor 
Thirds (m3), 8 Major Thirds (M3), 9 Perfect Fourths 
(P4), 17 Perfect Fifths (P5), 4 Major Sixths (M6), and 9 
Perfect Octaves (P8). The means and standard deviations 
for each type of vertical interval across all of the singers 

in each ensemble are shown in Table 2. There was a wide 
range in the mean values for both the vertical m3 and M3, 
specifically 300–322 cents for the m3 and 375–413 cents 
for the M3. When the standard deviations are taken into 
account, the m3 encompassed the Pythagorean (294 cent), 
equal tempered (300 cents), and Just Intonation (316 
cents) tunings. Likewise, the M3 range encompassed the 
Just Intonation (386 cents), equal tempered (400 cents), 
and Pythagorean (408 cents) tunings. The range of the 
means for the M6 encompassed only the equal tempered 
tuning (900 cents) since the means were all larger than 
the Just Intonation tuning (884 cents) and marginally 
smaller than the Pythagorean (905 cents). The tunings for 
the P4 (498 cents), P5 (702 cents), and P8 (1200 cents) 
are common to both the Pythagorean and Just Intonation 
systems and are close to the values for equal temperament 
(500, 700, and 1200 cents, respectively); the ranges for 
these intervals encompassed all of these tunings.  

  Voices 
  Top  Middle  Bottom  

Ensemble Up Down Up Down Down 

1 
Mean 199 195 185 183 191 

SD 6 4 6 10 7 
N 12 12 12 12 12 

2 
Mean 192 191 207 210 189 

SD 6 16 12 13 6 
N 16 16 16 16 16 

3 
Mean 199 199 199 196 198 

SD 9 10 8 8 11 
N 16 16 16 16 16 

4 
Mean 189 194 196 196 195 

SD 13 8 10 13 13 
N 20 20 20 20 20 

Table 1. Mean, standard deviation, and number of in-
stances of the ascending and descending melodic whole 
tone sizes for all ensembles, broken down by voice. 

 Vertical Interval Types 

Ensemble m3 M3 P4 P5 M6 P8 

1 
Mean 322 376 509 701 893 1201 

SD 7 9 10 6 6 7 
N 12 24 27 51 12 27 

2 
Mean 300 413 497 705 903 1206 

SD 12 11 17 14 15 12 
N 16 32 36 68 16 36 

3 
Mean 307 397 507 704 904 1209 

SD 8 11 12 11 11 9 
N 16 32 36 68 16 36 

4 
Mean 301 406 493 702 896 1202 

SD 14 15 13 12 10 12 
N 20 40 45 85 20 45 

Table 2. Mean, standard deviation, and number of in-
stances of the vertical interval sizes between the three 
voices across all renditions by all of the ensembles. 



  
 

An ANOVA analysis for each ensemble was run on 
the melodic interval data with whole tone size as the de-
pendant variable and direction and singer identity as in-
dependent variables. In Ensemble 1, there was no signifi-
cant effect for direction, though the middle singer’s 
whole tones were significantly smaller than the other two 
singers, F (2, 56) = 24.59, p < 0.001. Ensemble 2 was 
similar, with no effect for direction and a significant ef-
fect for the middle singer, though in this case the middle 
singer’s whole tones were significantly larger than the 
other two singers, F (2, 75) = 24.52, p < 0.001. There 
were no significant effects for direction or singer identity 
in Ensembles 3 and 4. A separate ANOVA was run with 
direction and group identity. There was no overall effect 
for direction, but Ensemble 1’s whole tones were signifi-
cantly smaller on average than Ensembles 2 and 3, F (3, 
311) = 6.96, p < 0.001. 

Separate ANOVAs were also run on each vertical in-
terval to test for group effects. Ensemble 1’s m3 intervals 
were significantly larger on average than the other three 
ensembles, F (3, 59) = 11.93, < 0.001, so much so that 
their mean overshot the 316 cent Just Intonation value. In 
contrast,, Ensemble 1’s M3 intervals were significantly 
smaller on average than the other ensembles’, F (3, 127) 
= 50.31, p < 0.001 and were so small that they  undershot 
the 386 cent Just Intonation value. For the P4, Ensembles 
1 and 3 were significantly larger than Ensembles 2 and 4, 
F (3, 143) = 11.75, p < 0.001. There were no significant 
effects between the ensembles for the P5, M6, or P8.  

4.2.2 Pitch Drift 
 
In order to assess whether the ensembles drifted in the 
manner predicted by Benedetti, the perceived pitch esti-
mates in cents were calculated for each note in each ren-
dition in relation to the rendition’s opening D in the bass. 
The table at the top of Figure 5 shows the means and 
standard deviations for each note across all of the ensem-
bles. Overall there was a slight drift upwards of 8 cents in 
the lower voice, 10 cents in the middle voice, and 13 
cents in the upper voice. This drift is much smaller than 
the one predicted by the calculations in the lower chart in 
Figure 5, suggesting that the singers were tuning to the 
bass note rather than the lowest sustained note. 

Figure 5 also shows the drift in the bass voice for each 
ensemble through plots of the perceived pitch (relative to 
the starting note) of the D at the start of each seed pro-
gression. Ensemble 1 was the most consistent with itself 
across performances, exhibiting only a small amount of 
drift from the starting pitch. Ensembles 2 and 3 both 
tended to drift upwards with Ensemble 3 showing a 
greater amount of variability in the amount of drift. En-
semble 4 had little drift overall but showed a large 
amount of variation within each performance. 

 

 
Figure 5. Summary of the amount of drift in each en-
semble’s renditions of the Benedetti chord progression. 
The lines in the each plot link the perceived pitch esti-
mates for the notes D1-D5 in each rendition. 

4.3 Discussion 

Overall the singers tended towards equal temperament. 
The vast majority of the means of the melodic and verti-
cal intervals were within one standard deviation of equal 
temperament. The melodic intervals that were not within 
one standard deviation of equal temperament were much 
smaller, falling instead within one standard deviation of 
the 182 cent minor Just Intonation semitone. Likewise, 
most of the outlying vertical intervals fell within one 
standard deviation of non-equal temperament idealized 
tunings (either Just Intonation of Pytheagorean): Ensem-
ble 1’s m3 mean was within one standard deviation of the 
316 cent Just Intonation tuning; Ensemble 1’s M3 mean 
was within one standard deviation of the 386 cent Just 
Intonation tuning; Ensemble 2’s M3 mean was within one 
standard deviation of the 408 cent M3. The ANOVA 
analysis revealed some significant effects for singer and 
group identity for some of the ensembles. The lack of a 
significant effect for direction in the ANOVA analysis of 
the whole tone tuning mirrors our earlier findings for pro-
fessional solo singers [8].  

The ensembles did drift up slightly on average, but 
not to the extent they would have if the singers were tun-
ing in Just Intonation to the lowest sustained note. This is 
not surprising, as such a rapid drift, 88 cents over eight 
measures, is highly unlikely since it implies that the sing-
ers were not retaining their starting pitch as a reference 
only a few tens of seconds after it was sung.  

5. CONCLUSIONS 

This paper presented AMPACT, a MATLAB toolkit for 
automatically extracting, analyzing, and comparing per-



  
 

formance data from monophonic recordings for which a 
score is available. The alignment algorithm in AMPACT 
works well on sounds without a clearly defined onset, 
making it useful for the singing voice and instruments 
with non-percussive onsets. This paper also demonstrates 
the use of AMPACT in extracting and analyzing the data 
for an experiment on vocal intonation. The experiment 
with four three-part ensembles found that the singers 
tended toward equal temperament and did not exhibit a 
large amount of drift in an exercise by Renaissance theo-
rist Benedetti. The detailed analysis of singing intonation 
in this study was facilitated by the automated nature of 
AMPACT, not only in terms of time savings but also in 
consistency of data extraction. 
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ABSTRACT

Finding the starting time of musical notes in an audio sig-
nal, that is, to perform onset detection, is an important task
as this information can be used as the basis for high-level
musical processing tasks. Many different methods exist to
perform onset detection. However their results depend on a
Peak Selection step that makes the decision whether an on-
set is present at some point in time. In this paper we review
a number of different Peak Selection methods and compare
their influence in the performance of different onset detec-
tion methods and on 4 distinct onset classes. Our results
show that the post-processing method used deeply influ-
ences both positively and negatively the results obtained.

1. INTRODUCTION

In general, music is composed by sounds generated si-
multaneously by several musical instruments of different
kinds [7]. Thus, one can consider the notes played by these
musical instruments as the basic unit or syllable for a mu-
sical signal [7]. These notes are what allows us humans to
clap our hands when listening to a music or whistle/hum
the melody of a familiar song [5].

There has been intense research in this area for quite
some time, mostly because the information about the start-
ing moments of musical notes can be used as a first step
for high-level music processing techniques, such as Chord
Estimation, Harmonic Description or Music Genre Classi-
fication.

In this paper we are mainly interested in studying how
the post-processing part of the onset detection methods,
that is, the Peak Selection part in Fig. 1, responsible for de-
ciding whether a point in time is an onset, influences the re-
sults obtained. This can be of great help in case one wants
to know the more appropriate Onset Detection method –
and consequently Peak Selection Method – to use in a par-
ticular application.

In the next section, we will present the most common
onset detection methods, while in Section 3 we introduce
the Peak Selection Methods used. Section 4 describes our
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Figure 1. Traditional onset detection work-flow [4].

experiments and discusses the obtained results. The paper
ends with final remarks and future work.

2. ONSET DETECTION METHODS

Many Onset Detection Methods have been proposed dur-
ing the years and most of them follow the general scheme
in Fig. 1 which comprises the following steps [1, 4, 5]:

• Pre-processing of the signal in order to highlight its
most important properties [1, 4].

• Creation of a Onset Detection Function, also called
Onset Strength Signal (OSS) 1 , that is, a function
whose peaks should correspond to onset times [2].

• Peak Selection, in order to decide which peaks in the
Onset Detection Function are onsets.

Next, we briefly review the Onset Detection Functions
later used to assess the influence of the Peak Selection part
of detecting onsets. For a more general overview of onset
Onset Detection Functions, check, for instance, [12] and
for a thorough comparison of the performances of the dif-
ferent OSS check, for instance [1] or [13].

In order to detect variations in the properties of the au-
dio signal [2], one can create an OSS by lowering the sam-
ple rate of the signal without losing relevant information.
This a process called Reduction [1].

All the OSS we will explore are based on Spectral Fea-
tures of the signal. In order to change from the time-domain
to the spectral-domain representation of the audio, we make
use of the Short-time Fourier Transform (STFT).

High Frequency Content Making use of the fact that typ-
ically, when compared to other audio sources, an on-
set has relative high energy in higher frequencies [1,

1 In this paper we use the terms Onset Detection Function and OSS
interchangeably.



11], it is possible to create a Onset Detection Func-
tion that weights each STFT bin proportionally to its
frequency. This function is called High Frequency
Content (HFC).

Spectral Difference Another possibility to define an OSS
is to create a function that measures the variation
of magnitude between frequency bins [2, 4]. This
type of OSS is called Spectral Difference or Spec-
tral Flux (SF).

Phase Deviation One can also look for onsets by search-
ing for irregularities in the phase of consecutive fre-
quency bins [2], and that is what does the Phase De-
viation (PD) Onset Detection Function.

It is possible to improve this function by weighting
– Weighted Phase Deviation (WPD) – and normal-
ization [2].

Complex Domain It is possible to combine information
from the both the energy and phase of the spectrum
to create a Complex Domain (CD) function [3]. This
kind of function looks for irregularities in the steady-
state of the signal [2] .

A possible improvement for this method is to rectify
the function so that it ignores offsets and focuses on
onsets [2] – Rectified Complex Domain (RCD).

3. PEAK SELECTION METHODS

A function created with any of the methods introduced in
Section 2 will typically show well-localized maxima in po-
sitions corresponding to onset times [1]. To extract the on-
set times from the OSS, Peak Selection methods are used
that typically include the steps: Post-processing, Thresh-
olding and Peak-picking.

3.1 Post-processing

Post-processing aims at making the Onset Detection Func-
tion uniform so that the processes of thresholding and peak-
picking will be easier. This process of increasing the uni-
formity of the Onset Detection Function typically makes
use of normalization methods and filters.

The normalization typically works in one of two ways [2,
5]: (i) Subtract the average value of the function from each
value, so that the average will be zero and then divide by
the maximum value so that the function will be in the in-
terval [-1,1]; (ii) Subtract the average value of the function
from each value and then divide by the maximum absolute
deviation, so that the average will be 0 and the standard
deviation 1.

The filters used are typically low-pass filters [1, 2, 5],
which, in general, select low frequencies up to the cut-
off frequency (fc) and attenuate frequencies higher than
fc [14] and can be defined as

yi = αxi + (1− α)yi−1 (1)

where α is the smoothing factor.

3.2 Thresholding

In order to separate event-related from non-event-related
peaks in the post-processed Onset Detection Function, d,
it is common to build a threshold [1].

One can define a constant threshold [8], δ, although this
type of threshold is not appropriate, because it does not
consider the great dynamics common in a musical signal,
leading to weak results [1]. It is much more common to use
adaptive thresholds [1, 2, 5]. An adaptive threshold can be
constructed in several ways. The best way to overcome
problems when facing music pieces with great dynamic
change is to build a threshold function based on the local
mean (Eq. 2) or local median (Eq. 3) of the Onset Detec-
tion Function, d [6].

δ̃(n) = δ + λmean(|d(n−M)|, ...., |d(n+M)|) (2)

δ̃(n) = δ + λmedian(|d(n−M)|, ...., |d(n+M)|) (3)

Where λ and δ are positive constants, that can be tweaked,
and M is the size of a window around each of the points of
the Onset Detection Function.

3.3 Peak-picking

After building a threshold function, one must choose which
values of the Onset Detection Function that are larger than
the threshold correspond to onsets.

One can consider every value greater than the thresh-
old (w = 0 in the following equation) as an onset, or one
can add the condition that it must be a local maximum
(w > 0) [2, 4] (where w is a tweakable parameter that cor-
responds to the size of a window around the value):

o(n) =


1 if d(n) > δ̃(n)

and d(n− w) ≤ d(n) ≤ d(n+ w),

0 otherwise.

(4)

4. RESULTS

In this section we will present the evaluation methods and
dataset used as well as discuss the results obtained.

4.1 Evaluation Methods

When evaluating onset detection methods, the most com-
mon criterion is the F-measure, that is defined in Eq. 5.

F-measure =
2

1
P + 1

R

=
2P R

P +R
(5)

With Precision, P, and Recall, R, which can be computed
in terms of the False Positive (FP), True Positive (TP) and
False Negative (FN). In the particular case of onset detec-
tion, one can interpret the TP as the correctly detected on-
sets, the FP as falsely detected onsets and the FN as onsets
that were not detected.

The Precision, that is, the fraction of retrieved instances
that are relevant is defined in Eq. 6.

Precision =
TP

TP + FP
(6)



On the other hand, the Recall, that is, the fraction of
relevant instances that are retrieved, is obtained by Eq. 7.

Recall =
TP

TP + FN
(7)

The Mirex Onset Detection Task specifications [9], and
most of the papers in this area, consider onsets detected as
TP if they are in a window of 50ms around the annotated
onset. On the other hand, if more than one detection falls
inside the same tolerance window, only one is counted as
TP, the others are considered as FP. When a detection is
inside the tolerance window of two onset annotations, one
TP and one FN are counted. We will evaluate our results
according to these specifications.

4.2 Dataset

To run our experiments, we used a dataset built by Bello et
al. for [1], referred to as the Bello Dataset.

The Bello Dataset is a hand-labelled and annotated data-
set first proposed in [1] and used in several papers, such
as [2, 5]. It contains commercial and non-commercial rec-
ordings, covering a variety of musical styles and instru-
mentations, totalling 23 songs and 1065 onsets [1]. The
songs are available in WAV format (sample rate 22.050
kHz, mono, 16 bit) and their onset positions (in seconds)
in text format.

The recordings of the dataset can be divided in 4 classes,
according to the characteristics of their onsets: Complex
Mixture (Mix), Pitched Non-Percussive (PNP), Pitched Per-
cussive (PP), and Non-Pitched Percussive (NPP) as shown
in Table 1.

No. Songs No. Onsets
Mix 7 271
PNP 1 93
PP 9 489
NPP 6 212
Total 23 1065

Table 1. Bello Dataset Structure

One can think of Mix onsets as onsets produced by any
polyphonic music where several instruments are playing
together, something that happens, for instance, in a rock
or pop song. The NPP onsets are the ones typically pro-
duced by percussion instruments such as drums or cym-
bals, while the PP onsets are those that have a percussive
characteristic but, nonetheless, still maintain a well defined
pitch; this type of onsets appears, for instance, when a pi-
ano is playing. Finally, the PNP onsets are those that do
not have percussive characteristics and have a very well de-
fined pitch; this category contains onsets from instruments
such as bowed strings or wind instruments.

4.3 Experiments

In order to assess the influence of Peak Selection Methods
on the results of onset detection, different simulations were
run each with a particular Peak Selection Method. These

methods were selected because they have been used in re-
cent work [1, 2, 5].

We used the following abbreviations to name the used
Peak Selection Methods:

norm Normalize the Onset Detection Function by divid-
ing by the absolute maximum and subtracting the av-
erage value, so that the average will be zero.

stdev Normalize the Onset Detection Function by divid-
ing by the maximum standard deviation and sub-
tracting the average value, so that the average will
be zero.

mean Create a running mean threshold (Eq. 2).

median Create a running median threshold (Eq. 3).

filter Before normalization, smooth the Onset Detection
Function by applying a simple low-pass filter (Eq. 1).

no-filter Do not apply the low-pass filter, that is, do not
use smoothing.

local-max Consider as onsets every value in the Onset De-
tection Function that is larger than zero, larger than
the threshold and is a local maximum in a window
of 3 samples around it. I.e., use w = 3 in Eq. 4.

no-local-max Consider as onset every value greater than
the threshold. In other words, use w = 0 in Eq. 4.

A B C D E
norm × × × ×
stdev ×
mean ×
median × × × ×
filter ×
local-max × × × ×

Table 4. Components of the Peak Selection Methods A, B,
C, D and E.

First we run our experiments with the Peak Selection
Method median-norm-no-filter-local-max (A), then we re-
placed the running mean threshold with a running aver-
age threshold with parameter M = 10 by running the
experiments with the Peak Selection Method mean-norm-
no-filter-local-max (B). After that, in order to assess the
influence of the type of normalization, we ran the exper-
iments by replacing the norm type of normalization with
the stdev type of normalization, that is, using the Peak Se-
lection Method median-stdev-no-filter-local-max (C).

We also tested the influence of a smoothing step before
the Peak Selection – with the use of a simple low-pass filter
– by running the experiments with the median-norm-filter-
local-max (D) Peak Selection Method.

Finally, to test the peak picking algorithm’s influence,
we ran the experiments without the local maximum con-
dition, that is we used the median-norm-no-filter-no-local-
max (E) Peak Selection Method.



A B C D E
OSS F P R F P R F P R F P R F P R
HFC 0.921 0.922 0.920 0.922 0.957 0.901 0.921 0.922 0.920 0.823 0.913 0.766 0.622 0.525 0.798
SF 0.931 0.946 0.926 0.943 0.957 0.937 0.934 0.946 0.932 0.939 0.953 0.933 0.782 0.709 0.903
PD 0.652 0.573 0.819 0.650 0.571 0.819 0.652 0.573 0.819 0.628 0.586 0.749 0.520 0.417 0.893
WPD 0.916 0.959 0.882 0.922 0.933 0.918 0.914 0.945 0.891 0.828 0.900 0.778 0.603 0.507 0.816
CD 0.947 0.978 0.923 0.946 0.987 0.913 0.943 0.970 0.923 0.872 0.931 0.835 0.583 0.482 0.820
RCD 0.933 0.977 0.903 0.933 0.966 0.913 0.936 0.977 0.908 0.909 0.919 0.904 0.419 0.298 0.824

Table 2. Results with P, Precision, F, F-measure and R, Recall, for NPP onsets in the Bello Dataset using all the 5 Peak
Selection methods (A, B, C, D, E).

A B C D E
OSS F P R F P R F P R F P R F P R
HFC 0.838 0.846 0.830 0.848 0.829 0.867 0.842 0.846 0.839 0.576 0.607 0.547 0.523 0.437 0.651
SF 0.961 0.968 0.954 0.965 0.978 0.953 0.961 0.969 0.954 0.876 0.878 0.874 0.893 0.868 0.921
PD 0.497 0.410 0.734 0.488 0.414 0.740 0.388 0.278 0.823 0.529 0.323 0.823 0.368 0.256 0.732
WPD 0.810 0.796 0.826 0.811 0.793 0.830 0.811 0.793 0.830 0.470 0.545 0.414 0.666 0.641 0.692
CD 0.883 0.892 0.874 0.899 0.876 0.923 0.903 0.883 0.923 0.441 0.547 0.370 0.543 0.488 0.611
RCD 0.882 0.880 0.883 0.891 0.863 0.920 0.881 0.823 0.947 0.599 0.574 0.625 0.734 0.664 0.820

Table 3. Results with P, Precision, F, F-measure and R, Recall, for PP onsets in the Bello Dataset using all the 5 Peak
Selection methods (A, B, C, D, E).

4.4 Discussion

While running the experiments, we fixed the window size
of each STFT at 1024 samples (that is 46.4 ms in these
22.05 kHz sampled signals) with a hop size of 50%. The
parameters δ and λ were tweaked, in order to obtain the
values that maximize the f-measure.

The results obtained by running our experiments with
all the Peak Selection Methods described in the previous
section are shown in Tables 2, 3, 5 and 6.

In order to compare the methods, we consider as base
the results with the Peak Selection Method A and compare
all others with this one. First, we will analyse the influ-
ence of the Peak Selection Methods on the results obtained
for the different onset classes, next, we will analyse the in-
fluence of the Peak Selection Methods on each OSS, and,
finally, we will make a global balance about the signifi-
cance of the compared results of the different Peak Selec-
tion Methods.

4.4.1 Onset Classes

The differences between running the experiments by using
a running-median threshold – Peak Selection Method A –
or a running-mean threshold – Peak Selection Method B
– have mixed behaviours according to the onset classes.
In the NPP and PP classes, the mean gives slightly better
results (1pp 2 better) than the median, while it improves
for certain OSS it gives worse results for others, but just 1-
2pp differences for better or for worse. On the other hand,
the running-mean threshold is prone to give worse results
by around 2-3pp in the Mix onset class.

To use a normalization based on the maximum standard
deviation – Peak Selection Method C – when comparing
to a normalization based on the maximum absolute value
– Peak Selection Method A – gives mixed behaviours ac-
cording to the onset classes. In the NPP and PNP onset
classes, the results remain almost the same (the changes
are less than 1pp) while for the PP the relevant changes

2 pp – percentage point.

are a decrease of around 10pp for the PD function and a
performance increase of about 3pp for the HFC and CD
functions. When it comes to the Mix onset class, the re-
sults for the HFC and PD functions remain just the same,
but the other OSS functions have worse f-measure (2-3pp).

When smoothing the Onset Detection Function – Peak
Selection Method D – the results become quite different.
For the NPP onset class, the SF becomes slightly better
(less than 1pp), while for all the other OSS, the results be-
come poorer from 3 to 10pp. In the case of PP onsets, the
filter improves about 3pp on the PD function, although it
decreases the results significantly (10 to 40pp) for all other
OSS. In the PNP onset classes, the behaviour is mixed ac-
cording to the onset class. We have a positive boost of
around 20pp for the PD OSS while for all the other func-
tions the results get worse from 4pp to 30pp. For the Mix
onset class, the results get considerably worse for all the
OSS.

Finally, when dropping the local maximum condition in
the peak picking algorithm – Peak Selection Method E –
the results become quite different, but there is a general
trend easy to spot: the results get worse for every OSS
without exception. In the NPP the results are 15 to 50pp
worse, while for the PP the results are 13 to 25pp worse.
For PNP onsets, in general, the results are around 30pp
worse while for Mix onsets the results vary from 10pp to
30pp worse.

4.4.2 OSS

Moving from running-median threshold to running-mean
threshold – Peak Selection Method B – gives, in general,
slight improvements for the HFC OSS in all the onset clas-
ses, while for the SF OSS the behaviour is mixed. It im-
proves slightly the SF in PP, NPP and PNP onset classes,
while decreasing the performance in the Mix class, although
these improvements and decreases are very small (1-3pp).
We have similar behaviour for the WPD, CD and RCD On-
set Detection Functions, with the increases and decreases
not going beyond 3pp. In the case of the PD OSS, the re-



A B C D E
OSS F P R F P R F P R F P R F P R
HFC 0.553 0.519 0.591 0.552 0.519 0.591 0.553 0.519 0.591 0.405 0.471 0.355 0.358 0.242 0.688
SF 0.911 0.888 0.935 0.915 0.858 0.978 0.914 0.914 0.914 0.869 0.847 0.892 0.696 0.595 0.839
PD 0.615 0.479 0.860 0.615 0.479 0.860 0.615 0.479 0.860 0.803 0.770 0.839 0.184 0.101 1
WPD 0.660 0.602 0.731 0.670 0.626 0.720 0.670 0.626 0.720 0.465 0.506 0.430 0.463 0.343 0.710
CD 0.684 0.650 0.720 0.680 0.644 0.720 0.677 0.657 0.699 0.388 0.444 0.344 0.409 0.295 0.667
RCD 0.808 0.745 0.882 0.808 0.745 0.882 0.808 0.745 0.882 0.503 0.500 0.505 0.562 0.425 0.828

Table 5. Results with P, Precision, F, F-measure and R, Recall, for PNP onsets in the Bello Dataset using all the 5 Peak
Selection methods (A, B, C, D, E).

A B C D E
OSS F P R F P R F P R F P R F P R
HFC 0.812 0.753 0.881 0.814 0.757 0.881 0.814 0.757 0.881 0.597 0.686 0.528 0.512 0.435 0.626
SF 0.880 0.922 0.842 0.867 0.895 0.841 0.867 0.889 0.846 0.853 0.844 0.863 0.679 0.693 0.665
PD 0.540 0.396 0.851 0.540 0.403 0.818 0.544 0.409 0.808 0.491 0.373 0.718 0.458 0.337 0.713
WPD 0.832 0.762 0.811 0.801 0.797 0.806 0.809 0.791 0.822 0.587 0.630 0.564 0.557 0.625 0.505
CD 0.866 0.798 0.854 0.844 0.807 0.870 0.843 0.792 0.881 0.541 0.586 0.518 0.522 0.545 0.509
RCD 0.824 0.823 0.770 0.795 0.818 0.761 0.814 0.814 0.803 0.715 0.680 0.745 0.650 0.652 0.653

Table 6. Results with P, Precision, F, F-measure and R, Recall, for Mix onsets in the Bello Dataset using all the 5 Peak
Selection methods (A, B, C, D, E).

sults are quite similar for all the onset classes.
By using a normalization based on the maximum stan-

dard deviation – Peak Selection Method C – the results are
not very different from the results obtained by using a nor-
malization based on the maximum absolute value – Peak
Selection Method A. In the case of the HFC, SF, and RCD,
we obtain practically the same results (they change by no
more than 1pp) for all the onset classes. In the case of the
PD OSS, we have losses of about 10pp for the PP onset
class but for the other classes the results remain basically
the same (they change by less than 1pp). For the WPD and
CD functions the behaviour is mixed, that is, for some on-
set classes the results improve while for others the results
get poorer, although the magnitude of the changes in this
OSS is less than 2pp, which means that the changes are not
very significant. This Peak Selection Method improves the
CD in the PP class, but makes its results worse in the PNP
and Mix classes. On the other hand, it improves the WPD
in the PNP class, but makes it worse in the Mix class.

The use of a smoothing filter on the Onset Detection
Function – Peak Selection Method D – causes the results,
in general, to be much different than the results obtained
with the Peak Selection Method A. For the HFC OSS, the
results decrease from 10 to 25pp and for the SF the ten-
dency is the same, except that for the NPP onset class
the results improve slightly (less than 1pp) and the global
losses are not so pronounced: they reach at most 9pp. In
the case of the PD function we obtain mixed behaviour: for
the NPP and Mix onsets the results are 2.5 and 5pp worse
respectively while for the PP onsets the results improve by
3pp and for the PNP we have a 20pp improvement. The
results get about 2 to 34pp and 7.5 to 44pp worse for the
WPD and CD OSS respectively, while for the RCD OSS
the results remain similar for NPP class, but get 9 to 30pp
worse for the other onset classes. The filter has some kind
of “good” effect only on the PD OSS, maybe because this
kind of function is the most irregular and the filter brings
some positive uniformity, and on the other OSS one ob-
tains an excess of uniformity with the filter, decreasing the

precision of the OSS.
Dropping the local maximum condition in the peak pick-

ing algorithm – Peak Selection Method E – makes, in gen-
eral, the results be much worse than the results of the Peak
Selection Method A. For the HFC the results are all around
30pp worse while the results can be to 20pp worse for the
SF, 40pp worse for the PD and to 34pp worse for the WPD.
For the complex domain family, the results can be to 40pp
worse for the CD and 50pp worse for the RCD.

4.4.3 Balance

Having in mind the discussion of the two previous sub-
sections, we can make a global balance. First of all, in
general, the differences between the results obtained by
applying a running mean and a running median threshold
are not statistically significant (W = 291, p = 0.959 in
the Wilcoxon signed rank sum test with continuity correc-
tion 3 ) and they are dependent upon the particular onset
class and OSS, which implies that for certain applications
that need just a certain type of onsets, one specific type of
threshold can be chosen in favour of the other.

Concerning the normalization methods, the differences
between the results obtained with the two kinds of normal-
ization used are not statistically significant (W = 290, p =
0.975 in the Wilcoxon signed rank sum test with continuity
correction).

On the other hand, the results obtained by the usage of
a smoothing filter get significantly poorer (W = 427, p =
0.004 in the Wilcoxon signed rank sum test with continu-
ity correction) in most of the cases, except for the single
case of the PD OSS. This means that one should not use a
smoothing filter at all (except maybe for the single case of
the PD function) or try to test a different filter from the one
used in this study.

Finally, not using the local maximum condition makes
the results get significantly poorer (W = 500, p < 0.001
in the Wilcoxon signed rank sum test with continuity cor-

3 All statistical tests were obtained using R [10].



rection), which means that one should really use the local
maximum condition.

5. CONCLUSIONS

In this paper we have compared the influence of 5 distinct
Peak Selection Methods on the performance of some of the
most common onset detection methods. Our comparison
focused on both the influence of the peak selection on each
particular OSS but also on the influence of the results in
each onset classes.

We have found that, in general, the Peak Selection Meth-
od used can be of great influence on the results obtained,
but not all of them have the same magnitude of influence.
Globally, the influence of using a running-mean or running-
average threshold and of using a normalization based on
the maximum absolute value or on the maximum standard
deviation is quite small (at best around 3-4pp) and can be
both positive or negative, depending on the cases. On the
other hand using a low-pass filter as a first smoothing step
and not using a local maximum condition as final step can
be of great negative influence, sometimes worse by 50pp.

We also noticed that, globally, the SF OSS is the most
robust to Peak Selection changes, and the PD is the most
susceptible to changes.

In the future this work can be extended by adding a few
Onset Detection methods to the comparison and also by
testing more Peak Selection Methods. One possibility is to
add more types of filters to the smoothing to see if the neg-
ative influence continues or is just something related to the
filter we used. We also intend to check if these conclusions
apply to a larger dataset.

6. ACKNOWLEDGEMENTS

We would like to thank Juan Pablo Bello at the NYU for
freely providing the dataset we used for our experiments.

This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecnologia,
under project PEst-OE/EEI/LA0021/2011.

7. REFERENCES

[1] J.P. Bello, L. Daudet, S. Abdallah, C Duxbury,
M Davies, and M B Sandler. A tutorial on onset de-
tection in music signals. IEEE Transactions on Speech
and Audio Processing, 13(5):1035–1047, 2005.

[2] S. Dixon. Onset Detection Revisited. In Proc. of the
Int. Conf. on Digital Audio Effects (DAFx-06), pages
133–137, September 2006.

[3] C. Duxbury, J.P. Bello, M. Davies, and M. Sandler. A
combined phase and amplitude based approach to on-
set detection for audio segmentation. In Proc. 4th Euro-
pean Workshop on Image Analysis for Multimedia In-
teractive Services (WIAMIS-03), pages 275–280, Sin-
gapore, 2003. World Scientific Publishing Co. Pte. Ltd.
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ABSTRACT

Because music conveys and evokes feelings, a wealth of
research has been performed on music emotion recogni-
tion. Previous research has shown that musical mood is
linked to features based on rhythm, timbre, spectrum and
lyrics. For example, sad music correlates with slow tempo,
while happy music is generally faster. However, only lim-
ited success has been obtained in learning automatic classi-
fiers of emotion in music. In this paper, we collect a ground
truth data set of 2904 songs that have been tagged with one
of the four words “happy”, “sad”, “angry” and “relaxed”,
on the Last.FM web site. An excerpt of the audio is then
retrieved from 7Digital.com, and various sets of audio fea-
tures are extracted using standard algorithms. Two clas-
sifiers are trained using support vector machines with the
polynomial and radial basis function kernels, and these are
tested with 10-fold cross validation. Our results show that
spectral features outperform those based on rhythm, dy-
namics, and, to a lesser extent, harmony. We also find that
the polynomial kernel gives better results than the radial
basis function, and that the fusion of different feature sets
does not always lead to improved classification.

1. INTRODUCTION

In the past ten years, music emotion recognition has at-
tracted increasing attention in the field of music informa-
tion retrieval (MIR) [16]. Music not only conveys emotion,
but can also modulate a listener’s mood [8]. People report
that their primary motivation for listening to music is its
emotional effect [19] and the emotional component of mu-
sic has been recognised as most strongly associated with
music expressivity [15].

Recommender systems for managing a large personal
music collections typically use collaborative filtering [28]
(historical ratings) and metadata- and content-based filter-
ing [3] (artist, genre, acoustic features similarity). Emo-
tion can be easily incorporated into such systems to sub-
jectively organise and search for music. Musicovery 1 ,

1 http://musicovery.com/
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for example, has successfully used a dimensional model
of emotion within its recommendation system.

Although music emotion has been widely studied in psy-
chology, signal processing, neuroscience, musicology and
machine learning, our understanding is still at an early stage.
There are three common issues: 1. collection of ground
truth data; 2. choice of emotion model; 3. relationships
between emotion and individual acoustic features [13].

Since 2007, the annual Music Information Retrieval Eval-
uation eXchange (MIREX) 2 has organised an evaluation
campaign for MIR algorithms to facilitate finding solu-
tions to the problems of audio music classification. In
previous studies, significant research has been carried out
on emotion recognition including regressor training: us-
ing multiple linear regression [6] and Support Vector Ma-
chines (SVM) [23,37], feature selection [35,36], the use of
lyrics [13] and advanced research including mood classifi-
cation on television theme tunes [30], analysis with elec-
troencephalogram (EEG) [18], music expression [32] and
the relationship with genre and artist [12]. Other relevant
work on classification suggests that feature generation can
outperform approaches based on standard features in some
contexts [33].

In this paper, we aim to better explain and explore the
relationship between musical features and emotion. We
examine the following parameters: first, we compare four
perceptual dimensions of musical features: dynamics, spec-
trum, rhythm, and harmony; second, we evaluate an SVM
associated with two kernels: polynomial and radial basis
functions; third, for each feature we compare the mean and
standard deviation feature value. The results are trained
and tested using semantic data retrieved from last.fm 3 and
audio data from 7digital 4 .

This paper is structured as follows. In section 2, three
psychological models are discussed. Section 3 explains the
dataset collection we use in training and testing. The pro-
cedure is described in section 4, which includes data pre-
processing (see section 4.1), feature extraction (see section
4.2) and classification (see section 4.3). Section 5 explains
four experiments. Finally, section 6 concludes the paper
and presents directions for future work.

2 http://www.music-ir.org/mirex/wiki/MIREX HOME
3 http://www.last.fm/
4 http://www.7digital.com/



2. PSYCHOLOGICAL EMOTION MODELS

One of the difficulties in representing emotion is to distin-
guish music-induced emotion from perceived emotion be-
cause the two are not always aligned [5]. Different psycho-
logical models of emotion have been compared in a study
of perceived emotion [7].

Most music related studies are based on two popular
approaches: categorical [10] and dimensional [34] mod-
els of emotion. The categorical approach describes emo-
tions with a limited number of innate and universal cate-
gories such as happiness, sadness, anger and fear. The di-
mensional model considers all affective terms arising from
independent neurophysiological systems: valence (nega-
tive to positive) and arousal (calm to exciting). Recently a
more sophisticated model of music-induced emotion - the
Geneva Emotion Music Scale (GEMS) model - consisting
of 9 dimensions, has been proposed [42]. Our results and
analysis are based on the categorical model since we make
our data collection through human-annotated social tags
which are categorical in nature.

3. GROUND-TRUTH DATA COLLECTION

As discussed above, due to the lack of ground truth data,
most researchers compile their own databases [41]. Man-
ual annotation is one of the most common ways to do this.
However, it is expensive in terms of financial cost and hu-
man labour. Moreover, terms used may differ between in-
dividuals. Different emotions may be described using the
same term by different people which would result in poor
prediction [38]. However, with the emergence of music
discovery and recommendation websites such as last.fm
which support social tags for music, we can access rich
human-annotated information. Compared with the tradi-
tional approach of web mining which gives noisy results,
social tagging provides highly relevant information for mu-
sic information retrieval (MIR) and has become an im-
portant source of human-generated contextual knowledge
[11]. Levy [24] has also shown that social tags give a high
quality source of ground truth data and can be effective in
capturing music similarity [40].

The five mood clusters proposed by MIREX [14] (such
as rollicking, literate, and poignant) are not popular in so-
cial tags. Therefore, we use four basic emotion classes:
happy, angry, sad and relaxed, considering these four emo-
tions are widely accepted across different cultures and cover
the four quadrants of the 2-dimensional model of emo-
tion [22]. These four basic emotions are used as seeds to
retrieve the top 30 tags from last.fm. We then obtain a list
of songs labelled with the retrieved tags. Table1 and table
2 show an example of the retrieved results.

Given the retrieved titles and the names of the singers,
we use a public API to get preview files. The results cover
different types of pop music, meaning that we avoid partic-
ular artist and genre effects [17]. Since the purpose of this
step is to find ground truth data, issues such as cold start,
noise, hacking, and bias are not relevant [4, 20].

Most datasets on music emotion recognition are quite

Happy Angry Sad Relax
happy angry sad relax

happy hardcore angry music sad songs relax trance
makes me happy angry metal happysad relax music

happy music angry pop music sad song jazz relax
happysad angry rock sad & beautiful only relax

Table 1. Top 5 tags returned by last.fm

Singer Title
Noah And The Whale 5 Years Time

Jason Mraz I’m Yours
Rusted Root Send Me On My Way
Royksopp Happy Up Here

Karen O and the Kids All Is Love

Table 2. Top songs returned with tags from the “happy”
category.

small (less than 1000 items), which indicates that 2904
songs (see table 3) for four emotions retrieved by social
tags is a good size for the current experiments. The dataset
will be made available 5 , to encourage other researchers to
reproduce the results for research and evaluation.

Emotion Number of Songs
Happy 753
Angry 639

Sad 763
Relaxed 749
Overall 2904

Table 3. Summary of ground truth data collection

4. PROCEDURES

The experimental procedure consists of four stages: data
collection, data preprocessing, feature extraction, and clas-
sification, as shown in figure 1.

4.1 Data Preprocessing

As shown in Table 1, there is some noise in the data such as
confusing tags and repeated songs. We manually remove
data with the tag happysad which existed in both the happy
and sad classes and delete the repeated songs, to make sure
every song will only exist once in a single class. Moreover,
we convert our dataset to standard wav format (22,050 Hz
sampling rate, 16 bit precision and mono channel). The
song excerpts are either 30 seconds or 60 seconds, rep-
resenting the most salient part of the song [27], therefore
there is no need to truncate. At the end, we normalise the
excerpts by dividing by the highest amplitude to mitigate
the production effect of different recording levels.

4.2 Feature Extraction

As suggested in the work of Saari and Eerola [35], two dif-
ferent types of feature (mean and standard deviation) with

5 The dataset can be found at https://code.soundsoftware.ac.uk/projects-
/emotion-recognition



Figure 1. Procedure

a total of 55 features were extracted using the MIR tool-
box 6 [21] (shown in table 4). The features are categorized
into the following four perceptual dimensions of music lis-
tening: dynamics, rhythm, spectral, and harmony.

4.3 Classification

The majority of music classification tasks [9] (genre clas-
sification [25,39], artist identification [29], and instrument
recognition [31]) have used k-nearest neighbour (K-NN)
[26] and support vector machines (SVM) [2]. In the case
of audio input features, the SVM has been shown to per-
form best [1].

In this paper, therefore, we choose support vector ma-
chines as our classifier, using the implementation of the se-
quential minimal optimisation algorithm in the Weka data
mining toolkit 7 . SVMs are trained using polynomial and
radial basis function (RBF) kernels. We set the cost factor
C = 1.0, and leave other parameters unchanged. An in-
ternal 10-fold cross validation is applied. To better under-
stand and compare features in four perceptual dimensions,
our experiments are divided into four tasks.

Experiment 1: we compare the performance of the two
kernels (polynomial and RBF) using various features.

Experiment 2: four classes (perceptual dimensions) of
features are tested separately, and we compare the results
to find a dominant class.

Experiment 3: two types of feature descriptor, mean and
standard deviation, are calculated. The purpose is to com-
pare values for further feature selection and dimensionality
reduction.

6 Version 1.3.3: https://www.jyu.fi/music/coe/materials/mirtoolbox
7 http://www.cs.waikato.ac.nz/ml/weka/

Dimen. No. Features Acronyms
Dynamics 1-2 RMS energy RMSm, RMSstd

3-4 Slope Ss, Sstd
5-6 Attack As, Astd
7 Low energy LEm

Rhythm 1-2 Tempo Ts, Tstd
3-4 Fluctuation peak (pos, mag) FPm, FMm
5 Fluctuation centroid FCm

Spec. 1-2 Spectrum centroid SCm, SCstd
3-4 Brightness BRm, BRstd
5-6 Spread SPm, SPstd
7-8 Skewness SKm, SKstd

9-10 Kurtosis Km, Kstd
11-12 Rolloff95 R95s, R95std
13-14 Rolloff85 R85s, R85std
15-16 Spectral Entrophy SEm, SEstd
17-18 Flatness Fm, Fstd
19-20 Roughness Rm, Rstd
21-22 Irregularity IRm. IRstd
23-24 Zero crossing rate ZCRm, ZCRstd
25-26 Spectral flux SPm, SPstd
27-28 MFCC MFm, MFstd
29-30 DMFCC DMFm, DMFstd
31-32 DDMFCC DDm, DDstd

Harmony 1-2 Chromagram peak CPm, CPstd
3-4 Chromagram centroid CCm, CCstd
5-6 Key clarity KCm, KCstd
7-8 Key mode KMm, KMstd
9-10 HCDF Hm, Hstd

Table 4. The feature set used in this work; m = mean, std
= standard deviation.

Experiment 4: different combinations of feature classes
(e.g., spectral with dynamics) are evaluated in order to de-
termine the best-performing model.

5. RESULTS

5.1 Experiment 1

In experiment 1, SVMs trained with two different kernels
are compared. Previous studies [23] have found in the case
of audio input that the SVM performs better than other
classifiers (Logistic Regression, Random Forest, GMM,
K-NN and Decision Trees). To our knowledge, no work
has been reported explicitly comparing different kernels
for SVMs. In emotion recognition, the radial basis func-
tion kernel is a common choice because of its robustness
and accuracy in other similar recognition tasks [1].

Polynomial RBF
Feature Class Accuracy Time Accuracy Time No.

Dynamics 37.2 0.44 26.3 32.5 7
Rhythm 37.5 0.44 34.5 23.2 5

Harmony 47.5 0.41 36.6 27.4 10
Spectral 51.9 0.40 48.1 14.3 32

Table 5. Experiment 1 results: time = model building time,
No. = number of features in each class

The results in table 5 show however that regardless of
the features used, the polynomial kernel always achieved
the higher accuracy. Moreover, the model construction
times for each kernel are dramatically different. The av-
erage construction time for the polynomial kernel is 0.4
seconds, while the average time for the RBF kernel is 24.2



seconds, around 60 times more than the polynomial ker-
nel. The following experiments also show similar results.
This shows that polynomial kernel outperforms RBF in the
task of emotion recognition at least for the parameter val-
ues used here.

5.2 Experiment 2

In experiment 2, we compare the emotion prediction re-
sults for the following perceptual dimensions: dynamics,
rhythm, harmony, and spectral. Results are shown in fig-
ure 2). Dynamics and rhythm features yield similar re-
sults, with harmony features providing better results, but
the spectral class with 32 features achieves the highest ac-
curacy of 51.9%. This experiment provides a baseline model,
and further exploration of multiple dimensions is performed
in experiment 4.

Figure 2. Comparison of classification results for the four
classes of features.

5.3 Experiment 3

In this experiment, we evaluate different types of feature
descriptors, mean value and standard deviation for each
feature across all feature classes, for predicting the emotion
in music. The results in table 6 show that the use of both
mean and standard deviation values gives the best results
in each case. However, the processing time increased, so
choosing the optimal descriptor for each feature is highly
desirable. For example, choosing only the mean value in
the harmony class, we lose 2% of accuracy but increase
the speed while the choice of standard deviation results in
around 10% accuracy loss. As the number of features in-
creases, the difference between using mean and standard
deviation will be reduced. However, more experiments are
needed to explain why the mean in harmony and spectral
features, and standard deviation values of dynamics and
rhythm features have higher accuracy scores.

5.4 Experiment 4

In order to choose the best model, the final experiment
fuses different perceptual features. As presented in table 7,
optimal accuracy is not produced by the combination of all
features. Instead, the use of spectral, rhythm and harmony
(but not dynamic) features produces the highest accuracy.

Features Class Polynomial No. features
Dynamics all 37.2 7

Dynamics mean 29.7 3
Dynamics std 33.8 3

Rhythm all 37.5 5
Rhythm mean 28.7 1
Rhythm std 34.2 1
Harmony all 47.5 10

Harmony mean 45.3 5
Harmony std 38.3 5
Spectral all 51.9 32

Spectral mean 49.6 16
Spectral std 47.5 16

Spec+Dyn all 52.3 39
Spec+Dyn mean 50.5 19
Spec+Dyn std 48.7 19
Spec+Rhy all 52.3 37

Spec+Rhy mean 49.8 17
Spec+Rhy std 47.8 17
Spec+Har all 53.3 42

Spec+Har mean 51.3 21
Spec+Har std 50.3 21
Har+Rhy all 49.1 15

Har+Rhy mean 45.6 6
Har+Rhy std 41.2 6
Har+Dyn all 48.8 17

Har+Dyn mean 46.9 8
Har+Dyn std 42.4 8
Rhy+Dyn all 41.7 12

Rhy+Dyn mean 32.0 4
Rhy+Dyn std 38.8 4

Table 6. Comparison of mean and standard deviation (std)
features.

Features Accuracy No. features
Spec+Dyn 52.3 39
Spec+Rhy 52.3 37
Spec+Har 53.3 42
Har+Rhy 49.1 15
Har+Dyn 48.8 17
Rhy+Dyn 41.7 12

Spec+Dyn+Rhy 52.4 44
Spec+Dyn+Har 53.8 49
Spec+Rhy+Har 54.0 47
Dyn+Rhy+Har 49.7 22

All Features 53.6 54

Table 7. Classification results for combinations of feature
sets.

6. CONCLUSION AND FUTURE WORK

In this paper, we collected ground truth data on the emo-
tion associated with 2904 pop songs from last.fm tags. Au-
dio features were extracted and grouped into four percep-
tual dimensions for training and validation. Four experi-
ments were conducted to predict emotion labels. The re-
sults suggest that, instead of the conventional approach us-
ing SVMs trained with a RBF kernel, a polynomial ker-
nel yields higher accuracy. Since no single dominant fea-
tures have been found in emotion recognition, we explored
the performance of different perceptual classes of feature
for predicting emotion in music. Experiment 3 found that
dimensionality reduction can be achieved through remov-
ing either mean or standard deviation values, halving the
number of features used, with, in some cases, only 2% ac-
curacy loss. The last experiment found that inclusion of
dynamics features with the other classes actually impaired



the performance of the classifier while the combination of
spectral, rhythmic and harmonic features yielded optimal
performance.

In future work, we will expand this research both in
depth and breadth, to find features and classes of features
which best represent emotion in music. We will examine
higher-level dimensions such as temporal evolution fea-
tures, as well as investigating the use of auditory mod-
els. Using the datasets retrieved from Last.fm, we will
compare the practicability of social tags with other human-
annotated datasets in emotion recognition. Through these
studies of subjective emotion, we will develop methods for
incorporating other empirical psychological data in a sub-
jective music recommender system.
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ABSTRACT

Searching for similarities in large musical databases is com-

mon for applications such as cover song identification. The-
se methods typically use dynamic programming to align

the shared musical motifs between subparts of two record-

ings. Such music local alignment methods are slow, as
are the bioinformatics algorithms they are closely related

to. We have adapted the ideas of the Basic Local Align-

ment Search Tool (BLAST) for biosequence alignment to

the domain of aligning sequences of chroma features. Our
tool allows local music sequence alignment in near-linear

time. It identifies small regions of exact match between

sequences, called seeds, and builds local alignments that
include these seeds. Seed determination is a key issue for

the accuracy of the method and closely depends on the

database, the representation and the application. We intro-

duce a particular seeding approach for cover detection, and
evaluate it on both a 2000-piece training set and the million

song dataset (MSD). We show that the heuristic alignment

drastically improves time computation for cover song de-
tection. Alignment sensitivity is still very high on the small

database, but is dramatically weakened on the MSD, due to

differences in chroma features. We discuss the impact of
different choices of these features on alignment of musical

pieces.

1. INTRODUCTION

During the last decade, an increasing number of large mu-

sic datasets have become available. One may now access

a huge amount of music audio, stored for instance on per-

sonal computers, mobile devices or online. In this context,
Music Information Retrieval (MIR) focuses on automatic

classification, organization, description of music content.

To assess musical similarities between pieces, for exam-

ple, a major challenge of MIR is analysing acoustic con-

tent. Using signal processing techniques, music features
are first infered from audio content. Each of them are re-

lated to a specific aspect of music. A fairly typical MIR ap-

proach consists in obtaining such a feature for short frames
of audio signal, hence computing a symbolic string repre-

sentation that carries the change in some musical property

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2012 International Society for Music Information Retrieval.

along a given music track. Such symbolic representations

can be further analysed and compared to detect meaning-
ful similarities. MIR studies typically employ comparison

techniques either custom built or adapted from other fields

of information science [6]. Many such techniques account

for slight variations in musical features. The way we per-
ceive music is known to work at different time scales, and

allows for slight differences in music information received

over time. For instance, one may easily recognize a chorus
sung twice in a song although the singer may sing different

lyrics, the melody may have changed, or the instruments

playing may be different in both occurrences.

Among the many applications of automatic assessment
of musical similarities in music datasets, cover song iden-

tification has been of major concern over the last few yea-

rs [16]. Cover songs are usually defined as multiple rendi-
tions of the same original music piece. They may be played

by other performers from different music genres or with

distinct recording environments [16]. Although two cover

versions of an original song may differ widely in instru-
mentation, singing voices, background noise, key, struc-

tural arrangement, genre, etc., they should hold enough

musical similarity for human perception to identify them
as renditions of the same piece. To detect such similarities,

most retrieval systems use dynamic programming [16]. A

key drawback of such systems is their inability to effi-
ciently scale to the range of musical data available in mu-

sical platforms, i.e. to the order of tens of millions of

tracks [6, 16].

We propose an indexing method that substantially in-
creases the efficiency of alignment-based retrieval systems.

Our method uses a widely known bio-sequence indexing

technique, BLAST [2]. We adapt this method by investi-

gating the distribution of symbols among features sequen-
ces, and deducing a strategy for efficient indexing. An em-

pirical study and an evaluation are performed on a custom-

built cover song dataset, as well as on the Million Song
Dataset (MSD) [5]. The remainder of this paper is orga-

nized as follows. Previous works are described in Sec-

tion 2. Section 3.1 presents audio representations and align-

ment techniques used, and describes the principle of the
bio-indexing tool we propose to adapt. Section 3 details

the investigation over feature sequences, and describes the

particular settings of our music application. Finally, Sec-
tion 5 presents results obtained for a practical cover song

identification, while concluding remarks and perspectives

are depicted in Section 6.



2. RELATED WORK

Several heuristics for reducing the computational cost of

dynamic programming have been introduced for MIR ap-
plications. Dannenberg and Hu [7] proposed to discover

patterns in audio sequences by partially exploring the search

space around bands, relying on global thresholds that indi-
cate limits on the deviation from diagonals, implicitly as-

suming that insertions and deletions are rare. Combined

to a clustering technique, this process was used to deduce
suboptimal alignments and infer the structure of audio pie-

ces.

Kilian and Hoos [12] already introduced BLAST in MIR

context, in order to search for approximate patterns in sym-
bolic music. They tested the technique on MIDI excerpts

and emphasized the efficiency of the alignment of similar

patterns with the bi-directional extension of exact match

regions. Authors infered a high potential for BLAST in
a non-symbolic input configuration, but did not test it ex-

plicitly [13]. Although the work presented in this paper

adapts the same BLAST algorithm, it is subtantially dif-
ferent from this study. First, our technique is applied to

feature sequences obtained from audio signals. More im-

portantly, we aim at comparing distinct songs with possi-
bly similar regions, not discovering similar patterns inside

a single piece. Finally, the tool is used in our case as a

filtering technique to allow efficient identification of cover

songs.
Analogously, many studies adapt exact audio identifica-

tion systems to account for musical variations (see [14] and

references therein). For instance, Kurth and Muller [14]

presented an efficient matching technique robust to typi-
cal variations in interpretation of classical music. The ap-

proach here is reversed relative to our: an exact fast fin-

gerprinting system is adapted to account for local slight
variations, whereas we propose to enhance the efficiency

of an accurate slow approximate identification technique.

They report an acceleration of the matching process by a
factor of 15 to 20 while keeping a high robustness to inter-

pretation variations. However, they emphasize that such a

speed-up factor is suitable for efficiently handling datasets

in the order of tens of thousands tracks [14]. To handle
fast search in larger datasets, an indexing system for cover

song identification on the MSD was recently proposed [4].

Landmarks estimations are performed from MSD chroma
features, and heuristic jumpcodes between landmarks en-

code variations of pitch content along cover versions. Au-

thors substantially reduce the problem to binary identifica-
tion tasks, and report a fair effectiveness/efficiency trade-

off with a speed of about 200 seconds to query the MSD.

The method we propose in this paper aims at reducing this

cover song querying time to the order of a few seconds
while keeping a good accuracy in a standard cover retrieval

task.

3. COMPARING MUSIC SEQUENCES

3.1 Music representation

Pitch content plays an important role in the structure of au-

dio pieces, in particular for Western music genres. Com-
mon compositional processes in such music are organized

around melodic and harmonic sequences that listeners iden-

tify, consciously or not, as independent phrases or themes.

Pitch Class Profiles (PCP), also known as chroma fea-

tures, are frequently used to describe these types of in-
formation. These features classify spectral energies into

bins corresponding to the frequency class where they ap-

pear, each class taking into account the cyclical perception

of pitch in human auditory system. The number of pitch
classes p corresponds to the number of frequency bands

considered in each octave. The parameter p is usually set

to 12 to respect the common note scale, but higher val-
ues (generally multiples of 12) can improve the robustness

to tuning issues [9]. Chroma features are usually consid-

ered as the most robust representation for cover song de-
tection [16].

3.2 Music sequences alignment

This symbolic representation as a sequence of symbols or

string can be used to define a similarity measure between
two audio pieces. Such a metric is expected to isolate sig-

nificantly similar sections, or repetitions, assessing their

resemblance.

3.2.1 Relevance for music information

Repetitions in strings have been studied extensively, either

for locating exact repeats or for identifying substrings that

are duplicated within a certain tolerance. In the context of
music sequences, musical similarity does not rely on exact

matches since variations, such as transpositions, interpreta-

tion variations, rhythmic irregularities, background noise,
may alter the representing sequences.

Alignment approaches are well suited for an accurate

recognition of such variations. Widely used for biologi-
cal sequences, such techniques have been extremely suc-

cessful in identifying approximate repetitions between lo-

cal patterns in DNA or RNA strings that reflect, for in-

stance, gene homologies. The relevance of such methods
for music information lies in the same “evolutionary” as-

pect of musical patterns that may slightly change along a

single piece or accross similar pieces. Playing variations of
some musical theme implies changing sound events such

as notes, rhythms, or lyrics, which echoes the mutation of

nucleotides of proteins during biological evolution. There-
fore, alignment techniques are frequently used for identi-

fying similar patterns in cover songs.

3.2.2 Alignment and dynamic programming

The first accurate distance measure for approximate string

comparison in the context of biogical sequences is often

credited to Needleman and Wunsch [15]. A string u of

length n can be transformed into a string v of length m
by applying edit operations on the symbols of u and v.

These operations are insertions, deletions or substitutions,

and each is assigned a cost. The edit distance between u
and v is defined by the minimum total cost of edit oper-

ations required to transform u into v. The global align-

ment of u and v identifies the positions in the sequence u

that are not changed during the process of transforming u
to v, and their new position in that sequence. A variant

of this comparison method, local alignment [18], allows

finding and extracting a pair of regions, one from each
string, which exhibit the highest similarity according to the

scoring scheme assigned to edit operations. In a musical

context, this might correspond to finding matches between



two verses of a song, or between smaller approximately

duplicated harmonic figures. Its computation is typically
performed by a dynamic programming algorithm filling a

(n+1)×(m+1) matrix. The local alignment of u and v can

be seen as the best scoring path in the dynamic program-

ming matrix. This edit path is easily computed in practice
by tracing back the series of operations performed. More

information about alignment algorithms can be found in

[10].

In the context of pitch content, an improvement of local

alignment [1] allows taking into account a frequent varia-

tion of musical patterns in terms of harmony, namely local
transposition. In Western popular music, for instance, local

transposition happens when an occurrence of a structural

pattern (e.g. chorus) is be played a few semitones higher
than usual. The improvement of the alignment technique

consists in adding a new edit operation, the local transposi-

tion of a string versus another. Consequently, we compute

several matrices that estimate every possible local trans-
position, and allow a jump from one matrix to another by

paying a corresponding transposition cost [1]. This vari-

ant yields more accurate alignments of pitch content, but it
is much slower to compute in practice. If the alphabet of

symbols has a symbols, the slowdown is a factor of a.

3.2.3 Complexity

Dynamic programming givesΘ(nm) running time for com-

puting optimal alignment scores. Tracing back the effec-
tively aligned substrings requires O(n + m). Therefore,

to compare a new song of length n with a database of k

pieces, each of average length m, requires Θ(knm) time.

The naive space complexity is Θ(nm), where we store
the entire dynamic programming matrix, although a sim-

ple trick allows reducing it to Θ(max(m,n)) by keeping

only the last computed lines [10].

Local alignment techniques are particularly useful for

the accurate identification of strong similarities between

sequences [16]. However, the slowness of the dynamic
programming makes them heavy to compute and unadapted

to fast querying of large-scale datasets that comprise mil-

lions of sequences. Facing a similar challenge, bioinfor-

matics researchers developed a fast heuristic-based search
tool dedicated to efficient indexing for local alignment.

3.3 BLAST

The Basic Local Alignment Search Tool (BLAST) [2], re-
duces the computational cost of local alignment. BLAST

relies on the observation that when querying a new se-

quence to a large database, there are likely only a small
number of good alignments, so it filters the database to

avoid computing irrelevant alignments of unrelated sequen-

ces. BLAST partially explores the dynamic programming

search space to filter out many irrelevant comparisons be-
fore computing local alignments. It consists of several

heuristic layers of rules for refining the potential regions

of strong similarity, as described in the next sections.

3.3.1 Seeding the search space

The main heuristic of BLAST lies in the assumption that
significant local alignments include small exact matches.

As represented in Fig. 1-(i), the dashed edit path of the lo-

cal alignment of u and v contains diagonal sections, that

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Seeding the search space. Top-Left: exact

similar sections (plain lines) inside a local alignment path

(dashed line). Top-Right: automatic seeding of the search
space, where identified regions may belong to the local

alignment path (plain lines) or not (dashed lines). Bottom-

left: as result of F1, seeds are quickly clustered and iso-
lated grey dashed seeds are eliminated. Bottom-right: as a

result of F2, seed extensions roughly depict the local align-

ment path. Background grey parts highlight the number of

dynamic programming computations required.

partially correspond to runs of matches (plain lines), i.e.

exact repetitions between small sections of u and v. The

first step of BLAST finds these small common substrings

in order to seed the search space for later local alignments.

A practical way of indexing the search space is to fix a seed
length N , and index every N -length substring (or words)

of every sequence of the dataset in a fast access data struc-

ture.

3.3.2 Filtering seeds

Once seeded as in Fig. 1−(ii), the search space includes hit

regions that may correspond to high-scoring local align-

ment of sequences (plain segments) or to suboptimal re-
gions (dashed segments), where the exact seed match arose

due to coincidence, not true similarity. The second step of

BLAST filters out most seeds that do not correspond to

desired local alignments.

A first filtering technique F1 consists in quickly clus-

tering seeds among the search space, and identifying iso-
lated hits. As illustrated in Fig.1, every correct heuris-

tic alignment should have several seeds around a diago-

nal (plain lines) that sketches the actual local alignment.
Consequently, a pair of sequences that does not have re-

gions comprising a significant number of hits may be fil-

tered out. We use a threshold δ to stand for the maximum
inter-diagonal distance allowed between two consecutive

seeds to be considered as around the same diagonal, i.e.

potentially belonging to the same alignment.

A more accurate, also common, filter F2 is seed exten-

sion. Each seed is extended in both directions to determine

wether it corresponds to a local similar region or not. We
denote by (i, k) and (j, l) the coordinates of a seed in the

search space, i.e. the hit is between the exactly matching

substrings u[i · · · j] and v[k · · · l]. We compute two small
alignments, one starting from (i, k) rolling up towards the

top left corner of the search space, and the other one start-

ing from (j, l) going towards the bottom right corner. Each



of these alignments, that may be gapped or ungapped, are

quickly stopped if their score drops off under a threshold
value X . This way, extending unrelated sequences quickly

results in stopping the computation, while seeds from lo-

cally similar regions grow towards alignments [3].

4. INDEXING MUSIC DATA

4.1 Evaluation framework

4.1.1 Database

Two datasets were used to evaluate our system. The first

set, TSD, consists of 2, 514 Western popular music pieces

comprising 514 cover songs distributed in 17 cover classes,
coming from personal music collections 1 . We elected as

a second set the million song dataset (MSD) [5], that com-

prises one milliong songs of various musical genres 2 . It
includes the Second Hand Songs dataset 3 , which com-

prises 18, 196 cover songs distributed in 5, 854 cover classes.

This set is to our knowledge the largest available set of

cover song audio features.
Both datasets provide chroma feature sequences. How-

ever, it is worth noting that the implementation of such fea-

tures significantly differs in both cases. In TSD, we used
our own implementation of Harmonic Pitch Class Pro-

files [9] with a constant frame size and a resolution of 36
subdivisions per octave. This representation was success-

fully applied for past MIREX tasks 4 . In MSD, chroma
features were computed using The EchoNest API 5 , and

consist of segment-synchronized 12-dimensional chroma

features, as described in [11]. Thus, each MSD chroma
represents pitch content on 12 dimensions for a variable

audio frame (generally between 80 to 300ms with no over-

lap), whereas each TSD chroma represents pitch content on
36 dimensions for a constant audio frame (743ms with half

overlap). The difference between these two approaches

turns out to have major implications.

4.1.2 Alphabet definition

In its general definition, each B-dimensional chroma fea-

ture consists of B bins that may take any positive value,

so their domain is infinite. However, as explained in Sec-
tion 3.3, the heuristic alignment relies on the identification

of exact similar regions in discrete sequences. Hence, it is

critical for a BLAST approach to first project representing

sequences onto a finite alphabet. A natural quantization is
to detect the most probable chord, by looking for the high-

est scoring triad (root, major/minor third, fifth), and assign-

ing a symbol corresponding to the index of this best triad.
We represent each chroma feature over a 12-letter alpha-

bet ∆ = {a, b, c, . . . , k, l} by the root of the predominant

chord played. The chord mode (major/minor) is not taken
into account since a root-exclusive representation seems to

provide sufficiently meaningful audio representations (see

Section 4.2). The 36-dimensional chroma features are also

reduced down to 12 possible root chord symbols by keep-
ing the multiple of 3 closest to the index of the highest triad

(reduction to a 12 note scale with robustness to de-tuning).

1 See http://www.labri.fr/perso/bmartin/ISMIR12 for the list
2 http://labrosa.ee.columbia.edu/millionsong/
3 http://www.secondhandsongs.com
4 MHRAF submissions in Struct.Seg-11, Cover song-10
5 http://the.echonest.com/

TSD MSD
Seed False False False False
size negative positive negative positive

(i)

3 0.00 8.91 0.11 4.70
4 0.03 3.69 4.28 1.15
5 0.84 1.68 18.3 0.39
6 4.50 0.82 37.2 0.16
7 11.7 0.44 54.7 0.08
8 21.8 0.25 68.6 0.04

(ii)

3 0.00 1.06 0.84 1.33
4 0.21 0.41 7.08 0.23
5 2.59 0.18 22.6 0.06
6 6.67 0.08 41.8 0.02
7 14.9 0.04 58.9 0.01
8 26.0 0.02 72.1 .003

Table 1. Sensitivity/specificity tradeoff on TSD and MSD.

Scores are given as percentages. In (i), all words are in-
dexed in the dataset. In (ii), mono-symbolic words are not

indexed.

This projection is likely to introduce inconsistencies in

compared sequences, due to such a simplistic analysis. How-

ever, in practice the method only requires small sections of

aligned sequences to be identical in order to assess their
similarity, and is tolerant to sparse analysis errors to some

extent.

4.1.3 Transposition invariance

Transposition is a very common variation among cover

versions. Either globally on an entire rendition or locally

accross structural parts, transpositions have to be taken into
account in similarity analysis [17]. As highlighted in [14],

the indexing strategy should hash harmonic progressions

instead of absolute pitch content. While looking for ex-
act matches between two sequences, compared regions are

thus transposed down to a common key. For instance, the

sequencesbcbbfd and deddhd are in fact an exact match

since they describe the same chord variations regardless of
their local key, which differ by a major second. Practically,

this can be seen as translating all words such that they start

with the symbol a.

4.2 Seed determination

The heuristic alignment strongly relies on the selection of

meaningful parts. A key issue for the method is to deter-

mine a seed both sensitive enough to correctly index align-
ments between cover songs, and specific enough to index

as few spurious hits as possible. The first parameter for

optimizing the sensitivity/specificity tradeoff is the length
of the seed. In the following, given a seed length N , we

denote by ∆N the set of all possible words of length N

over ∆.

4.2.1 Sensitivity evaluation

Assessing the sensitivity of a seed can be done by analyz-

ing the alignments of similar sequences. Let N be a seed

length. We must determine how many alignments actually
contain seeds of size N , i.e. how many alignments contain

at least one run of N matches. Thus, we first computed on

both TSD and MSD local alignments between cover songs
using the local transposition variant described in 3.2.2. By

tracing back the alignments, we were able to identify exact

runs of matches. An alignment is considered validated if



TSD MSD
Word % Word %

aaaaaaa 6.36 aaaaaaa 14.1
ahhhhhh 0.55 aaaaaah 1.45
aaaaaah 0.53 aaaaaaf 1.31
affffff 0.49 affffff 1.13
aaaaaaf 0.46 ahhhhhh 0.98

Table 2. The five most probable words in TSD and MSD

and their frequency of occurrence (in % of the words in

each database) for N = 7 and a 12-letter alphabet.

it can be indexed, i.e. if at least one long enough run is
found. The second and fourth columns of Tab. 1-(i) show

the probabilityPr[false negative] that an alignment can not

be indexed by the method, as a function of the seed length,
on both of the datasets.

4.2.2 Specificity evaluation

To evaluate the specificity of a seed, we need to estimate

the probability of finding two identical runs in unrelated

audio sequences. Practically, for a given word w over ∆N ,
we count the number of occurrences of w in the database

of unrelated sequences (no cover songs). This computa-

tion is stored in a list L and repeated for each possible
word. In the end, L[j] contains the number of instances

of a particular word, and
∑

i L[i] is the total number of

N -long words in the dataset. The probability of finding

one word w in a random chunk of the database is given

by
L[j]∑
i
L[i]

, where j is the index in L corresponding to w.

Subsequently, the overall probability of finding two identi-

cal words in the database is given by Pr[false positive] =
1

(
∑

i
L[i])2

∑
j L[j]

2. The third and fifth columns of Tab. 1-

(i) provides the Pr[false positive] computed for each seed

length and for both of the datasets, as percentages.

4.2.3 Word distribution

Table 2 shows the five most probable words in both datasets
for a fixed seed length of 7. The most probable bin is the

mono-symbolic word. Following bins correspond to fre-

quent intervals in tonal music: up-by-fifth (a→h) or down-
by-fifth (a→f). In both of the datasets, mono-symbolic

words occur far more often than other words, representing

6.36% and 14.1% of the words in TSD and MSD, respec-
tively. Thus, mono-symbolic words are likely to be respon-

sible for many false positive hits while not capturing very

sensitive regions in true alignments. We hence re-evaluated

in Tab. 1-(ii) the sensitivity and specificity tradeoff on both
datasets without indexing mono-symbolic words. As a re-

sult, for a seed length of 7 symbols, specificity is increased

by a factor between 8 and 10, while sensitivity is reason-
ably decreased by around 3% in both datasets.

5. RESULTS AND DISCUSSION

Statistical results emphasize a significant difference bet-

ween sequences in both datasets. First, cover song align-
ments share much fewer words in MSD than in TSD. For

instance, for a seed size of 7, only 41.1% of the cover song

alignments in MSD share common multi-symbolic words,
as compared to 85.1% in TSD. Subsequently, the charac-

terization of cover songs in MSD should be more difficult

than in TSD. Moreover, false negative rates suggest that the

distributions of words between both datasets are different,

hence it would not be relevant to put them in common for
evaluation purpose.

To test the relevance of our system in comparison with

alignment methods, we implemented the alignment tech-
niques described in 3.2.2. Since indexing is computed in a

transposition invariant manner, we tested local alignments

with the accurate local transposition variant [1]. We eval-

uated the identification technique using the Mean of Aver-
age Precision (MAP), the standard metric for cover song

retrieval evaluation [8, 16, 17].

From every cover class in TSD, we computed align-
ments of each member to the rest of the class and to confus-

ing songs. Average MAP values are presented in Tab. 3-(i),

and detailed among 8 cover classes of TSD in Fig. 2. We
experimented with the same approach on MSD, more pre-

cisely on a subset that made the alignment computation

practicable. This subset MSD2k was formed by randomly

choosing 30 cover song classes and 2000 confusing songs
from MSD. We discovered that the identification method

did not extend, as indicated by the MAP scores (Tab. 3-

(ii)). We identify two possible reasons: 1) Cover songs
are particularly different from each other in MSD; 2) MSD

chroma features are not as suitable as TSD features for se-

quence alignment. To isolate the second possibility, we re-
computed TSD with the audio features used in MSD, via

the EchoNest API 6 . We repeated the same cover identi-

fication experiment on this new dataset T̃SD and obtained
MAP scores indicated in Tab. 3-(iii). The significant drop

in MAP scores between TSD and T̃SD evaluations suggest
that MSD chroma features do not make for alignable se-

quences. This result, already infered in [4], is substantiated

by the high false negative rate found in MSD sequences

(Tab. 1). We think this is due to critical implementation
differences in chroma features between both datasets such

as chroma dimension, temporal filtering and segment syn-

chronism, which may not be adapted to standard alignment
techniques, as highlighted in [16] for instance.

We implemented the indexing strategy described in 4

on TSD and MSD sequences. Logically, previous results
made MSD heuristic alignments ineffective. MSD is to be

considered here only as a computation performance indi-

cator. From Tab. 1, we chose the seed length N = 7, that

features a reasonable false negative rate of 11.7%, elim-
inating the most dissimilar cover songs, for a low false

positive rate of 0.44% that guarantees high performance

with few spurious hits. For each dataset, we built a ta-
ble hashing every N words in sequences and storing their

positions. Then, for each query, all matching songs were

filtered using either F1 or F1 and then F2. Resulting MAP
scores are given in 3-(iv) and (v). Highly depending on

the dataset, our scores are not intended to be compared to

state-of-the-art results. Their relevance lies in the compar-

ison between basic method and heuristic alignments. As
shown in Fig. 2, BLAST filters seem to slightly decrease

the accuracy of the cover identification. Combining both

filters seems effective for quickly identifying most covers.
Indeed, the overall accuracy of BLAST method on TSD

reaches a MAP score of 30.11%, corresponding to a loss

of 14.71% as compared to an accurate sequence alignment.

6 http://developer.echonest.com/



Method Dataset
MAP Runtime

(%) (s/query)

(i)

Alignment

TSD 44.82 129
(ii) MSD2k 5.71 388

(iii) T̃SD 7.20 273
(iv) MSD - 193,765

(v)
BLAST-{F1}

TSD 18.06 0.24
(vi) MSD - 12.20

(vii)
BLAST-{F1,F2}

TSD 30.11 0.33
(viii) MSD - 16.9

Table 3. MAP results and computing times for cover iden-
tification on TSD and MSD.

5.1 Computational efficiency

Due to the very high number of entries in the hash table, we

implemented an efficient memory key/value lookup system

in C. Building the index from chord sequences required
about 16 minutes for the whole MSD on our server 7 . The

average querying runtimes for each approach are given in

Tab. 3. Note that we did not use parallel computing in this
study. As expected, alignments imply slow computation,

resulting in about 129 seconds per query on TSD and 388
seconds per query on MSD2k. By counting the number of

symbols in the whole MSD dataset, we infer that approxi-
mately 53 hours would be required to compute alignments.

Note that removing the local transposition variant would

speed-up by a factor of 12, still inadequate for practical
computation. Thanks to BLAST heuristics, computation is

drastically improved with around 12.2 seconds per query

on MSD (0.24 seconds on TSD) with the coarse filter F1,
and 16.9 seconds per query with both filters on MSD (0.33
seconds on TSD), on average.

6. CONCLUSION

We presented a new method for practical cover identifi-

cation on large scale datasets. Inspired by bioinformat-
ics heuristics, we applied BLAST to audio features and

investigated the distribution of music sequences. Results

obtained on our dataset suggest a reasonable loss of ac-
curacy of the retrieval system in exchange for a substan-

tial gain in computing time: estimating cover songs of a

3 minutes feature sequence can be acheived in less than
15 seconds in a million song database. We see this out-

come as a significant step towards the practical search for

approximate patterns in large datasets. Another main re-

sult of our study, although quite unexpected, is the appar-
ent limitation of MSD chroma features regarding sequence

alignment. Future studies on the MSD involving align-

ment techniques should investigate further the distribution
of chroma sequences, and maybe combine them to other

data (e.g. loudness, timbre). Future work will be partic-

ularly focused on enhancing the sensitivity of the identifi-

cation of cover songs, considering for instance spaced or
variable length seeds for BLAST.
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ABSTRACT 

Music mood has been recognized as an important access 
point for music and many online music services support 
browsing by mood. However, how people judge music 
mood has not been well studied in the Music Information 
Retrieval (MIR) domain. In particular, people's cultural 
background is often assumed to be an important factor in 
music mood perception, but this assumption has not been 
verified by empirical studies. This paper reports on a 
study comparing mood judgments on a set of 30 songs by 
American and Chinese people. Results show that mood 
judgments do indeed differ between American and Chi-
nese respondents. Furthermore, respondents’ mood 
judgments tended to agree more with other respondents 
from the same culture than those from the other group. 
Both the song characteristics (e.g., genre, lyrical or in-
strumental) and the non-cultural background of the re-
spondents (e.g., age, gender, familiarity with the songs) 
were analyzed to further examine the difference in mood 
judgments. Findings of this study help further our under-
standing on how cultural background affects mood per-
ception. Also discussed in this paper are implications for 
designing MIR systems for cross-cultural music mood 
classification and recommendation. 

1. INTRODUCTION 

The number of studies on music mood has been increas-
ing in the Music Information Retrieval (MIR) domain as 
many perceive music mood as a potential feature for or-
ganizing and recommending music. However, previous 
research asking people to provide mood tags for short 
music clips found that it is a highly subjective feature and 
the vocabulary of music mood varies widely among users 
[8]. In addition to the features inherent in music itself 
there are a number of features that can affect how people 
determine the mood of music (e.g., their current state of 
mind, life events). We believe that one important factor is 
the cultural context of the user. However, currently there 
are no cross-cultural studies that specifically compare 
how people perceive and determine the mood of music in 

the MIR domain.  
In this study, we explore if users from China and the 

United States perceive music mood in different ways. We 
chose to compare these cultures for several reasons. First, 
China is a dominant Eastern culture while the United 
States is a dominant Western culture. Second, although 
the influence of American pop culture is gradually in-
creasing in China, due to historical and political factors, 
Chinese people are far less affected by Western culture as 
compared to people from other East Asian countries such 
as Korea or Japan [13]. Third, one of the authors is fluent 
in Chinese and English, which is important as translating 
the mood labels while preserving the subtle nuances can 
be challenging for non-native speakers.   

2. LITERATURE REVIEW 

2.1 Cross-Cultural Studies in Music Psychology 

There are a number of studies in music psychology on 
comparing responses on Western and non-Western music 
from Western and non-Western listeners but many of 
them focused on aspects such as memorability of music 
(e.g., [9]) or perception of complexity (e.g., [2]) rather 
than perception of music moods. 

Balkwillm and Thompson [1] are among the first in-
vestigating whether judgments on music mood can trans-
cend cultural boundaries. They recruited 30 Western lis-
teners to judge 12 Hindustani raga excerpts in order to 
see if people can identify the intended emotion in music 
from an unfamiliar tonal system. Their findings showed 
that the emotions of joy, sadness and anger (but not peace) 
were identifiable by the listeners and the emotion judg-
ments were significantly related to psychophysical char-
acteristics of the pieces. However, their study did not 
compare judgments of people from different cultures.   

Gregory and Varney [5] compared mood descriptors 
applied to Indian classical, Western classical, and new 
age music by Indian and European listeners and revealed 
“many subtle differences in affective response” in mood 
descriptors. They suggested that “the affective response 
to music is determined more by cultural tradition than by 
the inherent qualities of the music (p.47).” More recently, 
Wong et al. [14] found that Indian and Western listeners 
showed in-culture bias when judging the tension in West-
ern and Indian music. However, Fritz et al. [4] found that 
native African (Mafa) listeners could recognize three 
basic emotions (happy, sad, scared/fearful) expressed in 
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Western music with above chance accuracy and suggest-
ed that, “the expression of these basic emotions in West-
ern music can be recognized universally (pp.253).” The 
conflicting results in these studies highlight the need for 
more empirical research on cross-cultural music mood 
perception. In addition, these studies generally focused on 
classical and/or ethnic music whereas our study focuses 
on popular music.  

2.2 Cross-Cultural Studies in Music Information Re-
trieval  

In the MIR domain, there are few studies that examined 
cross-cultural aspects related to how users interact with 
and search for music. Lee et al. [7] collected music relat-
ed questions from Q&A websites based in North Ameri-
ca (i.e., Google Answers) and Korea (Naver Knowledge-
iN) and did a comparative analysis. They found that Ko-
rean users experienced a number of challenges in cross-
cultural/multilingual music searches: 1) they often failed 
to provide bibliographic metadata such as composer, per-
former or title in their queries, 2) they had difficulties in 
using Western music genres and instead relied on associ-
ation-based concepts (i.e. where the music was used), 
and, 3) they had difficulties in using and transliterating 
lyrics information. The authors suggest that new access 
points for accommodating cross-cultural/multilingual 
music searching including associate metadata (i.e., usage) 
are necessary.  

Nettamo et al. [11] also conducted a cross-cultural 
study of mobile music retrieval, management, and con-
sumption behaviors of people in New York vs. Hong 
Kong. They found several differences in how music was 
being managed, shared, and used. For example, New 
Yorkers sought music information through various chan-
nels including blogs, websites, magazines, etc., and mood 
and context of use were factors affecting how they gener-
ated playlists. Hong Kong users, on the other hand, 
sought for music only through limited channels such as 
ranking websites or through friends, and did not use 
playlists at all.  

Both of these studies indicate that there were in fact 
differences between users from different cultures with 
regards to their music related behaviors. However, none 
of these studies examined how they perceive music mood 
which is the gap this work is attempting to bridge.   

3. STUDY DESIGN 

This study focuses on the following set of research ques-
tions: 
1. Do Americans and Chinese have different perceptions 

of mood on the same set of popular songs? In other 
words, do people from the same culture tend to agree 
more with each other?  

2. Do some moods tend to be more agreeable among 
people from certain culture? 

3. Do characteristics of the songs (i.e., genre, vocal or 
instrumental) affect the difference on mood judgments 
between Americans and Chinese?  

4. Do users’ non-cultural background (i.e., gender, age, 
and familiarity with the songs) affect the difference on 
mood judgments between Americans and Chinese?  
 
To answer these questions, we created an online sur-

vey in which each user listened to thirty 30-second music 
clips and selected the most appropriate mood cluster 
among the five given clusters for each piece. We used the 
same mood clusters that are used in MIREX1  Audio 
Mood Classification (AMC) Task [6] (reprinted in Table 
1). Users can choose “other” if they think none of the 
mood clusters is applicable to the music piece.  

Cluster 1 
(C_1) 

passionate, rousing, confident, boister-
ous, rowdy 

Cluster 2 
(C_2) 

rollicking, cheerful, fun, sweet, amiable/ 
good natured 

Cluster 3 
(C_3) 

literate, poignant, wistful, bittersweet,  
autumnal, brooding 

Cluster 4 
(C_4) 

humorous, silly, campy, quirky, whimsi-
cal, witty, wry 

Cluster 5 
(C_5) 

aggressive, fiery, tense/anxious, intense, 
volatile, visceral 

Table 1. Five Mood Clusters used in MIREX [6]. 

Half of the 30 pieces were selected from the MIREX 
AMC task test collection with the help of IMIRSEL. This 
AMC test collection was created based on the APM (As-
sociated Production Music)2 collection, and covers a va-
riety of different music genres. The mood of each piece in 
the AMC test collection was judged by three MIREX 
evaluators whose cultural backgrounds ranged from Eu-
rope, America and Asia [6]. In order to avoid including 
the “obvious” examples that received high agreement 
from evaluators in the test data set, we selected the songs 
for which there was greater disagreement among the 
MIREX evaluators. As these pieces were instrumental 
without a vocal part, we balanced our test set by drawing 
the other half of the 30 pieces from the USPOP collection 
[3] and ensured that they all had vocal components. The 
songs from the USPOP collection were chosen similarly 
to the APM songs; we selected songs that had greater dis-
agreement in the mood judgments from six IMIRSEL 
members (c.f., [6]).  

 We recruited two user groups for the survey: people 
who were raised in Mainland China and considered them-
selves “Chinese”, and people who were raised in the 
United States, and considered themselves “American”. 
All subjects were recruited from large universities in the 
U.S. The survey was deployed in both Chinese (Mandarin) 
and English; all the mood labels in English were translat-
ed into Chinese by the first author for the Chinese survey. 
In both surveys, we asked the users if they had heard the 

                                                           
1
Music Information Retrieval Evaluation eXchange is the annual evalu-

ation campaign for various music information retrieval algorithms host-
ed by the International Music Information Retrieval Systems Evaluation 
Lab (IMIRSEL) at the University of Illinois at Urbana-Champaign. 
2 http://www.apmmusic.com/pages/aboutapm.html 



  
 

music clip before and if they could name the artist and the 
song title in order to gauge their familiarity with the 
songs. Figure 1 shows the screenshot of the online survey 
in English. 

 

Figure 1. Survey interface for American listeners 

4. DATA AND DISCUSSION 

4.1 Overview  

There were a total of 55 responses from Chinese and 45 
from Americans; however, not all responses were com-
plete. 31 listeners completed the Chinese and American 
surveys, respectively, for a total of 62 complete responses. 
Table 2 shows the demographic information of the select-
ed respondents. Among the Chinese respondents; 23 of 
them had been living in the U.S. for less than 2 years, 3 
had been in the U.S. for 3-5 years, 1 for 6-8 years, and 4 
for 9-11 years.   

Cultural 
background 

Age Gender 
Min Max Avg. Male Female 

American 22 55 31.8 6 25 
Chinese 19 46 26.2 10 21 

Table 2. Demographics of survey respondents 

In the following data analysis, chi square (χ
2) statistics 

are used to test whether distributions of two categorical 
variables (e.g., cultural background, mood categories) are 
independent from each other [12] unless noted otherwise. 
In the following subsections, we will answer each re-
search question based on analysis of the survey responses. 

4.2 Difference Between Cultural Groups 

4.2.1 Mood Judgments on All Songs 

Figure 2 shows the distribution of mood judgments of the 
two groups on all 30 songs. Chinese users selected mood 
Cluster 1 (passionate, rousing, confident, boisterous, 

rowdy) and Cluster 3 (literate, poignant, wistful, bitter-
sweet, autumnal, brooding) more often than Americans 
whereas Americans chose Cluster 2 (rollicking, cheerful, 
fun, sweet, amiable/good natured) more often than Chi-
nese. Both groups had similar numbers of judgments on 
Cluster 4 (humorous, silly, campy, quirky, whimsical, wit-
ty, wry) and Cluster 5 (aggressive, fiery, tense/anxious, 
intense, volatile, visceral). More Americans than Chinese 
chose the “other” option. A chi square test indicates that 
listeners’ selection of mood clusters significantly depends 
on the cultural group they belong to (χ2 = 73.64, df = 5, p 
< 0.0001). In other words, there was a significant differ-
ence between Americans and Chinese when examining 
their mood judgments as a whole. A follow-up Tukey 
multiple comparison test [15] showed that judgments of 
the two cultural groups on the “other” cluster were signif-
icantly different from those on all the other clusters (at p 
< 0.05), judgments on Cluster 2 were significantly differ-
ent from those on Cluster 1 and 3 (at p < 0.05), and there 
were no significant differences between judgments on 
other pairs of mood clusters. 

 

Figure 2. Distribution of mood judgments of the two 
groups 

4.2.2 Agreement on Mood Judgments  

In order to find out whether listeners from the same cul-
tural group would agree more with each other than with 
listeners from another cultural group, we calculated the 
level of agreement on mood judgments among individual 
listeners. For categorical data such as the mood judg-
ments, agreement is typically calculated based on the 
Sokal-Michener coefficient, which is a ratio of the num-
ber of pairs with the same values and the total number of 
variables (songs in this case) [12]. For instance, if two 
listeners i and j had the same mood judgment on 15 of the 
30 songs, the agreement ratio between them will be 0.5. 
Table 3 shows the average agreement ratio among pairs 
of listeners within and across cultural groups in this study. 
Within each cultural group, users show 0.35 agreement 
rate. However, across cultural groups the agreement rate 
drops to 0.30. A non-pair wise t-test was conducted to 
test the significance of the difference on agreement ratio 
within each cultural group and across cultural groups. 
Both tests revealed a statistically significant difference. 
Therefore, our data support the hypothesis that listeners 



  
 

tended to agree more with others from the same cultural 
background than those from another cultural background. 

 American Chinese T statistics p-value 
American 0.35 0.30 11.44  <0.001 
Chinese 0.30 0.35 12.24  <0.001 

Table 3. Average agreement ratio within and between 
cultural groups 

4.3 Mood Clusters vs. Cultural Groups 

We also investigated which mood clusters received high-
er agreement from people in each cultural group. We ex-
amined all pairs of responses from each group. Since 
there were 31 responses from each group, there were a 
total of 465 pairs of responses within each group. Each 
response had 30 mood judgments, thus there were 13,950 
pairs of judgments in each group. Between the two cul-
tural groups, there are 31 * 31 = 961 pairs of responses 
and 961 * 30 = 28,830 pairs of judgments. Table 4 lists 
the number of agreed pairs of judgments on each mood 
cluster within each cultural group and across cultural 
groups. It shows that American listeners agreed more on 
Cluster 2 and 5 while Chinese listeners agreed more on 
Cluster 1 and 3. The difference between the two groups is 
statistically significant (χ2 = 668, df = 5, p < 0.0001). 

 C_1 C_2 C_3 C_4 C_5 Other Total 
American 706 1477 778 587 1094 270 4912 
Chinese 1355 995 1203 443 894 11 4901 
Across 1704 2122 1713 881 1999 131 8550 

Table 4. Number of agreed pairs of judgments across 
mood clusters 

4.4 Song Characteristics vs. Cultural Groups 

Half of the test songs were instrumental and the other half 
were vocal. The two cultural groups showed significant 
difference in judging the mood for both instrumental (χ

2 = 
88.09, df = 5, p < 0.0001) and vocal songs (χ2 = 28.98, df 
= 5, p < 0.0001). Table 5 shows the agreement ratios 
among all judgment pairs on instrumental and vocal 
songs. Lyrics definitely seem to help achieve a higher 
agreement for Americans while they have essentially no 
effect on Chinese (it should be noted that all lyrics were 
in English). In addition, cross-culturally the two groups 
were more likely to provide different judgments on in-
strumental pieces than vocal ones. As discussed in [8], 
even if Chinese listeners cannot comprehend the lyrics as 
well as American listeners, the delivery of the singer may 
still affect how they determine the mood of the song. 

 Instrumental Vocal All 
American 0.28 0.41 0.35 
Chinese 0.36 0.35 0.35 
Across 0.25 0.34 0.30 

Table 5. Agreement ratio on instrumental vs. vocal songs  

We also looked at the genres of the songs as provided 
by APM and USPOP. Table 6 shows the genre distribu-

tion of the songs as well as instrumental vs. vocal infor-
mation. Dance and Easy-listening songs were all instru-
mental while songs in the remaining genres were mostly 
vocal. For each of the five genres, mood judgments were 
significantly dependent on cultural groups (χ

2 = 21.91 ~ 
46.68, df = 5, p < 0.001). Table 6 also shows the agree-
ment ratios across genres. As it can be seen, Americans 
agreed more on Pop songs whereas Chinese agreed more 
on songs in Other and Easy-listening. Cross-cultural 
agreement levels are generally lower than those within 
cultural groups. Among all the genres, Dance and Easy-
listening songs had the least cross-cultural agreement. 

 Dance Easy-
listening Pop Rock Other Total 

Instru. 4 5 2 1 3 15 
Vocal 0 0 5 7 3 15 

American 0.30 0.29 0.46 0.35 0.31 0.35 
Chinese 0.29 0.38 0.32 0.35 0.41 0.35 
Across 0.22 0.28 0.33 0.31 0.30 0.30 

Table 6. Song distribution and agreement ratio across 
genres 

4.5 Listener Characteristics vs. Cultural Groups 

The aggregated mood judgments across songs and cultur-
al groups were still statistically significant when we con-
sider the gender of the listeners (i.e., Chinese male vs. US 
male, χ2 = 18.28, df = 5, p = 0.0026; Chinese female vs. 
US female, χ2 = 52.83, df = 5, p < 0.0001). 

As Table 2 shows, the Chinese respondents in this 
study were generally younger than the American re-
spondents. To minimize the possible influence of age on 
mood judgments, we compared the answers from listen-
ers of the same age range (22-46 years old) in both cul-
ture groups (24 Chinese and 28 American). The mood 
judgments of two cultural groups were still significantly 
different (χ2 = 61.85, df = 5, p < 0.0001).  

In this study, a listener’s familiarity with a song is 
measured by their answers to two questions: 1) whether 
he or she had heard the song before; and 2) whether he or 
she can identify the artist name and song title. A “no” an-
swer to both questions indicates low familiarity, a “yes” 
to both questions indicates high familiarity, and a “yes” 
and a “no” indicates medium familiarity. The reason for 
using these two questions instead of directly asking the 
listeners their level of familiarity is because people may 
have different interpretations on song familiarity. Some 
people might consider a song familiar if it invokes any 
memory while other people might not think it is familiar 
unless they could actually sing part of the song. The two 
questions are objective, and thus are easier to answer and 
avoid personal biases. Table 7 shows the distribution of 
the level of familiarity across Americans and Chinese. As 
the test songs were Western songs, it is not surprising that 
American listeners were more familiar with the songs 
than Chinese listeners. 

In order to see whether the level of familiarity has an 
effect on mood judgment agreement, we calculated the 
agreement ratio with various combinations of familiarity 



  
 

levels in each cultural group as well as across cultural 
groups. Each cell in Table 8 shows the agreement ratio 
among all judgment pairs with corresponding familiarity 
levels. 

 Unfamiliar Medium Familiar N/A Total 
American 617 120 192 1 930 
Chinese 836 75 14 5 930 

Table 7. Distribution of the level of familiarity 
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Unfamiliar Medium Familiar 

Unfamiliar 0.32 0.36 0.36 
Medium - 0.43 0.44 
Familiar - - 0.44 

C
h

in
es

e Unfamiliar 0.35 0.37 0.23 
Medium - 0.36 0.22 
Familiar - - 0.24 

A
cr

o
ss

 Unfamiliar 0.28 0.31 0.29 
Medium - 0.37 0.33 
Familiar - - 0.24 

Table 8. Agreement ratio across different levels of famil-
iarity 

For American listeners, being familiar with the songs 
did improve the odds of agreeing. However, medium and 
high familiarity did not appear to have much effect on 
agreement. For Chinese listeners, having heard the songs 
before (medium familiarity) slightly increased the agree-
ment ratio, but high familiarity with the songs appears to 
actually decrease agreement, which is unintuitive. We 
suspect that this might be due to the sparseness of the 
samples: there were only 14 (out of 930) cases where the 
Chinese listeners were highly familiar with a song [Table 
7]. It may also indicate that a mere identification of title 
and/or artist name from Chinese listeners does not imply 
that they understood what the song was about. Table 8 
also shows that the agreement ratios between Americans 
and Chinese are lower than those of Americans. 

5. DISCUSSION 

Our analysis suggests that there is in fact a significant dif-
ference between how Americans and Chinese perceived 
music mood. From the total number of mood judgments 
across mood clusters, Chinese listeners chose Cluster 1 
more often than American listeners. We conjecture that 
this difference may be attributed to the differences be-
tween Chinese and Western cultures. In Chinese culture, 
people tend to restrain the expression of feelings and 
Chinese people are generally more introverted compared 
to Western people [9], and thus may be more likely to 
think a Western music piece is “passionate,” “rousing,” 
or “boisterous” (Cluster 1). Previous research also found 
that Chinese value low-arousal positive affect (e.g., calm) 
whereas Westerners value high-arousal positive affect 
[11]. This may help explain the higher responses on Clus-
ter 3 for Chinese listeners and Cluster 2 for American lis-
teners. When the mood of the song is not clear, people 

may end up selecting moods that they generally prefer 
since they are more likely to focus on those moods; in 
other words, they hear what they want to hear.  

It is also interesting to see fewer judgments of “other” 
among Chinese users. This may be related to the collec-
tivism commonly seen in Eastern cultures and the indi-
vidualism in Western cultures. Chinese listeners used one 
of the given five mood clusters 96.6% of the time. How-
ever, American listeners disagreed with the presented 
mood clusters more often, using the “other” option for 
11.9% of their judgments, more than 3 times as often as 
Chinese.   

These findings have implications for designing MIR 
systems for people with different cultural backgrounds. 
For example, a mood classification system may be de-
signed so that it treats songs with mixed moods in a dif-
ferent way: categorizing them into Cluster 2 for Ameri-
cans vs. Cluster 1 or 3 for Chinese reflecting their expec-
tations. In addition, while we generally think it is more 
user-friendly to let users browse for music with different 
moods than asking users to search with their own mood 
terms, this would appear to be even more critical for Chi-
nese listeners, as they seem to prefer using given organ-
izational structures rather than providing their own input 
(via the “other” option as shown in Figure 1).      

Among all the 30 test songs, the one with the highest 
disagreement between Americans and Chinese was Got to 
get you into my life by The Beatles. Figure 3 shows the 
judgment distribution across mood clusters for this song. 
Most of the Americans answered Cluster 2 while the 
Chinese’ answers were spread out across multiple mood 
clusters with most answers in Cluster 4. A closer look at 
the data revealed that none of the Chinese listeners had 
listened to this song prior to this survey whereas 29 out of 
31 American listeners had listened to this song and 19 of 
them were familiar enough to this song that they could 
name the artist. Cultural background evidently played an 
important role in mood judgments on this song. The Beat-
les are a symbol of the Western pop culture. Western lis-
teners had probably been influenced by their background 
knowledge of the song and the band that this song should 
express a rollicking and cheerful (Cluster 2) or passionate 
(Cluster 1) mood. It is also possible that they were able to 
provide a mood judgment based on the whole song rather 
than the 30 seconds clip provided in the survey. In con-
trast, the Chinese listeners had no prior influence on how 
others had felt about this song or rest of the Beatles’ 
songs, thus their answers were not as consistent as those 
from the American listeners.  

Lyrics seem to affect how the Americans judge the 
mood of the songs, but not the Chinese [Table 5]. Alt-
hough most of the Chinese listeners in this study could 
understand English, the music pieces in the survey are 
probably too short (30 seconds) for them to fully com-
prehend the lyrics and use them in mood judgments. Gen-
re also affects people’s agreement on music moods, but in 
different ways for different cultural groups. The fact that 
Americans agreed more on Pop songs is possibly related 
to their being familiar with the songs.  



  
 

 
Figure 3. Mood judgment distributions for Got to get 
you into my life 

As previously discussed, listeners’ familiarity with the 
songs affects the level of agreement on mood judgments, 
but the influence is much stronger within the same cultur-
al group. This makes it challenging to build an MIR sys-
tem for users with cultural backgrounds that are different 
from the particular culture the music is from. For cross-
cultural MIR systems, perhaps more flexibility should be 
provided to users. It may help to allow users to provide 
annotations so that they can complement the given “cor-
rect” mood labels.  In such systems, it will be possible for 
users to assign multiple mood labels to a song, change a 
song’s mood labels, or add alternative labels to the songs. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we presented a study comparing mood 
judgments on a common set of Western music pieces by 
American and Chinese listeners. Listeners from the two 
cultural groups indeed have different mood judgments 
and they tended to agree more with users from the same 
cultural group. Some genres seemed to be more difficult 
to reach user agreement across two groups, although fur-
ther studies with a larger music samples should be con-
ducted to validate the result. The cultural difference per-
sists even when we consider the age and gender. The lis-
teners’ familiarity with the songs had a positive influence 
on the agreement level among users from the same cul-
tural background of the songs. Findings of this study not 
only help further our understanding on how cultural 
background affects mood perception, but also have impli-
cations for designing cross-cultural MIR systems. 

It should be noted that the Chinese respondents in this 
study have lived in the U.S., but there were not enough 
data to analyze the influence of this factor on their music 
mood judgments. In our future study, we will collect re-
sponses from Chinese people in China and compare the 
results. We will also investigate why people assign tracks 
to certain mood clusters by conducting in-depth inter-
views. In addition, we plan to increase the diversity of 
our user group by including users from countries other 
than China and United States such as Korea. Although 
Korea also represents non-Western culture, and Chinese 
and Korean cultures historically share a great deal of sim-
ilarities, Korea is much more heavily influenced by 
American pop culture than China. Thus, comparing user 
groups from these countries may provide insights into 

how the exposure to other pop culture can affect the way 
people perceive the mood of music.    
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ABSTRACT

Many techniques for text-based retrieval and automatic an-
notation of music and sound effects rely on learning with
explicit generalization, training individual classifiers for
each tag. Non-parametric approaches, where queries are
individually compared to training instances, can provide
added flexibility, both in terms of robustness to shifts in
database content and support for foreign queries, such as
concepts not yet included in the database. In this paper, we
build upon prior work in designing an ontological frame-
work for annotation and retrieval of environmental sounds,
where shortest paths are used to navigate a network con-
taining edges that represent content-based similarity, se-
mantic similarity, and user tagging data. We evaluate novel
techniques for ordering query results using weights of both
shortest paths and minimum cost paths of specified lengths,
pruning outbound edges by nodes’ K nearest neighbors,
and adjusting edge weights depending on type (acoustic,
semantic, or user tagging). We evaluate these methods both
through traditional cross-validation and through simulation
of live systems containing a complete collection of sounds
and tags but incomplete tagging data.

1. INTRODUCTION

1.1 Multiclass and non-parametric retrieval

Many techniques for text-based retrieval or classification
of audio signals are parametric in nature, relying on ex-
plicit generalization, where individual classifiers are cre-
ated for each label. For example, classification systems
have been built for automatic record reviews [18], ono-
matopoetic labels [9], and genre [17], emotion [10], and in-
strumentation [5,7] identification. These systems make use
of techniques such as one-versus-all discrimination [18],
training each label with a support vector machine (SVM)
classifier [1, 9], and learning a separate gaussian mixture
model (GMM) for each label [16, 18].

These multiclass methods benefit from constant query
time complexity independent of the number of training in-
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stances, in that it is only necessary for each query (such as
a sound, in the case of annotation) to be measured against
each classifier. For specific, relatively stationary label do-
mains, such as musical genres, this can be seen as a great
benefit, especially when the number of sounds greatly ex-
ceeds the number of labels. However, there are many cases
where non-parametric models can provide additional flex-
ibility and robustness. One such case involves the pres-
ence of multiple types of information beyond acoustic fea-
ture vectors and annotations. For example, [19] and [13]
describe methods where similarity between semantic con-
cepts can assist in retrieval and annotation using tags not
yet seen in training data. In large-scale systems with more
complete tag sets, this may be less of a problem, but in live
databases with incomplete tagging where no large-scale
training database exists beyond user activity, as in the case
of Freesound 1 , retrieval results can often come up empty.

Non-parametric (also known as similarity- or instance-
based [6,11]) schemes compare each query to instances in
a live database rather than having distinct training and pro-
duction / evaluation stages. For example, [2], [3], and [12]
use K-nearest-neighbors retrieval, where unlabeled sounds
are annotated with tags belonging to their nearest neigh-
bors in an acoustic feature space. [15] and [2] build two
separate hierarchical cluster models—one for retrieval and
one for annotation.

1.2 Associative retrieval

Graph-based techniques are often used for search in se-
mantic and other associative networks. One technique that
has seen much use is spreading activation. In spreading
activation, an initial node (a query) is labeled with some
weight, and this weight is spread to neighboring nodes with
some decay. Spreading activation has been used in infor-
mation retrieval applications, where nodes correspond to
documents and terms [4]. Shortest paths are also of inter-
est in associative retrieval. [20] introduces a graph-based
framework where sounds are connected to tags through
user activity and sounds are fully connected via acoustic
similarity estimated by an HMM-based query-by-example
algorithm described in [21]. New queries are immediately
connected to other sounds or tags (either through acous-
tic or semantic similarity via the WordNet::Similarity li-
brary [14]), and shortest path distances using all nodes are

1 Freesound: http://freesound.org/
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Figure 1: Two different possible query tasks with a sin-
gle retrieval network. qs and qt represent a sound query
and a tag query, respectively, and t1, t2, ..., tM ∈ T and
s1, s2, ..., sN ∈ S represent tag and sound nodes already
in the database. The query node and the subset of nodes
over which the user is querying is marked in bold, and on-
demand edge weights between the query and its respective
class of nodes (sounds or tags) are marked with dashed
lines. Note that S forms a clique.

used to rank retrieval results.
The results of [19] demonstrate that including semantic

similarity to account for tags foreign to the training set can
assist in annotation and text-based retrieval both for a ran-
dom subset from the Freesound library, where tags are as-
sociated to sounds in a binary manner, and a smaller com-
prehensive user study, where each sound is tagged by mul-
tiple users. In this paper, we build upon this graph-based
technique and perform a more in-depth study of its proper-
ties. Namely, we seek to a) evaluate the system using both
traditional cross-validation and simulations of real-world
systems with complete sound and tag sets but incomplete
tagging data, b) demonstrate the effectiveness of adding
a shortest-path algorithm to any existing tag-based query
system, regardless of the presence of acoustic and seman-
tic similarity measures, c) improve shortest-path retrieval
performance by pruning network edges to nodes’ K near-
est neighbors, and d) explore the impact of assigning dif-
ferent weights to the importance of acoustic, semantic, and
user-provided information.

2. SHORTEST PATH RETRIEVAL

2.1 Network structure

Formally, the network structure for retrieval and annota-
tion takes the form of a weighted, undirected graph, G =
(V,E), where V = S ∪ T and S and T represent sets of
sound and tag nodes. The graph edges, E, can be parti-
tioned into three disjoint subsets, ESS ⊆ S × S, EST ⊆
S × T , and ETT ⊆ T × T , representing acoustic, user-
provided, and semantic information. The weighting func-
tion is denoted by w : E → R+. This type of network
structure can be adapted to different domains, such as mu-
sic or even text documents, but for the sake of this paper,
we focus on the task of retrieving and annotating envi-
ronmental sounds. We therefore assume that sounds take
the form of short audio clips representing individual sonic
events. For more discussion on the concept of a “sound

event,” see the related discussion in [21]. In the following
sections, we will discuss how the weights for ESS , EST ,
and ETT are calculated.

2.1.1 Sound-to-sound weights (ESS)

Sound-to-sound weights can be computed by comparing
the acoustic content of each sound. For this task, we use
the Sirens library 2 . For detailed information of how sound
similarity is computed in Sirens and an evaluation of its
performance, see [21]. A summary is as follows:

Sirens begins with acoustic feature extraction, where
six features are calculated on overlapping 40ms Hamming
windows hopped every 20ms. The feature trajectory for a
sound file is given by Y (1:F )

1:T , where Y (i)
t is the i-th fea-

ture’s value at frame t.
The six features used by Sirens include loudness, the

dB-scaled RMS level over time; temporal sparsity, the ra-
tio of l∞ and and l1 norms calculated over all windowed
RMS levels in a one-second interval; spectral sparsity, the
ratio of l∞ and l1 norms calculated over short-time Fourier
transform (STFT) magnitudes; spectral centroid, the bark-
weighted average spectral content of a sound at any point
in time; transient index, the l2 norm of the difference of
Mel frequency cepstral coefficients (MFCC) between con-
secutive frames; and harmonicity, a probabilistic measure
of whether or not the signal comes from a harmonic source.
This feature set was developed for a broad range of envi-
ronmental sounds rather than any specific class of sounds
and with a focus on ecological validity such that the fea-
tures would best relate to qualities of human audition by
using perceptual scalings of spectral content [21].

To compare sounds, [21] describes a method of estimat-
ing L(si, sj) = − logP (Y

(1:F )
1:T (si)|λ(1:F )(sj)), the log-

likelihood of the feature trajectory of sound si being gen-
erated from the hidden Markov model (HMM), λ(1:F )(sj),
built to approximate the simple (i.e. constant, linear, or
quadratic) feature trends of sound sj . For retrieval in our
undirected graph, however, it is helpful to have a semi-
metric between sounds that is symmetric and nonnegative.
In [8], a semi-metric that holds these properties is given:

w(si, sj) =L(si, si) + L(sj , sj)−
L(si, sj)− L(sj , si). (1)

2.1.2 Sound-to-tag weights (EST )

Letting U|S|×|T | be a votes matrix where Uij is equal to
the number of users who have tagged sound si with tag tj ,
we can compute the joint probability of si and tj as

P (si, tj) =
Uij∑
k,l Ukl

(2)

w(si, tj) = − logP (si, tj). (3)

2.1.3 Tag-to-tag weights (ETT )

The results from [13] and [19] demonstrate that seman-
tic similarity (tag-to-tag edges) obtained from WordNet::-

2 Sirens (Segmentation, Indexing, and Retrieval of Environmental
Sounds): http://github.com/plant/sirens



Similarity [14] scores can be useful when performing text-
based retrieval queries using tags not in the database or an-
notating sounds with these foreign tags. In general, how-
ever, it was found that including tag-to-tag links between
in-network tags can hinder performance, so we have ex-
cluded these links in this paper, as we are chiefly interested
in studying the effects of different shortest-path retrieval
strategies rather than the source of the weights themselves.

2.2 Shortest path retrieval

Given the structure of the graph, G(V,E) and its weights,
w, as defined in the previous section, we rank search results
according to their shortest path lengths from the query, q,
to the target, t, in ascending order:

w∗(q, t) = min
P=〈q,...,t〉

|P |−1∑
i=1

w(Pi, Pi+1), (4)

3. NETWORK MODIFICATIONS

3.1 Depth-ordered retrieval

Shortest paths may sometimes hinder retrieval results in
cases where they provide discursive paths that rely on nu-
merous relations. For example, if sound-to-tag weights are
trained with ground truth data obtained from user studies
or extensive user activity, it would be desirable to only
use these direct paths and visit no other nodes rather than
second-guessing users (who, for the purpose of evaluation,
we often assume are experts).

In these cases, we can form a list, L, of positive integers
representing desired path depths, with an optional final ele-
ment, ∗, representing shortest paths of any depth. Any tar-
gets unconnected to the query will be returned at the end of
the list in random order. For example, L = (2, ∗) will pri-
oritize minimum-cost direct edges between the query and
targets first, only using shortest paths as a last resort in
the absence of direct edges. L = (2, 3, ∗) will first re-
turn all direct edges, then shortest paths containing only
three nodes, and finally all shortest paths. For the case of
L = (2, 3, ...), where depths are in monotonically increas-
ing order, this algorithm performs similarly to a breadth-
first search. In Section 4.3, we will discuss the relative
performance of depth orderings.

3.2 Edge pruning

Shortest-path retrieval can be quite computationally expen-
sive. In the worst case, Dijkstra’s algorithm has O(|E| +
|V | log |V |) time complexity. As our graph is quite well-
connected (for large numbers of sounds), we can assume
the complexity of performing a single query is O(|V |2),
as |E| = O(|V |2) when the number of sounds greatly ex-
ceeds the number of tags. In these cases, it can be ben-
eficial to limit search to only a node’s K nearest neigh-
bors, giving a complexity of O(K|V | + |V | log |V |) =
O(|V | log |V |). 3 In Section 4.4, we will discuss the ef-

3 Using spectral clustering to cluster sounds, as in [20], we can even
improve this to O(log |V |) complexity.

fects of K nearest neighbor pruning, where G is converted
to a directed graph with inbound and outbound edges iden-
tical to the original undirected edges and all but the K
lowest-weight outbound edges are removed.

3.3 Weighting edge classes

Lastly, it should be noted that the ranking of search results
can be quite sensitive to variations in weighting between
the different classes of edges, ESS , EST , and ETT , as
each assumes a different probabilistic model. If one class
has particularly low weights, its edges may be used more
frequently than edges of other classes. In Section 4.5, we
examine the effects of setting class-specific weights, γC :

wγ(n1, n2) = γCw(n1, n1)

∀(n1, n2) ∈ EC ,∀EC ∈ {ESS , EST , ETT } (5)

4. RESULTS AND DISCUSSION

4.1 Training data

To evaluate the text-based retrieval and annotation perfor-
mance of our various modifications to the shortest-path re-
trieval method, we use two datasets that link sounds to con-
ceptual tags. The first dataset, Soundwalks, is a collection
of 178 2-60s sound events manually segmented from one
of four outdoor recording sessions recorded at 44.1KHz.
Sound environments include light rail stops, a stadium dur-
ing a football game, a skatepark, and a walkway on a col-
lege campus. To obtain tagging data, an online user study
was performed where each user was asked to provide sev-
eral semantic tags for 10 randomly selected sound events
by freely typing terms separated by commas. Terms that
could not be found in the WordNet taxonomy were ig-
nored. With a total of 90 responses, each sound was tagged
an average of 4.62 times. In [19] and [13], only the most
popular 88 tags were used for evaluation, but we have used
the entire set of 612 tags to more accurately study the sys-
tem’s performance. The second dataset, Freesound, was
obtained from user activity on the website Freesound.org.
2046 sounds were randomly selected from the set of all
sounds 2-60s in duration and containing at least one of any
of the 50 most popular tags on the site. Each sound is asso-
ciated with 3-8 tags, and each of the 377 total tags used is
associated with at least 5 sounds. Note that on Freesound,
tags are only associated to sounds in a binary manner, so
all nonzero sound-to-tag weights are equal. Both datasets
have been used to test the performance of the system a)
against a slightly more reliable ground truth, in the case
Soundwalks, where each sound file has been tagged by 4-
5 users, and b) against a larger collection of sounds, as in
Freesound.

4.2 Evaluation methodology

4.2.1 Cross-validation versus incomplete tagging data

For multiclass retrieval, where classifiers are trained for
each search term, evaluation procedures typically involve



(a) Soundwalks Precision/Recall (b) Freesound Precision/Recall

Retrieval Annotation
L MAP MAROC MAP MAROC

(2) 0.5505 0.7615 0.5920 0.7814
(∗) 0.5751 0.7910 0.5230 0.7833

(2, ∗) 0.5673 0.7887 0.5964 0.7919
(2, 3, ∗) 0.5678 0.7849 0.6590 0.8824

(c) Soundwalks MAP/MAROC

Retrieval Annotation
L MAP MAROC MAP MAROC

(2) 0.5200 0.7504 0.5237 0.7506
(∗) 0.5594 0.8610 0.5628 0.8403

(2, ∗) 0.5618 0.8623 0.5618 0.8399

(d) Freesound MAP/MAROC

Figure 2: Performance metrics for text-based retrieval and annotation of sounds, respectively. Data is averaged across
n = 50 trials with half the tagging data missing. Curves are labeled according to the order of path lengths used in sorting
results, where ∗ denotes all shortest paths. Limit is the absolute best performance possible with the dataset.

cross-validation, where the set of sounds and their asso-
ciated tags are split into several (e.g. 10) random non-
overlapping subsets, the classifiers are trained with only
one subset, and the remaining sounds are used as queries to
test the performance of the trained classifiers. With a suf-
ficiently large training dataset, performance results should
converge to give a picture of the expected performance in
a production setting.

In [19], [20], and [13], this technique was employed for
shortest-path retrieval. For the cases of retrieval and an-
notation using sounds and tags not present in the training
data (thereby testing the usefulness of both acoustic and
semantic similarity), sounds and tags were split into 2 and
5 subsets, respectively, each combination thereof (one of
2 × 5 = 10) being used to build the network. For anno-
tation, out-of-network sound queries were independently
introduced to the network by computing their similarity to
all other sounds in the network, and out-of-network tags
were connected only to the in-network tags. Query perfor-
mance was tested by querying each out-of-network sound
against out-of-network tags. For retrieval, tag queries were
connected independently to other tags, and out-of-network
sounds were connected only to in-network sounds.

However, this method of cross-validation may not be
entirely appropriate for shortest-path retrieval, as there is
no distinct training phase (it is non-parametric). Rather
than having only sounds and tags as training data, acoustic
and semantic similarities between training instances must
be considered. For this reason, we have chosen to imple-
ment a different evaluation strategy to compare techniques.
In this strategy, we simulate a database where the set of
sounds and tags are complete (there are no cross-validation
splits), but only a random subset of the user tagging data
is available. Specifically, for each association between a

sound and a tag (for which there may be many for a single
sound-tag pair in the Soundwalks dataset), we remove it
with 50% probability. For annotation, every sound is used
to query the entire set of tags, and for retrieval, every tag
is used to query the entire set of sounds. Relevance re-
sults are then averaged over each query and over 50-100
trials with different tagging data. This simulation is per-
haps more appropriate than the networks built for cross-
validation, as we can examine how using shortest-path re-
trieval can help make up for sparse tagging data, which is
oftentimes present in online tagging systems.

4.2.2 Performance measures

Each query returns an ordered list of nodes (tags for an-
notation and sounds for retrieval), sorted by path length in
ascending order. An item in this list is said to be relevant
if it is connected to the query at least once in the origi-
nal user tagging data. Using this list of relevance for each
item returned, we can compute mean precision, the per-
centage of items returned that are relevant as more items
are returned, and mean recall, the percentage of all rele-
vant items that have been returned. Plotting precision as
a function of recall is a useful way of comparing different
schemes. Additionally, one can compute summary statis-
tics including mean average precision (MAP), the mean of
precision values at the points where each relevant item is
returned, and mean area under the receiver operator char-
acteristic (MAROC), the integral of the curve produced by
plotting the ratio of true positives versus false positives.

4.3 Depth-ordered retrieval

In Figure 2, we examine the effects of a) using shortest
paths versus retrieving items based only on their tags (as
most tag-based search strategies do) and b) using differ-
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Figure 3: Effects of pruning outbound edges to nodes’
K nearest neighbors using the Soundwalks dataset. Both
MAP (lower) and MAROC (upper) values are plotted as a
function of K and averaged across n = 100 trials with half
the tagging data missing.

ent depth ordering strategies. L = (2) corresponds to
the case where only direct tag-to-tag links are used for
retrieval (the baseline case, given no acoustic similarity
information), L = (∗) represents the case of ranking re-
sults based on the lengths of their shortest paths, and L =
(2, ∗) and L = (2, 3, ∗) represent the cases of returning
minimum 2- and 3-node paths before resorting to short-
est paths. Results are shown for both the Freesound and
Soundwalks datasets. Limit represents the theoretical up-
per limit on performance imposed by the dataset, where the
ground truth user tagging data itself is used to order results,
analagous to UpperBnd from [16]. Acoustic links were
included for the Soundwalks dataset but not the Freesound
dataset, in order to study the effects of using shortest-path
retrieval as a drop-in method in an existing system.

From these plots, we can see that, in some cases, as
in annotation on the Soundwalks dataset (Figure 2b), using
shortest paths performs worse than the baseline case, likely
because known sound-to-tag links are being circumvented
in favor of paths that use acoustic similarity. However, L =
(∗) seems to perform marginally better than L = (2) for
the case of retrieval. To account for this difference, we can
see that prioritizing direct links, as in L = (2, ∗), performs
best. L = (2, 3, ∗) is a special case, as it produces higher
MAP/MAROC, corresponding to its better performance in
the last 75% of results, but it initially performs quite a bit
poorer at annotation, which may be undesirable (if, say, we
were to annotate with only those tags that score highest).

For the Freesound dataset, for which we provided no
sound-to-sound links, we can see that the L = (∗), and
optionally L = (2, ∗), methods can assist in ordering the
last half of results. This improvement is likely because,
for annotation (and analagously for text-based retrieval),
a sound can be annotated with additional tags from those
sounds it shares a few tags with. Of course, in some use
cases, this increase in performance may not be worth the
extra query time. Note that L = (2, 3, ∗) would behave the
same as L = (2, ∗) in this case, as no sound-to-tag paths
with an odd number of nodes exist in a network containing
no sound-to-sound edges.
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Figure 4: Effects of varying γSS , the global weight mul-
tiplier for sound-to-sound edges using the Soundwalks
dataset. Both MAP (lower) and MAROC (upper) values
are plotted as a function of γSS and averaged over n = 50
trials with half tagging data missing.

4.4 Pruning

To test the effects of limiting search to nodes’ K near-
est neighbors, we first constructed a network as described
in 4.2.1 using the Soundwalks dataset, with sound-to-sound
and sound-to-tag links, but with half the tagging data miss-
ing. For K ∈ {1, 2, ..., 20}, we then annotated with each
sound and retrieved with each tag, testing relevance against
the original tagging data. For each value of K, we aver-
aged performance metrics over 50 trials for a total of 1000
trials per query type. As shown in Figure 3, it is only
when K < 10 that significant losses in MAP/MAROC
can be seen, suggesting that edge pruning can drastically
improve query time without having significant effects on
performance, as 10� |E|.

4.5 Weighting edge classes

Figure 4 demonstrates that, for the Soundwalks dataset,
there is a clear shift in performance at γSS ≈ 0.2. For
γSS < 0.2, acoustic weights are used as the primary source
of similarity information at the expense of known tagging
data. For the case of annotation, there appears to be a slight
increase in MAROC for L = (∗) at this point. For L =
(2, ∗), there is a slight increase in performance for γSS <
0.2, which suggests that the system performs slightly bet-
ter when tagging data is used for direct links, but acoustic
similarity, rather than cooccurrence of tags, is primarily re-
lied on when no direct, 2-node links exist.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have experimented with several modifica-
tions of a shortest-path retrieval algorithm, where acoustic
similarities between sounds are used in conjunction with
user tagging data for the purpose of annotation and text-
based retrieval. Specifically, we have demonstrated that:

1. giving priority to direct, 2-node paths before resort-
ing to shortest path lengths can greatly improve an-
notation and retrieval accuracy,



2. pruning edges searched to nodes’ K nearest neigh-
bors can reduce query complexity from O(|V |2) to
O(|V | log |V |) for values of K as low as 10, and

3. relative weighting between edge classes (sound-to-
sound versus sound-to-tag) influences retrieval re-
sults only slightly but indicate when certain types of
similarity information are best used.

While the query time of this approach will likely be slower
than similar parametric classification approaches for any
database where the number of desired classifiers (tags) is
much less than the number of sounds, this approach can
still be very useful for smaller datasets, where acoustic
similarity between sounds and co-occurrence of tags can
help make up for sparse tagging data, as shown in the re-
sults for the Freesound dataset.

In [20], a method where spectral clustering is used to
create cluster nodes that reduce the number of sound-to-
sound edges is discussed. In addition to actually improv-
ing query accuracy, query complexity is greatly reduced.
Combined with the methods of depth-ordered search and
pruning we have introduced in this paper, pre-processing
sound-to-sound edges in this way could achieve time com-
plexity as low as O(log |V |) during queries.

Additionally, [13] and [19] discuss the effects of the
presence of tag-to-tag edges. While it was shown in [19]
that tag-to-tag edges between in-network tags tend to hin-
der performance, using different edge class weights (γSS
and γTT ) and depth-ordered search could create a situation
where tag-to-tag edges can improve results.
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ABSTRACT

We propose the multivariate autoregressive model for con-
tent based music auto-tagging. At the song level our ap-
proach leverages the multivariate autoregressive mixture
(ARM) model, a generative time-series model for audio,
which assumes each feature vector in an audio fragment is
a linear function of previous feature vectors. To tackle tag-
model estimation, we propose an efficient hierarchical EM
algorithm for ARMs (HEM-ARM), which summarizes the
acoustic information common to the ARMs modeling the
individual songs associated with a tag. We compare the
ARM model with the recently proposed dynamic texture
mixture (DTM) model. We hence investigate the relative
merits of different modeling choices for music time-series:
i) the flexibility of selecting higher memory order in ARM,
ii) the capability of DTM to learn specific frequency ba-
sis for each particular tag and iii) the effect of the hidden
layer of the DT versus the time efficiency of learning and
inference with fully observable AR components. Finally,
we experiment with a support vector machine (SVM) ap-
proach that classifies songs based on a kernel calculated on
the frequency responses of the corresponding song ARMs.
We show that the proposed approach outperforms SVMs
trained on a different kernel function, based on a compet-
ing generative model.

1. INTRODUCTION

Browsing and discovery of new music can largely benefit
from semantic search engines for music, which represent
songs within a vocabulary of semantic tags, i.e., words or
short phrases describing songs’ attributes. By just typing
the desired tags as in a standard text search engines (e.g.,
Bing or Google), users can find the music they desire.
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Historically, attempts to map songs onto a semantic vo-
cabulary have initially relied on available metadata (e.g.
artist names, genre annotation, critical reviews), or man-
ual labeling from expert human annotators and social net-
works. More recently, distributed human computation gam-
es, such as TagATune [15] and HerdIt [2], have attempted
to scale up manual labeling to larger collections by re-
cruiting non-expert users through engaging or rewarding
games. However, these efforts have so far covered only
a small portion of the songs available in modern music
collections. 1 This motivates the development of content-
based auto-tagging systems, i.e., intelligent algorithms that,
by analyzing and understanding the acoustic content of
songs, can automatically index them with semantic tags.

1.1 Related work

A large number of content-based auto-taggers are trained
on a database of songs annotated with respect to a seman-
tic vocabulary following a common scheme. First, a time
series of low-level spectral features (e.g., Mel Frequency
Cepstral Coefficients (MFCCs)) is extracted from each song
in the database. Then, for each tag, a representative statis-
tical model is fine tuned to capture the most predictive pat-
terns common to the songs annotated with that tag. Once
a new song is available, the auto-tagger uses the learned
tag-models to process its low-level features and produces a
vector of tag-affinities. The tag-affinities are then mapped
onto a semantic multinomial (SMN), which represents the
song within the semantic vocabulary.

A variety of auto-taggers, based on either generative
models [13, 19, 23, 24] or discriminative models [4, 9, 11,
16, 21, 26], rely on a Bag-of-Features (BoF) representa-
tion of the spectral content of songs, which ignores tem-
poral dynamics by treating all feature vectors as indepen-
dent. While augmenting the spectral features with their
first and second instantaneous derivatives has represented a
common choice to enrich the BoF representation with tem-
poral information (e.g. [3, 23]), more principled solutions
have been implemented in recently proposed auto-taggers.
The dynamic texture mixture (DTM) treats short fragments
of audio as the output of a linear dynamical system [7].
The multi-scale learning algorithm in [12] leverages sev-
eral pooling functions for summarization of the features
over time. The Bag-of-Systems (BoS) approach represents

1 Pandora annotated catalog and TagATune labeled clips represent less
than 5% and 0.15% of the iTunes’ collection, respectively.



songs with a codebook of time-series models [10]. The
multivariate autoregressive (AR) model was used in [17]
in a semi-parametric approach for genre classification of
short musical snippets. In [20] various methods for tem-
poral integration, including the AR model, were examined
for musical instrument classification.

1.2 Original contribution

In this paper we introduce the autoregressive mixture (ARM)
model [1] for automatic music annotation and retrieval. We
first model each song as an ARM, estimated from a collec-
tion of audio-fragments extracted from the song. Note that
this is different from estimating single AR models from
individual audio clips as done in [17], since each mixture
component of a song-level ARM models the music content
of several (perceptually similar) audio fragments.

In order to model tag-level distributions as ARMs, we
propose a novel efficient hierarchical expectation maxi-
mization algorithm for ARMs (HEM-ARM). Starting from
all the song-ARMs that are relevant for a specific tag, the
proposed algorithm summarizes the common music con-
tent by clustering similar AR components together, and
learning a tag-ARM model with fewer components. We
compare our HEM-ARM with previous auto-taggers that
used GMMs [23] and DTMs [7], to model tag-level dis-
tribution, in tandem with an efficient HEM algorithm for
learning. In particular, we obtain that HEM-DTM gener-
ally performs better than HEM-ARM (e.g., the annotation
F-scores are 0.264, 0.254, respectively). However, rela-
tive to HEM-DTM, our HEM-ARM has significantly lower
time requirements, both for training (two orders of magni-
tude) and for annotation (one order of magnitude). These
results are explained by the differences in the graphical
structures of the models. The DT model has an observed
layer (which models the spectral content) and a hidden
layer (that encodes the temporal dynamics). As a conse-
quence, using DTMs can learn different frequency bases
that better adapt to specific tags, but requires marginaliza-
tion over the hidden variables — and hence delays — at
each training iteration and for inference at annotation. On
the opposite, the AR is a fully observable model. Hence,
training and annotation can be implemented efficiently by
computing sufficient statistics for each song a single time.

In addition, once songs are modeled with ARMs, we
investigate a kernel-SVM method upon these song-ARMs
for semantic retrieval, similar to the work done in [3] over
GMMs and in [17] over single ARs. We test several kernel
functions, some of which represent each song by the quan-
tized frequency responses (QFR) of its AR components.

The remainder of this paper is organized as follows. In
section 2 we present the autoregressive (mixture) model,
and in section 3 we derive the hierarchical EM algorithm
for ARMs. In Section 4 we present our kernel-SVM ap-
proach. In Section 5 we report our experiments.

2. THE AUTOREGRESSIVE MIXTURE MODEL

In this section we present the autoregressive (AR) model
and the autoregressive mixture (ARM) model for music
time series.

2.1 The AR model

A multivariate autoregressive (AR) model is a generative
time-series model for audio fragments. Given a time series
of T d−dimensional feature vectors x1:T ∈ Rd×T , the AR
model assumes each audio feature xt at time t is a linear
combination of the previous p audio features. Specifically,
the AR model is described by the equation

xt =

p∑
j=1

Ajxt−j + νt (1)

where {Aj}pj=1 are p transition matrices of dimension d×
d. νt is a driving noise process and is i.i.d. zero-mean
Gaussian distributed, i.e., νt ∼ N (0, Q), whereQ ∈ Rd×d
is a covariance matrix. The initial condition is specified by
x1 ∼ N (µ, S), where S ∈ Rd×d is a covariance matrix.
We can express (1) in a vectorial form:

xt = Ãxt−1
t−p + νt (2)

where Ã = [A1 . . . Ap] ∈ Rd×dp and xba = [x′b...x
′
a]′ ∈

Rdp×1. Note that, for convenience, we assume xt = 0 for
t ∈ {−p + 1, . . . , 0}, and hence assume that x1 triggered
the generation of the whole time series. An AR model is
hence parametrized by Θ = {µ, S, Ã,Q}. The likelihood
of a sequence x1:T is

p(x1:T |Θ) = N (x1|µ, S)

T∏
t=2

N (xt|
p∑
j=1

Ajxt−j , Q) (3)

where N (·|µ,Σ) is the pdf of a Gaussian distribution with
mean µ and covariance matrix Σ.

The parameters of an AR model can be estimated from a
time-series x1:T with various optimization criteria [17,18].

2.2 The ARM model

An ARM model treats a group of audio fragments as sam-
ples fromK AR models. Specifically, for a given sequence,
an assignment variable z ∼ categorical(π1, · · ·πK) se-
lects one of the K AR models, where the ith AR model is
selected with probability πi. Each mixture component is
specified by the parameters Θi = {µi, Si, Ãi, Qi}, and the
ARM model is specified by Θ = {πi,Θi}Ki=1. Whereas a
single AR model suffices to describe an individual audio
fragment, the ARM model is a more appropriate modeling
choice for an entire song. This is motivated by the ob-
servation that a song usually shows significant structural
variations within its duration, and hence multiple AR com-
ponents are necessary to model the heterogeneous sections.

The likelihood of an audio fragment x1:T under an ARM
model is

p(x1:T |Θ) =
K∑
i=1

πip(x1:T |z = i,Θi), (4)

where the likelihood of x1:T under the ith AR component
p(x1:T |z = i,Θi) is given by (3).



The parameters of an ARM model can be estimated
from a collection of audio-fragments using the expecta-
tion maximization (EM) algorithm [8], which is an itera-
tive procedure that alternates between estimating the as-
signment variables given the current estimate of the pa-
rameters, and re-estimating the parameters based on the
estimated assignment variables.

3. THE HEM ALGORITHM FOR ARM MODELS

In this paper we proposed to model tag distributions as
ARM models. One way to estimate a tag-level ARM model
is to run the EM algorithm directly on all the audio frag-
ments extracted from the relevant songs. However, this
approach would require excessive memory and computa-
tion time, to store all the input audio-sequences in RAM
and to compute their likelihood at each iteration. In or-
der to avoid this computational bottleneck, we propose a
novel hierarchical EM algorithm for ARM models (HEM-
ARM), which allows to learn ARM models using an effi-
cient hierarchical estimation procedure. In a first stage, in-
termediate ARM models are estimated in parallel for each
song, using the EM algorithm for ARMs on the song’s au-
dio fragments. Then, the HEM-ARM algorithm estimates
the final model by summarizing the common information
represented in the relevant song-ARMs. This is achieved
by aggregating together all the relevant song-ARMs into a
single big ARM model, and clustering similar AR models
together to form the final tag-level ARM model.

At a high level, the HEM algorithm consists in max-
imum likelihood estimation of the ARM tag model from
virtual samples distributed according to the song ARM mod-
els. However, since using the virtual samples can be ap-
proximated with a marginalization over the song ARM dis-
tribution (for the law of large numbers, see (8)), the estima-
tion is carried out in an efficient manner that requires only
knowledge of the parameters of the song models without
the need of generating actual samples. The HEM algorithm
was originally proposed by Vasconcelos and Lipmann [25]
to reduce a GMM with a large number of mixture com-
ponents to a compact GMM with fewer components, and
extended to DTMs by Chan et al. [5]. The HEM algo-
rithm has been successfully applied to the estimation of
GMM tag-distribution [23] and DTM tag-distribution [7].
We now derive the HEM algorithm for ARMs.

3.1 Derivation of the HEM for ARMs

Formally, let Θ(s) = {π(s)
i ,Θ

(s)
i }K

(s)

i=1 be an ARM model
with K(s) components, which pools together the ARM
models of all the songs relevant for a tag. The goal of the
HEM-ARM algorithm is to learn a tag-level ARM model
Θ(t) = {π(t)

j ,Θ
(t)
j }K

(t)

j=1 with fewer components
(i.e., K(t) < K(s)), that represents Θ(s) well. The likeli-
hood of the tag ARM Θ(t) is given by (4).

The HEM algorithm uses a set of N virtual samples
generated from the base model Θ(s), where theNi = Nπ

(s)
i

samples Xi = {x(i,m)
1:τ }

Ni
m=1 are from the ith component,

i.e., x(i,m)
1:τ ∼ Θ

(s)
i . We assume that samples within each

Xi are assigned to the same component of the tag model

Θ(t), and we denote the entire set of virtual samples with
X = {Xi}K

(s)

i=1 .
The log likelihood of the incomplete data under Θ(t) is

log p(X|Θ(t)) = log
K(s)∏
i=1

p(Xi|Θ(t))

= log
K(s)∏
i=1

K(t)∑
j=1

π
(t)
j p(Xi|Θ(t)

j ).

(5)

The HEM algorithm consists of the maximum likelihood
estimation of the parameters of Θ(t) from (5). Since (5) in-
volves marginalizing over the hidden assignment variables
z

(s)
i ∈ {1, . . . ,K(t)}, its maximization can be solved with

the EM algorithm. Hence, we introduce an indicator vari-
able zi,j for when the virtual audio sample set Xi is as-
signed to the jth component of Θ(t), i.e., when z(s)

i = j.
The complete data log-likelihood is then:

log p(X,Z|Θ(t)) =

=
K(s)∑
i=1

K(t)∑
j=1

zi,j log π
(t)
j + zi,j log p(Xi|Θ(t)

j )
(6)

The Q-function is obtained by taking the conditional
expectation of (6) with respect to Z, and the dependency
on the virtual samples is removed by using the law of large
numbers, i.e.,

log p(Xi|Θ(t)
j ) = Ni

1

Ni

Ni∑
m=1

log p(x
(i,m)
1:τ |Θ

(t)
j ) (7)

≈ NiEx1:τ |Θ(s)
i

[
log p(x1:τ |Θ(t)

j )
]
. (8)

Note that (8) can be computed using the chain rule of the
expected log-likelihood and (1) to break the expectation

E
x1:τ |Θ(s)

i

[
log p(x1:τ |Θ(t)

j )
]

= (9)

=
τ∑
t=1

E
x1:t|Θ(s)

i

[
log p(xt|x1:t−1,Θ

(t)
j )

]
(10)

=
τ∑
t=1

E
x1:t|Θ(s)

i

[
log p(xt|xt−p:t−1,Θ

(t)
j )

]
(11)

=

τ∑
t=1

E
x1:t−1|Θ(s)

i

[
E
xt|xt−p:t−1,Θ

(s)
i

[
,Θ

(t)
j

log p(xt|xt−p:t−1,Θ
(t)
j )

]] (12)

The inner expectation in (12) is the expected log-likelihood
of a Gaussian, and its closed form solution depends on the
first and second order statistics of xt−p,t−1 ∼ Θ

(s)
i . The

outer expectation involves the computation of the expected
first and second order statistics of Θ

(s)
i , which can be car-

ried out with the recursion presented in Algorithm 1. Note
that, since the AR model Θ

(t)
j has no hidden variables, the

computation of the expected sufficient statistics in Algo-
rithm 1 is independent of Θ

(t)
j , and hence needs to be exe-

cuted only once for each input component Θ
(s)
i .



Algorithm 1 Expected sufficient statistics

1: Input: song-level AR model Θ
(s)
i = {µ, S, Ã,Q}, length of

virtual samples τ .
2: Compute expected sufficient statistics for t = 1, . . . , τ − 1:

Ẽ
(i)
1 = E

x1Θ
(s)
i

[x1x
′
1] = µµ′ + S

Ê
(i)
1 = E

x−p+1:1Θ
(s)
i

[
x1
−p+1x

1
−p+1

′
]

=

=

[
Ẽ

(i)
1 0d×(d−1)p

0(d−1)p×d 0(d−1)p×(d−1)p

]
For t = 1, . . . , τ − 1

Ê
(i)
t = E

x1:t|Θ
(s)
i

[
xtt−p+1x

t
t−p+1

′
]

=

[
ÃÊ

(i)
t−1Ã

′ +Q AÊ
(i)
t−1

Ê
(i)
t−1Ã

′ Ê
(i)
t−1

]
(1:dp,1:dp)

Endfor
3: Compute expected sufficient statistics:

Ê(i) =
∑τ−1
t=1 Ê

(i)
t (13)

4: Output: expected sufficient statistics: Ê(i).

If hidden variables are present (which is the case for the
DT components of the DTM model, but not for the AR
model), computing the expected sufficient statistics of a
song component Θ

(s)
i involves marginalizing over the hid-

den variables of Θ
(t)
j , and hence needs to be repeated at

every iteration for each j = 1, . . . ,K(t).
The E-step of the HEM consists of computing of the ex-

pected sufficient statistics in Algorithm 1, the assignments
variables in (14) and (15), and the cumulative expected
sufficient statistics in (16). The M-step maximizes the Q-
function with respect to Θ(t), giving the updates in (17).
The full HEM-ARM scheme is presented in Algorithm 2.

4. KERNEL-SVM APPROACH

We then used a semi-parametric approach that leverages
the ARM model at the song level, and kernel support vector
machine (SVM) for retrieval. In particular, we first model
each song as an ARM using the EM algorithm. Then, for
each tag, we learn a binary SVM classifier over the train
set, based on a notion of similarity between ARM models
defined in terms on their proximity in parameter space. Fi-
nally, following [3], we use the SVMs’ decision values as
the relevance of a song for a tag, and use it for retrieval of
test songs based on one-tag queries.

Since the AR parameters lie on a non-linear manifold,
naı̈vely treating them as Euclidean vectors would not nec-
essary produce a correct similarity score. Hence, in the
remainder of this section, we present several kernel func-
tions based on more appropriate similarity scores between
autoregressive (mixture) models. In previous work, Meng
and Shawe-Taylor [17] specialize the Probability Product
Kernel [14] to the AR case, which depends non-linearly on
the AR parameters, and is define as:

KAR(Θa,Θb) =
∫
x1:p

(p(x1:p|Θa)p(x1:p|Θb))
ρ, (18)

where ρ = 0.5 corresponds to the Battaccharyya affinity.
Since a song-ARM is associated with several AR compo-

Algorithm 2 HEM algorithm for ARM

1: Input: combined song-level ARM {π(s)
i ,Θ

(s)
i }

K(s)

i=1 , num-
ber of virtual samples N .

2: Compute cumulative expected sufficient statistics Ê(i) for
each Θ

(s)
i using Algorithm 1

3: Initialize tag-level ARM, {π(t)
j ,Θ

(t)
j }

K(t)

j=1 .
4: repeat
5: {E-step}
6: Compute expected log-likelihood for each Θ

(s)
i and Θ

(t)
j :

`i|j= E
x1:τ |Θ

(s)
i

[log p(x1:τ |Θ(t)
j )]

= − dτ
2

log 2π − 1
2

log |S(t)
j |

− 1
2

traceS(t)
j

−1
[S

(s)
i + (µ

(t)
j − µ

(s)
i )′(µ

(t)
j − µ

(s)
i )]

− τ−1
2

traceQ(t)
j

−1
Q

(s)
i − τ−1

2
log |Q(t)

j |
− 1

2
trace[Q

(t)
j

−1
(Ã

(t)
j − Ã

(s)
i )Ê(i)(Ã

(t)
j − Ã

(s)
i )′]

7: Compute assignment probability and weighting:

ẑi,j =
π

(t)
j exp

(
Ni`i|j

)∑K(t)

j′=1 π
(t)

j′ exp
(
Ni`i|j′

) (14)

ŵi,j = ẑi,jNi = ẑi,jπ
(s)
i N (15)

8: Computed aggregated expectations for each Θ̂
(t)
j :

N̂j =
∑
i ẑi,j , M̂j =

∑
i ŵi,j ,

Ŝj =
∑
i ŵi,j [S

(s)
i + µ

(s)
i (µ

(s)
i )′] m̂j =

∑
i ŵi,jµ

(s)
i

V̂j =
∑
i ŵi,jA

(s)
i Ê(i)(Ã

(s)
i )′ P̂j =

∑
i ŵi,jÊ

(i)

R̂j =
∑
i ŵi,jÊ

(i)(Ã
(s)
i )′ Q̂j =

∑
i ŵi,jQ

(s)
i

(16)

9: {M-step}
10: Recompute parameters for each component Θ̂

(t)
j :

Ã∗j = R̂′jP̂
−1
j Q∗j = 1

(τ−1)M̂j
(V̂i −A∗j R̂j + Q̂j),

µ∗j = 1

M̂j
m̂j , S∗j = 1

M̂j
Ŝj − µ∗j (µ∗j )′,

π∗j =
∑K(s)

i=1 ẑi,j

K(s) .

(17)

11: until convergence
12: Output: tag-level ARM {π(t)

j ,Θ
(t)
j }

K(t)

j=1 .

nents, for retrieval we collect a decision value for each AR
component, and then rank the songs according to the aver-
age of the corresponding decision values (PPK-AR). Note
that we compute PPK between individual AR components
of the song-ARMs. This is different from [17], which uses
single ARs on individual audio snippets.

In addition, we experiment SVM classification in tan-
dem with a probability product kernel between auotore-
gressive mixture models (PPK-ARM). Following an ap-
proximation by Jebara et al. [14], the PPK-ARM can be
computed from the PPK between individual components
as

KARM(Θ(1),Θ(2)) =∑Ks
a=1

∑Ks
b=1 (π

(1)
a π

(2)
b )ρKAR(Θ

(1)
a ,Θ

(2)
b ).

(19)

We finally propose a novel descriptor of AR models
based on their frequency responses, and compute a ker-
nel between these descriptors. Since an AR is a linear time
invariant (LTI) system, its dynamics can be characterized



by a transfer function defined as:

H(s) = (Id −
∑p
j=1Ajs

−j)−1 ∈ Cd×d (20)

where s ∈ C is a complex number and Id is the d dimen-
sional identity matrix. The transfer function describes the
cross influences of each pair of components of the audio
feature vectors. In particular, we sample the transfer func-
tion at 200 equally spaced points on the unit circle, and
then sum the the absolute values of these matrices over
30 linearly spaced frequency bins, to get a representation
of the system’s frequency response. By concatenating the
AR’s µ parameter and the log values of these 30 frequency
response matrices, we get a descriptor ∆ ∈ R(d+30d2)×1,
which we call quantized frequency response (QFR). Fi-
nally, we use a SVM over QFRs based on cosine-similarity
(CS) kernel and radial basis function (RBF) kernel. 2

5. EXPERIMENTS

5.1 Data

We performed automatic music annotation on the CAL500
dataset (details in [23] and references therein), which is a
collection of 502 popular Western songs by as many differ-
ent artists, and provides binary annotations with respect to
a vocabulary of semantic tags. In our experiments we con-
sider the 97 tags associated to at least 30 songs in CAL500
(11 genre, 14 instrumentation, 25 acoustic quality, 6 vocal
characteristics, 35 mood and 6 usage tags).

The acoustic content of a song (resampled at 22, 050Hz)
is represented by computing a time-series of 34-bin Mel-
frequency spectral (MFS) features, extracted over half over-
lapping windows of 92 msec of audio signal, i.e., every ∼
46 msec. Following the insight in recent work of Hamel et
al. [12], MFS features where further projected on the first
d = 20 principal components, which we estimated over
the MFSs collected from the 10, 870 songs in the CAL10K
dataset [22].

Song level ARMs were learned with K = 4 compo-
nents and memory of p = 5 steps, from a dense sampling
of audio fragments of length T = 125 (i.e., approximately
6s), extracted with 80% overlap.

5.2 Results with HEM-ARM

For each tag, all the relevant song ARMs were pooled to-
gether to form a big ARM, and a tag-level ARM with
K(t) = 8 components was learned with the HEM-ARM
algorithm (with N = 1000 virtual samples of length τ =
10). To reduce the effects of low likelihood in high di-
mension, for annotation we smooth the likelihood (3) by
T · d · p. We compare our HEM-ARM with hierarchically
trained Gaussian mixture models (HEM-GMM) [23] and
dynamic texture mixture models (HEM-DTM) [7].

On the test set, a novel test song is annotated with the 10
most likely tags, corresponding to the peaks in its semantic
multinomial. Retrieval given a one tag query involves rank

2 The CS kernel is defined as K(a, b) = a′b/
√
||a||2||b||2. The RBF

kernel is defines as K(a, b) = exp{−‖a− b‖22/σ}. We set the band-
width σ of the RBF kernel to the descriptor dimension dim(∆).

annotation retrieval time
P R F AROC MAP P@10 train test

HEM-ARM 0.468 0.203 0.254 0.696 0.421 0.412 198m 41m
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460 424h 482m
HEM-GMM 0.474 0.205 0.213 0.686 0.417 0.425 41m 38m

Table 1. Annotation and retrieval on CAL500, for HEM-
ARM, HEM-DTM and HEM-GMM.

ordering all songs with respect to the corresponding entry
in their semantic multinomials. Annotation is measured
with average per-tag precision (P), recall (R), and f-score
(F). Retrieval is measured by per-tag area under the ROC
(AROC), mean average precision (MAP), and precision at
the first 10 retrieved objects (P@10). Refer to [23] for a
detailed definition of the metrics. All reported metrics are
the result of 5 fold-cross validation.

In Table 1 we report annotation and retrieval results for
HEM-ARM, HEM-DTM and HEM-GMM. In addition, we
register the total time for the training stage, which consist
in the estimation of the 97 tag models over the 5 folds (and
also includes the estimation of the 502 song-level models),
as well as for the test stage, i.e., the automatic-annotation
of the 502 songs with the 97 tags.

From Table 1 we note that the advantages of the pro-
posed HEM-ARM relative to HEM-DTM are in terms of
computation efficiency. While HEM-DTM performs better
than HEM-ARM on each metric (except on annotation pre-
cision where HEM-ARM is better), HEM-ARM has sig-
nificantly lower time requirements. Specifically, the train-
ing time for our HEM-ARM is two orders of magnitude
lower than that for HEM-DTM. Similarly, our auto-tagger
requires approximately 42 minutes for the test-stage, while
the auto-tagger based on DTMs requires 482 minutes to
accomplish the same task. These results are explained by
comparing the graphical structures of the AR and DT mod-
els. While the AR is a fully observable model, the DT con-
sists of an observed layer, which model the spectral con-
tent, and a hidden layer that encodes the temporal dynam-
ics. Hence, DTMs have the advantage of learning different
frequency basis to best represent specific tags [7]. How-
ever, the computation of the (expected) sufficient statistics
with respect to each DT component requires marginaliza-
tion of the hidden variables (see [5]). Hence, during train-
ing, it needs to be executed at each iteration of the learning
algorithms for each input datum (i.e., audio-fragments for
EM, and DTs for HEM) and for each individual compo-
nent of the learned model; during annotation, it needs to
be repeated for each audio-fragment and each DT compo-
nent of the tag models. On the opposite, the corresponding
statistics for ARMs involve no marginalization of hidden
variables. Hence, during training, they need to be com-
puted only a single time for each input datum (i.e., audio-
fragments for EM, and ARs for HEM). In addition, during
annotation, the sufficient statistics can be collected a single
time for each song.

Finally, HEM-ARM performs favorably relative to HEM-
GMM (which does not model temporal dynamics), while
still requiring limited computation times. Since learning
and inference are performed efficiently, HEM-ARM can
leverage higher order memories to model temporal dynam-



p 1 2 3 4 5 6 7 8 9

F-score 0.234 0.247 0.252 0.255 0.254 0.245 0.244 0.242 0.237
AROC 0.650 0.672 0.686 0.693 0.696 0.695 0.694 0.695 0.694

Table 2. Annotation (F-score) and retrieval (AROC) per-
formance of HEM-ARM, for different memories p∈ [1:9].

kernel AROC MAP P@10 train test

ARM based

PPK-ARM 0.717 0.448 0.459 233m 194m
PPK-AR 0.727 0.463 0.484 287m 194m
QFR-CS 0.717 0.461 0.479 125m 65m
QFR-RBF 0.723 0.469 0.488 137m 74m

GMM-PPK [3] 0.696 0.436 0.454
MFCC-PPK-AR [17] 0.706 0.447 0.463

Table 3. Retrieval for the kernel-SVM approach. Includ-
ing train and test times

ics, without incurring in large delays. In particular, in Table
2 we plot annotation (F-score) and retrieval (AROC) per-
formance as a a function of the memory p of the AR mod-
els. Performance are fairly stable for p = 4, 5, 6. Shorter
memories (e.g., p = 1, 2, 3) do not suffices to capture the
interesting dynamics, while too large values deteriorate an-
notation performance.

5.3 Results with kernel-SVM.

We implemented the kernel-SVM approach as described
in Section 4. In particular, we learned song-ARMs with
K = 4 components and memory p = 5, estimated from
the d = 20 dimensional PCA-MFS features. We then
computed the QFR-CS and QFR-RBF kernels based on
the QFR descriptors, the PPK kernel between ARM (PPK-
ARM), and the PPK kernel between individual AR com-
ponents (PPK-AR). For comparison, we also considered
PPK similarity between song-GMMs estimated on MFCC
features [3] (GMM-PPK) and PPK similarity between sin-
gle AR models estimated on the MFCC features of entire
songs as proposed in [17] (MFCC-PPK-AR). We used the
LibSVM software package [6] for the SVM, with all pa-
rameters selected using validation on the training set.

Retrieval scores are reported in Table 3, and are result
of 5-fold cross validation. We note that these results are
generally superior to those in Table 1, since the SVM is a
discriminative algorithm and hence tends to be more robust
on strongly labeled datasets such as CAL500. In particu-
lar, the best performance was registered with the QFR-RBF
and PPK-AR systems (score differences between them are
not statistically significant). In addition, PPK similarity
on ARMs (PPK-ARM) proves less performant, suggesting
that the approximation in (19) may be not enough accurate
for our task. Finally, PPK similarity on GMM performs the
worst, since it does not leverage termporal dynamics, and
MFCC-AR-PPK, which doesn’t leverage mixtures, is also
significantly behind.

6. DISCUSSION

In this paper we have proposed the ARM model for mu-
sic auto-tagging. We have derived a hierarchical EM algo-
rithm for efficiently learning tag ARMs. We have showed
that our HEM-ARM can estimate tag models significantly
more efficiently than HEM-DTM, at the price of a small re-

duction in performance. We have also successfully tested
a kernel-SVM approach based on several similarity func-
tions based on the ARM model.

7. REFERENCES

[1] A. Agarwal and B. Triggs. Tracking articulated motion using a mixture of au-
toregressive models. In ECCV - Lecture notes in computer science, pages 54–
65, 2004.

[2] L. Barrington, D. O’Malley, D. Turnbull, and G. Lanckriet. User-centered de-
sign of a social game to tag music. In Proceedings of the ACM SIGKDD Work-
shop on Human Computation, pages 7–10. ACM, 2009.

[3] L. Barrington, M. Yazdani, D. Turnbull, and G. Lanckriet. Combining feature
kernels for semantic music retrieval. Proc. ISMIR 2008, pages 723–728, 2008.

[4] M. Casey, C. Rhodes, and M. Slaney. Analysis of minimum distances in high-
dimensional musical spaces. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 16(5):1015–1028, 2008.

[5] A.B. Chan, E. Coviello, and G. Lanckriet. Clustering dynamic textures with the
hierarchical EM algorithm. In Proc. IEEE CVPR, 2010.

[6] C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[7] E. Coviello, A. Chan, and G. Lanckriet. Time Series Models for Semantic Music
Annotation. Audio, Speech, and Language Processing, IEEE Transactions on,
19(5):1343–1359, July 2011.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society B,
39:1–38, 1977.

[9] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic generation
of social tags for music recommendation. In Advances in Neural Information
Processing Systems, 2007.

[10] K. Ellis, E. Coviello, and G. Lanckriet. Semantic annotation and retrieval of
music using a bag of systems representation. In ISMIR, 2011.

[11] A. Flexer, F. Gouyon, S. Dixon, and G. Widmer. Probabilistic combination of
features for music classification. In Proc. ISMIR, pages 111–114, 2006.

[12] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck. Temporal pooling and multiscale
learning for automatic annotation and ranking of music audio. ISMIR, 2011.

[13] M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A simple probabilistic model
for tagging music. In Proc. ISMIR, pages 369–374, 2009.

[14] T. Jebara, R. Kondor, and A. Howard. Probability product kernels. The Journal
of Machine Learning Research, 5:819–844, 2004.

[15] E. Law and L. Von Ahn. Input-agreement: a new mechanism for collecting
data using human computation games. In Proceedings of the 27th international
conference on Human factors in computing systems, pages 1197–1206, 2009.

[16] M.I. Mandel and D.P.W. Ellis. Multiple-instance learning for music information
retrieval. In Proc. ISMIR, pages 577–582, 2008.

[17] A. Meng and J. Shawe-Taylor. An investigation of feature models for music
genre classification using the support vector classifier. In Proc. ISMIR, pages
604–609, 2005.

[18] A. Neumaier and T. Schneider. Estimation of parameters and eigenmodes of
multivariate autoregressive models. ACM Transactions on Mathematical Soft-
ware (TOMS), 27(1):27–57, 2001.

[19] J. Reed and C.H. Lee. A study on music genre classification based on universal
acoustic models. In Proc. ISMIR, pages 89–94, 2006.

[20] C. Joder S. Essid and G. Richard. Temporal integration for audio classification
with application to musical instrument classification. IEEE Transactions on Au-
dio, Speech, and Language Processing, 17(1):174–186, 2009.

[21] M. Slaney, K. Weinberger, and W. White. Learning a metric for music similarity.
In Proc. ISMIR, pages 313–318, 2008.

[22] Derek Tingle, Youngmoo E. Kim, and Douglas Turnbull. Exploring automatic
music annotation with “acoustically-objectiv” tags. In Proc. MIR, New York,
NY, USA, 2010.

[23] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation
and retrieval of music and sound effects. IEEE Transactions on Audio, Speech
and Language Processing, 16(2):467–476, February 2008.

[24] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE
Transactions on speech and audio processing, 10(5):293–302, 2002.

[25] N. Vasconcelos and A. Lippman. Learning mixture hierarchies. In Advances in
Neural Information Processing Systems, pages 606–612, 1998.

[26] B. Whitman and D. Ellis. Automatic record reviews. In Proc. ISMIR, 2004.



BUILDING MUSICALLY-RELEVANT AUDIO FEATURES THROUGH
MULTIPLE TIMESCALE REPRESENTATIONS

Philippe Hamel, Yoshua Bengio
DIRO, Université de Montréal

Montréal, Québec, Canada
{hamelphi,bengioy}@iro.umontreal.ca

Douglas Eck
Google Inc.

Mountain View, CA, USA
deck@google.com

ABSTRACT

Low-level aspects of music audio such as timbre, loud-
ness and pitch, can be relatively well modelled by features
extracted from short-time windows. Higher-level aspects
such as melody, harmony, phrasing and rhythm, on the
other hand, are salient only at larger timescales and re-
quire a better representation of time dynamics. For var-
ious music information retrieval tasks, one would benefit
from modelling both low and high level aspects in a uni-
fied feature extraction framework. By combining adaptive
features computed at different timescales, short-timescale
events are put in context by detecting longer timescale fea-
tures. In this paper, we describe a method to obtain such
multi-scale features and evaluate its effectiveness for auto-
matic tag annotation.

1. INTRODUCTION

Frame-level representations of music audio are omnipresent
in the music information retrieval (MIR) field. Spectro-
grams, mel-frequency cepstral coefficients (MFCC), chro-
magrams and stabilized auditory images (SAI) are just a
few examples of features that are typically computed over
short frames. It has been shown that using frame-level fea-
tures aggregated over time windows on the scale of a few
seconds yields better results on various MIR tasks [2] than
applying learning algorithms directly on frame-level fea-
tures. However, the aggregation of frame-level features,
also known as the bag-of-frames approach, does not model
the temporal structure of the audio beyond the timescale
of the frames. A simple method to get some informa-
tion about short-time dynamics is to use the derivatives of
the frame-level features. However, this method does not
yield a representation that can model much longer tempo-
ral structure. Some alternative techniques to the bag-of-
frames approach inspired by speech processing rely on the
modelization of the temporal structure with models such as
HMMs [12]. A representation that could jointly model the
short-term spectral structure and long-term temporal struc-
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ture of music audio would certainly improve MIR systems.
In this paper, we take a step to improve the bag-of-

frames approach by combining a set of features computed
over different timescales. The idea is that longer timescale
features, by modelling temporal structure, will give some
context to the shorter timescale features which model spec-
tral structure. The combination of multiple timescales could
yield a general representation of the music audio that would
be useful to solve various MIR tasks relying on audio fea-
tures. In particular, we will show that a simple classifier
trained over a multi-scale spectral representation of music
audio obtains state-of-the-art performance on the task of
automatic tag annotation. The multi-timescale representa-
tion that we introduce in this paper has the advantage of
being a general purpose scalable method that requires no
prior knowledge of the spectral or temporal structure of
music audio.

The paper is divided as follows. First, in Section 2, we
describe the current state of the research on multi-scale
representations. Then, in Section 3, we describe our exper-
imental setup. In Section 4 we discuss our results. Finally,
we conclude in Section 5.

2. MULTI-SCALE REPRESENTATIONS

Using representations at multiple scales allows much flex-
ibility to model the structure of the data. Multi-scale rep-
resentations offer a natural way to jointly model local and
global aspects, without having prior knowledge about the
local and global structures.

The idea of considering multiple scales is not new. It
has been applied widely in the machine vision field. For
example, pyramid representations [3] and convolutional net-
works [8] are just a few examples of multi-scale represen-
tations.

Recently, the MIR community as shown interest in tak-
ing advantage of multi-scale representations. Here are a
few examples of recent work that has been done on multi-
scale representation of music audio. Multi-scale spectro-
temporal features inspired by the auditory cortex have been
proposed in [11]. These features are used to discriminate
speech from non-speech audio in a small dataset. In [10],
structural change of harmonic, rhythmic and timbral fea-
tures are computed at different timescales. This repre-
sentation is used to build meaningful visualizations, al-
though it has not been applied to music audio classifica-
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Figure 1: PMSCs are computed in parallel at different timescales.

tion. In [5], boosting is applied on features at different
timescales to optimize music classification. Although the
validity of this method is demonstrated, it does not obtain
state-of-the-art results on the CAL500 dataset. Learning
features jointly at different timescales obtains state-of-the-
art performance for automatic tag annotation [6]. How-
ever this model still depends on a bag of short timescale
frames to build the long timescale representation, limiting
the potential to model temporal dynamics. Deep convo-
lutional networks have been applied to genre recognition
in [9]. The authors show that classification performance
for genre recognition and artist identification can be im-
proved by using an unsupervised deep convolutional rep-
resentation instead of raw MFCC features. Unfortunately,
the results presented in this work are not comparable to
other work in the field. In [1], scattering representations of
MFCCs have been shown to improve music genre classifi-
cation. The performance reported are comparable to other
results reported on the same dataset. A bag-of-system ap-
proach have been proposed in [4] to combine models at
various time resolutions.

3. EXPERIMENTAL SETUP

We used the TagATune dataset [7] in our experiments.
TagATune is the largest dataset for music annotation avail-
able for research that provides audio files. It contains over
20,000 30-second audio clips sampled at 22050 Hz, and
160 tag categories. Our train, valid and test datasets con-
tained 14660, 1629 and 6499 clips respectively.

We used the area under the ROC curve (AUC) averaged
over tags (AUC-tag) as our main performance measure.
We also use the AUC averaged over clips (AUC-clip) and
precision at k for comparison with other models. For more
details on these performance measures, see [6].

3.1 Multi-scale Principal Mel-Spectrum Components

In our experiments, we used Principal Mel-Spectrum Com-
ponents (PMSCs) [6] as base features. PMSCs are general
purpose spectral features for audio. They are obtained by
computing the principal components of the mel-spectrum.
PMSCs have shown great potential for the task of music
tag annotation.

Moreover, it is quite simple to compute PMSCs at dif-
ferent timescales. The time length of the frame used to

compute the discrete Fourier transform (DFT) determines
the timescale of the features. To obtain multi-timescale
features, we simply need to compute a set of PMSCs over
frames of different lengths (Figure 1). The smallest DFT
window we used was 1024 samples (46.4 ms). The size
of the timescales grew exponentially in powers of 2 (1024,
2048, 4096, etc.).

We keep the same number of mel coefficients for all
timescales. Thus, longer frames are more compressed by
the mel-scaling, since the dimensionality of the output from
the DFT is proportional to the frame’s length. However,
mel-scaling is more important for high frequency bins, while
low-frequency bins are barely compressed by the mel-scaling.
Fortunately, these high frequencies are already represented
in shorter timescales where they are less compressed. In
our experiments, we used 200 mel energy bands.

In our experiments, we found that using the log ampli-
tude of the mel-spectrum yields better performance than
using the amplitude.

PCA whitening is computed and applied independently
on each timescale. In order to circumvent memory prob-
lems when computing the PCA, we limit the number of
frame examples by randomly sub-sampling frames in the
training set. We typically used around 75 000 frames to
compute the PCA. It is also worth noting that we preserve
all the principal components since we don’t use PCA for
dimensionality reduction, but rather to obtain a feature space
with an approximate diagonal covariance matrix. The PCA
whitening step decorrelates the features, which allows a
more efficient temporal aggregation.

The principal components obtained for different
timescales are shown in Figure 2. For each timescale, the
first few principal components (those that account for the
most variance in the data) tend to model global spectral
shape. Subsequent components then model harmonic struc-
ture in the lower part of the mel-spectrum, and as we go up
in the coefficients (and lower in the accounted variance),
the components model structure in higher frequencies. It
is interesting to notice the periodic structure in the com-
ponents which shows how the harmonics are captured by
the components. Also, if we compare components between
timescales, we can observe that components tend to model
a larger part of the mel-spectrum and exhibit more struc-
ture in the lower frequencies as we go higher in the frame
size.
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Figure 2: PCA Whitening matrices for different timescales. The first few principal components tend to model global
spectral shape. Subsequent components then model harmonic structure in the lower part of the mel-spectrum, and as we go
up in the coefficients, the components model structure in higher frequencies.

The next step consists of summarizing the features over
a given time window by computing meaningful statistics.
We refer to this step as temporal pooling. Following re-
sults from [6], we combined four pooling functions: mean,
variance, maximum and minimum. These statistics are ap-
plied independently to each principal component through
time and concatenated into a single feature vector for a
given time window. In consequence, for each timescale
we obtain a feature vector having four times the dimension
of a single frame. Again, following results from [6], we
fixed the pooling window at approximately 3 seconds for
all experiments. Although, depending on how the frames
were overlapped, this window length might vary for differ-
ent timescales (see Section 4). The choice of the window
length can be justified by the fact that 3 seconds would be
enough for a human listener to label audio examples, but
longer windows would give us less meaningful statistics
for shorter timescales.

By concatenating the pooled features from each timescale,
we obtain multi-timescale PMSCs (Figure 1).

3.2 Multi-Layer Perceptron

The classifier we used is similar as the pooled feature clas-
sifier (PFC) model presented in [6]. However, in our case,
the input pooled feature vector will tend to be larger, since
it is obtained by concatenating many timescales.

We used a one-hidden layer artificial neural network,
also known as multi-layer perceptron (MLP), as the classi-
fier for all experiments. We kept the size of the network
constant at 1000 hidden units for all experiments. The

number of parameters (weights) in the system varies de-
pending on the dimensionality of the input.

The input to the MLP is a multi-timescale PMSC repre-
sentation a window of approximately 3 seconds of audio.
In order to obtain tags for a full song in the test and valida-
tion phases, we simply average the MLP outputs over all
windows from that song.

The MLP is well suited for multi-label classification
like the music annotation task. The hidden layer acts as
a latent representation that can model correlation between
inputs as well as shared statistical structure between the
conditional distributions associated with different targets
(tags). This gives the MLP an advantage over other models
such as the multi-class SVM, for which one would have to
train a separate model for each tag. Also, the MLP scales
sub-linearly in the number of examples, so it scales well to
large datasets.

4. RESULTS

In our experiments, we evaluated the performance of dif-
ferent timescales individually, and their combination for
the task of automatic tag annotation.

In our first experiment, for a given timescale, we did not
overlap frames. In consequence, longer timescales have
fewer frame examples. In the extreme case, the longest
timescale is the size of the pooling window, meaning that
the max, mean and min are all equal, and variance is zero.
Obviously, this is not ideal. As we can see in Figure 3a,
longer timescale perform worse than short timescales. How-
ever, we still see a significant advantage to using a com-
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Figure 3: AUC-tag for single timescale features without overlap (a) and with overlap (b). Shorter timescales tend to
perform better than longer timescales, and performance generally improve when using overlapped frames.

(a) no overlap

(b) overlap

Figure 4: Illustration of frames without overlap (a) and
with overlap (b).

bination of timescales. In Figure 5a, we show the perfor-
mance of multi-timescale features. We combined timescales
incrementally, starting from the shortest one to the longest
one. For example, the representation with two timescales
combines 46.4ms and 92.9ms frames, the one with three
timescales combines 46.4ms, 92.9ms and 185.8ms frames,
etc.

In order to obtain more examples for higher timescales,
and yield more meaningful statistics for the temporal pool-
ing, we considered using more overlapping between win-
dows. In our second experiment, we used the same frame
step for all timescales, corresponding to the smallest frame
length, in this case, 46ms (Figure 4). We include all frames
that start within the pooling window in the temporal pool-
ing. This means that the longest timescale frames will
overflow beyond the pooling window length up to almost
twice the window length. Even though this method will
give us the same number of frames to aggregate for each
timescale, the longer timescales will still have much more
redundancy than shorter timescales. Longer timescales per-
form significantly better with more overlap than without
overlap, as we can see by comparing Figure 3a and 3b. The

Multi PMSCs PMSCs PMSCs + MTSL MUSLSE
AUC-Tag 0.870 0.858 0.868 -
AUC-Clip 0.949 0.944 0.947 -

Precision at 3 0.481 0.467 0.470 0.476
Precision at 6 0.339 0.330 0.333 0.334
Precision at 9 0.263 0.257 0.260 0.259
Precision at 12 0.216 0.210 0.214 0.212
Precision at 15 0.184 0.179 0.182 0.181

Table 1: Performance of different automatic annotation
models on the TagATune dataset

overlap also gives a boost of performance when combining
timescales (Figure 5b).

In Table 1, we show the test performance of the model
that obtained the best AUC-tag on the validation set. We
compare with two other state-of-the-art models: Multi-time-
scale learning model (MTSL) [6] and Music Understand-
ing by Semantic Large Scale Embedding MUSLSE [13].
The multi-timescale PMSCs trained with the MLP obtains
the best performance on all measures. Moreover, this model
is a lot faster to train than the MTSL. For the TagATune
dataset, the training time would typically be a few hours
for the MLP compared to a few days for the MTSL.

5. CONCLUSION

Multi-timescale PMSCs are general purpose features that
aim at jointly modelling aspects salient at multiple timescales.
We showed that, for the task of automatic tag annotation,
using multi-timescale features gives an important boost in
performance compared to using features computed over a
single timescale. Moreover, with a simple classifier, we
obtain state-of-the-art performance on the TagATune dataset.

Multi-timescale PMSCs could potentially improve the
performance of more complex learning models such as MTSL
or MUSLSE. They could most likely be useful for other
music information retrieval tasks such as genre recogni-
tion, instrument recognition or music similarity as well.
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Figure 5: AUC-tag in function of number of timescales used without overlap (a) and with overlap (b). The combination of
timescales always include the shorter timescales. For example, the representation with 2 timescales combines 46.4ms and
92.9ms frames, the one with 3 timescales combines 46.4ms, 92.9ms and 185.8ms frames, etc.

Although the timescales used in these experiments are
not long enough to model many aspects of the temporal
structure of music, the combination of multiple timescales
of analysis allows to model some mid-level temporal dy-
namics that are useful for music classification. It is also a
improvement on the typical bag-of-frames approach. Even
though we are still using frame level features, the concate-
nation of longer timescale representations puts short-time
features in context.

In future work, it would be interesting to optimize the
pooling window lengths independently for each timescale.
This would allow longer timescale features to be aggre-
gated over less redundant information and provide more
relevant and stable statistics. It would also allow us to com-
pute PMSCs over even larger timescales.
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ABSTRACT 

The authors address the identification of predominant 
music instruments in polytimbral audio by previously di-
viding the original signal into several streams. Several 
strategies are evaluated, ranging from low to high com-
plexity with respect to the segregation algorithm and 
models used for classification. The dataset of interest is 
built from professionally produced recordings, which typ-
ically pose problems to state-of-art source separation al-
gorithms. The recognition results are improved a 19% 
with a simple sound segregation pre-step using only pan-
ning information, in comparison to the original algorithm. 
In order to further improve the results, we evaluated the 
use of a complex source separation as a pre-step. The re-
sults showed that the performance was only enhanced if 
the recognition models are trained with the features ex-
tracted from the separated audio streams. In this way, the 
typical errors of state-of-art separation algorithms are 
acknowledged, and the performance of the original in-
strument recognition algorithm is improved in up to 32%. 

1. INTRODUCTION 

The amount of music available has dramatically increased 
in recent years. There is thus a clear need of effectively 
organizing and retrieving this content. Music Information 
Retrieval (MIR) is a research field dealing with the ex-
traction of music content information, and can be used for 
such purposes. Instrumentation is a very useful descrip-
tion of musical data, since it can be exploited successfully 
in different forms; songs can be retrieved using the infor-
mation about the presence of an instrument, and the iden-
tification of the musical genre is easier when knowledge 
about the instrumentation is available (e.g. a banjo makes 
the piece more likely to be country than classical music). 
Additionally, instrumentation is a key aspect for the per-
ceived similarity in music [1]. 

Audio source separation deals with the recuperation of 
the original signals from the acoustical sources constitut-

ing an audio mixture by computational means. Even 
though there is still much room for improvement when 
applied to real world music, state-of-art separation algo-
rithms can be used to, at least, increasing the presence of 
a source or a group of sources in a mixture, such as har-
monic-percussive separation [10]. They can potentially be 
a useful pre-step to improve the results of MIR tasks, such 
as chord detection, melody extraction, etc. 

The automatic recognition of instruments is usually 
based on timbre models or features such as MFCCs or 
MPEG-7 combined with statistical classifiers. An exten-
sive review of approaches for isolated musical instrument 
classification can be found in [8], with several classifica-
tion techniques, a number of instrumental categories be-
low ten, and accuracies that reach up to 90%. 

More recent works deal with instrument recognition in 
polytimbral musical signals, which is a more realistic and 
demanding problem. For instance, Tzanetakis focused on 
the detection of voice [12], while Essid [4] presented an 
approach using a taxonomy-based hierarchical classifica-
tion, in which the classifiers were trained on combinations 
of instruments such as: piano, tenor sax, double bass and 
drums. Kitahara et al. [9] proposed several techniques to 
improve instrument recognition in duo and trio music by 
dealing with three issues: the feature variations caused by 
sound mixtures, the pitch dependency of timbres, and the 
use of musical context. With the proposed techniques, 
they achieved an 85.8% average recognition rate in trio 
music. Fuhrmann [5] proposed a method for automatic 
recognition of predominant instruments with Support 
Vector Machine (SVM) classifiers trained with features 
extracted from real musical audio signals. One of the 
problems identified in this system is that it often missed 
some of the labels in excerpts containing more than one 
predominant instrument. 

The recognition of the instruments present in a mixture 
becomes more complex as the number of instruments in-
creases. Reducing the number of instruments in the audio 
to be analyzed should thus help in the recognition of in-
struments, and the idea of using source separation as a 
pre-step has already been investigated in previous re-
search. Heittola et al. [6] use Non-Negative Matrix Fac-
torization (NMF) with a source filter model, based on 
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previous work by Virtanen and Klapuri [13]. Klapuri’s 
multipitch estimation is used in the separation, with aid of 
an optional streaming algorithm which organizes individ-
ual notes into sound sources. The Viterbi algorithm is 
then employed to find the most likely sequence of notes. 
The classifiers use MFCC’s (with a 40 channel filter 
bank) along with their first time derivatives. A Gaussian 
Mixture Model (GMM) is used to model the instrument 
conditional densities of the features, and the parameters 
are estimated using the Expectation Maximization (EM) 
algorithm from the training material. A Maximum Likeli-
hood classifier is then used for classification. The dataset 
was artificially created from the RWC dataset, with a 
maximum of six note polyphony, and 19 different pitched 
instruments, reaching a 59.1% F1-measure. Burred [3] 
also presents an instrument classification approach with a 
stereo blind source separation pre-step, using Gaussian 
likelihood as a timbre similarity measure. The reported 
accuracy reaches 86.7%, with polyphony of 2 instru-
ments, and 5 classes. Results are significantly better than 
in monaural separation, with 79.8% accuracy. 

In this paper, we address the combination of source 
separation and instrument recognition, in order to im-
prove the identification of predominant instruments in 
professionally produced western music recordings. As 
opposed to audio data created by artificially mixing sev-
eral instrument with no musical relation between them, 
this real world scenario adds more complexity to source 
separation algorithms, due to several reasons. First, in real 
world western music, instruments are harmonically relat-
ed, and thus their spectral components usually share some 
of the frequencies. Furthermore, effects such as reverbs, 
delays, etc. make the separation much more difficult. On 
the other hand, such scenario allows the algorithms to 
take advantage of the spatial information present in stere-
ophonic recordings. 

2. METHOD 

This section introduces the methodology proposed to in-
vestigate if the performance of an instrument recognition 
algorithm can be improved with a previous audio segrega-
tion step, as introduced in subsection 2.1. The dataset is 
described in subsection 2.2, and the evaluation methodol-
ogy is introduced in subsection 2.3. 

2.1 Audio segregation for instrument recognition 

The algorithm used by Fuhrmann in [5] is considered as 
the baseline instrument recognition. It is conceived to 
output a set of labels corresponding to the predominant 
instruments in an excerpt of polytimbral music. Ten 
pitched instruments are used in this study: cello, clarinet, 
flute, acoustic guitar, electric guitar, organ, piano, saxo-
phone, trumpet, violin, and additionally human singing 
voice. The original system uses SVM, which outputs 

probabilistic estimates for each of the modeled categories. 
As previously introduced, the main problem is that it 
sometimes misses some labels in excerpts with multiple 
instruments. 

The hypothesis is that in order to enhance its perfor-
mance, a previous step could be performed, separating 
input audio data into several streams. These streams are 
then separately processed by the instrument recognition 
algorithm, resulting in several sets of labels. The sets of 
labels are then combined and given as output labels. Sev-
eral segregation methods are considered, as well as dif-
ferent strategies for the label combination, and also sever-
al models used for instrument recognition. Figure 1 illus-
trates the combination of a segregation process followed 
by the instrument recognition in each of the streams. 

 

Figure 1. Generic flow diagram for the application of 
audio segregation as a previous step to the instrument 
recognition 

We consider two different segregation methods. The 
first is FASST (A Flexible Audio Source Separation 
Framework), presented by Ozerov et al. [10]. It is based 
on structured source models, which allow the introduction 
of constrains according to the available prior knowledge 
about the separation problem. It aims at generalizing sev-
eral existing source separation methods, and allows creat-
ing new ones.  The second segregation method is a simple 
Left/Right-Mid/Side (LRMS) separation based on pan-
ning information, where M = L+R and S = L-R.  

In this research, the FASST algorithm is used in a con-
figuration which separates the polytimbral audio input 
into four streams: “drums”, “bass”, “melody”, and “other” 
(dbmo).  This is a default configuration provided with the 
FASST framework, and it fits our interest in the recogni-
tion of the predominant pitched instruments, as the classi-
fier neither considers bass nor drums. After the separa-
tion, the “melody” stream would ideally contain the main 
instrument to be recognized, and the “other” stream 
would contain the rest of the instruments, with no pres-
ence of bass and percussive instruments.  Recognition of 
the predominant instruments in these streams of audio 
should be easier than in the case of the original 
polytimbral mixture. However, there are limitations in 
most separation algorithms, especially when applied to 
real world music. They commonly create artifacts and er-
rors in the separation, producing some leakage of instru-
ments in streams where they should not be present. This 



  

 

could affect the recognition of instruments due to the 
changes the artifacts produce in timbre. In order to deal 
with these errors, we investigate if a classifier could learn 
how a source separation algorithm behaves, and 
acknowledge the errors by training models on the separat-
ed audio estimations. In simple words, the models would 
learn, with the features of the estimated “drums”, “bass”, 
“melody”, “other” stream, when the predominant instru-
ment of the audio is a cello, clarinet, flute, acoustic guitar, 
electric guitar, organ, piano, saxophone, trumpet, violin, 
or voice. We consider the use of different models for each 
of the separated streams, in order to allow the usage of a 
different set of (automatically selected) audio features, as 
well as different parameters for training the classifiers.  

Finally, the strategy for the combination of the labels 
given as output by the individual instrument recognition 
models is also important. Two strategies are explored in 
our experiments: 1) selecting some of the classifiers’ out-
put only (e.g. only the sets of labels from the “melody” 
and “other” streams), and 2) requiring a degree of agree-
ment (overlap) between all sets of labels. In the second 
strategy, output labels correspond to the ones present in 
more than N sets of labels predicted by the models. 

2.2 Data 

Two different datasets have been created for training and 
testing, based on the database originally compiled by 
Fuhrmann [6]. Firstly, the training dataset contains 6700 
annotated excerpts of 3 seconds in which only one in-
strument is predominant. These data are unevenly distrib-
uted among the modeled categories, ranging from mini-
mum 388 to a maximum of 778. A second training dataset 
is derived by separating the original one into dbmo 
streams with FASST. Secondly, the testing set consists of 
around 3000 excerpts annotated with one to five instru-
ments. This set was created by dividing the original music 
pieces of the original database [6] into segments with the 
following properties: 1) the predominant instruments are 
the same in the whole excerpt, 2) the length is between 5 
and 20 seconds, and 3) the excerpts are stereo. The first 
property allows us to disregard segmentation according to 
the instrumentation into the recognition evaluation, since 
the predominance of instruments typically changes 
amongst or even within sections of a music piece. The 
second property ensures that the instrument labeling pro-
cess has enough information to output the labels with a 
certain confidence. The third property corresponds to the 
use case of interest: professionally produced music re-
cordings, in stereo format. 

2.3 Evaluation methodology 

The evaluation method is based on comparing the output 
labels against the manually annotated ground-truth labels. 
Following the traditional information retrieval evaluation 
measures, we calculate: true positives (tp), true negatives 

(tn), false positives (fp) and false negatives (fn) for each 
of the instruments (labels). We consider L  the closed set 
of labels { }

i
L l= , with 1...i N= , N  the number of in-

struments, and the dataset { }
i
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where 
,l i
y  and 

,l̂ i
y  are boolean variables referring to in-

stance i , which indicate the presence of the label l  in the 
set of predicted labels, or in the set of ground-truth labels 
respectively. Additionally, we define the F1 as the har-
monic mean between precision and recall: 
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We also define macro and micro averages of the previous 
metrics, in order to obtain more general performance met-
rics, which consider all labels. The macro is here under-
stood as an unweighted average of the precision or recall 
taken separately for each label (average over labels).  
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On the other hand, the micro average is an average over 
instances, and thus, giving more weight to the labels with 
a higher number of instances: 
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The macro and micro F1 are defined as the harmonic 
mean of respectively, the macro and micro averages. 
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The following section details the experiments performed 
according to the presented methodology. 



  

 

3. EXPERIMENTS 

We conducted five experiments to investigate the benefits 
of the segregation of the audio signal into different 
streams prior to the application of an instrument recogni-
tion algorithm. In the first four experiments, the SVM 
models used for the instrument recognition were trained 
with parameters that optimized the performance in Exper-
iment 1: a polynomial kernel of degree 4 and a cost pa-
rameter = 0.1. In each experiment, we consider all combi-
nations of sets of labels to find the best recognition per-
formance. These are notated with the initials of the 
streams considered, e.g.: “Exp3:dbo” refers to the combi-
nation of the labels outputted from the recognition of the 
d (drums) + b (bass) + o (other) streams in Experiment 3. 
The combination strategy was initially the union of the 
labels predicted by each of the models. Then, in Experi-
ment 5 we explored a partial overlap strategy, and we op-
timized recognition performance by tuning the parameters 
for each of the models. 

3.1 Experiment 1: original algorithm 

The original algorithm is employed without a previous 
separation step, as shown in Figure 2: 

 

Figure 2: Original instrument recognition algorithm 

The labels obtained in this experiment are named “n” 
for “no separation”. In this configuration, the stereo audio 
input is transformed into mono, by adding the left and 
right channels. We obtain the following micro averages: 
precision = 0.708, recall = 0.258 and F1 = 0.378. 

3.2 Experiment 2: Left/Right-Mid/Side separation + 
original models 

In this experiment, audio was segregated into four streams 
with l = Left, r = Right, n = l+r (Mid), and s = l-r (Side), 
and the original model was used for classification, as de-
picted in Figure 5. 

 

Figure 5. LRMS separation into lrns streams, used as 
input of the original instrument recognition models. 

The label “n” is used for the “Mid” stream in order to be 
consistent with the notation in Experiment 1, also per-
formed in the addition of the Left and Right channels.  

Evaluation results showed that the best combination is 
with “Exp2:lrns”, obtaining a micro F1 = 0.451. This rep-
resents an absolute improvement of 7.3 percent points in 
the micro F1 with respect to the original algorithm 
“Exp1:n”, or in relative terms, a 19.3%. This is a consid-
erable improvement, especially taking into account that 
this is a very simple segregation method which could even 
be performed in real time. 

3.3 Experiment 3: FASST + original models 

In this experiment, FASST separation into the bass (b), 
drums (d), melody (m)  and other (o) streams is used, 
along with the original models for the instrument recogni-
tion, as shown in Figure 3. 

 

Figure 3. FASST separation into the drum, bass, melody 
and other streams, combined with the original instru-
ment recognition models. 

The evaluation showed that the original algorithm 
without source separation provides better results than any 
of the combinations of the labels obtained in Experiment 
3. The best micro F1 (0.355) is obtained with a combina-
tion of all separated streams (“Exp3:dbmo”). In this case, 
recall (0.385) is better than with the original algorithm 
(“Exp1:n”), but precision is quite worse (0.330), so the 
F1-measure is lower. There is thus a decrease in perfor-
mance when using source separation as a pre-step of the 
original instrument recognition models. This is probably 
due to the fact that the separation is not perfect, there is 
some energy of instruments in streams where there should 
not be present, and their timbre is modified. Additionally, 
the separation algorithm has the drawback of its complex-
ity and execution time, which is above one minute per se-
cond of to-be-separated audio (Intel Core 2 Duo @ 2.4 
GHz, 4 GB RAM with Windows XP – 32 bits). 

3.4 Experiment 4: FASST + models trained with sep-
arated audio 

In this experiment, the instrument recognition models 
have been trained with the dbmo audio streams obtained 
from separating the training dataset with FASST. Four 
different models have been created; one for each of the 
output streams of the FASST bdmo separation algorithm, 
as shown in Figure 4. A different set of features has been 
automatically selected for each of the SVM models dur-
ing the training process. 



  

 

 

Figure 4. FASST separation into the drum, bass, melody 
and other streams, combined with the instrument recog-
nition using models trained on the separated audio. 

The evaluation showed that using the models trained 
on each of the streams of separated audio provides better 
results than using the original models, and better than the 
original algorithm without any sound segregation. The 
combination of the “m” and “o” labels already improves 
the results obtained in “Exp1:n”, obtaining a micro F1 = 
0.411. The best micro F1-measure (0.446) is obtained 
with the bdmo combination. If the “n” labels are addition-
ally combined, the micro F1 increases to 0.480. 

If we analyze the recognition results per instrument, 
the best are obtained with the voice, achieving 0.902 pre-
cision, 0.574 recall and a 0.701 F1-measure. Clarinet 
seems to be the most challenging instrument to be recog-
nized, with a F1-measure = 0.113. A further observation 
is that there is a relation between the stream and the in-
struments which are better recognized. For instance, the 
recognition in the bass stream is better for instruments 
with low frequency content, such as the cello, which is 
not so well recognized in the rest of the streams. 

3.5 Experiment 5: Optimizing the performance of 
FASST + models trained with separated audio 

In this experiment, we aimed at improving the results ob-
tained in Experiment 4 — FASST dbmo separation + 
models trained with separated audio. Different models are 
used for the recognition of each of the four audio streams, 
and thus it is possible to optimize the parameters of each 
of them. Additionally, we also investigate the requirement 
of a certain degree N of overlap in the combination of la-
bels. The evaluation showed that if the value of N is in-
creased, the precision increased as well, at the expense of 
a lower recall. With N = 0 (no overlap required), the ob-
tained micro F1 is equal to 0.446. If N = 1, which is 
equivalent to outputting only the labels which had been 
predicted by at least two of the classifiers, we obtain the 
best precision found in all experiments (0.733), but the 
recall is considerably reduced (0.354), and the F1-
measure is thus smaller. Therefore, the overall perfor-
mance is considered to be worse when N increases.  

As in all previous experiments, the minimum degree of 
overlap between labels was set to N=0 in Experiment 5, 
which provided the best results in terms of the F1-
measure. The output labels were thus the union of all la-

bels predicted by each of the models. On the other hand, 
the use of a different configuration for the training of each 
of the four models led to some improvements in the re-
sults, achieving a micro F1= 0.497. In order to further 
improve the results we tried combining the labels derived 
from both, source separation and panning-based segrega-
tion streams. The combination Exp5:dbmonslr achieved 
the best F1-measure from all experiments, equal to 0.503.  

The most relevant results of all experiments are pre-
sented in Table 1. 

 

 
Mac 
Prec 

Mac 
Rec 

Mic 
Prec 

Mic 
Rec 

Mac 
F1 

Mic 
F1 

Exp1:n 57.8 24.9 70.8 25.8 34.9 37.8 
Exp2:lrns 48.5 33.8 58.2 36.7 39.8 45.1 
Exp3:dbmo 31.0 37.0 33.0 38.5 33.7 35.5 
Exp4:dbmo 49.0 30.6 62.5 34.7 37.7 44.6 
Exp4:dbmon 47.5 37.3 59.3 40.3 41.8 48.0 
Exp5:dbmon 44.0 41.5 54.9 45.5 42.7 49.7 
Exp5:dbmolrns 41.0 45.5 50.4 50.1 43.2 50.3 

Table 1. Instrument recognition measures (in %). See 
text for details regarding the studied experimental meth-
ods and their acronyms 

In the following section we analyze the obtained results, 
and compare the evaluated approaches. 

4. DISCUSSION 

The highest precision is obtained with the instrument 
recognition algorithm [5] by itself (“Exp1:n”), at the ex-
pense of having a low recall, which provides a medium 
F1-measure. In “Exp2:nslr” we considerably improve the 
results with a simple panning-based segregation, achiev-
ing a 19.2% relative increase in the micro-F1 with respect 
to the original algorithm. Experiment 3 makes use of the 
FASST dbmo separation as a pre-step to the instrument 
recognition. In this experiment, the precision drops, and 
the recognition performance is worse. After training the 
recognition models with source separated data, we obtain 
considerably better results in “Exp4:dbmo” compared to 
“Exp3:dbmo” and also “Exp1: n” in terms of F1-measure. 
With the aggregation of the sets of labels obtained with 
the original algorithm, we obtain a further increase in the 
performance in “Exp4:dbmon”. The results from 
“Exp5:dbmon” show that it is possible to further improve 
the instrument recognition by tuning the parameters of 
each of the dbmo models. Finally “Exp5:dbmonslr” cor-
responds to the best results obtained in any of the auto-
matic instrument recognition experiments, by combining 
“dbmo” sets of labels from the tuned models trained with 
separated streams, and the “Exp2:nslr” sets of labels ob-
tained with the LRMS separation. The detailed results for 
all possible combination of labels and experiments can be 
found in [2]. The best micro F1-measure = 0.503, thanks 
to the recall gained by the combination of all labels. The 



  

 

micro F1-measure obtained with the original algorithm 
without segregation was 0.378, so we were able to im-
prove 12.2 percent points, which represents a 32.3% rela-
tive to the initial value. It is interesting to note that the 
micro averages are better than the macro averages, since 
the majority of categories with the most frequent instanc-
es (e.g. voice) are more easily recognized than the rest. 

5. CONCLUSIONS 

We presented novel methods to improve the automatic 
recognition of predominant musical instruments, by its 
combination with audio segregation algorithms. A com-
parison with previous similar approaches is not straight-
forward, since the number of classes and datasets are dif-
ferent. However, if we compare the performance of the 
original algorithm with the best of our presented ap-
proaches combining source separation and instrument 
recognition, there is around 32% improvement of the mi-
cro F1-measure. The way in which the combination is 
made is very important to be able to improve the results 
of the algorithms: we found that the application of a 
source separation pre-step may not provide a better 
recognition of the instruments if the models do not con-
sider the limitations and errors of the separation algo-
rithms. Training the classification models with the differ-
ent streams of separated audio has been found to be an 
effective strategy for acknowledging the typical source 
separation errors. This leads to a better performance, 
which can be further enhanced by tuning the parameters 
of each of the different models used in the instrument 
recognition. A drawback of the use of the proposed sepa-
ration algorithm is its computational complexity. As a 
simple, fast and efficient alternative, we propose the de-
composition of the stereophonic polytimbral audio into 
the left, right, mid and side streams, and the combination 
of the labels identified by the instrument recognition algo-
rithms in each of the streams. This increased a 19.2% the 
performance of the predominant instrument recognition. 
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ABSTRACT

We present a data-processing pipeline based on sparse
feature learning and describe its applications to music an-
notation and retrieval. Content-based music annotation
and retrieval systems process audio starting with features.
While commonly used features, such as MFCC, are hand-
crafted to extract characteristics of the audio in a succinct
way, there is increasing interest in learning features auto-
matically from data using unsupervised algorithms. We
describe a systemic approach applying feature-learning al-
gorithms to music data, in particular, focusing on a high-
dimensional sparse-feature representation. Our experi-
ments show that, using only a linear classifier, the newly
learned features produce results on the CAL500 dataset
comparable to state-of-the-art music annotation and re-
trieval systems.

1. INTRODUCTION

Automatic music annotation (a.k.a. music tagging) and re-
trieval are hot topics in the MIR community, as large col-
lections of music are increasingly available. Therefore,
tasks such as music discovery have become progressively
harder for humans without the help of computers. Exten-
sive research has been done on these topics [20], [11], [8]
[5]. Also, different datasets have become standards to train
and evaluate these automatic systems [19], [12].

Training for most automatic systems use audio
content—in the form of audio features—as the input data.
Traditionally well-known audio features, such as MFCC,
chroma and spectral centroid, are used to train algorithms
to perform the annotation and retrieval tasks. These “hand-
crafted” features usually capture partial auditory character-
istics in a highly condensed form, ignoring many details
of the input data. While such engineered features have
proven to be valuable, there is increasing interest in find-
ing a better feature representation by learning from data in
an unsupervised manner. Unsupervised learning is usually
conducted either by mapping the input data into a high-
dimensional sparse space or by means of deep learning.
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In this paper, we apply high-dimensional sparse feature-
learning to short-term audio spectrograms and construct
song-level features for music annotation and retrieval.

In summary, the contributions of this paper are as fol-
lows:

• We propose a data preprocessing method to make
feature-learning algorithms more effective.

• We demonstrate that the feature-learning algorithms
capture rich local timbral patterns of music, useful
for discrimination.

• We show that song-level features constructed from
the local features achieve results comparable to state-
of-art algorithms on the CAL500 dataset using only
a linear classifier, and furthermore outperform them
with a nonlinear classifier.

1.1 Recent Work

Lee et. al. proposed a Convolutional Deep Belief Network
(CDBN) and applied it to the audio spectrogram for music
genre and artist classification [14]. Dieleman et. al. also
employed the CDBN but on engineered features (EchoN-
est chroma and timbre features) for artist, genre and key
recognition tasks [6]. Our approach is similar to these sys-
tems in that the input data is taken from multiple audio
frames as an image patch and max-pooling is performed
for scalable feature-learning. However, we perform feature
learning with a high-dimensional single-layer network and
the max-pooling separately after learning the features [2].
While this can limit the representational power, it allows
faster and simpler training of the learning algorithms.

Henaff et. al. applied a sparse coding algorithm to a
single frame of constant-Q transform spectrogram and ag-
gregated them into a segment-level feature for music genre
classification [10]. Likewise, Schlter et. al. compared
Restricted Boltzmann Machine (RBM), mean-covariance
RBM and DBN on similarity-based music classification
[17]. Our approach is also similar to these pipelines. How-
ever, in our work we provide deeper insight on the learned
features by showing how they are semantically relevant.
In addition, we investigate the effect of sparsity and max-
pooling on the performance.

Finally, Hamel et. al. showed that simply PCA-whitened
spectrogram can provide good performance by combining
different types of temporal pooling [9]. Our approach is
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Figure 1: Data processing pipeline for feature representation. This takes an waveform as input and produces a song-level
feature for the classifier.

quite different from this work because we encode the PCA-
whitened spectrogram into a high-dimensional sparse space
and extract features from it.

2. DATA PROCESSING PIPELINE

We perform the music annotation and retrieval tasks using
the data processing pipeline shown in Figure 1. Each block
in the pipeline is described in this section.

2.1 Preprocessing

Data preprocessing is a very important step to make fea-
tures invariant to input scale and to reduce dimensionality.
We perform several steps of the preprocessing.

2.1.1 Automatic Gain Control

Musical signals are dynamic by nature and each song file
in a dataset has different overall volume due to different
recording conditions. Thus, we first apply Automatic Gain
Control (AGC) to normalize the local energy. In particular,
we employ time-frequency AGC using Ellis’ method [7].
The AGC first maps FFT magnitude to a small number of
sub-bands, computes amplitude envelopes for each band,
and uses them to create a time-frequency magnitude en-
velope over a linear-frequency scale. Then, it divides the
original spectrogram by this time-frequency envelope. As
a result, the AGC equalizes input signals so they have uni-
formly distributed spectra over frequency bins.

2.1.2 Time-frequency Representation

A time-frequency representation is an indispensable pro-
cessing step for musical signals, which are characterized
primarily by harmonic or non-harmonic elements. There
are many choices of time-frequency representations, each
one having different time/frequency resolutions and/or per-
ceptual mappings. In this paper, we chose a mel-frequency
spectrogram.

Our initial experiments—based on a spectrogram—
showed that using multiple consecutive frames as an in-
put unit for learning algorithms (which is analogous to tak-
ing a patch from an image) significantly improves perfor-
mance over using single frames. However, the FFT size
used for musical signals is usually large and thus con-
catenating multiple frames yields a very high-dimensional
vector requiring expensive computation for learning algo-
rithms. Using a moderate number of mel-frequency bins,
instead of the straight FFT, preserves the audio content
well enough, while significantly reducing the input di-
mension. We chose 128 mel-frequency bins, following

Hamel’s work [9], and will present results for various num-
bers of frames below.

2.1.3 Magnitude Compression

We compress the magnitude using an approximated log
scale, log10(1 + C|X(t, f)|), where |X(t, f)| is the mel-
frequency spectrogram and C controls the degree of com-
pression [15]. In general, the linear magnitude of each bin
has an exponential distribution. Scaling with a log function
gives the magnitude a more Gaussian distribution. This en-
ables the magnitude to be well-fitted with the ensuing PCA
whitening, which has an implicit Gaussian assumption.

2.1.4 Multiple Frames

As previously discussed, we take multiple frames as an
input unit for feature learning. This approach was used
in the convolutional feature-learning algorithm [14]. In
that work, however, the multiple frames are taken over the
PCA-whitening space where PCA is performed on single
frames. In our case, we apply the PCA to multiple consec-
utive frames for the reasons explained next.

2.1.5 PCA Whitening

PCA whitening is often used as a preprocessing step for
independent component analysis or other learning algo-
rithms that capture high-order dependency. It removes pair-
wise correlation in the input data domain and, as a result,
reduces the data dimensionality. Note that the PCA cap-
tures short-term temporal correlation as well because it is
performed on multiple frames (after vectorizing them).

2.2 Feature Representation

At this point, the input has been processed in a highly re-
constructible way so that the underlying structure of the
data can be discovered via feature-learning algorithms. In
this section, we describe how such algorithms reveal the
underlying structure.

2.2.1 Feature Learning Algorithm

We compare three feature-learning algorithms to encode
the preprocessed data into high-dimensional feature vec-
tors: K-means clustering, Sparse Coding and Sparse Re-
stricted Boltzmann Machine.

K-means Clustering: K-means clustering learns K cen-
troids from the input data and assigns the membership of
a given input to one of the K centroids. In the representa-
tional point of view, this can be seen as a linear approxima-
tion to the input vectors, x ≈ Ds, where D is a dictionary



(centroids) and s is an extremely sparse vector that has all
zeros but a single “1” that corresponds to the assigned cen-
troid. We use the encoded vector, s, as learned features.

Sparse Coding (SC): Sparse coding is an algorithm to rep-
resent input data as a sparse linear combination of elements
in a dictionary. The dictionary is learned using the L1-
penalized sparse coding formulation. In our experiments,
we optimize

min
D,s(i)

∑
i

∥∥∥Ds(i) − x(i)∥∥∥2
2
+ λ

∥∥∥s(i)∥∥∥
1

subject to
∥∥∥D(j)

∥∥∥2
2
= 1,∀j

(1)

using alternating minimization over the sparse codes s(i),
and the dictionary D [3]. We use the absolute value of the
sparse code s, as learned features.

Sparse Restricted Boltzmann Machine (sparse RBM):
The Restricted Boltzmann Machine is a bipartite undirected
graphical model that consists of visible nodes x and hidden
nodes h [18]. The visible nodes represent input vectors and
the hidden nodes represent the features learned by training
the RBM. The joint probability for the hidden and visi-
ble nodes is defined in Eq. 2 when the visible notes are
real-valued Gaussian units and the hidden notes are binary
units. The RBM has symmetric connections between the
two layers denoted by a weight matrix W , but no connec-
tions within hidden nodes or visible nodes. This particu-
lar configuration makes it easy to compute the conditional
probability distributions, when nodes in either layer is ob-
served (Eq. 3 and 4 ).

− logP (x,h) ∝ E(x,h) =
1

2σ2
xT x− 1

σ2

(
cT x + bTh + hTWx

)
(2)

p(hj |x) = sigmoid(
1

σ2
(bj+wTj x)) (3)

p(xi|h) = N ((ci + wTi h), σ2), (4)

where σ2 is a scaling factor, b and c are bias terms, and
W is a weight matrix. The parameters are estimated by
maximizing the log-likelihood of the visible nodes. This
is performed by block Gibbs sampling between two lay-
ers, particularly, using contrastive-divergence learning rule
which involves only a single step of Gibbs sampling.

We further regularize this model with sparsity by encour-
aging each hidden unit to have a pre-determined expected
activation using a regularization penalty:

λ
∑
j

(ρ− 1

m
(
m∑
k=1

E[hj |xk]))2, (5)

where {x1, ..., xm} is the training set and ρ determines the
target sparsity of the hidden unit activations [13].

Similar to K-means clustering and SC, we can interpret Eq.
4 as approximating input vectors, x, with a linear combi-
nation of elements from dictionary W . That is, x ≈ Wh

(ignoring the bias term, c). The advantage of RBM over
the two algorithms is that the RBM has an explicit encod-
ing scheme, h = sigmoid( 1

σ2 (b+WT x) from Eq. 3. This
enables much faster computation of learned features than
SC.

2.2.2 Pooling and Aggregation

A song is a very long sequence of data. There are many
ways to summarize the data over the entire song. A typi-
cal approach to construct a long-term feature is aggregat-
ing short-term features by computing statistical summaries
over the whole song. However, summarizing all short-term
feature over a song dilutes their local discriminative char-
acteristics. Instead, we pool relevant features over smaller
segments and then aggregate them by averaging over all
the segments in a song.

Since the learned feature vectors are generally sparse
and high-dimensional, we performed max-pooling over seg-
ments of the song. Max-pooling is an operation that takes
the maximum value at each dimension over a pooled area.
This is often used in the setting of convolutional neural
networks to make features invariant to local transforma-
tion. In our experiments, it is used to reduce the smoothing
effect of the averaging. In Section 4 we discuss how the
pooling size is determined.

2.3 Classification

Music annotation is a multi-labeling problem. We tackle
this by using multiple binary classifiers, each predicting
the presence of an annotation word. The binary classifier
also returns the distance from the decision boundary given
a song-level feature. We used the distance as a confidence
measure of relevance between a query word and a song for
music retrieval.

2.3.1 Linear SVM

We use a linear SVM as a reference classifier to evaluate
the song-level feature vectors learned by different settings
of feature representation. We trained the linear SVM by
minimizing the hinge loss given training data. By combin-
ing the hinge loss for multiple SVMs as a single objective,
we trained them simultaneously, avoiding individual cross-
validation for each SVM and thereby saving computation
time [16].

2.3.2 Neural Network

We also applied a neural network to improve classification
performance. For simple evaluation, we used a single hid-
den layer. However, instead of the cross-entropy, which is
usually used as a cost function for a neural network, we
employed the hinge loss from the linear SVM above, so
that the penalty term is consistent between classifiers. That
way, performance difference can be attributed only to the
inclusion of the hidden layer.
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Figure 2: Top 20 most active feature bases (dictionary elements) for five different tags: Rock, Piano, Electronica, Sleeping
and Exciting/Thrilling. Note that all the features come from the same learned dictionary (mel-frequency spectrogram and
sparse RBM with 1024 hidden units and 0.01 sparsity), but different types of music use different feature bases.

3. EXPERIMENTS
3.1 Dataset

We evaluated our proposed feature representation on the
CAL500 dataset [19]. This dataset contains 502 western
songs, each of which was manually annotated with one or
more tags out of 174 possibilities, grouped in 6 categories:
Mood, Genre, Instrument, Song, Usage, and Vocal. In our
experiments, we considered only 97 tags with at least 30
example songs, to be able to compare with results reported
elsewhere [20], [4], [8] [5]. In order to apply the full path
of our pipeline, we obtained MP3 files of the 502 songs
and used the decoded waveforms.

3.2 Preprocessing Parameters

We first resampled the waveform data to 22.05kHz and ap-
plied the AGC using 10 sub-bands and attack/delay smooth-
ing the envelope on each band. We computed an FFT with
a 46ms Hann window and 50% overlap, which produces a
513 dimensional vector (up to half the sampling rate) for
each frame. We then converted it to a mel-frequency spec-
trogram with 128 bins. In the magnitude compression, C
was set to 10 (see section 2.1.3). For PCA whitening and
feature learning steps, we sampled 100000 data examples,
approximately 200 examples at random positions within
each song. Each example is selected as a 128× n (n=1, 2,
4, 6, 8 and 10) patch from the mel-frequency spectrogram.
Using PCA whitening, we reduced the dimensionality of
the examples to 49, 80, 141, 202, 263 and 323 for each n
by retaining 90% of the variance. Before the whitening,
we added 0.01 to the variance for regularization.

3.3 Feature Representation Parameters

We used dictionary size (or hidden layer size) and sparsity
(when applicable) as the primary feature-learning param-
eters. The dictionary size was varied over 128, 256, 512
and 1024. The sparsity parameter was set to ρ = 0.01, 0.02,
0.03, 0.05, 0.07 and 0.1 for sparse RBM and λ = 0.5, 1.0,
1.5 and 2.0 for sparse coding. Max-pooling was performed
over segments of length 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32 and
64 seconds.

3.4 MFCC

We also evaluated MFCC as a “hand-crafted” feature in or-
der to compare it to our proposed feature representation.
Instead of using the MFCC provided from the CAL500
dataset, we computed our own MFCC to match parame-
ters as close as possible to the proposed feature. We used
the same AGC and FFT parameters but 40 bins for mel-
frequency spectrogram and then applied log and DCT. In
addition, we formed a 39-dimensional feature vector by
combining its delta and double delta and normalized it by
making the MFCC have zero mean and unit variance. The
MFCC was also fed into either the classifier directly or the
feature-learning step.

3.5 Classifier Parameters

We first subtracted the mean and divided by the standard
deviation of each song-level feature in the training set and
then trained the classifiers with the features and hard an-
notation using 5-fold cross-validation. In the neural net-
work, since the classifier is not our main concern, we sim-
ply fixed the hidden layer size to 512. After training, we
adjusted the distance from the decision boundary using the
diversity factor of 1.25, following the heuristic in [11].

4. EVALUATION AND DISCUSSION

4.1 Annotation and Retrieval Performance Metrics

The annotation task was evaluated using Precision, Recall
and F-score, following previous work. Precision and Re-
call were computed based on the methods described by
Turnbull [20]. The F-score was computed by first calcu-
lating individual F-scores for each tag and then averag-
ing the individual F-scores, similarly to what was done by
Ellis [8]. It should be noted that averaging individual F-
scores tends to generate lower average F-score than com-
puting the F-score from mean precision and recall values.
As for the retrieval, we used the area under the receiver
operating characteristic curve (AROC), mean average pre-
cision (MAP) and top-10 precision (P10) [8].
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4.2 Visualization

Figure 2 shows most active top-20 feature bases learned on
the CAL500 for each tag. They are vividly distinguished
by different timbral patterns, such as harmonic/non-
harmonic, wide/narrow band, strong low/high-frequency
content and steady/transient ones. This indicates the fea-
ture learning algorithm effectively maps input data to high-
dimensional sparse feature vectors such that the feature
vectors (hidden units in RBM) are “selectively” activated
by given music.

4.3 Results and Discussion

We discuss the effect of parameters in the pipeline on the
annotation and retrieval performance.

4.3.1 Number of Frames

Figure 3 plots F-score and AROC for different number of
frames (patch size) taken from the mel-frequency spec-
trogram. It shows that the performance significantly in-
creases between 1 and 4 frames and then saturates beyond
4 frames. It is interesting that the best results are achieved
at 6 frames (about 0.16 second long). We think this is re-
lated to the representational power of the algorithm. That
is, when the number of frames is small, the algorithm is
capable of capturing the variation of input data. However,
as the number of frames grows, the algorithm becomes in-
capable of representing the exponentially increasing varia-
tion, in particular, temporal variation.

Annotation Retrieval

Data+Algorithm Prec. Recall F-score AROC MAP P10

With AGC

MFCC only 0.399 0.223 0.242 0.713 0.446 0.467

MFCC+K-means 0.446 0.240 0.270 0.732 0.471 0.492

MFCC+SC 0.437 0.232 0.260 0.713 0.452 0.476

MFCC+SRBM 0.441 0.235 0.263 0.725 0.463 0.485

Mel-Spec+K-means 0.467 0.252 0.287 0.740 0.488 0.520

Mel-Spec+SC 0.468 0.252 0.286 0.734 0.482 0.507

Mel-Spec+SRBM 0.479 0.257 0.289 0.741 0.489 0.513

Without AGC

MFCC only 0.399 0.222 0.239 0.712 0.444 0.460

MFCC+K-means 0.438 0.237 0.267 0.727 0.465 0.489

Mel-Spec+SRBM 0.449 0.244 0.274 0.727 0.477 0.503

Table 1: Comparison of the performance for different in-
put data and feature learning algorithms. These results are
all based on a linear SVM.

4.3.2 Sparsity and max-pooling size

Figure 4 plots F-score for a set of sparsity values and max-
pooling sizes. It shows a clear trend that higher accuracy is
achieved when the feature vectors are sparse (around 0.02)
and max-pooled over segments of about 16 seconds. 1

These results indicate that the best discriminative power
in song-level classification is achieved by capturing only
a few important features over both timbral and temporal
domains.

4.3.3 Input Data, Algorithms and AGC

Table 1 compares the best results on features learned on
different types of input data and feature learning algorithms.
As shown, the mel-frequency spectrogram significantly out-
performs MFCC regardless of the algorithms. Among the
feature learning algorithms, K-means and sparse RBM gen-
erally perform better than SC. In addition, the results show
that the AGC significantly improves both annotation and
retrieval performance, regardless of the input features.

4.3.4 Comparison to state-of-the-art algorithms

Table 2 compares our best results to those of state-of-the-
art algorithms. They all use MFCC features as input data
and represent them either using a Gaussian Mixture Model
(GMM), as a bag of frames [20], or Dynamic Texture Mix-
ture (DTM) [4]. They have progressively improved their
performance by building on the previous systems, such
as, in Bag of Systems (BoS) [8] or Decision Fusion (DF)
decision-fusion. However, our best system trained with a
linear SVM shows comparable results. In addition, with
nonlinear neural-network classification, our system outper-
forms the prior algorithms in F-score and all retrieval met-
rics.

1 We found that the average length of songs on the CAL500 dataset
is approximately 250 seconds, which suggests that aggregating about 16
(≈ 250/16) max-pooled feature vectors over an entire song is an optimal
choice.
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Methods Prec. Recall F-score AROC MAP P10

HEM-GMM [20] 0.374 0.205 0.213 0.686 0.417 0.425

HEM-DTM [4] 0.446 0.217 0.264 0.708 0.446 0.460

BoS-DTM-GMM-LR [8] 0.434 0.272 0.281 0.748 0.493 0.508

DF-GMM-DTM [5] 0.484 0.230 0.291 0.730 0.470 0.487

DF-GMM-BST-DTM [5] 0.456 0.217 0.270 0.731 0.475 0.496

Proposed methods

Mel-Spec+SRBM+SVM 0.479 0.257 0.289 0.741 0.489 0.513

Mel-Spec+SRBM+NN 0.473 0.258 0.292 0.754 0.503 0.527

Table 2: Performance comparison: state-of-the-art (top)
and proposed methods (bottom).

5. CONCLUSION AND FUTURE WORK
We have presented a sparse feature representation method
based on unsupervised feature-learning. This method was
able to effectively capture many timbral patterns of mu-
sic from minimally pre-processed data. Using a simple
linear classifier, our method achieved results comparable
to state-of-the-art algorithms for music annotation and re-
trieval tasks on the CAL500 dataset. Furthermore, our sys-
tem outperformed them with a non-linear classifier.

To ensure the discriminative power of our proposed fea-
ture representation method, we need to evaluate it on larger
datasets, such as, the Million Song Dataset [1] or Magnata-
gatune [12] and also for different classification tasks.
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ABSTRACT 

Nowadays, huge sheet music collections exist on the 
Web, allowing people to access public domain scores for 
free. However, beginners may be lost in finding a score 
appropriate to their instrument level, and should often re-
ly on themselves to start out on the chosen piece. In this 
instrumental e-Learning context, we propose a Score 
Analyzer prototype in order to automatically extract the 
difficulty level of a MusicXML piece and suggest advice 
thanks to a Musical Sign Base (MSB). To do so, we first 
review methods related to score performance information 
retrieval. We then identify seven criteria to characterize 
technical instrumental difficulties and propose methods to 
extract them from a MusicXML score. The relevance of 
these criteria is then evaluated through a Principal Com-
ponents Analysis and compared to human estimations. 
Lastly we discuss the integration of this work to @-
MUSE, a collaborative score annotation platform based 
on multimedia contents indexation. 

1. INTRODUCTION 

In the context of knowledge transmission, musical know-
how presents specific features to be efficiently preserved 
and shared. Indeed, to play correctly and nicely an in-
strument, one should at the same time acquire physical 
(gestures, hands position, listening) and intellectual (mu-
sic theory, score reading) skills. As such, conceiving a 
service to preserve, transmit and share musical know-how 
is a complex issue, as we deal with both music hearing 
faculties and artistic gestures production. 

While more and more instrumental e-Learning services 
are proposed to music amateurs (Garage Band 1 , 
Song2See2, iScore3), few of them aims at sharing instru-
mental know-how on a large scale. Therefore, we propose 
to build a Musical Sign Base (MSB), grounded on the 

                                                           
1 http://www.apple.com/fr/ilife/garageband/ 
2 http://www.songquito.com/index.php/en/ 
3 http://rcmusic.ca/iscore-home-page 

Sign Management methodology [1], in order to collect 
annotated performances (personal interpretations or 
stances) each related to a given musical work (class). 
This base can be used to compare various performances 
from music experts or students, and also to dynamically 
build new music lessons from the available content. To 
allow musicians to feed this base, we designed a colla-
borative score annotation platform: @-MUSE 
(@nnotation platform for MUSical Education). It allows 
users to illustrate abstract scores (notation) with 
dia content depicting advices, exercises or questions 
dexed on the piece (annotation) [2]. However, learners 
may want to be guided in their choice of a new piece to 
learn, and to obtain rapidly some starting recommenda-
tions to begin learning it on appropriate bases, before any 
teacher can annotate the piece. That is why, annotations 
created previously on similar pieces can be useful in this 
frame in order to depict basic information on the new 
piece. 

To do so, we present in this paper a Score Analyzer 
prototype in order to automatically identify remarkable 
parts in a musical piece, from a performer viewpoint. For 
the time being, we choose to concentrate on the piano for 
several reasons: the authors are pianists and work in col-
laboration with piano and guitar experts from music con-
servatories, but also, the piano repertoire is extremely 
rich, both historically and technically. Indeed, we want 
our system to be able to manage not only basic know-
how, but also advanced one, on virtuoso instrumental 
works. 

In the first part of this work, we explore existing me-
thods to automatically extract musicological and technic-
al information from a digital score. For this knowledge to 
be relevant to performers, we base this study on the needs 
of a pianist who would discover a new piece, following 
the process generally used by piano teachers to introduce 
a new work to their students. We then propose seven cri-
teria to characterize technical instrumental difficulties 
and give methods to extract them from a MusicXML 
score. The relevance of these criteria is then evaluated 
through a Principal Components Analysis (PCA) and 
compared to human estimations. Lastly we discuss the 
integration of this work to @-MUSE, our collaborative 
score annotation platform. 
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personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
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2. MUSIC EDUCATION AND ARTIFICIAL 
INTELLIGENCE 

The learning of an instrument generally consists in assi-
milating a basic repertoire to progress while enjoying 
playing real artistic compositions instead of only repeat-
ing scales mechanically, which can be boring and demo-
tivating. Most of these technical points are directly dealt 
in the context of the considered pieces. This is why it is 
essential to select an appropriate corpus for the learner, 
and  to quickly detect remarkable technical points in or-
der to assimilate them, and then concentrate on higher-
level considerations, such as expression and musicality. 
Pointing such features is generally the job of the teacher, 
until the learner is able to detect them by himself (self-
regulation). In the frame of the @-MUSE project, our aim 
is to assist musicians in this procedure using descriptive 
logics adapted to each piece genre (baroque, classical, 
romantic, etc). Figure 1 details a generic model to in-
stance each descriptive logic. It is derived from how 
teachers introduce new pieces to their students [4]. To 
extract the different necessary information, we use the 
standard MusicXML format [3] which describes scores 
logically, staff by staff, measure by measure, and lastly 
note by note (Figure 2). 

As shown on Figure 1, the first step in our model 
consists in placing the musical work in its context 
(composer, period, form metadata). In our frame, it can 

be done using metadata such as title or composer, present 
in the MusicXML file. In addition, specialized music web 
services such as MusicBrainz1 or Last.fm2 can be queried 
to obtain more metadata to illustrate the piece (for 
instance, a portrait and biography of the composer, or an 
indication about the piece style). Several performances of 
the piece can be retrieved from video sharing websites in 
order to get a glimpse of how the piece should sound. 

The second step is to analyze the global form of the 
piece. Most information about it exists within the piece 
title (i.e.: Sonata, Fugue, etc.). The challenge is thus to 
detect the main parts of the piece which characterize its 
form (i.e.: Introduction, part 1, part 2, Coda). Indeed, 
grasping its structure is essential to performers, as each 
part may sound totally differently (especially on ad-
vanced pieces). In our frame, this also enables a better 
indexation for annotations. To achieve that goal, we pro-
pose to rely on some of the characteristic tags within the 
MusicXML file. Indeed, score symbols such as direction 
texts (e.g. “meno mosso”), tempo and key modifications, 
double bars generally indicate the beginning of a new part 
within the piece. While this method seems quite "naïve", 
it gives acceptable results most of the time. Some excep-
tions may occur, especially on contemporary pieces, 
which present unconventional structures. 

After indicating main parts of the piece, the teacher 
generally brings the attention of the learner on the re-
markable rhythmic or harmonic patterns the piece is build 
on (if any), leading to more technical and detailed prac-
tice. In our work, discovering predefined patterns such as 
scales, arpeggios or trills may be done using a memory 
window of successive intervals. Indeed, scales will cor-
respond to sequences of ascendant or descendant seconds, 
arpeggios to sequences of triples, etc. Each detected pat-
tern can then be linked to a generic annotation explaining 
how to work on it. However, detecting more complex and 

                                                           
1 http://musicbrainz.org, visited on the 10/04/2012.  
2 http://www.last.fm, visited on the 10/04/2012.  
 

 
Figure 1. Generic model for musical pieces descriptive logics 

 

 
Figure 2. Musical score logical structure 

 



  
 

non-determined patterns remains a challenge, as it does 
not only involve rhythms and pitch features, but also po-
lyphonic ones. Moreover, it does not present a unified 
definition of “similarity”. Two fragments can be consi-
dered as “similar”, without having the same pitches, but 
by possessing similar intervals (transposition). Several 
works exist on Musical Pattern Discovery. Among them, 
[5] presents a method based on time windows and define 
different types of patterns (abstract patterns, prefixes, pat-
terns network). Still, each suggestion given by our system 
calls for a validation by a music professional. 

In order to semantically annotate the detected struc-
tures, we need a musical form ontology. While the Music 
Ontology [6] is particularly fitted to the music industry, it 
lacks some concepts to be effective in music education. 
More specialized ontologies exist, such as the Symbolic 
Music Ontology (allowing to manipulate Voices and Mo-
tifs concepts), the Chord Ontology or the Neuma ontolo-
gy (for Gregorian Music) [7], however, a real form tax-
onomy has yet to be built to manage the manipulation of 
concepts such as Sonata, Fugue, Theme or Coda. 

The last step of our introduction lesson is to underline 
specific difficulties of the piece. This will allow us to 

both specify the global level of the piece, and to detect its 
technical difficulties measure by measure. To do so, we 
propose in what follows seven criteria to evaluate a piano 
piece difficulty. 

3. CRITERIA DEFINITION AND RETRIEVAL 

In Table 1, we propose seven criteria affecting the 
level of a piece for the piano and detail how they can be 
estimated from a MusicXML file. These criteria were de-
fined on the base of pianists experiences, both profes-
sionals and amateurs. They may be applied to other in-
struments with some adaptations (see Instruments column 
in Table 1). Globally, a piano piece difficulty depends on 
its tempo, its fingering, its required hand displacements, 
as well as its harmonic, rhythmic and polyphonic fea-
tures. Although we define each criteria separately, they 
affect each other in a complex manner. In particular, fin-
gerings remain hard to extract from a score, as most Mu-
sicXML files do not contain this information. Indeed, 
while other criteria reside in the basic notation layer 
(notes pitch and duration), the fingering is from the anno-
tation layer and directed at humans only (human perfor-
mance information). 

Performance diffi-
culty criterion Definition MusicXML implementation Instruments 

Playing speed 

The required fingers velocity to play the piece. Depends on the 
tempo and the shortest significant note value (i.e. a piece present-
ing a high tempo may contain only long values, and conversely, a 
piece with a low tempo may contain groups of short notes thus 
increasing the required fingers agility for the players) 

<note><type> elements 
Tempo attribute in <sound> element 

All 

Fingering 

Fingering: choice of finger and hand position on various instru-
ments. Different notations exist according to the instrument. (ex: 
in piano: 1 = thumb, 2 = index finger, 3 = middle finger, etc.) 
Cost functions are used on intervals to extract the general finger-
ing difficulty level 
See [8][8][9] for more detail. 

<fingering> element within each 
<note> element 

 

All, requires adap-
tations in con-

straints and costs 
functions (some 

instruments do not 
use thumbs) 

Hand Displacement 

Ratio of hands displacements greater than an octave (12 semi-
tones). Depends on the duration of the interval: if the duration 
exceeds 2 beats (i.e. 2 quarters in 4/4, 2 eights in 6/8), the dis-
placements is not considered as difficult. The difficulty degree of 
the displacement evolves with its size (in pitch), its duration and 
its fingering 

Combined <note> elements where 
<pitch> gap > 12 and <duration> 
gap < 2 beats 

 

All, requires adap-
tations depending 
on the instrument 

morphology 

Polyphony 

Chords ratio (aggregate of musical pitches simultaneously at-
tacked) 
Polyphonic difficulties may increase with the number of notes 
played at the same time and their fingerings. 
Simultaneous voices (in a Fugue for instance) constitute special 
cases of polyphonic difficulties to treat. 

<chord> element 

 

All (except for mo-
nophonic instru-

ments, such as the 
flute) 

Harmony 

Ratio of differences from the piece main tonality. Characterized 
by the amount of accidental alterations. 

<alter> and <accidental> elements 

 
All 

Irregular Rhythm 

Ratio of irregular polyrhythms (simultaneous sounding of two or 
more independent rhythms). Example: synchronizing a triplets 
over duplets 

<time-modification> element 

 

All (except for mo-
nophonic instru-

ments) 

Length 
The number of pages of the score. May also be measured in bars 
number to avoid dependency to the page layout. 

new-page attributes or <measure> 
elements All 

Table 1. Performance difficulty criteria in piano practice 

 



  
 

Several works present methods to automatically de-
duce fingerings on a given musical extract for piano 
([8][9][10]). Most of them are based on dynamic pro-
gramming. All possible fingers combinations are generat-
ed and evaluated, thanks to cost functions. The latter are 
determined by kinematic considerations. Some functions, 
even consider the player’s hand size to adjust its results. 
Then, expensive (in term of effort) combinations are sup-
pressed until only one remains, which will be displayed 
as the resulting fingering. While the result often differs 
from a fingering determined by a human expert, it re-
mains largely playable and exploitable in the frame of an 
educational usage. However, few algorithms can process 
polyphonic extracts, and many other cases are ignored 
(i.e., left hand, finger substitutions, black and white keys 
alternation).  

Even if more work is needed on this issue, the use of 
cost functions remains relevant as it is close from the 
process humans implicitly apply while working on a mus-
ical piece. Therefore, we use this method in our Score 
Analyzer prototype to translate extracted criteria into dif-
ficulty indicators (see part 5). But to do so, we need to 
study how our criteria discriminate a corpus of piano 
pieces, both objectively (through a components analysis) 
and subjectively (based on pianists experience). 

4. PIANO SCORES CORPUS CLUSTERING 

To study how our criteria discriminate scores, we rea-
lized a PCA on a sample of fifty piano pieces (Figure 5). 
The pieces were selected to be representative of a classic-
al piano cursus in a French Music Conservatory. Most 
pieces concern intermediate to advanced players, fewer 
target beginners and virtuosi. Most MusicXML files were 
retrieved from online music notation communities such as 
MuseScore.com, Noteflight or the Werner Icking Music 
Archives. Some were generated from PDF files using the 
SmartScore™ OCR software. 

The criteria defined in Table 1 were extracted on each 
piece. Displacements, chords and harmonic characteris-
tics are distinguished whether they occur on the right 
(RH) or the left hand (LH). Fingerings were not exploited 
for the time being as work is in progress to deduce them 
from MusicXML files (see part 3). Our analysis thus 
counts 9 numeric variables (Figure 4), and 1 nominal va-
riable (composer). Each ratio is calculated on the base of 
the total number of notes (e.g. harmonic criteria), or the 
total number of hands positions (e.g. displacements, 
chords) within the piece. A displacement is thus defined 
as a pair composed of two successive hand positions. 

A correlations study (Figure 3) points out some links 
between variables. Some are musically natural (i.e. har-
monyLH and harmonyRH, harmonic characteristics con-
cern both hands). We also note a strong correlation (81%) 
between chordsLH and displacementsLH. This value 
could characterize accompaniments presenting an alterna-
tion of a low-pitched bass and a middle or high-pitched 
chord, thus inducing regular large displacements and 

chords at the left 
hand (ragtime, 
waltz). Lastly, 
the piece length 
can be linked to 
its playing speed, 
which characte-
rizes advanced 
and virtuosi 
works, demand-
ing an important 
fingers velocity 
on a long dura-
tion (stamina). 

The PCA then gives an optimal projection of each 
piece in the 2D space of the first principal components. 
Figure 5 presents this projection as well as the three 
classes detected by the analysis. This clustering was rea-
lized through a hierarchical clustering using the Ward’s 
method [11] on the first few principal components. The 
resulting tree is then cut according to its corresponding 
indices, in order to find an appropriate number of clus-
ters. Lastly, this clustering is consolidated using a k-
means algorithm. The first interpretation of these three 
classes validates the relevance of our criteria to estimate 
the difficulty level of a piano piece. Indeed, we notice 
that at least two of the classes naturally regroup pieces 
according to their level (class 1 and 2). A further observa-
tion backed by a Student test (variable means compari-
sons between the whole population and the clusters) gives 
a better interpretation of the classes. Class 1 mostly re-
groups pieces addressed to beginners (Kinderszenen, 
Schumann’s Choral) and to intermediate musicians 
(Bach’s Invention, Sonatines). The Student test confirms 
this tendency, as most variables remain below average for 
this class: few chords, displacements and pages, simple 
harmonies (C major or A minor). Yet, the tempo remains 
lively. Rhythmic difficulties are noticeable on interme-
diate pieces. They generally feature characteristic rhyth-

 
Figure 3. Variables correlation map 

 

 
Figure 4. Student test (means comparison) 

 



  
 

mic patterns which constitute interesting educational ma-
terial (e.g. 1st Arabesque by Debussy). Class 2 contains 
advanced to virtuoso works (Chopin’s Etude, Ravel’s 
Toccata), featuring a vivid tempo, large and numerous 
displacements on the keyboard, a complex harmony and 
many chords. We also note some borderline individuals 
(The Little Negro by Debussy, or the 2nd Gymnopédie by 
Satie), which could be considered as beginner pieces but 
still present uncommon harmonic and rhythmic struc-
tures, thus being hard to classify objectively. Class 3 
seems to regroup pieces featuring a left hand playing a 
“bass+chord” accompaniment (ragtime, waltz, cakewalk). 
The level of most pieces is intermediate. Indeed, the Stu-
dent test indicates that despite the high ratio of displace-
ments and chords, the low tempo and the simplicity of the 
harmonies compensate for it. As such, this particular 
class is also representative of specific musical genres. 
This clustering serves as a complement to the “bounds” 
approach used in Score Analyzer. 

5. SCORE ANALYZER PROTOTYPE 

The criteria presented in the previous sections have 
been implemented in a Web application called Score 
Analyzer 1  (SA). This module is integrated to the 
@-MUSE platform as a Web service in order to automat-
ically evaluate a piece level and identify its difficult parts. 
The SA engine takes any well-formed MusicXML file as 
input and parses it to extract knowledge exploitable from 
a performer point of view. Following the scheme we de-
tailed previously (Figure 1), the context of the piece is 
briefly analyzed (title, composer) and a few statistics are 
                                                           
http://e-piano.univ-reunion.fr/tests/ScoreAnalyser/readScore.php,  
visited on the 05/06/2012, beta version. 

displayed. Then, main parts of the piece are identified, 
and lastly, difficulty estimations are given for each crite-
rion, using a mark from 1 (beginner/easy) to 4 (virtuoso). 
A mean is also calculated to give a global appreciation of 
the piece difficulty. This allows a better readability of the 
outputs for musicians. For each criterion, bounds were 
defined with the help of teachers: for instance, a chord 
ratio under 10% corresponds to the mark 1, while a dis-
placement ratio above 20% corresponds to a 4. These 
bounds determination was transparent for teachers, as 
they were simply asked to rate each criteria from 1 to 4 
on a training corpus. The given marks were then corre-
lated to the ratio extracted on each piece, in order to cali-
brate average bounds corresponding to the difficulty le-
vels felt by musicians. Thus, we notice that most of the 
criteria do not have a linear distribution, which consti-
tutes a pianistic reality. The synchronization between 
both hands is also taken into account. For instance, if 
each hand obtains a mark of 2 for the displacements crite-
rion, then the global difficulty mark for this criterion will 
be 3, as synchronizing both hands will create an addition-
al difficulty.  

As such, we define this method as “semi-objective”. 
Indeed, score level estimation can never be a totally ob-
jective task: players will judge a piece differently accord-
ing to their taste, level or background. Therefore, we use 
two distinct methods to validate SA estimations. The first 
one consists in confronting it to the clustering obtained 
through the PCA described in the previous part. This is 
the “objective” validation. The second one simply con-
sists in confronting SA results to pianists estimations 
(“subjective” validation). To facilitate the comparisons, 
we merged advanced and virtuosi pieces into the same 
class within SA. The contingencies table (Table 2) allows 
to better visualize the differences between the PCA and 

 
Figure 5. Individuals projection on the PCA first two axes and corpus details 

 



  
 

Score Analyzer’s results. While they seem numerous, on-
ly one is a major disagreement (3/1 marks on Beethoven 
Sonata in F). The other distinctions, especially the inter-
mediate/beginners ones, may be due to the fact that hu-
mans balance criteria whereas the PCA considers each of 
them of equal importance. Therefore, we noticed that for 
pianists, an increase of the displacement ratio raises the 
piece level much faster than other criteria. Moreover, as 
stated in the previous part, the clustering given by the 
PCA is also affected by the musical genre of the piece. 
Humans do not tend to be affected by this metadata, even 
if some genres are naturally associated with higher levels 
(i.e. impressionist or contemporary music).  

For the “subjective” evaluation, we asked three piano 
teachers to estimate the difficulty level of each piece by 
attributing it a mark between 1 and 3. No criteria were 
imposed. When opinions differ, the final mark is picked 
according to the majority. The results given in Table 3 
show a better correspondence between SA estimations 
and human ones, which reinforces the “bounds” method 
defined previously. The main difference consists in unde-
restimations from SA, especially on advanced pieces. In-
deed, pianists also take expression and musicality diffi-
culties into account, while our system only consider tech-
nical difficulties. Therefore, this study leads us to pursue 
our work by expanding the set of criteria to improve our 
estimations. 

6. CONCLUSION 

In this paper, we proposed an automatic Score Analyzer 
to determine the difficulty level of piano pieces. This pro-
totype is based on seven criteria characterizing technical 
features of a piano piece: playing speed, fingerings, hands 

displacements, polyphony, harmony, rhythm and length. 
We thus proposed methods to extract these criteria from a 
MusicXML scores, and realized a PCA to validate them. 
This analysis permitted to establish three classes among a 
corpus of fifty selected piano pieces. These classes were 
then confronted to Score Analyzer estimations, which are 
tuned according to piano teachers expertise. 

Improvements on this work include the integration of 
fingering related difficulties, but also the adaptation to 
students levels. Indeed, the sense of difficulty within a 
musical work is mostly dependent from the musician’s 
background. We thus imagine a weighting system to per-
sonalize our analysis. We also intend to implement local 
analysis (by measures) in order to identify specific diffi-
cult parts. The criteria decomposition would then allow to 
extract the main cause of the difficulty and thus link it to 
an annotation created on the @-MUSE platform. Other 
perspectives include integration of “expressive” criteria 
(emotions, nuances, rubato, attacks), as well as adapta-
tions and tests on scores for different instruments. 
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ABSTRACT

Optical music recognition (OMR) and optical character
recognition (OCR) have traditionally been used for doc-
ument transcription—that is, extracting text or symbolic
music from page images for use in an editor while dis-
carding all spatial relationships between the transcribed
notation and the original image. In this paper we discuss
how OCR has shifted fundamentally from a transcription
tool to an indexing tool for document image collections
resulting from large digitization efforts. OMR tools and
procedures, in contrast, are still focused on small-scale
modes of operation. We argue that a shift in OMR devel-
opment towards document image indexing would
present new opportunities for searching, browsing, and
analyzing large musical document collections. We
present a prototype system we built to evaluate the tools
and to develop practices needed to process print and ma-
nuscript sources.

1. INTRODUCTION1

Optical character recognition (OCR) is used to convert
digital images of text into computer-manipulable repres-
entations, which in turn are used to store and index the
content of books, newspapers, scholarly journals, and
magazines. OCR has been integrated into many large-
scale print digitization initiatives, and is currently being
used to provide users with the unprecedented ability to
search and retrieve millions of sources instantly—a task
that previously would have taken many lifetimes.

While OCR is opening up new avenues for users to
search, discover, and analyse large quantities of textual
material, the content of printed music documents is still
trapped almost entirely in the physical world. Even col-
lections that have been digitized and placed online are
still merely pictures of pages, with no means of extract-
ing their contents. Unfortunately, current optical music
recognition (OMR) software packages have not been de-

1Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2012 International Society for Music Information Retrieval 

signed to process large volumes of page images effi-
ciently. Rather, they are still designed for small-scale,
single user transcription. In order to provide OMR tools
comparable to the OCR tools now available there is a
need for developing tools, technologies, and best prac-
tices for recognizing, indexing, searching, and retrieving
large amounts of digital page images.

We believe that large-scale OMR projects are critical
to research in MIR and also computational musicology.
The vast majority of human musical output from the past
1000 years does not exist in any kind of manipulable
digital format but rather lies within the enormous collec-
tions of printed music and music manuscripts sitting on
library shelves across the globe. Relying on humans to
transcribe and share this music is expensive and unsat-
isfactory for many purposes. Many human transcrip-
tions, especially of early music, involve a substantial
amount of personal interpretation on the part of the tran-
scriber, and end users may not entirely agree with a par-
ticular interpretation. Moreover, many musicologists are
interested in studying how the extra-musical content on a
page informs the musical content, and these scholars
need to be able to access the orginal page images in or-
der to draw concusion. By combining automatic tran-
scription with retrieval of the original page image, we
can build systems that permit users to retrieve docu-
ments by content but then rely on the original image for
study, relaxing the need for exact or “objective” tran-
scription. Analogous to the situation with OCR, even
lower-accuracy OMR would be sufficient to direct a user
toward documents of interest, an order of magnitude
more quickly than the current situation whereby re-
searchers must visit library shelves and manually study
every page.

In this paper we argue that there are a number of
OMR technologies that must be in place to enable mass
music recognition and retrieval projects. We will discuss
the development of similar OCR technologies built to
support large-scale text document image indexing and
retrieval systems and compare that to the existing OMR
technologies. As part of this discussion, we present a
prototype project developed as part of the Single Inter-
face for Music Score Searching and Analysis (SIMSSA)
initiative. This project includes the development of an



OMR workflow system, a notation encoding format for
storing the results of our OMR system, and the develop-
ment of search and retrieval tools. We discuss our find-
ings from this prototype, and present some of
opportunities for future work.

2. PREVIOUS WORK

Both OCR and OMR were initially conceived as tran-
scription technologies; that is, a digital page image was
supplied, the textual or musical content was extracted,
and then the original image was discarded. The result
was the transcribed content of the page in a format suit-
able for further editing in a word processor or notation
editor. This method left no direct correspondence
between the page content and its location on the original
image in the output format.

When computing advanced enough to display im-
ages, OCR began to be used as a means of navigating
and retrieving document images based on their textual
content. Although the recognition process remained the
same, OCR file formats began preserving correspond-
ence between document content—words, paragraphs,
columns, graphics—and the original page image. When
combined with a search engine, this provided users with
the ability to navigate to the exact occurence of a search
word or phrase. This was the emergence of the shift in
OCR from a technology that “merely” transcribed text,
to one that permitted navigation through large numbers
of digital document images. Many researchers at this
conference have probably experienced the benefits of
these systems for locating journal articles or conferences
papers in systems like JSTOR.

In the next section we will look at a number of tech-
nologies in OCR that have supported its emergence as a
document image navigation technology. We will then
consider a few of the projects that have tried to do simil-
ar things with printed music documents.

2.1. Document Image Formats

One of the most crucial components of a document im-
age indexing system is the ability to correlate recognized
objects with their location on the page. In this section we
discuss a few formats developed for textual document
indexing.

Nagy [1] describes an early system for using OCR on
document images from pages of technical journals, al-
lowing users to search and retrieve image segments con-
taining their query terms. He notes that a “major strength
of the approach is the preservation of the original layout
of the documents, which not only augments reading
comprehension but also often conveys indispensable in-
formation on its own.” This seems to be the first such
mention of retrieving document page images using OCR
analysis.

Stehno et al. [2] describe the METS/ALTO format
(Metadata Encoding and Transmission Standard / Ana-
lyzed Layout and Text) for mapping layout structures
and text passages from book pages. This is currently the

most widely used standard for preserving text layout de-
rived from OCR systems.

Several other formats deserve a brief mention as
well. The hOCR format is supported by the OCRopus
and Tesseract software, used by the Google Book digit-
ization project [3]. Portions of the Internet Archive digit-
ization project use the DjVuXML format which contains
the words and coordinates of a “hidden” layer [4]. The
HathiTrust Project uses their own XML format.

The PAGE format [5] is designed to encode data for
evaluating OCR document analysis. It is different than
most other formats presented here, in that it encodes
ground-truth data for evaluating document layout. This
includes encoding features like reading order (the order
in which columns or segments of a page are read by a
human).

In all of these cases, document layout and text con-
tent are maintained in an integrated document format, al-
lowing the OCR system to store image coordinates for
each document element (words, lines, paragraphs, etc.)
recognized by the analysis software. In the next section
we will briefly discuss how this data may be used in an
indexing system to retrieve page images. 

2.2. Document Image Retrieval

Indexing for page image retrieval is more complex than
indexing for simple text retrieval. An index must be built
containing all the words that have been recognized from
the images, but these must be further correlated with
their page and location on the page image. Retrieving
page images requires indexing and storing key words
and their positions in the document images where they
occur. This gives users the ability to enter a search query
(a word or phrase) and retrieve the pages where the res-
ult of their query can be found, highlighting their exact
positions on the page image.

The HathiTrust has constructed a correlated text and
image index for their collection. They incorporate the
graphical locations for each recognized word into their
index [6]. They note that the coordinate positions for
every word accounts for 85% of the index size of a par-
ticular book. This means that for their required goal of
10 million books, their expected index size is two tera-
bytes of which most of the information is OCR coordin-
ate data.

2.3. Large-Scale OCR

To handle large numbers of documents, OCR applica-
tions have moved away from standalone desktop applic-
ations to server-based solutions. This allows distributed
task separation, whereby multiple teams can simultan-
eously work on digitization, recognition, correction, and
publishing without being bound to a single workstation.
Many tasks can be partially or fully automated, requiring
human intervention only as a quality-control measure.

In the commercial sector there are a number of large-
scale solutions. Perhaps the most successful example of



this is the Abbyy Recognition Server1, a centralized
OCR workflow management system. Documents are in-
gested by digitization, automatically recognized, then
verified, corrected, and further indexed by humans sitt-
ing at multiple workstations. For open-source software,
there are a number of command-line tools that can be
chained together to form an automated OCR system. The
OCRopus and Tesseract systems [7], developed by
Google for their book search projects, contains a number
of tools for creating highly customizable OCR systems.
The recently-completed IMPACT (Improving Access to
Text) project [8], a €16.5M research project, focused on
building new OCR tools and best practices for libraries
and archives. They have created a system that allows
multiple image processing, OCR, and results evaluation
tools to be chained together to form an ad hoc recogni-
tion system.

Since recognition systems will never be perfect, tech-
niques that enable humans to correct OCR and ensure
that recognition errors will not create problems for re-
trieval. Correction, however, can be very time and la-
bour intensive. Some unique solutions have been de-
veloped to help offset the costs of this task. The
Australian Newspaper Project [9] has created a “crowd-
sourced” correction system, where more than 9,000 vo-
lunteers have now corrected more than 12.5 million lines
of text, with more corrections added all the time. The re-
CAPTCHA project [10] has produced over 5 billion hu-
man-corrected OCR words by presenting the correction
task as a spam-fighting challenge to prove that the cor-
rector is a human and not an automated system. Tools
for distributed proofreading and correction allow for a
constantly-improving search and retrieval system, and
also for the collection of pixel-aligned ground-truth data
to further improve the accuracy of OCR systems. 

2.4. Music Document Image Retrieval

The purpose of providing a review of tools and tech-
niques employed by text search projects is to compare
and contrast it to similar work done for OMR. Unlike the
large text initiatives, such as the HathiTrust, Google
Books, and Internet Archive projects, we are unaware of
any publicly available databases that allow users to re-
trieve page images from printed books based on auto-
matic transcription of the page contents using OMR.
There are, however, a few projects that have developed
some functionality worth mentioning here.

The PROBADO Music Project [11],[12],[13] [14] is
perhaps the largest and longest-running project incorpor-
ating large-scale OMR for use in search systems. This
project seeks to provide a unified interface for retrieving
symbolic and audio representations of music pieces. As
of October 2010, their dataset consisted of 50,000 pages
from 292 books. The content of their dataset is music
printed in common Western notation in a variety of

1 http://www.abbyy.com/recognition_server/

genres and instrumentations, including opera, symphonic
works, and Classical and Romantic piano music.

The primary goal of the PROBADO project is to al-
low symbolic, image, and audio synchronization, provid-
ing users with the ability to navigate a score and hear the
audio, or navigate the audio and jump to its correspond-
ing position in the score. Their technique generates
MIDI files from OMR, rendered to an audio representa-
tion, and then aligned with different audio recordings of
the work. The audio is then aligned at the measure level
with a score image, allowing the system to highlight the
current measure as the audio plays.

The PROBADO project uses the SharpEye ASCII
file format for storing the notation-to-pixel coordinate
information. This format is documented at [15], but is
only supported by the SharpEye OMR system. Similarly,
Hankinson et al. [16] propose the use of the Music En-
coding Initiative (MEI) format for maintaining notation-
to-pixel correspondence.   

Bainbridge et al. [17] describe a Greenstone plug-in
utilizing the CANTOR OMR system. Their system tran-
scribes the notated music and makes it available for
searching. In their system they make the original page
image available for viewing. Unfortunately, develop-
ment on this system seems to have stopped, and no
working version of their retrieval system can be found.

3. LU PROTOTYPE

We have created a prototype system providing notation-
based retrieval of document images in a web application.
The Liber Usualis (LU) [18] is a liturgical service book
produced by the Roman Catholic church and an import-
ant source for Gregorian chant. It uses square-note
neume notation derived from the earlier Franconian style
but modernized by the monks at Solesmes, France in the
late 19th Century. There has been very little work on
OMR for this type of notation, with the exception of
[19]. We performed OMR and OCR on all 2,340 page
images in this book, maintaining notation and image cor-
respondence. We then developed a web application that
allows basic query input based on n-gram indexing of
the notation content, highlighting the locations of results
in situ on the page image. In this section we will briefly
review the components of this prototype. A full over-
view may be found in [20], and some details of the
specific technologies we developed may be found in
[21], [22]. We have made a public demo of our retrieval
system available online.2

3.1. OMR Workflow

Our workflow is illustrated in Figure 1. We begin with a
page image, captured by either scanning or photograph-
ing a book. In the case of the LU, we began with a com-
plete PDF file of pre-scanned images. We then sent each
page through the workflow. 

2http://ddmal.music.mcgill.ca/liber



The first step was automatic page layout analysis,
which we used to separate the textual and musical areas
of the page. We performed the layout analysis using a
version of Aruspix, an application originally designed
for OMR of Renaissance printed music, which we modi-
fied to operate on the neume notation in the LU. The
page images were automatically scaled and straightened.
Aruspix is capable of automatically locating and identi-
fying various graphical page elements, providing the
ability to distinguish between musical and textual con-
tent: musical staves, lyrics, ornate letters, lyrics, title ele-
ments, or other text. The different page elements are giv-
en different pixel colours after the automated analysis,
creating separable “layers” that contain either exclus-
ively music or exclusively text elements. The automated
analysis saves a considerable amount of time and labour,
although any mis-classified page elements do need to be
corrected manually. Figure 2 shows the correction inter-
face in Aruspix, with a pop-up context menu allowing
the operator to select an area of the image and re-classify
it as a different type of page. The LU does not have a
particularly complex layout, and most pages took
between 30 and 130 seconds to correct (median 77 s).

Figure 1: OMR Workflow for the Liber Usualis
Following the layout analysis, the text layers were

sent through an OCR workflow stage, which allowed the
text to be searched and linked to the specific regions of
each page on which the text occurred. We used
OCRopus, a third-party open-source OCR engine, to
perform the text analysis. Minimal work was done to
correct the OCR output, however. Post-OCR, we used a
simple edit distance to auto-correct recognized text from
a dictionary of liturgical Latin words. Lyrics that were
broken into syllables were automatically re-joined at a
hyphenated break to form complete words. No further
human correction or processing was performed. The res-
ulting text has a large number of errors, but it was suffi-
cient for a “proof of concept.” The output of this stage

was fully OCRed text lines with the bounding-box co-or-
dinates for the full line.

The music layer was sent through an OMR work-
flow. Using the Gamera toolkit [23], we first removed
the staff lines from each musical layer. Removing staff
lines not only facilitated OMR but also allowed us to
compute precise bounding boxes for each musical ele-
ment. These bounding boxes are essential information
for retrieval systems that wish to show the results of mu-
sical queries on the page. Gamera uses adaptive k-
nearest-neighbour classifiers for musical symbols, im-
proving its classification performance by using the in-
formation from the errors corrected on previous pages. It
took between 7 and 16 minutes to correct the errors on
most pages (median 11 min). Gamera keeps track of the
location of staff lines when it removes them, but it clas-
sifies on the shapes, not the pitches of musical symbols.
The last step of the OMR workflow was a customized al-
gorithm for combining information about the location of
the staff lines, the bounding box for each shape, and the
shape of the musical symbol itself to add pitch informa-
tion to every symbol.

Figure 2: Layout Analysis and Correction in Aruspix
After extracting the pitch information and bounding

boxes for every musical symbol and text line on every
page, the final step of the workflow was to store the re-
cognized page content into a standard file format. We
chose the MEI format for a number of reasons. MEI is
an XML-based notation encoding scheme, but unlike
most notation formats it can be extended to support
many different types of notation [24]. This was particu-
larly valuable in our case, since the neume notation used
by the LU is a revival of much older plainchant notation
with additional symbols added to indicate breathing
marks or articulations. With MEI we were able to devel-
op a custom encoding scheme to support neume notation
markup, while maintaining the broader document frame-
work and markup structure of MEI.

To support document image indexing and retrieval,
MEI provides the ability to define image zones—pixel-
based bounding boxes that store co-ordinates on a refer-
ence image—and correlate them with the recognized



musical and textual elements. It is important to note here
that this is done while still preserving the musical struc-
ture; that is, the notation maintains the melodic and sym-
bolic structures that are expected from a notation encod-
ing scheme. Each musical and textual element is then
correlated with a defined zone using the MEI @facs at-
tribute. The end result is an XML hierarchy containing
both the musical, textual, and graphical information
correlated and ready to be indexed by a search engine to
facilitate image retrieval.

3.2. Indexing, Searching and Retrieval

One of the most important musicological uses for the LU
is as a compendium of important chant melodies that ap-
pear in some form across a wide variety of ancient mu-
sical manuscripts and many later compositions. Despite
its importance, there is no thematic catalogue of its mu-
sical content, and at more than 2,000 pages, it can be
very time-consuming for researchers or musicians to find
what they are looking for. To facilitate retrieval we cre-
ated an efficient index for retrieving musical fragments
from across the LU while maintaining information the
location of these melodic fragments on their respective
pages. Following Stephen Downie [25], we generated in-
dexes on n-grams, for n from 2 to 10, on the following
five features:

• pitches, a concatenated string of all of the pitch
names;

• intervals, represented as the directed melodic inter-
vals between successive pitches in musical steps;

• semitones, represented as the directed melodic inter-
vals between successive pitches in semitones;

• contour, represented as sequences of “up,” “down,”
or “repeated,” i.e., the direction of the intervals; and

• neumes, represented by their component neume
names, i.e., if an n-gram was represented by the
neume sequence “punctum clivis clivis.”

We also indexed the textual content of each page, in-
cluding the co-ordinate information for each recognized
line.

For each n-gram, the index also included the page on
which an item appeared and its aggregate bounding box.
Combined, the indexes include approximately three mil-
lion unique n-grams, which we store in an Apache Solr
instance3.

Users do not interact directly with the Solr instance.
We built a web application based on the open-source
Diva.js viewer [26] to present the original document im-
ages and highlight the results of queries on these images.
The web application uses the indexed n-grams to provide
a number of search capabilities:

• strict or pitch-invariant sequences, where the user
can type in a sequence of pitch names and it will
either search for the literal string of pitches, or use
the semitone index to search for possible matches

3 http://lucene.apache.org/solr/

that use the same intervallic content but contain dif-
ferent pitches;

• contour, containing the rough shape of the target
melody, e.g., “dduurr”;

• intervals, containing the specific shape of the target
melody, e.g., “d2 d2 u2 u3 r r”;

• neumes, where the user specifies a sequence of
neume names, e.g., “punctum clivis clivis”; and

• text, for retrieving pages based on lyrical or textual
content.

Using the co-ordinate data from the OMR and stored
in the MEI, the results from a users’ query for a pitch se-
quence will bring the user to the page where their result
can be found, with the bounding box around the search
result highlighting their query. Figure 3 shows a screen-
shot from our web application with the result of the
pitch-sequence query “edcdeee” highlighted on the ori-
ginal page image of the LU. 

Figure 3: The Liber Usualis Interface

4. DISCUSSION AND CONCLUSION

The SIMSSA initiative is a long-term research program
for investigating and supporting large-scale OMR and
document image retrieval for all types of music docu-
ments, from early manuscripts through to modern music
notation. The work presented in this paper is an initial
attempt at building systems that support processing and
retrieval at a scale and quality level that, to date, has not
been achieved for musical documents. In this paper we
have identified technologies and techniques that have
been developed to support OCR for transcribing and
navigating large numbers of document images, and have
demonstrated a prototype system we have developed as a
platform for further research into how to shift OMR
from small-scale transcription to large-scale document
image navigation and retrieval.

There are many open research questions arising for
this work that need further investigation. One of the
most critical is the need for user studies and experiment-
al interfaces for musical document retrieval. Most cur-
rent symbolic search systems are built around query in-
terfaces that provide limited access to the underlying



notated music, typically restricted simple pitch or
rhythm queries. More robust systems must be built to
support more complex analysis-retrieval tasks, such as
investigating the occurrence of specific cadential pat-
terns or movement between multiple simultaneous
voices. More complex query and analysis systems will in
turn require more sophisticated user interfaces, which
will need a deeper understanding of what what types of
questions musicologists, theorists, and performers would
like to see supported in a retrieval system.

In our opinion, OMR must move beyond desktop ap-
plications and simple transcription. New modes of oper-
ation can and should be developed, including server- and
browser-based recognition, distributed proofreading and
correction, networked recognition systems, and expan-
ded research on recognition evaluation by building cur-
ated ground-truth datasets covering different styles and
types of music notation. Our prototype system represents
a first step towards investigating many of these topics,
and through the SIMSSA project we hope to spur further
research to make the world’s music collections available
to all.
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ABSTRACT

Repetition is a fundamental element in generating and per-
ceiving structure in music. Recent work has applied this
principle to separate the musical background from the vo-
cal foreground in a mixture, by simply extracting the un-
derlying repeating structure. While existing methods are
effective, they depend on an assumption of periodically re-
peating patterns. In this work, we generalize the repetition-
based source separation approach to handle cases where
repetitions also happen intermittently or without a fixed
period, thus allowing the processing of music pieces with
fast-varying repeating structures and isolated repeating el-
ements. Instead of looking for periodicities, the proposed
method uses a similarity matrix to identify the repeating
elements. It then calculates a repeating spectrogram model
using the median and extracts the repeating patterns using
a time-frequency masking. Evaluation on a data set of 14
full-track real-world pop songs showed that use of a simi-
larity matrix can overall improve on the separation perfor-
mance compared with a previous repetition-based source
separation method, and a recent competitive music/voice
separation method, while still being computationally effi-
cient.

1. INTRODUCTION

A system that can efficiently separate a song into fore-
ground (e.g. the soloist or voice) and background (the mu-
sical accompaniment) components would be of great inter-
est for a wide range of applications. These applications in-
clude instrument/vocalist identification, music/voice tran-
scription, melody extraction, audio remixing, and karaoke.

While there are many approaches that have been applied
to this problem (see Section 2), one promising approach
is to use analysis of the repeating structure in the audio.
Many musical pieces are characterized by an underlying
repeating structure (e.g. drum loop or 4-measure vamp)
over which varying elements are superimposed. This is
especially true for pop songs where a singer often overlays
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varying vocals on a repeating accompaniment.
Recent work (see Section 2) has exploited repetition to

separate the repeating musical background from the non-
repeating vocal foreground. This work has relied on the
assumption that there is a global or a local period of repeti-
tion in the musical background. Should repeated elements
be present (e.g. reuse of the same chord voicing in the
piano) but performed in a way that is not obviously peri-
odic (e.g. occasional chordal piano “fills” at the appropri-
ate moments), existing repetition-based approaches fail.

In this work, we generalize the repetition-based source
separation approach to handle cases where repetitions also
happen intermittently or without a fixed period. Instead of
looking for periodicities, the proposed method identifies
repeating elements by looking for similarities, by means
of a similarity matrix. Once identified, median filtering
is then performed on the repeating elements to calculate a
repeating spectrogram model for the background. A time-
frequency mask can finally be derived to extract the repeat-
ing patterns (see Section 3). This allows the processing
of music pieces with fast-varying repeating structures and
isolated repeating elements, without the need to identify
periods of the repeating structure beforehand.

The rest of this paper is organized as follows. Section
2 describes the related work. Section 3 introduces the pro-
posed method. Section 4 presents an evaluation of the pro-
posed method on a data set of 14 full-track real-world pop
songs, against a previous repetition-based source separa-
tion method, and a recent competitive music/voice separa-
tion method. Section 5 concludes this article.

2. RELATED WORK

There have been a number of approaches applied to the
problem of separating the foreground (typically the voice)
from the background. In stereo recordings, panning infor-
mation (e.g. the vocalist is typically panned to the middle)
can be applied. Such approach fails when the vocalist is
not center-panned (e.g. many Beatles recordings). Cross-
channel timing and amplitude differences can be applied in
more complex frameworks, such as in the Degenerate Un-
mixing Estimation Technique (DUET) [8]. This approach
is difficult to apply to pop music, due to the reverberant
effects added, as well as the violation of the sparsity as-
sumption for music mixtures.

Other music/voice separation methods focus on mod-



eling either the music signal, by generally training an ac-
companiment model from the non-vocal segments [6, 11],
or the vocal signal, by generally extracting the predomi-
nant pitch contour [7, 9], or both signals via hybrid mod-
els [1, 13]. Most of these methods require a training phase
on audio with labeled vocal/non-vocal segments.

Recently, a relatively simple approach has also been
proposed for music/voice separation. The method is based
on a median filtering of the mixture spectrogram at dif-
ferent frequency resolutions, in such a way that the har-
monic and percussive elements of the accompaniment can
be smoothed out, leaving out the vocals [3].

Another recent and promising approach is to apply anal-
ysis of the repeating structure in the audio to extract the re-
peating musical background from the non-repeating vocal
foreground. In this work, we focus on this approach.

The first method to explicitly use repetition to sepa-
rate the musical background from the vocal foreground
is the REpeating Pattern Extraction Technique (REPET)
[12]. The method seeks to identify a global period for the
repeating structure, so that it can build a model of the re-
peating background. This model is then used to construct
a time-frequency mask to separate the repeating musical
background from the non-repeating vocal foreground.

The original REPET method can be successfully ap-
plied for music/voice separation on short excerpts (e.g. 10
second verse) [12]. For complete music pieces, the repeat-
ing background is likely to vary over time (e.g. verse fol-
lowed by chorus). An extended version of REPET was
therefore later introduced to handle variations in the repeat-
ing structure [10]. Rather than finding a global period, the
method tracks local periods of the repeating structure. In
both cases, the algorithm needs to identify periods of the
repeating structure, as both methods assume periodically
repeating patterns.

In this work, we propose to generalize the repetition-
based source separation approach to handle cases where
repetitions also happen intermittently or without a fixed pe-
riod, by using a similarity matrix.

3. PROPOSED METHOD

3.1 Similarity Matrix

The similarity matrix is a two-dimensional representation
where each point (a, b) measures the (dis)similarity be-
tween any two elements a and b of a given sequence. Since
repetition/similarity is what makes the structure in music, a
similarity matrix calculated from an audio signal can help
to reveal the musical structure that underlies it [4].

Given a single-channel mixture signal x, we first cal-
culate its Short-Time Fourier Transform (STFT) X , using
half-overlapping Hamming windows of N samples length.
We then derive the magnitude spectrogram V by taking
the absolute value of the elements of X , after discarding
the symmetric part, while keeping the DC component.

We then define the similarity matrix S as the matrix
multiplication between transposed V and V , after normal-
ization of the columns of V by their Euclidean norm. In

other words, each point (ja, jb) in S measures the cosine
similarity between the time frames ja and jb of the mixture
spectrogram V . The calculation of the similarity matrix S
is shown in Equation 1.

S(ja, jb) =

∑n
i=1 V (i, ja)V (i, jb)√∑n

i=1 V (i, ja)2
√∑n

i=1 V (i, jb)2

where n = N/2 + 1 = # frequency channels

∀ja, jb ∈ [1,m] where m = # time frames

(1)

3.2 Repeating Elements

Once the similarity matrix S is calculated, we use it to
identify the repeating elements in the mixture spectrogram
V . For all the frames j in V , we look for the frames that
are the most similar to the given frame j and save them in
a vector of indices Jj . Assuming that the non-repeating
foreground (≈ voice) is sparse and varied compared to the
repeating background (≈music) - a reasonable assumption
for voice in music, the repeating elements revealed by the
similarity matrix should be those that form the underlying
repeating structure (≈ music). The use of a similarity ma-
trix actually allows us to identify repeating elements that
do not necessarily happen in a periodic fashion.

We add the following constraint parameters to the algo-
rithm. To limit the number of repeating frames considered
similar to the given frame j, we define k, the maximum
allowed number of repeating frames. We define t, the min-
imum allowed threshold for the similarity between a re-
peating frame and the given frame (t ∈ [0, 1]). Consecu-
tive frames can exhibit high similarity without representing
new instances of the same structural element, since frame
duration is unrelated to the duration of musical elements.
We therefore define d, the minimum allowed (time) dis-
tance between two consecutive repeating frames deemed
to be similar enough to indicate a repeating element.

3.3 Repeating Model

Once the repeating elements have been identified for all the
frames j in the mixture spectrogram V through their cor-
responding vectors of indices Jj , we use them to derive a
repeating spectrogram model W for the background. For
all the frames j in V , we derive the corresponding frame
j in W by taking the median of the corresponding repeat-
ing frames whose indices are given by vector Jj , for every
frequency channel. The calculation of the repeating spec-
trogram model W is shown in Equation 2.

W (i, j) = median
l∈[1,k]

{
V (i, Jj(l)

}
where Jj = [j1 . . . jk] = indices of repeating frames

where k = maximum number of repeating frames

∀i ∈ [1, n] = frequency channel index

∀j ∈ [1,m] = time frame index

(2)

The rationale is that, assuming that the non-repeating
foreground (≈ voice) has a sparse time-frequency repre-
sentation compare to the time-frequency representation of
the repeating background (≈ music), time-frequency bins



Figure 1. Derivation of the repeating spectrogram model
W : (1) compute the similarity matrix S from the mixture
spectrogram V using the cosine similarity measure; (2) for
all frames j in V , identify the k frames j1 . . . jk that are
the most similar to frame j using S; (3) derive frame j of
the repeating spectrogram model W by taking the median
of the k frames j1 . . . jk of V , for every frequency channel.

with little deviations between repeating frames would con-
stitute a repeating pattern and would be captured by the
median. Accordingly, time-frequency bins with large de-
viations between repeating frames would constitute a non-
repeating pattern and would be removed by the median.
The derivation of the repeating spectrogram model W from
the mixture spectrogram V using the similarity matrix S is
illustrated in Figure 1.

3.4 Time-frequency Mask

Once the repeating spectrogram model W is calculated,
we use it to derive a time-frequency mask M . But first,
we need to create a refined repeating spectrogram model
W ′ for the background, by taking the minimum between
W and V , for every time-frequency bin. Indeed, as noted
in [10], if we assume that the non-negative mixture spec-
trogram V is the sum of a non-negative repeating spec-
trogram W and a non-negative non-repeating spectrogram
V −W , then time-frequency bins in W can at most have
the same value as the corresponding time-frequency bins
in V . In other words, we want W ≤ V , for every time-
frequency bin; hence the use of the minimum function.

We then derive a time-frequency mask M by normaliz-
ing W ′ by V , for every time-frequency bin. The rationale
is that time-frequency bins that are likely to constitute a
repeating pattern in V will have values near 1 in M and
will be weighted toward the repeating background (≈ mu-

sic). Accordingly, time-frequency bins that are unlikely to
constitute a repeating pattern in V will have values near 0
in M and will be weighted toward the non-repeating fore-
ground (≈ voice). The calculation of the time-frequency
mask M is shown in Equation 3.

W ′(i, j) = min
(
W (i, j), V (i, j)

)
M(i, j) =

W ′(i, j)

V (i, j)
with M(i, j) ∈ [0, 1]

∀i ∈ [1, n] = frequency channel index

∀j ∈ [1,m] = time frame index

(3)

The time-frequency mask M is then symmetrized and
applied to the STFT X of the mixture signal x. The es-
timated music signal is finally obtained by inverting the
resulting STFT into the time domain. The estimated voice
signal is obtained by simply subtracting the music signal
from the mixture signal.

4. EVALUATION

4.1 Competitive Methods & Data Set

We label the proposed method, based on the use of a sim-
ilarity matrix, Proposed. We compare separation perfor-
mance of Proposed with two competitive music/voice sep-
aration methods on a data set of 14 full-track pop songs.

The first competitive method is an extension of the orig-
inal REPET algorithm to handle variations in the underly-
ing repeating structure [10]. We refer to this method as
REPET+. The method first tracks local periods of the un-
derlying repeating structure using a beat spectrogram, then
models local estimates of the repeating background using
the median, and finally extracts the repeating patterns from
the mixture using a time-frequency mask. For the com-
parison, we used the separation results of REPET+ with
soft time-frequency masking and high-pass filtering with a
cutoff frequency of 100 Hz on the voice estimates, as pub-
lished in [10].

The second competitive method is the Multipass Me-
dian Filtering-based Separation (MMFS), another recently
proposed simple and novel approach for music/voice sepa-
ration [3]. The method is based on a median filtering of the
mixture spectrogram at different frequency resolutions, in
such a way that the harmonic and percussive elements of
the accompaniment can be smoothed out, leaving out the
vocals. For the comparison, we used the separation results
of the best version of MMFS out of the four proposed ver-
sions, with high-pass filtering with a cutoff frequency of
100 Hz on the voice estimates, as published in [3].

The data set consists of 14 full-track real-world pop
songs, in the form of split stereo WAVE files sampled at
44.1 kHz, with the accompaniment and vocals on the left
and right channels, respectively. These 14 stereo sources
were created from recordings released by the band The
Beach Boys, where some of the accompaniments and vo-
cals were made available as split stereo tracks 1 and sepa-
rated tracks 2 . This data set was used in [10] for the evalu-

1 Good Vibrations: Thirty Years of The Beach Boys, 1993
2 The Pet Sounds Sessions, 1997



ation of REPET+ against the best version of MMFS.
Following the framework adopted in [3] and [10], we

then used those 14 stereo sources to create three data sets
of 14 mono mixtures, by mixing the channels at three dif-
ferent voice-to-music ratios: -6 dB (music is louder), 0 dB
(same original level), and 6 dB (voice is louder). Note that
we are using the exact same data set as in [10], however
it is not the exact same data set that was used in [3]. The
authors of [3] did not mention which tracks they used for
their experiments and also unlike them, but as in [10], we
process the full tracks without segmenting them before-
hand, since Proposed can handle long recordings, and this
without memory or computational constraints.

4.2 Algorithm Parameters & Separation Measures

We calculated the STFT of each mixture for each of the
three mixture sets (-6, 0, and 6 dB) using half-overlapping
Hamming windows of N = 2048 samples length, corre-
sponding to a duration of 46.4 milliseconds at a sampling
frequency of 44.1 kHz. We then processed each mixture
using Proposed. The parameters were fixed as follows:
maximum number of repeating frames k = 100, minimum
threshold for the similarity between a repeating frame and
the given frame t = 0, and minimum distance between two
consecutive repeating frames d = 1 second. Pilot experi-
ments showed that those parameters lead to overall good
separation results. For the comparison, we also applied a
high-pass filtering with a cutoff frequency of 100 Hz on
the voice estimates. This means that all the energy un-
der 100 Hz in the voice estimates is transferred to the cor-
responding music estimates. The rational is that singing
voice rarely happen below 100 Hz.

We measured separation performance by employing the
BSS EVAL toolbox [2]. The toolbox proposes a set of now
widely adopted measures that intend to quantify the quality
of the separation between a source and its corresponding
estimate: Source-to-Distortion Ratio (SDR), Sources-to-
Interferences Ratio (SIR), and Sources-to-Artifacts Ratio
(SAR). Following the framework adopted in [3] and [10],
we measured SDR, SIR, and SAR on segments of 45 sec-
ond length from the music and voice estimates. Higher val-
ues of SDR, SIR, and SAR suggest better separation per-
formance. We chose to use those measures because they
are widely known and used, and also because they have
been shown to be well correlated with human assessments
of signal quality [5].

4.3 Comparative Results & Statistical Analysis

Figures 2, 3, and 4 show the separation performance using
the SDR, SIR, and SAR, respectively, in dB, for the mu-
sic component (top row) and the voice component (bottom
row), at voice-to-music mixing ratio of -6 dB (left column),
0 dB (middle column), and 6 dB (right column). In each
column, from left to right, the first results correspond to
the best version of MMFS (MMFS), where the means of
the distributions are represented as crosses (the standard
deviations were not reported in [3]). The second results

correspond to the extension of REPET for varying repeat-
ing structures (REPET+), where the means and standard
deviations of the distributions are represented as error bars.
The third results correspond to the proposed method with
similarity matrix (Proposed), where the means and stan-
dard deviations of the distributions are represented as error
bars. The mean values are displayed. Higher values are
better.

Figure 2. Separation performance using the SDR in dB,
for the music component (top row) and the voice com-
ponent (bottom row), at voice-to-music mixing ratio of
-6 dB (left column), 0 dB (middle column), and 6 dB
(right column), using the best version of MMFS (MMFS)
(means represented as crosses), the extension of REPET
for varying repeating structures (REPET+), and the pro-
posed method with similarity matrix (Proposed) (means
and standard deviations represented as error bars). Mean
values are displayed. Higher values are better.

We compared the three different methods including a
high-pass filtering with a cutoff frequency of 100 Hz on the
voice estimates, because such post-processing of the esti-
mates typically helps to produce better separation results.
For our proposed method, the high-pass filtering increased
SDR and SIR, for both the music and voice estimates. SAR
however increased only for the music estimates. This is
probably due to the fact that, although improving the sep-
aration performance overall, using a high-pass filtering on
the voice estimates creates “holes” in their time-frequency
representation, which tend to increase the separation arti-
facts, hence the decrease of SAR for the voice estimates.

As we can see in Figures 2, 3, and 4, as the voice-
to-music ratio gets larger, SDR, SAR, and SIR get lower
for the music estimates and larger for the voice estimates,
and vice versa. This is an intuitive result also observed
for MMFS and REPET+. Indeed, as the voice compo-
nent gets louder compared to the music component, it then



Figure 3. Separation performance using the SIR in dB.

becomes easier to extract the voice component, and ac-
cordingly harder to extract the music component, and vice
versa. A multiple comparison test showed that those re-
sults were statistically significant in each case. We used an
Analysis of Variance (ANOVA) when the compared distri-
butions were all normal, and a Kruskal-Wallis test when
at least one of the compared distributions was not normal.
We used a Jarque-Bera normality test to determine if a dis-
tribution was normal or not.

Figure 4. Separation performance using the SAR in dB.

As we can see in Figures 2, 3, and 4, compared with
MMFS, Proposed gave overall better SDR for both the mu-
sic and voice estimates, better SIR for the music estimates,

and better SAR for the voice estimates, and this for all the
three voice-to-music ratios. A one-sample t-test comparing
the means of the distributions of Proposed with the means
of MMFS (since the only values provided in [3] were the
means) showed that those results were statistically signif-
icant in each case, except for the SDR at voice-to-music
ratio of -6 dB, where the improvement of Proposed com-
pared with MMFS was not significant for the music esti-
mates, and a decrease, although not significant, was ob-
served for the voice estimates. This suggest that, compared
with MMFS, Proposed has globally better separation per-
formance, particularly it is better at removing the “vocal”
interferences from the accompaniment, and at limiting the
separation artifacts in the voice estimates.

As we can also see in Figures 2, 3, and 4, for the music
estimates, compared with REPET+, Proposed gave over-
all better SDR and SAR for all the three voice-to-music
ratios, and better SIR at voice-to-music ratio of 6 dB. A
multiple comparison test showed that those results were
statistically significant in each case, except for the SDR
at voice-to-music ratio of -6 dB where the improvement of
Proposed compared with REPET+ was not significant. For
the voice estimates, compared with REPET+, Proposed
gave overall better SAR for all the three voice-to-music
ratios, and better SDR and SIR at voice-to-music ratio of -
6 dB. A multiple comparison test showed that those results
were statistically significant in each case, except for the
SAR where the improvement of Proposed compared with
REPET+ was only significant at voice-to-music ratio of -
6 dB. We used ANOVA when the compared distributions
were all normal, and a Kruskal-Wallis test when at least
one of the compared distributions was not normal. This
suggest that, compared with REPET+, Proposed has glob-
ally better separation performance for a component (mu-
sic or voice), as the given component becomes softer com-
pared with the other one.

The average computation time of Proposed over all the
mixtures and all of the three mixture sets (-6, 0, and 6 dB)
was 0.563 second for 1 second of mixture, when imple-
mented in Matlab on a PC with Intel(R) Core(TM)2 Quad
CPU of 2.66 GHz and 6 GB of RAM. In other words,
Proposed can perform music/voice separation of a mix-
ture audio in half the time of the playback of the audio,
for recordings of the length of a typical pop song. This is
encouraging, since Proposed builds a similarity matrix that
is O(n2), where n is the length of the audio file. As a point
of comparison, the average computation time for REPET+
for the exact same data set was 1.1830 second for 1 second
of mixture [10].

5. CONCLUSION

In this work, we have proposed a generalization of the RE-
peating Pattern Extraction Technique (REPET) method for
the task of music/voice separation, based on the calculation
of a similarity matrix. The REPET approach is based on
the separation of a musical background from a vocal fore-
ground, by extraction of the underlying repeating structure.
The basic idea is to identify elements that exhibit similar-



ity, and compare them to repeating models derived from
them to extract the repeating patterns.

Unlike the previous REPET methods that assume peri-
odically repeating patterns, the proposed method with sim-
ilarity matrix generalizes to repeating structures where rep-
etitions can also happen intermittently or without a fixed
period, therefore allowing the processing of music pieces
with fast-varying repeating structures and isolated repeat-
ing elements, without the need to identify periods of the
underlying repeating structure beforehand.

Evaluation on a data set of 14 full-track real-world pop
songs showed that the proposed generalization of REPET
with similarity matrix can overall improve on the separa-
tion performance compared with the extension of REPET
for varying repeating structures, and another recent com-
petitive music/voice separation method based on median
filtering, while still being computationally efficient. Given
the SDR, which can be understood as a measure of the
overall quality of the separation, our evaluation showed
that when the results between the proposed method and the
competitive methods were statistically significant, the pro-
posed method gave higher results, and this compared with
both the competitive methods.

The proposed generalization of REPET is only based on
a similarity matrix. In other words, it does not depend on
particular features, does not rely on complex frameworks,
and does not need prior training. Because it is only based
on self-similarity, it has the advantage of being simple, fast,
blind, and therefore completely and easily automatable.
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ABSTRACT

This  paper  presents  a  new reference  dataset  of  sus-
tained,  sung vowels  with attached labels  indicating the 
phonation mode. The dataset is intended for training com-
putational models for automated phonation mode detec-
tion. 

Four phonation modes are distinguished by Johan Sun-
dberg  [1]:  breathy,  neutral,  flow  (or  resonant)  and 
pressed. The presented dataset consists of ca. 700 record-
ings of nine vowels from several languages, sung at vari-
ous  pitches  in  various  phonation  modes.  The recorded 
sounds were produced by one female singer under con-
trolled conditions, following recommendations by voice 
acoustics researchers. 

While  datasets  on  phonation modes  in  speech  exist, 
such resources for singing are not available. Our dataset 
closes this gap and offers researchers in various discip-
lines a reference and a training set. It will be made avail-
able online under Creative Commons license.  Also, the 
format of the dataset is extensible. Further content addi-
tions and future support for the dataset are planned.

1. MOTIVATION: NARROW, WIDE, BREATHY, 
RESONANT SINGING IN VARIOUS 

DISCIPLINES

Phonation modes play an important role in singing: they 
are an essential characteristic of a singing style – all mu-
sical  traditions have cultural preferences for  the use of 
one or more phonation modes; they are used as a means 
for  expressive  performance;  they  can  be  indicative  of 
voice disorders; subtle changes in phonation mode pro-
duction are used routinely by singing teachers to determ-
ine the progress of a student.

Johan Sundberg in his seminal work “The Science Of 
The  Singing  Voice”  identifies  four  different  phonation 
modes in singing: breathy, neutral, flow (called resonant 
by other authors) and pressed [1]. To illustrate the differ-
ences between phonation modes let us bring some well-
known examples.

Breathy vocalisation is used skillfully by jazz and pop-
ular music singers to express qualities like sweetness or 
sexuality:  think of  Marilyn Monroe's most famous per-
formances like “I wanna be loved by you”1 or “Happy 

1http://www.youtube.com/watch?v=MLU0jndUGg4   

birthday Mr President”2; or listen to Ella Fitzgerald's and 
Louis Armstrong's  “Dream a little  dream of me”3.  This 
mode of vocal production can easily be distinguished by 
human listeners from the flow phonation mode, such as a 
resonant,  vibrating  vocalising  by  Liza  Minelli  on  her 
“New York, New York”4; and from the pressed phonation, 
e.g. the tense, forceful voice of James Brown in “I feel 
good”5.

At the same time, Liza Minelli can be quite forceful; 
Ella Fitzgerald's vocals are very dominant but light and 
economical most of the time, because flow phonation is 
natural for her voice. All the singers mentioned above use 
flow phonation, and all of them have their personal pref-
erences for varying phonation and using these variations 
as  stylistic  markers  or  as  their  individual  expressive 
devices.

 In Muslim countries of the Old High Culture a call for 
prayer can be heard five times a day from the minarets of 
the mosques. Call for prayer is an art form and Muezzins 
are  experts  in  using  squeezed,  narrow  sound  (pressed 
phonation) in their singing which makes their perform-
ances very expressive. Their vocal technique is very dif-
ferent from a rounded, flying performance of a Western 
European Gregorian chant (neutral phonation) and is at 
the same time distant from the brassy, resonant Greek or 
Russian liturgic singing (flow phonation).6

While  the  term  phonation  mode  is  borrowed  from 
voice acoustics, the differentiation between breathy and 
pressed voices, between tense and open singing is opera-
tional in many voice-related research areas: ethnomusico-
logy,  singing  education,  medical  research  (phoniatrics, 
vocology)  as  well  as  in  linguistics  (phonetics).  This  is 

2http://www.youtube.com/watch?v=k4SLSlSmW74   
3http://www.youtube.com/watch?v=j6TmogXhOZ8   
4http://www.youtube.com/watch?v=rgusCINe260   
5http://www.youtube.com/watch?v=XgDrJ5Z2rKw   
6Here, again,  situation with employed phonation modes 
can be quite ambiguous. For example, Greek Byzantine 
singers  use  somewhat  pressed,  nasalized  phonation  on 
higher pitches quite a lot. In fact, a Byzantine singer with 
a higher range often cannot be distinguished from an Ar-
abic singer of a similar range in terms of their phonation 
mode  usage.  Also,  some  Gregorian  chant  interpreters 
such as Ensemble Organum deliberately use flow phona-
tion in their performance.

http://www.youtube.com/watch?v=XgDrJ5Z2rKw
http://www.youtube.com/watch?v=rgusCINe260
http://www.youtube.com/watch?v=j6TmogXhOZ8
http://www.youtube.com/watch?v=k4SLSlSmW74
http://www.youtube.com/watch?v=MLU0jndUGg4


how an ethnomusicologist Alan Lomax describes the dif-
ference between narrow and wide vocalisation:

“The  measure  concerns  the  contrast  between  the 
voices which sound mellow, relaxed and richly resonant 
(we call  this  wide)  and  the  voices  which  sound tense, 
pinched and restricted in resonance (which we call  nar-
row). Many singing styles can be characterized as having 
one or the other; in some rare cases both may occur; and 
many  ways  of  vocalizing  (like  everyday  American 
speech) are neutral in width – these we call  mid, singers 
with a “speech” tone.” [2, p. 125]. Lomax then gives a 
number of examples: narrow singing from Indonesia and 
Thailand; wide,  open singing from Eastern Europe; the 
mid mode form the US and from Ireland. 

These examples demonstrate that  breathy, pressed or 
resonant  singing  production  can  be  representative  of  a 
singing style or even a music culture. While each voice is 
different and two singers never sing the same way, every 
musical tradition displays cultural preferences for the use 
of particular phonation mode(s), which are imposed on 
the singers performing in this tradition. In many cases a 
single phonation mode is encouraged: for example bari-
tone singers in Western classical music are trained to sing 
in flow phonation and move through their singing career 
using just this phonation mode. In contrast, in classical 
Ottoman tradition a singer was expected to operate in all 
four phonation modes.

Apart from being a cultural characteristic, breathy or 
tense vocalisation can be  indicative of  vocal  disorders: 
hypofunction and hyperfunction of the glottis [3]. Their 
diagnostics and treatment are a prime concern in the dis-
ciplines of vocology (voice habilitation) and phoniatrics 
(in case of functional or anatomic pathologies) [4]. 

While  in  some  examples  even  a  less  experienced 
listener can easily distinguish between various phonation 
modes, in other cases this distinction can be very subtle 
and requires training and expertise to be identified cor-
rectly.  Lomax  refers  to  his  narrow  vs  wide  singing 
descriptor (he calls this descriptor vocal width or vocal 
tension) as an “emotionally loaded quality” and thus ex-
plains why some people have difficulties in rating it [2]. 
Vocal width is one of 36 descriptors of the Cantometrics 
system  –  a  global  parametrisation  of  world's  singing 
styles. Lomax and his Cantometrics team manually rated 
more than 5000 recordings of singing from around the 
world. Of all 36 descriptors vocal width appeared to be 
the hardest to rate consistently: the inter-rater consensus 
scores for this descriptor are the lowest (see [2], p. 168). 
Victor Grauer, the co-inventor of Cantometrics, admitted 
in  personal  communication  (February  2011)  that  this 
descriptor is the most difficult to rate.

Naturally, voice therapists are experts in vocal produc-
tion and could serve as experts for manual rating of phon-
ation  modes.  Although,  in  practice  their  work is  often 
more  tailored  to  the  needs  of  speech  professionals.  In 
singing it's singing teachers/educators who have the deep-
est operational knowledge of all the issues related to vo-
cal  production  and  in  particular  to  phonation  modes. 
Most  singing  students  display  various  kinds  of  voice 

hypo- and/or hyperfunction during the stages of their pro-
gress.  The students'  perception mechanisms are usually 
not sufficient for self-control (in absence of any visual or 
any reliable auditory indicators). It is thus the task of the 
teacher to identify and to correct the subtlest dysfunction 
on the spot,  over  and over  again,  until  the  student  has 
gained the bodily controls needed to regulate the voice 
source function on an automatic level. 

2. PHONATION MODES IN VOICE ACOUSTICS – 
PREVIOUS WORK 

Due to complications in terminology of narrow vs. wide 
singing  within  and  across  disciplines  as  well  as  to  the 
subjectivity of the distinction between phonation modes, 
we turn to voice acoustics for objective definitions and 
physically measurable effects. The four phonation modes 
introduced by Sundberg [1]: breathy, neutral, flow (called 
resonant by other authors) and pressed are vocal produc-
tion qualities resulting from the voice source (the vibrat-
ing vocal folds). In particular they are closely related to 
glottal resistance which is defined as the quotient of sub-
glottal pressure to glottal airflow. A low subglottal pres-
sure  combined  with  a  high  glottal  flow  results  in  a 
breathy phonation. Pressed phonation arises when a high 
subglottal pressure is accompanied by a low glottal flow. 
The neutral mode lies between these two extremes. The 
flow  phonation  is  characterised  by  a  lower  subglottal 
pressure than in pressed mode and also by a lower adduc-
tion force on the vocal folds. It  is an economical voice 
production mode, because it uses much less effort than in 
pressed mode gaining a similar sound level, which can be 
significantly higher than in a neutral mode. At the same 
time the flow phonation allows various resonances of the 
vocal tract to be used most effectively, while the pressed 
phonation tends to restrict some of them.

Given the above, the four phonation modes are not dis-
crete states of vocal production but are rather areas in a 
continuum space which can be distinguished on the psy-
choacoustic  level.  This  continuum is  not fully  ordered: 
while  breathy and pressed modes represent its  two ex-
tremes, there are endless states between them, and flow 
phonation is a sweet spot in that continuum which optim-
ises psychoacoustic values such as loudness and overtone 
richness. As we know from singing and teaching practice, 
a singer is usually capable of using one or more localities 
of this space.

While the phonation mode of a singing fragment can 
only be identified subjectively in a psychoacoustic exper-
iment, the glottal wave - the signal produced by the voice 
source - can be measured during singing by means of a 
laryngograph  (electroglottograph),  a  non-invasive  tool 
which sends a small current through the larynx and re-
cords the changes in resistance [5-6]. Figure 1 shows typ-
ical graphs of the glottal wave in all phonation modes.

Electroglottography can be used to measure the glottal 
wave during the singing process. If, in contrast, audio re-
cordings of previous events are studied, this technique is 
not applicable. 



To analyse the sound production of the voice source in 
a recording the technique called inverse filtering is often 
used: the resonances of the vocal tract are estimated from 
the original signal and a filter is constructed to eliminate 
them [7-10]. Applying this filter to the original signal res-
ults in an estimation of the glottal wave.

Figure  1. Typical  graphs  of  the  glottal  wave  pulse 
functions in various phonation modes (from [1],  p.  85, 
used  with  permission  of  Northern  Illinois  University 
Press)

A number  of  publications  dedicated  to  detection  of 
pressed  and  breathy  phonation  modes  employed 
descriptors derived from the glottal wave such as amp-
litude  quotient  (AQ),  normalised  amplitude  quotient 
(NAQ) and the difference between the first two harmon-
ics (H1-H2) [8, 11-14]. 

Unfortunately, all of them rely on internal datasets for 
their experiments which are neither well documented and 
controlled nor are they available to other researchers for 
benchmarking or new studies. 

There have been single attempts to determine domin-
ant  phonation  modes  or  typical  values  of  glottal  wave 
descriptors  for  various  singing  styles.  For  example 
Thalén and Sundberg [15] studied Western classical mu-
sic, pop, jazz and blues, and in a later publication Zang-
ger Borch and Sundberg [16] looked at rock, pop, soul 
and Swedish dance. Both these studies worked with re-
cordings by just one singer. As a starting point both stud-
ies were certainly instructive. Unfortunately it is virtually 
impossible to make generalisations about a musical style 
based on samples from just one singer. At the same time 
the methodology suggested in these papers doesn't scale 
to batch processing applications.  The datasets were not 
made available to other researchers.

In order to address high-level semantic questions about 
music like the relationship between a singing style and 
phonation modes using MIR, new approaches have to be 

developed that would allow processing of large, real-life 
data collections. One of the main obstacles for such a de-
velopment is a lack of reference and training datasets that 
are well documented and supported and are available to 
all researchers. 

In this paper we present a new dataset that will close 
this gap and will be a first step in the development of new 
scalable  methods  for  study  of  phonation  modes  in 
singing. While we also start with recordings by only one 
singer, the format of the dataset is extensible (see Section 
3.4). We plan to add further recordings in future as de-
scribed in Section 4. Contributions by other researchers 
will also be welcome.

3. THE DATASET

3.1 The recordings
The dataset consists of ca. 700 WAV files. Each file 

contains  a  single  recording of  a  sustained sung vowel. 
Recordings are of 750 sec length on average. We recom-
mend to use 300 ms around the middle of the samples for 
analysis  -  here  we can guarantee  a relative  stability  in 
pitch,  intensity,  phonation  and  articulation  (beginnings 
and ends of the samples can be less stable). 

Sound examples Symbols 
used in the 
labels

[a:] /a/  -  low front  unrounded sound, 
like in English father, German Rat 
or in Russian там 

A

[e:] /e/  -  high-mid  front  unrounded 
vowel, like in English get, German 
Esel, Russian место

E

[i:] /i/ - high front unrounded, like in 
English  free, German Genie, Rus-
sian вид

I

[o:] /o/ - high-mid back rounded, like 
in  German  rot,  Russian  кот, 
somewhat  similar  to  English 
caught

O

[ø:] High-mid  front  rounded  vowel, 
like German /ö/ in schön

OE

[u:] /u/  -  high  back  rounded,  like  in 
English boot, German Fuß, Russi-
an плуг

U

[y:] High  front  rounded  sound,  like 
German or Turkish /ü/, e.g. in Ger-
man müde

UE

[ɨ:] High  central  unrounded  vowel, 
Russian /ы/ like in  ты, similar to 
English roses

Y

[ɛ:] Low-mid  front  unrounded,  Ger-
man /ä/  like in  Ähre,  Russian /э/ 
like in этот, similar to [æ] in Eng-

AE



lish cat 

Table 1. The vowels represented in the dataset. 

Pitches Modes

A3 - G4 Breathy, neutral, flow, pressed

G4# - C5 Breathy, neutral, pressed

C5# - G5 Breathy, neutral

Table 2. This table indicates which phonation modes are 
represented for particular pitches in the dataset.

The vowel sounds represented on the recordings are 
listed in Table 1. These sounds were sung on all pitches 
on a semitone scale from A3 to G5, in every phonation 
mode given in Table 2.

3.2 The singer
All the recordings were produced by one female sing-

er.  This excludes  any  variation  that  would  necessarily 
arise between singers, which is useful particularly at the 
initial stages of classification model training and testing.

The singer was professionally trained, with expertise 
in Western popular and in Russian traditional singing and 
a profound experience in a number of other music tradi-
tions. 

The singer's  vocal  range is  approximately D3 – C6, 
with the working range being usually limited to G3 – F5. 
At both extreme ends of the range, phonation became un-
reliable and they were not included into the dataset. The 
singer's break between the modal and the head (falsetto) 
register is around E5, thus the surrounding pitches(D5# to 
F5#) can also be less reliable. Still we decided to include 
vocalisation in the head register into the dataset to make 
it more representative, thus all pitches up to G5 were in-
cluded.

In the head register the singer was unable to produce 
pressed sounds, thus the pressed phonation mode is only 
represented up to the upper end of the modal register (see 
Table 2). Why this is the case seems to be an unsolved 
problem. While this seems to be common among singers 
of various traditions in Europe and the Near East, it is un-
clear whether in other cultures (e.g. in some East Asian 
traditions)  the singers  are in  fact  capable  of  producing 
pressed vocalisation in their head register. This observa-
tion leads to the question whether the ability to use partic-
ular phonation modes on particular  pitches is  innate or 
ontogenetic (culturally constructed).

Also, flow phonation could only be produced in the 
chest voice – up to A4 (recordings up to G4 retained for 

the  dataset).  Above  A4  it  becomes  impossible  to  sing 
most vowels in the flow mode; at the same time, the neut-
ral mode in the middle and head voice partly gains the 
qualities of the flow mode, such as intensity and richness 
in overtones, though it is very different from the chesty 
flow phonation. The singer reported from her experience 
of  teaching  Russian  traditional  singing,  which  heavily 
uses the flow mode, that this limit is typical for female 
singers, though some exceptional performers are capable 
of producing the flow phonation at as high as C5.

In the lower range, at G3 and below, the opposite is the 
case: the neutral phonation becomes more and more sim-
ilar to the flow mode – for this reason recordings below 
A3 were excluded from the dataset.

The singer apparently had more difficulties with some 
vowels  than  with  others  in  particular  modes.  For  ex-
ample, high front sounds like [i:] and [y:] proved to be 
harder to achieve in flow phonation.

3.3 Recording conditions
The  recordings  were  made  with  Olympus  LS10  linear 
PCM digital  recorder.  We chose  96 kHz sampling rate 
and 24 bits bit resolution in compliance with the recom-
mendations for acoustic analysis and archiving by the In-
ternational  Association  of  Sound-  and  Audiovisual 
Archives (IASA TC-04) [17].

The built-in  high-sensitivity,  low-noise stereo micro-
phone of Olympus LS10 is a combination of two micro-
phone heads positioned at an 90° angle. It has an overall 
frequency  response  20  –  44000  Hz.  In  the  frequency 
range of 150 -3000 Hz it  displays a flat  frequency re-
sponse of  ±2dB and in the range up to 20 kHz the re-
sponse is ±5dB. 

The lowest fundamental frequency recorded was 220 
Hz (A3) which is about ten times higher than the micro-
phone's low frequency response limit. This guarantees the 
flat phase response and preserves the exact shape of the 
waveform – a necessary condition for applications such 
as inverse filtering [18]. 

 The highest frequencies perceived by the human ear 
are about 20 kHz which is within the microphone's flat 
response range and is way below the half  of the upper 
limit  of  the microphone's  frequency response.  See [18] 
for detailed instructions on the choice and positioning of 
the microphone.

The recorder and the microphone were positioned ho-
rizontally at  the level  of the singer's  mouth, at  the dis-
tance of 50 cm as recommended by the manufacturer for 
best voice capturing. 

The recording session took place in a  quiet room en-
vironment. The requirement of a signal-to-noise ratio of 
at least 15 dB has been adhered to [18]. 

3.4 The labels
The metadata is stored in a table of a relational database, 
see Table 3. This way of organising metadata is advant-
ageous, because it can be easily extended by further fields  
and is scalable for unlimited number of entries and rela-
tionships.  For  example  if  we  add  recordings  by  other 
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singers, a  new field indicating the singer will  be intro-
duced to the table.

Labels  were  provided  by  the  singer.  They mark  the 
pitch, the vowel and the phonation mode the singer inten-
ded to reproduce. We also performed a listening test, ex-
cluding all recordings where phonation was ambiguous or 
of a poor quality. 

Metadata 
fields

ID File Pitch Vowel Phona-
tion 
mode

Version

example 212 212.wav C5# AE breathy 2

Table 3. Metadata fields of the dataset.  For vowel sym-
bols please consult Table 1. Version is optional, it is only 
used when several recordings of the same vowel at  the 
same pitch in the same phonation mode were recorded. 
Currently simple numeric IDs are used. In future a use of 
content derived IDs is planned. 

3.5 Dataset availability and license
The dataset will be made available for download under 

Creative Commons CC BY-NC-SA license. This license 
allows free sharing of the dataset as well as altering it or 
building new work based upon it.  There are following 
conditions for the use of the dataset according to this li-
cense:

 attribution – reference the creators 
 no commercial use  
 share  alike  –  if  you  alter,  transform  or  build 

upon it, you may distribute the result only under 
the same license. 

4. FUTURE WORK  

Our  dataset  is  a  first  step  in  creating  reference  and 
training collections for the study of phonation mode use 
in singing. There are several directions in which this data-
set can be improved and extended:

1. To further improve recording quality for the particu-
lar task of glottal wave estimation a professional micro-
phone  specifically  designated  for  voice  measurements 
should be used for the production of the recordings (LS2-
type microphones as specified by IEC 61094-1 and ANSI 
S1.15-1997 standards).  For other experiment designs,  a 
dataset with varying recording quality and recording con-
ditions could be useful.

2. To enhance the reliability of the labels, they can be 
verified by independent experts, ideally by singing teach-
ers representing various music cultures.

3. Electroglottograph can be used to measure the glot-
tal  wave  at  the  singer's  glottis  during  recording.  This 
would allow more objective judgements about the phona-
tion mode.  These measurements would also provide an 
excellent reference for glottal wave estimations on new, 
unseen data.

4. Alternatively, if an exact measurement of the glottal 
airflow  is  required,  an  airflow  mask  developed  by 
Rothenberg can be used, which also has an advantage of 
the low frequency limit of 0 Hz [19].

5. The scope of the dataset can be generalised by in-
cluding recordings of other singers, male, female as well 
as  children.  This  would  introduce  inter-performer  vari-
ation, which needs to be studied and is necessary to con-
struct  real-life  classifiers.  It  is  important  that  singers 
from different musical traditions are represented, because 
the ability  to  utilise various phonation modes can vary 
greatly  across  cultures.  Ideally,  a  representative  dataset 
with recordings from all around the globe could be com-
piled,  which  would  allow  to  study  the  distribution  of 
phonation mode use in singing among humans.

6. Another way of generalisation, in particular in view 
of practical tasks of automatic phonation mode detection, 
would be to introduce recordings by groups of singers, 
from small groups to large choirs. Also, recordings where 
singers are accompanied by musical instruments could be 
included. 

5. CONCLUSIONS

Phonation mode is an important characteristic of singing, 
playing a vital role in many singing-related disciplines. It 
remains under-researched, one of  the reasons being the 
lack of reference and training data. The dataset presented 
here closes this gap. It is aimed at MIR researchers who 
wish to develop automated methods for phonation mode 
detection in singing. 
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ABSTRACT

Enhancing specific parts of a polyphonic music signal
is believed to be a promising way of breaking the glass
ceiling that most Music Information Retrieval (MIR) sys-
tems are now facing. The use of signal enhancement as a
pre-processing step has led to limited improvement though,
because distortions inevitably remain in the enhanced sig-
nals that may propagate to the subsequent feature extrac-
tion and classification stages. Previous studies attempting
to reduce the impact of these distortions have relied on the
use of feature weighting or missing feature theory. Based
on advances in the field of noise-robust speech recognition,
we represent the uncertainty about the enhanced signals via
a Gaussian distribution instead that is subsequently prop-
agated to the features and to the classifier. We introduce
new methods to estimate the uncertainty from the signal in
a fully automatic manner and to learn the classifier directly
from polyphonic data. We illustrate the results by consid-
ering the task of identifying, from a given set of singers,
which one is singing at a given time in a given song. Exper-
imental results demonstrate the relevance of our approach.

1. INTRODUCTION

Being able to focus on specific parts of a polyphonic musi-
cal signal is believed to be a promising way of breaking the
glass ceiling that most Music Information Retrieval (MIR)
tasks are now facing [3]. Many approaches were recently
proposed to enhance specific signals (e.g., vocals, drums,
bass) by means of source separation methods [7, 19].

The benefit of signal enhancement has already been pro-
ven for several MIR classification tasks, such as singer
identification [10, 16], instrument recognition [12], tempo
estimation [4], and chord recognition [20]. In most of those
works, signal enhancement was used as a pre-processing
step. Since the enhancement process must operate with
limited prior knowledge about the properties of the spe-
cific parts to be enhanced, distortions inevitably remain in
the enhanced signals that propagate to the subsequent fea-
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ture extraction and classification stages resulting in limited
improvement or even degradation of the classification ac-
curacy.

A few studies have attempted to reduce the impact of
these distortions on the classification accuracy. In [10,15],
feature weighting and frame selection techniques were pro-
posed that associate a constant reliability weight to each
feature over all time frames or to all features in each time
frame. In practice, however, distortions affect different fea-
tures in different time frames so that the assumption of con-
stant reliability does not hold. A more powerful approach
consists of estimating and exploiting the reliability of each
feature within each time frame. A first step in this direction
was taken in [8], where recognition of musical instruments
in polyphonic audio was achieved using the missing fea-
ture theory. This theory adopted from noise-robust speech
recognition assumes that only certain features are observed
in each time frame while other features are missing and
thus discarded from the classification process [5].

Nevertheless, the approach in [8] has the following three
limitations. First, such binary uncertainty (either observed
or missing) does not account for partially distorted features
nor for correlations between the distortions affecting dif-
ferent features. To avoid this limitation, it was proposed in
the speech recognition field to use the so-called Gaussian
uncertainty [6], where the distortions over a feature vec-
tor are modeled as a zero-mean multivariate Gaussian with
possibly non-diagonal covariance matrix. Second, this ap-
proach necessitates clean data to train the classifiers, while
for some tasks, e.g., singer identification, collecting such
clean data may be impossible. Third, the approach in [8]
relies on manual f0 annotation and its use in a fully auto-
matic system has not been demonstrated.

The contribution of this paper is threefold: (1) promot-
ing the use of Gaussian uncertainty instead of binary un-
certainty for robust classification in the field of MIR, (2)
using a fully automatic procedure for Gaussian uncertainty
estimation, (3) learning classifiers directly from noisy data
with Gaussian uncertainty.

To illustrate the potential of the proposed approach we
consider in this paper the task of singer identification in
popular music and address it, in line with [10, 16], us-
ing Gaussian Mixture Model (GMM)-based classifiers and
Mel-frequency cepstral coefficients (MFCCs) as features.
We consider this task since it is one of the MIR classifica-
tion tasks for which the benefit of signal enhancement is
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Figure 1. The standard classification scheme.

most obvious. Indeed, the information about singer iden-
tity is mostly concentrated in the singing voice signal.

The remainder of this paper is organized as follows.
Some background about singer identification and baseline
approaches is provided in Section 2. The proposed ap-
proach based on Gaussian uncertainty is detailed in Sec-
tion 3. Experiments are presented in Section 4 and a dis-
cussion is provided in Section 5.

2. SINGER IDENTIFICATION

2.1 Background

When it comes to characterizing a song from its content,
identifying the singer that is performing at a given time in
a given song is arguably an interesting and useful piece of
information. Indeed, most listeners have a strong commit-
ment to the singer while listening to a given song. How-
ever, the literature about automatic singer identification is
relatively scarce, compared for example with musical genre
detection. This may be explained by several difficulties
that pose interesting challenges for research in machine lis-
tening.

First, the human voice is a very flexible and versatile in-
strument and very small changes in its properties have not-
icable effects on human perception. Second, the musical
accompaniment that forms the background is very diverse
and operates at about the same loudness as the singing
voice. Hence, very little can be assumed on both sides and
the influence of the background cannot be neglected.

For humans, though, it is relatively easy to focus on the
melody sung by the singer as our hearing system is highly
skilled at segregating human vocalizations within cluttered
acoustical environments. This segregation is also made
possible by compositional choices. For example, most of
the time in pop music, only one singer is singing at a time,
and if not, the others are background vocals that are usu-
ally more easily predictable and sung at a relatively low
volume.

From an application perspective, singing voice enhance-
ment is expected to be useful for the identification of singers
which have sung with different bands or with different in-
strumentations, such as unplugged versions. More on the
so-called album effect can be found in [14]. In this case,
classifying the mixture signal will induce variability in the
singer models due to occlusion, while classifying the singing
voice signal alone should provide better identification. The

same remark applies to the case where a song features
multiple singers and one needs to identify which singer is
singing at a given time. For some other repertoires where
the notions of singer and artist/band are very tightly linked,
it is questionable whether the singing voice signal suffices
for classification, because the musical background can also
provide discriminative cues. Nevertheless, singing voice
enhancement is likely to remain beneficial by enabling the
computation of separate features over the singing voice and
over the background and their fusion in the classification
process. In this paper, for simplicity, we illustrate the po-
tential of our approach by considering the singing voice
signal only unless otherwise stated.

2.2 Baseline Approaches

More formally, let us assume that each recording xfn (also
called mixture), represented here directly in the Short Term
Fourier Transform (STFT) domain, f = 1, . . . , F and n =
1, . . . , N being respectively frequency and time indices, is
the sum of two contributions: the main melody (here the
singing voice) vfn and the accompaniment afn. This can
be written in the following vector form:

xn = vn + an, (1)

where xn = [x1n, . . . , xFn]T , vn = [v1n, . . . , vFn]T and
an = [a1n, . . . , aFn]T .

We assume that there are K singers to be recognized,
and for each singer there is a sufficient amount of train-
ing and testing mixtures. In line with [10, 16], we adopt
a singer identification approach based on MFCC features
and GMMs.

Without any melody enhancement such an approach con-
sists in the following two steps [13] (Fig. 1):

1. Learning: For each singer k = 1, . . . ,K, the cor-
responding GMM model is estimated in the maxi-
mum likelihood (ML) sense from the features (here
MFCCs) ȳ computed directly from the training mix-
tures of that singer.

2. Decoding: A testing mixture x is assigned to the
singer k for which the likelihood of model θk eval-
uated on the features extracted in the same way is
maximum 1 .

In order to gain invariance with respect to the accom-
paniment, one needs to separate the contribution of the ac-
companiment and the singer within the mixture. This sepa-
ration may be embedded within the classifier, as in [22]. In
this case, the separation has to be performed in the feature
domain, usually the log Mel spectrum.

Alternatively, melody enhancement can be applied as
a pre-processing step [10, 16] over the spectrogram of the
mixture. since the spectrogram have better spectral reso-
lution than the log Mel spectrum, this approach can po-
tentially achieve better discrimination, as in that case, the
features (MFCCs) are no longer computed from the au-
dio mixture, but from the corresponding melody estimate
v̄ (Fig. 2).

1 In order not to overload the notations, the singer index k is omitted
hereafter, where applicable.
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Figure 2. Considering melody enhancement as a pre-
processing step.

3. PROPOSED APPROACH

Inspired by some approaches in speech processing [6], we
propose to consider Gaussian uncertainty by augmenting
the melody estimates v̄ by a set of covariance matrices Σv

representing the errors about these estimates. This Gaus-
sian uncertainty is first estimated in the STFT domain, then
propagated through MFCC computation, and finally ex-
ploited for GMM learning and decoding steps (Fig. 3).

3.1 Melody Enhancement

Given the mixture, we assume that each STFT frame vn of
the melody is distributed as

vn|xn ∼ N (v̄n, Σ̄v,n), (2)

and we are looking for an estimate of v̄n and Σ̄v,n.
In this study, we have chosen the melody enhancement

method 2 proposed by Durrieu et al. [7]. This method has
shown very promising results for vocals enhancement task
within the 2011 Signal Separation Evaluation Campaign
(SiSEC 2011) [2] and its underlying probabilistic model
facilitates STFT domain uncertainty computation.

The main melody v, usually a singer, is modeled thanks
to a source/filter model, and the accompaniment a is mod-
eled using Non-negative Matrix Factorization (NMF) model.
The leading voice is assumed to be harmonic and mono-
phonic. The separation system mainly tracks the leading
voice following two cues: first its energy, and second the
smoothness of the melody line. Therefore, the resulting
separated leading voice is usually the instrument or voice
that is the most salient in the mixture, over certain dura-
tions of the signal. Overall this modeling falls into the
framework of constrained hierarchical NMF with Itakura-
Saito divergence [19], which allows a probabilistic Gaus-
sian interpretation [9].

More precisely the method is designed for stereo mix-
tures. Let mixing equation

xj,fn = vj,fn + aj,fn (3)

be a stereophonic version of the monophonic mixing equa-
tion (1), where j = 1, 2 is the channel index and equations
(1) and (3) are related for any signal sj,fn as

sfn = (s1,fn + s2,fn)/2. (4)

2 The Python source code is available at http://www.durrieu.
ch/research/jstsp2010.html
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Figure 3. Proposed approach with melody enhancement
and Gaussian uncertainty.

A probabilistic Gaussian interpretation of modeling in
[7] assumes vj,fn and aj,fn are zero-mean Gaussians that
are mutually independent and independent over channel j,
frequency f and time n. The corresponding constrained
hierarchical NMF structured modeling allows the estima-
tion of their respective variances σ2

v,j,fn and σ2
a,j,fn from

the multichannel mixture. With these assumptions the pos-
terior distribution of vj,fn given xj,fn can be shown to be
Gaussian with mean

v̄j,fn =
σ2
v,j,fn

σ2
v,j,fn + σ2

a,j,fn

xj,fn (5)

obtained by Wiener filtering, as in [7], and the variance
[21]

σ̄2
v,j,fn =

σ2
v,j,fnσ

2
a,j,fn

σ2
v,j,fn + σ2

a,j,fn

. (6)

Finally, thanks to the posterior between-channel inde-
pendence of vj,fn and the down-mixing (4), v̄n and Σ̄v,n

in (2) are computed as

v̄n =
{

(v̄1,fn + v̄2,fn)/2
}
f
, (7)

Σ̄v,n = diag

[{
(σ̄2

v,1,fn + σ̄2
v,2,fn)/2

}
f

]
. (8)

Note that any Gaussian model-based signal enhance-
ment method, e.g., one of the methods implementable via
the general source separation framework in [19], is suitable
to compute this kind of uncertainty in the time-frequency
domain.

3.2 Uncertainty Propagation during MFCC
Computation

Let M(·) be the nonlinear transform used to compute an
M -dimensional MFCC feature vector yn ∈ RM . It can be
expressed as [1]

yn =M(vn) = D log(M|vn|), (9)

where D is theM×M DCT matrix, M is theM×F matrix
containing the Mel filter coefficients, and | · | and log(·) are
both element-wise operations.

In line with (2), we assume that the clean (missing) fea-
ture yn =M(vn) is distributed as

yn|xn ∼ N (ȳn, Σ̄y,n), (10)



which is an approximation because of the Gaussian as-
sumption (2) and the nonlinear nature ofM(·).

To compute the feature estimate ȳn and its Gaussian
uncertainty covariance Σ̄y,n we propose to use the Vector
Taylor Series (VTS) method [17] that consists in lineariz-
ing the transformM(·) by its first-order vector Taylor ex-
pansion in the neighborhood of the voice estimate v̄n:

yn =M(vn) ≈M(v̄n) + JM(v̄n) (vn − v̄n), (11)

where JM(v̄n) is the Jacobian matrix of M(vn) com-
puted in vn = v̄n. This leads to the following estimates of
the noisy feature value ȳn and its uncertainty covariance
Σ̄y,n (10), as propagated through this (now linear) trans-
form:

ȳn = M(v̄n), (12)

Σ̄y,n = D
M

M|v̄n|11×F
Σ̄v,n

[
D

M

M|v̄n|11×F

]T
,(13)

where 11×F is an 1× F vector of ones and the magnitude
| · | and the division are both element-wise operations.

3.3 GMM Decoding and Learning with Uncertainty

Each singer is modeled by a GMM θ = {µi,Σi, ωi}Ii=1,
where i = 1, . . . , I are mixture component indices, and
µi, Σi and ωi (

∑
i ωi = 1) are respectively the mean, the

covariance matrix and the weight of the i-th component.
In other words, each clean feature vector yn is modeled as
follows:

p(yn|θ) =
∑I

i=1
ωiN(yn|µi,Σi), (14)

where

N(yn|µi,Σi) ,

1√
(2π)M |Σi|

[
− (yn − µi)

TΣ−1i (yn − µi)

2

]
. (15)

Since the clean feature sequence y = {yn}n is not
observed, its likelihood, given model θ, cannot be com-
puted using (14). Thus in the “likelihood computation”
step (Fig. 3), we rather compute the likelihood of the noisy
features ȳ given the uncertainty and the model, that can be
shown to be equal to [6]:

p(ȳ|Σ̄y, θ) =
N∏

n=1

I∑
i=1

ωiN(ȳn|µi,Σi + Σ̄y,n). (16)

We see that in this likelihood Gaussian uncertainty covari-
ance Σ̄y,n adds to the prior GMM covariance Σi, thus
adaptively decreasing the effect of signal distortion.

In the “model learning” step (Fig. 3), we propose to esti-
mate the GMM parameters θ by maximizing the likelihood
(16). This can be achieved via the iterative Expectation-
Maximization (EM) algorithm introduced in [18] and sum-
marized in Algorithm 1. The derivation of this algorithm
is omitted here due to lack of space and the Matlab source
code for GMM decoding and learning is available at http:
//bass-db.gforge.inria.fr/amulet.

Algorithm 1 One iteration of the EM algorithm for the
likelihood integration-based GMM learning from noisy
data.
E step. Conditional expectations of natural statistics:

γi,n ∝ ωiN(ȳn|µi,Σi + Σ̄y,n),

and
∑

i
γi,n = 1, (17)

ŷi,n = Wi,n (ȳn − µi) + µi, (18)

R̂yy,i,n = ŷi,nŷT
i,n + (I−Wi,n) Σi, (19)

where
Wi,n = Σi

[
Σi + Σ̄y,n

]−1
. (20)

M step. Update GMM parameters:

ωi =
1

N

N∑
n=1

γi,n, (21)

µi =
1∑N

n=1 γi,n

N∑
n=1

γi,nŷi,n, (22)

Σi =
1∑N

n=1 γi,n

N∑
n=1

γi,nR̂yy,i,n − µiµ
T
i . (23)

4. EXPERIMENTS

4.1 Database

For our evaluation, we consider a subset of the RWC Pop-
ular Music Database [11] which has previously been con-
sidered in [10] for the same task. It consists of 40 songs
sung by 10 singers, five of which were male (denoted by a
to e) and the five others female (denoted by f to j). This
set is then divided into the four groups of songs considered
in [10], each containing one song by each singer .

Each of those songs is then split into segments of 10
seconds duration. Among those segments, only the ones
where a singing voice is present (not necessarily during the
whole duration of the segment) are kept unless otherwise
stated.

Considering short duration segments instead of the whole
song is done for two reasons. First, it makes the task more
generic in the sense that multiple singers can also poten-
tially be tracked within a same song. Second, it allows us
to gain statistical relevance during the cross validation by
enlarging the number of tests.

4.2 Methods

For each of those segments, features are computed and
classified using the three methods depicted in Figures 1 to
3. The first one, named mix, consists in computing the fea-
tures directly from the mixture, and serves as a baseline.
The second method, termed v-sep, consider melody en-
hancement as a pre-processing step. The main melody en-
hancement system considered in this study is available un-
der two versions: a version focusing on the voiced part of



Accuracy (%) per 10 sec. singing segment per song
input Fold 1 Fold 2 Fold 3 Fold 4 Total all seg. sung seg.
mix 51 53 55 38 49 57 64

v-sep 60 63 53 43 55 57 64
v-sep-uncrt 71 72 84 83 77 85 94

Table 1. Average accuracy of the tested methods per singing segment and per song, considering either all the segments or
only those segments where singing voice is present in the latter case.

the singing voice and another version attempting to jointly
enhance the voiced and the unvoiced parts of the singing
voice (see [7] for details). In the following, only the re-
sults of the former are reported since the latter led to much
smaller classification accuracy. When the estimated vocals
signal has zero power in a given time frame, the result-
ing MFCCs may be undefined. Such frames are discarded.
The last method, termed v-sep-uncrt, consists in exploiting
the estimated uncertainty about the enhancement process.

For all those methods, we considered MFCC features
and dropped the first coefficient, thus discarding energy in-
formation. Mixtures of 32 Gaussians are then trained using
50 iterations of the EM algorithm for each singer. For test-
ing, the likelihood of each singer model is computed for
each segment and the one with the highest likelihood is
selected as the estimate.

4.3 Results

The aforementioned four groups of songs are considered
for a 4-fold cross validation. For each fold, the selected
group is used for testing and the data of the three remain-
ing ones are used for training the models. The average
detection accuracy are shown in Table 1. Compared to
the baseline, v-sep and v-sep-uncrt achieve better perfor-
mance while considering segments, indicating that focus-
ing on the main harmonic source within the segment is
beneficial for identifying the singer. That is, the level of
feature invariance gained by the separation process more
than compensates for the distortions it induces.

Considering the uncertainty estimate adds a significant
level of improvement in the v − sep case. We assume that
this gain of performance is obtained because the use of un-
certainty allows us to focus on the energy within the spec-
trogram that effectively belongs to the voice and that the
use of the uncertainty allows us to robustly consider stan-
dard features (MFCCs).

Performing a majority vote over the all the segments (in
this case the likelihood of each singer is taken into account
even if no singing voice is present) of each song gives an
accuracy of 85% and restricting the vote to only the sung
segments gives a 94% accuracy. These numbers can re-
spectively be considered as worst and best cases. It is
therefore likely that a complete system that would incor-
porate a music model to discard segments with only music
would achieve an accuracy that is between those bounds.
Although a more formal comparison would be needed, we
believe that those results compare favorably with the per-
formances obtained in [10] using specialized features on
the same dataset while standard MFCC features were used

here. It is also interesting to notice that in this case of song-
level decisions, considering the separation without uncer-
tainty does not give any improvement compared to the mix
baseline.

5. DISCUSSION

We have presented in this paper a computational scheme
for extracting meaningful information in order to tackle a
music retrieval task: singer identification. This is done by
considering an enhanced version of the main melody that is
more or less reliable in specific regions of the time/frequency
plane. Instead of blindly making use of this estimate, we
propose in this paper to consider how uncertain the separa-
tion estimate is during the modeling phase. This allows us
to give more or less importance to the features depending
on how reliable they are in different time frames, both dur-
ing the training and the testing phases. For that purpose,
we adopted the Gaussian uncertainty framework and intro-
duced new methods to estimate the uncertainty in a fully
automatic manner and to learn GMM classifiers directly
from polyphonic data.

One should notice that the proposed scheme is not tied
to the task considered in this paper. It is in fact completely
generic and may be easily applied to other GMM-based
MIR classification tasks where the prior isolation of a spe-
cific part of the music signal could be beneficial. The
only part that would require adaptation is the derivation
of VTS uncertainty propagation equations for other fea-
tures than MFCCs. Uncertainty handling for other classi-
fiers than GMM has also received some interest recently in
the speech processing community.

The experiments reported in this paper provide us with
encouraging results. Concerning this specific task of singer
identification, we intend to exploit both the enhanced singing
voice and accompaniment signals and to experiment on
other datasets with a wider range of musical styles. In
particular, we believe that the hip-hop/rap musicals genres
would be an excellent testbed both from a methodologi-
cal and application point of view, as many songs feature
several singers: knowing which singer is performing at a
given time is a useful piece of information. Finally, we
would like to consider other content based retrieval tasks
in order to study the relevance of this scheme for a wider
range of applications.
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ABSTRACT

This work evaluates two strategies for predominant funda-
mental frequency (f0) estimation in the context of melodic
transcription from flamenco singing with guitar accompa-
niment. The first strategy extracts the f0 from salient pitch
contours computed from the mixed spectrum; the second
separates the voice from the guitar and then performs mono-
phonic f0 estimation. We integrate both approaches with
an automatic transcription system, which first estimates the
tuning frequency and then implements an iterative strat-
egy for note segmentation and labeling. We evaluate them
on a flamenco music collection, including a wide range of
singers and recording conditions. Both strategies achieve
satisfying results. The separation-based approach yields
a good overall accuracy (76.81%), although instrumental
segments have to be manually located. The predominant
f0 estimator yields slightly higher accuracy (79.72%) but
does not require any manual annotation. Furthermore, its
accuracy increases (84.68%) if we adapt some algorithm
parameters to each analyzed excerpt. Most transcription
errors are due to incorrect f0 estimations (typically octave
and voicing errors in strong presence of guitar) and in-
correct note segmentation in highly ornamented sections.
Our study confirms the difficulty of transcribing flamenco
singing and the need for repertoire-specific and assisted al-
gorithms for improving state-of-the-art methods.

1. INTRODUCTION

Flamenco is a music tradition originating mostly from An-
dalusia in southern Spain. The singer has a main role and
is often accompanied by the guitar and other instruments
such as claps, rhythmic feet and percussion. This research
aims to develop a method for computing detailed note trans-
criptions of flamenco singing from music recordings, which
can then be processed for motive analysis or further sim-
plified to obtain an overall melodic contour that will char-
acterize the style. In this study we focus on accompanied
singing, and propose a method comprised of two stages:
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predominant f0 estimation and note segmentation. For the
first stage, two alternative strategies are evaluated and com-
pared: in the first, we use a state-of-the-art predominant f0
estimation algorithm, which estimates the f0 of the pre-
dominant melody directly from the full audio mix. In the
second, we propose a source separation approach to isolate
the singing voice and perform monophonic f0 estimation.

2. SCIENTIFIC BACKGROUND

Automatic transcription is a key challenge in the music in-
formation retrieval (MIR) field. It consists of computing
a symbolic musical representation from an audio record-
ing. In polyphonic music material, there is an interest in
transcribing the predominant melodic line [1]. Although
we find some successful approaches for singing transcrip-
tion [2,3], the singing voice is still one of the most complex
instruments to transcribe, given the continuous character of
the human voice and the variety of pitch ranges and timbre.
Additional challenges in flamenco arise from the quality
of recordings, the acoustic and expressive particularities of
flamenco singing, its ornamental and improvisational char-
acter and the yet to be formalized musical structures [4].

In [5], we proposed a melodic transcription system from
a cappella flamenco singing and we evaluated it against
manual annotations of 72 performances. The obtained over-
all accuracy was around 70% (50 cents tolerance), which
was significantly lower than the one obtained for a small
test collection of pop/jazz excerpts (∼85%). The study
showed the importance of good monophonic f0 estimation,
and confirmed the difficulty of note segmentation for ex-
cerpts with unstable tuning or highly ornamented sections.

The goals of the present study are to apply this tran-
scription system to accompanied singing and to perform
a comparative evaluation of two alternative strategies for
singing voice f0 estimation. The first is to replace the
monophonic f0 detector by a predominant f0 estimation
method. The task of predominant f0 estimation from poly-
phonic music (sometimes referred to simply as melody ex-
traction) has received much attention from the research
community in recent years, and state-of-the-art approaches
yield an overall accuracy around 75% [6, 7]. A variety of
different approaches have been proposed, based on track-
ing agents [8], classification [9], streaming rules [10] or
pitch contour characterization [11]. The most common
set of approaches are “salience based”, i.e. they compute



a pitch salience representation from the audio signal, and
then select the melody out of the peaks of this representa-
tion over time [8, 9, 11].

The second strategy is to separate the singing voice from
the guitar accompaniment using source separation and tran-
scribe the separated track. Recent singing voice separation
methods can be classified into three categories: spectro-
gram factorization [12–14], pitch-based inference [15, 16]
and repeating-structure removal [17]. Spectrogram factor-
ization methods decompose a magnitude spectrogram as a
set of components that represent features such as the spec-
tral patterns (basis) or the activations (gains) of the active
sources along the time. Fitzgerald and Gainza [12] propose
a non-negative partial cofactorisation sharing a common
set of frequency basis functions. In [13], an accompani-
ment model is designed, from the non-vocal segments, to
fit the musical instruments and attempt separation of the
vocals. In [14], the basis of the vocal track is learned
from the mixture by keeping the accompaniment spectra
fixed. Pitch-based inference methods use information from
the pitch contour to determine the harmonic structures of
singing voice. In [16], separation of both the voiced and
the unvoiced singing voice is presented by means of the
combination of detected unvoiced sounds and a spectral
subtraction method to enhance voiced singing separation
[15]. Repeating-structure removal methods [17] use a pat-
tern recognition approach to identify and extract accompa-
niment segments, without manual labeling, which can be
classified as repeating musical structures.

3. TRANSCRIPTION METHOD

Our method relies on two main stages: low-level feature
extraction (mainly f0) and note segmentation. We present
the two alternatives for f0 estimation compared in this study
followed by a summary of the note segmentation approach.

3.1 Singing voice f0 estimation

3.1.1 Predominant f0 estimation

For predominant f0 estimation, we use [11], which ob-
tained the highest overall accuracy in MIREX 2011 [6].
First, the audio signal is analyzed and spectral peaks (si-
nusoids) are extracted. This process is comprised of three
main steps: first a time-domain equal loudness filter is ap-
plied, which has been shown to attenuate spectral com-
ponents belonging primarily to non-melody sources [19].
Next, the short-time Fourier transform is computed with a
46 ms Hann window, a hop size of 2.9 ms and a 4 zero
padding factor. At each frame the local maxima (peaks) of
the spectrum are detected. In the third step, the estimation
of the spectral peaks’ frequency and amplitude is refined
by calculating each peak’s instantaneous frequency (IF) us-
ing the phase vocoder method and re-estimating its ampli-
tude based on the IF. The detected spectral peaks are subse-
quently used to compute a representation of pitch salience
over time: a salience function. The salience function is
based on harmonic summation with magnitude weighting,
and spans a 5-octave range from 55Hz to 1760Hz. De-
tails are provided in [11]. In the next stage, the peaks of

the salience function are grouped over time using heuris-
tics based on auditory streaming cues. This results in a
set of pitch contours, out of which the contours belonging
to the melody need to be selected. The contours are au-
tomatically analyzed and a set of contour characteristics
is computed. In the final stage of the system, the con-
tour characteristics and their distributions are used to fil-
ter out non-melody contours. The distribution of contour
salience is used to filter out pitch contours at segments of
the song where the melody is not present. Next, we obtain
a rough estimate of the melodic pitch trajectory by comput-
ing a per-frame salience-weighted average of the remain-
ing pitch contours and smoothing it over time using a slid-
ing mean filter. This rough pitch trajectory is used to min-
imise octave errors (contours with the correct pitch class
but in the wrong octave) and remove pitch outliers (con-
tours representing highly unlikely jumps in the melody).
Finally, the melody f0 at each frame is selected out of the
remaining pitch contours based on their salience. For fur-
ther details the reader is referred to [11].

In addition to computing the melody f0 sequence using
the default algorithm parameters (denoted MTG), we also
computed the melody adjusting three parameters of the al-
gorithm for each musical excerpt: the minimum and maxi-
mum frequency threshold and the strictness of the voicing
filter (cf. [11] for details). The results using the per-excerpt
adjusted parameters are referred to as MTGAdaptedparam.

3.1.2 Singing voice separation and monophonic f0
estimation

Standard Non-negative Matrix Factorization (NMF) [20] is
not able to determine if a frequency basis belongs to a per-
cussive, harmonic or vocal sound. Our proposal attempts
to overcome this limitation without using any clustering
process. A mixture spectrogram X is factorized into three
separated spectrograms, Xp (percussive), Xh (harmonic)
and Xv (vocal). Using similar spectro-temporal features
[21, 22], harmonic sounds are modeled by sparseness in
frequency and smoothness in time. Percussive sounds are
modeled by smoothness in frequency and sparseness in
time. Vocal sounds are modeled by sparseness in frequency
and sparseness in time. Although it is not necessary to dis-
criminate between percussive and harmonic sounds in the
accompaniment, our experimental results showed we ob-
tain better vocal separation using this discrimination. The
proposed singing voice separation is composed of three
stages: segmentation, training and separation.

In the segmentation stage, the mixture signal
X = Xnonvocal

⋃
Xvocal is manually labelled into vo-

cal Xvocal (vocal+instruments) and non-vocal Xnonvocal

(only instruments) regions. In the training stage, from non-
vocal regions, the percussive Wp and harmonic Wh ba-
sis vectors are learned using an unsupervised NMF per-
cussive/harmonic separation approach based on spectro-
temporal features.

Xnonvocal ≈ Xp +Xh =Wp ·Hp +Wh ·Hh (1)

In the separation stage, the vocal spectrogram Xv is ex-
tracted from the vocal regions by keeping the percussive



Wp and harmonic Wh basis vectors fixed from the previ-
ous stage.

Xvocal ≈ X ′p+X ′h+Xv =Wp ·H ′p+Wh ·H ′h+Wv ·Hv

(2)
In this manner, the singing voice signal v(t) is synthesized
from the vocal spectrogram Xv . To obtain an f0 sequence
from the synthesized voice signal, the traditional difference
function is computed for each time frame index t:

d(τ, t) =
W−1∑
n=0

(v(t+ n)− v(t+ n+ τ))2 (3)

where W is the length of the summation window and τ is
the candidate pitch period. From this function, the cumula-
tive mean normalized difference function can be computed
as defined in [23]:

dn(τ, t) =

{
1, τ = 0
d(τ, t)/[ 1τ

∑τ
j=1 d(j, t)] otherwise.

(4)
Observe that the function dn(τ, t) can be viewed as a cost
matrix, where each element (τ, t) indicates the cost of hav-
ing a pitch period equal to τ at time frame t. We esti-
mate the whole f0 sequence by computing the lowest-cost
path through the matrix dn(τ, t). This computation is ac-
complished with dynamic programming. The endpoints of
the path are fixed only for the t-axis and the path is con-
strained to advance step-by-step along t, under the condi-
tion |τt−1 − τt| ≤ 1. This condition ensures a continuous
and smooth f0 contour. The obtained f0 is denoted as UJA.

3.2 Note segmentation and labeling

Our approach for note segmentation and labeling is adapted
from a transcription system for mainstream popular mu-
sic [18]. After consulting a group of flamenco experts
from the COFLA project 1 , we took the following design
decisions. First, we define an equal-tempered scale with
respect to an estimated tuning frequency. Second, we as-
sume a constant tuning frequency value for each analyzed
excerpt. Third, we transcribe all perceptible notes, includ-
ing short ornamentations, in order to cover both expressive
nuances and the overall melodic contour. We summarize
below the mains steps of the transcription algorithm and
we refer to [5] and [18] for further details.

3.2.1 Tuning frequency estimation

From the obtained f0 envelope, we perform an estimation
of the tuning frequency used by the singer assuming an
equal-tempered scale. The tuning frequency is assumed to
be constant for a given excerpt. We compute the maximum
of the histogram of f0 deviations from an equal-tempered
scale tuned to 440 Hz. We then map the f0 values of all
frames into a single semitone interval with a one-cent res-
olution.

In our approach, we give more weight to frames where
the included f0 is stable by assigning higher weights to

1 http://mtg.upf.edu/research/projects/cofla
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Figure 1. Matrix M used by the short note segmenta-
tion process, illustrating how the best path for a node with
frame index k and note index j is determined. All possible
note durations between dmin and dmax are considered, as
well as all possible jumps to previous notes. The selected
segmentation is marked with dark gray.

frames with low f0 derivative. In order to smooth the re-
sulting histogram and improve its robustness to noisy f0
estimations, instead of adding a value to a single bin, we
use a bell-shaped window that spans several bins. The
maximum of this histogram (bmax) determines the tuning
frequency deviation in cents from 440 Hz. The estimated
tuning frequency in Hz then becomes

fref = 440 · 2
bmax
1200 (5)

3.2.2 Short note transcription

The short note transcription step segments a single f0 con-
tour into notes. Using dynamic programming (DP), we
find the note segmentation that maximizes a set of prob-
ability functions. The estimated segmentation corresponds
to the optimal path among all possible paths along a 2-D
matrix M (see Figure 1).

This matrix M has note pitches as rows and analysis
frames as columns. Note pitches are quantized into semi-
tones according to the estimated tuning frequency. Possi-
ble note pitches should cover the tessitura of the singer and
include a −∞ value for the unvoiced sections. Note dura-
tions are limited to a certain range [dmin, dmax] of frames.
The maximum duration dmax should be long enough so
that it covers several periods of a vibrato with a low modu-
lation frequency, e.g. 2.5Hz, but also short enough to have
good temporal resolution, e.g. avoid skipping short orna-
mentations.

Possible paths considered by the DP algorithm always
start from the first frame, end at the last audio frame, and
advance in time so that notes never overlap. A path p is
defined by its sequence of Np notes,
p = {np0, np1, . . . , npNp−1}, where each note npi begins
at a certain frame kpi, has a duration of dpi frames and a
pitch value of cpi. The optimal path is defined as the path
with maximum likelihood among all possible paths.



P = argmax
p
{L(p)} (6)

The likelihood L(p) of a certain path p is determined
as the product of likelihoods of each note L(npi) times the
likelihood of each jump between consecutive notes
L(npi−1, npi):

L(p) = L(np0) ·
Np−1∏
i=1

L(npi) · L(npi−1, npi) (7)

In our approach, no particular characteristic is assumed
a priori for the sung melody; therefore all possible note
jumps have the same likelihood L(npi−1, npi) = 1. On the
other hand, the likelihood of a note L(npi) is determined
as the product of several likelihood functions based on the
following criteria: duration (Ld), pitch (Lc), existence of
voiced and unvoiced frames (Lv), and low-level features
related to stability (Ls):

L(npi) = Ld(npi) · Lc(npi) · Lv(npi) · Ls(npi) (8)

Duration likelihood Ld is set so that it is small for short
and long durations. Pitch likelihood Lc is defined so that it
is higher the closer the frame f0 values are to the note nom-
inal pitch cpi, giving more relevance to frames with low f0
derivative values. The voicing likelihood Lv is defined so
that segments with a high percentage of unvoiced frames
are unlikely to be a voiced note, while segments with a
high percentage of voiced frames are unlikely to be an un-
voiced note. Finally, the stability likelihood Ls considers
that a voiced note is unlikely to have fast and significant
timbre or energy changes in the middle. Note that this is
not in contradiction with smooth vowel changes, charac-
teristic of flamenco singing.

3.2.3 Iterative note consolidation and tuning frequency
refinement

The notes obtained in the previous step have a limited du-
ration between [dmin, dmax] frames, although longer notes
are likely to have been sung. Therefore, it makes sense to
consolidate consecutive voiced notes into longer notes if
they have the same pitch. However, significant and fast en-
ergy or timbre changes around the note connection bound-
ary may be indicative of phonetic changes unlikely to hap-
pen within a note, and thus may indicate that those con-
secutive notes are different ones. Thus, consecutive notes
will be consolidated only if they have the same pitch and
the stability measure of their connection Ls falls below a
certain threshold.

Once notes are consolidated, it may be beneficial to use
the note segmentation to refine the tuning frequency esti-
mation. For this purpose, we compute a pitch deviation
for each voiced note, and then estimate a new tuning fre-
quency value from a one-semitone histogram of weighted
note pitch deviations in similar way to that described in
Section 3.2.1. The difference is that now we add a value for

Figure 2. Visualization tool for melodic transcription. Au-
dio waveform (top), estimated f0 and pitch in a piano roll
representation (bottom).

each voiced note instead of for each voiced frame. Weights
are determined as a measure of the salience of each note,
giving more weight to longer and louder notes. As a final
step of this process, note nominal pitches are re-computed
based on the new tuning frequency. This process is re-
peated until there are no more consolidations.

Figure 2 shows an example of a computed transcrip-
tion. The system outputs both the extracted f0 envelope
and the estimated frame note pitch, according to an equal-
tempered scale, as requested by flamenco experts for higher-
level analyses.

4. EVALUATION STRATEGY

4.1 Music collection

We gathered 26.74 minutes of music, consisting of 30 per-
formances of singing voice with guitar accompaniment (Fan-
dango style). This collection has been built in the context
of the COFLA project. It contains a variety of male and
female singers and recording conditions. The average du-
ration of the analyzed excerpts is 53.48 seconds and they
contain a total of 271482 frames and 2392 notes.

4.2 Ground truth gathering

We collected manual note annotations from a musician with
limited knowledge of flamenco music, so that there was
no implicit knowledge applied in the transcription process.
We provided him with the user interface shown in Figure
2. Since transcribing everything from scratch is very time
consuming, we also provided the output of our transcrip-
tion using the MTGAdaptedParam estimation as a guide.
The annotator could listen to the original waveform and the
synthesized transcription, while editing the melodic data
until he was satisfied with the transcription. The criteria
used to differentiate ornaments and pitch glides were dis-
cussed with two flamenco experts by collectively annotat-
ing a set of working examples, so that the annotator then
followed a well-defined and consistent strategy.



Figure 3. Frame-based accuracy measures (50 cents toler-
ance) for the considered approaches.

4.3 Evaluation measures

For evaluation we compute the measures used in the Audio
Melody Extraction (AME) MIREX task [6]. The measures
are based on a frame-by-frame comparison of the ground-
truth to the estimated frequency sequence. Note that in our
case we compare the ground truth to the frequency of the
final note transcription, meaning any observed errors rep-
resent the combined errors introduced by the two stages of
our method (f0 estimation and note segmentation). Also,
since we do not provide a pitch estimate for frames de-
termined as unvoiced, incorrect voicing detection will also
influence pitch accuracy (but not overall accuracy). We
consider Voicing recall: % of voiced frames in the refer-
ence correctly estimated as voiced; Voicing false alarm: %
of unvoiced frames in the reference mistakenly estimated
as voiced; Raw pitch accuracy: % of voiced frames where
the pitch estimate is correct within a certain threshold in
cents (th); Raw chroma accuracy: same as the raw pitch
accuracy except that octave errors are ignored; and Over-
all accuracy: total % of correctly estimated frames: correct
pitch for voiced frames and correct labeling of unvoiced
frames.

5. RESULTS

5.1 Frame-based pitch accuracy

Figure 3 shows the obtained accuracy measures for th =
50 cents. At first glance, we see that satisfying results
are obtained for both strategies. The separation-based ap-
proach (UJA) yields good results (overall accuracy 76.81%,
pitch accuracy 63.62%), as the guitar timbre can be accu-
rately estimated from the instrumental segments. Never-
theless, these guitar segments have to be manually located.
The predominant f0 estimator (MTG) yields slightly higher
overall accuracy (79.72%) and pitch accuracy (71.46%),
and it does not require manual voicing annotation. More-
over, the overall accuracy increases to 84.68% (pitch accu-
racy 77.92%) if we adapt some algorithm parameters for
each excerpt (MTGAdaptedParam). The observed voicing
false alarm rate (around 10% for MTG and UJA) results

Vx Vx False Raw Raw Overall
Est. Ref. Recall Alarm pitch chroma accuracy
MTG UJA 89.24 6.35 74.20 74.82 82.67
UJA MTG 94.00 12.95 78.29 78.93 82.65

Table 1. Accuracy measures between f0 estimations.

from segments where the guitar is detected as melody.
The obtained results are slightly higher than the ones

obtained for a cappella singing [5] when considering the
same note segmentation algorithm together with a mono-
phonic f0 estimator. This is due to two main reasons. Pri-
marily, as the singer follows the tuning reference of the
guitar, there are no tuning errors and the note labeling re-
sults are improved. Also, as the voice is very predominant
with respect to the guitar, the predominant f0 estimation
method works very well for this material.

5.2 Agreement between f0 estimations

We also estimate the agreement between both f0 strategies
by computing the evaluation measures with one estimator
as ground truth and the other one as estimation. Results
are presented in Table 1. We observe that in both cases
the overall agreement is around 82.5%. The main differ-
ence between the approaches is in the determination of
voiced sections. Whilst in UJA only large non-voiced sec-
tions were manually annotated, MTGAdaptedParam also
attempts to automatically detect shorter unvoiced sections
in the middle of the piece.

5.3 Error analysis

We observe that for the two considered strategies, tran-
scription errors are introduced in both stages of the tran-
scription process (f0 estimation and note segmentation).

Regarding singing voice f0 estimation, voicing seems
to be the main aspect to improve. Voicing false positives
occasionally appear during melodic guitar segments and
in short unvoiced phonemes (e.g. fricatives). On the other
hand, the singing voice f0 is sometimes missed in the pres-
ence of strong instrumental accompaniment, resulting in
voicing false negatives. Since the subsequent note segmen-
tation stage relies on the voicing estimation, voicing errors
during the f0 estimation are bound to introduce errors in
the note segmentation stage as well. Another type of error
is fifth or octave errors at segments with highly predomi-
nant accompaniment. This occurs especially with the UJA
method, as low harmonics of the singing voice might be
erased from the spectrum during the separation process.

Regarding the note segmentation algorithm, most of the
errors happen for short notes; either they are consolidated
while the annotation consists of several close notes, or vice
versa. This especially happens where the energy envelope
also accounts for the presence of guitar, so that onset esti-
mation becomes more difficult. Finally, some of the errors
occur due to wrong pitch labeling of very short notes, as
the f0 contour is short and unstable. This demonstrates
the difficulty of obtaining accurate note transcriptions for
flamenco singing, given its ornamental character and the



continuous variations of f0, easily confused with deep vi-
brato or pitch glides. The great variability of the vocal f0
contour can be observed in Figure 2.

6. CONCLUSIONS

This paper presents an approach for computer-assisted tran-
scription of accompanied flamenco singing. It is based
on an iterative note segmentation and labelling technique
from f0, energy and timbre. Two different strategies for
singing voice f0 estimation were evaluated on 30 minutes
of flamenco music, obtaining promising results which are
comparable to (and even better than) previous results for
monophonic singing transcription. The main sources of
transcription errors were identified: in the first stage (f0
estimation) the main issue is voicing detection (e.g. identi-
fication of the guitar as voice), though we occasionally ob-
serve pitch errors (e.g. wrong f0 in the presence of guitar)
as well. In the second stage (note segmentation) we ob-
served errors in segmenting short notes and labeling notes
with an unstable f0 contour. There is still much room
for improvement. One limitation of this work is the small
amount of manual annotations. This is due to the fact that
manual annotation is very time consuming and difficult to
obtain, and has a degree of subjectivity. We are currently
expanding the amount of manual annotations. The second
limitation is that we only have manual annotations on a
note level (quantized to 12 semitones) and not the contin-
uous f0 ground truth, which would allow us to evaluate
separately the accuracy of the two main stages of the algo-
rithm. We plan to work on this issue. Finally, we plan to
quantify the uncertainty of the ground truth information by
comparing annotations in different contexts, and adapt the
algorithm parameters accordingly.
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