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ABSTRACT

We explore a novel way of conceptualising the task of
polyphonic music transcription, using so-called invertible
neural networks. Invertible models unify both discrimina-
tive and generative aspects in one function, sharing one set
of parameters. Introducing invertibility enables the practi-
tioner to directly inspect what the discriminative model has
learned, and exactly determine which inputs lead to which
outputs. For the task of transcribing polyphonic audio into
symbolic form, these models may be especially useful as
they allow us to observe, for instance, to what extent the
concept of single notes could be learned from a corpus of
polyphonic music alone (which has been identified as a se-
rious problem in recent research). This is an entirely new
approach to audio transcription, which first of all necessi-
tates some groundwork. In this paper, we begin by looking
at the simplest possible invertible transcription model, and
then thoroughly investigate its properties. Finally, we will
take first steps towards a more sophisticated and capable
version. We use the task of piano transcription, and specif-
ically the MAPS dataset, as a basis for these investigations.

1. INTRODUCTION

For practitioners who apply deep neural network models
to music information retrieval tasks, interpretability of pre-
dictions is of great interest. Knowing what the model was
able to learn from the data, and examining the underly-
ing causes for a prediction increases trust in the model.
Being aware of the reasons for a classification result al-
lows us to discover whether the model has learned rules
that would pass a basic sanity check with a domain ex-
pert, or if it has picked up on seemingly irrelevant factors
present in the data, which made it possible for the network
to solve the task in a different, unexpected, possibly un-
wanted way [31]. There are quite a few ways to obtain
an explanation from a neural network. Several methods
use the gradient of an output with respect to the input as
a starting point, such as [28, 32]. There are also meth-
ods that aim to provide model agnostic explanations, for
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Figure 1: Computing the framewise transcription ŷ and
nuisance variables ẑ from spectrogram input x. The pre-
dictions [ŷ; ŷzpad; ẑ] are then used to exactly reproduce
x̂. The elementwise difference x− x̂ is negligible. An in-
depth discussion of this figure is deferred until Section 4.2.

instance [24, 27], and a specialization of one of the afore-
mentioned methods to MIR systems [23] in particular.

Beyond providing explanations for predictions, a model
should ideally be able to provide an answer to the ques-
tion “What do you consider representative examples for a
concept of interest?”. Taking first steps towards producing
models that are able to derive semantic information from
the input, and are able to answer this question, we explore
invertible neural networks (INNs) with respect to inter-
pretability of predictions, their potential to identify biases
and confounding factors inherent in the training dataset,
and ability to generate samples for a semantic concept of
interest.

Additionally, we consider ways in which these models
could enable us to locate ambiguous or uncertain predic-
tions on unlabeled data, to provide eventual users of the
MIR model with hints on where manual postprocessing of
the predictions might be advisable. We choose to conduct
our investigation in the context of polyphonic piano tran-
scription and provide a first glimpse at the capabilities of
INNs in Figure 1. The input x to the INN is a magni-
tude spectrogram of an excerpt from a polyphonic piano
piece, the output is split into a semantic part y containing
variables of interest, and a nuisance part z, optimistically
containing all other factors of variation that are irrelevant
for the MIR task the model was trained for. From these
two output vectors, a hypothetical, perfectly converged in-
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vertible model can faithfully reproduce the input, down to
a negligible numerical difference.

Invertible neural networks are parametrized, nonlinear
and bijective functions, trainable from matched pairs, sim-
ilar to any other neural network in a supervised learning
task. The architectures we consider here are all constructed
in such a way that the inverse is available in closed form.

Networks designed in this fashion have a few desir-
able properties. They are both discriminative and gener-
ative models unified in one function, sharing one set of pa-
rameters. To put this into context, training a transcription
system also yields a synthesizer, and vice versa training a
synthesizer yields a transcription system. The term “syn-
thesizer” is used rather loosely here, as the transcription
system is trained with magnitude spectrograms.

This setup enables a direct interpretation of predictions
by looking at what samples the model produces, condi-
tioned on the predictions. This can potentially be extended
until after eventual postprocessing steps, to see whether the
generated samples are still close to the input in data space.

Furthermore, in order for a practitioner to understand
whether the discriminatively trained network has learned
to distinguish multiple concepts reasonably well, she can
directly obtain samples from the model for each different
concept. As an illustrative example, we choose the task of
transcribing polyphonic audio into a symbolic format. This
is a multi-label problem, assigning multiple note labels
to each (quantized) point in time. Transcription systems
based on neural networks are commonly learned from cor-
pora containing large amounts of polyphonic music. Due
to having the inverse available to us in closed form, we are
able to sample all different single notes from the network
to directly see whether the concept of single, isolated notes
could be learned by training on our polyphonic corpus, or
if multiple notes have been “smeared” together, and could
not be disentangled from each other, or if the concept could
not be learned at all. To the best of our knowledge, this is
still an open problem that mostly affects polyphonic tran-
scription systems based on neural networks, as discussed
in [20].

2. RELATED WORK

Invertible neural networks were first introduced in [6] and
rediscovered in [2]. They define a nonlinear, bijective
mapping between inputs and outputs. They can be used
to transform arbitrarily complex distributions into simple,
factorized distributions. This concept became more widely
known as normalizing flows, introduced in [11], general-
ized in [33], and has been used in [8] for density estima-
tion, and improving variational inference in [26]. Various
types of (more expressive) normalizing flows have been
introduced in [9,34,35]. In [21] normalizing flows are em-
ployed as generative models for high resolution samples
comparable to those produced by high resolution genera-
tive adversarial networks (GANs), e.g., [18].

With a greater focus on the invertibility aspect, [1] uses
bijective architectures to approximate physical processes
with a well defined forward model, in order to obtain the

posterior distribution over inputs conditioned on desired
outputs. We adopt parts of their terminology and training
procedure. The differences will be discussed in more detail
in Section 3. In [17] injective and bijective i-RevNets are
introduced, architectures similar to ResNets [14], which
are invertible up to the last layer. In [16], fully invertible
RevNets in conjunction with a new objective function are
used to train classifiers which are more robust against ad-
versarial attacks. We borrow their term “nuisance” vari-
ables to describe what information is supposed to end up
in the output vector z.

Distribution matching in this work is done using the
sliced Wasserstein distance. Introduced in [4, 25] as a dis-
tance measure for texture synthesis in a computer graphics
setting, it has been used for encouraging the codes of au-
toencoders to follow a proposal distribution [22], and has
also been directly applied to generative modeling of im-
ages, replacing the domain regressor in GANs [7].

Finally, we draw inspiration from [13] where a
transcription-resynthesis system was introduced, consist-
ing of three separately trained parts, a transcription system,
a language model and a (neural) synthesizer.

3. METHOD

We adhere closely to the invertible neural network archi-
tectures described in [1], with a minor modification to the
training procedure that will be outlined after the formal in-
troduction of invertible neural networks. Our notation also
loosely follows the one used in [1]. Given a data space X ,
a label space Y and a nuisance space Z , we consider a di-
rectly invertible neural network as a parametrized function
fθ : X → Y ×Z where we have access to its closed form
inverse f−1θ : Y × Z → X .

The function fθ maps the input into a label space that
carries semantic information that we are interested in, and
maps the rest of information into a nuisance space. Given
both the semantic and nuisance information, we are able to
obtain the input again via f−1θ .

There are a few different ways such a function can be
implemented in practice, and they all come with various
different architectural constraints. We will first define a
small invertible building block with relatively weak capa-
bilities. These building blocks are then used to construct a
more expressive function.

A necessary structural restriction to a bijective block is
that the dimensionality of the input must match the dimen-
sionality of the output. Another restriction concerns the
inner workings of blocks, so their inverse is available in
closed form. We adopt the affine coupling layer design
in [1], which is a more expressive version of the one in [9].
Its internal structure can be seen in Figure 2. The layer
takes as input a vector u, whose dimensions are first shuf-
fled with a fixed random permutation matrix and then split
into two halves u1,u2. Dimension shuffling causes the
splits to be different from layer to layer and facilitates in-
teraction between components whose indices might be far
apart in the input vector. The permutation matrix is in-
verted by simply transposing it.
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Figure 2: This sketch depicts the structure of the particular
version of affine coupling layers we use. a) The operations
as they are applied in the forward direction. b) The opera-
tions as they are applied in the backward direction. c) The
parametrization of the s1|2 and t1|2 transforms. The cexp
function is only applied after the s1|2 transforms.

Different operations are then applied to each half, af-
ter which the halves are concatenated again to yield the
output v. Equations (1) – (4) show the exact expressions
used to compute results in both directions.

v1 = cexp(s2(u2))� u1 ⊕ t2(u2) (1)

v2 = cexp(s1(v1))� u2 ⊕ t1(v1) (2)

u2 = (v2 	 t1(v1))� cexp(s1(v1)) (3)

u1 = (v1 	 t2(u2))� cexp(s2(u2)) (4)

Operations ⊕,	,�,� (addition, subtraction, multipli-
cation, division) are applied elementwise. The function
cexp is defined as cexp(x) = exp(c · atan(x)) with c > 0
being a hyperparameter. Its purpose is to constrain the out-
put to a reasonable range, and to prevent runaway growth
of activations. The transforms s1|2 and t1|2 are arbitrarily
parametrizable functions, modeling input dependent scal-
ing and translation respectively. All transforms are imple-
mented as standard neural networks, and are not required
to be invertible, because the transformed half of the output
vector can be inverted using the untransformed half. The
network structures we use are shown in Figure 2c.

If the dimensionalities of input and output vectors do
not match, the vectors are padded with zeros during in-
ference, or small scale Gaussian noise during training, to
encourage the network to ignore the additional padding di-
mensions, as done in [1].

Each update of the model involves three passes, one for-
ward pass, and two backward passes. Each pass has its own
set of objective functions. The joint objective function to
be minimized consists of a weighted sum of these terms.
We specify the following notation: vectors are in boldface,
writing vectors in square brackets separated by semicolons
[a;b] denotes concatenation. The vector x is the input to
the model, y is the semantic part of the groundtruth, and z
is a sample from a proposal distribution, which we choose
to be N (0, I). The padding vectors used during training
are denoted as xpad and yzpad respectively, and are drawn
from N (0, ε) for each update, with ε > 0 a hyperparame-
ter. Symbols with a circumflex always refer to model out-
puts with a direct counterpart in the groundtruth. We de-

Algorithm 1 Sliced Wasserstein Distance dSWD(A,B)

Let S ← 0 and A,B ∈ Rn×d (two samples)
For 1 ..m do
p← p′/‖p′‖ such that p′ ∼ N (0, I) and p′ ∈ Rd×1
a← sort[Ap]; b← sort[Bp]
S ← S + ‖a− b‖22/n

Return S/m

note a zero vector of a size appropriate in the context it
appears in as 0. A sample from the model will be written
as xsam. Equation (5) fully specifies all inputs and outputs
for an invertible neural network used in the forward direc-
tion, equation (6) does the same in the backward direction,
and (7) specifies how samples are drawn.

[ẑ; ŷzpad; ŷ] = f([x;xpad]) (5)

[x̂; x̂pad] = f−1[ẑ;yzpad; ŷ] (6)

[xsam; x̂pad] = f−1[z;0;y] (7)

Having defined these quantities, we can now proceed
with defining the individual loss terms that will make up
the joint objective function. Mean squared error (8) is
used to fit the labels from the groundtruth, and the re-
construction of the input (9). We deviate from [1] and
use the sliced Wasserstein distance (dSWD) [25] instead
of the maximum mean discrepancy (dMMD), to measure
the distance between distributions, as we found it to be
better behaved for high dimensional data. The intuition
behind dSWD is to decompose the high dimensional opti-
mal transport problem into m 1-dimensional ones, by ran-
domly projecting samples A and B onto lines, allowing the
resulting 1-dimensional problems to be solved by comput-
ing the distance between sorted components. In equation
(10), dSWD is used to minimize the distance between sam-
ples from the joint distribution over the outputs [ŷ; ẑ] and
samples from the joint distribution over the labels and the
proposal distribution [y; z]. Please note that following the
advice laid out in [1], no gradient information from this
objective is propagated back over ŷ, to not unduly disturb
the label fitting process. Informally stated, the purpose of
including y and ŷ in the distribution matching process is
to “group” samples together for which ẑ needs to follow
a Gaussian distribution, resulting in the distributions p(ŷ)
and p(ẑ) to gradually decouple, and become independent
of each other, with the side effect of erasing label infor-
mation from ẑ. dSWD is also used in (11), to minimize
the distance between the distribution of samples generated
from the model and the groundtruth.

Ly(y, ŷ) = MSE(y, ŷ) (8)

Lx̂(x, x̂) = MSE(x, x̂) (9)

Lyz([y; z], [ŷ; ẑ]) = SWD([y; z], [ŷ; ẑ]) (10)

Lxsam
(x,xsam) = SWD(x,xsam) (11)

Lxpad
(xpad, x̂pad) = MSE(xpad, x̂pad) (12)

Lyzpad
(yzpad, ŷzpad) = MSE(yzpad, ŷzpad) (13)
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Finally, the padding dimensions are taken care of with
mean squared error terms (12) and (13), to encourage the
network to disregard information in these dimensions. Fol-
lowing advice in [1], the individual loss terms that sum up
to the joint objective are weighted such that their magni-
tudes are approximately equal to each other, by restarting
the optimization process multiple times and adjusting the
weights until this condition is met.

4. EXPERIMENTS

This section is split into multiple parts, starting out with
a description of the data preparation procedure, followed
by an empirical assessment of the usability of INNs for
practitioners in subsection 4.1, a critical examination of
the interpretability of a trained model in subsection 4.2,
and finally an analysis of how well the concept of sin-
gle notes could be learned from a polyphonic corpus in
subsection 4.3.

All model training, testing and generative sampling ex-
periments were carried out with the MUS subset of the
MAPS corpus [10]. This subset contains 210 polyphonic
piano pieces rendered with 7 sample based synthesizers,
and 60 recordings of a YAMAHA Disklavier in two dif-
ferent recording conditions. After removing all synthe-
sized pieces that also occur in the set of recordings, we
are left with 139 pieces for training, and the 60 Disklavier
recordings for testing, according to the procedure outlined
in [12]. Evaluation measures are computed individually
for each piece in the test set, and the mean over all pieces
is reported. Groundtruth information is available as tem-
porally aligned MIDI files. Sustain pedal control values
are quantized, and the pedal considered fully engaged if
its MIDI control value exceeds 64. All offsets of notes that
are sounding while sustain is in effect are extended in time,
until the pedal is released again.

The label information y that the model has to learn
is derived from the MIDI groundtruth and consists of 3
parts: the note phase, its velocity and instrument infor-
mation. For each piano key, the temporal evolution each
note is modeled with an exponentially decaying curve, de-
fined as curve(τ) = 0.99τ · 5, with 0 ≤ τ < duration.
It starts at the onset of a note, lasts for its duration, and
drops off immediately after the offset. The velocity part
is derived from the MIDI velocity value scaled into the in-
terval [0, 1]. This procedure is also outlined in Figure 3,
and repeated for each of the 88 piano keys. Finally, in-
struments are numbered from 0 to 8, corresponding to one
of the 7 sample banks or alternatively one of the two mi-
crophone conditions for the Disklavier recordings, and are
one-hot encoded. For each (quantized) point in time t
all three parts are concatenated into the vector yt, having
9 + 88 + 88 = 185 components. This particular label
vector derivation is chosen so that yt contains all neces-
sary information to generate spectrogram frames for dif-
ferent instruments and notes at the right volume and the
right stage of a notes’ temporal evolution without any ad-
ditional context information from neighboring frames. The
length of zt was treated as a hyperparameter, and selected

Figure 3: This illustration shows how the note phase and
velocity part of the label information y is derived for mul-
tiple notes played by a single key.

via cross validation on a small subset of the training set.
Its length appears to have negligible influence given all the
other settings, and was set to 9 for all models subsequently
used. The corresponding data xt are magnitude spectro-
grams processed by a semi logarithmic filterbank, and the
resulting bins bt are elementwise processed by the func-
tion log(1 + bt), approximating human loudness percep-
tion to finally yield a vector xt of length 144. All spectral
feature extraction and filtering is done with the madmom
library [3]. The frame rate at which pairs (xt,yt) are ex-
tracted from the audio and MIDI files is 25 frames per
second. As all input is processed in a framewise fash-
ion everywhere, we omit the subscript t, denoting time
in frames, for all plots and most equations to not add ad-
ditional clutter. To increase the capacity of the INN, we
add zero padding vectors to both input (xpad) and output
dimensions (yzpad), so the number of components in the
padded vectors sum up to 256 in total. Training follows the
procedure outlined in Section 3, and all code is released 1

to facilitate reproducability.

4.1 Usability for MIR tasks

As a kind of quantitative viability test, the capability of
INNs (in combination with simple temporal models) to
produce predictions useful to MIR practitioners, is exam-
ined. We train small recurrent networks (RNNs) on the
framewise predictions ŷ obtained from the INN, in the
hope to obtain cleaner, denoised framewise predictions ŷ′.
The types of RNN cells we use are either LSTM [15] or
GRU [5] cells. In a first attempt, RNNs with very limited
capacity - 4 hidden units / cells for all keys - are employed.
An input sequence to the RNN consists of the note phase
and the velocity part of a single key over the whole length
of the piece, leading to an input dimension of 2. The RNNs
should output a smoothed, denoised version of the note
phase and velocity sequence, and an additional framewise
note activity indicator between 0 and 1, and thus all have 3
outputs. The binary piano roll used to compute framewise
performance measures is obtained by thresholding the note
activity indicator output of the RNNs at 0.5. Training pro-
ceeds one full sequence at a time, picked uniformly at ran-
dom from all 139 · 88 single key sequences derived from
all pieces in the training set. The models with highest F1-
measure on a subset of the training set are then evaluated
on the test set.

In order to evaluate framewise performance for a piece,
we produce framewise transcriptions for all keys with the
INN. Each key is then separately smoothed, denoised, and

1 https://github.com/rainerkelz/ISMIR19
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Method P R F1

INN + GRU (S) 79.74 63.73 70.84
INN + LSTM (S) 80.12 63.91 71.10

INN + biGRU (L) 81.72 64.81 72.29

CNN only [12, 19] 81.18 65.07 71.60
CNN + RNN-NADE [12, 29] 71.99 73.32 72.22

CNN + LSTM [12] 88.53 70.89 78.30

Table 1: Framewise performance of different combina-
tions of acoustic and temporal models on the testset.

its activity is inferred over the length of the piece. We re-
port the results for the small models in Table 1, suffixed
with “(S)”. We would like to note that there was next to no
hyperparameter tuning done, aside from getting the learn
rates for the two different RNN cell types approximately
in the right regime. A slightly larger version uses 3 lay-
ers of bi-directional GRU cells with 8 hidden units, and
dropout [30] with a probability of 0.5, applied to the out-
put of each recurrent layer, before it is passed on to the
next. Results in the table for this type of RNN are suffixed
with “(L)”. The INN has 5 invertible layers, and 990.720
parameters in total. The parameter counts for the recurrent
model variants “GRU (S)”, “LSTM (S)” and “biGRU (L)”
are 111, 143 and 3123 respectively.

We can see that the combination frame-
wise INN + biGRU performs on par with the
CNN + RNN-NADE combination in terms of frame-
wise performance, and slightly outperforms the standalone
CNN. The last three rows in Table 1 are taken from [12],
who re-implemented the approaches in [19] and [29], and
ostensibly performed additional hyperparameter tuning to
improve upon the original results. They also provide the
current state of the art results for this train and test protocol
in the last row, achieved by supplying an additional onset
target to the network during training.

4.2 Interpretability of results

This section considers how the ability to modify the out-
put of the model, and then using it in the backward direc-
tion, can assist the practitioner in determining the causes
in the data that led to a particular prediction. We start
with a thought experiment, and get closer to reality step
by step. Let us assume the model works perfectly, and
given an input x, the model routes all semantic informa-
tion (note phases, velocities, instrument) into the ŷ vector,
all nuisance information (other acoustic variability, such as
microphone characteristics, room reverberation or actual
noise) ends up in ẑ which is distributed asN (0, I), and the
padding vector ŷz is exactly zero. Sampling zs ∼ N (0, I)
and using f−1([ŷ,0, zs]) to obtain the corresponding input
xs will change only nuisance characteristics in the input.
This would also mean that we have full control over the se-
mantic content of the input. We could add or delete notes
in the input simply by adding or zeroing them out in ŷ,
much like we can insert or delete a symbolic MIDI note,
the implication being that every output has a directly inter-
pretable correspondence in the input.
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Figure 4: Gradually denoising the predictions with simple,
ad-hoc rules, zero padding and sampling z ∼ N (0, I). In
practice, this would be done iteratively, always keeping an
eye on how the overall structure of the input is affected.
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Figure 5: The hypothetical case where all predictions
could be perfectly denoised. For purely demonstrational
purposes, this was accomplished through consultation of
an oracle, but one could imagine this to be achievable
through interaction with the system. Although quite a bit
of detail is missing, the majority of the structure in the
original input is nonetheless recognizable in the generated
sample.

A closer look at Figure 1 reveals what can realistically
be achieved just by training a framewise INN with a rather
limited amount of polyphonic data. It is immediately no-
ticeable that ẑ does not appear to be normally distributed.
There are still patterns discernible, making it apparent that
it still contains semantic information. Similar patterns also
exist in ŷzpad (not shown).

It is also observable that the information that is routed
into ŷ is somewhat noisy. We can now attempt to “sep-
arate the wheat from the chaff” by using the INN in the
backward direction with cleaned up predictions. Figure 4
shows what happens when the predictions are partially de-
noised by setting all predictions below a certain threshold
to zero, ignoring the padding vector by zeroing it out, and
sampling z from a unit normal distribution. These simple,
ad-hoc rules cannot get rid of all the noise and discontinu-
ities in the predictions, but are useful to determine which
outputs can be ignored by observing their (collective) im-
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Figure 7: Samples from the model for single notes.

pact on the sample. Figure 5 depicts what can be generated
by the model, assuming that the denoising process of the
predictions were perfect, by consulting an oracle about the
true contents of y. In all figures discussed in this section,
the same excerpt from the test set was used, meaning the
model has never seen any of the examples during training.

4.3 Concept Understanding

Returning to a question raised in the introduction, in this
section the model will be systematically queried about spe-
cific semantic concepts. Arguably, a polyphonic transcrip-
tion system should be able to transcribe isolated notes.
The MAPS dataset provides both renderings and record-
ings of isolated notes, which we utilize to formulate our
queries. For each of the 88 keys, 30 samples are drawn
from the model, using the groundtruth y paired with the
reference recording for the key and z ∼ N (0, I). This
ensures that each sample has the same length as the ref-
erence. For each frame at time t in a sample, the Eu-
clidean distance to the corresponding frame of the ref-
erence recording is measured, and p-quantiles are com-
puted on the resulting lists of framewise distances, with
p ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. Figure 6 depicts the
interquantile range [0.05, 0.95] as light gray, the range
[0.25, 0.75] in a darker shade, and the median as a black
line. It becomes immediately apparent that samples for
rarely occuring (possibly omitted) notes, such as those in
the lower and higher octaves, are highly dissimilar from the
reference recordings, and indicate that these particular iso-
lated notes could not be learned by the network (Figure 7).
Admittedly, this question could have been answered for a
regular feedforward network as well, but would have ne-
cessitated more labeled reference data of the same instru-
ment. The ability to sample from the model allows us to
sidestep the rather cumbersome way of aggregating predic-
tion errors, as was necessary in [20], to arrive at a similar
conclusion.

4.4 Improving Models with temporal context

The invertible models investigated so far all take single
frames as input, without temporal context information. We
trained fully invertible RevNets [16,17] on a variety of dif-
ferent context lengths, but were not yet able to observe
either quantitative or qualitative improvements over the
framewise models. RevNets tend to become rather large
in terms of the number of parameters, input and output
padding is not as straightforward as for framewise models,
the input and output space dimensionality is much larger,
making the sliced Wasserstein distance gradually less ef-
fective due to an increase in necessary computational re-
sources, which in turn further slows down training. Finally,
the amount of training data we use may simply be insuffi-
cient for higher capacity models. However, we believe that
all these issues have appropriate remedies. An immediate
next step would be to apply the same models to the much
larger MAESTRO dataset [13]. We leave these steps for
future work though.

5. CONCLUSION

The viability of invertible neural networks for a selected
MIR task was shown quantitatively in terms of transcrip-
tion performance and a brief numerical analysis of single
concept understanding. A qualitative investigation of the
direct interpretability of outputs back in input space was
conducted. There is ample room for improvement, such as
using an adversarial distance for distribution matching in
both input and output space, or alternatively using the inde-
pendent cross-entropy objective from [16] in latent space.
The objective for the semantic part of the output space
could be similarly augmented to encourage the disentan-
glement of (predictions for) individual notes. Another ob-
vious improvement would be to skip the computation of
filtered spectrograms altogether, and feed in waveforms to
obtain models that can in turn generate waveforms we can
directly listen to.

Beyond the interpretability aspect, we are confident that
invertible neural networks will prove to be useful for other
MIR tasks as well, such as musical content-aware style
transfer (this is already doable with the models used in this
work, by simply changing the instrument encoding when
sampling, although changing from one piano to a different
one is not as exciting as changing it into a trumpet). These
models could also be adapted for (blind) source separation,
to name only two examples.
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