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ABSTRACT

Musicology research is a fundamentally humanistic en-
deavor. However, despite the productive work of a small
niche of humanities-trained computational musicologists,
most cutting-edge digital music research is pursued by
scholars whose primary training is scientific or compu-
tational, not humanistic. This unfortunate situation is
prolonged, at least in part, by the daunting barrier that
computer coding presents to humanities scholars with no
technical training. In this paper, we present humdrumR
(“hum-drummer”), a software package designed to afford
computational musicology research for both advanced and
novice computer coders. Humdrum is a powerful and in-
fluential existing computational musicology framework in-
cluding the humdrum syntax—a flexible text data format
with tens of thousands of extant scores available—and the
Bash-based humdrum toolkit. HumdrumR is a modern
replacement for the humdrum toolkit, based in the data-
analysis/statistical programming language R. By combin-
ing the flexibility and transparency of the humdrum syn-
tax with the powerful data analysis tools and concise syn-
tax of R, humdrumR offers an appealing new approach to
would-be computational musicologists. HumdrumR lever-
ages R’s powerful metaprogramming capabilities to create
an extremely expressive and composable syntax, allowing
novices to achieve usable analyses quickly while avoiding
many coding concepts that are commonly challenging for
beginners.

1. INTRODUCTION

Though digital musicology has been a productive area of
research for several decades (e.g., [2, 8, 12, 16, 18–20, 22–
24,26,28,29]), it remains a niche field within the musical-
side of academia. In fact, most cutting-edge, scientific
music research has been pursued by researchers with pri-
mary training in computer science and psychology. Fortu-
nately, recent years have seen a flourishing of “digital hu-
manities” research in general, with increasing numbers of
traditional humanities scholars adopting computational ap-
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proaches. Humanist music scholars’ deep, nuanced knowl-
edge of musical culture, structure, and practice could be
an invaluable asset to the computational/empirical music
research community. Unfortunately, the training neces-
sary for fruitful computational scholarship is absent from
most music curricula, which cover neither the fundamen-
tal methodological principals of empirical research nor the
necessary coding skills. The need to assist, and convince,
music scholars to learn programming has been an area of
active discussion for some time [7], in particular there is
a need for software tools crafted to support their learning
and research goals [32].

To make computational research truly appealing and
accessible to traditional humanists and seasoned compu-
tational researchers alike, we must juggle three conflict-
ing factors: flexibility, power, and usability. User-friendly
interfaces like the Josquin Research Project’s Analysis
Tools 1 , Theme Finder 2 , or rapscience.net’s Visualizer 3

can be utilized by scholars with no special training. How-
ever, such tools allow only variations of hard-coded anal-
yses applied to limited, fixed databases. On the op-
posite extreme, any skilled programmer can code their
own symbolic music data formats and analysis/parsing
software “from scratch”—as many computational projects
[4, 11] have done—, allowing for the unlimited power
of the programming language of their choice, but requir-
ing substantially more effort and experience. The most
prominent modern computational musicology toolkit—
music21 [10]—, in our estimation, falls too close to the
later extreme, proving quite daunting to novice coders.

This paper describes humdrumR (“hum-drummer”), a
software toolkit for symbolic musicological data analysis
intended to be appealing and accessible to traditional mu-
sicologists while also being useful to more experienced
computational researchers. Learning lessons from the suc-
cesses and failures of existing tools, humdrumR strikes a
powerful new balance between flexibility, power, and us-
ability:

1. Using the humdrum data syntax, humdrumR is ex-
tremely flexible and general in scope, allowing users
to study any type of performance-art data that can
be represented symbolically—musical scores, dance
steps, trumpet fingerings, etc.

1 http://josquin.stanford.edu/search/
2 http://www.themefinder.org/
3 http://rapscience.net/Analysis/gui.html
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2. Based in the R programming language, humdrumR
is extremely powerful, capable of complex data ma-
nipulation and interfacing with R’s statistics, visual-
ization, and machine learning libraries.

3. humdrumR is designed to present a relatively low
barrier of entry for non-technical researchers, offer-
ing a concise, expressive syntax for applying music
analyses while avoiding difficult coding paradigms.

In 2005, musicologist and psychologist Nicholas Cook ob-
served that to truly engage in computational musicology
“proper,” scholars must achieve “sufficient understanding
of the symbolical processing and data representation on
which it’s based” [7]. We believe that the combination of
humdrum and R represents an ideal avenue for computa-
tional novices to develop this “sufficient” understanding:
enough to pursue quality computational research but with-
out having to engage with general coding paradigms that
are irrelevant to their research.

In this paper, we first review the relevant philosophi-
cal and technical features of humdrum and R, noting how
humdrumR incorporates these features (sections 2 and
3). We next contrast humdrum(R) coding philosophy and
style with that of music21 (section 4). Finally, we de-
scribe the principle features of the humdrumR package
and humdrumR syntax (section 5), including numerous
code examples.

2. HUMDRUM

Humdrum 4 is a system for computational musicology re-
search, created by David Huron [17] (circa 1995) and
maintained by Craig Sapp at Stanford’s Center for Com-
puter Assisted Research in the Humanities. Though no one
digital musicology framework has ever truly dominated the
field, humdrum is certainly among the most widely used
and influential systems, being cited as the direct inspiration
for some of its most successful competitors—music21
[10] and MusicXML [13]—and with tens of thousands of
scores available in humdrum format. Humdrum actually
has two distinct components: the humdrum syntax and the
humdrum toolkit.

The humdrum toolkit is a collection of Unix command-
line tools for parsing and analyzing humdrum data, largely
written in Bash and AWK but with more recent “extra”
commands written in C++. 5 The humdrum toolkit is fun-
damentally entwined with the Bash shell, in particular the
grep and sed commands, which rely heavily on regu-
lar expressions to parse and filter tokens. The humdrum
toolkit also includes a number of analysis tools, notably
the sophisticated windowing and n-gram tool context
and the pattern finder patt. Using the toolkit, basic pars-
ing and analysis can be achieved quickly and easily in
Bash command pipes, but true Bash scripting is required
for even mildly complicated tasks. In practice, after initial
parsing, humdrum users must transition into a higher-level

4 http://www.humdrum.org
5 Sapp also maintains a C++ development library for humdrum tools

called humlib (https://humlib.humdrum.org/).

programming environment (Python, R, MATLAB, Julia,
etc.) to achieve more complex data manipulation, statisti-
cal testing, or data visualization. The burden of parsing and
manipulating humdrum data in the higher-level language
falls on the user, substantially increasing the need for cod-
ing skills and prolonging the workflow. To make matters
worse, installation of the humdrum toolkit can be fairly
complicated, especially for Windows users, who must in-
stall a Unix emulator to use the toolkit at all.
HumdrumR is a successor to the humdrum toolkit, re-

placing all the original toolkit’s functionality while adding
significantly more. However, humdrumR uses the origi-
nal humdrum syntax specification, and is thus compatible
with all existing humdrum data. In fact, both the techni-
cal design and methodological philosophy of the humdrum
syntax are fundamental to humdrumR.

2.1 The Humdrum Syntax

The humdrum syntax is an extremely general scheme for
representing musicological data in plain-text. The syntax
is basically tabular (tab-delineated columns) but with a few
additional complexities:

• Columns of data are interpreted as spines, which
can dynamically start, end, split, or merge, creating
spine paths. Spine paths allow the syntax to repre-
sent many complex cases from music notation: For
example, if the upper staff of a piano score splits
temporarily into two voices (one with beams up, the
other with beams down), this can be encoded by
splitting the spine representing that staff into two
columns (with a *^ token) before merging them
again after the split passage (*v tokens).

• Humdrum records are tagged as interpretation
records (representing local metadata) or data
records (notes, chords, etc.). By simply interspers-
ing interpretation and data records, metadata can be
concisely associated with specific data points, pas-
sages, or sections. For example, key information can
be quickly read, edited, or added to scores by simply
inserting lines containing tokens like *f#: (f# mi-
nor). This approach contrasts with the more verbose,
hierarchical attributes and tags used in XMLs.

• Finally, each “cell” (i.e., each line-column coor-
dinate) in a humdrum file can contain multiple
data tokens—a feature commonly used to represent
chords but with myriad other potential use cases.

The humdrum syntax provides a data structure but says
nothing about how information is actually encoded in data
tokens. Rather, specific interpretation schemes must be
defined. A few well-specified interpretations for music
are widely used, most notably the **kern representation.
However, users can freely define new interpretations, with
the appropriate degree of rigour/precision/complexity for
the task at hand. Thus, humdrum is not limited to tradi-
tional Western notation, but rather affords the study of non-
Western, vernacular, or avant-garde musics, as any type of
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musical feature, data, or metadata to be easily encoded in
the same place. This presents a stark contrast with nearly
all other music encoding schemes, including MuseData
[15], abc [30], TinyNotation [9, ch. 16], LilyPond [25], and
MusicXML, all of which are limited to representing music
as, or in terms of, Western music notation—for instance,
representing diatonic note names. Though **kern repre-
sents music in similar terms, the humdrum syntax in gen-
eral has no such limitation. 6 Though the actively devel-
oping MEI [14] encoding standard can be extended to in-
corporate arbitrary music information, the emphasis of the
MEI community is nonetheless representing music nota-
tion(s) for purposes of library science and score preserva-
tion and dissemination, not analysis.

Data encoding schemes inevitably balance read/
writeability with power and flexibility [9, ch. 16]). No-
tation systems such as abc notation and TinyNotation
achieve nearly effortless human read/writeability, but with
severely limited representational possibilities. 7 On the
opposite extreme, MusicXML and MEI can encode ex-
tremely complex, sophisticated score information, but are
difficult to read/write directly. Humdrum achieves a bal-
ance between these extremes: though not quite as extend-
able as MEI, the humdrum syntax nonetheless affords a
huge variety of approaches to encoding data. On the other
hand, though humdrum’s top-down, tab-delineated format
certainly makes editing slightly more cumbersome than
editing abc or TinyNotation, most humdrum interpreta-
tions are comparably readable.

Like other easy notation schemes (abc, tinyNotation,
LilyPond), humdrum interpretations often embed multi-
ple pieces of information in each token. For instance, the
**kern token (4.aL/ encodes information about slurs
((), rhythm (4.), pitch (a), beaming (L), and stem direc-
tion (/). This “dense” approach allows a large window
of musical time (for instance, several measures of multi-
part music) can be seen on a single screen. This contrasts
with, for instance, MEI which spreads specific pieces of in-
formation across nested tags, making it impossible to see
more than a few notes in a single screen. Such complicated
tokens can also be written and edited rapidly, once you are
familiar with the encoding. However, kern’s “dense” ap-
proach is but one option given humdrum’s flexible syntax:
information can be spread across multiple spines/columns
(like MuseData) in whatever manner is most appropriate
for data analysis. For example, the MCFlow corpus of
rap transcriptions [6] encodes eight pieces of information
across eight separate spines.

Human read/writeability is not just important to the pro-
cess of data creation and curation, but is in fact essential to
humdrum’s entire methodological philosophy: humdrum
emphasizes epistemological transparency by forcing users
to engage directly with their symbolic data representations,
even as they are filtered and transformed. Indeed, in tradi-
tional humdrum work flows, we apply repeated transfor-

6 Conversely, humdrum/**kern is not as optimized for representing
the details of music engraving as LilyPond, MEI, or MusicXML.

7 However, music21 includes an API for extending TinyNotation,
useful to those with the requisite coding skills.

mation to humdrum data tokens while maintaining, and vi-
sualizing the simple, readable humdrum syntax with each
transformation. This dramatically improves the process of
debugging and makes the series of steps from input to out-
put clearer for novice users. Humdrum, thus, truly supports
Cook’s [7] call for a direct understanding of symbolic rep-
resentations and processes. Consistent with this philoso-
phy, humdrumR commands also reconstruct and display
readable humdrum data even as the data is manipulated,
maintaining a clarity and transparency which is easily lost
when coding with complex data structures.

Though alternative data encodings have proven highly
useful in contexts of research (MuseData, abc, MEI),
file interchange (MusicXML), composition and engraving
(TinyNotation, LilyPond, MEI), and performance (MIDI),
the humdrum syntax offers an optimal combination of flex-
ibility, read/writeability, and epistemological transparency,
and is thus an ideal target for a new computational musi-
cology toolkit. Fortunately, our focus on a single encod-
ing scheme is not a limiting factor, as software to translate
between **kern and most important representations—
including MIDI, MusicXML, and MEI—is already avail-
able. In fact, fruitful cross-fertilization between musical
data ecosystems is common: for instance, MEI’s extraordi-
nary Verovio score viewer has already been adapted as the
Verovio Humdrum Viewer 8 , making it easier than ever to
visualize and edit humdrum data.

3. R

R [27] is a free, cross-platform, open-source “environment
for statistical computing and graphics”—a domain specific
programming language designed specifically for data anal-
ysis. R has a large ecosystem of data-analysis and statis-
tics packages, most available through the Comprehensive
R Archive Network (CRAN); As of now, the only pro-
gramming environment with a comparable ecosystem for
data analysis is Python. However, being less popular than
Python for general programming, R’s ecosystem is com-
paratively focused and uncluttered, with a higher quality
floor. R’s standard library (“base” R) itself contains anal-
ysis and visualization features which will satisfy the needs
of many musicological research projects. Even when us-
ing external libraries, R users rarely encounter dependency
issues—in fact, the process of installing R, humdrumR,
and its dependencies is trivial on any operating system,
even for beginner programmers, with no need for exter-
nal package managers, virtual environments, “sandboxes,”
etc.

R excels at exploratory, ad hoc data analysis in short
scripts or in the read-eval-print loop (REPL), making it
easy to quickly manipulate, filter, and visualize data “on
the fly.” Indeed, a focus on simple scripting and “con-
strained” projects, without concern for more general soft-
ware development issues, is core to R (and humdrumR)
philosophy, making R an excellent avenue for learning pro-
gramming purely for data analysis. This coding paradigm

8 http://verovio.humdrum.org/
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is well suited to the constrained, stand-alone projects typ-
ical of theory-driven musicological research projects. The
R ecosystem also includes a number of useful, free, soft-
ware tools for enhancing the productivity, reproducibility,
and presentation/sharing of research conducted in R. No-
tably, RStudio is a free, high quality integrated develop-
ment environment for R. R is also one target of the Jupyter
project [21], with RStudio too incorporating a suite of
mark-up, notebook, and presentation tools. Finally, RStu-
dio’s shiny package [5] provides an easy means of creat-
ing interactive R data visualizations in the browser.

Though R is generally best suited to a combination
of procedural and functional styles of programming, it
nonetheless includes Object-Oriented Programming fea-
tures suitable for defining simple classes. R’s S4 ob-
ject system is oriented around multiple dispatch—generic
functions can be defined which call specific methods based
on the types of any or all of the function’s arguments, not
just their first argument. In languages featuring multiple
dispatch (Julia, Common Lisp, Smalltalk, etc.), methods
are not bound within classes. As a result, the object system
operates in the background: novice users benefit from the
features afforded by the object system—for instance, com-
mon functions like summarize can be applied to nearly
any type of R object, getting useful results—without ever
having to consciously engage with the system.

One of the core philosophies of R is “vectorization”:
treating data collections (especially vectors and arrays)
as conceptually singular objects. HumdrumR leans into
this philosophy, allowing users to think and operate on
humdrumR data collections holistically. One concrete re-
alization of this approach is that humdrumR users can
completely avoid explicit iteration (i.e., loops): Iteration
is abstracted by the humdrumR API, allowing users to de-
cide solely what processes to apply to data tokens, not how
to apply them to each token. HumdrumR defines a num-
ber of useful data classes, yet the R approach makes these
classes an implementation detail that novice programmers
need not understand.

3.1 Metaprogramming

The final key to the R ecosystem’s concise data analysis
syntax is its subtle use of metaprogramming [31, ch. 17–
21]. In particular, numerous R packages use a shared do-
main specific language for specifying statistical models us-
ing R “formula” [31] objects. 9 Created using the ~ op-
erator, R formulae capture (“quote”) surrounding R ex-
pressions as well as their local namespace. R’s metapro-
gramming features allow the programmatic manipulation
of these formulae, for instance, using the update routine.
Again, though metaprogramming is essential to R code,
only advanced developers will ever need to explicitly en-
gage with metaprogrammming concepts.

9 For example, Y ~ X*Z + (1|G) describes a linear model pre-
dicting the variable Y using predictors X and Z, and the interaction be-
tween X and Z, with random-effect intercepts specified for each level of
the grouping factor G.

4. music21

Music21 is a Python library for symbolic music gen-
eration and analysis, with an extensive set of tools ex-
tending well beyond the capabilities of the humdrum
toolkit, and which easily integrates with Python’s extensive
ecosystem (statistics and graphics libraries, etc.). Though
music21 and humdrumR overlap significantly in use
case, humdrumR offers a fundamentally different coding
philosophy and style.

Python syntax is famously simple to read/learn, yet
the Pythonic coding style of music21 nonetheless
presents challenges to would-be computational musicol-
ogists. Working with music21 requires one to engage
directly with a hierarchy of complex classes (with numer-
ous attributes and methods) and write many explicit control
and looping structures, including (in typical analyses) mul-
tiple nested for loops. In contrast to humdrum, which re-
lies on plain-text strings to encode information, music21
parses musical scores into numerous complex data ob-
jects. Notably, music21.Note contains a rich set of at-
tributes and methods for describing “notes.” This complex-
ity, though highly useful to experienced coders, is a bar-
rier to entry for novices, for whom the practical reality of
carrying out a computational musicology project is all but
impossible. This is in part due to the style of music21’s
User’s guide, which necessarily gets bogged down explain-
ing detailed functionality of how to represent, extract and
manipulate low-level features (e.g., parts, notes, etc.) at
the expense of explaining larger-scale processes like, for
instance, how to search through a corpus of music to com-
pare n-grams. Finally, Music21’s object hierarchy pri-
marily represents musical score features—representations
for arbitrary extra-musical data (e.g., dance steps, finger-
ings) or musical metadata (e.g., formal labels, manual an-
notations) is not supported.
Music21’s Stream-based object model is (purposely)

extremely flexible [1]. As discussed above, the humdrum
syntax includes some scope for flexible variation (using
spine paths, for instance), yet humdrumR’s data back-
end (section 5.1) nonetheless always has the same struc-
ture; thus, one can always assume the same data struc-
ture and thus that certain commands/routines will always
work. In contrast, music21 users must always first
determine the Stream-hierarchy of their data: are notes
nested within measures, within parts, or within chords, etc?
Similarly, music21’s highly sophisticated data classes
(like music21.Note) are fairly inflexible, whereas hum-
drum’s plain-text tokens are completely flexible. Again,
this later approach is consistent with humdrumR philoso-
phy, forcing users to think about and grapple with the trans-
parent details of how their musical information is encoded
and not about details of data structure.

As dynamically typed, interpreted languages, explicit
loops in either R or Python are notoriously slow. How-
ever, whereas music21 makes much explicit use of for
loops, humdrumR enables users to exclusively use “vec-
torized” R and an optimized split-apply-combine back-
end, to achieve fast execution of most commands. As a re-

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

718



sult, humdrumR is generally much faster than music21.

5. HUMDRUMR

The humdrumR library defines a number of data object
classes and a suite of functions for manipulating these
classes. Most significant is the humdrumR class itself,
which encapsulates a corpus of parsed humdrum files, and
serves as the primary interface through which users inter-
act with humdrum data. HumdrumR includes a complete
humdrum syntax parser, which reads any valid humdrum
data—including all valid spine paths—into a humdrumR
data object. Invalid humdrum files are automatically
flagged and skipped, with line-by-line syntax error reports
generated on request. Consistent with the humdrumR phi-
losophy, the syntax for reading files is concise and power-
ful: users simply specify one or more regular expressions
matching files on their local disc. For instance, the com-
mand
readHumdrum("Bach/Chorales/chor.*krn")->chor

validates, reads, and parses all files matching the
regular expression "chor.*krn" in the directory
"Bach/Chorales" (370 files on our machine), wraps
them in a humdrumR corpus object, and assigns this ob-
ject to the variable chor. A set of summary functions are
included to quickly describe the size, content, and struc-
ture of a loaded humdrumR data objects. In addition, an
extensive suite of functions and classes for representing
and manipulating pitch and rhythm data is also included—
these tools reproduce much of the functionality of the orig-
inal humdrum toolkit—as well as music21’s core class
hierarchy—, with some significant improvements and ad-
ditions.

A great strength of the original humdrum toolkit is its
use of the Bash | (“pipe”) operator to concisely chain a
series of operations—a syntax that is highly accessible to
novice programmers. In recent years, the piping approach
has become popular in R [3], especially magrittr’s
%>% pipe operator. HumdrumR too incorporates a pipe
operator—%hum>%—which appears in all our subsequent
code examples.

5.1 Data Model

R’s primary native data structure is the tabular
data.frame. HumdrumR utilizes a popular exten-
sion of the base R data.frame, the data.table 10 :
an optimized data.frame which achieves database
manipulation performance comparable to Python’s Pandas
module, including an extremely fast split-apply-combine
routine. The HumdrumR class stores humdrum data in
a list of data.tables, with each individual data token
assigned to a single row. Data and metadata for each token
are encoded in named columns of the data.table,
called fields. The original string is encoded in the Token
field, with global and local metadata associated with that
token spread across other fields. Additional fields encode
the “location” (which file, spine, path, record, etc.) of each

10 https://cran.r-project.org/web/packages/data.table/index.html

token, encoding the structure of the original humdrum
data so that it can be reconstructed for visual inspection
after each modification. Users can freely create new fields;
for instance, **kern tokens can be parsed into various
pieces of information, each saved into a separate field: For
example, the commands
chor %hum>% as.recip -> chor$Duration
chor %hum>% as.midi -> chor$MIDI

create two new fields—Duration and MIDI—by apply-
ing the functions as.recip 11 and as.midi to the de-
fault Token field. These new fields can then be referenced
like any other field in subsequent calls.

5.2 API

Much of R’s expressive power arises from a subtle us-
age of metaprogramming to manipulate data.frames:
Several base R functions—including subset, with, and
within—allow users to input arbitrary R expressions
which are then evaluated within the data set using the ta-
ble’s named fields as a local namespace. HumdrumR ex-
tends this paradigm to humdrum data, allowing users to ap-
ply arbitrary expressions to humdrum data stored in the un-
derlying data.table back-end. Users capture expres-
sions as R formulae and humdrumR API applies them to
the data. These expressions can refer to any field in the
data, including fields created by the user. The command

chor %hum>% ~table(MIDI[Duration == "4"])

(using the MIDI and Duration fields defined in the
previous code block) extracts all MIDI values where the
corresponding rhythm is a quarter note—using the stan-
dard R indexing ([]) operator—and then applies the base
R table function, to tabulate these MIDI values. In a
sense, this approach is an abstraction of function defini-
tion: One creates an expression—equivalent to the body of
a function—but specifies no function arguments, as all data
fields from the humdrum data are automatically passed into
the expression if referenced.

The true power of the humdrumR arises through spe-
cial keyword formulae which modify the API’s behavior.
Most notably, the by keyword can be used to split-apply-
combine humdrum data. For instance, the command

chor %hum>% c(~table(MIDI[Duration == "4"]),
by ~ File)

applies the exact same processing as the previous code
block except the expression is applied separately to each
file in the corpus, creating 370 separate tables. Since the
humdrumR data fields include all data and metadata in the
dataset, any field can be used to group data.

Other keyword formulae afford complex windowing,
including n-grams, overlapping fixed-length windows, and
various dynamic windowing possibilities. Finally, another
set of keywords can be used to directly manipulate R’s
built-in visualization settings. Since formulae (including
keyword formulae) are first-class objects in R, all of these
expressions can be easily saved, composed, manipulated,

11 “Recip” is short for “reciprocal”—the humdrum term for standard
Western duration categories (eighth-notes, sixteenth-notes, etc.).
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and combined. For instance, we could save the tabling ex-
pression used above and use it in combination with various
keyword formulae:
tabQuarters <- ~table(MIDI[Duration == "4"])
chor %hum>% c(tabQuarters, by ~ File)
chor %hum>% c(tabQuarters, by ~ Spine)
chor %hum>% c(tabQuarters, by ~ Clef)

The humdrumR API also includes routines for filter-
ing and indexing a humdrum corpus. The standard R in-
dexing operators ([] and [[]]) can be used to select
pieces, records, or spines, either numerically or by match-
ing regular expressions. More sophisticated filtering can
be achieved through the use of humdrumR formulae: For
instance, the command
filterHumdrum(chor,

~Token %~% ’[EeAa]-’,
by ~ File)

selects all the files in the data set which contain the notes
E[ or A[.

To bring it all together, a simple, yet complete
humdrumR analysis script might look like this:
readHumdrum("Bach/Chorale/chor.*krn")->chor
chor %hum>% (~ as.midi(Token))

%hum>% (~ Pipe - 60)
%hum>% c(doplot ~hist(Pipe,

title = Clef,
xlim = c(30, 80)),

by ~ Clef,
mfcol ~ c(2,2))

These commands load the Bach chorale dataset, convert
the original data tokens to MIDI numbers, subtract these
numbers by 60 (to center them on middle C), then create
a separate histogram for each clef in the data (in a 2x2
grid 12 ). Note the use of the base R hist (histogram)
function, including the use of the title and xlim (x-
axis limits) arguments to give each plot a meaningful title
and place all plots on the same scale.

5.3 Developer Tools

HumdrumR is designed to be highly extensible. Even
novice users can quickly begin to create and save their own
routines as R functions, or simpler yet, as combinations of
humdrumR formulae. However, humdrumR also includes
several features to support development by more sophis-
ticated coders. All humdrumR data classes are intended
to serve as extensible bases for further development—
for instance, developers might choose to implement coun-
terpoint analysis algorithms using humdrumR’s basic
tonalInterval class and its wealth of useful meth-
ods (transposition, inversion, etc.). However, the most
significant tool for developers is humdrumR’s Regular-
Expression Method Dispatch System (REMDS). Interact-
ing with humdrum data requires extensive string manipu-
lation, typically using regular expressions, as one works
to extract the information one is interested in from hum-
drum’s “dense” character tokens. Using the REMDS, de-
velopers need only define normal R functions to manipu-
late the information they are concerned with and regular

12 The keyword mfcol is a base R graphics parameter which controls
the layout of plots in a grid.

expressions to match that information. The REMDS can
then be used to create generic functions which read an in-
put string and dispatch the appropriate method based on
matching regular expressions—what’s more, these meth-
ods can (optionally) be applied “in place,” only affect-
ing the substring which matches the desired regular ex-
pression. For example, the humdrumR pitch module de-
fines a number of functions which translate specific pitch
encodings (note names, solfege, intervals, etc.) to/from
humdrumR’s common tonalInterval pitch represen-
tation. The REMDS is then used to generate generic pitch
translation functions which call the desired method when
a specific regular expression is matched. For instance, the
function as.midi can be applied to strings containing a
variety of pitch representations, even when embedded with
other information (i.e., rhythm, beaming):

as.midi("4.cc#J") # "cc#" => **kern => 73
as.midi("4.C#5J") # "C#5" => **pitch => 73
as.midi("4.-M9J") # "M9" => **mint => -14
as.midi("4.soJ") # "so" => **solfa => 7

This approach allows users to use humdrumR functions
without having to explicitly manipulate strings or use reg-
ular expressions, one of the major barriers to learning in
the original humdrum toolkit. Many of humdrumR’s own
functions (like as.midi) are written using the REMDS,
and developers can utilize it to significantly reduce coding
effort when defining new functions.

6. FUTURE

The package source of HumdrumR 0.3.0 is currently
available on github (natsguitar/humdrumR); when devel-
opment solidifies, version 1.0.0 will be made available
on CRAN under the terms of the GNU General Public Li-
cense. However, releasing code is not enough to support
humanist scholars interested in coding—it is imperative to
provide high quality documentation and learning materials
in a style that is digestible for users who may be new to
computer programming. The most important contribution
of the original humdrum project was neither the syntax nor
the toolkit, but Huron’s extensive user guide [17]. 13 The
Humdrum User Guide offers a gentle introduction to em-
pirical/computational research from a humanistic perspec-
tive, walking readers through the practical and philosophi-
cal details and challenges of digital humanities work and
the conceptual transformations necessary to convert hu-
manistic thought into concrete code, using examples from
real musicology projects. HumdrumR too will ultimately
be accompanied by a humdrumR User Guide, including in-
teractive online content. Our goal is to not just teach the
mechanics of operating software in a friendly, hands-on
format, but also the conceptual framework needed to think
about music as data, introducing key scientific principles/
methods (data sampling, statistics, hypotheses, etc.) while
maintaining a holistic, humanistic perspective.

13 http://www.humdrum.org/guide/
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