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ABSTRACT

We introduce DrummerNet, a drum transcription system
that is trained in an unsupervised manner. DrummerNet
does not require any ground-truth transcription and, with
the data-scalability of deep neural networks, learns from a
large unlabeled dataset. In DrummerNet, the target drum
signal is first passed to a (trainable) transcriber, then recon-
structed in a (fixed) synthesizer according to the transcrip-
tion estimate. By training the system to minimize the dis-
tance between the input and the output audio signals, the
transcriber learns to transcribe without ground truth tran-
scription. Our experiment shows that DrummerNet per-
forms favorably compared to many other recent drum tran-
scription systems, both supervised and unsupervised.

Transcription is a music information retrieval task with the
goal of estimating the score y when input audio x is given.
The majority of the recent transcription systems is based
on supervised learning, where the transcriber is an analy-
sis system ŷ = Fa(x) that is trained with annotated pairs
{(xm, ym)}Mm=1 to minimize the distance between y and
ŷ [6, 7, 27, 31, 33, 34, 37, 38].

The trend is similar in drum transcription on which we
focus in this paper. Supervised learning approaches may
incorporate models based on frame-based feature extrac-
tion and classification [15], non-negative matrix factoriza-
tion (NMF) for pattern matching [10], or hidden-Markov
model [25]. More attention has been given recently to
deep learning based models such as convolutional neural
networks (CNNs, [13, 34]) and recurrent neural networks
(RNNs, [33, 37, 38]), all of which have greatly improved
transcription systems.

However, the lack of a large-scale annotated dataset is
one of the most frequently mentioned obstacles that hinder
further improvement. In practice, this limits the general-
izeability of supervised learning systems, as will be dis-
cussed in Section 4, and using synthetic data is one way to
address this issue [7, 39]. Although there have been pro-
posals to use unlabeled data [42, 43], the issue remains
as they still rely on supervised learning combined with
teacher-student learning [16]. Parallel to those approaches,
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an annotation-free and, therefore, a more scalable and gen-
eralizable alternative would be unsupervised learning.

Unsurprisingly, one of the humans’ music learning pro-
cedures, self-taught by trial-and-error, is very similar to un-
supervised learning. For example, musicians learn to tran-
scribe by (a) listening, (b) playing an instrument, (c) iden-
tifying differences, and (d) making adjustments. Can this
be done without any supervision? Yes, if the person can
spot the pitch difference (e.g., the pitch should be higher
or lower). Consistent with this logic, developing a tran-
scription system based on unsupervised learning would be
feasible if the system can test the estimation, measure the
error, and correct itself accordingly.

To implement such an unsupervised transcription sys-
tem, we need a synthesis system, x̂ = Fs(ŷ), making
the overall system x̂ = Fs(Fa(x)). During its training,
the system is given {x}Mm=1 and trained to minimize the
distance between x and x̂. There have been few systems
relying on unsupervised learning as explained above. In
MIR, the system in [1] utilized sparse coding to learn a
dictionary of time-frequency templates of piano and harp-
sicord, assuming a (matrix-)multiplication model with ad-
ditive noise, Fs(y) = Ay+e. Yoshii et al. proposed to use
sparse coding in a jointly-learned chord recognition and
transcription system [44]. Berg et al. designed a proba-
bilistic graphical model that parameterizes the spectral and
temporal envelopes, note events, and note activations, in
order to transcribe piano by inferring their parameters [2].
In drum transcription, many systems have used NMF to de-
compose a drum track spectrum into spectral templates and
their temporal activations (or transcription) [26, 41]. Sev-
eral variants of NMF were proposed to address the limits of
the fixed spectrum template of NMF [19, 20, 29]. Lastly, a
similar system can be found in computer vision, where the
parameters of input images are estimated by reconstruction
using an image renderer [18].

In this paper, we introduce DrummerNet, a deep neu-
ral network based drum transcription system that is trained
by unsupervised learning. With a more end-to-end ap-
proach, DrummerNet is distinguished from previous re-
search [1, 2, 44], which has strong priors on the target
sounds. In §2, we present the system design principle be-
hind DrummerNet, followed by its details in §3. In §4,
the evaluation results are discussed along with the ablation
study. We present our conclusion, the problems of our sys-
tem, and the future direction towards fully unsupervised
learning in transcription/MIR in §5.

1. INTRODUCTION
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Name Description Note

n,N The temporal index/length of audio input
k,K The index/total number of drum components K=11
x, y Mixture and transcription ∈ RN

x̂, ŷ Estimations of mixture/transcription ∈ RN

Table 1: Symbols used in this paper
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Figure 1: Block diagrams of DrummerNet structure.
Trainable modules are illustrated as black boxes and fixed
modules as rounded grey boxes.

Training the proposed DrummerNet is similar to the previ-
ous unsupervised learning approaches in music [1, 2, 44],
as they all train a system to output x̂ that reconstructs the
original signal x. The difference between ˆ

y to y.
There are three conditions under which unsupervised

learning of a transcriber can be achieved successfully.
First, the output of the analysis module Fa must be in the
form of transcription – a set of discrete events representing
the timing and intensity of the notes. Second, the synthe-
sis module Fs must synthesize the audio signal given the
transcription input ŷ. Third, all the components in the net-
work must be differentiable as we rely on backpropagation
to train it.

In this section, we introduce the proposed system structure.
We specify the number of channels, kernel size, and stride
as (channel, kernel, stride). All the convolu-
tional and recurrent layers use an exponential linear unit as
an activation function [9]. 1

1 The implementation of DrummerNet is available on https://
github.com/keunwoochoi/DrummerNet

3.1 Analysis module Fa

The analysis module Fa, as illustrated in the top half of
Figure 1, takes the audio signal x as an input and processes
it through a series of U-net variant [30], recurrent layers,
and gated Sparsemax activation [21]. After training, this
module is used as a transcriber (with peak-picking).

U-net The U-net consists of 1D convolutional layers,
max-pooling layers, and concatenations between the en-
coder and the decoder. The encoder consists of a convolu-
tional layer (128, 3, 1) followed by 10 convolutional
layers (50, 3, 1) interleaved with max-pooling of size
2. As a result, it outputs z ∈ RN/1024 which has a recep-
tive field size of 3,072 time steps.

The decoder has only 6 convolutional layers (50, 3,
1) interleaved with a concatenation with the feature map
at the same depth as in the encoder and a ×2 bi-linear in-
terpolation. We call the output of decoder r ∈ RN/16,
the representation based on which the transcription is es-
timated. The asymmetry between the encoder and the
decoder makes the length r to be shorter by a factor of
42 = 16 compared to that of input x. Assuming the input
audio is sampled at 16 kHz, 2 r would have a sampling rate
of 1,000 Hz.

Recurrent layers We use three recurrent layers: (GRUs
[8]) {along time-axis, bi-directional, 100-channel}, {along
time-axis, uni-directional, 50-channel}, and {along
channel-axis, uni-directional, K-channel}. These three re-
current layers have properties of i) being bi-directional so
that the onset at n can be determined by the vicinity of n
(both the past and the future), ii) enforcing temporal de-
pendency, and iii) enforcing component-wise dependency,
respectively. The width (or the hidden vector size) of the
third recurrent layer is equal to K, the number of drum
components in the synthesizer, to map each channel to each
drum component.

y, or 64 ms (temporal spar-
sity). The outputs from these two Sparsemax layers are
then multiplied element-wise.

2 This is the sampling rate of input audio in our experiment.

2. SYSTEM DESIGN PRINCIPLES

x and x works
as a proxy of the difference between ˆ

3. DRUMMERNET

Sparsemax In an ideal case of transcription, there would
be local sparsity along both the time and channel-axes be-
cause the drum events would not repeat with a rate of
1,000 Hz (which is faster than 16-beat on 240 BPM), nor
would all the K drum components be activated simultane-
ously. Although sparsity is one of the properties that can be
achieved by the autoregressive nature of the recurrent lay-
ers, we add Sparsemax [21] activation to encourage it ex-
plicitly. The output of Sparsemax has two important prop-
erties: i) it always sums to 1 (same as Softmax) and ii) it
is highly likely to be sparse with actual zeros (unlike Soft-
max). In DrummerNet, two Sparsemax layers are applied
in parallel, one along channel-axis (=instrument-axis) and
the other time-axis within a non-overlapping window size
of 64. This design choice is based on the assumption that
there are only a few onsets among notes (channel-axis spar-
sity) and within 64 samples at ˆ
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Class Subclass Description

KD KD Kick drum
SD SD Snare drum
HH CHH, PHH Closed/pedalled hi-hat

OHH Open hi-hat
TT HIT, MHT, High/high-mid/

HFT, LFT* high-floor/low-floor tom
CY RDC, RDB* Ride cymbal, ride cymbal bell

CRC, CHC*,
SPC*

Crash/china cymbal
splash cymbal

OT SST*, TMB side stick, tambourine

Table 2: A drum component hierarchy [36]. The synthe-
sizer Fs consists of 11 classes, following Subclass of the
table with omitting ones marked with asterisks *.

Median-Filtering 
Onset Enhancement 

Median-Filtering 
Onset Enhancement 
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CQTs 

x

x̂

Mean 
Absolute 
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Figure 2: The block diagrams of loss calculation

Upsampler Finally, the low temporal resolution of the
Sparsemax output is addressed by zero-insertion upsam-
pling by the factor of 16. According to this, we modify the
temporal quantization rate of events, unlike the upsampling
of a digital signal.

3.2 Synthesis module Fs

The synthesis module Fs consists of K parallel 1D convo-
lutional layers and a channel-wise summing operator. The
kernel of each layer is not trained but fixed to the known
waveform of each drum component to convert a transcrip-
tion of a component ŷk into a track x̂k. The tracks are
summed to generate the final output x̂ (=

∑K
k=1 x̂k), the

synthesized audio signal. This module is only used during
training.

In the implementation, we use K = 11, using Subclass
in Table 2, following [36]. Ones marked with asterisks
were excluded due to their scarcities in our source of iso-
lated drum recordings, which consisted of 12 virtual drum
instruments provided by Logic Pro X. Multiple drum kits,
including rock, pop, funk, and soul 3 , were used to prevent
the network from overfitting to a specific drum kit. Dur-
ing training, a drum kit was randomly assigned for every
batch.

3.3 Learning

Unable to directly compute the transcription loss during
unsupervised learning, we carefully designed a loss func-
tion at the audio level, Lx(x, x̂), as minimizing it would
also minimize the transcription loss, Ly(y, ŷ). To do so,

3 Brooklyn, Heavy, Liverpool, Neo Soul, Detroit Garage, Motown Re-
visited, Portland, Sunset, Speakeasy, SoCal, Smash, and Slow Jam. All
with velocity=98.

Module Input (size) Output (size)

U-net encoder
Conv1D x:(1, N) (C∗, N)
10× Conv1D (C∗, N) (C∗, N/1024)

U-net decoder
6× Conv1D (C∗, N/1024) r:(C∗, N/16)

Recurrent layers (C∗, N/16) (K,N/16)

Sparsemax (K,N/16) (K,N/16)

Upsampler (K,N/16) ŷ:(K,N)

Synthesis module
Channel splitter ŷ:(K,N) K × ŷk:(1, N)
Each Conv1D ŷk:(1, N) x̂k:(1, N)
Sum (mixer) K × x̂k:(1, N) x̂:(K,N)

Table 3: The shapes of inputs/outputs of the module in
DrummerNet. C∗ indicates the number of channels but
unspecified.

Figure 3: The effect of drum extraction for kick, snare,
close hi-hat, and open hi-hat, from top to bottom. Columns
are from left to right: original waveform, original spec-
trum, and onset-enhanced spectrum

Lx should be able to differentiate the drum components
– kick drum (KD), snare drum (SD), and hi-hat (HH) –
while being invariant to the varying drum kits. Perceptu-
ally, there are clear differences between KD, SD, and HH.
Although both impulsive, KD is in the low-frequency band
while SD is in the mid-frequency band. SD is also rela-
tively tonal and has a longer envelope. HH is more compli-
cated to describe due to its variation from its playing tech-
nique. For example, closed and pedalled-HH’s are in the
high-frequency band, impulsive, and with relatively low
energy, while open-HH’s are similar except louder with a
longer noisy envelope.

We thus define and use onset spectrum similarity, which
is designed to represent the similarity based on the onset
part of sounds in the spectrum domain. As illustrated in 2,
it is measured by i) applying median-filtering based drum
extraction [12] which enhances onsets (with a FFT size of
1024 and median filter length of 31 on both axes), ii) con-
verting to multi-resolution CQTs (constant-Q transform)
for both x and x̂, and then iii) calculating the mean abso-
lute difference between them.

Among many spectral magnitude representations, we
use (log-magnitude) CQT since the logarithmic frequency
scale is known to match well to human auditory percep-
tion [23]. We followed the implementation of Pseudo-
CQT 4 which multiplies linear-to-octave filterbanks to an
STFT. As a result, the CQT covered nearly 8-octave bands

4 http://librosa.github.io/librosa/
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from 32.07 Hz (C1) to 8 kHz (the Nyquist frequency of our
experiment) with a 12-band/octave resolution. This imple-
mentation is differentiable.

Figure 3 shows the effect of onset enhancement. It pre-
serves the characteristics of the drum components in the
transient part while removing the after-onset components.
This process makes Lx and Ly more similar, as the non-
transient parts vary more among drum kits due to their ran-
dom and noisy nature. In a preliminary experiment, for ex-
ample, the network tried to reconstruct all the non-transient
components of SD using tom-toms and HHs, resulting in
non-sparse and severe false-positive detection of onsets.

For the training of DrummerNet, we used an in-house
dataset of drum stems that are crawled from many web-
sites. The dataset consisted of 3,940 unique tracks averag-
ing 225 seconds each for a total of 249 hours. Since the
dataset was crawled from various websites, some details,
such as the distribution of drum components, are hard to
identify. The tracks were mostly popular western rock/pop
music. Alternatives to this in-house dataset can be found
in [7] (3,758 drum sample recordings (×8 second = over
8 hours) or 60,000 synthesized drum loops (×8 second =
over 133 hours)) and [39] (4,197 drum tracks (259 hours)).
We opted for the in-house dataset because it provided more
diversity as it was not synthesized.

Each audio file was resampled to 16 kHz and down-
mixed to mono. The training batch size was 16, and for
each audio file, we randomly selected a 2-second segment.
On average, there were 112.5 segments in a track, and
therefore training with 443,250 (=3,940 × 112.5) items
would be approximately one epoch. With a Nvidia Tesla
P100 and a batch size of 32, it took about 9 hours to train
a single epoch. We implemented DrummerNet using Py-
torch 1.0 [24] and used Librosa 0.6.3 [22] and Madmom
0.16 [4] for audio processing and peak-picking.

We used a heuristic peak-picking method introduced in
[5]. This method selects a peak ŷ[n] at n if it satisfies the
three conditions in Eq. (1),

ŷ[n] =max(x[n− wm], ..., x[n+ wm])

ŷ[n] ≥average(x[n− wa], ..., x[n+ wa]) + δ

n >nlp + ww,

(1)

where the max window wm=50 ms, average window
wa=100 ms, threshold δ=0.2, waiting window ww=50 ms,
and nlp is the last detected peak. We mainly use F1 score
along with Precision and Recall using mir eval [28]. The
tolerance window is 50 ms.

After training, we test the system on three public
datasets: IDMT-SMT-Drums (SMT, 104 drum tracks, total
130 minutes [10]), Medley-DB Drums (MDB, 23 tracks,
total 20 minutes [36]), and ENST-drums (ENST, 61 min-
utes [14], drum-only tracks known as ‘wet-mix’ of ‘minus-
one’ subset). According to [40], a task is DTD 5 if tracks

5 DTD: drum transcription of drum-only recordings

1 10 100
number of training items [x100,000]

0.5
0.6
0.7
0.8
0.9 Average F1 scores

Avg
SMT
MDB
ENST

Figure 4: The F1 scores of DrummerNet over training
items on each dataset (SMT, MDB, ENST), averaged over
KD, SD, and HH. AVG indicates the overall average F1
scores of three datasets.

6

4.2 Trend of Performance over Training
We did not employ a stopping strategy but trained the net-
work for 6 × 106 items (about 13 epochs). As illustrated
in Figure 4, the overall performance gradually increases as
the training proceeds and approaches converging towards
the end of training. This indicates that the proposed loss
function is a good proxy of transcription loss. After the ini-
tial phase of training, the performance differences among
datasets remain consistent, probably due to the different
characteristics of drum tracks in each dataset, as will be
discussed in Section 4.4.

4.3 Relative Performance against Baselines

In this experiment, we trained our system on the in-house
training set without any annotation and evaluated it on
a separate test set (also known as ‘eval-cross (trained
on DTP)’, [40]), which is a stronger condition than a
usual train/test split scenario in supervised learning (‘eval-
subset’, [40]). This setup allows us to measure the gener-
alization capabilities across the datasets. Specifically, our
experiment is equivalent to DTD, ‘eval-cross (trained on
DTP)’ experiment in [40]. 7 , which is only available on
SMT. Therefore, only the performances on SMT are com-
pared in this Section. Overall, the performance of Drum-
merNet is favorable to that of recent drum transcription
systems. With an average F1 score of 0.869 on SMT,
the proposed unsupervised DrummerNet outperformed 9
out of 10 systems. The nine systems include ones with
deep neural networks and supervised approach (ReLUts,
RNN, lstmpB, tanhB, and GRUts [33,34,37,38]), as well as
ones with NMF and unsupervised approach (AM1, AM2,

6 DTP: drum transcription in the presence of percussion
7 Numbers are omitted in the paper but are available on-

line: https://www.audiolabs-erlangen.de/resources/
MIR/2017-DrumTranscription-Survey.

in [40]. Following this conven-
tion, we evaluate DTD with SMT (Section 4.3), and DTP
with MDB/ENST. We did not fine-tune for any dataset in
any experiment and used the whole datasets for evaluation
only.

4.1 Setup

4. EXPERIMENTS AND ANALYSIS
are drum-only, more precisely KD/SD/HH-only, and the
system annotates KD/SD/HH events. This is the case
for the SMT dataset. A task with the system annotat-
ing KD/SD/HH but with drum tracks consisting of more
than those three components, e.g., tom-toms and cym-
bals, is named DTP
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Figure 5: The F1 scores of DrummerNet and other sys-
tems on SMT with ‘eval-cross’ setup, sorted by the as-
cending order of the overall average. The system names
follow [40].

PFNMF, and SANMF [10, 41]). It did not outperform
NMFD [20], a system based on the convolutive NMF.

The comparison between DrummerNet and the
NMF/unsupervised learning-based systems [10, 41]
implies that the proposed deep neural network structure
effectively learns relevant representations. Furthermore,
DrummerNet allows constant-time inference, unlike NMF
and other factorization-based approaches which require
iterative optimization in the test time.

What is more interesting is its generalizability. All the
deep learning based systems 8 present deteriorating perfor-
mance in the transfer learning scenario (eval-cross) com-
pared to the dataset split scenario (eval-subset). 9 How-
ever, less data-driven approaches 10 present similar or even
increased performances in eval-cross. This implies that
the distributions within datasets are fairly different and bi-
ased to certain types of drum tracks and therefore, a tran-
scription system trained with those datasets will be also
biased accordingly. This limitation may be attributed to
the small sizes of those datasets. Theoretically, supervised
deep learning systems may generalize better if trained on a
very large dataset, which lacks practicality due to the high
annotation cost. In contrast, it is relatively easy to unbias
DrummerNet. One only needs to control the distribution of
drum tracks by their style/genre/sounds without annotating
every note.

4.4 Qualitative Analysis

In this section, we will analyze the performance and the be-
havior of DrummerNet by components, datasets, and met-
rics, as illustrated in Figure 6. Here, we notice two clear
trends. First, across all of the three datasets and the met-
rics, detecting KD was the easiest, followed by SD and HH
(except the precision on SMT). Second, SMT seems to be
the easiest, followed by MDB and ENST. What could be
the reasons?

The first trend is strongly related the proposed loss func-
tion. KD has the least within-class variability while being
the most distinguishable component (the largest mutual-
class variability) due to its solitary frequency range. SD
and HH share both the mid and high-frequency ranges

8 RNN, tanhB, ReLUts, lstmpB, GRUts - RNN-based systems
9 See Figure 10 (b) of [40]. Note that most of the reported scores in

papers also follow eval-subset setup.
10 SANMF, NMF, PFNMF, AM1, AM2 - NMF-based systems
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Figure 6: Evaluation of DrummerNet on SMT (top), MDB
(middle), and ENST (bottom) datasets.

Figure 7: A transcription example of DrummerNet, ‘Real
Drum 01-12’ in SMT - the output of analysis module (top),
after peak-picking (middle), and ground truth (bottom);
KD, SD, HH (left to right).

and their sounds can vary significantly across drum kits
– i.e., larger within-class variability and smaller mutual-
class variability. A common pattern, consequently, is the
false positive of HH due to SD and vice versa. This is pre-
sented in Figure 7, where SD has many false positives due
to HH.

The second trend is caused by the mixed use of the
probability and the onset velocity in the DrummerNet. Al-
though transcription ŷ is the estimated amplitude of drum
components, the peak-picking method treats ŷ as if it was a
probability. This discrepancy becomes problematic when
the velocities of drum events in a track vary drastically as
in the case of MDB and ENST. A failure case is demon-
strated in Figure 7, where the HH with strong accents on
several occasion caused DrummerNet to miss many of the
other HH peaks.

4.5 Ablation Study

We conducted an ablation study where the performance of
DrummerNet is compared with that of its variants. Figure 8
shows the reported F1 scores averaged over datasets and
components. Please refer to the caption in Figure 8 for the
definitions of the system names.
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Figure 8: The ablation study results, F1 scores averaged
over three datasets per component (KD, SD, HH) and
their overall average (AVG). The label indicates as follow:
DFL (default DrummerNet as introduced), SOFT (two
Softmax layers instead of Sparsemax), MEL (use 128-band
melspectrogram instead of CQTs), STFT (use 1024-point
STFT instead of CQTs), NOE (not onset enhancement in
loss), CONV (3-layer convolutional layers instead of re-
current layers).

Figure 9: A transcription example of SOFT (DrummerNet
with Softmax) , ‘Real Drum 01-12’ in SMT - the output
of analysis module (top), after peak-picking (middle), and
ground truth (bottom); KD, SD, HH (left to right).

Sparsemax (DFL vs. SOFT) Among all the variants in
this experiment, we observe the most dramatic change in
the performance when we replaced Sparsemax with Soft-
max (SOFT), mostly in a negative way. In SOFT, the
two Softmax layers were applied in sequence instead of
in-parallel and multiplied, which we tested, but the train-
ing was unstable. The transcription ŷ of SOFT tends to
be much noisier with many false positives, as presented in
Figure 9. We conclude that the sparsity induced by Sparse-
max is a crucial factor behind the success of the proposed
unsupervised transcription.

Figure 9 provides a good example of the performance
degradation pattern for each component. As in Figure 8,
although the scores of all the three components decrease
in SOFT, the degradation is not as critical for HH as in
the case of KD/SD. This observation reflects the underly-
ing properties of the different components. KD and SD
are sparser than HH, and thus may benefit more from the
introduction of Sparsemax.

CQT (DFL vs. MEL vs. STFT) Replacing CQTs with
either melspectrograms (MEL) or short-time Fourier trans-
form magnitudes (STFT) results in decreased performance.
Unlike CQTs, where different numbers of FFT are used for
each octave range, melspectrograms are computed based
on single-resolution STFT. This implies that DrummerNet
benefits from CQTs which consider multiple temporal and
spectral resolutions.

Comparing MEL and STFT, the melfrequency compres-
sion helps with the better detection of KD but not SD

nor HH. This is explained by the different frequency band
weighting of STFT and melspectrogram. Since melfre-
quency is linear below 1 kHz and logarithmic above 1 kHz
[32], melspectrogram allocates relatively more bins below
1 kHz. This means that the loss function in MEL is biased
towards the low-frequency range, resulting in training that
favors KD over the others.

Onset Enhancement (DFL vs. NOE) The onset en-
hancement is shown to be boosting the performance, but
not significantly (0.017). In the learning curve, we ob-
serve that removing the onset enhancement from the loss
function results in a large performance degradation during
the initial phase of training. This is mainly due to false-
positives in the non-transient part.

Recurrent layers (DFL vs. CONV) Overall, replacing
three recurrent layers with three convolutional layers does
not make significant differences (0.011). This may means
i) a long-term relationship may not provide additional in-
formation, probably because the transcription largely de-
pends on local information, and ii) the mutual conditioning
in the last recurrent layer is not effective in our experiment.
In an informal analysis, we observed that with recurrent
layers, ŷ still has some local temporal correlation, e.g., the
activations are smeared over time, probably because that is
better to reconstruct the input audio.

The experiment also revealed room for further im-
provements. Considering the discreteness of the musical
notes, a reinforcement learning approach may be more
suitable [35], making the prediction more sparse and re-
placing the peak-picking with trainable action. The onset-
enhancement on audio similarity is a function carefully-
chosen in order to approximate Ly when x and x̂ are
given. Unfortunately, the approximation is limited be-
cause the exact drum sounds in x are not given, and there-
fore a perfect reconstruct of (onsets of) the input audio
(Lx(x, x̂) = 0) does not lead to a perfect transcription
(Ly(y, ŷ) = 0). An alternative way would be measuring a
similarity on a (perceptual) representation domain instead
of the audio, for example, by learning a loss using forward-
backward consistency (also known as a cyclic loss [17]) or
known audio features. Lastly, the current synthesizer mod-
ule is limited to drums as it does not handle the duration
of notes. A trainable synthesizer can be used to expand
DrummerNet to other instruments [3, 11], eventually lead-
ing to an unsupervised universal transcription system com-
bined with instrument recognition.

We introduced DrummerNet, a deep neural network that is
trained to transcribe drum tracks without a labeled dataset.
In the experiment, DrummerNet achieved strong perfor-
mance compared to existing systems trained with super-
vised learning, showing its generalizability towards a real-
world drum transcription scenario. Our ablation study
showed that Sparsemax and CQT played a crucial role in
the successful training of DrummerNet.

5. CONCLUSION
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