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ABSTRACT

In this paper, we propose a recurrent neural network
(RNN)-based MIDI music composition machine that is
able to learn musical knowledge from existing Beatles’
music and generate full songs in the style of the Beat-
les with little human intervention. In the learning stage,
a sequence of stylistically uniform, multiple-channel mu-
sic samples was modeled by an RNN. In the composition
stage, a short clip of randomly-generated music was used
as a seed for the RNN to start music score prediction. To
form structured music, segments of generated music from
different seeds were concatenated together. To improve the
quality and structure of the generated music, we integrated
music theory knowledge into the model, such as control-
ling the spacing of gaps in the vocal melody, normalizing
the timing of chord changes, and requiring notes to be re-
lated to the song’s key (C major, for example). This in-
tegration improved the quality of the generated music as
verified by a professional composer. We also conducted
a subjective listening test that showed our generated mu-
sic was close to original music by the Beatles in terms
of style similarity, professional quality, and interesting-
ness. The generated music samples can be downloaded
at https://goo.gl/uaLXoB.

1. INTRODUCTION

Automatic music composition has been an active research
area for the last several decades, and researchers have pro-
posed various methods to model many different kinds of
music. [7,8,12,23,26] used rules and criteria developed by
professional musicians to generate songs. These methods
usually relied heavily on the input of music experts, hand-
crafted rules, consistent intervention during the process of
composition, and fine-tuning the generated music in the
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post-processing stage. Although the quality of the com-
posed music may be quite satisfactory, the composition
process can be time-consuming and the composed music
can be biased toward a particular style. Recently, agnostic
approaches that do not depend on expert knowledge have
been emerging [9]. Instead of relying on music experts,
these methods employ a data-driven approach to learn gen-
eralizable theory and patterns from existing pieces of mu-
sic, and this approach has proven to be effective. For exam-
ple, [2,15] trained a hidden Markov model from music cor-
pora and [10] modeled polyphonic music from the perspec-
tive of the graphic model. With the recent progress made in
deep learning, there have been many research efforts that
have tried to compose music using neural networks: [27]
used a deep convolutional network to generate a melody
conditioned on 24 basic chord triads found in each mea-
sure; [19] generated the drum pattern for songs using an
RNN [13]; [9, 14, 17, 18] described RNN approaches to
modeling and harmonizing Bach-style polyphonic music;
and [5] proposed a multi-layer RNN to model pop music
by encoding drum and chord patterns as one-hot vectors.

While most of the aforementioned machine-learning
methods were able to generate music in some categories
such as Bach chorale and folk music, we found that it is
challenging to use their methods to model songs by the
Beatles. Formed in 1960, The Beatles are arguably one of
the most influential bands of all time. Their primary song-
writers, John Lennon and Paul McCartney, were consid-
ered masters and many of their songs are still well known
today. The Beatles music drew on elements of 50s rock and
roll, and their musical style can be characterized by catchy
vocal melodies, unique chord progressions, and an upbeat,
energetic sound. The standard instrumentation of the Bea-
tles contains vocals, two electric guitars, bass, drums, and
occasional piano.

One difficulty of replicating the Beatles’ music is that
all the component parts depend on each other but have dif-
ferent characteristics. For example, the bass line is often
monophonic while the guitar chords are polyphonic, and
the guitar chords are likely to contain certain notes found
in the bass part. The model needs to be able to gener-
ate different instrumental parts within a uniform musical
structure. In addition, the style of the musical features of-

655



ten changes between songs. For example, many Beatles’
songs use monophonic vocal melodies while others use
polyphonic, two-part vocal melodies. The chords in the
Beatles’ music often contain a lot of non-standard combi-
nations of notes that are different from the common chord
triads, with the added complexity that certain chords may
be incomplete and missing one or more of their component
parts. They can be played by either a piano or a guitar,
each of which uses different chord spacing. All of these
variations are challenging to model for a machine learn-
ing algorithm. Moreover, the Beatles are known for using
complex harmonies that can be difficult to classify, with the
added complication that certain chords may be incomplete
or missing one or more of their component parts. Thus it
may not be appropriate to encode the chord progression as-
pect of the music as one-hot vectors [27], as they treat two
similar harmonies differently.

To overcome these difficulties, we introduce BandNet,
an RNN-based, Beatles-style multi-instrument music com-
position machine. We exploit the song structures that can
be commonly found in pop music to generate complete
songs without relying too much on labeled data. Our sys-
tem requires little expert knowledge to use and it can be
successfully trained on a relatively small corpus. We ex-
plain the proposed approach in Section 2 and evaluate the
performance of our algorithm in Section 3.

2. METHODS

2.1 Data Representation

Our BandNet uses MIDI files as input and output and uti-
lizes the same data processing pipeline from Magenta [4].
For each Beatles’ song, we consider the three most impor-
tant channels: the vocal melody, guitar chords, and bass
part. All the channels are allowed to be polyphonic, to
maximize the flexibility of the model.

In our dataset, we include all the songs that use a 4/4
time signature, which means that a quarter note is felt as
the beat, and each measure (a.k.a one bar, a short segment
of music whose boundaries are shown by vertical bar lines
in the score) has four beats. It is reasonable to discretize
note lengths into sixteenth notes. We call the duration of
a sixteenth note a step. Therefore, each measure is dis-
cretized into 16 steps and each beat is discretized into 4
steps.

Because a song may be played by different instruments
with different pitch ranges, we first transpose the pitch by
octave so that the average pitch of each channel in each
song is as close as possible to the global pitch average of
that channel. Next, we transpose each song by -5 to 6 semi-
tones to augment the training data 11 times so that it is able
to generate music in all possible keys. Other approaches,
such as transposing each song to the same key, C major for
example, do not work well for the Beatles’ music because
we have yet to find a reliable way to detect the key of each
song.

01. NXT_CHNL 16. NEW_NOTE(F5)
02. NEW_NOTE(C5) 17. NXT_CHNL
03. NEW_NOTE(G4) 18. NEW_NOTE(C5)
04. NEW_NOTE(E4) 19. NEW_NOTE(G4)
05. NXT_CHNL 20. NEW_NOTE(E4)
06. NEW_NOTE(C3) 21. NXT_CHNL
07. NXT_STEP 22. CNT_NOTE(C3)
08. NEW_NOTE(G5) 23. NXT_STEP
09. NXT_CHNL 24. NEW_NOTE(E5)
10. CNT_NOTE(C5) 25. NXT_CHNL
11. CNT_NOTE(G4) 26. CNT_NOTE(C5)
12. CNT_NOTE(E4) 27. CNT_NOTE(G4)
13. NXT_CHNL 28. CNT_NOTE(E4)
14. CNT_NOTE(C3) 29. NXT_CHNL
15. NXT_STEP 30. NEW_NOTE(C3)

Figure 1: An example showing how we encode an excerpt
from I Want to Hold Your Hand (1964). Notes are quan-
tized to eighth notes rather than sixteenth notes for demon-
stration purposes. The sheet music example is shown at the
top where the scan lines are marked in blue. The encoded
sequence of the sheet music is shown at the bottom.

2.2 Score Encoding

BachBot [17] and Magenta [4] convert polyphonic MIDI
music into a sequence of symbols so that RNN can be used
to model the probabilistic distribution of such a sequence.
We expand their schemes to music with multiple channels.

Figure 1 gives an example showing how we encode the
music score. We create a new type of symbol NXT CHNL,
along with the three existing categories: NEW NOTE,
CNT NOTE, and NXT STEP. The strategy is to scan the
score in a left to right (time dimension), top to bottom
(channel dimension), zig-zag fashion. Each time we meet
a note during the scan, we will first check whether it is
a new note or a continuation of a previous note (e.g., the
second sixteenth interval of an eighth note). We will then
either emit a NEW NOTE or a CNT NOTE symbol depend-
ing on the case, followed by the pitch of that note. When
a channel is polyphonic, the note with higher pitch will al-
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ways be in front of the notes with lower pitch according to
this strategy. When the scan line comes across the bound-
ary of a channel, we will emit a NXT CHNL symbol, and
when the scan line comes across a time step, we will emit
a NXT STEP. Unlike other common methods where each
symbol will represent all the notes inside a time step, we
decompose them into multiple symbols and the advance-
ment of the time step is explicitly expressed using the sym-
bol NXT STEP.

2.2.1 Note Features

With the previous encoding mechanism, we can encode
any of the Beatles’ songs into a sequence S = {Si}Ni=0.
Here Si ∈ S in which S is the set of all the possible sym-
bols. We have |S| = |T | ∗ 2 + 2, where T is the set of
possible pitches.

Because the training data is limited, it is helpful to in-
corporate additional features for each symbol to help the
neural network learn the theory and patterns of the mu-
sic. We pair each symbol Si with its feature Fi when we
feed the encoded sequence into the RNN. We designed two
features for BandNet, i.e., Fi = (Bi, Gi). The feature
Bi ∈ {0, 1}5 contains the beat information. Bi = 1 if and
only if the global time step of ith symbol is a multiple of 2i.
We find that this feature is helpful for the RNN to keep the
style of the chord channel consistent inside a measure. The
second feature Gi ∈ {0, 1} represents whether the melody
will be generated at the current time step. Without this fea-
ture, we find that sometimes BandNet will not generate a
vocal melody due to silences in the melody channel of the
training data (usually because of an instrumental or guitar
solo section). By setting this variable to one or zero, we
can easily control whether we want to generate the vocal
part in a given section of music.

2.3 Network Structure

Figure 2 shows how a classical multi-layer LSTM-RNN
[13] models the probabilistic distribution of the symbol se-
quence. At the bottom layer, each LSTM cell takes the
symbol Si in its one-hot vector form together with the cor-
responding binary feature vector Fi as its input Ii. These
LSTM cells are chained so that they will apply nonlinear
transformations to the previous cell state C1

i−1 and input
Ii and produce the current hidden state h1

i and cell state
C1

i , respectively. In order to increase the nonlinearity of
the model, we make the network deep by stacking multi-
ple layers of LSTM cells. Starting from the second layer,
each cell will take the hidden state from the previous layer
as input. Finally, we apply a linear transformation to the
hidden states in the last layer with softmax to compute the
conditional probability PΘ(Si+1 | I{1···i}), where Θ con-
tains the parameters of the network. We use BPTT [20] to
find the parameters that locally maximizes the likelihood
of the training data.

2.4 Keeping Notes in the Key

By using the LSTM-RNN and the encoding schemes from
previous sections, our generative model is able to compose

multi-instrument music. During the test, we find that the
melody channel generated by the LSTM occasionally con-
tained some unexpected notes. We found that many of
these notes are dissonant because they are not in the key
of the music. We speculate that this is because the Beatles
often used notes in their music that deviated from conven-
tional practices of other popular music. These notes may
work well under some conditions, but the amount of data
does not allow our neural network to learn how to use these
notes in the right context. Therefore, in order to improve
the quality of our music, it is reasonable to filter them out in
BandNet, i.e., restricting the notes that are not in the song’s
key during the generating stage. This can be achieved by
applying a mask to the probability distributions returned by
the neural network and re-normalizing them so that they all
sum to unity.

2.5 Generating a Complete Song

Most of the Beatles’ music has a repetitive and sectional
song structure. Figure 3 shows an example of the structure
in the song Yesterday (1965). This song uses an AABABA
structure, where the A section is called the verse and the B
section is called the chorus. The verse section is repeated
four times, with each repetition being exactly the same or
having only minor differences. It is hard for the RNN to
learn this phenomenon because the distance between two
sections is as long as eight measures, i.e., 128 time steps.
RNN normally cannot carry hundreds of symbols in its
memory across a span of that long. Folk-RNN [25] used
a data format called ABC notation that has an annotation
for repeating sections so that they do not need to deal with
this problem. We do not have such fine-level annotation
in our dataset. Instead, we use a template-based method
to generate structured music. Users of BandNet will first
select a predefined song structure template, e.g., AABA
or ABABCBB, and then BandNet can generate a clip for
each section whose length can vary from 4 to 16 measures.
After that, we assemble the generated clips to form a com-
plete song. Because we do not model the drum pattern in
this work, we assign a precomposed drum pattern for each
section of music, which is beneficial as we can select dif-
ferent styles of drum patterns for different sections of the
song.

The well-known DeepBach [9] and BachBot [17] can
generate a new harmony or re-harmonize an existing
melody from a single instrument, i.e. piano. BandNet can
generate a song with multiple instruments, e.g. guitar, key-
board, bass, and drum. Because we do not have a melody
to condition on, BandNet needs a short sequence of notes,
also known as a seed, to begin a section. Although in the-
ory it is possible not to condition on any seeds, we found
that the resulting music was often unsatisfactory. In order
to avoid depending on a professional musician to compose
note sequences as seeds, we adopt the following strategy:
First, we let BandNet generate long sequences of music
without conditioning on any seeds. Second, we can listen
to these randomly generated segments and mark the clips
that sound most compelling to us. Third, we use these clips
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Figure 2: A diagram showing how an unrolled 3-layer LSTM-RNN works for music composition. Here, symbol Si and
feature Fi are encoded to the vector Ii. LSTM j represents an LSTM cell in the jth layer. Cells in the same layer share the
same parameter. Cj

i and hj
i are the cell state and hidden state of the ith cell in the jth layer. FC represents a fully-connected

layer and its output Oi is fed into a softmax function to produce a distribution over all the possible symbols.

Figure 3: The piano roll of the song Yesterday (1965). It has a song structure AABABA, whose sections are labeled in
green in the Figure. The channels from top to bottom are melody, chords, and bass line.

Melody Chords Bass Overall
CQ SQ CQ SQ CQ SQ ACSQ GSQ

MGT-M 2.60± 1.14 2.70± 0.84 - - - - - 2.65± 0.65

MGT-P - - 3.20± 0.57 2.50± 0.35 - - - 2.85± 0.22

BN 2.90± 0.55 1.50± 0.50 2.70± 0.76 2.40± 0.82 3.30± 0.67 2.40± 0.82 2.53± 0.25 2.60± 0.65

BN-S 2.90± 0.42 2.50± 0.87 3.05± 0.76 2.90± 0.65 3.20± 0.76 3.20± 0.45 2.96± 0.26 2.95± 0.62

BN-SB 2.90± 0.52 3.40± 0.22 2.85± 0.42 3.25± 0.40 3.30± 0.27 3.25± 0.40 3.16± 0.30 3.10± 0.42

BN-SBK 3.85± 0.49 3.75± 0.25 3.45± 0.51 3.45± 0.57 3.75± 0.25 3.65± 0.22 3.65± 0.13 3.90± 0.38

BEATLES 4.45± 0.37 4.80± 0.11 4.20± 0.27 4.75± 0.43 4.40± 0.22 4.95± 0.11 4.59± 0.13 4.65± 0.22

Table 1: Results of a professional composer evaluating the quality of music generated by different models. MGT-M:
Magenta’s MelodyRNN, MGT-P: Magenta’s PolyphonyRNN, BN: BandNet without note features, BN-S: BN with silence
features, BN-SB: BN-S with beat features, BN-SBK: BN-SB while keeping notes in the key, BEATLES: original Beatles’
songs. The definitions of CQ, SQ, ACSQ, and GCQ can be found in Section 3.2.
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as seeds for BandNet to generate all the sections of the
song.

3. EXPERIMENTS

3.1 Settings and Datasets

We collected 183 Beatles MIDI songs from the Internet as
our training dataset. We removed 60 songs from the dataset
because they were either divergent in musical style when
compared with other Beatles’ songs, or were missing im-
portant components such as a clear vocal melody or bass
line. We found that MIDI files in the wild can be messy.
For example, the chords may be divided across three chan-
nels in some MIDI files, while there can be up to eight
channels used for instrumental decoration in others, which
is not necessary for our purposes. We cleaned this dataset
by deleting the unnecessary channels and merging the frag-
mented channels.

Due to the number of songs that the Beatles composed,
the size of our dataset is smaller compared to those used
in the literature [5,17,27], but we found that it is sufficient
to train a reasonably good model. Aside from its influence
in popular music history, there are two reasons why we
choose to use the Beatles’ catalog as our training dataset:
First, the style of the Beatles’ music is relatively consis-
tent when compared to other categories of pop music, and
therefore it is easier for the RNN to learn its underlying
structures. Second, most of the Beatles’ music contains the
elements required by our music generation pipeline, such
as distinct melody, chord, and bass parts, as well as repeat-
ing song structures, which can be missing in genres such
as classical and folk music.

The two most important parameters of the recurrent
neural network were the dimension of LSTM cells and the
number of layers. We found that a 3-layer RNN in which
each LSTM cell had 256 hidden units worked well in prac-
tice.

Our implementation was based on Magenta [4] and Ten-
sorflow [1] for processing the MIDI files and training the
RNN. Because the number of parameters in our network
was large, we applied dropout [24] to alleviate overfit-
ting. We trained our model using the Adam optimizer [16],
which is a variant of stochastic gradient descent that is not
sensitive to the global learning rate. We used 10% songs in
our dataset for cross validation and we stopped the training
process when the error on the validation dataset no longer
decreased. During the training, we clipped the gradients
so that their L2-norms were less than or equal to 1. This
technique was proposed in [24] to alleviate the gradient ex-
plosion problem.

3.2 Quality Scoring by a Professional Composer

In this section, a professional music composer evaluated
the music generated by each subsequent version of Band-
Net. The composer gave two scores for each individual
channel (melody, chords, and bass) based on their musi-
cal content and structure. The Content Quality (CQ) was

defined as how well the notes and rhythms in the gener-
ated music function according to music theory principles
consistent with the music of the Beatles, and the Struc-
ture Quality (SQ) was defined as to what extent the mu-
sic sample exhibits an organizational structure. All scores
were given on a scale of 1 to 5. In addition, we designed
two overall scores to evaluate the overall quality of each
multiple-channel song. The Averaged Content and Struc-
ture Quality (ACSQ) were calculated through averaging
the CQs and SQs of all the channels, and the Group Syn-
ergy Quality (GSQ) score evaluated how well the individ-
ual channels work together to make a unified whole.

The results are shown in Table 1. The score was an
average across five songs under each setting. We found
that model BN was on par with Magenta’s melody and
polyphony generators [4] in terms of content and structure
scores, which is reasonable because models from Magenta
were designed to model melody and chords (as in poly-
phonic music) separately, and modeling them jointly in the
case of BandNet would not improve the score of each in-
dividual channel. After introducing the silence feature, the
GSQ of BandNet increased from 2.6 to 2.95 because we
were able to exclude unusual silences in the melody. By
adding the beat feature, BandNet continued to receive re-
wards in SQs for the melody and chord channels; a pos-
sible explanation for this is that the beat feature gave the
RNN measure and section information, which helped it
learn the structure of the music more efficiently. Both of
these features also improved GSQs, as the normalization
of each individual channel also improved the alignment
between individual parts. Finally, the greatest improve-
ment in both metrics was from the key restriction feature.
This significantly improved the CQs of individual channels
by removing “wrong” notes, and also improved SQs and
GSQs by reducing the amount of notes that were dissonant
with one another across individual channels.

3.3 Subjective Listening

We also conducted a subjective listening experiment to
evaluate the quality of our generated songs from the per-
spective of amateurs. We received 17 responses in this
user study: 16 said that they had never received formal
musical training. In this test, we asked users to listen
to 15 songs. All of the songs were in AABA structure
and each section had a length of 8 measures. The first 5
songs, labeled as group A, were composed by BandNet us-
ing randomly generated seeds; the next 5 songs, labeled
as group B, were composed by BandNet using profession-
ally composed seeds. Each seed was 2 measures in length,
with BandNet generating the remaining 6-measure clip for
each section. Songs in group A and B were generated
randomly without human selection. The last 5 songs, la-
beled as group C (the control group), included relatively
unknown Beatles’ songs, with the intention that listeners
had likely never heard them before. We shuffled the or-
der of the songs so that listeners could not guess whether a
song was composed by BandNet prior to listening. We also
modified the drum patterns for the group C Beatles’ songs,
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Figure 4: Result of a user study that evaluates the performance of different ways to generate music. The x-axis represents
the sources of the music and the y-axis represents the score. The box plot shows the distribution of the average score of
each song rated by the listener. From bottom to top, the horizontal lines of each box show the minimum, the first quartile,
the median, the third quartile, and the maximum of the average score, respectively.

so that listeners could not distinguish them from BandNet-
composed songs based on differences in the drum pattern.

At the beginning, we asked subjects to listen to 5 well-
known songs by the Beatles, such as I Want to Hold Your
Hand (1964), in order to familiarize them with the Beatles
musical style. Next, we asked them to listen to the 15 songs
mentioned above and to answer the following 4 questions
for each song:

Q1: Have you heard this song before?
Q2: Does it sound similar to the music of the Beatles?
Q3: How likely is it that this music was professionally

composed?
Q4: How interesting is this music?

We asked listeners to only choose between “Yes, defi-
nitely!” and “No/Not sure” in Q1; if they answered “Yes”,
we removed their scoring of that song from our results.
This is because a subject may be biased to give a song a
higher score if he had heard it song before. For Q2, Q3,
and Q4, we let users grade each song using a scale from
1 to 5 with an increment of 0.5. Figure 4 shows the dis-
tribution of those scores from 17 responses. The labels in
the horizontal axis, Style Similarity, Professional Sound-
ing, and Interestingness correspond to Q2, Q3, and Q4,
respectively. Each sample in the box plot represents the
average score over 17 responses to a question for a partic-
ular song.

For Q1, about 13.3% of responses indicated that they
had heard those little-known Beatles’ songs, while the per-
centages were only 0% and 1.3% for BandNet-generated
songs using automatically-generated seeds and profes-
sional seeds, respectively. This could be an indicator show-
ing that we did not overfit the training data and just repli-
cated some clips from the original Beatles’ music. For
the rest of the questions, we found that the authentic Beat-
les’ songs constantly outperformed the BandNet-generated
songs, but only by a small margin. In particular, the aver-

age Style Similarity scores for songs in group A, B, and C
are 3.08, 3.02, and 3.22, respectively. The score difference
of Q2 between the authentic and generated songs was less
than 0.202, which showed that BandNet was able to imi-
tate the style of the Beatles relatively well. The average
Professional Sounding scores were 3.29, 3.16, and 3.68,
and the average Interestingness scores were 3.19, 3.13, and
3.68 for songs in group A, B, and C, respectively. The
score gaps of Q3 and Q4 between authentic and generated
songs were approximately 0.5. The musical knowledge
that BandNet learned came primarily from The Beatles,
and in theory may be difficult for an RNN-based machine
learning algorithm to generate more professional and in-
teresting music than The Beatles. Concerning the seeds
used in generation, our experiments have shown that using
professionally-composed seeds did not have a significant
advantage over selecting from randomly-generated seeds
in terms of subjective listening evaluation. This means that
we may no longer need a composer in the loop for gen-
erating a complete song and an amateur would be able to
“compose” a Beatles-style song without the guide of a pro-
fessional by using BandNet.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose an RNN-based, multi-instrument
MIDI music composition machine, which learns musical
knowledge from existing Beatles’ music and automatically
generates music in the style of the Beatles with little hu-
man intervention. We also integrate expert knowledge into
the data-driven based learning process. We prove that our
method is effective in both professional evaluation and
subjective listening tests. Our future work includes explic-
itly modeling the drum parts, designing a better neural net-
work structure, employing Gibbs sampling, improving the
evaluation metrics, and testing BandNet for other genres of
music on a larger dataset.
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