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ABSTRACT

Music is hierarchically structured, both in how it is per-
ceived by listeners and how it is composed. Such struc-
ture can be elegantly captured using probabilistic gram-
matical models similar to those used to study natural lan-
guage. They address the complexity of the structure us-
ing abstract categories in a recursive formalism. Most
existing grammatical models of musical structure focus
on one single dimension of music–such as melody, har-
mony, or rhythm. While these grammar models often work
well on short musical excerpts, accurate analysis of longer
pieces requires taking into account the constraints from
multiple domains of structure. The present paper pro-
poses abstract product grammars–a formalism which in-
tegrates multiple dimensions of musical structure into a
single grammatical model–along with efficient parsing and
inference algorithms for this formalism. We use this model
to study the combination of hierarchically-structured har-
monic syntax and hierarchically-structured rhythmic in-
formation. The latter is modeled by a novel grammar of
rhythm that is capable of expressing temporal regularities
in musical phrases. It integrates grouping structure and
meter. The combined model of harmony and rhythm out-
performs both single-dimension models in computational
experiments. All models are trained and evaluated on a
treebank of hand-annotated Jazz standards.

1. INTRODUCTION

Music is hierarchically organized, which is probably most
evident in the structure of harmonic sequences. Grammat-
ical models of music describe both local and non-local re-
lations between musical objects such as notes or chords
by assuming a latent hierarchical structure. Originally
inspired by Schenkerian analysis and generative linguis-
tics [9], grammatical models have been used in music the-
ory [14, 19, 24, 25], computational musicology [1, 5, 6, 13,
16, 27], music information retrieval [3, 4, 12, 18, 26], and
increasingly also music psychology [7, 20]. Consider for
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example the Jazz chord sequence C6 D7 Dm7 G7 C6 of the
A-part of the Jazz standard Take the A-Train. A hierarchi-
cal analysis of this sequence is shown in Figure 1a. The
progression D7 Dm7 G7 forms a dominant phrase inside
the tonic phrase C6 D7 Dm7 G7 C6, exhibiting a non-local
harmonic relationship between the chords D7 and G7. The
nesting of the phrases moreover illustrates the idea of how
pieces can be decomposed into hierarchically-structured
constituents (subtrees) which stand in part-whole relation-
ship with one another [6]. Figure 2 displays a typical case
of a non-local harmonic relation in Jazz harmony.

To analyze hierarchical harmonic structures, music the-
orists make use of many additional structural features such
as melody, rhythm, voice-leading, and form, for disam-
biguation. From this perspective, the latent harmonic
structure of a piece cannot be fully inferred from sequences
of chord symbols alone. Most existing grammatical mod-
els of harmony, however, do not take these other domains
of musical structure in account. In this paper, we propose
a novel formalism that combines models of different musi-
cal features. The mathematical idea is similar to Coupled-
context-free Grammars [17]. We extend that approach by
a probabilistic model and apply the general construction to
improve models of harmonic syntax by incorporating har-
monic rhythm.

1.1 Problem Setting

Existing grammatical models of harmony typically do not
capture how harmonic structure is laid out in time [21],
as shown in Figure 1a. This analysis captures informa-
tion such as the dependencies between different kinds of
musical phrase (tonic, dominant, subdominant), ordering,
and hierarchical constituency, but contains no information
on the duration of chords. This paper extends models of
harmonic syntax to include rhythmic structure illustrated
in Figure 1b. This figure shows how the musical phrases
in Figure 1a are laid out in time by progressively assign-
ing constituents to a metrical grid consisting of eight mea-
sures. The inclusion of the metrical domain reveals previ-
ously hidden structure. In the first step, the root of the har-
monic tree is assigned to the entire eight bars. In the sec-
ond step, the tonic phrase is split into equal halves which
are assigned to bars 1-4 and bars 5-8 of the metrical grid.
In the third step, the second half of the piece is split into
equal halves, introducing a V in the first part of the split
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and limiting the tonic scale degree to the second part. The
fourth step, in contrast, splits the first half (measures 1–
4) into two and assigns the second half of this split to the
second half of the progression (measures 5–8). Measures
3 and 4 are said to be a harmonic upbeat to measures 5
and 6. In the following, we present an integrated model
of harmony and phrase rhythm [22] that accounts for the
structural differences of the steps three and four. Note that
we therefore assume the existence of hypermeter, the ex-
tension of metrical structures within a single measure to
relations between measures [11].

We propose an approach that models the upbeat and the
downbeat of harmonic constituents separately. Figure 1c
shows a hierarchical analysis integrating harmonic syntax
and harmonic rhythm. In this notation, the durations of
upbeats are separated from the durations of downbeats by
the symbol ⊕. The symbol 	 is used to indicate the “time
stealing” from generation step 3 in Figure 1b.

2. GRAMMATICAL MODELS

2.1 Abstract Context-Free Grammars

The following two definitions are adopted from [6], where
further explanation and examples can be found.

A (non-probabilistic) Abstract Context-free Grammar
G = (T,C,C0,Γ) consists of a set T of terminal symbols,
a set C of constituent categories, a set of start categories
C0 ⊆ C, and a set of partial functions

Γ := { r | r : C 7→ (T ∪ C)∗ } , (1)

called rewrite rules or rewrite functions. The arrow 7→ is
used throughout the paper to denote partial functions and
dom(r) denotes the set of arguments for which a partial
function r is defined. A sequence β ∈ (T ∪ C)∗ can be
generated from a sequence α ∈ (T∪C)∗ by one rule appli-
cation of a rewrite function r ∈ Γ, denoted by α −→r β,
if there exist α1, α2 ∈ (T ∪ C)∗ and A ∈ C such that
α = α1Aα2 and β = α1r(A)α2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals α ∈ T ∗ if there exists a start category α1 ∈ C0, and
α2, . . . , αn ∈ (C ∪ T )∗ such that

α1 −→r1 α2 −→r2 · · · −→rn α, (2)

where ri is always applied to the leftmost category of αi
for i ∈ { 1, . . . , n− 1 }. The set of derivations of α is
denoted by D(α). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

A Probabilistic Abstract Context-free Grammar is an
Abstract Context-free Grammar where each category A ∈
C is associated with a random variable XA over rewrite
functions r such that the probability P(XA = r) is positive
if and only if r(A) is defined, that is A ∈ dom(r). In the
following, we also use the notation p(r | A) = P(XA = r)
and p(A −→r α) = P(XA = r) 1(r(A) = α). The prob-
ability p(d) of a derivation d = r1 . . . rn of a sequence
of terminal symbols α ∈ T ∗ is defined as the product∏n
i=1 P(ri | Ai) where in each step ri is applied to a cat-

egory Ai ∈ C. The probability of α is then defined as
p(α) =

∑
d∈D(α) p(d).

I

I

I

C6

V

V

V

G7

II

Dm7

V/V

D7

I

C6

(a) Generative syntax tree of the harmonic structure. The leafs of
the tree are the chord symbols of the A-part. The internal nodes
show scale degrees with respect to C major as latent categories.
Subtrees form harmonic constituents. The nested structure of the
subtrees shows how complex constituents are build from simpler
constituents [6].

1: | I | | | | | | | |

2: | I | | | | I | | | |

3: | I | | | | V | | I | |

4: | I | |V/V | | V | | I | |

5: | I | |V/V | | II | V | I | |

6: |C6 | |D7 | |Dm7 |G7 |C6 | |
(b) Schematic generation of the chord sequence including their
metrical positions. Each row consists of 8 measures and shows
one step in the generation process. Chords are tied over follow-
ing “empty” measures. The third and the fourth step show the
two basic kinds of harmonic preparation with respect to their
metrical placement. In step three, the preparation of the I by
the V pushed the I back by two measures while in step four, the
preparation of V by V/V protrudes into the time domain of the
preceding I.
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(c) Generative syntax tree of the harmonic structure with inte-
grated rhythmic information. The numbers in parentheses de-
note the duration of the constituents relative to the whole pro-
gression. The branch I(1) −→ I( 1

2
	 1

4
) I( 1

4
⊕ 1

2
) is an in-

stance of a split that anticipates the upbeat preparation of G7 by
D7. Because of a 2 measures long upbeat, the left child is 2 mea-
sures shorter and the right child is 2 measures longer than in a
preparation without an upbeat.

Figure 1: Hierarchical analysis of the A-part of the Jazz
standard Take the A-Train in C major, considering the
structural domains of harmony and rhythm.
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Figure 2: Hierarchical analysis of the Jazz standard Half Nelson, integrating harmonic and rhythmic structure. In this tree,
a duration of 1 corresponds to one measure for the sake of readability (the whole tune spans 16 measures). The non-local
dependency between the chords A[4 and G7 constitutes a characteristic harmonic relation of the tune.

2.2 Product Grammars

This paper proposes to improve generative grammar mod-
els of harmony by forming a product of a harmony gram-
mar and a rhythm grammar.

Let G = (T,C,C0,Γ) and G′ = (T ′, C ′, C ′0,Γ
′) be

two PACFGs and let ar(r) denote the arity of a rule r,
which is defined as the length of its right-hand side. The
product grammar

G ./ G′ = (T × T ′, C × C ′, C0 × C ′0,Γ ./ Γ′) (3)

is constructed from the Cartesian products of the sets of ter-
minals, categories, and start categories. The rewrite func-
tions of G ./ G′ are all pairs of functions of equal arity,

Γ ./ Γ′ = { (r, r′) ∈ Γ× Γ′ | ar(r) = ar(r′) } . (4)

For a product category (A,A′) ∈ C×C ′ and rewrite func-
tions r ∈ Γ and r′ ∈ Γ′ of equal arity, the application of
(r, r′) to (A,A′) is defined component-wise,

(r, r′)(A,A′) = (r(A), r′(A′)). (5)

By abuse of notation, the right-hand side of this equation
does not stand for a pair of sequences, but a sequence of
pairs. The probability of a product rule application is de-
fined as the product of the probabilities of the rule applica-
tion components,

p((r, r′) | (A,A′)) = p(r | A) p(r′ | A′). (6)

That is, the choice of rule r is set to be independent of A′

and r′, and the choice of r′ is independent of A and r in
the generative process.

A helpful intuition of product grammars is that they
compute the intersection of two sets of derivation trees for
a sequence. The derivation trees of the grammar G ./ G′

are exactly those which are derivations in both G and G′

if the labels of the trees (terminals and categories) are ig-
nored. The probability of a derivation in G ./ G′ is then
also equal to the product of its corresponding derivations
in G and G′.

2.3 Rhythm Grammar

2.3.1 Full Rhythm Grammar

A rhythmic category a ⊕ b consists of two rational num-
bers a ∈ Q and b ∈ Q such that 0 ≤ a, 0 < b, and
a+ b ≤ 1. The first number a is called the upbeat and the
second number b is called the downbeat of the category.
The intuition behind the symbol ⊕ is that the total length
of a rhythmic category equals the sum of its two compo-
nents, λ(a ⊕ b) := a + b, where λ is the function that
denotes the length of the rhythmic constituent as a pro-
portion of the overall piece, which is fixed to be the unit
1 ∈ Q. The condition 0 ≤ a forbids negative upbeat parts,
0 < b ensures positive category lengths, and a + b ≤ 1
ensures that no category is longer than the whole piece.
For convenience, we use two additional short-hand nota-
tions: a category with no upbeat is denoted by the length
of its downbeat, b = 0 ⊕ b. The category of a rhythmic
constituent that loses a portion c of its downbeat (formerly
with length b) to the upbeat of the following rhythmic con-
stituent is denoted by b 	 c := 0 ⊕ (b − c). In this case
λ(b	 c) = b− c, too.

The start category of the rhythmic grammar is 1, the
length of the piece, and any category with zero upbeat
is allowed to be a terminal (leaf node). The essential
grammar rules are given by two families of rewrite func-
tions, one family of partial functions for splitting the up-
beat components of categories usplitv : C 7→ C∗ and
one family of total functions for splitting the downbeats
dsplituv : C → C∗,

usplitu(a⊕ b) := ((1− u)a⊕ ua) (0⊕ b)
(7)

dsplitvw(a⊕ b) := (a⊕ (1− v − vw)b) (vwb⊕ wb),

where u, v, w ∈ Q such that 1
2 < u ≤ 1 and a > 0 in

the first equation, and 0 ≤ v < 1 and 0 < w < 1 in the
second equation. The parameter u represents the downbeat
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proportion of the upbeat, v is the upbeat proportion of the
second category of a downbeat split, andw is the downbeat
proportion of the second category of a downbeat split.

In other words: The upbeat split rule usplitu sepa-
rates the upbeat from the downbeat and optionally splits
the upbeat again into a new upbeat and downbeat. For ex-
ample for u = 1 and u = 2

3 :

1
4 ⊕

2
4

2
4

1
4

3
8 ⊕

4
8

4
8

1
8 ⊕

2
8

and

In contrast, the downbeat split dsplitvw ignores the up-
beat and splits the downbeat. It optionally introduces a
new upbeat preparation. For example for v, w = 0, 1

2 and
v, w = 1

2 ,
1
2 :

1
4 ⊕

2
4

1
4

1
4 ⊕

1
4

1
4 ⊕

2
4

1
8 ⊕

1
4

1
4 ⊕

1
8

and

One rule unary(a⊕b) := a⊕b is added to the grammar
to ensure compatability with grammars that use rewrite
rules of arity one.

The probability of a rhythmic rewrite functions does not
depend on the particular rhythmic category that it rewrites,
but only on whether or not the category has an upbeat of
length zero. This enables a maximal sharing of probability
mass by preserving consistency with the constraints of the
rewrite rules. More precisely,

1 = p(unary | a⊕ b) (8)

+
∑

1
2<u≤1

p(usplitu | a⊕ b)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | a⊕ b)

for a > 0 and

1 = p(unary | 0⊕ b) (9)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | 0⊕ b).

For practical applications, the parameters u, v, and w are
limited to a finite set of rational numbers to put a proper
normalized prior on the rule distributions.

2.3.2 Simplified Rhythm Grammar

For comparison, we additionally consider a simplified ver-
sion of the rhythm grammar presented above which does
not explicitly model upbeats. The rhythmic categories
and the terminals of this grammar are rational numbers
0 < a ≤ 1 representing constituent durations relative to
the full piece. Apart from the technical unary rule, the rules
of the grammar form a family of total rewrite functions

splits(a) := (sa) (a− sa). (10)

The parameter 0 < s < 1 is called the temporal split ratio
of the rule. The probabilities of the rewrite rules are set to

be independent from the category they rewrite. Therefore,

1 = p(unary) +
∑
a∈Q

p(splita). (11)

2.4 Harmony Grammar

The harmony grammar used in this paper is a standard
probabilistic context-free grammar (Σ, N, S,R) in Chom-
sky normal form. It consists of a set Σ of chord sym-
bols as terminal symbols, a set of copies of chord symbols
N as non-terminal symbols, a distinguished start symbol
S ∈ N , and a set of standard rewrite rules

R ⊆ {A −→ B1 B2 | Bk ∈ N,A = B1 or A = B2 } .

In particular, rules of the form A −→ A A are included by
this definition. Each non-terminal symbol A is also asso-
ciated with a random variable XA over rewrite rules that
have A as their left-hand side. The symbols, rules, and
parameters of the grammar are read from dataset of tree
annotations described in the next section.

Note that since every rewrite rule of a standard context-
free grammar can be interpreted as a partial function with
a singleton domain,

dom(A −→ α) = {A } for all α ∈ (Σ ∪N)∗, (12)

every standard context-free grammar is also an Abstract
Context-free Grammar and can be used in the product
grammar construction.

3. DATASET

This study uses a dataset of 75 hand-annotated tree analy-
ses of Jazz chord sequences from the iRealPro dataset [23].
The tree annotations were performed by the authors and a
student assistant. Each chord sequence is annotated with a
single binary tree that spans the whole piece. In contrast to
the introductory examples of this paper, the internal nodes
of each tree in the data are not labeled by scale degrees
but chord symbols. depth one subtrees corresponds to a
rule of the grammar described in the previous section. Fig-
ure 3 shows the absolute frequencies of the 20 most fre-
quent harmonic rewrite rules from the dataset, after each
sequence was transposed to the root of C. Rules of the
form A −→ A A, called prolongation rules, and rules
of the form A −→ B A for A 6= B, called preparation
rules, are the most used rule schemes.

The dataset additionally includes the length of each
chord in quarter notes. The chord durations of each piece
are divided by the total duration of the piece. From
the chord durations and the harmonic tree annotations,
the duration of each constituent (subtree) can be calcu-
lated automatically as shown in Figure 4. The temporal
split ratios of the rule applications–as introduced in Equa-
tion 10–are then in turn calculated from the durations of
the constituents. Consider for example the rule application
G7( 5

32 ) −→ F4( 2
32 ) G7( 3

32 ) from Figure 4. Its temporal
split ratio is 2

5 .
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Figure 3: Absolute frequencies of the 20 most frequent
harmonic rewrite rules of the tree annotations. All se-
quences are transposed to the common root C. Major-
seventh chords are denotes as Cˆ7 and A[ˆ7.

C6( 8
32 )

C6( 7
32 )

C6( 2
32 )G7( 5

32 )

G7( 3
32 )

G7( 2
32 )F]∅7( 1

32 )

F4( 2
32 )

F4( 1
32 )C7( 1

32 )

C4( 1
32 )

Figure 4: Tree annotation of the last chords of St. Thomas.
Chord durations are shown relative to the total duration of
the tune, 2

32 corresponds to one measure. The durations of
the inner nodes are calculated automatically.

Figure 5: Absolute frequencies of the 10 most frequent
split ratios of annotated tree constituents. The split ratio
of a binary rewrite rule is defined as the time proportion
of the left child. The y-axis is plotted using a logarithmic
scale.

The 10 most frequent temporal split ratios are shown in
Figure 5. The split ratio 1

2 is by far the most frequent one.
Most of the remaining ratios can be expressed either as
n−1
n or as 1

n for some n ∈ N. The former arise for example
from chains of descending fifths or applied dominants that
accumulate time step by step in the temporal order of the
piece. The latter arise from upbeat preparations that can
be understood using the rhythmic categories described in
Section 2.3.1. Two rhythmic rewrite rules that explain a
split ratio of 1

n are
(
n
m

)
−→

(
n
2

m 	
n
2−1

m

) (
n
2−1

m ⊕
n
2

m

)
and

(
1
m ⊕

n−1
m

)
−→

(
1
m

) (
n−1
m

)
, where m ∈ N. The

former results from a downbeat split with w = 1
2 and the

latter results from an upbeat split with u = 1.

4. PARSING WITH PRODUCT GRAMMARS

A naive approach to parsing against a product grammar
would enumerate all product categories and memoize the
inverted rewrite rules on these categories. In this section,
we show how the inefficient blow-up of the number of cat-
egories can be avoided using the independence assumption
of Equation 6.

Consider an Abstract Context-Free Grammar in Chom-
sky normal form. The standard CYK algorithm–here used
to calculate the probability of a sequence of terminals
w ∈ T ∗ of length n, indexed from 0 to n − 1–can be for-
mulated recursively by the equations

p(A, i, i) =
∑
r∈Γ

p(A −→r wi) (13)

and

p(A, i, j) (14)

=

j−1∑
k=i

∑
r∈Γ

p(A −→r B1 B2)p(B1, i, k) p(B2, k + 1, j)

where A,B1, B2 ∈ C and i, j ∈ N such that 0 ≤ i < j ≤
n − 1. The probability of the sequence is then given by
p(w) =

∑
A∈C0

p(A, 0, n− 1).
Given a product grammar G ./ G′, a sequence of prod-

uct terminals can be parsed utilizing Equation 6,

p((A,A′), i, i) =
∑

(r,r′)∈Γ./Γ′

p(A −→r wi) p(A
′ −→r′ w

′
i)

(15)

and

p((A,A′), i, j) =

j−1∑
k=i

∑
(r,r′)∈Γ./Γ′

p(A −→r B1 B2)

(16)

p(A′ −→r′ B
′
1 B
′
2)p((B1, B

′
1), i, k) p((B2, B

′
2), k + 1, j)

It is therefore sufficient to parse the component grammars
individually at each step. In other words, the combined
grammar is computed on-the-fly to achieve efficiency.
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5. EXPERIMENTS

We compare four product grammars that integrate har-
monic and rhythmic structure. Additionally, we report the
performances of their single-domain components and of
a random baseline. As first component, we consider the
harmony grammar presented in Section 2.4, trained either
on the annotations in the original keys of the tunes or on
the annotations after each tune was transposed to C ma-
jor. As second component, we consider the full rhythm
grammar presented in Section 2.3.1 that distinguishes up-
beats and downbeats of constituents, and its simplification
that uses the total length of the constituents, presented in
Section 2.3.2. All models are trained and evaluated on
the dataset described in Section 3. Apart from the full
rhythm grammar, all models are trained by counting the
harmonic rewrite rules or the temporal split ratios present
in the dataset. The full rhythm grammar is trained using
variational Bayesian inference [8]. Every model predicts
the latent tree structure of a given sequence using the max-
imum a posteriori tree. One-fold cross validation was ap-
plied to avoid overfitting to the data: 75 times the model
was trained on 74 sequences and evaluated on the remain-
ing sequence.

5.1 Evaluation Metric and Baseline

The similarity of two trees is calculated as the unlabeled
tree accuracy, defined as follows. Let α be a sequence of
n terminals, left-to-right indexed from 0 to n − 1, let t be
a tree with α as leafs, and let s be a subtree of t. The
span of s is defined as the pair of the index of its left-most
child and the index of its right-most child. The set of spans
of t consists of the spans of all subtrees of t that are not
leafs. The unlabeled tree accuracy of a tree prediction t to
the respective Goldstandard tree t∗ is then defined as the
cardinality of the correctly predicted spans, divided by the
total amount of spans of t∗.

Given a chord sequence of length n, the random base-
line uniformly samples one tree from the set of all binary
trees with n leafs.

5.2 Results and Discussion

The results of the computational experiments are shown in
Figure 6. All combined models of harmony and rhythm
perform significantly better than the single-domain har-
mony grammars and all models perform significantly bet-
ter than the random baseline (p < 0.01 using 2-sample
bootstrap tests). There is no statistical difference observ-
able between the not transposed and the transposed har-
mony models. Surprisingly, the single-domain rhythm
grammars perform much better than the single-domain har-
mony grammars. This is, however, only possible because
we consider the unlabeled tree accuracy. Other measures
such as perplexity would reveal the obvious incapability of
the rhythm grammars to predict chord sequences.

Both rhythm grammars improve the harmony models
similarly. As discussed in Section 3, the simplified ver-
sion of the proposed rhythm grammar is also able to cap-

Figure 6: One-fold cross-validated tree accuracies of the
tested models and the random baseline. The error bars
show 95% bootstrap confidence intervals. The combined
models of harmony and rhythm perform significantly bet-
ter than the plain harmony grammars.

ture some complex rhythmical structures. The music-
theoretically more sophisticated formalism, however, fa-
cilitates the interpretation and explanation of the observed
split ratios.

6. CONCLUSION

The usage of rhythmical information is shown to signifi-
cantly improve the performance of harmonic syntax mod-
els. The empirical comparison between a music-theoretical
motivated model and its simplified version shows that both
models improve the harmony grammar equally well. The
simplified model can therefore be used as an algorithmic
proxy of the more expressive model. This might, how-
ever, only be true for rhythmically regular structures such
as the harmonic rhythm of chord sequences from Jazz stan-
dards. It is, moreover, surprising how much information is
already contained in the rhythm of the sequences, which
underpins the importance of the rhythmic dimension of
music [10]. In these sequences, both the harmonic syn-
tax and the phrase rhythm work together to strengthen the
intentionality of the music.

The here proposed model of interaction between har-
mony and rhythm is also capable to describe the interaction
of pitch and rhythm in melodies. A rewrite function for
syncopation could be added for future applications, since
syncopation is an essential part of melodic rhythm.

The general product grammar construction presented in
this paper integrates multiple domains of structure using
strong independence assumptions. Future research can ex-
tent the formalism, explicitly modeling inter-domain de-
pendencies. We hope that the presented approach will
prove to be useful for applications such as rhythm quanti-
zation [2], the definition of similarity metrics [5], and com-
putational composition assistance [15].
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