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ABSTRACT

In 1999, Fujishima published Realtime Chord Recogni-
tion of Musical Sound: a System using Common Lisp Mu-
sic. This paper kickstarted an active research topic that has
been popular in and around the ISMIR community. The
field of Automatic Chord Recognition (ACR) has evolved
considerably from early knowledge-based systems towards
data-driven methods, with neural network approaches ar-
guably being central to current ACR research. Nonethe-
less, many of its core issues were already addressed or re-
ferred to in the Fujishima paper. In this paper, we review
those twenty years of ACR according to these issues. We
furthermore attempt to frame current directions in the field
in order to establish some perspective for future research.

1. INTRODUCTION

This year marks the twentieth anniversary of Fu-
jishima’s [17] seminal ACR system. In this work the au-
thor proposed the calculation of a 12-D chroma feature
which gets compared to a dictionary of binary chord tem-
plates. The label of the most similar chord template is then
considered to be the chord output. Fujishima also proposed
exploiting the temporal continuity of chords by smooth-
ing the chromas across time to produce less noisy labels,
and suggested that musical information could be exploited.
This system outline created the framework within which
much of the early research on ACR would happen.

Perhaps the most striking evolution in ACR has been
the move from knowledge-driven to data-driven systems.
Initially, data-driven elements were used as one-for-one re-
placements, or additions, of elements to the framework set
by Fujishima. Examples are more sophisticated chroma
features, learnt Gaussian chord models or HMM-based
temporal models. More recently ACR research has been
dominated by Deep Learning (DL). In DL-ACR the rela-
tionship of tasks and elements becomes blurred as systems
have become more integrated. This is perhaps most ev-
ident in the system of McFee and Bello [40], which ap-
pears superficially to be a singular unit, although closer in-
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spection reveals convolutional filters providing short-term
context, recurrent elements modelling musical language,
chroma, and auxiliary targets for extra musical context. We
therefore consider that the system outline provided by Fu-
jishima is still valid in a discussion of ACR.

ACR systems have developed considerably in these
twenty years and commercial products providing such
functionality have recently been developed. However,
there is still room for improvement. For instance, while
ACR results have continually progressed, complex chords
are still recognised less well than major and minor tri-
ads. Nonetheless, ACR results have improved to the point
where the ambiguity in chord labels is now becoming a
topic of research. Such ambiguity can be introduced by the
chord labels themselves, or may result from different inter-
pretations of chord and melody. An interesting aspect of
modern ACR research derived from user research in com-
mercial products is the prediction of user interpretations in
the presence of ambiguity.

In the rest of this paper we review previous and current
research in ACR. Based on such review, we propose sev-
eral areas that have potential for improvement in ACR. We
first consider the related features and chord models, before
discussing temporal and musical context. We furthermore
consider ambiguity and subjectivity in ACR, and problems
associated with chord vocabularies before concluding.

2. PROBLEM 1: FINDING AN APPROPRIATE
FEATURE REPRESENTATION

The chroma feature has been perhaps the most influen-
tial idea in ACR, and much early ACR research focused
on producing chroma variants. Typically the chroma fea-
ture is calculated by summing the energy of elements of
the same pitch class in a preliminary pitch spectrum fea-
ture. In Fujishima’s paper, and subsequent others, the pitch
feature was calculated by gathering the energy under win-
dows of a spectrogram that are positioned logarithmically
in frequency. Later approaches used a constant-Q trans-
form (CQT) [4] which places windows on a multi-scale
spectrogram, affording higher resolution of low frequen-
cies, at the cost of lower temporal resolution. Such pitch-
based spectra are more compact than linear spectrograms
and afford simple summation in the chroma calculation, a
process referred to as pitch folding. Indeed, pitch folding
of logarithmic spectra into chroma features is perhaps the
most important technical aspect of Fujishima’s paper, as it
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affords a low-dimensional semantically meaningful feature
that is easily derived. However, the log-frequency spec-
trum may result in corruption of harmonic structure as e.g.
the second overtone of a root note is located in a pitch bin
labelled with the class of its perfect fifth. Such windowing
also results in bins of higher pitch being of large frequency
width, and possibly containing energy from several pitch
class sources. However, even in the presence of such po-
tential sources of error the pitch folded chroma feature has
endured as a staple of ACR.

Many chroma variants have been designed to attempt to
counter the negative effects of pitch folding. In the sim-
plest case, a spectral weighting is employed that lowers
the effect given to higher pitches, which are more likely
to contain misassigned harmonics. Other researchers have
applied extra weight based upon the harmonic structure in
the spectrogram, for instance the harmonic product spec-
trum is windowed and folded in the Enhanced Pitch Class
Profile [34] and in [41]. Alternatively note spectral tem-
plates are employed through convolution [18] and for spec-
tral decomposition [38] although the log-frequency win-
dowed spectrogram has generally prevailed. Other chroma
refinements through pitch feature manipulation have been
proposed. Placing less effect on the relative coefficients
in the pitch feature, thereby inducing a level of timbre-
invariance, is encouraged by regularisation using e.g. log
compression [42] which is seen to be useful for ACR [10].

Researchers have attempted to create chroma with
sharper definition. High-resolution spectral methods such
as parabolic interpretation [18] and spectral reassignment
[27, 46] have been used in order to sharpen a spectrogram
before windowing. Likewise, sharpness of features can
be diminished when a piece is not tuned to the standard
440Hz, and tuning estimation is often performed to counter
this problem [18, 21]. Alternatively, higher dimensional
chroma have been employed to avoid these pitfalls [18,59].

In DL-ACR systems, the network is expected to learn
any necessary weightings or transforms from training on
data. DNNs are often employed as direct classifiers, and
for ACR can be trained with one-hot chord class vectors
[3,14,15,61,68]. Using chroma feature targets has become
a popular design choice in ACR [30,31]. As in more tradi-
tional ACR methods, CQT and other log-frequency spectra
are seen to predominate as input features [24, 30, 40, 61].
Different inputs have occasionally been employed, e.g. the
Harmonic CQT is employed in [64]. Dimensionality re-
duction of input data has been explored with principal
component analysis (PCA) applied to a spectrogram [3]
and to a CQT [68]. It is unclear whether PCA was use-
ful other than for dimensionality reduction, and its related
decrease in computational expense. Tuning is often ig-
nored, possibly with the assumption that the data-driven
systems have the capability to learn to deal with tuning er-
rors. Some exceptions to this are the inputs used in [14,15],
while training data of a CNN-based ACR system is aug-
mented using detuning in [31].

So far there is a lack of comparative evaluation of the
effects of the input feature in DL-ACR, with most papers

instead focussing on the effects of later steps in the pro-
cessing chain. In the particular case where chroma targets
are employed in DL-ACR, the DNN can be seen simply
as a replacement for e.g. tuning, compression, weighting
and pitch folding. It is no surprise that fast convergence
is observed in such DNNs, although rarely reported. Few
alternatives to logarithmic spectra have been considered,
unlike other music processing tasks where raw audio input
observed has been examined [56]. We propose that the use
of linear spectra for DL-ACR should be explored. Linear
spectrograms do come with the caveat that invariance to
pitch-shift is lost, a property that is attractive for use with
CNNs. However, overtones of a given root frequency can
be expected to be found approximately equidistant from
each other in a linear spectrogram, a structure that should
also be extractable. In the log-frequency spectrogram, such
overtone structure is not so simply presented because har-
monics of orders that do not possess an integer base-2 log-
arithm are misassigned in pitch class. One can consider
this a form of information loss that may be detrimental
to ACR, particularly when a large vocabulary of chords
is employed and some exploration of spectrogram-based
training should be undertaken. Alternatively, a multiple in-
put DNN system could be employed using both CQT and
Fourier spectrograms.

3. PROBLEM 2: DEFINING WHAT A CHORD
LOOKS LIKE IN FEATURE SPACE

Chord classification requires models of chords that can be
compared to a given feature such as chroma. Originally,
the use of binary chroma templates for classification was
proposed in tandem with the pitch-folded chroma [17]. In
such a binary chroma template each pitch expected to be
active in a chord is set to one. Comparison of a chroma
vector with a dictionary of binary templates affords a sim-
ple classification approach to chord recognition, with each
chroma vector labelled according to the most similar tem-
plate. Most ACR research has similarly focussed on the
comparison of chroma-based features and chord models.
The most notable early alternative chord feature is the tonal
centroid, or tonnetz, feature [20] which is actually a partial
Fourier Transform of a chroma feature. Binary templates
formed the basis of much early ACR research [21] and
many chroma estimation methods [33, 38] implicitly tar-
geted outputting chroma vectors similar to binary vectors,
a goal that can still be seen in DNNs when chroma tar-
gets are employed [30, 64]. Binary templates possess the
ability to model a chord when there is no representative
data available, and despite their simplicity are often effec-
tive [10]. However, binary templates may be unrealistic
as the effects of misasssignment of harmonics in chroma
features are ignored.

An alternative perspective is to place less emphasis on
manipulating chroma vectors, and create templates that
are more similar to the expected data. A template can
be synthesised as in [48, 50], where chord templates are
formed by summing spectra of several note templates, pa-
rameterised by a number of harmonics and a roll-off factor
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determining the energy in each harmonic [19]. This ap-
proach has largely been overlooked as data-driven methods
that naturally learn models akin to the data became popu-
lar. Early data-driven models learnt chord models from la-
belled chroma features, with several different model types
explored. Perhaps the most common of these have been
multivariate Gaussian (mixture) models, a generative ap-
proach learnt from data, which have been applied in the
context of chroma features [10, 59] and tonal centroid fea-
tures [35], and also in the context of DNN features [24]
Other chroma based classifiers have included support vec-
tor machines [41, 57], which have also been applied to
DNN chroma outputs [68], and random forests [25].

Other research has looked beyond chroma, considering
chord classification on the full pitch spectrum. A linear
full spectrum classifier is applied in [8] while logistic re-
gression is used in [30] where it is seen to improve on a
similar classification applied to chroma features. Such re-
sults indicate some limitations for ACR of the chroma fea-
ture, which may lose useful information in the pitch fold-
ing process. The chroma representation is compact and
octave-invariant, qualities that have allowed templates and
simple Gaussians to be effective in ACR. Such approaches
may be less viable in the context of extra spectral infor-
mation, with data-driven methods more likely to be able to
deal with the extra information coming from the increased
dimensionality. The octave-invariance also prevents the
chroma feature from distinguishing between different in-
versions of a given chord. A bass chroma calculated from
a window on the lower octaves of the pitch feature was in-
troduced in [39] in order to capture inversions. Extending
this, a three windowed chroma with Gaussian models was
proposed in [9] approximating full-spectrum analysis.

In DL-ACR there are different options for training and
classification. Aside from chroma target outputs, DNNs
can also employ more standard black-box classification
vectors where each element denotes the likelihood of a dif-
ferent chord [14, 15, 68] or can even be trained using both
chroma and label targets [3]. Furthermore, chord classifi-
cation with DNNs may be performed using activations of
the penultimate layer of the network as a feature, which
may be passed to a subsequent network [3, 31, 61].

A new perspective is seen in the most recent DL-ACR
methods, which are being trained to learn extra informa-
tion encoded through the use of auxiliary targets. This can
be clearly seen in the works [40] and [64] where alongside
the chroma feature, one-hot feature targets representing the
bass note [40, 64], root note [40], highest pitch note [64]
alongside a distinctive no-chord target [40] have been in-
troduced to network training. Such approaches, which we
call target label engineering should be of benefit in ACR.
More possibilities for auxilary targets may exist. This tar-
get label engineering displays a turnaround in ACR feature
research; where traditionally the focus has been on manip-
ulating features close to the input, it seems that more atten-
tion may now be given to the target labels, and the sorts of
information that ACR researchers might like to extract.

4. PROBLEM 3: THE MISMATCH BETWEEN
PROCESSING RATE AND CHORD RATE

To locate chords in time, feature representations consist
of multiple time-localised frames. The simplest way is
to create features at a constant, but arbitrary rate, which
determines the processing rate of the entire system. This
approach was taken by Fujishima, whose features had a
rate of 3.906 Hz. In this case, it is important to make the
rate high enough, because it effectively imposes a time grid
onto which all chord labels are projected, and making this
grid too coarse leads to misalignment at the chord bound-
aries. Therefore later approaches generally increased this
feature rate to the order of tens of Hz.

The rate of chord changes is typically an order of mag-
nitude higher than the frame rate. Although the exact num-
ber depends on the music piece, the Isophonics dataset
used for MIREX has an average chord change rate of 0.46
Hz for example [52]. Especially in the traditional meth-
ods where the features are processed frame-wise, the high
frame rate compared to the chord rate leads to a high
risk of fragmented chord output. A number of techniques
have therefore been tried to enforce temporal continuity
between frames, starting with a simple smoothing filter.
Fujishima himself used a mean filter, but median [47] fil-
ters have also been used. These smoothing filters can be
applied either to chord probabilities [48] or to the features
themselves [2] to remove noise such as percussive sounds
and non-harmonic melody notes. In the latter case, a chord
model then works on a smoother feature representation,
which indirectly also leads to a less fragmented chord out-
put.

The drawback of blindly applying a smoothing filter is
that chord transitions may be smeared, leading to inaccu-
racy in boundary estimation and will cause short chords to
be smoothed out even if they are very apparent in the sig-
nal. A better method is therefore to consider the chord
matching outputs as the observations of an HMM and
smooth them with the Viterbi algorithm [2, 5, 59]. The
strength of each of the chord candidates is then taken into
account and the diagonal elements of the transition matrix
control the probability of a chord change [2]. The Viterbi
smoothing has been shown to outperform filtering of the
chroma output, and filtering of the feature representation
does not bring any additional benefits [10].

A consequence of using a HMM for smoothing is that
the imposed duration distribution takes the shape of a ge-
ometric distribution, meaning that the shorter a chord, the
more likely it becomes. Since this obviously is not a re-
alistic distribution, the usage of duration-explicit HMMs
has been explored, which allow arbitrary duration distribu-
tions. The shape of the distribution was not found to have
a major influence on the results, however [8].

An advantage of modern, recurrent neural network
(RNN) based approaches is that the chord duration distri-
bution is learnt automatically as part of the chord mod-
elling, without further intervention. RNNs [3] or, more re-
cently, long short-term memory (LSTM) units [16, 61, 64]
are fed the feature frames one by one, but remember previ-
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ous input which can be used in the prediction of the current
frame. With the advent of bidirectional LSTMs [16, 64],
future frames can now also be taken into account.

Feedforward networks do not learn a chord duration dis-
tribution, as they have no memory elements, but achieve
temporal stability by processing multiple time frames at
once instead of isolated frames [22]. The entire local envi-
ronment can then be used to learn the label of the middle
frame, which includes learning to integrate over time and
to avoid short disturbances. A context window of 1.5 s
was found to be optimal in [30]. Of course, convolutional-
recurrent models [40] combine the benefits of both.

Following sporadic usage of conditional random fields
(CRFs) in traditional systems [5], the combination of CRFs
and deep learning is gaining popularity [31, 64]. In this
case, a CRF is stacked onto a neural network as the last
layer to smooth the output, where one advantage is that
they can be trained together for maximum discriminability.

Another way of handling the difference between fea-
ture and chord rates is to reduce the discrepancy from the
start. This can be accomplished by segmenting the time
axis of the feature representation in a musically meaning-
ful way. A first option is to use the output of a beat-
tracker to resample the feature representation onto a beat-
synchronous grid [2, 36, 60]. The underlying assumption
is that chords only change at beat times. The features
can then be smoothed over the inter-beat interval without
risk of blurring the chord boundaries. It has been shown,
however, that beat-synchronous processing may not be ad-
vantageous compared to smoothing the chord output with
an HMM [10]. A potential reason is the reliance of this
method on a correct beat estimation, which was not as
common at the time these experiments were performed as
it is today. A certain benefit of beat-synchronous features
is that the processing rate of systems built around them is
lower (0.33–1 Hz for 60–180 BPM), so they run faster.

A final possibility is to explicitly determine chord
boundaries before attempting to identify the chords they
delineate [13, 20]. This way, the features or chord output
can be maximally smoothed without drawbacks, but deter-
mining a good chord segmentation function is hardly an
easier problem. A recent deep learning approach consists
of two stages [64], the first determines the chord segmen-
tation and triad using a small vocabulary, while the second
stage picks the final chord type from a larger vocabulary.

Going forwards, we note that blind feature segmenta-
tion has been amply used by neural network approaches,
but musically meaningful segmentation has not. Although
one of the advantages of deep learning is that a network
can come up with the most optimal feature representa-
tion itself, making the input to the network more musi-
cally explicit would be worth investigating. Feeding beat-
synchronous features into a network would allow it to learn
chord duration distributions expressed in terms of beats in-
stead of frames, which could be more expressive. Such an
approach would accumulate the errors of the beat tracking
though, so multi-task learning [65] where a single network
jointly learns to predict multiple outputs might be better.

Beat-tracking could be learnt together with chord recog-
nition. In case intermediate features are desired, chroma
could be calculated together with chord segmentation.

5. PROBLEM 4: ACHIEVING LONG-TERM
CONSISTENCY IN CHORD SEQUENCES

Multiple chords in a sequence do not follow each other
randomly, but exhibit strong temporal links. Typical chord
patterns have emerged throughout history, which have been
studied by scholars such that expert knowledge about them
is available [58]. ACR systems have been trying to in-
corporate this knowledge, initially with expert-based ap-
proaches, nowadays driven by data.

Implementation-wise, chord sequence consistency is
mostly dealt with together with duration modelling of a
single chord, as discussed in Section 4. In HMM-based
approaches, the off-diagonal elements of the transition ma-
trix determine where a chord change will lead to, whereas
the diagonal elements influence when it takes place. The
sources of knowledge for chord change information are
different from the ones used for duration though. The dou-
bly nested circle of fifths has been used frequently [2, 49]
(or abused, as it is a model for key similarity) as well as
other expert theories [39, 54].

The chord change probabilities of those probabilistic
models have also been determined through corpus analy-
sis [43, 54], before deep learning approaches became pop-
ular [31, 40, 61, 64, 68]. Typical for deep learning is that
chord changes can be handled together with chord dura-
tion and models (problems 2, 3 and 4) by a single net-
work [40, 64] to maximally exploit their mutual informa-
tion. Nonetheless, some of the proposed approaches find it
beneficial to handle the problems separately [32], in a way
reminiscent of earlier knowledge-based systems.

Taking into account chords beyond the directly adja-
cent ones remains a challenge. A standard HMM can only
model preceding chords indirectly, through chaining bi-
grams, so increasing the Markov order to trigrams and 4-
grams has been tried [26], but their overall improvement
remained small. As for deep learning techniques, the typ-
ical receptive field of feedforward neural networks is too
small (1.5 s for [30]) to contain multiple chord changes and
learn long-term dependencies. Recurrent neural networks
have the theoretical advantage that all previous and/or fu-
ture frames can be remembered, but vanishing gradient
problems restrict their long-term memory in practice [1].
Attention mechanisms, which are used in machine trans-
lating to remember the context of long phrases, are poten-
tial solutions to this problem. The Transformer architec-
ture [63] is one candidate for future exploration.

Since long-term chord dependencies are so hard to take
into account with the aforementioned techniques, a cou-
ple of alternatives have been proposed that rely on musi-
cal structure. Feature representations of a repeated sec-
tion have been averaged in order to make them more sta-
ble [11, 37] and that average has then been used for all in-
stances of that section. A more probabilistic version of
this idea has been explored in a statistical-relational frame-
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work [51]. While these techniques do not exactly use long
term dependencies to improve chord recognition, at least
they ensure that repeated sections are consistent.

6. PROBLEM 5: EXPLOITING RELATIONSHIPS
WITH RELATED MUSICAL CONCEPTS

Chords are just one way of describing musical content.
Other musical concepts such as key, genre, bass or melody
describe different aspects of the same piece of music. Sev-
eral research efforts have incorporated ACR in systems
that recognise multiple musical concepts, jointly or in se-
quence, to exploit the mutual information between them.
We’ve already discussed the use of beat information to ad-
dress Problem 3, so this section focusses on other concepts.

Practically, we see that probabilistic graphical models
such as HMMs [35, 54] or dynamic Bayesian networks
(DBNs) [39] have been the dominant approach so far to
integrate related concepts into ACR. Their inherent modu-
larity is exploited to decompose the probabilistic relations
between concepts into more comprehensive factors.

Arguably the musical concept most related to chords is
the musical key, as the latter also describes the harmony
in a music piece, albeit on a longer temporal scale, i.e. a
key spans multiple chords in sequence. Assigning differ-
ent probabilities to all combinations of keys and chords is
therefore a way to exploit their relationship. These proba-
bilities can be derived from musical knowledge [39, 54] or
data-driven [26, 35, 54]. One advantage of extracting keys
with chords is that the chord sequence can be expressed
relative to the key, in a representation close to functional
harmony analysis, which has been shown to have a higher
information density [58]. The required keys to make this
possible can be derived prior to [26] or jointly with chord
recognition [35, 54]. However, it has not been proven that
using key-independent relative chord representations lead
to improvements in actual chord recognition.

Downbeat is also related to chords in the sense that
chords are more likely to change on downbeats than on
other beats. This link has been exploited by making chord
transition probabilities depend on the metric position of a
beat in a measure. One example is a joint downbeat-chord
system [50] that can deal with different time signatures and
added or deleted beats. Another approach included beat-
dependent chord transitions as part of a larger system that
involves chord inversion and key as well [39], but which is
limited to the 4/4 time signature. In both cases, the proba-
bilities were determined by expert knowledge.

Other relationships between musical concepts can be
exploited in a similar way. Bass notes, for instance, can be
strongly indicative of the chord being played. They have
the advantage of being comparatively easy to identify in
a spectrum and are used as such to inform ACR [62, 67].
A joint key-chord-structure system has been proposed [53]
based on the hypothesis that certain chord sequences are
more likely at the start or end of high-level structures such
as chorus or verse. Finally, different genres have differ-
ent idiomatic chord sequences, so genre-dependent context
modelling has also been examined [34, 44].

None of the recent deep-learning approaches have in-
volved other musical concepts so far. In theory, it would be
possible to identify the key segments of a piece beforehand
and then transpose all segments of all pieces into one sin-
gle key, instead of augmenting the feature representation
as in [22,40]. However, just like feeding beat-synchronous
representations into a network, this would suffer from er-
rors in the preceding key recognition step. Most likely a
better solution would be to create specific networks that
recognise chords together with any of the discussed con-
cepts in a multi-task learning process such as [65]. Unfor-
tunately, data annotated with multiple concepts is even less
available than data that is annotated with just chords.

7. PROBLEM 6: HANDLING AMBIGUITY AND
SUBJECTIVITY

Fujishima’s system was tested using a strongly controlled
setup. His dataset consisted mostly of clean, well-defined
chords produced by an electronic keyboard using three dif-
ferent presets. He furthermore tailored his settings to these
specific sonorities, but noticed that these settings didn’t
translate well to real music. Indeed, when we want to ap-
ply chord recognition to real music, the situation is very
different from a controlled environment.

An enormous variety of music exists that may not even
contain chords. Music can be monophonic, from a musi-
cal tradition that doesn’t know the concept, or polyphonic
without containing chords (e.g. a fugue). Even if chords
are present in a music signal, it can also contain many
sources – such as untuned percussion – that disturb the
perception of a chord in a listener, human or mechanical.
Furthermore, what exactly contributes to a chord is also
ill-defined. The distinction between chord sequence and
melodic line is not clear cut and can be a matter of opin-
ion. Also the granularity of a chord sequence, for instance
whether fast approach chords or anacrusis (pickup) chords
are transcribed, depends on the user or use-case. A final
cause of ambivalence is when chords are only implied, not
audible as such, as with arpeggiated chords for instance.

Because all of these reasons human annotators aren’t in
total agreement when it comes to transcribing chords. The
reported agreement on the root of a chord lies between
76% [29] (4 annotators) and 94% [12] (2 annotators) on
average, but large outliers towards the bottom can appear
in individual files [23, 45]. When comparing algorithmic
output to a single human reference output, it is therefore
hard to tell if any disagreements are valid alternative inter-
pretations or outright errors. Although this phenomenon
has been diagnosed and quantified [23, 45] multiple times
already, final solutions are yet to emerge. The availability
of chord datasets with multiple annotations, such as [45]
(20 songs annotated by 5 persons) and [29] (50 songs an-
notated by 4 persons) is certainly a first step on the way.
That former dataset has been used to learn the idiosyn-
crasies of different annotators and create personalised al-
gorithmic output tailored to their preferences [28]. While it
does provide a means of personalisation, it requires exam-
ple transcriptions for each user, which might not be avail-
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able. Furthermore multiple viewpoint annotations do not
answer the question of whether an algorithmic output dif-
fering from all N viewpoints is plain wrong or the N+1th
valid viewpoint. A different way of evaluating will be nec-
essary for this, but it will probably be hard to scale. Ask-
ing human experts whether an automatic transcription is a
good chord analysis (even if not exactly their own) would
work, but would also mean that every different setting of an
algorithm needs to be evaluated manually. Even by crowd-
sourcing the process, it would be impossible to test multi-
ple parameterisations of a system.

8. PROBLEM 7: CHORD VOCABULARY AND
ASSOCIATED BALANCE PROBLEMS

Fujishima’s system was able to distinguish no less than 27
different chord types, but subsequent systems quickly re-
duced this number to two [2] or four [21] types of triad.
Apart from [39], small vocabulary sizes remained the de-
facto standard until the last few years, with an upward
trend that seems more definitive this time [14, 40].

The necessity of imposing an algorithmic chord vocabu-
lary stems directly from the choice of treating chord recog-
nition as a classification problem. This design choice is
extremely wide-spread, but is not inherently part of the
task. Chord class-free approaches can be envisaged, such
as labelling sets of active chromas, where the complexity is
then shifted towards determining when a chroma is active
(itself potentially a classification problem). A vocabulary-
free model of chords such as proposed in [66] can be used
to label the chroma sets, but only the model in isolation has
been tested so far, not as part of a full ACR system.

A particularity to increasing the classes in ACR is that
the distinction between them becomes smaller the more
classes are added. Especially when triads and tetrads (4-
chroma chords) are mixed, because the set of chromas in
tetrads are a superset of the chromas in their associated
triad. Commonly used flat classification approaches as-
sume disjoint categories, and therefore aren’t an optimal
match for the problem [23]. A form of hierarchical or
alternatively multi-stage classification [64] is one way to
address this problem, but these need to be explored fur-
ther in the future. Different ways of representing target
labels to make classes more orthogonal [7, 40, 64] consti-
tute another type of solution, one in which standard flat
classification algorithms can continue being used. Multi-
ple auxiliary labels are introduced in this approach, which
we called target label engineering in Section 3. Alterna-
tively, multiple distances between chords have been used
as targets [7]. These chord label representations constitute
a modern take on introducing musical knowledge into deep
learning. Where feature engineering tried to shape the au-
dio input into features that were maximally discriminative,
target label engineering aims to do the same working back
from the label output.

A further complication when considering chord labels
as separate classes is that their frequency of occurrence
is strongly unbalanced. For instance, the five most com-
mon chord types account for over 80% of popular music

datasets [6, 64]. This imbalance in chord distribution af-
fects both training data-driven ACR systems and evalua-
tion. For training, new strategies need to be developed to
avoid overemphasising the most frequent classes [16]. In
evaluation, improvements on rare chords are barely visible
when using a metric that reports the percentage of time the
correct chord is found. Discussing performance on multi-
ple levels, with rarer chords separated, is necessary to get
more insight into algorithm performance [55].

Finally, the chord imbalance itself differs from dataset
to dataset. Genre, instrumentation, cultural origin, key and
chord distributions are all linked, and are manifested as a
skew towards certain roots and chord types, as well as vari-
ance in timbre. Since the majority of available annotated
data consists of anglophonic pop music, its representative-
ness is questionable. Until current algorithms are cross-
checked with new datasets containing e.g. Latin, jazz and
metal, their general applicability remains unproven.

9. CONCLUSIONS

In this paper, we discussed 20 years of research on au-
tomatic chord recognition, starting with Fujishima’s pa-
per [17]. Even though modern ACR systems differ
strongly in their proposed technical solutions, we find that
his initial system was very effective at identifying the prob-
lems that arise during the creation of ACR systems. We
therefore compared past and recent solutions thematically
according to these problems, with the intention of inspiring
future work on this topic.

We note a tendency towards tackling the different prob-
lems in ACR as a single integrated approach, in con-
trast to the compartmentalised strategies of the early years.
This evolution follows the move from knowledge-driven
to data-driven approaches. The lack of available training
data in the early years called for knowledge-based sys-
tems, which in turn required systems to be broken down
into smaller components for them to remain comprehensi-
ble. Each component usually dealt with one sub-problem
in isolation. Early data-driven approaches replaced these
knowledge-based components with learnt ones, while re-
taining the modular structure. The arrival of deep learning
permitted to replace all these components by a single sys-
tem that is better at exploiting the interactions between the
ACR problems. Nonetheless, some researchers choose to
keep the modularised approach, to increase interpretability
or to employ specific training data or procedures.

A consequence of moving towards integrated systems,
is that the comparison between them becomes harder. No
general blueprint of a DL-ACR system can be given, as
many approaches compete, and therefore it is difficult to
translate findings of one system to the other or to combine
parts of two systems into one. Without a doubt, more in-
novations in deep learning will make their way to ACR,
which will keep the field moving fast for the foreseeable
future. It is encouraging to see that the specific character-
istics of music are starting to show up in the deep learning
approaches, with musical knowledge guiding the training
procedure and architecture.
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