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ABSTRACT

Assessing the potential success of a given song based on
its acoustic characteristics is an important task in the music
industry. This task has mostly been approached from an in-
ternal perspective, utilizing audio descriptors to predict the
success of a given song, where either low- or high-level
audio features have been utilized separately. In this work,
we aim to jointly exploit low- and high-level audio features
and model the prediction as a regression task. Particularly,
we make use of a wide and deep neural network architec-
ture that allows for jointly exploiting low- and high-level
features. Furthermore, we enrich the set of features with
information about the release year of tracks. We evaluate
our approach based on the Million Song Dataset and char-
acterize a song as a hit if it is contained in the Billboard Hot
100 at any point in time. Our findings suggest that the pro-
posed approach is able to outperform baseline approaches
as well as approaches utilizing low- or high-level features
individually. Furthermore, we find that incorporating the
release year as well as features describing the mood and
vocals of a song improve prediction results.

1. INTRODUCTION

The task of predicting hit songs aims to infer the poten-
tial (commercial) success of a given song, possibly before
the release of the song [18]. This is particularly interesting
for the music industry as it allows to find potentially suc-
cessful songs, promising songwriters and composers, to al-
locate budget for promotion, and to identify key elements
that are pivotal for the success of a song. A natural next
step would be the automatic generation of musical pieces
which actually exhibit these features that have been shown
to be crucial for success. To this end, the hit song predic-
tion task has been tackled from two perspectives [12, 23]:
an internal perspective, which relies solely on (musical)
features extracted from the audio, and an external perspec-
tive, which models aspects of the musical ecosystem, for
instance by incorporating social media or market data.
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In this work, we take on the internal perspective, focus-
ing on audio descriptors of a song to predict its success.
While this might not capture all the aspects that are rele-
vant for the musical success of songs (e.g., social media
trends and events [25], psychological issues [18] or social
influence [9, 20]), we believe that it is still an important
problem that can be approached on its own and possibly
enriched with external information at a later stage.

Approaches focusing on internal factors have mostly
modeled hit prediction as a classification or regression
problem solved by traditional approaches or, more re-
cently, deep learning [23, 24]. The features used to char-
acterize songs range from low-level Mel-Frequency Cep-
stral Coefficients (MFCC) [6], melodic features [8], tem-
poral features [10], lyrics features [21] to high-level audio
features describing e.g., the danceability of songs [7, 17].
While both of these feature types have been individually
shown to contribute to hit prediction, they have yet to be
exploited jointly for this task.

Recently, Demetriou et al. [5] have investigated the
most influential features when it comes to users liking or
disliking a song in a user study. They have shown that the
most significant features of a song are its ability to evoke
emotions, vocals of the singer, beat and rhythm and the
lyrics. Along these lines, we are particularly interested in
investigating whether these features are also influential in
the task of hit song prediction. Interiano et al. [12] have
shown that audio descriptors relevant for the success of a
song change over time and that musical fashion is rather
short-lived, rendering it hard to exploit past data to pre-
dict future trends. Despite approaches to predict the re-
lease year of songs based on acoustic features [2] and the
use of temporally weighted regression methods to account
for changing features over time [7], this fact has not yet
been explicitly explored for hit song prediction. Incorpo-
rating release year information into our hit song prediction
approach to reflect the dynamics of success on the music
market is another distinguishing feature of this work.

Consequently, we shed light on the following two re-
search questions (RQ) in this study:
RQ1: How can we predict hit songs based on acoustic fea-
tures extracted from the song’s audio in a deep learning
scenario?
RQ2: Which role do individual features (or groups of fea-
tures) and the release year of a song play in this task?

To answer these research questions, we model the pre-
diction of hit songs as a regression task. We extract low-
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and high-level features from the audio of each track and
feed these into a deep neural network architecture, where
low-level features are fed into the deep part of the network
to distill dense representations thereof, whereas high-level
features are fed into the wide part of the network to be
utilized directly. This also allows feeding the release year
of a song into the network as a high-level feature. Utiliz-
ing the dense computed dense representations of low-level
features in combination with high-level features, we subse-
quently compute a regression task to predict a track’s peak
ranking position.

The contribution of this paper lies in the following as-
pects: (i) we present a novel regression approach towards
hit song prediction using neural networks which combines
wide (high-level) and deep (low-level) acoustic features;
(ii) we show that mood and vocals (the features identi-
fied as being crucial when it comes to liking and disliking
a song [5]) are also of high relevance for the hit predic-
tion task; (iii) we show that adding the release year as a
high-level feature allows for further improvements, imply-
ing that contextualizing the song temporally is important
due to the short-lived trends in music [12]; (iv) this is the
first work that utilizes solely data from the public domain
for this task. For reproducibility and to encourage follow-
up research along this line, we also make public the data
underlying our experiments 1 .

The remainder of this paper is structured as follows.
Section 2 provides information about the dataset underly-
ing our analyses. Section 3 details our proposed approach
towards the prediction of hit songs. Section 4 presents the
experiments we conducted and the results obtained. Sec-
tion 6 concludes this paper and discusses future work.

2. DATASET

We base our experiments on the widely used and freely
available Million Song Dataset (MSD) [2], which con-
tains one million songs that are representative for western
commercial music released between 1922 and 2011. The
dataset contains release year information for 515,576 of the
MSD songs [2]. As we are interested in the impact of the
release year information on hit song prediction quality, we
constrain our dataset to those songs that we can obtain the
release year information for. In contrast to previous stud-
ies on hit song prediction, our dataset fully stems from the
public domain. Please refer to Table 1 for an overview of
the datasets utilized in existing work and their availability.

To extract low- and high-level audio features for every
song, we rely on representative 30 seconds samples for
each of the songs in the Million Song Dataset. We make
use of the Essentia framework [3] to extract low- and high-
level features from the audio (cf. Section 3.1 for details)
and dropped all songs in the MSD where we could not de-
termine all those features.

Moreover, our approach requires distinguishing be-
tween hits and non-hits of musical success [15]. Along
the lines of previous research [13, 21], we define a song

1 https://doi.org/10.5281/zenodo.3258042

Paper Data PD AV

[23, 24] KKBOX listening data, audio no no
[6] in-house audio database, UK, US, AUS charts no no
[8] in-house audio database, UK charts no no
[21] lyrics features, Billboard charts no no
[7, 17] Echonest features, UK charts yes no
[18] HiFind database of music no no

this MSD dataset, Essentia features yes yes

Table 1. Datasets utilized for internal hit song prediction.
Notation: PD—dataset stems from public domain, AV—
dataset is publicly available.

as successful if it is featured in the weekly Billboard Hot
100 2 at least once. Therefore, we crawl the Billboard Hot
100 from the according website for the years 1954 until
2018. To find songs in the Billboard Hot 100 matching the
songs contained in the Million Song Dataset, we compare
both the artist name and track title for each song pair in the
two sets and only consider exact matches as hit songs. Af-
ter that, we dropped duplicates (determined based on artist
name and track title). This provides us with a set of 5,832
hit songs and hence, positive samples for which we ex-
tract their highest rank in the charts. For negative samples
(and hence, non-hits) sampled from the MSD, it is impor-
tant to ensure that they are not accidentally hits. Hence,
we used to following procedure based on the set of songs
for which we have release year information and Essentia
features. Firstly, we compute a fuzzy matching ratio 3 be-
tween all MSD songs and the set of hit songs by concate-
nating the artist name and track title with a delimiter and
selecting the best matching pairs thereof. Based on this
matching procedure, we gather a pool of non-hits where
the title fuzzy matching ratio is less or equal than 40. We
determined this threshold by preliminary experiments and
manually inspecting results. We only consider the title ra-
tio here as it is possible that an artist has multiple further
songs, that we nevertheless aim to include in our set of
possible non-hits and hence, we do not include artist simi-
larity in this computation. The resulting dataset contains a
substantially higher number of non-hits (89,235) than hits
(5,832), hence it is highly imbalanced (6.1% positive vs.
93.9% negative instances). To overcome this imbalance,
we decided to randomly draw 5,832 samples from the pool
of non-hits to get a balanced dataset for our experiments.

3. HIT SONG PREDICTION

In this section, we detail our approach on hit-song predic-
tion. We first present the features utilized to characterize
songs and then detail the neural network-based approach.

3.1 Song Features

Previous research in the field of hit song prediction has re-
lied on utilizing either low- or high-level features of songs.

2 https://www.billboard.com/charts/hot-100
3 The ratio of matching tokens between the two strings is based on

Levenshtein distance as implemented by Python’s fuzzywuzzy library.
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Category Features

mood acoustic, aggressive, electronic, happy, party, relaxed, sad [14]; Hu and Downie’s 5 clusters of mood [11]
genre blues, classic, country, disco, hip-hop, jazz, metal, pop, reggae, rock [22]
voice voice, instrumental, female voice, male voice
rhythm/beat bpm, beats count, bpm histogram, beats loudness, beats loudness band ratio, onset rate, danceability
chords chords strength, chords change rate, chords number rate, chords key, chords scale, harmonic pitch class profile,

tuning strength and frequency

Table 2. Feature categories and the Essentia features each category contains.

Low-level features allow capturing acoustic descriptors
like loudness, dynamics, and spectral shape of a signal,
rhythm descriptors or tonal information [19]. In contrast,
high-level features are computed from low-level feature
models and capture abstract concepts such as mood, gen-
res, vocals or music type [19]. In this work, we aim to
combine those two types of features. The intuition here is
that while low-level features allow for a detailed descrip-
tion of the acoustic characteristics of a song, high-level fea-
tures complement this detailed view with abstract concepts
such as mood or danceability, resulting in a more holistic
description of a song.

Based on the dataset presented in Section 2, we propose
to extract low- and high-level features based on a given
MP3 file of a song containing a 30 seconds preview. Par-
ticularly, we make use of the Essentia toolkit [19], a well-
established and widely used extraction library for audio
descriptors. For the extraction of low-level features, we
rely on Essentia’s pre-compiled extractors 4 , which pro-
vide a variety of spectral, time-domain, rhythm, and tonal
descriptors. This provides us with 40 basic features (e.g.,
MFCCs, dissonance or silence rate), 11 rhythm features
(e.g., beats per minute or onset-rate) and 13 tonal features
(e.g., key or harmonic pitch class profiles) that serve as
low-level input for our task.

For high-level features, we again rely on Essentia and
utilize the provided pre-trained high-level classification
models 5 to compute high-level features based on the low-
level features previously extracted. These features include
musical genre, mood, timbre, vocals/voice, or danceability.

In this work, we hypothesize that features identified as
salient in users liking/disliking a song [5] are also relevant
for the task of hit song prediction. To assess the relative
importance of these different features, we rely on the cate-
gories of features proposed by Demetriou et al. [5] and per-
form a matching between Demetriou’s categories of fea-
tures and our dataset’s features. As our approach is based
on internal features only, we are not able to match all of
Demetriou’s categories (e.g., lyrics). We argue that this is
still a valid approach as this work is focused on internal
aspects of a song. We hence make use of the following
feature categories: mood, genre, voice, rhythm/beat, and
chords. The first three contain solely high-level features
computed by Essentia, whereas the latter two stem from
both Essentia’s low- and high-level features. Table 2 shows

4 http://essentia.upf.edu/documentation/extractors_out_of_box.html,
music 1.0 extractor of Essentia v.2.1.-beta2 was used.

5 http://essentia.upf.edu/documentation/streaming_extractor_music.html

the assignment of individual low- and high-level features
to those categories. As previous research has shown that
musical fashion and trends are highly dynamic and short-
lived [12], we are also interested in the impact of informa-
tion about the release year of a song. The idea here is that
providing temporal context in terms of the release year of
a song can contribute to improved prediction performance
as the characterization and embedding of the song is im-
proved. Hence, we extract the release year information for
each song from the Million Song Dataset and treat it as a
high-level feature.

3.2 Regression Wide and Deep Network

The core idea of our approach is to combine low- and high-
level acoustic features to characterize tracks as those two
types of features capture different aspects and characteris-
tics of a track (on different levels of abstraction). Given
the differences between these two feature types in terms of
the amount of features, complexity, and diversity, we aim
to reflect this in the architecture of the neural network used
for hit prediction. Therefore, we utilize a network archi-
tecture inspired by the structural concept of the Wide and
Deep network architecture by Cheng et al. [4]. While our
proposed solution is in fact quite different from the original
model 6 , we believe that the distinction and notion of deep
and wide features describes our scenario well. Hence, we
will nevertheless use this notion of wide and deep features
and the corresponding network parts.

Figure 1 presents an overview of the proposed network
architecture. This architecture allows training a wide linear
model alongside a deep neural network while distinguish-
ing two types of features: wide features can be regarded
as abstract, high-level features that can directly be used for
further computation, whereas deep features in the deep part
of the network are used to learn dense, lower-dimensional
representations of input features. In our scenario, low-level
features can be considered deep features, whereas high-
level features are wide features. Based on the wide fea-
tures and the computed dense representations of the deep
features, we aim to perform a regression task for predicting
the peak position a song will reach in the charts. This can
also be used to distinguish hits and non-hits by using any
position larger than 100 as a threshold value. As for the im-
plementation of the deep part of the network, the goal here

6 The original wide and deep approach was designed for a recom-
mendation scenario, where the wide part is used to model user-item co-
occurrences and the deep part is used to learn low-dimensional latent de-
scriptors of queries and items.
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low-level features high-level features

concatenation layer

release year

deep part wide part

output: regression score

Figure 1. The wide and deep network architecture em-
ployed for hit song prediction.

is to use the sparse low-level features as input and to com-
pute meaningful dense representations of audio descriptors
to be processed further.

Low-level features comprise a variety of different fea-
ture formats: e.g., aggregations of frame-based features
across the song or per-frame values for a set of frequency
bands—rendering a sparse, complex set of feature repre-
sentations, where also the computed individual values stem
from a broad range. Practically speaking, our approach
has to be able to cope with nested input features of vary-
ing size, complexity and value ranges. We chose to flatten
these input arrays into one-dimensional arrays that can be
fed into the deep part of the network.

The purpose of the deep part of the network is to ag-
gregate feature vectors to a one-dimensional representation
of the original input features, which are subsequently fed
into the regression part of the network. We create multiple
groups of low-level features corresponding to the feature
categories and their components presented in Table 2. Each
group is then fed into a single feature aggregation block
(FAB) in the deep part of the network. We chose to model
each FAB as a dense layer utilizing a sigmoid activation
function as this has been shown to be effective for feature
selection in deep neural networks [16]. The input size is
chosen to fit the number of values in the feature group and
the output size is one. This results in a single value per fea-
ture group which is the newly computed higher-level repre-
sentation of this group. The resulting features computed by
the FABs in the deep part of the network are subsequently
merged with the features that we feed into the wide part
of the network. This concatenation (merge) layer is fol-
lowed by two dense layers with batch normalization and a
ReLU activation function. These two dense layers have the
same size as the concatenation layer. To ultimately com-
pute the final result of the regression task, we add another
dense layer with output size one and no activation function
to ensure that the computed result is in the desired range of
possible ranking positions (1–150).

Each high-level feature is represented by classes, where
each class is assigned a probability value (range [0, 1]).
In the special case of two complementing classes such as
danceable and not danceable, we chose to only use one of

these two probabilities (in the above example, the prob-
ability of a song being danceable) to model this feature.
We use the resulting values as input for the wide part of
the neural network. Feeding categorical values such as the
tonal key into the network is realized by previously con-
verting them to a one-hot encoded vector representation.
Further, it should be mentioned that we normalized all in-
put (feature) values to the range [0, 1] using a min-max-
scaler. Feeding the release year into the neural network is
realized by adding another high-level feature (normalized
to [0, 1]).

4. EXPERIMENTS AND RESULTS

Here, we first present the experimental setup used and sec-
ondly, we present and discuss the results obtained.

4.1 Experimental Setup

We base our experiments on the dataset presented in Sec-
tion 2 and experiment with two different regression tasks:
predicting the highest rank of a song in the Billboard Hot
100. For non-hits, we set the highest rank achieved to 150.
We chose to use a ranking of 150 to describe non-hits to
make the difference between hits and non-hits in terms of
ranking more explicit based on preliminary experiments.
Due to the high imbalance of hit and non-hit instances in
the dataset, we chose to randomly downsample the neg-
ative class to achieve balanced classes 7 . Subsequently,
we applied five fold cross validation on the remaining in-
stances.

We trained the proposed network architectures with
mean squared error (MSE) as loss function and a batch
size of 32. The neural network was implemented based on
Tensorflow [1], utilizing Keras. As optimizer, we used the
adaptive learning rate optimization algorithm, Adam. As
for the number of epochs used for training the network, we
experimented with values between 10 and 200. All input
data is scaled to [0, 1]. As we experimented with a wide va-
riety of different setups, training epochs, etc., we utilized
a grid search approach to determine the best configuration
and present the best obtained results in Section 4.2. Natu-
rally, the underlying network was trained and optimized in-
dividually for each input feature set. For the evaluation and
comparison of the proposed regression approaches, we use
root mean squared error (RMSE) and the mean absolute
error (MAE). To also derive a measure of how well these
approaches perform when it comes to actually predicting
hit songs, we also present the accuracy values for each
approach. These were computed based on the results of
the regression computation and classifying all tracks with
a predicted ranking of less than 100 as hits and a predicted
ranking larger than 100 as non-hits. However, we consider
this two-class classification an easier task than the regres-
sion task based on the actual ranking. Here, we argue that
the accuracy evaluation allows us to get an intuition on how

7 Manual inspection showed that the release year distribution of the
test- and training datasets are comparable.
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well the regression results may be used to generally distin-
guish hits from non-hits.

To assess the relative importance of feature classes, we
base our evaluation on the following classes, combinations
thereof and the combination of individual features stem-
ming from those classes:

• LL: basic low-level acoustic features as presented in
Section 3.1.

• LL-filtered: a subset of the low-level feature set
that we have identified as highly relevant in our pre-
liminary feature selection experiments 8 . We argue
that pre-selecting a smaller feature set contributes to
both runtime and performance (cf. Section 4.2 for
results).

• chords: chords features as presented in Table 2, ex-
tracted from low-level Essentia features.

• rhythm: rhythm and beat features as presented in
Table 2, extracted from low-level Essentia features.

• HL: all high-level acoustic features, information
about the release year of the track, including the fol-
lowing sub-categories: voice, mood, genre and re-
lease year (cf. Table 2 for details on the contained
features).

Please note that depending on the feature set uti-
lized, we adapt the way we utilize the neural network
accordingly—i.e., for the low-level feature set, we uti-
lize the deep part of the proposed neural network only,
whereas, for the high-level feature set, we utilize the wide
part of the network only and for any combination of high-
and low-level features, we exploit both parts of the full
wide and deep network.

We propose to conduct two experiments to answer our
research questions: Experiment 1 aims to assess the per-
formance of the proposed wide and deep network architec-
ture. Therefore, we utilize the proposed low-level features
in the deep part of the network and the proposed high-level
features in the wide part of the network aiming to show that
the proposed architecture achieves superior results than (i)
a linear regression baseline as well as (ii) utilizing the two
parts of the network individually, relying solely on either
low- or high-level features. Based on the results of Ex-
periment 1, Experiment 2 aims to investigate the relative
importance of individual feature subsets in the wide and
deep neural network. To do so, we experiment with dif-
ferent feature sets (low- and high-level) and compare their
prediction performance.

As baselines to compare our approach to, we chose to
utilize traditional linear regression 9 , which we apply to
the same feature sets.

8 Feature set comprises: dissonance, spectral features (centroid,
spread, skewness, kurtosis, flatness db, flux, rolloff, decrease, energy),
low energy ratio, avg. loudness, barkbands, erbbands, melbands, MFCCs
and HFCs.

9 We experimented with a number of linear regression algorithms (e.g.,
ridge, lasso or elastic net regularization), where linear regression obtained
the best results.

Approach RMSE MAE Acc.

HL (wide) 57.11 48.50 72.08%
LL-filtered+chords+rhythm (deep) 63.94 54.15 65.50%
LL, chords, rhythm (deep) 60.82 52.09 66.94%
HL+LL-filtered+chords+rhythm (wide + deep) 56.05 45.12 74.23%
HL+LL+chords+rhythm (wide + deep) 55.45 43.84 75.04%

HL (baseline) 58.10 50.38 71.01%
LL-filtered+chords+rhythm (baseline) 223.20 57.68 65.97%
LL+chords+rhythm (baseline) 8.54×109 7.92×106 68.47%
HL+LL-filtered+chords+rhythm (baseline) 504.90 52.98 72.56%
HL+LL+chords+rhythm (baseline) 6.41109 5.95×79 73.91%

Table 3. Results for highest rank prediction on full feature
sets. Both the values of RMSE and MAE are the lower the
better; the best results are printed in bold font.

4.2 Results and Discussion

In the following, we discuss the findings of the two exper-
iments conducted.

Experiment 1 aimed to investigate the performance of
the wide and deep parts of the network individually but
also combined in a full wide and deep architecture. Here,
we deliberately include all low- and high-level feature sets
proposed. Table 3 depicts the results of this experiment. As
can be seen, the proposed wide and deep network approach
outperforms the baseline approaches across all evaluation
measures. This approach achieves the lowest RMSE and
MAE values of 55.45 and 43.84 when relying on all low-
level features. Using the filtered set of low-level features
reaches an RMSE of 56.05 and an MAE of 45.21. When
inspecting the results of the network-based approaches that
utilize solely either low- or high-level features (which we
also consider as representative baseline methods), we ob-
serve that utilizing solely high-level features provides us
with reasonable results, suggesting that high-level features
indeed capture the abstract characteristics of songs well. In
contrast, utilizing only low-level features achieves higher
RMSE and MAE values. These observations our initial hy-
pothesis as we find that the combination of low- and high-
level features is indeed able to substantially outperform
approaches utilizing these feature sets individually. The
linear regression baseline approaches in the bottom half
of the table achieve the best results when utilizing solely
high-level features (MAE of 50.38).

When inspecting the accuracy evaluation, we can ob-
serve that the highest accuracy value of 75.04% is achieved
by the proposed network approach, again utilizing both
high- and low-level features. Interestingly, for the linear
regression baselines, while RMSE and MAE values are
substantially higher than our proposed approach, we can
observe that accuracy values are within a reasonable mar-
gin, albeit still lower than the proposed wide and deep ap-
proach. We lead this discrepancy back to the fact that we
assign non-hits a rank of 150. The observed error mea-
sures suggest that the predicted ranks computed by linear
regression are very high, leading to such high error mar-
gins. This is particularly the case when utilizing the full
set of low-level features, holding a substantially higher set
of features and hence, posing a more complex regression
task. However, given the reasonable accuracy results and
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the fact that the regression model indeed seems to capture
the distinction between hit- and non-hit songs well (with a
wide margin between predicted rankings for hits and non-
hits) and hence, can be considered a reasonable baseline.
To conclude and to answer RQ1, our experiments show the
proposed wide and deep neural network-based approach
combining low- and high-level features is a suitable ap-
proach towards hit song prediction.

Experiment 2 aimed to analyze the relative importance
of individual features and classes thereof. Therefore, we
evaluated different feature sets in the proposed wide and
deep network. As the LL basic features have shown to
outperform the filtered set of basic low-level features, we
restrain the results presented here to the full low-level fea-
ture set. Please note that due to space constraints, we only
list the best performing and informative configurations and
their obtained results.

For low-level features (including chords and rhythm
features), we hardly find differences in their performance
(across all combinations with high-level features). Differ-
ences in RMSE and MAE between different feature vari-
ations are very subtle and do not show a clear pattern re-
garding best performing features. We conclude that nei-
ther chords nor rhythm features are particularly pivotal for
hit song prediction. Hence, in the following, we restrain
the presented results to the full set of low-level features
(LL-filtered, chords, rhythm). Table 4 depicts the results
of these analyses.

For high-level features, we can observe that year in-
formation profoundly contributes to the prediction perfor-
mance, improving every experiment by 12–13%, when
added to set of high-level features. This confirms our hy-
pothesis that due to short-lived fashion and trends in the
music industry, embedding songs in their temporal context
by adding release year information allows modeling these
dynamics efficiently for hit song prediction. Furthermore,
we can observe that—along the lines of Demetriou et
al. [5]—voice, mood, and genre features are also important
for this task. Our experiments show that the combination
of high-level features improves RMSE and MAE; the best
results are obtained when utilizing low-level, rhythm, and
chords features in combination with release year, voice,
mood and genre features (hence, the full feature set). In-
specting the performance of single HL features (such as
e.g., mood) in combination with low-level features shows
that year has the highest impact on the evaluation mea-
sures, with genre, mood and voice leading to higher error
measures. Combining those high-level features, however,
allows to substantially increase performance in all evalu-
ated measures. While the differences between these dif-
ferent feature sets are partly subtle, the patterns detected
are stable across all our experiments. To answer RQ2, we
find that the release year information is the most important
high-level feature. Our experiments also show that voice
and mood descriptors contribute to the hit prediction task,
which is in line with previous findings regarding salient
features in regards to whether people like or dislike a song.

Features LL Features HL RMSE MAE Acc.

LL, rhythm, chords year, voice, mood, genre 55.45 43.84 75.04%

LL, rhythm, chords year, genre 55.93 45.80 73.84%
LL, rhythm, chords year, mood 57.12 45.66 73.55%
LL, rhythm, chords year, voice 56.63 46.04 72.04%

LL, rhythm, chords genre 64.14 52.84 65.11%
LL, rhythm, chords mood 61.77 52.82 67.92%
LL, rhythm, chords voice 61.18 52.50 68.00%
LL, rhythm, chords year 57.51 46.35 72.29%

LL, rhythm, chords year, mood, voice 56.22 45.53 74.46%
LL, rhythm, chords year, genre, mood 57.35 45.38 73.63%
LL, rhythm, chords year, genre, voice 56.06 45.66 73.60%

Table 4. Results for highest rank prediction on feature sets
(best results are printed in bold font).

5. LIMITATIONS

We acknowledge that our dataset and our definition of a
successful song are biased towards western, commercial
music. While we believe that this approach is legitimate, it
remains to be shown that our approach can be extended to
other types of music and possibly other characterizations
of success. However, we believe that due to using audio
features, the approach taken is generalizable. Another lim-
itation is the prevalent problem of class imbalance among
hits and non-hits as the current setting does not reflect the
real distribution of classes. We aim to experiment with
unbalanced distributions between hits and non-hits as part
of our future work to perform the evaluation in scenario
that captures the real-world distribution better. Further-
more, our approach takes an internal perspective based on
the audio signal to characterize the track and to predict its
success. Here, we have to acknowledge that this model
naturally does not include any external factors such as in-
formation about the artist (e.g., whether he/she has been on
the charts before), marketing strategies of music labels or
the relation with special events (e.g., songs being played at
Super Bowl).

6. CONCLUSION

In this paper, we have presented a novel approach for the
task of hit song prediction. Particularly, we propose to
combine low- and high-level audio features of songs in a
deep neural network that distinguishes low- and high-level
features to account for their particularities. Our experi-
ments on the Million Song Dataset suggest that the combi-
nation of these two types of features in the proposed net-
work architecture can indeed improve the prediction per-
formance. Furthermore, we find that incorporating the re-
lease year of songs into the wide part of the network allows
for temporally contextualizing songs and hence, reflecting
musical trends and fashions. In addition, we can show that
mood and voice are salient features for this task. Future
work includes experimenting with more complex network
architectures to allow for improved feature selection and
the computation of latent features within the network as
well as analyzing and utilizing those features that distin-
guish hits from non-hits.
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