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ABSTRACT

Existing kinematic research on orchestral conducting
movement contributes to beat-tracking and the delivery of
performance dynamics. Methodologically, such movement
cues have been treated as distinct, isolated events. Yet
as practicing musicians and music pedagogues know, con-
ductors’ expressive instructions are highly flexible and de-
pendent on the musical context. We seek to demonstrate
an approach to search for effective descriptors to express
musical features in conducting movement in a valid mu-
sic context, and to extract complex expressive semantics
from elementary conducting kinematic variations. This
study therefore proposes a multi-task learning model to
jointly identify dynamic, articulation, and phrasing cues
from conducting kinematics. A professional conducting
movement dataset is compiled using a high-resolution mo-
tion capture system. The ReliefF algorithm is applied to
select significant features from conducting movement, and
recurrent neural network (RNN) is implemented to iden-
tify multiple movement cues. The experimental results dis-
close key elements in conducting movement which com-
municate musical expressiveness; the results also highlight
the advantage of multi-task learning in the complete mu-
sical context over single-task learning. To the best of our
knowledge, this is the first attempt to use recurrent neural
network to explore multiple semantic expressive cuing in
conducting movement kinematics.

1. INTRODUCTION

During orchestral conducting, conductors use their body
movements to guide musicians’ expressions of various fea-
tures such as the tempo, dynamics, and articulation in mu-
sic. Through these delicate nuances in their body move-
ment, conductors are able to communicate their refined in-
terpretations and expressive intentions of the musical work
in question. As documented in pedagogical literature,
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’conducting semantics’ - a codified repertoire of move-
ments bearing specific musical instructions - are broadly
accepted as core knowledge, fundamental to conducting
practice. [11,15,21,31]. However, in the scenario of actual
conducting performances, conductors’ movement styles
are remarkably diverse. Moreover, while it is conventional
common sense for experienced musicians to identify dis-
tinct musical features (e.g. phrasing, dynamics, articula-
tion), these features associate with one another in the com-
plex musical context, and conductors tend to communi-
cate similar musical features using diverse strategies de-
pending on the musical context, e.g., dynamic and phrase
cuing may vary when conducted with different articula-
tion patterns. As a result, existing music-movement cou-
pling models are limited in some aspects [16, 28, 33].
The straightforward association which presumes that cer-
tain movement features can communicate specific musical
traits, as stated in conducting pedagogy, has not been ob-
served in such models.

The major challenges to overcome for current conduct-
ing movement research are: 1) to identify interpretable
quantitative descriptors to represent movement features; 2)
to construct a generalisable model, which is robust in iden-
tifying features such as phrase, dynamic, and articulation
cuing in complex musical context, and which is tolerant
to the flexibility of conducting performance and the differ-
ences between individual conductors. In this study, we ap-
proach both of the challenges by adopting machine learn-
ing algorithms. More specifically, to determine potential
movement descriptors relevant to expressive musical fea-
tures, we first applied a supervised feature selection tech-
nique, ReliefF [17–19], to three-dimensional body move-
ment data. Based on such selected features, we then sought
to jointly identify different types of expressive cuing in
conducting movement, and thus trained a recurrent neural
network (RNN) on the body movement data from various
conductors to perform multi-task learning (MTL).

This study identifies the effective descriptors in con-
ducting movement which are used to communicate mu-
sical features. As the pioneering attempt to apply RNN
to music-movement coupling in conducting, we also ver-
ify the advantage for RNN framework with MTL to probe
potential complex connections between various movement
and musical elements, especially compared to previous
works using other models. In the subsequent section, re-
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Figure 1. Basic metrical patterns in musical conducting.
(reproduced from http://www.purposeful primarymusic.com).

lated research in musical conducting movement will be re-
viewed. Our dataset and model will be introduced in sec-
tion 3 and 4 respectively. The experimental designs will
be reported and the results will be discussed in section 5,
followed by the conclusion in section 6.

2. RELATED WORK

For orchestral performance, a fundamental function of
conducting is to coordinate musicians’ playing. Conduc-
tors regulate the musical timing using basic beat patterns
(e.g. two-beat, three-beat, or four-beat cycles etc., see
Figure 1), and such beating movements communicate both
the tempo arrangement and the metrical structure of the
performed musical piece [11, 15, 21, 31]. The beating pat-
tern in conducting has been substantially investigated, and
it is found that the vertical action is the major component
to lead the beat timing [4, 22, 24, 34, 35]. The tracking of
beat is the most efficient under the constraint of movement
bounding box area [35] and using dynamic time warping
technique [34]. Based on these findings, interactive sys-
tems such as Pinocchio, vMaestro, and Personal Orchestra
has built, in which the tempo of recorded orchestral audio
is manipulated by the user’s body movement, and the mu-
sic automatically aligns with the beat timing identified in
the movement [4, 22, 24].

Yet conducting movement is far more complicated than
simple beating. Built on these basic metrical patterns,
conductors take a step further to communicate their mu-
sical interpretations via refined variations in their move-
ment. Pedagogical sources present a stock of movements
frequently used by conductors to instruct their expressive
intentions regarding articulation, dynamics, and phrasing
[11, 15, 21, 31]. As summarised by the authors’ previ-
ous work, specific conducting movements carrying expres-
sive intentions, i.e. conducting semantics, are understood
to comprise distinct combinations of hand position (high/
low/ away from the body/ close to the body), movement
size (large/ small), speed (quick/ slow), acceleration (sud-
den/ gradual change of movement), smoothness (smooth/
jerky), trajectory shape (straight/ curved), and palm direc-
tion (upward/ downward/ facing musicians/ facing the con-
ductor) [13, 14]. These qualitative, subjective descriptions
of movement features match with quantitative, empirical
analysis of conducting kinematics, in which the palm di-
rections, movement size, hand positions and velocity re-
flect the dynamic change in music [8, 33, 35].

That conductors use their body movement to commu-
nicate musical expressiveness is self-evident, and is a

truth demonstrated by both musical pedagogy and empir-
ical analysis of conducting movement. However, exist-
ing music-movement coupling models generate only low
to moderate correlations between musical and movement
features [16, 33], and the computational approach which
automatically classifies conductors’ expressive intentions
based on their movement has also produced unsatisfactory
results [28]. These findings demonstrate that the expres-
sive semantics in conducting are highly context-dependent.
Different aspects of musical expression, such as dynamics,
articulation, and phrasing are entangled in actual instances
of musical performance, and their study would benefit
from the ecologically-valid, intact musical contexts.

In music information retrieval (MIR) research, vast ef-
forts have been devoted to extracting semantic representa-
tions such as pitch, beat, and harmony from audio signals.
The machine learning approach has gained great success in
modelling the semantics from music audio recordings [7].
During performance, musical sound is usually generated
by the execution of body movement. There is a press-
ing need, therefore, for an equivalent effort to explore the
expressive semantics carried by musical movement. The
recurrent neural network (RNN) is widely used to anal-
yse music semantics in a sequential way [25, 30, 32, 38].
RNN also allows the multi-task learning (MTL) setting,
which has been proven successful in music information re-
trieval [12, 39]. We therefore propose a RNN framework
with MTL approach in this study, and test the model on
our conducting movement corpus.

3. DATA

This study is based on a professional conducting move-
ment dataset collected by the authors, which contains
conductors’ upper body movement recorded by a high-
resolution motion capture system, together with annota-
tions of beat timing, phrase, dynamic, and articulation.

3.1 Collection of motion capture data

The motion capture data were recorded in the Biomechan-
ical Laboratory at the Institute for Sport, Physical Educa-
tion and Health Sciences (ISPEHS), University of Edin-
burgh, UK. Conductors’ movement were collected using a
nine-camera optical motion capture system (Qualisys, Pro-
Reflex, Sweden) at a sampling frequency of 120 frames
per second. The captured area was calibrated using the
Qualisys 300 mm wand kit with the average residual being
lower than 2 mm. Twenty-seven 12 mm optical markers
were attached to the conductor’s upper body and baton fol-
lowing the Golem Upper Body Model in Visual3D docu-
mentation [6]. The locations of 27 markers were illustrated
in Figure 2 and listed in Table 1.

Six conductors (3 professional conductors and 3 ad-
vanced conducting students) participating the collection
were all right-handed males, with an average conducting
experience for 10.6 years (SD = 9.37), and conducted for
4.4 hours per week on average (SD = 2.38) at the time of
participation. Five string musicians accustomed to musi-
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Figure 2. (a) The location of 27 optical markers placed on
the conductor’s upper body from the frontal and rear view-
points. The marker colours represent the ranking from the
feature selection procedure ReliefF: The top 15 elements
(red), no 16-30 elements (green), no 31-45 elements (blue),
no 46-81 elements (black). (b) The 27 markers captured by
the system from the frontal, lateral, and rear viewpoints.

cal conductors’ directions were recruited from University
ensembles; the average number of years’ instrumental ex-
perience was 15.6 (SD = 2.30) and average experience of
playing in orchestra was 12.2 (SD = 3.11).

Each conductor rehearsed with musicians for 30 min-
utes. In the subsequent recording session, the conduc-
tor’s movements were collected in a repeated measures
design. The 6 conductors performed 3 different ex-
cerpts of Western classical orchestral repertoire: 1) W.
A. Mozart, Serenade in G major, K.525 (first movement,
bars 1-55), 2) A. Dvořák, Serenade in E Major, Op.22
(first movement, bars 1-53), and 3) B. Bartók, Diverti-
mento for String Orchestra, Sz. 133 (third movement,
bars 1-183). The excerpts represent different composi-
tional styles [5], yet share aspects of metrical structure,
which lends them to comparison. Each excerpt is roughly 1
minute long according to constraints of the motion capture
equipment. Individual conductors recorded 3 instances
of each excerpt, with excerpt performance order counter-
balanced across the 6 individuals. As a result, 54 con-
ducting performances were collected in the corpus in to-
tal (3 performances x 3 musical excerpts x 6 conduc-
tors). The complete dataset was uploaded as the C3D
file format for motion capture analysis to the DataShare
open access data repository at the University of Edinburgh:
https://datashare.is.ed.ac.uk/handle/10283/2906.

# Name Description
1 RFHD Right temple
2 LFHD Left temple
3 RBHD Right back head
4 LBHD Left back head
5 CLAV Jugular Notch
6 STRN Xiphoid process of the Sternum
7 C7 Spinous process of the 7th Cervical vertebrae

8 T10 Spinous process of the 10th thoracic vertebrae

9 RBAK Middle of the right Scapula
10 RASI Right Anterior Superior Iliac Spine
11 LASI Left Anterior Superior Iliac Spine
12 RPSI Right Posterior Superior Iliac Spine
13 LPSI Left Posterior Superior Iliac Spine
14 RSHO Right Acromio-clavicular joint
15 RUPA Right upper arm
16 RELB Right elbow joint
17 RWRA Right wrist thumb side
18 RWRB Right wrist pinkie side
19 RFIN The 2nd Metacarpal of the right forefinger
20 LSHO Left Acromio-clavicular joint
21 LUPA Left upper arm
22 LELB Left elbow joint
23 LWRA Left wrist thumb side
24 LWRB Left wrist pinkie side
25 RFIN The 2nd Metacarpal of the right forefinger
26 BASH Baton shaft
27 BAEN Baton end

Table 1. The locations for 27 optical markers placed on
the conductor’s upper body

3.2 Data pre-processing and labelling

3.2.1 Pre-processing of motion capture data

The collected motion capture data were exported from
Qualisys Tracker Manager (version 2.7, Pro-Reflex, Swe-
den) and imported to Visual3D (standard version 4.93, C-
motion, USA) and Python (version 3.6.8) for further anal-
ysis. The original movement data containing the posi-
tion on x-, y-, and z- axes of 27 markers were smoothed
by the fourth-order low-pass Butterworth filter with a cut-
off frequency of 10 Hz. The speed on x-, y-, z- axes of
each marker was defined as the first derivative of x-, y-,
z- position respectively, divided by the sampling interval
(1/120 s). Speed was considered to carry important infor-
mation in previous studies on musical conducting move-
ment [13, 14, 26, 27], and thus was chosen as the variable
to be investigated. The speed data were normalised based
on the mean and standard deviation in each performance
trial, and were converted to the z-scores of speed.

The z-scores of speed were then imported in the sub-
sequent feature selection procedure ReliefF. Moreover, a
generalisable element is preferable for RNN model. Con-
sidering that the minor fluctuations within 1/10 beats
(roughly 5 frames) has only trivial effect on our target mu-
sical features – which are phrase, dynamic, and articula-
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tion structure in bar level, and such minor fluctuations may,
on the contrary, have negative effect on generalisation, the
simple moving averages of speed data for per 5 frames
were thus taken before being imported in RNN model.

In order to align motion capture data with expressive
labels extracted from musical scores, the timing of beats
and bars in conducting movement was assessed. The beat
timing in movement was estimated using the motion cap-
ture analysis software Visual3D, and was defined as the
time when the lowest position of baton tip on the z-axis
(vertical axis) occurred within a beat period according to
previous studies [13,14,26,27]. The initiation of a musical
bar is then defined as the onset of the first beat in the given
bar.

3.2.2 Annotation of expressive labels

The label for dynamics, articulation, and phrasing were an-
notated by three experienced music theorists (with an aver-
age experience for music analysis = 20.7 years, SD = 2.89)
based on designated edition of musical scores [2, 9, 29].
Where the annotators disagreed with each other, the opin-
ion of the majority was taken. The dynamic and articula-
tion labels were appointed to each musical bar. Phrasing
labels, on the other hand, indicate the initiation timing of
phrases, which is dissimilar to dynamic and articulation
status that prolongs for a period of time. The phrase ini-
tiation was thus determined as the timing of the first beat
in each phrase, and then entered the model with a window
size of +/- 60 frames, which is equivalent to +/- 0.5 seconds
of the phrase initiation in the given sample frequency 120
fps, and roughly +/- 1 beat of the phrase initiation accord-
ing to 120 bpm instructed in musical scores. The labels are
illustrated in Figure 3. The annotation process complied
with the following principles:

1) Dynamics: The dynamic annotation contains 6
classes including: pp, p, mp, mf, f, ff in the 3 music ex-
cerpts. Dynamic levels were labelled according to the ex-
pressive terminology in the scores. Where there is no dy-
namic instruction specified in the given bar, the dynamic
level in the previous bar was taken. Where the dynamic
level changes within a bar, the dynamic level for the ma-
jority of beats was taken. Where different dynamic levels
exist in equal number of beats within a bar, the first dy-
namic level occurring in the given bar was taken. Where
crescendo or diminuendo is marked, the gradual change of
dynamics was divided into equal levels and was designated
to the bars in the crescendo or diminuendo process.

2) Articulation: The articulation annotation contains 3
classes including: legato, neutral, staccato. The legato la-
bel was assigned to where the slur is printed; the staccato
label was assigned to where the staccato mark is printed in
the score, or where a note equals to or shorter than a quaver
is followed by a rest; the neutral label was assigned to bars
where no specific legato or staccato marks was printed.
Where there are more than one type of articulation terms
printed within a bar, the articulation type for the majority
of beats was taken. Where different articulation types exist
in equal number of beats within a bar, the first articulation

type occurring in the given bar was taken.
3) Phrasing: The phrasing annotation specifies the ini-

tiation of phrases, and it contains 2 classes including: the
phrase onset, none. The phrase structure was determined
according to conventional music analysis techniques [3].
Where different melodies interlocked, the phrase in the
main melody is taken.

4. DATA ANALYSIS AND MODEL

The aforementioned data set was analysed in two steps: 1)
the supervised feature selection technique ReliefF was ap-
plied to identify effective descriptors in conducting move-
ment to communicate musical expressiveness; 2) the RNN
architecture with MTL setting were constructed to model
generalisable rules to associate multiple movement and
musical features.

4.1 Data representation

The input data is represented as the z-score of speed on x-,
y-, z- axes of 27 markers (3 x 27 = 81 features) with the
sample frequency of 120 fps. As shown in Figure 4, each
segment fed into the bidirectional long-short-term memory
(BLSTM) network contains 81 features with 121 frames
(which is equivalent to roughly 1 second or 2 beats); the
hop size for consecutive segments is 30 frames (0.25 sec-
onds or 0.5 beats); each input clip contains 64 segments
(16.75 seconds or roughly 32 beats; 8 bars in Mozart and
Dvořák; 32 bars in Bartók). In addition, we also imported
the top 15 movement elements selected by ReliefF (15 fea-
tures x 121 frames per segment) into RNN, to examine if
our recognition model is capable of identifying musical ex-
pressions from a small assemble of crucial features.

4.2 Feature selection for movement data

Orchestral conducting consists of movements from differ-
ent body parts. Conducting pedagogy mainly describes the
expressive guidance instructed by hand movements, yet no
evidence has been provided by previous motion capture
studies to verify such emphasis on hands. To this end,
it is essential to know which parts of the body and what
kinds of movements are relevant to the expressive inten-
tions in music. The process of finding such relevance can
be regarded as a feature selection problem. The ReliefF
algorithm, one of the most commonly used supervised fea-
ture selection algorithms for music related movement [23],
is applied here as an exploratory study. ReliefF is an ex-
tension from the original Relief [17–19] with higher reli-
ability and is applicable to multi-class datasets. The algo-
rithm searches every class of features xi for their k-nearest
neighbours from the same class (nearest hit) and from a
different class (nearest miss) to score how well such feature
to distinguish data from different classes [19]: Scorei ∼
−
∑

k d(xi, xNearHit)+
∑

k d(xi, xNearMiss), where d(·, ·) is
a distance measure. The exact form of ReliefF can be
found in [23]. In this research, we set k = 20 as suggested
by Urbanowicz et al. [37].
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Figure 3. The example of musical scores, 3 types of expression label (phrase onset, dynamic level, articulation), and the
movement data from right finger marker.

Figure 4. The multi-task model built on the RNN

4.3 Recognition model for music expression

We applied a recurrent neural network (RNN) with bidirec-
tional long-short-term memory (BLSTM) cells to carry out
multi-task learning (MTL) for expressive cuing in conduct-
ing movement. Such architecture is advantageous to deter-
mine sequential features in musical signals [7, 30, 32, 38],
yet to the best of our knowledge, this approach has not
been applied to musical movement in any existing study.

As shown in Figure 4, the model has a shared BLSTM
layer with 1024 hidden units, and a task-specific fully-
connected layer. The outputs from forward and back-
ward LSTMs are concatenated as a 2-by-1024 matrix in
the segment level, which is then flattened to link the fully-
connected layer. The output layer is a 10-D vector con-
taining the classes for the three tasks. Sigmoid is applied
to output phrase initiation (1D); Softmax is applied to out-
put the dynamic level (6D) and the articulation type (3D).

To examine the advantage of MTL, we also constructed
single-task learning (STL) models, where the same RNN
framework and BLSTM cells are applied to phrase, dy-
namics, and articulation tasks respectively.

5. EXPERIMENT

5.1 Experimental settings

The 54 conducting performance trials (810 input clips) are
divided into training set (48 trials, 720-722 clips) and test-
ing set (6 trials, 88-90 clips). The 9-fold cross-validation
is performed in a way that per 6 trials are in turns assigned
to the testing set in 9 experiments. Each clip fed into the
BLSTM network contains 64 segments (# of feature x 121
frames per segment); the hop size for consecutive clips are
32 segments. To prevent the problem of over-fitting, data
augmentation is performed in a way that random Gaussian
noise is added to the original data with the level of 0.1 stan-
dard deviation of the input data.

All networks are implemented using TensorFlow [1],
and are trained using stochastic gradient descent with
Adam optimiser. The cross-entropy between output and
labels are computed for training purpose. To avoid over-
fitting, L2 regularisation is applied. The dropout rate for
both the input and output of BLSTM cells is 0.7. The learn-
ing rate is 0.0001 with 4800 training steps. This procedure
is performed on 4 models: the MTL model, STL models
for phrase, dynamics, and articulation tasks respectively.

5.2 Evaluation metrics

For the phrase recognition task, The Precision, Recall, and
F1 measures (the balanced harmonic mean of Precision
and Recall) [10] are computed in segment level (hop size
= 30 frames; 0.25 seconds; roughly 0.5 beats). A detected
phrase cuing event is considered as a true positive if it lies
within a tolerance window +/- 60 frames (0.5 second and
roughly 1 beat) from the ground truth annotation. If there
are two or more phrase cuing detected within this toler-
ance window, one of the detections is considered as a true
positive, and others are considered as false positives. For
dynamic and articulation recognition tasks, the accuracies
(acc) are computed in segment level: acc = (# of true posi-
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tive segments/ # of total segments).

5.3 Result

5.3.1 Results of movement feature selection

The top 15 relevant movement features selected by ReliefF
algorithm to fit 3 types of musical features (phrase, dynam-
ics, articulation) are illustrated in Figure 2. It appears that
the elements from right and left fingers, and right and left
wrists are prominent in communicating all three types of
musical expressions. These top 15 elements are inputted
in the subsequent RNN model.

It is an unexpected outcome that the elements from the
baton end are not included in the top list. As suggested
in conducting pedagogy, the baton end has been consid-
ered as an important reference to communicate expressive
information in conducting [11, 15, 21, 31]. In the Reli-
efF analysis, the elements from baton end are ranked as
no 31-33 within 81 elements. It could be the effect that
our target musical features are in bar level rather than in
beat level. According to eigenvalue and eigenvector anal-
ysis in previous research on musical movement, the move-
ments in extremity usually correspond to lower-level mu-
sical elements with a shorter period (such as per beat),
whereas movements in torso tend to associate with higher-
level musical features with a longer period (such as per bar
or longer) [36]. The right finger and wrist are in the in-
termediate location between the body and baton tip, and
are the key body part for conductors to manipulate the ba-
ton, which could be the reason that why they contribute the
most to our expressive targets.

5.3.2 Results of music expression recognition

The results of using RNN framework to perform MTL and
STL are reported in Table 2. It is manifest that the accu-
racy produced by all models is higher than the random in-
cidence (0.166 for 6-class dynamics; 0.333 for 3-class ar-
ticulation). All the t-tests comparing the models with the
feature selection procedure (# of feature = 15) and with
full feature sets (# of feature = 81) do not reach the sig-
nificant p-value of 0.05, which suggests that the top 15
features selected by ReliefF are effective descriptors re-
garding the expressiveness in conducting movement. It is
evident from t-tests that the MTL model shows its advan-
tage over STL models. It appears that these three musical
features are intertwined in the musical context. Identifying
phrase cuing can be the most challenging one among the
three tasks. Considering the characteristics of movement
kinematic signal, the phrase cuing can be easily confused
with local-level beat cuing. Yet in the multi-task model, the
dynamic and articulation information can help the recogni-
tion of phrase in one way or another.

The majority of previous research on conducting move-
ment focuses on the beating pattern in basic level [24, 34,
35], and in this study, we make effort to explore the higher-
level expressive semantics in conducting. There are several
previous attempts to tackle the semantic-level in conduct-
ing, but exclusively target on the dynamic instructions, and
tend to consider such gestures as isolated events regardless

Model # Phrase Dync. Artc.
P R F acc acc

MTL 81 60.39 ** 42.86 * 48.48 71.49 *** 76.45 ***

MTL 15 59.94 *** 42.10 47.63 73.03 *** 76.97 ***

STL 81 52.35 ** 38.15 * 44.07 65.16 *** 70.25 ***

STL 15 48.05 *** 40.78 43.87 64.46 *** 68.95 ***

Table 2. Recognition results (in %) using RNN with multi-
task setting (MTL) and single-task setting (STL): The pre-
cision (P), recall (R), F1 (F) measures for the phrase task,
and the accuracy (acc) for dynamics (dync.) and articula-
tion (artc.) tasks, comparing all movement features (# =
81) and the top 15 features selected by ReliefF (# = 15).
Asterisks indicate the p-value of t-test of MTL and STL
counterparts: * for p < 0.05; ** for p < 0.01; *** for p <
0.001.

the musical context [4, 8]. Previous studies examined the
correlations of movement-music dynamic feature pairs and
yield moderate r2 ranging from 0.4 - 0.5 [33]. Our model
takes another approach and is competent to investigate the
complex inter-connections among multiple factors, and is
able to produce further and solid results. As we expect
from previous MIR research using MTL settings [12, 39],
our MTL model demonstrates the advantage to consider
multiple musical and movement elements together to in-
vestigate the complex inter-connections in the communi-
cation process during conducting performance. Moreover,
as suggested by the previous research, musicians may per-
form the dynamics and articulation differently from the no-
tated scores [20], the connection between the conducting
movement and the performed sound can be further investi-
gated using a similar approach presented in this study.

6. CONCLUSION AND FUTURE WORK

In this paper, we describe results from our investigation
into the expressive semantics in conductors’ movement
used to communicate the phrase, dynamics, and articula-
tion in music. The supervised feature selection technique
ReliefF provides insights into effective descriptors in ele-
mentary kinematic signals of conducting movement. The
movement elements from the right and left hand, and right
and left wrists appear to carry important information re-
garding the conductor’s expressive intentions. These se-
lected descriptors are further investigated using recurrent
neural network with multi-task learning. The RNN ar-
chitecture yields improved results compared to previous
works using other analysis techniques. Particularly, the
multi-task learning model demonstrates a promising ap-
proach to examine the complex interactions among mul-
tiple musical and movement elements.

As the pioneering investigation on conducting move-
ment using RNN, we highlight the potential for this frame-
work to be applied to further explore other issues in music
conducting, such as the connection between the conduct-
ing movement and the performance sound. The findings of
such studies can enlighten the musical education for both
conductors and orchestral musicians.
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