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ABSTRACT

This paper investigates end-to-end learnable models for
attributing composers to musical scores. We introduce
several pooled, convolutional architectures for this task
and draw connections between our approach and classi-
cal learning approaches based on global and n-gram fea-
tures. We evaluate models on a corpus of 2,500 scores
from the KernScores collection, authored by a variety of
composers spanning the Renaissance era to the early 20th
century. This corpus has substantial overlap with the cor-
pora used in several previous, smaller studies; we com-
pare our results on subsets of the corpus to these previous
works.

1. INTRODUCTION

Models for attributing composers to musical scores have
been extensively studied in the music information retrieval
community. The composer classification question has been
posed for a variety of corpora, from Renaissance com-
posers [2,3], to the narrow (and challenging) case of Haydn
and Mozart string quartets [5,8,12,22], and to various col-
lections of classical era composers (most of the other pa-
pers discussed in Section 2). In this work we study an ex-
pansive collection of scores, from 13th century sacred mu-
sic by Guillaume Du Fay to 20th century ragtimes by Scott
Joplin.

A major challenge of this task is learning from limited
data. While the corpus considered here is larger than most,
this is largely due to the number of composers considered
(19): for specific composers, we have at most 466 scores
(Bach) and as few as 22 (Japart). Small datasets are an
inherent problem for composer classification: the corpus
used in this work contains, for example, all of the Bach
chorales and all of the Mozart string quartets. We cannot
resurrect these composers and have them write us more
scores to include in our corpus. This situation contrasts
starkly with many learning problems, where substantial
progress can be made by collecting massive datasets and
exhaustively training an expressive model (usually a deep
neural network) with “big data.”
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Further complicating this task, an individual score is it-
self a high dimensional object: the average score in our
corpus consists of thousands of notes, each of which is en-
coded as a high dimensional vector to represent its pitch
and value. Learning from a small number of examples in
a high dimensional space is a formidable problem; thus
much work on composer classification focuses on feature
engineering, feature selection, dimensionality reduction,
or some combination of these approaches to construct low-
dimensional representations of scores to learn from.

In this paper we take a different approach: we dispense
with feature engineering and explore end-to-end classifiers
that operate directly on full scores. Specifically, we in-
vestigate shallow convolutional neural networks with an
aggressive pooling operation. In this setting, all but the
most impoverished linear classifiers achieve 100% train-
ing accuracy. We rely on implicit regularization introduced
by the network structure and first-order optimization with
early stopping to avoid overfitting to training data. While
theoretical understanding of such an approach is in its early
stages [18], we find empirically that this works quite well
for composer classification.

2. RELATED WORK

The earliest works on composer classification [3, 15] ana-
lyzed highly preprocessed corpora of melodic fragments.
Much of the subsequent work on classification focuses on
engineering features to summarize full scores. These ap-
proaches can be broadly categorized, using the terminol-
ogy of [7], into “global” summarization approaches that
compute small sets of summary statistics as a feature set
for each score [2, 5, 6, 10, 12, 16, 22] and local “event” fea-
turizations that extract n-gram counts of a score as fea-
tures [8, 9, 11, 24, 25]. There is also a line of work that
applies compression-based dissimilarity metrics [1,19,20]
to this task, which offers a substantially different perspec-
tive on classification problems.

The present work is most similar in spirit to [3] and [23].
Like [3], we adopt an end-to-end approach to feature learn-
ing using neural architectures. In contrast with [3], we
learn on full scores with minimal preprocessing and con-
sider a multi-class classification task over a broad variety
of composers; this approach is made possible by modern
hardware unavailable to researchers in 2002. We also take
a more systematic approach to architecture exploration,
and identify effective architectures that are simpler than
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hybrid convolutional-recurrent approach taken in [3].
Like [23], we exploit structure in musical scores using

convolutional models. But where [23] use a fixed Mor-
let or Gaussian convolution filters, the convolutional fil-
ters in this work are parameterized and learned from the
data to maximize classification accuracy. We also explore
multi-layer “deep” convolutional models and demonstrate
improvements using such architectures versus the single
layer of convolutions explored in [23].

Comparing to the substantial body of work that empha-
size feature-engineering, the present work can be seen as
an unified framework for learning global and event fea-
tures. We will draw analogies between linear convolutional
filters and n-gram features, and also demonstrate how con-
volutional models can express many popular global fea-
tures. We will also introduce a global pooling operation
that can be interpreted as an counter that tracks the number
of occurrences of learned features, which is directly analo-
gous to the count and ratio statistics that comprise the bulk
of metrics used in human-engineered featurizations.

3. CORPUS AND DATA REPRESENTATION

We train and evaluate models on a corpus of 2,500 scores
spanning five centuries of choral, piano, and chamber
compositions from the KernScores collection [17]. An
overview of this collection is provided in Table 1. In this
work, we consider each movement of a multi-movement
composition to be a distinct score. Our models extract only
the note data (pitch, note-value, and voicing) from scores,
ignoring all other markings such as time signatures, key
signatures, tempo markings, instrumentation, and move-
ment names. For the Renaissance composers in this col-
lection (Du Fay through Japart) we shorten the length of
all note-values by a factor of 4 to crudely account for the
shift in duration conventions between mensural and mod-
ern notation [4].

We represent a score by lossless encoding of its pitch,
voice, and note-value contents, transcoded from a **kern
file to a binary representation suitable for input to a neural
network. Specifically, we encode a score S as a binary
tensor x ∈ S = {0, 1}T×P×(N+D+1) where T, P,N,D
are defined as follows:

• T - The number of rows of pitch/note-value data in
the score S.

• P - The maximum number of concurrent **kern
columns (spines): 6 for this corpus.

• N - The range of note pitches: 78 for this corpus,
ranging from C1 to F#7.

• D - The number of distinct note values (i.e. dura-
tions): 55 for this corpus.

For each t ∈ {0, . . . , T − 1}, p ∈ {0, . . . , P − 1}, n ∈
{0, . . . , N − 1}, and d ∈ {0, . . . , D − 1} we set

xt,p,n = 1 iff pitch n occurs at time t in spine p,

xt,p,N+d = 1 iff note-value d occurs at time t in spine p,

xt,p,N+D = 1 iff pitch n continues at time t in spine p.

Composer Dates Sub-Collection Scores

Du Fay 1397-1474 Choral 35
Ockeghem 1410-1497 Choral 98
Busnois 1430-1492 Choral 68
Martini 1440-1497 Choral 122
Compere 1445-1518 Choral 27
Josquin 1450-1521 Choral 423
de la Rue 1452-1518 Choral 178
Orto 1460-1529 Choral 43
Japart 1474-1507 Choral 22
Corelli 1653-1713 Trio Sonatas 188
Vivaldi 1678-1741 Concertos 33
Bach 1685-1750 Chorales 370

Well-Tempered Clavier 96
D. Scarlatti 1685-1757 Keyboard Sonatas 59
Haydn 1732-1809 String Quartets 209
Mozart 1756-1791 Piano Sonatas 69

String Quartets 82
Beethoven 1770-1827 Piano Sonatas 102

String Quartets 67
Hummel 1778-1837 Preludes 24
Chopin 1810-1849 Preludes and Mazurkas 76
Joplin 1868-1917 Ragtimes 47

Table 1. Details of the KernScores collection used for
training and evaluation in this paper.

For example, consider how we would encode line 28 of
the **kern excerpt shown in Figure 1. This is the 5th row of
pitch/note-value data in the score, so we will encode data
from this line into x5. The periods “.” in columns (i.e.
spines) 0 and 1 indicate that a note or (in this case) a rest
is continued from a previous line, so we set x5,0,N+D =
1 and x5,1,N+D = 1. Two notes are indicated in spine
2: 8a and 8f. The number “8” indicates an eighth-note
value. Each unique note-value is assigned an (arbitrary)
index; we assign index 15 to the eighth-note value, so we
set x5,2,N+15 = 1. The letters “a” and “f” indicate the
pitches A3 and F4, which lie 33 and 41 semitones above
C1 (the base of our note range) respectively. Therefore we
set x5,2,33 = 1 and x5,2,41 = 1. Finally, spine 3 indicates
an eighth-note F5 so we set x5,3,53 = 1 and x5,3,N+15 = 1.

The encoding defined about is an essentially verbatim
transcoding of the **kern text data to a binary structured
format. Converting from text to this structured format will
allow us to write convolution operations along the time and
pitch axes of the data tensor x. Encoding pitches with bi-
nary indicators inN -dimensional vectors is consistent with
piano roll representations [23] but departs from the exam-
ple of [3], which encodes pitch as a single numerical mag-
nitude. The binary pitch encoding is required to support
convolutions along the pitch domain, which we will intro-
duce later in models (8) and (9).

The binary note-value encoding also differs from the
numerical magnitude encoding used in [3]. We will not
introduce models that convolve over durations (there is no
translation invariant structure to exploit) so the motivation
above for representing pitches with indicators does not ap-
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23: 2..r 2..r 2..r 2..r

24: 8r 8r 8r 8dd

25: =1 =1 =1 =1

26: 1r 1r 8r 4dd

27: . . 8f# 8a .

28: . . 8a 8f# 8ff#

29: . . 8a 8f# 16ee

30: . . . 16dd

Figure 1. Left: An excerpt from a **kern encoding of of Haydn’s Opus 33, No 1, consisting of the first 6 beats of the first
movement. Right: A visual rendering of the first two measures of the same score as sheet music. In the **kern format, time
proceeds from top to bottom, whereas in traditional notation time proceeds left to right. The contents of the beginning of
the 6th beat is highlighted (red) in each format to aid comparison between the **kern format and sheet music.

ply to durations. Rather, we are motivated by the observa-
tion that note-values of similar duration may not be more
alike in any musical sense than note-values with less sim-
ilar duration. We avoid imposing this notion of similarity
a-priori by encoding durations as categorical indicators: in
this encoding, all note-values are equally distant in the Eu-
clidean sense.

We also contrast our note-value encodings with piano
roll representations, such as the representation used in [23].
In a piano roll representation, time is discretized: the value
of a note is indicated implicitly by the number of dis-
crete time-slices over which it is sustained. We choose an
explicit representation of note-values because it more di-
rectly reflects the contents of a written score, and results in
shorter time series overall than discretized representations.

4. PROBLEM FORMULATION

Our aim is to learn a classifier that predicts a composer y
given a score x. There are C ≡ 19 composers in our cor-
pus: we assign each composer a label from 0 to C − 1.
We will construct a model fθ : S → {0, 1}C that assigns
vector fθ(x) to a score x where each component fθ(x)i in-
dicates model’s (un-normalized) confidence that composer
i wrote score x. We predict ŷθ(x) ≡ arg maxi fθ(x)i, the
composer the model has most confidence in.

We evaluate our models via accuracy on holdout sets
xholdout, where accuracy is the zero-one loss defined by

Accuracy(xholdout) =
1

n

n∑
i=1

1(ŷθ(xholdout
i ) = yi).

Here 1 : Bool→ {0, 1} is the indicator function: 1(p) = 1
if the proposition p is true, otherwise 1(p) = 0. The re-
sults in Section 6 report 10-fold cross validated accura-
cies. It is standard practice in the machine learning com-
munity to report results on a single holdout set. But for
for the small datasets considered in composer classifica-
tion, cross-validating is essential to cut down the variance
of estimated accuracy.

Given a collection of labeled scores (training data)
{(x1, y1), . . . , (xn, yn)} and a parameterized family of

models {fθ : θ ∈ Θ} we learn an optimal model fθ by
empirical risk minimization of the negative log-likelihood
under the softmax-normalized probability distribution of
model outputs:

min
θ∈Θ

n∑
i=1

− log

(
exp(fθ(xi)yi)∑C
k=1 exp(fθ(xi)yk)

)
. (1)

For each of iteration of 10-fold cross-validation, in addi-
tion to the holdout fold xholdout, we hold out a second fold
as validation data and optimize the objective (1) on the re-
maining 8 folds. We train our models using the Adam op-
timizer [13], regularizing with retrospective early stopping
at the point with best accuracy on the validation fold.

5. MODELS

Every model class fθ that we consider in this paper takes
the following general approach.

1. Compute a set of local features at or around each
time index in the score.

2. Average these features across time (“pool” the fea-
tures, in neural networks parlance) into a single
global feature vector.

3. Construct a linear classifier on top of this global fea-
ture vector to predict the composer of the score.

The approach above is motivated by the need to man-
age the high-dimensionality of a score: given even the first
5 indices of the score tensor x described in Section 3, we
can easily fit a classifier that achieves 100% training ac-
curacy but fails to generalize to new data. As discussed
in Section 2, the classical approach to this overfitting phe-
nomenon is to reduce a score to a low-dimensional sum-
mary of pre-determined features and fit a classifier to this
summary. The present work aims to learn features from
scratch, but if we permit our model to learn any features it
wants then it will simply overfit to the training data.

We therefore cripple our models in two ways. First,
step 1 of the general approach above limits our model to
learn features that are local in scope. We will allow our
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models to learn features that are sensitive to correlations
between co-occurring notes (harmony), or between short
sequences of notes (melody, rhythm). But by construc-
tion, our models will not be able to learn features that cap-
ture correlations between (for example) the first and last
notes of a score. This precludes us from learning certain
high-level patterns that could have predictive power (e.g.
Mozart is more likely to repeat a section verbatim than
Bach) but saves of us from learning a multitude of spu-
rious patterns that appear to have predictive power on the
training data but fail to generalize to new observations.

Second, step 2 of the general approach prevents our
model from learning features that occur at fixed time loca-
tions. As discussed above, even knowing the first 5 indices
of the score tensor is enough to easily identify every score
in the corpus. By pooling features together across time,
we force our models to classify based on the overall preva-
lence of the features it learns, rather than the occurrence of
a particular feature at a particular time.

Note that classical approaches to feature engineering
largely follow the same modeling restrictions outlined
above. The engineered features used in e.g. [6] (Table 1,
page 7) or [2] (Table 1, page 2) consist primarily of overall
frequencies, prevalences, and rates of occurrence. These
features capture properties of either a single time index or
short sequences, aggregated across an entire score. The
use of n-gram features also fits this mold: an n-gram is by
definition a local feature of n time indices, and an n-gram
featurization computes aggregate (i.e. pooled) counts of
the occurrences of each particular n-gram across a score.
The use of genuinely non-local features is rare. They are
used in [12]: see for example the “maximum fraction of
overlap with opening material within first half of move-
ment” feature. The use of these features may account for
the effectiveness of [12] in the Haydn versus Mozart clas-
sification task, which our models underperform on.

5.1 Sub-sampling Scores

The approach outlined above requires us to average fea-
tures across entire scores. Each score in our corpus has a
unique length, ranging from 10 to 4000 time indices. As
a practical matter, it is difficult to deal with such variable-
length data in machine-learning systems; our tools are de-
signed to operate efficiently on homogeneous batches of
data. One solution to this problem is to sub-sample scores;
for example, [23] train models on the first s quarter notes
where s = 70 or s = 400. Those authors found that
the larger sample consistently outperforms the smaller one.
We confirm this finding with the experiments in Table 2,
which show that our models consistently perform better
with larger samples of the score.

We therefore make the following compromise between
using all available information from a score and operating
on homogeneous inputs: we sample the first s, middle s,
and last s indices from our score x, resulting in 3s time
indices sampled from each score. We use s = 500 for
all experiments except the experiments in Table 2 that ex-
plore how models behave as we vary this hyperparameter.
The average score in our corpus has 534 time indices, so

Sample Size
Model 10 20 50 100 250 500
Histogram (Eqn 2) 50.0 59.0 62.0 63.0 66.1 64.2
Voices (Eqn 5) 60.0 61.6 63.9 72.0 75.5 76.9
Hybrid (Eqn 9) 59.3 62.1 68.9 77.1 79.9 81.7

Table 2. Comparison of model accuracies using a variety
of samples sizes: accuracy uniformly increases with larger
samples of the scores. See referenced equations (Eqn) for
formal definitions of the models.

for most scores this means we sample the entire score (for
scores shorter than 500 time indices we pad out our sample
with zeros). Only for scores longer than 1, 500 time indices
(there are 117 in our corpus) do we lose any information
with this approach.

5.2 Histogram Models

The simplest models we consider are histogram models.
Averaging the input data x over voices and time gives us a
histogram vector h ∈ {0, 1}N+D+1:

h(x; θ) =
1

TP

T∑
t=1

P∑
p=1

xt,p.

Multiplying this histogram by a weight matrix Wθ ∈
R(N+D+1)×C with parameterized entries gives us a sim-
ple linear model:

fθ(x) = W>θ h(x; θ). (2)

No features are learned in this model; all that is learned
are the linear weights Wθ on the histogram features. The
model can be interpreted as a simplified version of the
global feature models discussed in Section 2. In this case,
the global features are the prevalences at which each of the
N +D + 1 note and duration symbols occur in a score.

5.3 Voice Convolutional Models

Now let’s consider a simple neural model inspired by n-
gram features. Let k be a number of features we desire to
learn and n be a number of time indices. Define the func-
tion relu : R → R by t 7→ t1(t > 0). Given a weight
matrix W 1

θ ∈ Rn(N+D+1)×k we can construct a “convolu-
tional” feature representation ht,p ∈ RT×P×k at each time
index t in each voice p defined by

ht,p(x; θ) = relu
(
(W 1

θ )>xt:t+n,p
)
. (3)

We define xt:t+n to be a slice of x from index t to in-
dex t + n (non-inclusive); when t + n > T , we pad
x with zeros. We then pool these features across voices
and time to construct a single, global feature representa-
tion h ∈ Rk, to which we can apply a linear classifier with
weights Wθ ∈ Rk×C :

h(xt; θ) =
1

TP

T∑
t=1

P∑
p=1

ht,p(x; θ),

fθ(x) = (Wθ)
>h(x; θ).

(4)
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This is a non-linear model (because of the non-linear
relu “activation”) and we can view h as a learned fea-
ture representation of the score x. The weights (“filters”)
W 1
θ learn to extract k relevant patterns of length n from

voices, analogous to–but more expressive and compact
than–classical n-gram featurizations. In our experiments
we set k = 500 and n = 3; the choice of n is consis-
tent with the pervasive use of 3-grams features in prior
work [8, 9, 12, 24].

5.4 Deeper Representations

A natural way to extend the convolutional feature extrac-
tion discussed in Section 5.3 is to compose multiple lay-
ers of convolutions. Given the feature representation ht,p
given by Equation 3 and a parameterized weight tensor
W 2
θ ∈ Rnk1×k2 , we can construct a second layer of fea-

tures

h2
t,p(x; θ) = relu

(
(W 2

θ )>ht:t+n,p(x; θ)
)
.

We can loosely interpret such a representation as building
hierarchical features of features. In principle we can build
arbitrarily deep stacks of features in this way; in our exper-
iments, we were unable to realize significant gains using
architectures with more than two convolutional layers.

Building a classifier over these features proceeds iden-
tically to the shallower models:

hconv(x; θ) =
1

TP

T∑
t=1

P∑
p=1

h2
t,p(x; θ)

fθ(x) = (Wθ)
>hconv(x; θ).

(5)

For this model we set n = 3, k = 300, and k2 = 300.

5.5 Full-Score Convolutional Models

The models considered in Sections 5.3 and 5.4 are largely
monophonic: they extract features from individual voices
(although they classify based on a pool of these features
gathered from all the voices). Notably, those models have
no ability to capture harmonic patterns in the interactions
between voices. We now consider a model that can capture
these interactions.

Let W 1
θ ∈ RnP (N+D+1)×k, W 2

θ ∈ Rnk×k2 and con-
sider the model

ht(x; θ) = relu
(
(W 1

θ )>xt:t+n
)
∈ RT×k,

h2
t (x; θ) = relu

(
(W 1

θ )>ht:t+n
)
∈ RT×k2,

h(xt; θ) =
1

T

T∑
t=1

h2
t (x; θ),

fθ(x) = (Wθ)
>h(xt; θ).

(6)

We parameterize this model with n = 3, k = 300 and
k2 = 300. This model is strictly more expressive than
the part-wise models (4) or (5), capable of capturing pat-
terns that the part models can’t. However, the underperfor-
mance of this model (6) relative to less expressive models
(4) and (5) suggest that it is prone to capture spurious pat-
terns, leading to overfitting (compare results in Table 3).

5.6 Harmonic Models

All the models considered so far treat pitch classes as cat-
egorical data. We recognize, for example, that C4 is dis-
tinct from E4 or G4, but not that C4 is 4 semi-tones below
E4 and 7 semi-tones below G4. This section introduces a
model that exploits this structural order of pitch-classes, by
convolving along the pitch-axis of the input tensor.

For notational convenience, we decompose the in-
put tensor x = f ⊕ d into separate pitch components
f ∈ {0, 1}T×P×N and note-value components d ∈
{0, 1}T×P×(D+1). Let W 1

θ ∈ RjP×k and convolve along
the pitch-axis to construct a features ht,n(f; θ) ∈ RT×N×k:

ht,u(f; θ) = relu
(
(W 1

θ )>ft,:,u:u+j

)
.

Here j is a hyper-parameter indicating the height of the
convolution; analogous to the width-n hyperparameter in
our time-domain convolutions for models (4), (5), and (6).
Unlike the time domain, we find that setting a large value
of j (in our models, j = N/2) is desirable; a similar phe-
nomenon is observed for frequency-domain convolutions
in [21].

We proceed to pool the features ht,u together across the
pitch domain to construct ht ∈ RT×k:

ht(f; θ) =
1

N

N∑
u=1

ht,u(f, θ). (7)

The idea of this pooling is to construct a feature-set that
is invariant to pitch translation. We are interested in learn-
ing features such as, for example, the occurrence of gen-
eral major chords rather than the occurrence of a particular
major chord such as the one rooted at A3. The pooling op-
eration above precludes us from learning the latter type of
feature.

We then construct a second layer of features to inte-
grate the harmonic features ht together with the note-value
features dt. Using weights W 2

θ ∈ Rk×k2 and W 3
θ ∈

R(D+1)×k2 we build h2
t (x; θ) ∈ RT×k2 . We then pool

the representations h2
t across time and construct a linear

classifier on the resulting representation:

h2
t (x; θ) = relu

(
(W 2

θ )>ht(f; θ) + (W 3
θ )>dt

)
,

hharmonic(xt; θ) =
1

T

T∑
t=1

h2
t (x; θ),

fθ(x) = (Wθ)
>hharmonic(xt; θ).

(8)

We parameterize this model with k = 64 and k2 = 500.

5.7 Hybrid Models

Looking back at the models we’ve introduced, observe that
the voice models (4) and (5) exploit temporal structure
within voices, but pool away any harmonic patterns be-
tween voices. In contrast, the harmonic model (8) exploits
harmony between voices but pools away any sequential
patterns across time indices. The full-score convolutional
model can capture both types of structure, but is prone to
capture spurious patterns and overfit.
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This motivates the introduction of our final, hybrid
model that weakly combines temporal and harmonic mod-
els to increase predictive power without overfitting. The
idea is to feed the input tensor separately through temporal
and harmonic models to construct features representations
hconv (5) and hharmonic (8) respectively. We combine these
features in a final, linear layer using weights W c

θ ∈ Rk2×C
and Wh

θ ∈ Rk2×C to make a prediction:

fθ(x) = (W c
θ )>hconv(x; θ) + (W h

θ )>hharmonic(x; θ). (9)

Because temporal and harmonic information are only com-
bined in the final linear layer, this model is unable to learn
expressive relationships between these features, such as the
classical XOR relationship [14]. As we see in Table 3, this
combination increases accuracy over either the temporal or
harmonic models on their own.

6. RESULTS AND CONCLUSIONS

The results of all models discussed in this paper, evalu-
ated on the full corpus, are presented in Table 3. We sort
the rows in this table by the number of scores for each
composer; we observe a trend towards increasing accuracy
when we have more data (with some outliers).

Models

Composer (2) (4) (5) (6) (8) (9)

Japart 0.0 13.6 13.6 9.1 18.2 13.6
Hummel 41.7 54.2 66.7 62.5 87.5 91.7
Compere 0.0 25.9 22.2 25.9 40.7 37.0
Vivaldi 30.3 94.4 91.6 54.5 45.5 54.5
Du Fay 45.7 82.9 74.3 71.4 80.0 74.3
Orto 0.0 18.6 37.2 25.6 46.5 48.8
Joplin 85.1 91.5 93.6 93.6 95.7 91.5
D. Scarlatti 44.1 59.3 62.7 78.0 79.7 72.9
Busnois 13.2 48.5 48.5 51.5 60.3 60.3
Chopin 55.3 54.2 64.5 72.4 76.3 68.4
Ockeghem 13.3 55.1 69.4 52.0 66.3 72.4
Martini 44.3 68.0 75.4 59.8 68.0 73.8
Mozart 34.8 56.3 61.6 63.6 70.2 67.5
Beethoven 72.2 82.2 83.4 78.7 84.0 89.3
de la Rue 27.5 57.9 71.3 63.5 73.6 79.2
Corelli 89.4 89.9 86.2 93.1 93.6 95.2
Haydn 85.6 75.6 71.3 79.9 82.3 83.7
Josquin 81.1 78.7 76.4 75.9 77.3 82.3
Bach 92.3 95.7 96.1 97.2 97.2 97.6

Overall 64.2 75.4 76.9 75.5 79.8 81.7

Table 3. Results of the 19-way classification problem on
the full corpus for each model considered in this paper.

To compare with previous work, we train additional
models on subsets of the corpus. We invite comparisons
between the results in Table 4 and the results of [2], and
between the results in Table 5 and the results of [6]. These
comparisons are imperfect: neither [2] nor [6] report the
precise scores used in their experiments. Nevertheless our
corpus is derived from the same KernScores sources as [2]

Bach Orto Fay Ock. Josq. Rue
Bach 100.0 0.0 0.0 0.0 0.0 0.0
Orto 0.0 39.5 0.0 7.0 51.2 2.3
Du Fay 0.0 0.0 82.9 11.4 5.7 0.0
Ockegham 0.0 2.0 5.1 81.6 9.2 2.0
Josquin 0.7 1.4 1.2 3.3 84.4 9.0
de la Rue 1.1 0.0 0.0 0.6 25.8 72.5

Bach Orto Fay Ock. Josq. Rue
(9) 100.0 39.5 82.9 81.6 84.4 72.5

KNN [2] 94.5 38.9 42.9 70.0 60.6 80.6
SVM [2] 98.5 33.3 25.0 60.0 60.0 87.1

Table 4. (Top) Confusion matrix for the hybrid model
(9), trained and evaluated on a 6-composer subset of the
corpus. Compare to the results in Tables 3 and 4 (page
6) of [2]. (Bottom) Accuracy comparisons of our hybrid
model to the KNN and SVM models from [2].

Bach Haydn Beethoven
Bach 99.8 0.2 0.0

Haydn 3.4 93.3 3.3
Beethoven 3.0 10.6 86.4

Bach Haydn Beethoven
(9) 99.8 93.3 86.4

SVM [6] 94.6 80.3 64.8

Table 5. (Top) Confusion matrix for the hybrid model (9),
trained and evaluated on a 3-composer subset of the cor-
pus. Compare to the results in Table 9 (page 18) of [6].
(Bottom) Accuracy comparisons of our hybrid model to
the SVM model from [6].

and [6], and contains a comparable number of scores to
the counts reported in [6]. Therefore we believe our sub-
sets are similar to the corpora used in these works and that
comparison is meaningful. For future reference, the exact
dataset used for the present work can be found online. 1

For the popular Haydn versus Mozart string quartet
classification task [5,8,12,22], we were unsuccessful. The
standard evaluation metric for this task is LOOCV, which
we could not perform due to the computational expense
of our models. With 10-fold cross validation, we observed
exceedingly high variance upon repeat optimizations of the
same model. However none of our optimizations exceeded
80%. Due to imbalance between Haydn and Mozart quar-
tets (209 versus 82 scores) a classifier that simply predicts
Haydn given any input achieves 71.8%.

Overall, we conclude that the convolutional models pro-
posed in this paper perform quite well. We find this no-
table, given that success in neural modeling is often as-
sociated with much larger datasets. Furthermore, we do
not believe that the potential of these methods has been
exhausted; further investigation may yield even better con-
volutional architectures for composer classification.

1 http://homes.cs.washington.edu/~thickstn/ismir2019classification/
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