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ABSTRACT

The task of speech and music detection aims at the au-
tomatic annotation of potentially overlapping speech and
music segments in audio recordings. This metadata ex-
traction process finds important applications in royalty col-
lection for broadcast audio. This study focuses on deep
neural network architectures made to process sequential
data, and a series of recent architectures that have not
yet been applied for this task are evaluated, extended and
compared with a state-of-the-art architecture. Moreover,
different training strategies are evaluated, and we demon-
strate the advantages of a pre-training procedure with low-
quality data that facilitates the combination of heteroge-
neous datasets. The study shows that Temporal Convolu-
tion Network (TCN) architectures can outperform state-of-
the-art architectures. In specific, the novel non-causal TCN
extension introduced in this paper leads to a significant im-
provement of the accuracy.

1. INTRODUCTION

The location of speech and music segments in large
amounts of audio recordings is an important metadata in-
formation especially in the context of royalty collection in
broadcasting. The task of speech and music detection is a
multi-label problem, each frame can be labeled as music,
speech, both, or neither of both. Assuming potential over-
laps between the classes makes speech and music detection
a complex and unsolved task, as opposed to a simple dis-
crimination of segments into either speech or music [12].
Apart from royalty collection, a speech and music detec-
tion system can be useful to extract the relevant parts of the
audio on which to apply other meta-data extraction such as
speech-to-text, genre classification or music fingerprinting.

The first approaches to speech/music detection – dis-
cussed in the work of Carrey et al. [5] – focused on manu-
ally designed features and subsequent classification. More
recently, features are automatically learned from spectro-
gram images using deep neural networks for various au-
dio tasks [4, 7, 14, 22, 27, 33, 37]. End-to-end learning sys-
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tems with waveform-audio input have been compared with
spectrogram-based learning, with better results of the lat-
ter approach [16]. This may however be due to the lack of
sufficient data in the particular case, as discussed by Pons
et al. [24].

Recently, the Temporal Convolutional Network (TCN)
[2] showed promising results on tasks involving sequential
data. No study to date has compared the TCN architecture
with other deep learning architectures such as Recurrent
Neural Networks (RNN) for the task of speech and music
detection. A key contribution of this paper is the investiga-
tion of a novel non-causal TCN architecture. This is of spe-
cial interest to various applications where real-time analy-
sis is not a constraint. The results of this study demonstrate
that TCN architectures can outperform RNN. The final sys-
tem is compared with the state of the art on the MIREX
dataset 1 with results that further document the high per-
formance of the non-causal TCN.

Another contribution of this paper is the use of an effi-
cient pre-training procedure with low-quality data that fa-
cilitates the combination of heterogeneous datasets. We
compiled the most extensive data resource available un-
til now for the task of speech and music detection, and
trained and tested networks using this heterogeneous data
resource. Our results document the advantage of the pre-
training procedure, and we provide the code of this study
as a toolbox for the systematic comparison of system ar-
chitectures for the speech and music detection task.

The following section is a review of existing work
with neural networks on speech and music detection and
tasks that employ similar methods. Section 3 explains the
method that will be applied in this study. Section 4 presents
the results that are discussed in Section 5. Finally, Section
6 draws various conclusions about this work.

2. BACKGROUND

The speech and music detection problem is a sound event
detection problem. It applies to an audio stream containing
temporal segments of speech and/music in arbitrary posi-
tions. Segments of speech and audio may overlap. Fur-
thermore, some parts of the audio might contain neither
music nor speech, but task-irrelevant content such as envi-
ronmental sounds, footsteps or keyboard typing sounds.

1 https://www.music-ir.org/mirex/wiki/2018:
Music_and/or_Speech_Detection

1
229



Figure 1 shows an overview of the processing chain typ-
ically applied in speech/music detection and other related
tasks, such as acoustic event detection. The following sub-
sections provide an overview of examples of these steps
from the literature.

Figure 1: Overview of the processing chain

2.1 Pre-Processing & Spectrogram Extraction

The most commonly used features in the literature are the
Mel-scaled log-magnitude spectrograms [14,18,22,27,33].
To obtain them, a Short-Time Fourier Transform (STFT) is
computed from the audio sample containing the discrete-
time signal. Only the magnitudes are kept and a Mel-scaled
Filterbank is applied. Finally, the obtained coefficients are
put on a log magnitude scale and normalized.

Data augmentation is a pre-processing solution that ar-
tificially creates new data based on the available ones by
applying various manipulations either in the time-domain
[27] or on the spectrograms [29].

2.2 Network Architectures

In the context of deep neural networks, there are two dif-
ferent ways described in the literature to handle the speech
and music detection task (or related tasks). The first possi-
bility is to treat the audio as non-sequential data by work-
ing on small excerpts independently which is mainly used
for classification tasks. The state-of-the-art architectures
are based on the Convolutional Neural Networks (CNN)
[14, 19, 27, 33].

The second possibility is to use a sequence model for
the audio. An audio sample is injected into the network
and each frame will be classified as music, speech, both
music and speech or neither of both. The state-of-the-art
architectures are mainly based on the Bidirectional Long
Short-Term Memory (B-LSTM) [18, 22], which are a type
of RNN.

Since the systems have been evaluated on differing test
sets, no conclusion regarding the best performing architec-
ture can be obtained from the above cited work. More-
over, music and speech have different temporal and spec-
tral properties than environmental sounds, and it is there-
fore not clear if results from other tasks apply to speech
and music detection.

2.2.1 Convolutional, Long Short-Term Memory, Fully
Connected Deep Neural Networks (CLDNN)

Information from the long-term context in past and future
can be very relevant for the classification and especially
for borderline cases. It motivates the use of sequential
models for the detection tasks. However, CNNs have ob-
tained state-of-the-art results in image and audio feature
extraction, which motivated the combination of RNN and

Figure 2: Visualization of a stack of dilated causal convo-
lutional layers. Source: [35]

CNN in the CLDNN architecture [26] to use the strength
of both. CLDNN are divided into three sections: first, the
input goes through several convolutional layers. Then, the
result goes through a classic LSTM network and finally,
several fully connected (FC) layers are applied. This ar-
chitecture was shown to outperform CNN, RNN or DNN
based approaches on various datasets [26]. This architec-
ture has also been reused in several subsequent audio and
music related studies [4, 7, 10], but has so far not been ap-
plied to speech and music detection.

2.2.2 Temporal Convolutional Network (TCN)

Recently, the Temporal Convolution Network (TCN) was
introduced [2] as a simple and flexible architecture using
CNN for sequential learning. This architecture is based on
the previous work trying to use only CNNs for sequential
learning [13, 35] but it remains much simpler. A TCN cell
is based on causal and dilated convolutions, and on residual
blocks [15]. Figure 2 illustrates a dilated causal convolu-
tional layer. Dilated convolutions permit to retrieve infor-
mation from far in the past without extensive computation.

TCN architectures have not been used for speech and
music detection yet. Therefore, within this paper, we com-
pare four architectures: the standard TCN, a novel non-
causal extension of the TCN, the BLSTM and the CLDNN
architectures. This non-causal TCN architecture is de-
signed to combine the strengths of both BLSTM and CNN
architectures: the bidirectional long-term memory of the
BLSTM architecture and the performance and paralleliz-
ability of the CNN architecture.

2.3 Post-processing and Evaluation

The network output vector contains two coefficients be-
tween 0 and 1, one for speech and one for music, and
commonly 0.5 is used as a threshold for the labeling deci-
sion [18, 30]. A probabilistic model has been used by [11]
to smooth the output and reduce the noise.

Two evaluation methods for speech and music detection
– segment-level evaluation and event-level evaluation [21]
– are applied within MIREX 1 and in most related studies.
Segment-level evaluation compares the labels of segments
of fixed size given by the algorithm with the ground-truth
labels. Event-based evaluation takes the whole ground-
truth events into account and a time-window tolerance is
allowed. This evaluation is either made on the on-set of
the events or on both the on-set and the off-set.
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3. METHODOLOGY

3.1 Datasets

A larger amount of previously compiled datasets have
been obtained and combined for this study (MUSAN Cor-
pus [31] (MUSAN), GTZAN Speech and Music Dataset
[34] (GTZAN), Scheirer & Slaney Music Speech Cor-
pus [28] (SSMSC), MuSpeak Speech and Music Detection
Dataset 2 (MuSpeak), OFAI Speech and Music Detection
Dataset [30] (OFAI), ESC-50: Dataset for Environmen-
tal Sound Classification [23] (ESC)). In addition, a newly
compiled dataset (Sveriges Radio dataset) was included as
well, which is composed of songs from different genres
that are played on the radio (42h 57mn) and of speech files
(17h 24mn) that are extracted from radio programs.

Table 1: Categorization of the datasets according to the
precision of their labels.

Low-quality datasets (LQ) High-quality datasets (HQ)
MUSAN, GTZAN OFAI

SSMSC, ESC MuSpeak
Sveriges Radio dataset

The datasets can be separated into two families regard-
ing the precision of their labels, "low-quality datasets"
(LQ) and "high-quality datasets" (HQ) as presented in Ta-
ble 1. The HQ datasets are labeled at the frame-level,
which precisely corresponds to the goal of the speech and
music detection task to classify each frame of the audio.
On the other hand, the LQ datasets are labeled at the
file-level, which assumes that all the frames in the audio
recording have the same label. It corresponds to a low-
precision version of the targeted system (e.g. pauses in
speech are not annotated).

The datasets were split into training, validation, and
test set (if not already done in the source material). HQ
datasets were split into 70% training set, 20% validation
set and 10% test set, and LQ datasets into 80% training
set and 20% validation set, because labels are not precise
enough to be used for testing. The resulting data collection
contains about 78h15mn / 86h54mn / 15mn / 8h49mn of
speech, music, both speech and music, and task-irrelevant
data in the LQ data, and 47h12mn of audio combining
all the previous categories in the HQ data, making it the
most extended data resource compiled so far for the task
of speech and music detection.

3.2 Architectures

Three previous sequential architectures and one novel ex-
tension will be compared in this paper. All four architec-
tures are followed by a dense layer that reduces the number
of coefficients to 2, one for music and one for speech, and
by a sigmoid activation to have coefficients between 0 and
1. The range of allowed values for hyper-parameter were
chosen to cover the ranges previously presented in litera-

2 http://mirg.city.ac.uk - visited 09/11/2018

ture, and are listed in the following tables for each archi-
tecture. In each case, a dropout randomly selected from
0.05 and 0.5 was added.

Figure 3: Visualization of a stack of dilated non-causal
convolutional layers. The architecture presented in Figure
2 was made non-causal to take both past and future into
account for the prediction. The kernel size had to be in-
creased by 1.

The TCN architecture as introduced in [2] is causal.
In this paper, we propose a novel extension of the TCN
that takes future data into account, the non-causal TCN
(ncTCN). To this end, the dilated convolutions were made
non-causal, as shown in Figure 3. The use of non-causal
dilated convolutions was previously shown to be success-
ful for image processing with the Dilated Temporal Fully-
Convolutional Neural Network (DTFCN) architecture [6].

Table 2: Hyperparameters for the four architectures.

Architecture 1: B-LSTM

Num. of layers 1, 2, 3, 4
Units by layer 25, 50, 75, ... 250

Architecture 2: CLDNN

Num. of layers 1, 2, 3
Kernel size (conv. layers) 3, 5 or 9
Number of LSTM layers 1, 2, 3
Units per LSTM layer 25, 50, 75, ... 150
Num. of fully-connected layers 1, 2, 3
Units per fully-connected layer 25, 50, 75, ... 150
Architectures 3 & 4: TCN & non-causal TCN (ncTCN)

Num. of layers 1, 2, 3, 4
Num. of stacks 3, 4, 5, ... 10
Kernel size 3, 5, 7, ... 19
Skip some connections true/false
Dilatations [20, 21, ..., 2ND ]

ND = 3, 4, ..., 8
Num. of filters by layer 8, 16, 32

3.3 Comparison methodology

The study in this paper is composed of two phases: The
first phase conducts a comparison of four sequential neural
network architectures (B-LSTM, CLDNN, TCN, ncTCN)
for the speech and music detection task. In order to fa-
cilitate the comparison in a reasonable time, two assump-
tions were made. First, the neural network architecture
achieving the best performances on a sub-training set is
likely to achieve the best performances on the total training
set. And, second, the neural network architecture achiev-
ing the best performance with a restricted number of pa-
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rameters is likely to perform best without this restriction.
Therefore, the comparison was done with a limited num-
ber of parameters and on a sub-dataset. A Bayesian hyper-
parameter optimization with a Tree of Parzen Estimators
(TPE) surrogate [3] was performed for each architecture
on the OFAI and the MuSpeak datasets, with the number
of hyper-parameters restricted to 1 million. The best set of
hyper-parameters was then used to train each architecture
over more epochs to get a final validation loss, and the ar-
chitecture achieving the lowest validation loss was kept for
the second phase.

In the second phase, the best-performing architecture
from the first phase is further optimized without limiting
the number of hyper-parameters. This hyper-parameter op-
timization was done on OFAI, MuSpeak, and ESC to have
a more balanced dataset between music, speech, and task-
irrelevant content. Then the architecture was trained on
more training data and evaluated on the test set. However,
due to the heterogeneity in the quality of the labels, ex-
plained in Section 3.1, only the high-quality datasets rep-
resent the target of the network. Therefore, four strategies
to take advantage of both HQ and LQ data were compared.
The four strategies were to (1) train the network on the
high-quality datasets, (2) to train the network on the low-
quality datasets, (3) to train the network on both the low
and the high-quality datasets at the same time, and (4) to
pre-train the network on the low-quality datasets and then
train on the high-quality datasets to fine-tune the parame-
ters.

The final system was evaluated on two different test
sets. The first test set is the in-house test set described in
subsection 3.1 and it shows the generalization of the sys-
tem on similar data. In order to compare the system with
several state-of-the-art algorithms, and to assess the gener-
alization of the system on data different than the one used
for the training, the dataset number 2 of the 2018 MIREX
Competition 1 [11] was used as a second test set.

The evaluation methods and parameters from MIREX
2018 were applied for comparisons, using the implemen-
tation of sed_eval [21]. The segment-level evaluation was
conducted with segments of 10ms. The event-level eval-
uation was performed with a tolerance time-window size
of 500ms on on-set only and both on-set and off-set. Pre-
cision, Recall, and F-measure were computed for segment
level (Ps, Rs, Fs), and event-level (Pe, Re, Fe).

3.4 Pre-processing

Before the training, the audio samples were re-sampled to
22.05 kHz mono audio samples split into files of 90 s. Then
a Short Time Fourier Transform (STFT) with a Hann win-
dow, a frame length of 1024 and a hop size of 512 samples
was computed. Only the squared magnitude (the power
spectrum) was kept and saved for the training. During the
training, data augmentation was applied to the saved spec-
trograms and then, a Mel-filterbank with 80 triangular fil-
ters between 27.5 Hz and 8 kHz was applied. Finally, the
data were put on a logarithmic scale and normalized to a
zero mean and unit variance over the training set.

The data augmentation pipeline applied to each spectro-
gram used the implementation and paramatrisation of [29],
applying time stretching, pitch shifting, Gaussian filtering,
loudness manipulation, and block mixing. Data from the
HQ datasets and LQ data labeled as task-irrelevant content
was augmented without block mixing. Otherwise, cou-
ples of speech and of music spectrograms were created,
passed individually in the data augmentation pipeline and
then each couple was mixed together with random over-
lap. It helps to have a more balanced dataset by artificially
creating overlaps between speech and music.

Broadcast audio is characterized by overlaps between
speech and music, for instance in jingles, commercial ads,
and transitions between pieces of music. Data augmenta-
tion helps to obtain larger overlaps that resemble this char-
acteristics of broadcast audio.

3.5 Training

To allow parallel computation and to speed up the back-
ward pass, mini-batches are used with a sequence length
of 270 and a batch size of 32. Binary cross-entropy was
minimized during training, and stochastic gradient descent
with momentum m = 0.9 [25] was used. When the vali-
dation loss did not improve after three epochs, the learning
rate was divided by 10. Dropout [32] was used and the
training was stopped whenever the validation loss had not
improved in 5 consecutive epochs.

3.6 Post-processing

A threshold of 0.5 was applied to the output of the net-
works. A simple strategy was applied to smooth the output
and delete spurious breaks or events. To this end, thresh-
olds for the minimal duration of speech (Dursp) and music
(Durmus) events were defined, respectively. Furthermore,
thresholds for the minimal duration of a break in speech
(Brksp) and music (Brkmus) were defined. In order to
specify values for these four duration thresholds, the train-
ing set was analyzed to obtain statistics on the lengths of
the events and the breaks. To choose the best values be-
tween the relevant values found with the analysis, each set
of values was evaluated on the validation set and the set
achieving the best performances was selected. The effect
of post-processing will be analyzed separately in the re-
sults.

3.7 Implementation

The implementation is done with Keras [9] using Tensor-
Flow as a backend [1] and the library keras-tcn 3 is used
for the TCN implementation. The code is provided as a
new framework for speech and music detection that allows
comparison between configurations with different archi-
tectures, datasets and hyper-parameters. The implemen-
tation has been made available on GitHub. 4

3 https://github.com/philipperemy/keras-tcn
4 https://bit.ly/2XcuzsJ
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4. RESULTS

4.1 Comparison

After each hyper-parameter optimization, the best config-
uration has been trained until the early-stopping. Figure
4 shows the micro-averaged [36] ROC curve of the 4 dif-
ferent architectures. The architecture that achieved the best
performances under the constraints of the experiment is the
non-causal TCN. All three architectures that have not yet
been applied to this task (ncTCN, TCN, CLDNN) outper-
form the BLSTM architecture.

Figure 4: ROC curve micro-averaged over speech and mu-
sic.

4.2 Dataset strategies

A new hyper-parameter optimization allowing for a big-
ger range of hyper-parameters was performed for the best-
performing architecture (ncTCN). The batch size was re-
duced to 16 to allow the GPU to work with bigger architec-
tures. The resulting architecture was trained with the four
different strategies explained in Section 3.3. The strategy
that achieved the lowest validation loss (Table 3) on the tar-
geted high-quality dataset (HQ loss) is pre-training on the
low-quality dataset, and subsequent training on the high-
quality dataset (Strategy 4).

Table 3: Validation loss of the different strategies to use
on high and low quality datasets.

Strategy LQ loss LQ/HQ loss HQ loss
(1) LQ 0.097 0.125 0.232
(2) HQ 0.365 0.323 0.096

(3) LQ/HQ 0.098 0.101 0.136
(4) Pre-train 0.222 0.181 0.070

4.3 Post-processing (PP)

The high-quality training set was analyzed to set the four
duration thresholds for the post-processing (see Section

3.6). The 1st, 5th and 10th percentiles were considered
to obtain threshold values. For instance, in the case of the
5th percentile for the music event duration, it means that
95 % of the music events in the training set have a length
exceeding the threshold. Table 4 presents the evaluation of
the system with several post-processing methods based on
the values from the different percentiles.

Table 4: F-measures for segment-level evaluation (Fs) and
event-level evaluation (Fe) on the high-quality validation
set by percentile. Underlined values denote statistically
significant differences to the value one row above (paired-
sample t-test, p < 0.05).

PP
Fs (segment) Fe (event)

All Mus. Sp. All Mus. Sp.
None 0.973 0.982 0.951 0.182 0.247 0.129
1st 0.973 0.982 0.950 0.510 0.589 0.417
5th 0.973 0.982 0.950 0.544 0.615 0.454
10th 0.971 0.981 0.949 0.547 0.617 0.459

The different impact of the post-processing on the seg-
ment and on the event-level evaluation is caused by the fact
that a small modification at the frame level has a limited
impact on the segment-level evaluation, but it can have a
significant impact on the event-level evaluation. The set of
values from the 5th percentile was selected for the rest of
the evaluation since it represents a good compromise be-
tween a decrease in the segment-level evaluation and an
increase in the event-level evaluation.

4.4 Evaluation of the ncTCN

Table 5: Segment-level evaluation of the final system

All Music Speech
Fs 0.968 0.971 0.957
Ps 0.963 0.969 0.944
Rs 0.973 0.973 0.971

The results of the segment-level and event-level evalu-
ations on the test set 1 are presented in Table 5 and Ta-
ble 6, respectively. For the segment-level evaluation, the
proposed non-causal TCN system obtains an F-measure of
0.971 for the music and of 0.957 for the speech. Due to the
marginal effect of post-processing on the segment level,
only results with post-processing are depicted. For the
event-level evaluation, the system obtains clearly superior
results with the post-processing. For example, the overall
F-measure on both onset and offset increases from 0.151
without post-processing to 0.417 with post-processing.

Finally, the non-causal TCN was evaluated on the
dataset 2 of the 2018 MIREX competition. The results
are presented in Table 7 and Table 8 and the results of
the other systems are taken from the MIREX website 1 .
For the segment-level evaluation, the system obtains the
best F-measure (0.946) on speech. On music, the system
obtains an F-measure of 0.879 and the best system of the
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Table 6: Event-level evaluation of the final system. Un-
derlined values denote statistically significant difference
to the value without pre-processing (paired-sample t-test,
p < 0.05).

Ons. On/Offs.
PP All Mus. Sp. All Mus. Sp.

No
Fe 0.248 0.248 0.248 0.151 0.177 0.115
Pe 0.153 0.146 0.165 0.930 0.104 0.760
Re 0.650 0.828 0.499 0.394 0.587 0.231

Yes
Fe 0.653 0.782 0.519 0.417 0.590 0.236
Pe 0.733 0.778 0.671 0.447 0.587 0.305
Re 0.589 0.787 0.422 0.376 0.593 0.192

competition obtains 0.923. For the event-level evaluation,
the system obtains the best F-measure of 0.162 for the on-
set evaluation of the music. For the other cases, the system
does not come first but achieves good results and comes
second in 2 of the 3 remaining cases.

Table 7: Comparison with other algorithms on test set
2 of MIREX 2018 for segment-level evaluation. Archi-
tectures [8](a, b, c) use a Multi-layer Perceptron to clas-
sify both Mel-Frequency Cepstral Coefficient and features
extracted by a SampleCNN [17] architecture. Architec-
tures [20](a) are based on a logistic regression classifier
and architectures [20](b, c) are based on a Deep Residual
Network [15].

Music Speech

Algo. Fs Ps Rs Fs Ps Rs

[8, a] 0.786 0.813 0.760 0.846 0.967 0.751
[8, b] 0.759 0.768 0.750 0.789 0.975 0.663
[8, c] 0.797 0.797 0.797 0.823 0.964 0.718

[20, a] 0.923 0.977 0.875 0.933 0.913 0.953
[20, b] 0.916 0.925 0.907 0.914 0.933 0.896
[20, c] 0.879 0.979 0.797 0.897 0.829 0.978
ncTCN 0.879 0.790 0.990 0.946 0.949 0.943

5. DISCUSSION

Based on the curves from Figure 4, our experiments sug-
gest that the TCN-based architectures are outperforming
the RNN-based architectures. Moreover, the TCN-based
architectures train faster than the RNN-based architectures
at similar sizes (around 80s/epoch for the TCN-based ar-
chitectures and 340s/epoch for the RNN-bases architec-
tures), results that corroborate conclusions [2] in different
task contexts. The proposed non-causal TCN achieves bet-
ter results than the causal TCN.

We also demonstrated that pre-training the neural net-
work on a low-quality dataset prior to training it on the
high-quality dataset improves the validation loss. Table 3
highlights the difference between the different strategies
and it shows that the HQ loss function goes down from
0.096 to 0.070 by pre-training the network on low-quality

Table 8: F-measure comparison with other algorithms on
the test set 2 of MIREX 2018 for the event-level evaluation
and a tolerance time-window of 500ms.

Algorithm
Music Speech

Ons. On/Offs. Ons. On/Offs.
[8, a] 0.087 0.023 0.223 0.077
[8, b] 0.073 0.020 0.192 0.051
[8, c] 0.068 0.015 0.206 0.052
[20, a] 0.141 0.016 0.063 0.002
[20, b] 0.154 0.031 0.116 0.021
[20, c] 0.152 0.022 0.080 0.015
ncTCN 0.162 0.0169 0.216 0.070

datasets, it represents a relative improvement of 27 %. The
analysis of the training set provides relevant thresholds for
the post-processing method. Those values allow an im-
provement for the event-level evaluation on the validation
set without harming the segment-level evaluation. Results
on the test set (Table 5 and 6) confirm this analysis made
on the validation set. Instead of applying some thresholds,
more sophisticated probabilistic models may further im-
prove the post-processing.

For the event-level evaluation, the overall results of all
algorithms are much lower compared to the segment-level
results. It shows one of the limits of the event-level eval-
uation: it is difficult to standardize precise boundaries for
the events and especially the speech events. The results
of the event-level evaluation highly depend on the rules
that have been chosen during the annotation of the training
set. Therefore, the segment-level evaluation might be more
relevant to compare different algorithms on a test set with
unknown annotation rules.

End-to-end learning may be considered an important
area for future research. Pre-training an end-to-end learn-
ing solution on low-quality datasets and fine-tuning it on
high-quality datasets might be a viable solution to over-
come the expensive price of labeling data. This method
was shown to be successful in this study and it might be
suitable for other tasks.

6. CONCLUSION

In this paper, various architectures have been compared in
a speech and music detection task. The findings are con-
sistent with previous studies, demonstrating that convolu-
tional architectures can yield better performance and are
faster to train than RNN-based architectures for sequence
modeling. Furthermore, the novel non-causal TCN can
improve performance when real-time computation is not
a constraint. Low-quality data was successfully used to
improve the system performance on high-quality data. It
provided a better starting point for the learning phase and
it converged faster towards a lower minimum. Through the
MIREX evaluation, the final system has demonstrated to
perform well in relation to the state of the art. This en-
courages further exploration of TCN and non-causal TCN
architectures for sequence modeling tasks.
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