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ABSTRACT

Guitar tablature is a popular notation guitarists use to learn
and share music. As it stands, most tablatures are created
by an experienced guitarist taking the time and effort to
annotate a song. As the process is time consuming and re-
quires expertise, we are interested in automating this task.
Previous approaches to automatic tablature transcription
break the problem into two steps: 1) polyphonic pitch es-
timation, followed by 2) tablature fingering arrangement.
Using a convolutional neural network (CNN) model, we
can jointly solve both steps by learning a mapping directly
from audio data to tablature. The model can simultane-
ously leverage physical playability constraints and differ-
ences in string timbres implicit in the data to determine the
actual fingerings being used by the guitarist. We propose
TabCNN, a CNN for estimating guitar tablature from audio
of a solo acoustic guitar performance. We train and test our
network using microphone recordings from the GuitarSet
dataset [24], and TabCNN outperforms a state-of-the-art
multipitch estimation algorithm. We also introduce a set
of metrics to evaluate guitar tablature estimation.

1. INTRODUCTION

Given the popularity of the guitar as an instrument for both
professional musicians and amateur hobbyists, there have
been numerous previous works addressing the problem of
automatic guitar transcription. Automatic guitar transcrip-
tion is a task which aims to generate a symbolic transcrip-
tion instructing a guitarist how to perform, given an au-
dio recording of a guitar performance. In general, the task
of polyphonic transcription is challenging, due to the fact
that when multiple different pitches sound at once, their
overtones may overlap in the frequency domain, making it
hard to tell which pitches are sounding. Despite the nar-
rowed focus on a single instrument, transcription of solo
guitar audio remains challenging. Since it has six strings,
the guitar can produce up to six pitches at a given time. The
guitar is also capable of producing a wide variety of tim-
bres, stemming from differences in guitar models, guitar
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Figure 1. Multiple fingerings (3 bottom staves) can be
used to play a given score (top staff) on guitar. These are
just 3 of many possible fingerings. In each tablature staff,
the horizontal lines represent the 6 guitar strings, and num-
bers on them indicate the fret on that string to be activated.

strings, audio effects, and strumming, plucking, and pick-
ing styles.

Perhaps the greatest challenge in automatic guitar tran-
scription, however, arises from the symbolic representation
of guitar music. Rather than using score notation, guitarists
commonly use tablature notation to compose, share, and
learn music. While music scores display the arrangements
of pitches in time, tablature notation additionally indicates
which guitar strings and positions along the fretboard were
activated to produce the sounding pitches. On guitar, most
notes can be played in numerous locations along the fret-
board. Figure 1 provides an example of this. These identi-
cal pitches played in different locations differ in timbre and
can give different characteristics to an overall performance.
In order to effectively transcribe a guitar performance from
audio, a system needs to estimate both the pitches and fin-
gerings changing over the course of the performance.

Previous works have approached automatic tablature
transcription by splitting the problem into two separate
steps [5, 6, 25, 26]. First, the systems perform a multip-
itch estimation on the audio, which determines the set of
pitches sounding over the course of the audio. Then, us-
ing the estimated pitches, a tablature is arranged, usually
by choosing a fingering that maximizes physical ease of
play. These methods are designed to output a valid tabla-
ture given the detected pitches, but not necessarily the true
fingering used by the guitarist during the performance.

In this paper we propose TabCNN 1 , a guitar tablature
estimation system which outputs the actual fingerings used

1 Source code: https://github.com/andywiggins/tab-cnn
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by the guitarist at the frame-level from audio of a solo per-
formance on a standard 6-string acoustic guitar. The pro-
posed system uses a convolutional neural network (CNN)
to learn a direct mapping from audio signal to guitar tabla-
ture.

The next section provides background on some related
work in automatic guitar transcription and the use of CNNs
in music information retrieval. In Section 3 we outline
our methodology, including the dataset, preprocessing, and
proposed system architecture. In Section 4, we evaluate the
proposed system for multipitch estimation and tablature es-
timation. We further discuss the system performance in
Section 5. Finally, in Section 6 we give our conclusions
and suggest future work.

2. RELATED WORK

2.1 Automatic Tablature Transcription

Several previous works have addressed the problem of au-
tomatic tablature transcription by performing multipitch
estimation and then arranging tablature by optimizing the
physical ease of play. Burlet and Fujinaga outlined a
framework for a guitar transcription web application [5].
Their framework combines a preexisting polyphonic tran-
scription algorithm proposed by Zhou and Reiss [28] with
a novel guitar tablature arrangement algorithm that creates
a directed acyclic weighted graph of string-fret combina-
tions and finds an optimal path using the A* search al-
gorithm. In [6], Burlet and Hindle utilized the aforemen-
tioned tablature arrangement algorithm in conjunction with
a novel multipitch estimation algorithm, using deep belief
networks to learn framewise pitch estimates from the short-
time Fourier transform. Yazawa et al. used latent harmonic
allocation (LHA) for multipitch estimation and arranged
tablature by filtering the LHA results based on a set of spa-
tial and temporal playability constraints [26]. In [25], the
authors applied knowledge of each guitarist’s proficiency
to further filter the pitches estimated from LHA and gener-
ate a sensible tablature arrangement.

Few previous approaches to automatic tablature tran-
scription that we found seek to learn the true fingering used
by the guitarist. In [3], Barbancho et al. used peak-picking
from the magnitude spectrum to determine fundamentals
and partials for candidate pitches and then analyzed the
inharmonicity of the partials to determine the most likely
string each pitch was played on. The system’s performance
on “free chords” – i.e., not recognition of predetermined
chords, or strictly monophonic playing – is respectable, but
is limited to a maximum of 4 pitches sounding simultane-
ously. In [13], Kehling et al. proposed a system that applies
the Blind Harmonic Adaptive Decomposition algorithm
proposed in [7] for multipitch estimation. After aggre-
gating framewise pitch estimates into note estimates, their
system applies Support Vector Machines to classify var-
ious performance parameters, including the guitar string
each note was played on. The authors show good perfor-
mance for this system for notewise multipitch estimation
and guitar string estimation, but they do not evaluate the

system directly for framewise tablature estimation.

2.2 Related Tasks

There have been a number of works that tackle different
problems related to automatic guitar transcription. For
guitar chord recognition, Barbancho et al. used a hidden
Markov model (HMM) to transcribe guitar chords and fin-
gerings from acoustic features [2]. In [12], Humphrey and
Bello approached chord recognition using a convolutional
neural network model to output tablature, and this model
was trained using a pop music dataset, rather than audio of
isolated guitar performances. Hrybyk and Kim used video
data in conjunction with audio of solo guitar performances
to recognize guitar chords [11].

Regarding the problem of tablature arrangement from
symbolic data (not audio), Tuohy and Potter combined a
neural network model with a local heuristic-climber to take
pieces composed for other instruments and arrange them
for guitar [23]. In [18], Mistler used deep neural networks
to arrange guitar tablature from sheet music by predicting a
fretting cost function and predicting string-fret activations
directly.

The problem of arranging solo guitar covers of pop
songs was addressed by Ariga et al., who proposed a sys-
tem which processes pop music audio and generates tabla-
ture arrangements that can scale in difficulty [1]. Finally,
in the area of automatic music generation, McVicar et al.
built an algorithmic composition system to compose tabla-
tures for rhythm and lead guitar parts from an input chord
progression [17].

2.3 CNNs for Automatic Music Transcription

While, to our knowledge, the task of guitar tablature esti-
mation has not been approached using convolutional neural
networks, CNNs have shown promise for the similar task
of automatic piano transcription. In [21], Stigita et al. pro-
posed a hybrid neural network model for piano transcrip-
tion that combines a CNN for framewise acoustic mod-
elling and a recurrent neural network (RNN)-based music
language model. Kelz et al. provided a comparison of var-
ious network-based approaches to framewise transcription
of piano audio, and the authors argued that the high ac-
curacy and low parameter amount offered by CNNs, com-
pared to other classes of deep neural networks, gives them
a “distinct advantage” for piano transcription [14].

The use of CNNs has also been explored for various
other tasks within music information retrieval such as mu-
sical tempo estimation [20], key classification [15], singing
voice detection [19], and instrument classification [9, 10].

3. METHODOLOGY

3.1 Dataset

Since we are interested in learning tablatures for the ex-
act fingerings used by the guitarist, it is important that
the dataset contains audio of an actual guitar performance.
Previous approaches to guitar transcription utilize audio
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Figure 2. The proposed TabCNN network architecture. The input is a constant-Q spectrogram image of solo acoustic guitar
audio. There are a series of 2D convolutional layers followed by a max pooling layer, which learn to extract spatial features
relevant for guitar tablature estimation. The dense layers and final softmax function aim to use the learned representation
to predict fret-number labels for each of the 6 guitar strings.

data that was automatically generated using MIDI to play-
back audio samples [5, 6, 25, 26]. As a result, the audio
does not represent a performance of specific guitar finger-
ings. This is problematic for our purposes since there is no
ground truth tablature.

We employ the GuitarSet dataset [24], which consists
of audio recordings of solo acoustic guitar performances.
This dataset was created using a guitar equipped with a
hexaphonic pickup. The signals from each individual gui-
tar string were processed separately to produce a frame-
level pitch annotation for each of the 6 guitar strings. This
dataset enables the ground truth fretting used by the gui-
tarist to be easily accessible. Since the guitar used re-
mained in standard tuning, we can use these pitch estima-
tions to determine the corresponding frets being fingered
over the course of the performance. While the hexaphonic
signals were used by the GuitarSet authors to create the
ground truth annotations, our system uses only the mono-
phonic microphone signal of each song to estimate the tab-
lature.

The GuitarSet contains audio recordings of 360 solo
guitar performances, each approximately 30 seconds in
length. These performances span every key and cover a
variety of styles including bossa nova, rock, and funk. The
guitarists were instructed to play two different versions of
each song: soloing, which contains mostly single notes,
and comping, which means playing chords. Six different
guitarists contributed to the dataset, each performing to a
provided chord progression, but interpreting it in their own
way.

3.2 Audio Preprocessing

During the preprocessing stage, we first downsample the
audio from 44100 Hz to 22050 Hz, making the assump-
tion that there is not too much relevant information above
11025 Hz, in order to reduce the dimensionality of the in-
put signals. We normalize each audio clip by its maximum
value, to account for any major amplitude differences be-
tween clips.

As CNNs are useful in learning spatial features from

images, we are interested in transforming the raw audio
data into an image representation. The Short-Time Fourier
Transform (STFT), commonly used to represent a signal
changing over time and frequency, is not a desirable choice
for CNNs because of its high dimensionality. Addition-
ally, since the task at hand involves recognizing musical
pitches, it would be advantageous to use a representation
with a frequency axis that is linearly spaced with respect to
pitch. This allows pitch-invariant features to be learned by
the network. For these reasons we employ the constant-Q
transform (CQT), which greatly reduces the dimension of
the frequency axis by linearly spacing the frequency bins
with respect to musical pitch.

Motivated by previous work [12], we use a CQT with
192 bins, spanning 8 octaves. This equates to 24 bins per
octave, or 2 bins per semitone. We use a hopsize of 512
samples, which corresponds to a frame rate of about 43
frames per second, a rate sufficient for framewise analysis
[10]. Using a sliding context window, we generate input
images centered around each frame. In our experiments,
we observed the best results using a context window of 9
frames. We pad either side of the CQT with zeros so that
the beginning and ending frames of each clip can have a
full 9-frame-long context window. Thus, input samples are
of size 192 × 9 at each frame.

3.3 Label Preprocessing

To obtain annotations for each individual frame of audio,
we sample the stringwise pitch annotations at the same
frame rate of approximately 43 frames per second. For
each sampled MIDI pitch value, we round it to the nearest
integer, which corresponds to finding the nearest musical
pitch. Depending on which string the pitch was played on,
we subtract the corresponding string’s open pitch value.
The resulting integers correspond to the frets that were ac-
tivated to produce the sounding pitches. A value of zero
indicates that the string was plucked open (while no frets
were being pressed). Since there are 19 frets used on the
acoustic guitar, and a string may at times be closed (not
produce any sound), this results in 21 different fret classes
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that each string may be in during any given frame: open,
closed, or any one of the 19 frets. We convert each string’s
label to a one-hot representation, resulting in label size of
6 × 21 at each frame.

3.4 Network Architecture

The structure of our neural network model is generally
inspired by popular models in computer vision, such as
AlexNet [16] and VGGNet [22], which both contain se-
ries of convolutions followed by a sub-sampling operation.
These architectures terminate in dense layer connections.
When using this type of CNN architecture, the expectation
is that the early convolutional layers act as a hierarchy of
feature extractors, learning spatial filter coefficients that re-
sult in feature maps useful for the given classification task.
We interpret the final dense layers and output connection
to act as a classifier that processes the features to output a
final decision or prediction.

The proposed network structure for TabCNN is shown
in Figure 2. First, there is a series of three convolutional
layers, each with a filter size of 3 × 3. The first convolu-
tional layer has 32 filters, and the latter two each have 64.
These parameters were determined empirically, based on
experiments with the validation data. Each convolution is
immediately followed by a Rectified Linear Unit (ReLU)
activation. Activation functions, in general, allow for com-
plicated, nonlinear mappings to be learned, and the ReLU
activation has been shown to train faster [16] and produce
better results [8] than alternatives.

The resulting feature maps are subsampled by a 2 ×
2 max pooling layer, which introduces a slight translation
invariance in both time and frequency. The structure is
then flattened and followed by a dense layer of dimension
128, this size determined empirically in our experiments.
After this dense layer, a ReLU activation is applied. This is
connected to a second dense layer of dimension 126, which
is reshaped to 6 × 21. The output shape comes from the 6
guitar strings and the 21 different fret classes a string can
be assigned. Finally, a softmax activation is applied to each
of the 6 rows. As a result, similar to the network described
in [12], our model learns to output an estimation of six
probability mass functions, which represent the probability
of each fret class for each string.

3.5 Training Procedure

For training the model, we design a loss function by view-
ing the problem as 6 simultaneous multiclass classification
problems. For multiclass classification, a common prac-
tice is to optimize the categorical cross-entropy between
the predictions and the targets [10]. For our loss function,
we compute the categorical cross-entropy for each string
and sum these values. The loss function is computed as
in Eqn (1). We use zij to denote an activation at frame
i on string j that belongs to fret class Czij . The term
p[zij ∈ Czij ] is the probability output by the network of zij
belonging to class Czij . N is the total number of frames in
the mini batch.

Loss = − 1

N

6∑
j=1

N∑
i=1

log p[zij ∈ Czij ] (1)

We train using the ADADELTA optimization algorithm
[27], which adapts learning rates for parameters based on
a window of previous gradient values. We use an initial
learning rate of 1.0 and a mini batch size of 128 training
samples. We train for 8 epochs, as we noticed overfitting
when training for longer. We also employ dropout regu-
larization to combat overfitting, with a dropout rate of 0.25
applied immediately after the max pooling layer, and a sec-
ond dropout rate of 0.5 applied after the first dense layer.

4. EVALUATION

To evaluate the proposed system, we first review multipitch
estimation metrics from the literature [6] and assess the
quality of the system as a polyphonic pitch detector. Then,
since there are no standards for evaluating the performance
of a tablature estimation system, we introduce a set of met-
rics to measure performance in estimating tablature for the
actual fingering used during the performance. In our eval-
uations we use 6-fold cross validation, holding out one of
the 6 guitarists to test on, while training on the remaining
5. We average our numerical results over the 6 folds of
data, testing with a total number of 472,560 frames.

4.1 Multipitch Estimation Metrics

In the following equations, we use Y to denote a binary
matrix of size N × 44, where N is the total number of
testing frames, and the matrix represents the presence or
absence of each pitch for each frame of audio. (The guitar
can produce a total of 44 distinct pitches.) Ygt contains
the ground truth pitch detections for the testing set, while
Ypred contains the predicted pitch detections during testing.
We use e to denote a vector of all ones, and � to denote
element-wise multiplication.

4.1.1 Multipitch Precision

We compute multipitch precision using Eqn (2), which cal-
culates the number of correctly identified pitches divided
by the total number of predicted pitches. This metric mea-
sures how frequently the pitches that are detected are in
fact correct.

ppitch =
eT (Ygt � Ypred)e

eTYprede
(2)

4.1.2 Multipitch Recall

We also compute multipitch recall using Eqn (3), which
calculates the number of correctly identified pitches di-
vided by the the total number of ground truth pitches. This
metric measures how frequently pitches existent in the sig-
nal are are detected by the system.

rpitch =
eT (Ygt � Ypred)e

eTYgte
(3)
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System ppitch rpitch fpitch

TabCNN 0.900 ±
0.016

0.764 ±
0.043

0.826 ±
0.025

Deep
Salience

0.778 ±
0.092

0.562 ±
0.099

0.646 ±
0.078

Table 1. Multipitch estimation metrics for our system,
TabCNN, compared against a baseline, the Deep Salience
f0-estimation algorithm introduced in [4], from experi-
ments carried out in [24]. For all metrics, we report the
mean and standard deviation over the entire dataset.

4.1.3 Multipitch F-measure

Finally, we compute multipitch F-measure using Eqn (4),
which is the harmonic mean of multipitch precision and
recall. This metric summarizes the system’s overall per-
formance for multipitch estimation.

fpitch =
2ppitchrpitch

ppitch + rpitch
(4)

4.2 Multipitch Estimation Results

The evaluation results of TabCNN for multipitch estima-
tion, alongside a baseline algorithm, are shown in Table
1. For a benchmark, we look to the GuitarSet paper [24],
in which the authors employ the Deep Salience multiple-
f0 estimation algorithm in [4] to transcribe framewise
pitch estimations for the GuitarSet data. 2 Deep Salience,
although not designed specifically for guitar transcrip-
tion, achieves a multipitch F-measure of 0.646. The pro-
posed system TabCNN outperforms these baseline results,
achieving a multipitch F-measure of 0.826.

Looking at a recent multipitch system designed specif-
ically to operate on guitar signals, in [6] Burlet and Hin-
dle report a multipitch F-measure of 0.71 before frame
smoothing with a Hidden Markov Model (HMM), and
an F-measure of 0.77 afterward. Our system’s multip-
itch F-measure of 0.826 without any temporal smoothing
is promising. However, these results cannot be compared
too closely since the authors were evaluating on a different
dataset.

Our results reveal that the proposed system behaves
conservatively for multipitch estimation. The multipitch
precision being significantly larger than the multipitch re-
call indicates that the system will more often make an er-
ror by missing a detection, rather than reporting a pitch not
actually present in the signal. This is a common behavior
for multipitch estimation systems, as a pitch can be easily
missed if it is able to blend in to the overtones of another
pitch present at the same time. We noticed that this often
occurs with pitches an octave apart; the higher pitch will
often be missed, as it may appear to just be overtones of
the lower pitch.

2 We acknowledge and thank the authors of [24] who have granted us
access to the full numerical results from the experiments conducted in the
work.

4.3 Tablature Estimation Metrics

We use Z to denote a binary matrix of size N × 120, N
being the total number of testing frames. The dimension of
120 arises from all possible sounding string-fret combina-
tions on guitar (6 × 20). This matrix represents the pres-
ence or absence of each string-fret combination for each
frame of audio. Zgt contains the ground truth tablature de-
tections for the testing set, while Zpred contains the pre-
dicted tablature detections during testing. Again, we use e
to denote a vector of all ones and� to denote element-wise
multiplication.

4.3.1 Tablature Precision

We define tablature precision, which calculates the num-
ber of correctly identified string-fret combinations divided
by the total number of predicted string-fret combinations.
This metric measures how frequently the tablature detected
is in fact correct.

ptab =
eT (Zgt � Zpred)e

eTZprede
(5)

4.3.2 Tablature Recall

We also introduce tablature recall, which calculates the
number of correctly identified string-fret combinations di-
vided by the the total number of ground truth string-fret
combinations. This metric measures how frequently tabla-
ture existent in the signal is detected by the system.

rtab =
eT (Zgt � Zpred)e

eTZgte
(6)

4.3.3 Tablature F-measure

We define multipitch F-measure, which is the harmonic
mean of tablature precision and recall. This metric sum-
marizes the system’s overall performance for tablature es-
timation.

ftab =
2ptabrtab

ptab + rtab
(7)

4.3.4 Tablature Disambiguation Rate

Finally, we introduce a tablature disambiguation rate
(TDR) which is computed by dividing the total number
of correctly identified string-fret combinations by the total
number of of correctly identified pitches. This metric mea-
sures how frequently pitches that are correctly identified
are assigned the correct tablature.

TDR =
eT (Zgt � Zpred)e

eT (Ygt � Ypred)e
(8)

4.4 Tablature Estimation Results

The tablature estimation evaluation results for TabCNN are
shown in Table 2. While, to our knowledge, there are no
prior approaches to directly compare these metrics to, the
results are respectable, as each tablature metric is not too
far below its multipitch counterpart. As in multipitch esti-
mation, the proposed system achieves a higher tablature
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System ptab rtab ftab TDR

TabCNN 0.809 ±
0.029

0.696 ±
0.061

0.748 ±
0.047

0.899 ±
0.033

Table 2. Tablature estimation results for the proposed
system, TabCNN, using the metrics we introduce to mea-
sure performance in fingering prediction. For all metrics,
we report the mean and standard deviation over the entire
dataset.

precision than tablature recall. This implies that errors
made by the system are more often due to missed string-
fret combinations than predicting fingerings not present in
the signal. The TDR of 0.899 indicates that over 89%
of correctly identified pitches are assigned the correct fin-
gering. This value is promising given that the majority of
pitches playable on guitar can be played in multiple loca-
tions.

5. DISCUSSION

Viewing the predicted tablature alongside the ground
truth 3 , the system appears to output correct string-fret ac-
tivations a good amount of the time, with the occasional
error. To better understand these results, Figure 3 contains
examples of 3 common types of errors made by the pro-
posed system.

False alarms occur when a string-fret combination that
is predicted is not actually present in the input signal. This
type of error negatively impacts the tablature precision
metric. In Figure 3 (a), a false alarm occurs when an F3
pitch is mistakenly detected on the 3rd fret of the D-string.
This specific error likely happened because the overtones
of the F2 pitch, which is present, could be mistaken for
the presence of the F3 pitch an octave up. Also, the pre-
dicted fingering is a chord shape commonly used by gui-
tarists called a “power chord.”

Missed detections occur when the system fails to detect
a string-fret combination that is present in the input signal.
These errors hurt the tablature recall score. In Figure 3 (b),
the presence of the A[4 pitch on the 4th fret of the e-string
is missed by the system. This type of error could be due
to the note having been played quietly or having mostly
faded out by the current frame, but still technically being
active according to the ground truth. Also, this specific
error can be attributed to octave confusion, since the A[4
could easily be mistaken for overtones of A[3 note, which
was activated on the 6th fret of the D-string.

Finally, miss-frettings occur when a pitch is correctly
detected, but it is assigned the incorrect string-fret combi-
nation. This is essentially a simultaneous false alarm and
missed detection, so both the tablature precision and tab-
lature recall are negatively affected. However, the TDR
metric most directly represents how often this third type of
error is avoided. In Figure 3 (c), the A[4 pitch is detected

3 As supplementary materials, video demonstrations showing pre-
dicted and ground truth tablature synced with input audio are available
at: https://github.com/andywiggins/tab-cnn

Figure 3. Fretboard diagrams showing examples of 3 com-
mon error types made by TabCNN. In each diagram, the
vertical lines are guitar strings, and the horizontal lines are
the frets. The circles indicate positions of the guitarist’s
fingers on the fretboard. An “X” over a string means that
string is not sounding.

as an activation on the 4th fret of the e-string. However, the
pitch was actually played on the 9th fret of the B-string. In
this is specific case, there were no other pitches simulta-
neously present to cause confusion. Instead, this error is
likely due to the system’s failure to predict the correct gui-
tar string based on timbre.

Overall, we observed that errors often occur at the be-
ginning or end of a note. A strategy for improving estima-
tion performance could be the incorporation of a temporal
smoothing algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed TabCNN, a convolutional
neural network (CNN) approach to tablature estimation
from audio of a solo acoustic guitar performance. Our
system performs competitively in guitar multipitch estima-
tion, while providing the advantage of additionally predict-
ing the true fingering used by the guitarist. The guitar com-
munity, which frequently shares music in tablature form,
can benefit from a system that automates the arduous task
of transcribing tablature, while retaining nuance from the
original performance, in the form of the exact fretboard
positions being used.

Looking ahead to future work, the approach in this pa-
per could be integrated into an end-to-end tablature tran-
scription system. A temporal smoothing method could be
added to aggregate these framewise tablature estimations
into a note-level transcription. Additionally, we hope that
the tablature estimation metrics introduced in this paper
can serve to evaluate future guitar transcription approaches
that aim to predict the guitarist fingering.
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