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ABSTRACT

We propose a multi-task learning approach for simultane-
ous tempo estimation and beat tracking of musical audio.
The system shows state-of-the-art performance for both
tasks on a wide range of data, but has another fundamental
advantage: due to its multi-task nature, it is not only able to
exploit the mutual information of both tasks by learning a
common, shared representation, but can also improve one
by learning only from the other. The multi-task learning
is achieved by globally aggregating the skip connections
of a beat tracking system built around temporal convolu-
tional networks, and feeding them into a tempo classifica-
tion layer. The benefit of this approach is investigated by
the inclusion of training data for which tempo-only anno-
tations are available, and which is shown to provide im-
provements in beat tracking accuracy.

1. INTRODUCTION

By definition, the music analysis tasks of tempo estimation
and beat tracking are highly interconnected. Considering
the goal of a beat tracking system is to produce a sequence
of time instants that reflect how a human listener might tap
their foot in time to a piece of music, we understand the
tempo as the rate at which these beats occur, as measured
in beats per minute (BPM). With the exception of a spe-
cific class of musical recordings which are both perfectly
quantised (i.e. adhering strictly to a fixed metronome), and
which begin precisely at the onset of a beat, e.g. drum
loops, tempo information alone is insufficient to derive the
beats since it provides no information about phase. In prac-
tice, a more flexible and musically realistic approach to
beat tracking is required to contend with deviations from
purely isochronous beat sequences without a trivial phase
component. These deviations can take the form of contin-
uous changes in tempo and/or timing which are common
in expressive musical performances, more abrupt “step”
changes in tempo, or short pauses after which a previously
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established tempo is resumed [21]. The presence and ex-
tent of these deviations from isochrony have been identi-
fied as contributing to the difficulty of musical examples
for computational beat tracking [14] as well as for human
annotators annotating ground truth [27].

When reflecting on the history of computational ap-
proaches for beat tracking, we consider that the role and
usage of data has fundamentally changed. For the earli-
est work in beat tracking in the 1990s [18, 37], annotated
data was scarce. By the mid-to-late 2000s, several beat
tracking datasets (both public and private) came into use
[12, 19, 20, 22, 24, 29] and were widely adopted as the pri-
mary means for reporting beat tracking performance. Even
allowing for parameter optimisation or some training to
maximise the performance of beat tracking algorithms on
given datasets, a closed loop (in a strict end-to-end sense)
did not exist between annotated data and beat tracking al-
gorithms until the advent of deep neural network (DNN)
approaches [7]. Both the high learning power and explicit
use of annotations of DNN approaches led to a significant
leap in the state of the art.

Similarly, tempo induction algorithms formerly tried to
identify the main periodicity of musical accent features,
such as band-passed signals, discrete onsets or a con-
tinuous detection function by means of auto-correlation
[1, 13, 36], resonating comb filters [29, 37] or Fourier
analysis [9], and available data was only used to evalu-
ate the algorithms. The first attempts to learn something
meaningful from data for tempo estimation sought to de-
vise ways to choose among multiple tempo hypotheses
[15, 16, 26, 38, 45] or to predict the perceptual tempo [35].
Only recently, DNN approaches have been used to infer
tempo directly from spectral features [40].

At the present time, DNN approaches are highly preva-
lent among music analysis and generation research within
the music information retrieval (MIR) community, and
thus access to large amounts of high-quality annotated data
is of paramount importance for the development and train-
ing of new models. For beat tracking, the hand annota-
tion of beat locations is particularly arduous due to the
need to make several hundred temporally-dependent an-
notations per full piece of music, and the work-load only
increases in the presence of challenging musical and sig-
nal conditions [27]. By contrast, global tempo annotation,
while still dependent on some approximate beat marking,
can typically be created with far less effort. As a result,
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there is a far greater amount of tempo annotated data avail-
able than for beat tracking.

Our motivation is therefore towards a new approach for
beat tracking which can be trained not only on beat annota-
tions but also from tempo-only annotated data. We formu-
late this as a multi-task learning problem [8] for simulta-
neous tempo estimation and beat tracking. Our hypothesis
is that due to the multi-task nature, we can not only ex-
ploit the mutual information of both tasks by learning a
common, shared representation, but also improve one by
learning only from the other.

We implement our multi-task approach by extending a
recent beat tracking system [11] built around temporal con-
volutional networks (TCNs) [2, 44]. The primary addition
in this paper takes the form of globally aggregating the skip
connections of the TCN and feeding them into a tempo
classification layer. A graphical overview of the inputs and
outputs of our system is shown in Figure 1, with details of
the architecture in Figure 2.

We evaluate our proposed multi-task system on a wide
range of existing beat- and tempo-annotated datasets and
compare performance against reference systems in both
tasks. Our results demonstrate that the multi-task formu-
lation achieves state-of-the-art performance in both tempo
estimation and beat tracking. The most notable increase
in performance occurs on a dataset where the network has
been trained on tempo labels but whose beat annotations
remain totally unseen by the network.

The remainder of this paper is structured as follows.
In Section 2 we provide an overview of the existing beat
tracking approach and then detail our multi-task formula-
tion. In Section 3 we conduct a rigorous evaluation of beat
tracking and tempo estimation. Finally, in Section 4 we
discuss the context of the results and propose areas for fu-
ture work.

2. APPROACH

In this section, we provide an overview of the beat tracking
system [11] around which our multi-task learning approach
is formulated. Following this, we describe the extension
for multi-task learning via the inclusion of an additional
output layer which performs tempo classification.

2.1 Beat Tracking Approach

The underlying beat tracking approach is inspired by two
well-known deep learning methods: i) the WaveNet model
[44] which uses dilated convolutions for generative audio
synthesis by learning directly on raw audio waveforms,
and ii) the current state of the art in musical audio beat
tracking [4, 6], which uses a bi-directional long short-term
memory (BLSTM) recurrent architecture. Based on the
work of Bai et al. [2], who demonstrated improved per-
formance of TCNs over recurrent architectures for numer-
ous sequential data analysis and classification tasks, we
developed a TCN approach for musical audio beat track-
ing [11] which, at a high-level, addressed the substitution
of the BLSTM in [4, 6] with a TCN. However, since the
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Figure 1: Signal flow of a 5 second audio excerpt through
the proposed multi-task system. From the time domain sig-
nal (a), a logarithmic magnitude spectrogram is computed
(b). This input representation is processed by intermediate
convolutional and max pooling layers to obtain a single 16-
dimensional feature (c), which is fed into the TCN. Both
targets and predictions for beats and tempo are shown in
(d) and (e), respectively.
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TCN from WaveNet is both causal and operates on raw au-
dio, several modifications were required, which are sum-
marised below.

Instead of using raw audio as input, the dilated con-
volutions are performed on a highly sub-sampled low-
dimensional feature representation (cf. Figure 1c). This
16-dimensional feature vector is derived by applying mul-
tiple convolution and max pooling operations to a log mag-
nitude spectrogram of the input audio signal. The spectro-
gram is computed with a window and FFT size of 2048
samples, a hop size of 441 samples (i.e. 100 frames per
second for audio sampled at 44100Hz), and filtered with
a bank of overlapping triangular filters with 12 bands per
octave covering a frequency range of 30 to 17, 000Hz (cf.
Figure 1b). Alternating convolutional and max pooling
layers are applied to slices of 5 frames in length to re-
duce the dimensionality both in time and frequency to a
single dimension. The convolutional layers contain 16 fil-
ters each, with kernel sizes of 3 × 3 for the first two, and
1× 8 for the last layer. The intermediate max pooling lay-
ers apply pooling only in the frequency direction over 3
frequency bins. A dropout [42] rate of 0.1 is used with the
exponential linear unit (ELU) [10] as activation function.

The main TCN component from WaveNet was modified
to operate non-causally, meaning that, for any time frame
of the input representation, the dilated convolutions extend
in both directions (i.e. back to the past and forward to the
future). This provides a receptive field which is centred
on the time frame in question, rather than directed solely
towards the past.

In terms of the parameterisation of the TCN approach
we used 11 layers with 16 1-dimensional filters of size 5
and geometrically spaced dilations ranging from 20 up to
210 time frames. The resulting receptive field is ∼ 81.5
seconds. We applied spatial dropout with rate 0.1 and used
the ELU activation function instead of the gated activations
of WaveNet. As output we used a single sigmoid unit. In
order to obtain a final beat tracking output, the beat ac-
tivation function produced by the network was passed to
a dynamic Bayesian network, approximated by a hidden
Markov model, from [31]. For further details on the TCN
approach for beat tracking, see [11].

In this work we slightly changed the architecture of [11]
by adding another 1 × 1 convolution layer with 16 filters
into the residual path of the TCN layers (cf. Figure 2). We
found that this layer helped to increase tempo estimation
performance.

2.2 Multi-Task Extension

We extend this beat tracking system to be able to estimate
the tempo of a musical piece by adding a second output
branch to the network. As output, a classification layer
with linear spacing as in [40] is used. It has 300 units, rep-
resenting a tempo range from 0 (indicating that the piece
has no tempo) up to 300BPM. This additional output al-
lows for multi-task learning of the whole system, the de-
tails of which are outlined in Figure 2. In order to be able
to process input sequences of variable length, global aver-

age pooling (over time) is used to aggregate the features
for the tempo classification layer.

While it is possible to feed the output of the TCN (or
indeed the output of any other sequential beat tracking
model) directly to the tempo classification layer, in practice
we found that using a beat activation function led to rea-
sonable “coarse” tempo estimation performance (i.e. de-
termining whether a musical piece is either fast or slow),
but lacked absolute precision. However, utilising skip con-
nections of the TCN boosted tempo estimation accuracy
considerably. Our intuition is that this way the subtleties
of the intermediate representation of the dilated convolu-
tions (which represent different time scales) are preserved
and can be better exploited.

In the original WaveNet [44], skip connections were
used to speed up convergence and enable training of deep
models. Since the TCN beat tracking system [11] has only
11 layers, skip connections were not needed to success-
fully train a model and thus were not utilised. In this work,
we branch off the skip connections at the same location
as in WaveNet (i.e. from the 1 × 1 convolutions inside the
TCN layers), but use them solely for the tempo branch of
the network (cf. Figure 2).

We aggregate the skip connections of the individual lay-
ers by summation. Since the 1 × 1 convolutions have 16
filters each, this results in a single 16-dimensional fea-
ture vector for classification. Compared to concatenat-
ing the skip connections, this low-dimensional input to the
tempo classification layer reliably prevents over-fitting to
the training data. We apply dropout [41] with rate 0.5
before feeding this vector in the final tempo classification
layer with a softmax function. During inference, quadratic
interpolation of the output probability distribution is used
to determine the final tempo in BPM.

The whole system has only 29,901 trainable parame-
ters, from which the multi-task tempo classification exten-
sion accounts for 5,100. We contrast our compact model
with the reported 2.9M parameters of the current state of
the art in tempo estimation [40].

2.3 Network Training

To train the system, we represent annotated beat train-
ing data as impulse trains at the same temporal resolution
as our input feature (i.e. 100 frames per second). To al-
low for slight deviations of the annotated beat locations
and partially address the imbalance between the number of
beat and non-beat frames, we use the neighbouring frames
of the annotated beat positions as positive examples, but
weight them by a scaling factor of 0.5 (cf. Figure 1d).

Given beat annotations, we derive tempo annotations by
counting the inter-beat-intervals (IBI) to build a histogram.
We smooth this histogram with a Hamming window of size
15 frames (i.e. 150ms) to counteract small fluctuations of
the beat annotations and determine the most dominant IBI
by quadratic interpolation. This interval is then converted
to tempo in BPM and mapped to tempo targets represent-
ing integer BPM values. In a similar way to the widening
of the beat annotations, we smooth the tempo targets, but
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Figure 2: Structure of the neural network with the TCN for
beat tracking (left) and the multi-task extension for tempo
estimation (right).

extend the range to ±2 BPM, weighting the neighbouring
BPM targets with 0.5 and 0.25, respectively. We then nor-
malise the tempo targets to form a probability distribution
(as shown in Figure 1e) in order for it to be usable with the
softmax activation function.

For training, we combine the cross-entropy losses of
both network outputs by weighting them equally. Since
the training sequences have different lengths, we train on
whole sequences and minimise the combined loss with
stochastic gradient descent (i.e. using a batch size of 1). We
use Adam [28] with an initial learn rate of 0.002, and re-
duce it by a factor of 5 whenever the validation loss reaches
a plateau and stop training if no improvement in validation
loss is observed for 50 consecutive epochs or if a maxi-
mum of 150 epochs have elapsed. To avoid exploding gra-
dients, we clip the gradients to a maximum norm of 0.5.
If only tempo targets are present for training, we mask the
loss of the beat tracking output. This way, only the error of
the tempo output is backpropagated through the network
and used to update the weights. It is important to note,
that even in this scenario the shared beat and tempo feature
representation gets adapted and optimised.

3. EXPERIMENTS AND EVALUATION

For experiments and evaluation we use the datasets listed
in Table 1. Those listed in the upper part are used for train-
ing using 8-fold cross validation, and those in the lower

part are independent test sets held back for evaluation only.
If available, updated annotations are used and indicated by
additional references. We chose these datasets in order to
be able to compare the performance of our proposed sys-
tems to the best performing reference systems for both beat
tracking and tempo estimation.

Dataset files length

Ballroom [23, 32] 1 685 5 h 57 m
Beatles [12] 180 8 h 09 m
Hainsworth [24] 222 3 h 19 m
Simac [20] 595 3 h 18 m
SMC [27] 217 2 h 25 m
HJDB [25] ∗ 235 3 h 19 m

ACM Mirum [35] ? 1410 15 h 05 m
GiantSteps [30, 39] ? 664 22 h 05 m
GTZAN [33, 43] 999 8 h 20 m

Table 1: Datasets used for training (upper half), and testing
(lower half). The ∗ symbol denotes that only tempo anno-
tations were used during training and beat annotations are
used for evaluation only, and the ? symbol indicates those
datasets for which only tempo annotations exist.

The HJDB (Hardcore, Jungle, Drum & Bass) dataset
is used to demonstrate the effectiveness of our multi-task
extension w.r.t. its ability to improve beat tracking perfor-
mance using only the tempo annotations of this set. This
dataset was chosen, since its distinct music style is not well
represented within any of the other training sets.

3.1 Beat Tracking Evaluation

We compare our proposed multi-task system to existing
state-of-the-art beat tracking systems, namely to the un-
derlying TCN approach presented in [11], and the two
BLSTM approaches for beat [4] and joint beat and down-
beat tracking [6]. Our goal is that the inclusion of the
tempo classification layer is never detrimental to the per-
formance of the beat tracking component.

Following the de facto standard for beat tracking evalu-
ation, we report a set of different metrics with the parame-
terisation defined in [12]. We use the standard F-measure,
as well as the continuity based measures CMLc and CMLt
which require the beats to be tracked at the correct met-
rical level, as well as AMLc and AMLt which also allow
alternate metrical interpretations such as double/half and
offbeat. They either consider only the longest consecutive
correctly tracked segment (xMLc) or all correctly tracked
beats of a musical piece (xMLt).

From the results given in Table 2 it can be seen that all
systems achieve essentially the same level of beat tracking
accuracy, independent of the evaluation method. There are,
however, smaller deviations from this general tendency.
The beat output of the downbeat tracking system [6] per-
forms slightly better on the Ballroom set, which might be

1 The 13 identified duplicates were removed: http://media.aau.
dk/null_space_pursuits/2014/01/ballroom-dataset.html
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due to the characteristic rhythmic patterns which can be
better exploited by explicit modelling of whole bars.

F CMLc CMLt AMLc AMLt

Ballroom
BLSTM [4] 0.917 0.832 0.849 0.905 0.926
BLSTM [6] 0.938 0.872 0.892 0.932 0.953
TCN [11] 0.933 0.864 0.881 0.909 0.929
Multi-task 0.931 0.864 0.883 0.908 0.930

Hainsworth
BLSTM [4] 0.884 0.769 0.808 0.873 0.916
BLSTM [6] 0.871 0.732 0.784 0.849 0.910
TCN [11] 0.874 0.755 0.795 0.882 0.930
Multi-task 0.877 0.756 0.798 0.880 0.928

SMC
BLSTM [4] 0.529 0.296 0.428 0.383 0.567
BLSTM [6] 0.516 0.307 0.406 0.429 0.575
TCN [11] 0.543 0.315 0.432 0.462 0.632
Multi-task 0.535 0.295 0.415 0.440 0.613

GTZAN
BLSTM [4] 0.864 0.750 0.768 0.901 0.927
BLSTM [6] 0.856 0.716 0.744 0.876 0.919
TCN [11] 0.843 0.695 0.715 0.889 0.914
Multi-task 0.847 0.702 0.724 0.886 0.916

Table 2: Beat tracking results on datasets used for train-
ing with 8-fold cross validation (top), and on completely
unseen test data (bottom).

Given these results, we infer that the multi-task system
achieves at least the same performance as the same system
without the multi-task extension.

3.2 Multi-Task Evaluation

In the previous section, our evaluation focused on the use
of both tempo- and beat-annotated training data within
our multi-task model. In order to test our hypothesis
that tempo-only information can indeed lead to improved
beat tracking accuracy, and thus demonstrate the ability of
multi-task learning to strengthen one target by learning ad-
ditionally from the other, we perform a further experiment.
To this end, we add a new dataset, but only use its tempo
annotations for training.

We believe that the effect of this learning strategy
should be most visible when performed with data, which is
otherwise underrepresented in the training set. In our opin-
ion, the HJDB dataset is a perfect fit since it contains musi-
cal genres from the early 1990s, namely Hardcore, Jungle,
and Drum & Bass, which are characterised by their very
distinct rhythmic structure. For the details on this dataset,
see [25].

We train our new multi-task approach in two different
ways. Once with the data as outlined in Table 1, but with-
out HJDB (i.e. as in the previous section), and once includ-
ing the tempo annotations of this dataset.

Inspection of the first two rows of Table 3 reveals
that both the original TCN beat tracking system, and the
system with the multi-task extension achieve roughly the

F CMLc CMLt AMLc AMLt

HJDB
TCN [11] 0.842 0.802 0.810 0.903 0.912
Multi-task 0.850 0.800 0.804 0.921 0.927
Multi-task ∗ 0.882 0.848 0.858 0.937 0.947

Table 3: Multi-task learning beat tracking results on the
HJDB dataset. All results obtained with 8-fold cross vali-
dation. The ∗ symbol denotes that tempo annotations of the
HJDB set were used as additional targets during training.

same performance across all evaluation methods. How-
ever, once the additional tempo information is utilised (last
row marked with the ∗ symbol), the performance increases
by up to ∼ 5 percentage points. The jump in accuracy is
best observed in the CMLc and CMLt evaluation methods.
This indicates that the system is able to exploit the addi-
tional information to track the beats at the correct metrical
level more often than without this information. Within the
context of the HJDB dataset where the “correct” metrical
level is largely unambiguous, we consider this to be an im-
portant contribution.

3.3 Tempo Evaluation

Further to the beat tracking oriented evaluation results re-
ported in the previous two sections, we also explore the ef-
fectiveness of our proposed approach for the task of global
tempo estimation. To discover how our multi-task ap-
proach compares to the state of the art, we contrast its
performance against four reference systems [5, 17, 36, 40].
Following the established evaluation practice for tempo es-
timation [23] we report the Accuracy 1 and Accuracy 2
scores with a tolerance of ±4% for each of these methods,
with the results shown in Table 4.

Given that human perception of tempo is known to be
subjective [34], this very reasonably manifests in multiple,
valid interpretations of the beat among listeners and thus
more than one acceptable tempo. Thus, in the context of
automatic tempo estimation, it may not be realistic to ex-
pect to obtain near perfect performance on the Accuracy 1
score on datasets of arbitrary musical makeup. To this end,
we rely on the Accuracy 2 score (which permits so-called
“tempo octave errors”) to better gauge performance.

On all of the reported datasets in Table 4, our proposed
approach is the only one to consistently obtain an Accu-
racy 2 greater than or equal to 0.938, which shows the high
potential of our method to accurately find tempo across di-
verse musical data. Even with the stricter Accuracy 1 eval-
uation, our method achieves at least a score of 0.697 which
is ahead of all other methods, albeit by a small margin. It
is important to stress that the ACM Mirum, GiantSteps, and
GTZAN datasets are completely unseen by our multi-task
approach, and this pattern even holds for HJDB when not
included in the training set.

Concerning the HJDB set, we can observe a differ-
ent overall pattern of performance compared to the other
datasets, with a much smaller gap between Accuracy 1 and
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Accuracy 1 Accuracy 2

ACM Mirum
Gkiokas et al. [17] 0.725 0.979
Percival and Tzanetakis [36] 0.733 0.972
Böck et al. [5] 0.741 0.976
Schreiber and Müller [40] 0.795 0.974
Multi-task 0.757 0.977
Multi-task ∗ 0.749 0.974

GiantSteps
Gkiokas et al. [17] 0.721 0.922
Percival and Tzanetakis [36] 0.506 0.956
Böck et al. [5] 0.589 0.864
Schreiber and Müller [40] 0.730 0.893
Multi-task 0.697 0.958
Multi-task ∗ 0.764 0.958

GTZAN
Gkiokas et al. [17] 0.651 0.931
Percival and Tzanetakis [36] 0.658 0.924
Böck et al. [5] 0.697 0.950
Schreiber and Müller [40] 0.694 0.926
Multi-task 0.697 0.939
Multi-task ∗ 0.673 0.938

HJDB
Gkiokas et al. [17] 0.783 0.911
Percival and Tzanetakis [36] 0.285 1.0
Böck et al. [5] 0.796 0.868
Schreiber and Müller [40] 0.902 0.991
Multi-task 0.826 0.962
Multi-task ∗ † 1.0 1.0

Table 4: Tempo estimation results on completely unseen
data. The ∗ symbol denotes that tempo annotations of the
HJDB set were used as additional targets during training,
the † symbol results obtained with 8-fold cross validation.

Accuracy 2 for most systems. Echoing the situation in the
beat tracking evaluation in Table 3, we believe that this is a
direct result of the unambiguous tempo for these styles of
music. Looking across the performance of the other algo-
rithms on HJDB, we discover that the method of Percival
and Tzanetakis [36], while it also obtains a perfect score
for Accuracy 2, is largely unable to identify the annotated
tempo as shown by the disproportionately low score for
Accuracy 1.

When trained with the additional tempo annotations of
the HJDB set, our multi-task method is the only one able
to detect the correct tempo for all pieces of this dataset
for both Accuracy 1 and then trivially for Accuracy 2. Al-
though results are obtained with cross-validation, this was
to be expected because of the homogeneity of the dataset.
Accuracy 1 on the GiantSteps set also greatly benefits from
this additional training material, since this dataset contains
a huge proportion of music labelled with the musical genre
“drum and bass”. On the other hand, having access to this
kind of data (the system of Schreiber and Müller [40] was
trained on an extended version of the GiantSteps dataset)
can in turn result in very good scores on the HJDB set.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a novel formulation for the
simultaneous estimation of tempo and beat from musical
audio signals within a multi-task learning framework. Via
an extensive evaluation of both beat tracking and tempo
estimation, we have demonstrated that our proposed multi-
task approach leads to state-of-the-art performance across
a wide variety of test datasets and relevant evaluation meth-
ods. Perhaps most critically, we have shown that, within
this multi-task learning framework, we can improve the
performance of beat tracking by providing it tempo-only
annotations. In light of the challenges of obtaining high-
quality annotated data for training beat tracking systems,
the ability to profit from alternative training data which is
both far more prevalent and easier to annotate, may have a
significant impact on beat tracking moving forward.

In order to train our model, we made use of all of the
available beat and tempo annotations within the allocated
training sets in Table 1, and subsequently provided addi-
tional tempo-only annotations for evaluation on the HJDB
dataset. We consider this split between beat and tempo
annotated data to be one that is worthy of further explo-
ration, in particular by seeking to understand how little
beat annotated data is sufficient to achieve the same per-
formance, assuming we can supplement the model with
additional tempo annotations. This reduction of beat in-
formation could be posed in two ways, either by a lower
number of fully annotated excerpts/pieces, or by restrict-
ing the duration of annotated sections across many pieces.
If successful, the latter option would offer the possibility
to rapidly increase the availability of training data by dras-
tically reducing the burden of annotating long pieces of
music—at least for those with roughly constant tempo.

We frame this discussion within the computational con-
text of our proposed multi-task approach and the TCN beat
tracker [11] which it extends. As previously stated, our
multi-task model is highly effective in terms of objective
performance, but with a fraction of the number of weights
of other state-of-the-art approaches. This has two particu-
larly beneficial properties. First, it allows for very efficient
training (thanks in part to the ease of parallelisation of di-
lated convolutional models compared to recurrent archi-
tectures). Second, the training of networks with very few
weights drastically reduces the degrees of freedom of the
network, and hence strongly mitigates over-fitting. Thus,
when looking beyond the limited domain of existing an-
notated datasets and considering generalisation capabili-
ties of beat tracking and tempo estimation methods (and
the subsequent re-use of this information for end-users) on
totally unseen data, we believe that such “compact” deep
models are worthy candidates for future research.

Supplementary material can be found online at
https://github.com/superbock/ISMIR2019 with
executable code and pre-trained models being included in
madmom [3] (https://github.com/CPJKU/madmom).
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