
STATISTICAL MUSIC STRUCTURE ANALYSIS BASED ON A
HOMOGENEITY-, REPETITIVENESS-, AND REGULARITY-AWARE

HIERARCHICAL HIDDEN SEMI-MARKOV MODEL

Go Shibata Ryo Nishikimi Eita Nakamura Kazuyoshi Yoshii
Graduate School of Informatics, Kyoto University, Japan

{gshibata, nishikimi, enakamura, yoshii}@sap.ist.i.kyoto-u.ac.jp

ABSTRACT
This paper describes a music structure analysis method that
splits music audio signals into meaningful segments such
as musical sections and clusters them. In this task, how
to model the four fundamental aspects of musical sections,
i.e., homogeneity, repetitiveness, novelty, and regularity,
in a unified way is still an open problem. Here we pro-
pose a solid statistical approach based on a homogeneity-
, repetitiveness-, and regularity-aware hierarchical hidden
semi-Markov model. The higher-level semi-Markov chain
represents a sequence of sections that tend to have reg-
ularly spaced boundaries. The timbral features in each
section are assumed to follow emission distributions that
are homogeneous over time. The lower-level left-to-right
Markov chain in each section represents a chord sequence
whose sequential order is constrained to be a repetition of
a chord sequence in another section of the same cluster.
The whole model can be trained unsupervisedly based on
Bayesian sparse learning where unnecessary sections auto-
matically degenerate. The proposed method outperformed
representative methods in segmentation and clustering ac-
curacies with estimated sections having similar statistical
properties as the ground truth data.

1. INTRODUCTION

Music structure analysis is a long-standing research topic
[1] because detection of meaningful segments called musi-
cal sections (e.g., intro, verse, bridge, and chorus sections
in popular music) from music audio signals forms a ba-
sis of music information retrieval (MIR). In general, music
structure analysis involves a segmentation step that splits
music signals into sections [2–9], a clustering step that cat-
egorizes such sections into several classes [10–18], and a
labeling step that gives each section a concrete label such
as “verse A”, “verse B”, or “chorus” [19–21]. We here
tackle the segmentation and clustering for popular music.

In previous studies, sections of popular music have
been characterized in three aspects, i.e., homogeneity refer-
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Figure 1. Music structure analysis based on homogeneity
of timbral features, repetitiveness of chord progressions,
and regularity of section durations.

ring to the intra-section characteristics and repetitiveness
and novelty referring to the inter-section relationships [1].
More specifically, homogeneity means that musical char-
acteristics (e.g., timbral features such as mel-frequency
cepstrum coefficients (MFCCs)) are consistent within a
section. Repetitiveness means that the same sequence of
some musical elements (e.g., chroma features and chord
progressions) of a section is repeated in sections of the
same class. Novelty means that musical characteristics
change abruptly at a boundary between sections. In addi-
tion, regularity of section durations has often been focused
on [8–10] because there are typical lengths such as four or
eight measures in popular music.

Most studies on music structure analysis, however, have
focused on only one of the above aspects or consider some
of them in a separate and/or ad-hoc manner, as reviewed
in Section 2. Joint computational modeling of these four
aspects is thus the central issue in music structure analysis.
Instead of manually designing segmentation and cluster-
ing criteria based on these aspects, we pursue a statistical
approach to data-driven music structure analysis.

In this study, we propose a statistical music structure
analysis method that simultaneously deals with the ho-
mogeneity, repetitiveness, and regularity of musical sec-
tions in a probabilistic framework (Fig. 1). We formu-
late a unified probabilistic model called a hierarchical hid-
den semi-Markov model (HHSMM) that represents the hi-
erarchical generative process of musical sections, chord
sequences, and music audio signals (timbral features and
chroma features). This model has two sequences of latent
states in a hierarchical manner. The upper-level sequence
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represents a series of section classes following a semi-
Markov model with explicit regularity (duration) modeling
and the lower-level sequence represents chords following a
section-conditioned left-to-right Markov model. To repre-
sent the intra-section homogeneity of timbral features, the
MFCCs of a section are assumed to be generated from an
upper-level state corresponding to the section. To repre-
sent the inter-section repetitiveness of chord progressions,
the chroma features of a section are assumed to be sequen-
tially generated from lower-level states. Given a music au-
dio signal as observed data, the whole model can be trained
unsupervisedly using Gibbs sampling and Viterbi training,
where unnecessary sections are automatically degenerated
during the Bayesian sparse learning.

The main contribution of this study is to propose a solid
Bayesian approach to music signal analysis based on a
fully generative model that can deal with the homogene-
ity, repetitiveness, and regularity of sections in a unified
way. This enables unsupervised learning unlike another
statistical approach based on deep discriminative models
[6–8] that require section annotations for supervised train-
ing. Since these two approaches have a mutually comple-
mentary relationship, our results open up a door to deep
Bayesian integration of discriminative and generative mod-
els in a variational autoencoding framework (audio signal
→ sections→ audio signal) [22] for further improvement.

Another important contribution is to investigate the sta-
tistical characteristics of musical sections estimated by the
proposed method in comparison with representative meth-
ods. Our method is shown to be able to yield distributions
of section durations, of the numbers of section classes used
for representing music audio signals, and of the metrical
positions of section boundaries much more similar to those
of the ground-truth data than the other methods.

2. RELATED WORK

Homogeneity, repetitiveness, novelty, and regularity have
been considered to be important for music structure anal-
ysis. The most standard approach to music structure anal-
ysis is to use the self-similarity matrix (SSM) of acoustic
features such as chroma features and MFCCs, whose ele-
ment represents the acoustic similarity between two time
frames (Fig. 2). In an SSM, the homogeneity, repeti-
tiveness, novelty, and regularity are observed as block-
diagonal structure, short stripes parallel to the diagonal
line, grid patterns, and grid intervals, respectively. One
or some of these four aspects have been used for segmen-
tation and clustering tasks in music structure analysis.

2.1 Segmentation
Foote [2] proposed a novelty-based method that detects
peaks from a time-varying novelty curve obtained by shift-
ing and convoluting a checkerboard kernel along the diag-
onal elements of an SSM. Jensen [3] attempted to find sec-
tion boundaries that minimize a homogeneity- and novelty-
based cost function. While Goto [19] originally pro-
posed a lag SSM in which repetitions appear not as stripes
but as vertical lines and calculated a novelty curve over
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Figure 2. Self-similarity matrix (SSM) of MFCC features
(part of RWC-MDB-P-2001 No. 25).

time lags, Serrà [4] proposed another novelty curve over
time frames. Peeters and Bisot [5] successfully integrated
these two methods [4, 19] for better segmentation. Ull-
rich et al. [6] pioneered a supervised approach based on a
convolutional neural network (CNN), which was extended
to deal with both coarse- and fine-level boundary anno-
tations [7]. Sargent et al. [9] pointed out the effective-
ness of focusing on the regularity to favor structural seg-
ments of comparable size. Maezawa [8] developed a long
short-term memory (LSTM) network with homogeneity-,
repetitiveness-, novelty-, and regularity-based cost func-
tions. In this study we take an unsupervised approach
based on a homogeneity-, repetitiveness-, and regularity-
based generative model. To keep the model simple, incor-
poration the aspect of novelty is left for future work.

2.2 Clustering

Cooper et al. [12] sequentially performed music segmen-
tation [2] and section clustering based on intra- and inter-
section statistical characteristics. Goodwin et al. [13] at-
tempted to efficiently detect off-diagonal stripes in an SSM
as repetitions using dynamic programming. To deal with
repetitiveness and homogeneity, Grohganz et al. [14] con-
verted a repetitiveness-dominant SSM with off-diagonal
stripes into a homogeneity-dominant SSM with block-
diagonal structure. Nieto et al. [15] used a convex variant
of non-negative matrix factorization for section segmenta-
tion and clustering. McFee et al. [16] proposed a method
that encodes repetitive structures into a graph and performs
spectral clustering for graph partitioning.

Several studies took a statistical approach based on
generative models for joint segmentation and clustering.
Aucouturier et al. [11] used a standard hidden Markov
model (HMM). Ren et al. [17] proposed a nonparametric
Bayesian extension of an HMM that can estimate an appro-
priate number of sections. Barrington et al. [18] proposed
a nonparametric Bayesian extension of a switching linear
dynamical system (LDS) that also has the ability of au-
tomatic model complexity control. While these methods
mainly focused on the homogeneity, our method simul-
taneously considers the homogeneity, repetitiveness, and
regularity and can incorporate prior knowledge about the
statistical characteristics of sections (e.g., durations and
metrical positions) in a data-driven manner.
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3. PROPOSED METHOD

This section describes the proposed statistical method for
music structure analysis.

3.1 Problem Specification
Our problem is formulated as follows:

Input: A chroma feature sequence Xc = xc1:B ∈ RB×12
and an MFCC sequence Xm = xm1:B ∈ RB×12 obtained
from a given music audio signal. They are computed in
units of beats estimated by a beat tracking method [23].
Output: Boundaries and classes of sections.

Here, B is the number of beats (quarter notes) and a sub-
script©a:b represents the sequence (©a, . . . ,©b).

We use 12-dimensional chroma features obtained by ag-
gregating all spectral information of each pitch class into
a single element. We also use 12-dimensional MFCCs as
timbral features.

3.2 Model Formulation
The proposed model consists of two-level hierarchical
Markov chains and an acoustic model as shown in Fig. 3.
The upper-level Markov chain describes the section-level
structure (i.e., section classes and durations) and the lower-
level Markov chain describes the internal structure of each
section. The states of these Markov chains are latent vari-
ables that represent abstract musical structure. The acous-
tic model connects the abstract structure with the observed
musical features (chroma vectors and MFCCs).

3.2.1 Upper-Level Markov Chain

The upper-level Markov chain is an ergodic semi-Markov
model. The sequence of section classes Z = z1:T (zτ ∈
{1, . . . , NZ}) and their durations D = d1:T (dτ ∈
{1, . . . , ND}) are generated by the model, where T is the
number of sections, NZ is the number of distinct section
classes, andND is the maximum duration of a section. The
generative process is described as follows:

p(z1, d1) = ρz1ψd1 , (1)

p(zτ , dτ |zτ−1, dτ−1) = πzτ−1zτψdτ , (2)

where ρz and πzz′ are the initial and transition probabilities
of section classes and ψd is the duration probability.

3.2.2 Lower-Level Markov Chain

The lower-level Markov chain is a left-to-right Markov
model with NK states. The state sequence of this model
describes the internal structure of a section corresponding
to the chord progression, where each state is expected to
correspond to a chord. We consider such a Markov chain
for each section class. The model continues state transi-
tions for each beat from the start time of a section until its
duration passes. The state sequence Kτ = kτ,1:dτ (kτ,t ∈
{1, . . . , NK}) is generated as follows:

p(kτ,t|zτ , kτ,t−1) = φ
(zτ )
kτ,t−1kτ,t

, (3)

where zτ and dτ are the corresponding section class and
duration, and φ(zτ )kk′ is the transition probability from state
k to state k′.

Observation
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Figure 3. The proposed generative model.

The left-to-right Markov model meets a condition that
the initial state has kτ,1 = 1 and kτ,t1 ≤ kτ,t2 for t1 < t2.
We introduce a hyperparameter σ that describes the maxi-
mum number of states that may be skipped in a transition; a
transition from state k to state k+σ is possible but a larger
skip is forbidden. In this way, the model can describe rep-
etitions with some variations, which is another important
aspect of musical structure. K denotes K1:T .

3.2.3 Acoustic Model

The acoustic model describes the generative processes of
the chroma features xcb ∈ R12 and MFCCs xmb ∈ R12 by
using output probabilities that are defined conditionally on
the section classes Z and their internal states K. The repet-
itiveness is represented by applying the same set of output
probabilities to all sections of the same class. The output
probabilities of chroma features χcz,k depend on both Z and
K to represent the sequential structure of chord progres-
sions. To capture the homogeneity of timbre characteris-
tics of each section, the output probabilities of MFCCs χmz
are assumed to depend only on Z. Thus we have

p(xcb,x
m
b ) = χczb,kb(x

c
b)χ

m
zb
(xmb ), (4)

where zb and kb are the section class and the internal state
at beat b, respectively. The output probabilities are de-
scribed as multivariate Gaussian distributions:

χcz,k(x
c
b) = N (xcb|µcz,k, (Λc

z,k)
−1), (5)

χmz (xmb ) = N (xmb |µmz , (Λm
z )−1), (6)

where µcz,k and Λc
z,k are the mean and precision for the

chroma features, and µmz and Λm
z are defined similarly.

3.2.4 Prior Distributions

To find an effective number of distinct section classes, we
formulate a Bayesian HHSMM by putting conjugate prior
distributions. We put Dirichlet prior distributions for the
categorical distributions as follows:

ρ ∼ Dirichlet(aρ), (7)

ψ ∼ Dirichlet(aψ), (8)

πz ∼ Dirichlet(aπ), (9)

φ
(z)
k ∼ Dirichlet(aφ), (10)

where ρ = ρ1:NZ , ψ = ψ1:ND , πz = πz(1:NZ), φ
(z)
k =

φ
(z)
k(1:NK), and aρ, aψ , aπ , and aφ are Dirichlet parame-

ters. When these parameters are small, the transition prob-
abilities of section classes become sparse. The model can
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thus capture repetitions regardless of small acoustic varia-
tions and remove unnecessary section classes.

Since section durations tend to be the integer multiples
of four measures in popular music (see Fig. 4), such a sta-
tistical tendency can be incorporated in the prior distribu-
tion. Specifically, we use as aψ the empirical distribution
of section durations aψemp multiplied by a constant factor.
Since the structure of section classes is quite different over
individual musical pieces, we put uniform Dirichlet prior
distributions for their transition probabilities.

Finally, we put Gaussian-Wishart prior distributions on
multivariate normal distributions as follows:

µcz,k,Λ
c
z,k ∼ N (µcz,k|mc

0, (β
c
0Λ

c
z,k)
−1)W(Λc

z,k|Wc
0, ν

c
0),

µmz ,Λ
m
z ∼ N (µmz |mm

0 , (β
m
0 Λm

z )−1)W(Λm
z |Wm

0 , ν
m
0 ),

where mc
0, βc0, Wc

0, νc0, mm
0 , βm0 , Wm

0 , and νm0 are hyper-
parameters.

3.3 Bayesian Learning
Letting Θ = {ρ,ψ,π,φ,µ,Λ}, we aim to calculate
the posterior distribution p(Z,D,K,Θ|Xc,Xm). Since
this is analytically intractable, we use the Gibbs sampling
method. We first sample the latent variables Z, D, and
K from the distribution p(Z,D,K|Θ,Xc,Xm) and we
then sample the model parameters Θ from the distribution
p(Θ|Z,D,K,Xc,Xm). Iterating this process, we obtain
samples from the true posterior distribution.

3.3.1 Sampling Latent Variables

We use the forward filtering-backward sampling algorithm
for sampling the upper- and lower-level latent variables Z,
D, and K. We introduce variables zb and db that denote the
class and duration of a section starting at beat b−db+1 and
ending at beat b. We also define the marginalized output
probabilities for this section ωzb(x

c
b−db+1:b,x

m
b−db+1:b),

which can be calculated by the forward algorithm for the
lower-level Markov chain.

In the forward filtering step for the upper-level model,
we initialize and update the forward variables αb(zb, db) =
p(zb, db,x

c
1:b,x

m
1:b) as follows:

αb(zb, db = b) = ρzbψdbωzb(x
c
1:b,x

m
1:b), (11)

αb(zb, db) (12)

=
∑
z′,d′

αb−db(z
′, d′)πz′zbψdbωzb(x

c
b−db+1:b,x

m
b−db+1:b).

In the backward sampling step, the latent variables Z
and D are sequentially sampled in the reverse order:

p(zB , dB |Xc,Xm) ∝ αB(zB , dB). (13)

When variables zb and db are already sampled, the vari-
ables zb′ and db′ at beat b′ = b− db are sampled according
to the probability

p(zb′ , db′ |zb:B , db:B ,Xc,Xm) ∝ αb′(zb′ , db′)πzb′zb .
(14)

Next, the latent variables K are sampled using the sam-
pled Z and D. Each set of variables Kτ is sampled by
forward filtering-backward sampling for the lower-level
model of section class zτ . Here we use a beat index t ∈
{1, . . . , dτ} considered in relative to the section boundary.

In the forward filtering step, we calculate the probabilities
ζτ,kτ,t recursively as follows:

ζτ,kτ,1 = p(kτ,1,x
c
1,x

m
1 |zτ , dτ )

= δkτ,11χ
c
zτ ,1(x

c
1)χ

m
zτ (x

m
1 ), (15)

ζτ,kτ,t = p(kτ,t,x
c
1:t,x

m
1:t|zτ , dτ ) (16)

=

 ∑
kτ,t−1

ζτ,kτ,t−1
φ
(zτ )
kτ,t−1kτ,t

χczτ ,kτ,t(x
c
t)χ

m
zτ (x

m
t ).

In the backward sampling step, the latent variables K are
sequentially sampled in the reverse order as follows:

p(kτ,dτ |zτ , dτ ,xc1:dτ ,x
m
1:dτ ) ∝ ζτ,kτ,dτ , (17)

p(kτ,t|zτ , dτ , kτ,t+1:dτ ,x
c
1:dτ ,x

m
1:dτ ) ∝ ζτ,kτ,tφ

(zτ )
kτ,tkτ,t+1

.

(18)

3.3.2 Sampling Model Parameters

We use the Gibbs sampling method for updating the model
parameters as follows:

ρ ∼ Dirichlet(aρ + bρ), (19)

πz ∼ Dirichlet(aπ + bπz ), (20)

ψ ∼ Dirichlet(aψ + bψ), (21)

φ
(z)
k ∼ Dirichlet(aφ + bφ

(z)
k ), (22)

Λc
z,k ∼ W(Wc

z,k, ν
c
z,k), (23)

µcz,k|Λc
z,k ∼ N (mc

z,k, (β
c
z,kΛ

c
z,k)
−1), (24)

Λm
z ∼ W(Wm

z , ν
m
z ), (25)

µmz |Λm
z ∼ N (mm

z , (β
m
z Λm

z )−1), (26)

where bρ ∈ RNZ , bπz ∈ RNZ , bψ ∈ RND , and bφ
(z)
k ∈

RNK are vectors counting the sampled data. bρz is 1 if z =
z1 and 0 otherwise, bπzz′ counts the number of transitions
from state z to state z′, bψd counts the number of times that

sampled sections have a duration of d, and bφ
(z)
k

k′ counts the
number of transitions from state k to state k′ in the lower-
level model of section class z. The parameters mc

z,k, βcz,k,
Wc

z,k, and νcz,k are calculated as follows:

βcz,k = βc0 +Nz,k, νcz,k = νc0 +Nz,k, (27)

mc
z,k =

1

βcz,k
(βc0m

c
0 +Nz,kx

c
z,k), (28)

(Wc
z,k)
−1 = (Wc

0)
−1 +Nz,kS

c
z,k

+
βc0Nz,k
βc0 +Nz,k

(xcz,k −mc
0)(x

c
z,k −mc

0)
T, (29)

where we have defined

Nz,k =
B∑
b=1

δzbzδkbk, (30)

xcz,k =
1

Nz,k

B∑
b=1

δzbzδkbkx
c
b, (31)

Scz,k =
1

Nz,k

B∑
b=1

δzbzδkbk(x
c
b − xcz,k)(x

c
b − xcz,k)

T. (32)

The parameters mm
z , βmz , Wm

z , and νmz can be calculated
similarly.
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3.3.3 Refinements

We introduce two refinements to facilitate the learning pro-
cess. First, since the samples from the Gibbs sampler are
not necessarily local optimums of the posterior distribu-
tion, we apply Viterbi training in the last step of the pa-
rameter estimation. Specifically, we apply the Viterbi algo-
rithm (instead of the forward filtering-backward sampling
algorithm) to estimate the latent variables and update the
model parameters to the expectation values of the posterior
probabilities (instead of samples from those probabilities).
It is known that Viterbi training is generally efficient for
finding an approximate local minimum [24].

Second, we introduce a weighting factor wdur(≥ 1) for
the duration probability to enhance its effect. Specifically,
we replace the probability factor ψdb in the forward algo-
rithm (11) and (12) with (ψdb)

wdur . Similar replacements
are applied to the Viterbi training step as well as to the fi-
nal estimation step of latent states explained in Section 3.4.
Increasing the weighting factor has the effect of lowering
the temperature and putting more focus on more frequent
section durations.

3.4 Estimation of Musical Sections
After training the model parameters, we compute the max-
imum a posteriori (MAP) estimate of the latent variables
(musical sections). Specifically, we maximize the posterior
probability p(Z,D|Θ,Xc,Xm) with respect to latent vari-
ables Z and D. This can be solved by integrating out the
lower-level states K and applying the Viterbi algorithm for
hidden semi-Markov models [25] to the upper-level model.

4. EVALUATION
4.1 Experimental Conditions
We used the RWC popular music database [26] with struc-
ture annotations [27] for evaluation. Out of the 100 pieces
in the data, we used 85 musical pieces in consistent 4/4
time for simplicity. For running the proposed method, we
obtained chroma features using the deep feature extrac-
tor [28] and MFCCs using the librosa library [29]. Beat
information was obtained using the madmom library [23].
The empirical distribution aψemp of section durations was
trained using the piece-wise cross validation among the 85
pieces. For parameter estimation, we iterated the Gibbs
sampling 15 times and the Viterbi training 3 times, which
took roughly around 5 times the duration of an input signal
with a standard CPU.

The hyperparameters of the proposed models were set
as follows: NZ = 12, ND = 40, NK = 16, σ = 1,
wdur = 4, aρ = 0.1 · I, aπ = I, aψ = 50 · aψemp,
aφ = I, mc

0 = E[Xc], βc0 = 8, Wc
0 = (νc0 cov[X

c])−1

with νc0 = 96, mm
0 = E[Xm], βm0 = 4, and Wm

0 =
(νm0 cov[Xm])−1 with νm0 = 80, where I denotes a vector
with all entries equal to 1. The first three parameters NZ ,
ND, and NK were determined by consulting the statistics
of the annotated data (see Fig. 4). According to the data,
most songs have 12 or less sections and most sections have
a length of 40 beats or less. If we expect a section length of
32 beats (8 measures) and a chord duration of 2 beats, the

Method
F0.5 (%)

(segmentation)
Fpair (%)

(clustering)

VMO [30] 8.72 28.5
CNMF [15] 17.4 41.7

SCluster [16] 23.4 45.5
Proposed 33.0 54.3

Table 1. Evaluation results.

expected number of chords in each section is 16. The value
of σ is set to 1 for simplicity. The other parameters were
determined by a coarse optimization w.r.t. the two evalua-
tion measures explained below. Each parameter was opti-
mized by a grid search, fixing the other parameters. Further
optimization of the parameters is left for future work.

For comparison, we ran variable Markov oracle (VMO)
[30], convex non-negative matrix factorization (CNMF)
[15], and spectral clustering (SCluster) [16], which
were available in the music structure analysis framework
(MSAF) [31]. We used the default settings in the MSAF.

We evaluated the quality of segmentation and clustering
in the same way as MIREX [32]. The quality of segmenta-
tion is evaluated by the F-measure F0.5 of section bound-
aries [33] defined as follows. An estimated boundary is ac-
cepted as correct if there is a boundary in the ground truth
data within the range of ±0.5 seconds. The precision rate
is the percentage of correct estimates. The recall rate is the
percentage of true boundaries that are correctly estimated.
The F-measure F0.5 is defined as the harmonic mean of the
precision and recall.

The quality of clustering is evaluated by the pairwise F-
measure Fpair [34] defined as follows. We compare pairs
of frames (with a length of 100 ms) that are labeled with the
same class in an estimation result with those in the ground
truth. The precision, recall, and F-measure are defined as

Ppair =
|PE ∩ PA|
|PE |

, Rpair =
|PE ∩ PA|
|PA|

, (33)

Fpair =
2PpairRpair

Ppair +Rpair
, (34)

where PE denotes the set of similarly labeled frame pairs
in the estimation and PA denotes that in the ground truth.
These values are calculated by the mir_eval library [35].

4.2 Experimental Results
The results in Table 1 show that SCluster had the best F0.5

and Fpair among the three conventional methods. The F-
measures obtained by VMO were very low and the es-
timated results included many unnatural short segments
(see Fig. 4). This was presumably caused by the imple-
mentation in the MASF. In both F0.5 and Fpair, the pro-
posed method significantly outperformed the three com-
pared methods.

Next, let us examine the estimated results more closely
(Fig. 4). The distribution of section durations for the pro-
posed model was similar to that of the ground truth. In par-
ticular, both distributions have peaks at the 32 beats (eight
measures) and 16 beats (four measures). In contrast, the
distributions for the results of the other three methods were

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

272



Time      sec

Ground truth

VMO

CNMF

SCluster

Proposed method

Lower-level states

Reconstructed chroma

Reconstructed MFCCs

Input chroma

Input MFCCs

Figure 4. The left panels show the distributions of section durations, those of metrical positions of section boundaries,
and those of the numbers of section classes in the estimated results and ground truth data. The right figure shows example
results by the proposed and the three existing methods (RWC-MDB-P-2001 No. 29). The lower-level states are obtained
by the Viterbi algorithm and the reconstructed features indicate the mean values of the corresponding output probabilities.

significantly different from that of the ground truth. This
result clearly demonstrates the effect of explicitly mod-
elling the section durations to capture their regularity. We
also found that the distribution of metrical positions of sec-
tion boundaries for the ground truth data was similar to that
for the proposed method, but significantly different from
those for the conventional methods.

The numbers of section classes in the ground truth
data were roughly distributed in the range from eight to
twelve. The distribution for the proposed model had a sim-
ilar shape, though it is slightly shifted to the lower side.
This result demonstrates the nontrivial ability of the pro-
posed method to automatically find the appropriate number
of section classes, even though it often finds the number
smaller than the actual value. On the other hand, the distri-
butions for the other methods were much more sparse; they
found more or less the same number of section classes for
all the tested pieces. In particular, CNMF and SCluster
estimated too few section classes.

From these analyses, we find that the results of music
structure analysis by the proposed method have much more
similarity with the human annotated results than the com-
pared existing methods. It is also important to point out
that these results could not be made clear only by looking
at the F-measures. The F-measures are not sufficient for
evaluating results of music structure analysis.

We can observe these tendencies in the example results
(Fig. 4). Particularly, CNMF and SCluster estimated too
few section classes and irregular section durations. For the
proposed method, we see that sections of the same class
had similar lower-level sequences of latent states. This
suggests that the model successfully captured repeated
chord progressions in the sections of the same class. We
can also observe that the proposed model often used only a
part of lower-level states, which might be improved by im-

posing more constraints on the lower-level Markov chain.
For a fair comparison, we remark that parameters of the

three existing methods were not optimized using our train-
ing data. Since we used limited data containing only J-pop
pieces, adapting the parameters of these methods to this
particular musical style may improve their performance to
some extent. In addition, using the state-of-the-art beat
tracker [23] to obtain reliable beat information and using
that as input to those three methods may also improve their
accuracy. However, it is unlikely that these methods can be
refined to reproduce the aforementioned statistics of sec-
tions simply by re-training the parameters.

5. CONCLUSION
We have presented a statistical method for music struc-
ture analysis based on a Bayesian HHSMM that describes
intra- and inter-section structures in a unified way. Three of
the most important aspects of musical sections, homogene-
ity, repetitiveness, and regularity are incorporated into the
model. Music segmentation and section clustering are per-
formed jointly by unsupervised Bayesian learning of the
model, and musically important characteristics such as the
repetitive structure and the distribution of section durations
are incorporated by the Bayesian extension. The experi-
mental results showed that the proposed method achieved
segmentation and clustering accuracies significantly better
than the representative existing methods.

For future work, we plan to refine the model to incor-
porate the aspect of novelty and to deal with more hierar-
chies [16] because music has a hierarchical structure, from
motive and phrase to section and section group [36]. Our
unsupervised learning approach is complementary to an-
other approach based on deep discriminative models [6–8].
A promising direction is to integrate these models into a
variational autoencoding framework [22].
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