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ABSTRACT

Music prediction and generation have been of recurring
interest in the field of music informatics: many models
that emulate listeners’ musical expectancies, or that pro-
duce novel musical content have been introduced over the
past few decades. So far, these models have mostly been
evaluated in isolation, following diverse evaluation strate-
gies. Our paper provides an overview of the new MIREX
task Patterns for Prediction. We introduce a dataset, which
contains monophonic and polyphonic data, both in sym-
bolic and audio representations. We suggest a standard-
ized evaluation procedure to compare algorithmic musi-
cal predictions. We compare two neural network models
to a baseline model and show that algorithmic approaches
can correctly predict about a third of a monophonic seg-
ment, and around half of a polyphonic segment, with one
of the neural network models achieving best results. How-
ever, other approaches to algorithmic music prediction are
needed to achieve a more rounded picture of the potential
of state-of-the-art methods of music prediction.

1. INTRODUCTION

Prediction of future events is fundamental to human and
artificial intelligence, and has therefore been discussed as
a core research interest bridging cognitive psychology and
machine learning [5]. Music, with its complex event se-
quences extending over time, provides an excellent setting
for the study of prediction.

In music cognition, human prediction of future events,
or expectation, is studied from theoretic, behavioral, imag-
ing, and modeling perspectives. Some theoretical work [2,
15] distinguishes between veridical, schematic, and dy-
namic expectations: veridical expectations occur due to
familiarity with a musical piece, schematic expectations
are elicited by familiarity with a genre, and dynamic ex-
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pectations manifest in-the-moment predictions, when, con-
sciously or subconsciously, a listener becomes attuned to a
pattern in a novel piece. It has been claimed that the plea-
sure we derive from music resides in the tension between
these three forms of expectation [15].

While the full complexity of expectation in music may
still be hard to capture in computational models, the goal
of this paper is to give an overview of how computational
models may emulate human expectations through predic-
tion of future musical events, and how we should evaluate
such models.

Our main contributions are as follows: first, we review
different approaches to modelling expectation in music.
Second, we introduce a dataset on which such models can
be trained and evaluated. Third, we propose two evalua-
tion tasks and associated evaluation measures. 1 Fourth,
we provide the results of a baseline and two more com-
plex models on the tasks. Finally, we discuss findings and
recommendations for future model development and eval-
uation.

2. RELATED WORK

2.1 Approaches to music prediction

2.1.1 Markov models

Markov models have been influential in music prediction:
statistics on transitions between musical events may be
used to generate predictions for unseen musical events.
Musical events may be represented in various ways, such
as pitch, duration, onset, metric weight, and so on. There-
fore, it has been suggested to build distinct models for dif-
ferent combinations of music representations [11]. Markov
models trained on music corpora may very well serve to
model schematic expectation, such as a leading tone to be
followed by an octave. Dynamic (i.e., work-specific) ex-
pectations may also be modelled through a Markovian ap-
proach through training on a musical piece itself, where
the model is incrementally updated as the piece progresses.
The question of how to combine models of various music
representations, or how to combine models trained on cor-
pora (“long-term models”) and models trained incremen-

1 The corresponding MIREX task description, datasets, and evaluation
code can be found at https://tinyurl.com/y455cf97
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tally on a piece (“short-term models”) has been experimen-
tally investigated [26], but on specific styles, which might
not generalize to other musical genres.

Even though some models can theoretically extend over
very long contexts, the question remains whether Marko-
vian models, which are by nature “forgetful”, will cap-
ture longer structure that may facilitate precise predictions,
such as repetition of themes in a Classical piece of music,
or the return of the theme in a jazz performance. [36]

2.1.2 Neural networks

Over the last two decades, interest in neural network mod-
els for music prediction has been increasing. The first at-
tempts in this direction made use of recurrent neural net-
works (RNNs) [23], with an input, hidden and output layer,
which predict future states of sequential input data. Vari-
ants of RNNs, such as long short-term memory models
(LSTM), have also been applied to music [13]. Various ex-
tensions of such models have been presented since [4, 14].

Another class of neural networks, convolutional neural
networks (CNN), is usually used for image data. A musical
composition may also be thought of as an image rendered
in time-pitch or time-amplitude space. Some authors there-
fore applied CNNs to piano roll representations of sym-
bolic music [12], or to audio [34] for music prediction.

While these and other neural network architectures have
resulted in generation and prediction of music, the output
of the models in itself is often not easy to predict. One of
the challenges for neural network models, as for Marko-
vian models, is the degree to which they can capture large-
scale structure in a musical piece, and recreate dynamic
expectations that may arise within a piece in itself.

2.1.3 Pattern discovery

Yet another approach to predicting the musical future is
to search for repeating patterns within the piece. This ap-
proach emulates dynamic expectations of a listener (pat-
terns occur in earlier parts of a piece, leading to predictions
based on later, partially complete occurrences of the same
patterns [6, 26]), but less so schematic expectations.

Various algorithms have been proposed to discover re-
peated patterns within a piece [7, 18, 22, 28, 30, 35], which
differ in the kinds of patterns they aim to discover, in the
way music is represented, and in the algorithms used to
find repetitions [16]. These algorithms have been tested
on benchmarks of annotated patterns, while evaluation by
prediction is suggested but yet-to-be implemented [21].

2.2 Evaluating music prediction

To ascertain how models compare to human expectations,
various approaches have been used: some of them fall in
the domain of music generation, while others fall in the
domain of information theoretic measures.

2.2.1 Information-theoretic measures

In order to investigate musical predictions of a model with
information theoretic measures, the model is trained on a

corpus or a corpus subset, then exposed to a novel musi-
cal piece. For each musical event, the likelihood of that
event according to the model is measured. Alternatively,
the uncertainty of the model after each note in predicting
the following melody note may be recorded. Ratings of
likelihood or uncertainty may then be compared to human
ratings from experimental research.

To compare likelihood as rated by a model to human
ratings, priming experiments may serve as an evaluation
ground: in such experiments, participants had to give an
indication as to how well, given a melodic context, a note
fitted their expectations [17, 31]. There were also exper-
iments on uncertainty, in which participants were asked
to indicate how uncertain they were of what might follow
each note in a Bach chorale [19]. As phrase boundaries of-
ten coincide with points of greater uncertainty, human seg-
mentations have also been occasionally used as a ground
truth for evaluating model predictions [27].

2.2.2 Music generation

A very common way to evaluate predictions from a model
is the demonstration of music generated by a given model
(e.g., [11]). While this is informative, it is not self-evident
how to judge the quality of such an output. Music prac-
titioners of a given genre may be asked as judges [32],
but aesthetic judgments alone may not reveal much about
a model’s shortcomings [1].

Another approach to evaluating music generation
is through comparing generated music with human-
composed melodies. Human compositions can then be
used as the touchstone of how well a model captures struc-
ture and style [20]. We choose this approach by providing
models with a short piece of music, or prime, and instruct
the models to generate a continuation, which we evaluate
against the true continuation. Moreover, we test how suc-
cessfully a model distinguishes between the true continua-
tion and an artificial, foil continuation.

3. A DATASET FOR MUSIC PREDICTIONS

3.1 Dataset construction

We provide small, medium, and large development
datasets (100, 1, 000, and 10, 000 pieces, respectively).
This caters to different approaches to designing mod-
els for the task, some of which are more data-intensive
than others. Each dataset has audio/symbolic and mono-
phonic/polyphonic variants.

Pieces were selected at random from the Lakh MIDI
Dataset (LMD) [29] with the aim of creating primes last-
ing≈ 35 sec according to tempo information. True contin-
uations were selected – and foil continuations generated –
such that onsets (note start times) occurred in a 10 quarter-
note-beat window.

We also constructed a test dataset from another cor-
pus of MIDI files, which is similar in nature to LMD.
The test dataset also contains audio/symbolic and mono-
phonic/polyphonic variants, and provides primes, true and
foil continuations. In keeping with the MIREX guidelines,

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

209



Figure 1. Item from the large, polyphonic variant of the development dataset. Musical provenance unknown.

we will not reveal details about the provenance of the test
dataset. What we can say is that the source for the test
dataset contains approximately 30, 000 files, and that both
this source and LMD are gathered from sites that represent
musical interests and tastes, broadly construed. The num-
ber of items in the test source tagged as “pop”, for instance,
is 9, 165. Other items have similar tags, however, such as
“latin pop”. To our knowledge, no such analysis of genres
exists for the LMD, so remarks about the overlap of gen-
res and content between our training and test datasets are
necessarily speculative.

MIDI files were selected at random, imported using
midi-convert, 2 quantized, and then the following crite-
ria were applied when generating monophonic primes and
continuations:

1. A prime had to contain at least 20 notes;
2. The maximum inter-onset interval in a prime could not

exceed 8 quarter-note beats;
3. A continuation had to contain at least 10 notes;
4. The channel from which material was selected had to

be suitably monophonic prior to skylining (see below),
meaning at least 80% of minimal segments [25] had to
be single notes or rests.

Skylining means to select the highest-sounding notes
at each onset and return only those notes, perhaps with
modified durations, so that the output is truly monophonic.
The rationale for only skylining material that was already

2 https://www.npmjs.com/package/@pioug/
MidiConvert

80% or more monophonic is that skylining inherently poly-
phonic material often results in odd-sounding or implied-
polyphonic output. For polyphonic dataset generation, cri-
teria (1)-(3) were the same, but a replacement for (4) was
needed because parsed MIDI files sometimes contain erro-
neously long notes. In place of criterion (4), polyphonic
dataset generation involved clipping any notes longer than
8 quarter-note beats.

If a prime or continuation did not satisfy one or more
of the above criteria, generation proceeded to the next ran-
domly selected piece (rather than, say, selecting a different
excerpt from the same piece). Approximately 1/6 random
selections passed the criteria, meaning we had to process
6N pieces to produce a dataset of size N .

Our baseline for generating foil continuations is the
Racchman-Jun2015 model [9] described in section 4.
Since previous work has emphasized the need to progress
from Markovian approaches to modeling music [36], this
seemed to be the most appropriate baseline. Examples of
a prime, true and foil continuations are shown in Figure 1.
This excerpt came from an LMD song called “Dirtyluv”.
We were unable to identify further title or artist informa-
tion – an issue when working with this source.

Returning to the discussion of pattern discovery for pre-
diction, the example is annotated with pattern occurrences
A1, A2, B1, B2, . . . , B5 to indicate how such an approach
would be fruitful in this case. The annotating lines are
placed above and below the stave for clarity, but encom-
pass notes from both staves that begin in the indicated time
spans. The prime ends by repeating the first 3 notes of A1.
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Therefore, one reasonable prediction for the continuation
is that it will proceed to restate the remainder of A1. Com-
paring such a prediction to the true continuation, we see
that it would be quite successful – some extra notes in the
left hand in measure 16 are the only difference between A1

and A2. In an analogous fashion, the regularity of occur-
rences of B1, B2, B3 could be used to make a prediction
about B4 and B5 appearing in the true continuation.

3.2 Dataset characteristics

Figure 2 contains three violin plots showing basic dis-
tributional characteristics of the symbolic, monophonic,
medium-size development (“dev”) dataset and the sym-
bolic, monophonic test dataset. Inspection of these plots
suggests that the development and test datasets share sim-
ilar characteristics. A slightly more marked peak can be
seen around inter-onset 0.5 in the primes and true contin-
uations of the test compared to the development datasets
(Figure 2A), and the test dataset has a slightly lower mean
MIDI note number than that of the development dataset
(Figure 2C). While the test dataset is separate from the de-
velopment dataset (LMD) and it would be inappropriate to
report the extent to which they overlap in terms of content,
evidently their distributional characteristics are similar. It
is worth noting that there is healthy representation of “bass
lines” in monophonic – but not polyphonic – variants of the
datasets (see the modal concentration around MIDI note 35
in Figure 2C), as a result of the selection criteria outlined
above.

4. COMPARED MODELS FOR MUSIC
PREDICTION

We compare the output of foil continuations by the first-
order Markov model (see section 3.1), in the following re-
ferred to as baseline model, with two recurrent neural net-
work models, BachProb [10] and Seq2SeqP4P [24].

BachProb is a deep-gated, recurrent neural network
with three consecutive layers. Notes are represented as
triplets of pitch, duration and inter-onset interval with re-
spect to the previous note. Durations and inter-onset inter-
vals are rounded to durations commonly found in musical
scores. BachProb is trained on the development dataset us-
ing truncated back propagation, with separate models for
the monophonic and the polyphonic parts of the dataset.

Seq2SeqP4P is a long short-term memory network with
two layers. Music was represented as the MIDI commands
note-on, note-off, which define when a given pitch starts or
ends, and time shifts between those commands, quantized
to 12 subdivisions per beat. Such a sequence of MIDI com-
mands and time shifts was used as the input to training the
model on the development dataset. By virtue of design,
Seq2SeqP4P was trained only on the monophonic part of
the dataset.

The baseline model consists of a first-order Marko-
vian generator nested in other processes intended to en-
sure the output has long-term repetitive and phrasal struc-
ture [9]. The state space consists of beat of the mea-

A

B

C

Figure 2. Characteristics of the symbolic, monophonic,
medium-size dataset: (A) Inter-onset interval distributions
of development and test datasets; (B) Duration distribu-
tions; (C) MIDI note number distributions.
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sure on which notes occur, and MIDI note numbers rela-
tive to tonal center. The Markov generator alone, called
Racchman-Jun2015, is a useful benchmark, because any
longer structures that emerge here do so by chance.

5. EVALUATION

We evaluate music prediction in two ways:

• Explicit task. Models are provided with a prime, from
which they generate continuations. The output of the
models is then judged according to how many events
of the true continuation they correctly predicted (metric
definitions below).

• Implicit task. Models are provided with correct and foil
continuations after a prime, from which they have to se-
lect the correct continuation.

5.1 Explicit task

For the explicit task, the evaluation proceeds as follows:
within a time interval of ten quarter notes, we step through
the time line by small time increments. We choose a time
increment of t = 0.5 quarter notes, i.e., an eighth note.

We represent each note in the true and algorithmic con-
tinuation as a point in a two-dimensional space of onset
and pitch, giving the point-set P for the true continuation,
and Q for the algorithmic continuation. We calculate dif-
ferences between all points pi in P and qj in Q, which
represent the translation vectors T to transform a given al-
gorithmically generated note into a note from the true con-
tinuation [8, 33].

We then search for the largest set match achievable
through translation with any vector, leading us to the num-
ber of correctly predicted notes cp:

cp(P,Q) = max
T
|{qj |qj ∈ Q ∧ qj +T ∈ P}| (1)

We define recall as the number of correctly predicted
notes, divided by the cardinality of the true continuation
point set P. Since there exists at least one point in Q which
can be translated by any vector to a point in P, we subtract
1 from numerator and denominator to scale to [0, 1].

Rec = (cp(P,Q)− 1)/(|P| − 1) (2)
Precision is the number of correctly predicted notes, di-

vided by the cardinality of the point set of the algorithmic
continuation Q, scaled in the same way:

Prec = (cp(P,Q)− 1)/(|Q| − 1) (3)
The F1-score is the harmonic mean of precision and

recall. As the measures we propose are not defined for
cases in which either the true or the algorithmic contin-
uation contain fewer than two events, we start evaluation
from onset 2.0, i.e, two quarter notes after the end of the
prime, which ensures long enough sequences.

5.2 Implicit task

In the implicit task, a prediction model has to judge which
of two continuations after a given prime is the true contin-
uation. The foil is generated by the baseline model (see
Section 4).

To evaluate the implicit task, we measure the success
rate, i.e., the number of cases in which the model correctly
picks the true continuations, divided by the total amount of
decisions undertaken by the model.

6. RESULTS

Our evaluation and results focus on the symbolic variants
of our test dataset. For the monophonic part of the dataset,
we compare all three models, whereas for the polyphonic
part, we only compare BachProb against the baseline, as
Seq2SeqP4P has not been trained on polyphonic data yet.

6.1 Explicit task

For the monophonic dataset, the various models predict
around a third of the events correctly, with BachProb
outperforming the baseline and Seq2SeqP4P slightly, es-
pecially at the start of the predicted continuation (see
Figure 3B).

Seq2SeqP4P predicts more of the notes in the true con-
tinuation correctly than the baseline, but at the cost of pre-
cision (Figure 3A), which means that its F1 score is also
lower overall than the baseline (Figure 3C).

For the polyphonic dataset, BachProb achieves a much
higher recall than the baseline Markov model (Figure 3E).
In precision, it performs close to the baseline, which results
in very similar F1-scores, too (Figure 3D, F).

In general, the recall, precision, and F1 score of the
models decrease as the onset of the generated continuation
increases, even though the baseline model has fairly stable
performance over the evaluated time interval for the mono-
phonic dataset, and Seq2SeqP4P increases in performance
at the start of the continuation.

6.2 Implicit task

BachProb achieves a success rate of 0.85 for the mono-
phonic continuations, i.e., 85% of the true continuations
were identified correctly. For the polyphonic continua-
tions, BachProb scores a success rate of 0.90. Accord-
ing to the binomial distribution, a success rate of 0.54 or
higher constitutes above-chance performance on this task.
At present, Seq2SeqP4P has not been implemented for the
implicit task, so there are no results for it at this stage.

7. DISCUSSION

How events in the recent or more distant past may be ap-
praised – consciously or otherwise – so as to be better
adapted for what lies ahead is a phenomenon that has in-
trigued researchers from diverse disciplines such as cogni-
tive psychology, philosophy, computer science, and music.
In this paper, we focussed on music as a vehicle for study-
ing the ability of computational models to predict continu-
ations of given primes, and described datasets, evaluation
procedures, and results to this end.

BachProb, utilizing a gated recurring neural network,
outperforms the other two models. Seq2SeqP4P, based
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A B C

D E F

Figure 3. (A) Precision, (B) recall, and (C) F1-measure of the three monophonic prediction models; (D) precision, (E) re-
call, and (F) F1-measure of the two polyphonic prediction models. Evaluation measures are not defined for very short
sequences, so evaluation starts at onset 2.0. Shading around the curves indicates one standard error from the mean.

on a long-short term memory model, predicts less musi-
cal material correctly. Arguably, music representation may
be a larger factor in this than network architecture: as the
model reportedly produces repeated pitches in some cases,
and tends to always assign the same durations between
the note-on and note-off events [24], the sequences of de-
coupled pitch and duration related information may not be
suitable for the model to learn musical structure. Repeated
short durations in the output may also explain the high re-
call and low precision of the model.

The overall higher recall, precision and F1-score of
BachProb and the baseline on the polyphonic dataset, as
compared to the monophonic results, is surprising. A pos-
sible explanation may be that repetitive chords, for in-
stance in a piano or guitar part, are frequently present in
the dataset and may be relatively easy to predict. The com-
paratively lower precision of BachProb suggests that while
many notes from the true continuation are generated, there
are also many spuriously generated notes.

For the implicit task, it is remarkable that BachProb
distinguishes between true and foil continuations highly
above chance. While the explicit task shows that the
Markovian continuation reproduces a modest percentage
of notes in the true continuations, the implicit task shows
that BachProb learned details of the musical structure
which could not be emulated by the Markovian foil.

We hope to evaluate more models for music prediction
in the future, which might give us more insights into what
constitutes successful prediction. As such, our proposal of
a dataset and evaluation measures opens up the ground to
discussion of how comparison of music prediction models
may be improved.

First, we need to consider improved, or additional eval-

uation measures for the explicit task: our current approach
to evaluating the explicit task entails that algorithmic con-
tinuations will be evaluated as correct continuations even if
they are shifted in onset or pitch. The proposed measures
may also penalize deviations from a true continuation that
might be almost imperceptible to a human listener, such as
an added chord note, or the reordering of chord tones.

Second, the evaluation of the implicit task also needs
to be reconsidered: it depends heavily on the quality of
the foil continuation. Perhaps the Markov baseline gen-
erates material which is too easily distinguishable from
the true continuation. Moreover, we measure success rate,
which has the advantage of easy interpretation, but does
not take into account a model’s confidence in its distinc-
tion between the true and foil continuation. Alternative foil
continuations, or more fine-grained measures of the mod-
els’ distinctions, would certainly give additional insights
on model performance.

Third, additional tasks and datasets may be needed. We
envision bringing together outcomes of music prediction
models with evidence on human expectations in music.
The continued systematic comparison of various models
for music prediction can teach us much about the successes
and shortcomings of prediction models in relation to each
other, as well as about the influence of music representa-
tion and model parameters. Studies which measure hu-
man responses on their levels of surprise when hearing the
continuation of a musical prime [19], or studies which ask
humans to improvise a continuation [3] may inform im-
proved tasks and evaluation strategies, and underpin mod-
els to predict the musical future.
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