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ABSTRACT

Hierarchical models of music allow explanation of highly
complex musical structure based on the general principle
of recursive elaboration and a small set of orthogonal op-
erations. Recent approaches to melodic elaboration have
converged to a representation based on intervals, which al-
lows the elaboration of pairs of notes. However, two prob-
lems remain: First, an interval-first representation obscures
one-sided operations like neighbor notes. Second, while
models of Western melody styles largely agree on step-
wise operations such as neighbors and passing notes, larger
intervals are either attributed to latent harmonic properties
or left unexplained. This paper presents a grammar for
melodies in North Indian rāga music, showing not only
that recursively applied neighbor and passing note oper-
ations underlie this style as well, but that larger intervals
are generated as generalized neighbors, based on the tonal
hierarchy of the underlying scale structure. The notion of
a generalized neighbor is not restricted to rāgas but can be
transferred to other musical styles, opening new perspec-
tives on latent structure behind melodies and music in gen-
eral. The presented grammar is based on a graph represen-
tation that allows one to express elaborations on both notes
and intervals, unifying and generalizing previous graph-
and tree-based approaches.

1. INTRODUCTION

North Indian classical music (Hindustani music) provides
valuable evidence for theories of syntactic musical organi-
zation. Like Western art music, it takes the form of aes-
thetic communication with an attentive and experienced
audience, and is also a subject of theoretical discourse.
Like most music outside the Western canon, it is nor-
mally unwritten, depending instead on memorization and
improvisation. Instead of a system of chordal harmony or
polyphony, Indian music comprises a solo melody against
a complex background drone (of at least two pitches).
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Melodic elaboration is prized as a means of musical ex-
tension and aesthetic enhancement: it operates at many
levels, from the ornamentation of a single pitch, to the ex-
pansion of a phrase, to the architecture of a piece or perfor-
mance. Melodic coherence is ensured by selecting one of a
set of modes (rāga), each comprising a scale, a pitch hierar-
chy, and a set of licensed pitch transitions; any phrase that
evokes a different rāga from the one selected is regarded
as an error. It has been noted that Indian music resem-
bles language in several respects [17], and a rāga could be
understood as a melodic grammar, in which melodies are
constructed by recursive elaboration over a hierarchically
organized set of pitches.

The idea of understanding music in a hierarchical fash-
ion goes back to Schenker [21], and has developed through
the integration of impulses from generative linguistics and
the theory of formal grammars since the 1980s [24, 1, 11,
20, 16]. Approaches most commonly addressed harmonic
structure [23, 18, 19, 3, 5] and melody [4, 12]. Several ap-
proaches proposed simplified formalizations of Schenke-
rian theory and corresponding computational implementa-
tions [12, 13, 27, 10]. There is still comparably little dis-
cussion concerning the extent to which such hierarchical
frameworks extend to non-Western forms of music. Nar-
mour’s theory of melodic processes is explicitly directed to
capture melodies outside the Western canon as well [15].
The application of Schenkerian methods to non-Western
music has been discussed by Stock [25]. More recently, it
has been proposed to adapt analytical tools from Schenke-
rian analysis and the GTTM to Indian music [14, 2].

This paper links with this discourse and proposes a gen-
eralized formal model of North Indian melodic and phrase
structure. A common shortcoming in previous models of
melodic elaboration is the treatment of leaps, which are
usually either attributed to a latent harmonic structure that
is assumed to be known [12, 9], or modelled as probabilis-
tic intervals [4, 6] without explicit restrictions. This paper
introduces a formalism for relating leaps in North Indian
music to a latent tonal hierarchy that is stated explicitly.
With respect to this hierarchy, leaps can be viewed as in-
stances of generalized neighbor- and passing-note relations
that take into account the stability of a pitch in a scale. As
will be argued, the generalized neighbor idea applies be-
yond North Indian music to some degree.

A central question for elaborative models concerns the
representation of the music. Since formal grammars – the
standard formalism for recursive elaboration – operate on
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Figure 1: Rāga Multānī with pitches in an approximate
Western notation. The notated duration denotes the hier-
archical level, i.e. relative stability, of each pitch; arrows
indicate a constraint on the resolution direction of an un-
stable pitch.

strings of objects, most models of musical elaboration rep-
resent music as a sequence of objects, such as notes or
chords. As a consequence, these models mostly focus on
melodic [4, 6, 12] or homophonic settings [8].

A desirable property of a formal grammar is that it
is context-free, meaning that elaborations on a single ob-
ject are independent from the objects around it. Systems
that are based on strings of notes have problems with be-
ing context-free since some elaboration operations (such
as passing notes) depend on two notes [11]. Because of
this, more recent approaches have been based on strings
of intervals [12, 27, 4], which allow elaborations of both
single notes and pairs of notes while remaining context-
free. However, in an interval grammar, notes are repre-
sented implicitly and redundantly (as part of an incoming
and outgoing interval). In addition, all notes generated by
elaboration are derived from two parent notes, which is un-
intuitive for single-sided operations. As a unification and
generalization of both approaches, this paper suggests a
graph-based representation in which both notes and inter-
vals are represented explicitly, with a graph grammar de-
scribing the elaboration rules. This goes beyond descrip-
tions of derivations as graphs, which is already an estab-
lished practice [12, 27, 10].

2. MELODIC OPERATIONS

Melody in Indian music is based on a set of modes called
rāgas. A rāga is not only a collection of pitches that may
be used, it also establishes a hierarchy of stability among
these pitches. Stable pitches are those that can serve as
resting points, while less stable pitches tend to move to-
wards their more stable neighbors. Some pitches in a rāga
have a preferred resolution direction and must resolve to
the closest pitch in that direction. An example of a rāga
with its scale, tonal hierarchy, and directional constraints
is shown in Figure 1. The relative stabilities indicated in
Figure 1 is based on observation of normal practice in this
rāga.

The melodic elaboration of a rāga is performed most
completely and systematically (though not exclusively)
in ālāp: a type of improvisation in which the scale and
melodic features of the rāga are gradually exposed in
phrases unfolding an arch-shaped trajectory, starting from
the root (scale-degree 1) and reaching the octave above (or
higher) before finally returning to the root (a process called
vistār or “scalar expansion” [26]). This background struc-
ture is filled and elaborated recursively, generating a com-

� ���� � ��� ���� � ��
Figure 2: A short Multānī phrase and its derivation.

d ∈ DM 1 [2 [3 ]4 5 [6 7

δM (d) l ↓ l l l ↓ l
λM (d) 4 0 2 1 3 0 2

Table 1: A formal description of the rāga Multānī, showing
the direction and hierarchical level of each scale degree (as
shown in Figure 1). [2 and [6 are directed downwards and
can therefore only be used before 1 and 5, respectively.

plex foreground melody. Elaboration follows mainly two
principles, inserting either passing or neighbor notes.

Passing notes fill intervals that are larger than steps.
They can occur close to the surface (such as the [2 in
[3 [2 1), but can also be understood to characterize de-
pendencies in the background (e.g., filling the top-level in-
terval 1 - 1′ with a 5). Two kinds of passing elaborations
can be distinguished: Either a single note is introduced that
subdivides the interval, potentially leaving non-step inter-
vals that can be further elaborated; or the interval is filled
with all scale notes enclosed by the interval.

Neighbor notes can be inserted before or after an exist-
ing note. While passing notes relate to both notes of an
interval, neighbors are subordinate to single notes. When
embellishing a note with a neighbor, a trade-off can be
made between pitch proximity and stability: While un-
stable neighbors need to be very close to the main note’s
pitch, more distant neighbors can occur if they are suffi-
ciently stable. In general, a pitch can only be perceived as
a neighbor to some reference pitch if no pitch in the in-
terval between the two is more stable than the proposed
neighbor in the given mode.

Figure 2 shows the steps needed to derive a phrase using
neighbors and passing notes. Starting with a single 1, the
note is duplicated and elaborated twice, first with a lower
neighbor 7, then with an upper neighbor [3. Finally, the
space between [3 and 1 is filled with a passing [2.

3. MODES AND GENERALIZED NEIGHBORS

The idea of modes and generalized neighbors can be given
a formal description: A mode M is a triple

M := (D, δ, λ)

δ : D → {↑, ↓, l}
λ : D → N

where DM is a totally ordered set of scale degrees, δM is
a function indicating the direction in which a scale degree
is allowed to move, and λM returns the hierarchical level
of a scale degree. For example, the rāga Multānī (Figure
1) would be formalized according to Table 1.
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Figure 3: The upper and lower neighbors (dark) of [3
(black) in the Multānī rāga. Only pitches that can be
reached without skipping a more stable pitch are neigh-
bors. [2 is not a neighbor since it is directed downwards
and can only be a neighbor to 1.

The same scale degree can be used as a pitch in different
octaves, so pitches are indicated as scale degrees together
with “′” for octaves above and “′” for octaves below the
default octave. The pitches of adjacent octaves are adjacent
as well: 7′ is directly below 1 and 1′ is directly above 7.
As a result, a mode gives rise to a set of pitches PM , which
corresponds to Z while scale degrees correspond to Z|D|.
For convenience, δM and λM are assumed to be defined on
pitches as well and return the values of the corresponding
scale degrees.

The set of pitches between a pitch p1 and a pitch p2 is
the set of pitches in the open interval (p1, p2) that agree
with the direction of the interval:

∆M (p1, p2) =


{p ∈ PM | p1 < p < p2 ∧ δM (p) 6=↓}

if p1 < p2

{p ∈ PM | p1 > p > p1 ∧ δM (p) 6=↑}
if p1 > p2.

The neighbors of a pitch p ∈ PM are then all pitches
n ∈ PM that have a higher level than all pitches between p
and n. In addition, the direction of n must agree with the
direction from n to p:

nbM (p) = {n ∈ PM | p 6= n

∧ ∀q ∈ ∆M (n, p) : λM (q) < λM (n)

∧ n� p},

where

n� p =


δM (n) 6=↑ if p < n

δM (n) 6=↓ if p > n

true otherwise.

Thus, every pitch is a neighbor to p only if it can be reached
from the reference pitch without skipping a more stable
pitch than the neighbor, as illustrated in Figure 3. Directed
pitches can only be inserted as left neighbors since they
must move towards their resolution.

When a single passing note is generated, the passing
note must be a neighbor to both notes of the interval it is in-
serted in. However, in this case the inserted note is moving
away from the first note, so the direction is not towards the

reference note but towards the neighbor. A reverse neigh-
bor r ∈ rnbM (p) is defined in analogy to a neighbor but
with inverted direction:

rnbM (p) = {r ∈ PM | p 6= r

∧ ∀b ∈ ∆M (p, r) : λM (b) < λM (r)

∧ p� r},

For example, a passing [2 in the sequence [3 [2 1 is a
neighbor to 1 but a reverse neighbor to [3, as it is directed
away from [3 and towards 1.

Finally, a fill is the list of all pitches between two pitches
p1 and p2, sorted according to the direction of the interval
(p1, p2) and restricted to pitches agreeing with that direc-
tion (as given by ∆M ).

fillM (p1, p2) =

{
sort(∆M (p1, p2), asc) if p1 < p2

sort(∆M (p1, p2), desc) otherwise.

4. A FORMAL GRAMMAR OF RĀGA MELODIES

4.1 Representing Melodies as Graphs

As seen in Section 2, the two fundamental elaboration
types – passing and neighbor notes – operate on two dif-
ferent musical entities: While neighbors elaborate single
notes, passing notes fill intervals between two notes, elab-
orating both notes at the same time. As a consequence, two
main formalisms describing hierarchical elaboration have
emerged, note grammars and interval grammars.

Note grammars generate strings of notes, with deriva-
tion rules replacing single notes by several new notes. The
resulting hierarchical structure is a tree of notes as shown
in Figure 4a. However, elaborating single notes is prob-
lematic for passing notes, as they elaborate two notes. Not
only is the resulting hierarchy ambiguous (the passing note
must be attached to either its predecessor or its successor),
but from a generative perspective, a passing note can only
be derived from one of its parents. Thus, deciding where a
passing note may be inserted becomes a context-sensitive
problem.

Interval grammars [4, 9, 6, 12] solve the passing note
problem (and two-sided operations in general) by elabo-
rating pairs of notes, or intervals. Inserting a new note
replaces an existing interval with two new intervals. The
melody is then represented as a string of intervals with each
note being represented twice, once as the second note of an
interval and once as the first. To avoid this redundancy in
notation, derivations are usually not given as trees (Figure
4b) but as outerplanar graphs (Figure 4c), giving each note
two parents. However, for one-sided operations like neigh-
bors, interval-based elaboration is conceptually mislead-
ing, as only one of the parent notes is considered while the
other is ignored. This can lead to unwanted subordination
of conceptually independent neighbors, as will be argued
below.

As a unification and generalization of note- and
interval-based systems, a graph-based representation of
melodies is suggested here, representing notes as nodes
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(a) Two analyses using note elaboration.
The passing [2 must be attached either to
the 1 on its right or to the [3 on its left.

o→ n

1→ no→ 1

1→ 1

[3→ 1

[2→ 1[3→ [2

1→ [3

o→ 1

7′ → 1o→ 7′

(b) An analysis of the phrase using inter-
val elaboration. The passing [2 is gener-
ated in the interval [3→ 1.

o

7′

1

[3

[2

1

ninit
dup→

nb→
nb→pass

(c) The same analysis as in 4b, displayed
as an outerplanar graph.

Figure 4: Conventional formal analyses of the phrase in Figure 2.

5

]4
7
[6

5nb→← nb pass

1

(a)

5
]4

7
[6

5← nbnb→pass

(b)

5

]4
ε

7
[6

5split
← nb nb→pass

(c)

Figure 5: Three possible derivations of 5 ]4 7[6 5.

o

7′

1

ε

[3

[2

1

ninitdup→nb→
split

nb→
pass

Figure 6: An analysis of the phrase in Figure 2 using the
rāga grammar. Dark edges indicate the subgraph induced
by removing non-note nodes (o,n, ε).

and note transitions as edges. Using graphs as the basis
for elaboration has both conceptual and practical implica-
tions. Conceptually, graphs represent both notes and note
transitions explicitly, which allows the use of both enti-
ties as a starting point for elaboration. Practically, while
graphs can represent strings of objects (such as melodies)
as a special case, they can easily describe much more com-
plex structures, which potentially allows the description of
elaboration operations in non-monophonic music. How-
ever, special cases such as monophony can still be de-
fined graph-theoretically, ensuring consistency under elab-
oration. Thus, graphs provide a common framework for
both melodic grammars and more complex formalisms.

While graphs in principle allow operations on both
nodes and edges, a much simpler and more consistent sys-
tem is obtained by operating only on edges, resulting in an
edge-replacement graph grammar. All operations are then
defined on edges (i.e., node transitions) with one-sided op-
erations ignoring one node of the edge. One-sided opera-
tions still introduce an edge between the unused note and
the new one in order to allow further elaboration between
them. In order to express the independency between the
new and the ignored note, a dummy node (written as ε) can

be introduced first between any two notes. A dummy node
does not generate a note and is analogous to the empty
string in a conventional grammar.

Only strictly one-side operations can be performed on
edges adjacent to a dummy node. This restriction ex-
presses the independence between one-sided elaboration
notes and their opposite side, and permits a more appropri-
ate hierarchy: Suppose two one-sided neighbors are gen-
erated between two 5s, a ]4, as a right neighbor to the first
5 and a 7 as a left neighbor to the second 5 with a passing
[6, resulting in 5 ]4 7[6 5 (Figure 5). Without a dummy
node, either 7 or ]4 is subordinate to the other, depending
on which is generated first (Figures 5a and 5b). By first
introducing a dummy node, both neighbors can be derived
independently (Figure 5c). Moreover, as dummy nodes are
removed after the derivation, the resulting graph structure
only retains edges that express elaboration dependence.
Thus, dummy nodes allow the derivation to formally fol-
low edge replacement while semantically expressing both
one-sided and two-sided operations.

4.2 Formal Definition of the Grammar

A melody is formally represented as a directed linear graph
with notes as nodes and transitions between notes as edges
directed in time. The beginning and end of the melody are
marked with the special nodes o and n, respectively. The
derivation is started from a single 1:

o→ 1M → n,

with 1M indicating the root of mode M .
Derivation rules follow an edge-replacement paradigm:

edges can be replaced with new subgraphs, retaining the
nodes adjacent to the original edge. Some rules use only
one of the adjacent nodes. In this case, a wildcard symbol
(∗ ∈ PM ∪ {o,n, ε}) is used for the ignored node. The
special symbol ε represents the empty melody and can be
used to split an edge into two parts that may be elaborated
independently. Only one-sided operations can be used on
edges adjacent to an ε, o, or n.

For a given mode M the rāga grammar Grāga
M is defined

as the graph grammar (T ,N , I,R) with

T := {n1 → n2 | n1 ∈ PM ∪ {o, ε}, n2 ∈ PM ∪ {n, ε}}
N := {}
S := o→ n
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as terminals T , non-terminals N , and initial graph S; and
the following replacement rulesR:

initialize:
(o→ n)⇒ (o→ 1M → n)

duplicate left: ∀p ∈ PM :
(p→ ∗)⇒ (p→ p→ ∗)

duplicate right: ∀p ∈ PM :
(∗ → p)⇒ (∗ → p→ p)

left neighbor: ∀p ∈ PM , n ∈ nbM (p) :
(∗ → p)⇒ (∗ → n→ p)

right neighbor: ∀p ∈ PM , n ∈ nbM (p) ∧ δM (p) =l :
(p→ ∗)⇒ (p→ n→ ∗)

passing: ∀p1, p2 ∈ PM , n ∈ rnbM (p1) ∩ nbM (p2) :
(p1 → p2)⇒ (p1 → n→ p2)

fill: ∀p1, p2 ∈ PM :
(p1 → p2)⇒ (p1 → f1 → . . .→ fn → p2)
where f1, . . . , fn = fill(p1, p2)

split: ∀p1, p2 ∈ PM :
(p1 → p2)⇒ (p1 → ε→ p2).

In this description, rules are given as templates that are in-
stantiated for all (combinations of) pitches. A more elegant
and efficient description is possible, if rules are considered
to be functions on classes of structured symbols [7], allow-
ing them to look inside their inputs.

Since the rāga grammar generates linear graphs, it
is still possible to display derivations with outerplanar
graphs. Figure 6 shows a derivation of the example phrase
from Figure 2 using the rāga grammar. Each operation
used to derive the phrase is written in the triangle formed
by the old edge it replaces and the new edges it inserts.
Later derivation graphs will omit operations and edge di-
rections to remove visual clutter, as both are clear from the
context.

In Figure 6, the ε inserted between the two 1s separates
them and allows independent generation of neighbors. In
particular, it would be possible to generate another right
neighbor to the first 1 without subordinating it to the [3, or
vice versa.

While the full derivation graph displays all derivation
steps as they are formalized (i.e., as edge replacements),
it does not distinguish one-sided and two-sided operations.
Removing all non-note nodes (o,n, ε) and the adjacent
edges induces a subgraph in which two-sided operations
still use two edges while one-sided operations adjacent to
non-note nodes only use one edge. The resulting graph
resembles both note trees and outerplanar graphs in differ-
ent regions, depending on the type of operation being used
there. Thus, using ε nodes is an analytical option that re-
veals independencies between adjacent parts of the graph.

The graph grammar Grāga is a special case of a graph
grammar that is formally equivalent to a context-free gram-
mar on strings of notes. Therefore, it can parse melodies
efficiently. The context-free grammar can be obtained in

o
1

5
1′

5

1

ninit← dup
nb→pass pass

Figure 7: The spine modeling the deep structure of the
octave expansion in an ālāp.

two steps: First, the graph representation is transformed
to an interval representation in all parts of the grammar.
Second, a set of rules is added for generating notes from
intervals by taking the second note of each interval and
generating empty strings (ε) where necessary.

In a directed linear graph, edges are totally ordered by
their direction, so the graph can be transformed into a se-
quence of edges (e.g., a → b → c becomes (a, b)(b, c)).
Let e be the function that transforms linear graphs to se-
quences of edges. Then the context-free melody grammar
G(GM) := (T,N, I,R) induced by a melody-graph gram-
mar GM is defined as follows:

TG :=PM

NG :=(PM ∪ {o, ε})× (PM ∪ {ε,n})
SG :=e(SG) = (o,n)

RG :={e(l)⇒ e(r) | l⇒ r ∈ RG}∪
{(x, p)⇒ p | p ∈ PM , x ∈ PM ∪ {o,n, ε}}∪
{(x, n)⇒ ε | n ∈ {ε,n}, x ∈ PM ∪ {o,n, ε}}.

5. DISCUSSION

A main motivation for introducing generalized neighbors
is that they allow modelling leaps in the background struc-
ture of North Indian music. Figure 7 shows the architecture
of a typical ālāp in rāga Multānī. The melody slowly as-
cends from 1 to 1′ via 5 and returns back to 1 (again via
5). The upper 1′ can be seen as a very stable and distant
neighbor of 1 while the 5s in between are (again stable and
distant) passing notes. Each stage of this spine is then fur-
ther elaborated by neighbors and passing notes, using in-
creasingly less stable pitches and smaller intervals (Figure
8).

North Indian music is not the only style of music in
which melodies are based on hierarchical modes. If other
mainly mode-based styles also follow the elaboration prin-
ciples of passing notes and neighbors, then the grammar
defined in Section 4 should permit sensible analyses for
these cases. Consider, for example, the melody of Nun
komm der Heiden Heiland (based on the Dorian mode)
and a phrase from the Jazz standard Moanin’ (based on
a Blues scale). Their respective derivations (shown in Fig-
ure 9) suggest plausible reductions of the surface melody
in both cases. Moreover, the proposed relations between
notes match the intuitions of generalized neighbors and
passing notes.

A natural generalization of the mode-based approach is
to consider the mode as a latent variable that can change
over the course of the piece but still organizes elaboration
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passsplit split

← dupsplitdup→
nb→nb→
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← nbpasspasssplit

nb→

nb→

nb→pass

split
← dupnb→

nb→
← nb
fill

passpass pass

nb→

nb→
nb→nb→← dup

nb→nb→
passpass pass pass

nb→

nb→fillpass pass

� �� � �� � � �� � � �� � � � �� � � � � ��� � � � � ��� ���� � � � ��� � �� � �
Figure 8: This example represents selected phrases, in order of performance, excerpted from the ascending part of an ālāp
in rāga Multānī, recorded by the sitarist Dharambir Singh [22]. For reasons of space, one phrase has been selected for each
of the stations between 1, 5 and 1′. Surface ornamentation and rhythmic durations have been omitted.
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ε

1
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1

3
4

3
4

ε

5

3split← dupsplit← nb
nb→

nb→passsplit

← dup← nb

nb→
← nbpasssplit
← dupnb→

�� � � ��� � �� � � ���
3

���� �� � ��� � � ��� �� � �� �
1

[3
1

5,
ε

[7′

1
[3

[4
[5

[4 [3

1← dup← dupnb→ ← nb
split

← nb nb→
← nb← nbfill

Figure 9: The first two phrases from Nun komm der Hei-
den Heiland and Moanin’ (without repetitions), and their
derivations based on a Dorian and a Blues scale, respec-
tively.

locally. Depending on the style, this hierarchy can be con-
stant over longer regions of the piece or change rather fre-
quently. The latter case occurs when harmonies are con-
sidered as the latent structure, as they also define a tonal
hierarchy, ranging from the root to non-chord notes.

However, there are two issues concerning generalized
neighbor elaboration on harmonies. First, when the la-
tent hierarchy changes, it is not obviously clear what
should happen at the transition point. This is not an is-
sue when these transitions are rare and elaboration across
these boundaries is avoided. However, when harmonies
take the role of the latent hierarchy, then transitions oc-
cur more often and elaborations frequently cut across har-
monic changes. Moreover, as melodic elaboration happens
on every level of reduction, it can even be considered to
generate harmonic change in the background, such as the
passing 2̂ in the Ursatz, generating a V harmony.

Second, not all leaps in melodies can be explained as
generalized neighbors. The melody of Take the A-Train
(Figure 10), for example, features several leaps which can-
not be consistently explained as neighbors. While the ini-

��������� � �� ���

�� �� � � ����� � ��� �� �

�� ����� ��� ������ ���
Figure 10: The A part of Take the A-Train and a summary
of its underlying lines.

tial G4 and E5 might be seen as neighbors to C5, the de-
scent to E4 in the end is left unexplained by that. Instead,
it is more plausible to assume a set of several independent
lines: A higher line descends from E5 to C5, a lower line
from G4 to E4, and an intermediate line that connects G4

and C5. Internally these lines behave according to elabora-
tion principles (passing notes in this case), but the surface
melody freely switches between the lines. This suggests
that the organizing latent structure in this case is a set of
implicit lines, although the elaboration and coordination
of these lines might still be governed by a mode or a har-
monic sequence as another layer of latent structure.

6. CONCLUSION

This paper proposed a generalized graph grammar formal-
ism to model North Indian rāga music. We propose that
passing and neighbor note elaborations are both necessary
and (in their generalized form) sufficient operations of re-
cursive rāga melody. This strengthens their status as fun-
damental musical principles across cultures. As the two
operations are based on different objects (intervals and
notes), models of elaboration should be able to represent
both notes and intervals explicitly.

The notion of a generalized neighbor, based on a tonal
hierarchy, shows that melodic leaps do not happen arbi-
trarily but can be related to a latent background structure.
Understanding and modelling this background structure is
necessary for a deeper understanding of melodic elabora-
tion.
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