MUSICNN: PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS FOR MUSIC AUDIO TAGGING

Jordi Pons
Music Technology Group
Universitat Pompeu Fabra
jordi.pons@upf.edu

Xavier Serra
Music Technology Group
Universitat Pompeu Fabra
xavier.serra@upf.edu

EXTENDED ABSTRACT

Pronounced as "musician", the musicnn library contains a set of pre-trained musically motivated convolutional neural networks [4, 5] for music audio tagging:

https://github.com/jordipons/musicnn

This repository also includes some pre-trained vgg-like baselines [2]. These models can be used as out-of-the-box music audio taggers, as music feature extractors, or as pre-trained models for transfer learning.

These models are trained with two different datasets: the MagnaTagATune dataset (the MTT of 19k training songs [3]) and the Million Song Dataset (the MSD of 200k training songs [1]).

Which pre-trained models are available? Although the main focus of the library is to release pre-trained musically motivated convolutional neural networks, we also provide several vgg-like model [2] (as baselines for comparison). A high-level depiction of the musicnn architecture [4, 5] is depicted in the following figure:

Figure 1: The musicnn architecture: a musically motivated convolutional neural network [4, 5].

The following models are available: MTT_musicnn, MSD_musicnn, MSD_musicnn_big, MTT_vgg, and MSD_vgg. The MTT models are trained with the MagnaTagATune dataset, and the MSD models are trained with the Million Song Dataset. Given that the Million Song Dataset contains more training data, we also provide a larger musicnn model: MSD_musicnn_big. Architectural details are accessible online [4, 5].

What’s the musicnn library for? Out-of-the-box music audio tagging. From within python, one can estimate the top-10 tags by simply running:

```python
from musicnn.tagger import top_tags
top_tags('music_file.mp3', model='MTT_musicnn', topN=10)
```

1 The MagnaTagATune 50-tags vocabulary: guitar, classical, slow, techno, strings, drums, electronic, rock, fast, piano, ambient, beat, violin, vocal, synths, female, Indian, opera, male, singing, vocals, no vocals, harpsichord, loud, quiet, flute, woman, male vocal, no vocal, pop, soft, sitar, solo, man, classic, choir, voice, new age, dance, male voice, female vocal, beats, harp, cello, no voice, weird, country, metal, female voice, choral.

2 The Million Song Dataset 50-tags vocabulary: rock, pop, alternative, indie, electronic, female vocalists, dance, 00s, alternative rock, jazz, beautiful, metal, chillout, male vocalists, classic rock, soul, indie rock, mellow, electronica, 80s, folk, 90s, chill, instrumental, punk, oldies, blues, hard rock, ambient, acoustic, experimental, female vocalist, guitar, hip-hop, 70s, party, country, easy listening, sexy, catchy, funk, electro, heavy metal, progressive rock, 60s, rb, indie pop, sad, house, happy.

3 An in-depth depiction of vgg architecture and its feature-maps is accessible online via a Jupyter Notebook: https://github.com/jordipons/musicnn/blob/master/vgg_example.ipynb

4 An in-depth depiction of the musicnn architecture (musically motivated CNN) and its feature-maps is accessible online via a Jupyter Notebook: https://github.com/jordipons/musicnn/blob/master/musicnn_example.ipynb

© Jordi Pons, Xavier Serra. Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

From the command-line, one can also print the top-N tags on the screen (top) or save them to a file (bottom):

```python
python -m musicnn.tagger music.au --model 'MTT_musicnn' --topN 10 --print
python -m musicnn.tagger audio.wav -m 'MTT_vgg' --topN 5 --save out.tags
```

What's the musicnn library for? Music feature extraction. Out of the extractor, see the example below, one gets the output of the model (the taggram and its associated tags) and all the intermediate representations of it (we refer to those as features). The features are packed in a dictionary and, for the musicnn models, you can extract timbral, temporal, cnn1, cnn2, cnn3, mean_pool, max_pool, and penultimate features. For the vgg models, you can extract pool1, pool2, pool3, pool4, and pool5 features.

```python
from musicnn.extractor import extractor
output = extractor(file, model='MTT_musicnn', extract_features=True)
taggram, tags, features = output
```

What's the musicnn library for? Transfer learning. Our pre-trained deep learning models can be fine-tuned, together with an output neural-network that acts as a classifier, to perform any other music task. To assess the utility of our embeddings, we build SVM classifiers on top of several pre-trained models that act as music feature extractors. The tools used to run this simple transfer learning experiment are accessible online:

https://github.com/jordipons/sklearn-audio-transfer-learning

We report accuracy results on the test set of the GTZAN (fault-filtered) dataset, and our processing pipeline consists of “feature extraction” + 128 PCA + SVM. The feature extraction can be based on VGGish audio set features (77.58% accuracy), OpenL3 audio set features (74.65% accuracy), MTT_musicnn features (71.37% accuracy), MTT_vgg features (72.75% accuracy), or MSD_musicnn features (77.24% accuracy).

Note that our MSD pre-trained models outperform the MTT ones. Besides, the MSD_musicnn achieves similar results than the VGGish audio set features (that are trained with a much larger dataset: 2M audios).

How did you train musicnn models? The code we employed to train the models above is also accessible:

https://github.com/jordipons/musicnn-training

These models achieve state-of-the-art performance on the MagnaTagATune dataset: MTT_musicnn (90.69 ROC-AUC / 38.44 PR-AUC) and MTT_vgg (90.26 ROC-AUC / 38.19 PR-AUC). But also for the Million Song Dataset: MSD_musicnn (88.01 ROC-AUC / 28.90 PR-AUC), MSD_musicnn_big (88.41 ROC-AUC / 30.02 PR-AUC) and MSD_vgg (87.67 ROC-AUC / 28.19 PR-AUC).

But the musicnn-training framework also allows to implement other models. For example, a similar architecture than musicnn but with an attention-based output layer (instead of the temporal pooling layer) can achieve 90.77 ROC-AUC / 38.61 PR-AUC on the MagnaTagATune dataset — and 88.81 ROC-AUC / 31.51 PR-AUC on the Million Song Dataset. You can find further details about this new architecture online.

ACKNOWLEDGMENTS

This work was partially supported by the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502) — and we are grateful for the GPUs donated by NVidia.

REFERENCES

