
IMPROVING SINGING AID SYSTEM FOR LARYNGECTOMEES WITH
STATISTICAL VOICE CONVERSION AND VAE-SPACE

Li Li1, Tomoki Toda2, Kazuho Morikawa2, Kazuhiro Kobayashi2, Shoji Makino1

1 University of Tsukuba, Japan 2 Nagoya University, Japan
lili@mmlab.cs.tsukuba.ac.jp, tomoki@icts.nagoya-u.ac.jp

ABSTRACT

This paper proposes an improved singing aid system for
laryngectomees that converts electrolaryngeal (EL) speech
produced using an electrolarynx to a more naturally sound-
ing singing voice. Although the previously proposed sys-
tem employing a noise suppression process and a rule-
based pitch control approach has achieved preliminary
success in converting EL speech into a singing voice,
there are still two major limitations. First, the converted
singing voice still sounds mechanical and unnatural ow-
ing to the adverse impacts of spectrograms extracted from
EL speeches, also making the effect of pitch control lim-
ited. Second, the capability and flexibility of the rule-
based pitch control in modeling various singing styles are
insufficient, causing the converted singing voices to lack
variety. To address these limitations, this paper proposes
an improved system that uses 1) a statistical voice con-
version approach to convert spectrograms extracted from
EL speeches into those of natural speeches and 2) a deep
generative model-based approach called VAE-SPACE for
pitch modification, which generates pitch patterns in a
data-driven manner instead of following manually de-
signed rules. The experimental results revealed that 1) the
conversion of spectrograms was effective in improving the
naturalness of singing voices, and 2) the statistical pitch
control approach was able to achieve comparable results
with the rule-based approach, which was very carefully de-
signed to be specialized in singing.

1. INTRODUCTION

The voice is an essential tool used by most of people to
communicate with others or express themselves. However,
it is difficult for laryngectomees whose larynxes have been
removed in surgery to speak or sing in a common manner
since they are unable to generate glottal excitation sounds
owing to the loss of their vocal folds. In consequence, this
vocal disorder may significantly degrade the quality of life
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of laryngectomees. One popular approach that enables la-
ryngectomees to speak again is to use an external medi-
cal device called electrolarynx to produce intense mechan-
ical vibrations as an alternative to glottal excitation sounds.
Electrolaryngeal (EL) speech produced using an electrolar-
ynx is noteworthy for its intelligibility, and furthermore, it
is easy for laryngectomees to learn how to use an electro-
larynx, even for people with low physical fitness. However,
the perceived naturalness of EL speech is unsatisfactory
owing to the use of mechanically generated source excita-
tion sounds, the fundamental frequency (F0) contours of
which are usually flat or given as predetermined patterns.
This further limits the capability of the electrolarynx to as-
sist laryngectomees in singing, where F0 contours play an
important role in providing both melodic information and
details related to the naturalness and singing style [1].

To develop singing aid systems for laryngectomees, it is
essential to suitably control the pitch of EL speech, i.e., F0

contours. One existing approach is to set F0 contours cor-
responding to melodies of predetermined songs and embed
them in advance into the electrolarynx as a function to al-
lowing these songs to be sung. However, the flexibility
in singing with this approach is unsatisfactory because the
number of embedded songs is limited and laryngectomees
are solely allowed to sing in predetermined styles.

To achieve a more flexible singing aid, a system based
on pitch control has recently been proposed [2]. With
this system, laryngectomees are allowed to freely control
melodic information such as musical scores and tempo
by playing a musical instrument themselves while singing
with an electrolarynx. Singing voices are then generated
by applying a voice conversion approach that converts EL
speeches into singing voices containing well-sung F0 con-
tours that are modified from the inputted musical scores
according to a set of manually predefined rules [3, 4]. Fur-
thermore, noise suppression [5] is employed to reduce the
source excitation signals emitted from the electrolarynx.
Although this system has achieved preliminary success as
a singing aid, there are still two limitations. First, the ef-
fect of pitch control in improving the naturalness of singing
voices was limited because of the fluctuations originating
from the spectral features extracted from EL speeches [2],
which resulted in the converted singing voices still sound-
ing mechanical and unnatural. Second, both the capability
and flexibility of the rule-based pitch control approach in
modeling various singing styles are insufficient. Once the
rules are determined, the system outputs certain F0 pat-
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terns containing similar characteristics without consider-
ing the personalities and emotions of singers, which is an
undesirable property of singing aid systems.

To develop a system that is capable of aiding laryngec-
tomees to sing naturally and distinctly, this paper proposes
an improved system that uses 1) a statistical voice conver-
sion (VC) approach based on the Gaussian mixture model
(GMM) [6, 7] to convert spectral features extracted from
EL speeches into those of natural speeches to alleviate the
fluctuation problem and 2) a deep generative model-based
approach called VAE-SPACE [8] to generate F0 contours
of singing voices from input musical scores. As a data-
driven approach, it is expected that VAE-SPACE can learn
the rules for generating natural F0 contours from data au-
tomatically, making it possible to model different singing
styles and expressions with a unified model.

2. OVERALL FRAMEWORK OF SINGING AID
SYSTEM FOR LARYNGECTOMEES

Fig. 1 shows an overview of the conventional singing
aid system proposed in [2] that takes a sequence of
musical scores N = [n1, . . . , nt, . . . , nT ] provided by
playing an instrument as melodic information in addi-
tion to an EL speech S = [s1, . . . , st, . . . , sT ]. Here,
st = [st(1), . . . , st(f), . . . , st(F )]T denotes the short-time
Fourier transform (STFT) coefficients of the EL speech
at frame t, and f and (·)T denote the frequency index
and transpose operator, respectively. The system mainly
consists of three modules, namely, for voice quality en-
hancement, pitch control, and synthesis. With this system,
singing voices are generated by a vocoder-based synthesis
approach [9] that takes phonetic information and pitch in-
formation as inputs, where the former is extracted from the
EL speech S enhanced by the voice quality enhancement
module and the latter is obtained by modifying the input
musical scoresN via the pitch control module.

Note that this system can also serve laryngectomees
who do not play instruments by allowing them to sing with
played accompaniments, where a sequence of predeter-
mined musical scores is given in synchronization with the
accompaniments. Different from the method of embedding
preset F0 patterns into an electrolarynx and controlling the
pitch by pushing a button, this system can obtain more nat-
ural singing voices since singing voices obtained with the
former method are usually interrupted when the musical
score changes owing to the limitation of mechanical exci-
tation generation, and those obtained in the latter way are
converted from more fluent EL speeches.

3. CONVENTIONAL SYSTEM WITH
NOISE SUPPRESSION AND RULE-BASED

PITCH CONTROL

3.1 Noise suppression

It is important to enhance the quality of both phonetic in-
formation and pitch information to achieve a better trans-
formation. To obtain correct phonetic information from

Figure 1. Flowchart of singing aid system.

an EL speech, which is usually mixed with a noisy source
signal that radiates from the position of the EL attach-
ment, the aforementioned system employs a spectral sub-
traction (SS) method [5] to enhance the voice quality of
the recorded EL speech. A prototype noise amplitude
spectrum |l(f)| is calculated by averaging the amplitude
spectra of the EL noise recorded with a close-talking mi-
crophone in advance. The enhanced EL speech is ob-
tained with the enhanced amplitude spectrum |ŝt(f)| and
the noisy phase spectrum, where

|ŝt(f)| =

{
|st(f)| − 2|l(f)|, (|st(f)| > 2|l(f)|),
0, (otherwise).

(1)

The phonetic information used for synthesis, i.e., spectral
features and aperiodic components, is obtained by analyz-
ing the enhanced EL speech with fixing F0 at a constant
value and using the on/off information of the electrolarynx
as unvoiced/voiced information.

3.2 Rule-based pitch control

For pitch control, a rule-based F0 modification technique
[3,4] is applied to add overshoot, vibrato, preparation, and
fine fluctuation, which are four characteristics typically ob-
served in F0 contours of natural singing voices, into the
musical scores nt. Specifically, overshoot, vibrato, and
preparation are added by applying the following infinite
impulse response filter to the musical scores:

H(s) =
k

s2 + 2ζωs+ ω2
, (2)

where ω, ζ, and k denote the natural frequency, damping
coefficient, and proportional gain, respectively. Overshoot
and preparation are expressed as the second-order damp-
ing model (0 < |ζ| < 1), while vibrato is expressed as the
second-order oscillation model (|ζ| = 0). The fine fluctua-
tion is generated from white noise that is high-pass-filtered
with the cutoff frequency set at 10 Hz followed by a nor-
malization. The modified F0 contour can be expressed as
ot = nt + et, where ot and et denote the generated F0

and the component including all four characteristics that is
finally added to the musical score at frame t, respectively.

3.3 Limitations

The effectiveness of this system in converting EL speech
into a singing voice was experimentally confirmed in [2].
However, it was also reported that undesirable fluctuations
reside in F0 contours of synthesized singing voices that
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may have originated from the spectral features extracted
from the enhanced EL speeches, which cause the singing
voices to still sound mechanical and unnatural. The upper
figure in Fig. 6 shows an example of the reanalyzed F0

contour of a singing voice obtained with the system. An-
other limitation originates from the rule-based pitch con-
trol. Although the system allows laryngectomees to sing an
arbitrary song with the desired melody, it is difficult for this
framework to further improve the capability to express var-
ious singing styles or to generate expressive singing voices.

4. PROPOSED SYSTEM WITH
STATISTICAL VC AND VAE-SPACE

To remove these indefinite spectral components affecting
F0 contours, one of the promising approaches is to trans-
form the spectral features of EL speeches of songs into
those of natural singing voices not containing these com-
ponents. Statistical VC techniques [6,7] have the potential
to be used for developing such a transformation based on
training data consisting of utterance pairs of the source and
target voices, namely, singing voices sung using an electro-
larynx (EL speeches) and in a natural way. Furthermore, it
is expected that EL noise can be reduced together by train-
ing a model with the source voice being noisy EL speech.

To address the second limitation, motivated by the high
flexibility of a statistical approach in modeling different
voice characteristics and singing styles [10–12], we pro-
pose using a statistical parametric model for pitch con-
trol instead of the rule-based approach. Specifically, we
employ VAE-SPACE [8], which uses a variational autoen-
coder (VAE) as an analysis-synthesis model to discover the
structure of an F0 generating process for the singing voice
in a data-driven manner as well as an inverse process for
estimating the underlying musical scores.

4.1 Statistical VC for converting EL speech into
singing voice

Let xt = [xt(1), . . . , xt(d), . . . , xt(D)]T denotes the D-
dimensional spectral feature extracted from EL speech st
at frame t, where d denotes the index of the feature di-
mension. The aim of VC is to estimate the spectral fea-
tures, F0 contours including unvoiced/voiced (U/V) infor-
mation, and aperiodic components of the corresponding
natural singing voice, which are denoted by the same vari-
able yt = [yt(1), . . . , yt(d), . . . , yt(D)]T for simplicity,
from the noisy spectral sequence xt.

In the training step, a joint probability density function
(p.d.f.) of the joint acoustic feature vectors [XT

t ,Y
T
t ]

T is
modeled with a GMM as follows:

P
(
Xt,Y t

∣∣Θ(X,Y)
)

=
M∑
m=1

αmN
(
[XT

t ,Y
T
t ]

T;µ(X,Y)
m ,Σ(X,Y)

m

)
. (3)

Here Xt denotes spectral segment feature vectors that
are obtained by performing principal component analysis
(PCA) for the joint vectors concatenating the spectral fea-
ture vectors of the current frame, preceding L frames, and

succedding L frames extracted from source voices. Y t =
[yT
t ,∆y

T
t ]

T denotes vectors combining static and dynamic
features extracted from target voices. Θ(X,Y) denotes a pa-
rameter set of the GMM, which consists of the weights αm,
mean vectors µ(X,Y)

m , and convariance matrices Σ(X,Y)
m of

all the mixture components. Moreover, the p.d.f. of the
global variance (GV) [13] of the target static feacture vec-
tors over an utterance v(y) = [v(1), . . . , v(D)]T is also
modeled with a Gaussian distribution, which is expressed
with a set of parameters Θ(v) = {µ(v),Σ(v)} as

P
(
v(y)

∣∣Θ(v)
)

= N
(
v(y);µ(v),Σ(v)

)
. (4)

Here, the GV v(y) of a time sequence of the target static
feature y = [yT

1, . . . ,y
T
T ]T is calculated utterance by utter-

ance as

v(d) =
1

T

T∑
t=1

(
yt(d)− 1

T

T∑
τ=1

yτ (d)
)2
. (5)

In the conversion process, a time sequence vector of
the converted static feature vectors ŷ = [ŷT

1, . . . , ŷ
T
T ]T is

determined by maximizing the product of the conditional
p.d.f. of Y givenX and the p.d.f. of the GV as

ŷ = argmax
y

P
(
Y
∣∣X,Θ(X,Y)

)
P
(
v(y)

∣∣Θ(v)
)
λ, (6)

subject to Y = Wy, (7)

whereX = [XT
1, . . . ,X

T
T ]T and Y = [Y T

1, . . . ,Y
T
T ]T are

time sequence vectors of the source and target feature vec-
tors, respectively. W denotes a 2DT -by-DT matrix that
extends a time sequence vector of the static feature vec-
tors into that of the joint static and dynamic feature vec-
tors [14], and λ is a weight parameter, which is commonly
set to 2T . By adopting an approximation with a subopti-
mum mixture component sequence m = {m1, . . . ,mT },
the converted static feature vector sequence is determined
as follow [7]:

ŷ = argmax
y

P
(
Y
∣∣X, m̂,Θ(X,Y)

)
P
(
v(y)

∣∣Θ(v)
)
λ. (8)

The enhanced EL speech is generated by filtering the
mixed excitation signal, which is designed according to the
F0 values, U/V information, and aperiodic components es-
timated from the spectral segment feature vectors, with the
converted spectral features.

4.2 VAE-SPACE for pitch control

VAE-SPACE [8] has been proposed as a generative model
that can represent and generate F0 contours of both
speeches and singing voices. Let z denotes a sequence
of parameters governing the generating process of F0 con-
tours o = [o1, . . . , oT ]T. VAE-SPACE uses an encoder
to estimate the parameters of a conditional distribution
qφ(z|o) of the latent variable z given an F0 contour o,
and a decoder to estimate the parameters of a conditional
distribution pθ(o|z) of the F0 contour o given the latent
variable z. The encoder and decoder are trained simulta-
neously so that qφ(z|o) becomes consistent with the true
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posterior distribution pθ(z|o) ∝ pθ(o|z)p(z). The param-
eters of the networks φ and θ can be trained by maximizing
the following variational lower bound [15]:

L(θ, φ;o)

= Ez∼qφ(z|o)[log pθ(o|z)]−DKL[qφ(z|o)||p(z)], (9)

where DKL[·||·] denotes Kullback-Leibler (KL) diver-
gence. In VAE-SPACE, the latent variable z is associated
with a set of interpretable parameters so that the decoder
can be seen as a generative model for synthesizing F0 con-
tours and the encoder can be seen as an inverse problem
solver that analyzes the underlying parameters of an ob-
served F0 contour. In the case of speech, z is associated
with a phrase/accent command sequence defined in the Fu-
jisaki model [16], while in the case of a singing voice,
it is associated with a sequence of musical scores. The
name “VAE-SPACE” comes from the former case, where
the VAE-based method is designed to perform statistical
phrase/accent component estimation (SPACE).

A typical way of modeling qφ(z|o) and pθ(o|z) is to
assume a Gaussian distribution

qφ(z|o) = N
(
z|µφ(o),diagσ2

φ(o)
)
, (10)

pθ(o|z) = N
(
o|µθ(z),diagσ2

θ(z)
)
, (11)

where µφ(o), σ2
φ(o) are the encoder outputs and µθ(z),

σ2
θ(z) are the decoder outputs. While the prior distribu-

tion p(z) is typically modeled as a standard Gaussian dis-
tribution with zero mean and unit variance, VAE-SPACE
designs it as a specific form based on the assumption that
z indicates the underlying musical scores of an F0 contour
in the case of a singing voice. Specifically, in a supervised
setting where pairs of F0 contours and musical scores are
availiable, we can train the VAE by maximizing the follow-
ing loss function, whici tends to maximize the likelihood
of z, instead of minimizing the KL divergence since the
prior distribution of z is known:

L(θ, φ;o) =Ez∼qφ(z|o)[log pθ(o|z)]

+ E(o,z)∼pD(o,z)[log qφ(z|o)], (12)

where E(o,z)∼pD(o,z)[·] denotes the sample mean over the
training data. In the generation process, a z sampled from
a Gaussian distribution with the musical scores N as the
mean and a variance matrix with a small constant value
in the diagonal is used as the input of the trained decoder.
The generated F0 contour is then used to replace that ob-
tained by VC to generate the excitation signal with the U/V
information estimated by VC.

For network architectures, a gated convolutional neural
network (CNN) [17] is used to construct the encoder and
decoder to capture long- and short-term dependencies in
F0 contours. The gated CNN uses a data-driven gate called
gated linear unit (GLU) σ(Hl−1∗Wg

l +bg
l ) as a nonlinear

activation function to control the information passed on in
the hierarchy, where Hl−1 denotes the output of the (l−1)-
th layer, bf

l and bg
l are the weight and bias parameters of

the l-th layer and σ is the sigmoid function.

Figure 2. An overview of conditional VAE-SPACE.

Figure 3. Network architectures of encoder and decoder
used for cVAE. VAE used the same architecture excluding
the class label inputs. “w”, “c” and “k” denote the width,
channel number and kernel size, respectively. “Conv”,
“BN” and “GLU” denote 1D convolution, batch normal-
ization and gated linear unit, respectively.

To improve the performance of VAE-SPACE in mod-
eling F0 contours and minimize the cost of preparing
pair data, we investigate two specific implementation-level
problems in this paper: 1) whether a score-level align-
ment is necessary to train a supervised VAE-SPACE and 2)
whether the performance can be improved by fine-tuning
the trained decoder with the real musical score sequences
generated by a sampling process during VAE pretraining.
Furthermore, aiming to model different singing styles in a
controllable manner, we also attempt to adopt a conditional
CNN with GLUs to construct networks, which takes labels
of singing styles c represented as one-hot vectors as addi-
tional inputs. The criterion of training a conditional VAE
(cVAE) can be obtained merely by extending (12) [15].

5. EXPERIMENTAL EVALUATIONS

5.1 Experimental conditions

We prepared two datasets containing different pairs of data.
Dataset1 consists of EL speech samples of 21 Japanese
children’s songs recorded by a laryngeal speaker using an
electrolarynx and the corresponding natural singing voices.
17 songs were manually segmented into 157 short phrases
and used to train GMMs, and the other 4 songs were seg-
mented into 19 phrases, and used as a test set. Each phrase
was about 3∼8s long. Dataset2 includes two versions of
one Japanese song (about 4min 30s long), which were sung
by a female person in normal and expressive singing styles.
We segmented each song into 53 phrases and manually
took alignments at the phrase and score levels, which were
referred to as “unaligned” and “aligned” data, respectively.

We used the amplitude spectra as spectral feature vec-
tors of EL speeches, and STRAIGHT analysis [9] to ex-
tract acoustic features of normal singing voices. The shift
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Table 1. RMSE and standard deviation of VAE with differ-
ent implementation conditions. “ft” denotes fine-tuning.

Models RMSE
VAE-unaligned 26.1031 ± 5.5028
VAE-aligned 22.7670 ± 5.2874

VAE-aligned-ft 21.3409 ± 5.3566
cVAE-aligned-ft 22.2933 ± 6.3934

Figure 4. Histograms of the residual components et.

length was 5 ms. The 0th through 24th mel-cepstral co-
efficients were used as spectral features of normal singing
voices. As excitation features, a log-scaled F0 value and
aperiodic components on five frequency bands (i.e., 0-1,
1-2, 2-4, 4-6, and 6-8 kHz) were used. To obtain segmen-
tal feature vectors at each frame, we concatenated spectral
feature vectors with the adjacent frames by setting L = 4
and performed PCA to reduce the feature dimension to 50.
The numbers of mixture components of the GMMs used
to estimate spectral features, aperiodic components, and
F0 including U/V information were all set at 16. Follow-
ing the original VAE-SPACE paper, the output of the de-
coder was designed to be a sequence of residual compo-
nents e = [e1, . . . , eT ], as shown in Fig. 2. Fig. 3 shows
the architectures of the encoder and decoder. To train VAE,
we used the songs sung in a normal style in Dataset2, and
those sung in an expressive style were used as additional
data for training the cVAE.

5.2 Objective evaluation

We first conducted an objective evaluation to demonstrate
the performances of VAE-SPACE with different imple-
mentation conditions. We divided the songs into 7 folds
and performed cross-validation. Root mean square error
(RMSE) between the estimated and target F0 contours was
used as a metric to evaluate the estimation accuracy of F0

generation. Table 1 shows the results. The objective re-
sults show that applying a score-level alignment and fine-
tuning the decoder were effective in improving the accu-
racy of generating the target F0 contours. However, the
histograms of the residual components et shown in Fig. 4
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Figure 5. MOS in terms of naturalness and goodness.

Table 2. p-values calculated for method c).
naturalness goodness

SS+score 2.25E-11 0.1257
SS+rule-based 5.64E-07 0.7673

VC+VAE-unaligned 0.2223 0.7551
VC+VAE-aligned 0.0460 0.0561

VC+VAE-aligned-ft 0.1677 0.3413
VC+cVAE-aligned-ft 0.0976 0.3413

reveal that both the alignment and fine-tuning decreased
the dynamics of the generated F0 contours.

5.3 Subjective evaluation

To further investigate the performances of VAE-SPACE
with different implementations and demonstrate the ef-
fectiveness of VC, we conducted a subjective evalua-
tion that compared 7 methods, namely, a) SS+musical
scores (SS+score), b) SS+rule-based F0 modification
(SS+rule-based), c) VC+rule-based F0 modification
(VC+rule-based), d) VC+VAE-SPACE using unaligned
data (VC+VAE-unaligned), e) VC+VAE-SPACE using
aligned data (VC+VAE-aligned), f) VC+VAE-SPACE us-
ing aligned data and fine-tuning (VC+VAE-aligned-ft),
g) VC+cVAE-SPACE using aligned data and fine-tuning
(VC+cVAE-aligned-ft). 13 evaluators participating in the
experiments scored the converted singing voices in terms
of the naturalness of the song and the goodness of singing
using a 5-point opinion scale. The mean and 95% confi-
dence interval of the two criteria are shown in Fig. 5 and
the p-values calculated for method c) are shown in Table 2.

The results show that VC significantly improved the
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Figure 6. Examples of reanalyzed F0 contours and spec-
trograms of synthesized singing voices obtained by em-
ploying SS (upper) and VC (bottom).

Figure 7. Generated F0 contours with various z (upper)
and class labels (bottom).

quality of converted singing voices in terms of the natu-
ralness, which confirmed the effectiveness of the VC ap-
proach in removing the undesirable spectral components.
An example of the reanalyzed F0 contour and spectrogram
is shown at the bottom of Fig. 6, which also confirmed
this result. VAE-SPACE implemented with a conditional
CNN achieved comparable results to the rule-based pitch
control with carefully designed rules, and showed a high
potential for contributing to the system. Compared with
the method using unaligned data and the cVAE, the sub-
jective results for the method using aligned data and fine-
tuning were slightly lower, exhibiting the same tendency as
the results shown in Fig. 4. This suggests that alignment
and fine-tuning are not important in our system. We also
investigated the variety of the F0 contours generated with
different sampled z and style class labels, the results of
which are shown in Fig. 7. We observed some reasonable

differences between the F0 contours generated with vari-
ous sampled z. However, there was no notable difference
observed between the F0 contours generated with different
class labels, which may have been due to the high abil-
ity of the networks to model the conditional distributions
while ignoring the class labels [18, 19]. This issue will be
addressed in future work.

6. DISCUSSION AND REUSABLE INSIGHTS

From the above results, it is concluded that spectrogram
modification is useful and must be considered as well as
F0 control to improve the quality of singing voices. On
the other hand, data alignment and fine-tuning are not es-
sential, which means that we can increase the number of
pair data at a relatively low cost to improve the estimation
accuracy and the variety of styles. Furthermore, since the
amount of pair data required for the VC approach is small
and VAE-SPACE allows semi-supervised training with un-
labeled data in addition to labeled data [8,15], it is expected
that the entire system will be allowed to play its potential
data efficiently, which is important for such a data-driven
framework. Although cVAE-based implementation failed
to represent different styles in the experiments, the frame-
work for modeling various styles with a unified model pro-
vides us with a simple and straightforward way to con-
trol singing styles and apply style interpolation/morphing.
Note that although we applied the method to model singing
voices, it can also be used with other audio signals such
as to generate suitable F0 contours of musical instruments
from musical instrument digital interface (MIDI) informa-
tion. In addition to modeling various styles, we can extend
this method to generate the F0 contours of multiple instru-
ments.

7. CONCLUSIONS

This paper proposed an improved singing aid system for la-
ryngectomees based on a previously proposed system that
converts EL speeches into singing voices according to the
additionally inputted melodic information. The proposed
system uses a statistical VC approach to transform the pho-
netic information extracted from EL speeches into those of
natural speeches, and VAE-SPACE to perform pitch con-
trol. We investigated the importance of well-aligned pair
data and the fine-tuning process for improving the perfor-
mance and a conditional version of VAE-SPACE for mod-
eling multiple singing styles with a unified model. The ex-
perimental results demonstrated that 1) the VC approach
was effective in significantly improving the naturalness of
singing voices, 2) the effectiveness of well-aligned pair
data and fine-tuning was limited, and 3) VAE-SPACE was
able to achieve comparable results to a carefully designed
rule-based approach in generating F0 contours.
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