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1. ABSTRACT

To make music composition more approachable, we de-
signed the first AI-powered Google Doodle, the Bach Doo-
dle [1], where users can create their own melody and have
it harmonized by a machine learning model (Coconet [22])
in the style of Bach. For users to input melodies, we de-
signed a simplified sheet-music based interface. To sup-
port an interactive experience at scale, we re-implemented
Coconet in TensorFlow.js [32] to run in the browser and re-
duced its runtime from 40s to 2s by adopting dilated depth-
wise separable convolutions and fusing operations. We
also reduced the model download size to approximately
400KB through post-training weight quantization. We cal-
ibrated a speed test based on partial model evaluation time
to determine if the harmonization request should be per-
formed locally or sent to remote TPU servers. In three
days, people spent 350 years worth of time playing with the
Bach Doodle, and Coconet received more than 55 million
queries. Users could choose to rate their compositions and
contribute them to a public dataset, which we are releas-
ing with this paper. We hope that the community finds this
dataset useful for applications ranging from ethnomusico-
logical studies, to music education, to improving machine
learning models.

2. INTRODUCTION

Machine learning can extend our creative abilities by offer-
ing generative models that can rapidly fill in missing parts
of our composition, allowing us to see a prototype of how
a piece could sound. To celebrate J.S. Bach’s 334th birth-
day, we designed the Bach Doodle to create an interactive
experience where users can rapidly explore different pos-
sibilities in harmonization by tweaking their melody and
requesting new harmonizations. The harmonizations are
powered by Coconet [22], a versatile generative model of
counterpoint that can fill in arbitrarily incomplete scores.
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Creating this first AI-powered doodle involved over-
coming challenges in user interaction and interface design,
and also technical challenges in both machine learning and
in infrastructure for serving the models at scale. For in-
putting melodies, we designed a simplified sheet music in-
terface that facilitates easy trial and error and found that
users adapted to it quickly even when they were not famil-
iar with western music notation.

As most users do not have dedicated hardware to run
machine learning models, we re-implemented Coconet in
TensorFlow.js [32] so that it could run in the browser.
We reduced the model run-time from 40s to 2s by adopt-
ing dilated depth-wise separable convolutions and fusing
operations, and we reduced the model download size to
∼400KB through post-training weight quantization. To
prepare for large-scale deployment, we calibrated a speed
test to determine if a user’s device is fast enough for run-
ning the model in the browser. If not, the harmonization
requests were sent to remote TPU servers.

Users in 80% of sessions explored multiple harmoniza-
tions, and 53.8% of the harmonizations were rated as pos-
itive. One complaint from advance users was the presence
of parallel fifths (P5s) and octaves (P8s). We analyzed 21.8
million harmonizations and found that P5s and P8s occur
on average 0.365/measure and 0.391/measure respectively.
Furthermore, P5s and P8s were more common when user
input was out of distribution, and fewer P5s and P8s were
correlated with positive user feedback.

3. RELATED WORK

Machine learning has been used in algorithmic music com-
position to support a wide range of musical tasks [5, 13,
19, 28, 29]. Melody harmonization is one of the canonical
tasks [7, 11, 20, 26], encourages human-computer interac-
tion [3, 14, 21, 25, 33], and is particularly approachable for
novices. Different interfaces and tools have been devel-
oped to make the interaction experience more accessible.
For example, in MySong [31], users can sing a melody and
have the system harmonize it. In Hyperscore [12], users
can draw multiple levels of “motifs” on a graphical sketch-
pad and have them harmonized according to the tension
curve they specified. Startups such as JukeDeck and Am-
per Music offer APIs that allow users to describe a piece
through timing and mood tags. Opensource libraries such
as Magenta.js [30] allow machine learning models to be
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used in digital audio work stations. For score-based in-
teraction, FlowComposer [27] offers an augmented lead-
sheet based interface, while DeepBach [17] demonstrates
interactive chorale composition in MuseScore which uses
standard music notation.

4. THE BACH DOODLE

4.1 A walk through of the user experience

The Bach Doodle user experience begins by demonstrat-
ing 4-part harmony using two measures of a Bach chorale,
Ach wie flüchtig, ach wie nichtig, BWV 26. By playing the
soprano line alone, followed by soprano and alto, and then
all four voices, users are shown how the harmony enhances
the melody. Users are then presented with two measures of
blank sheet music, in the treble clef, with a key signature
of C major, in standard time. There are four vertical lines
in each measure to indicate the beats which give the user
visual cues on where to put notes.

The user enters a monophonic melody using quarter and
eighth notes. The note duration is automatic. If a note is
entered on a beat, it is a quarter note by default. However,
if a note is added after the beat, the existing quarter note
becomes an eighth note. This simple interface makes it
easy for users with no musical knowledge to input a com-
position, and can be seen in Figure 1. If the user clicks
on the “star” button on the left-hand side of the sheet mu-
sic, they can enter “advanced mode”. This allows the user
to input sixteenth notes anywhere on the staff. It also en-
ables a control where the key can be changed to any of the
12 key signatures. This mode is hidden because it can be
overwhelming for new users. It is also easier to make less
enjoyable music this way, for example by going off key, or
making the music overly complex.

Clicking the “Harmonize” button sends the generation
request to either TensorFlow.js or the TPU server. When
the response is ready, it is presented to the user one voice
at a time, listing them out: “Soprano”, “Alto”, “Tenor”,
“Bass”. The voices are color-coded to illustrate the harmo-
nization in relation to the soprano input notes (Figure 2).

Figure 1. The user interface of the Bach Doodle, where
users can input a melody and then click on the green “Har-
monize” button on the bottom right to request a harmoniza-
tion.

Figure 2. The harmonization returned by Coconet is no-
tated in color, carrying the alto, tenor, and bass voices.

4.2 Design challenges

Celebrating J.S. Bach’s birthday using machine learn-
ing presented many unique design opportunities as well
as some user experience challenges. One of the main
goals was to empower people with the feeling that they
could augment their own creativity in ways not previously
thought possible, by allowing them to directly collaborate
with a machine learning model. Another important goal
was to convey the message that machine learning is not
“magical” or incomprehensible, but rather a science that
can be understood. Finally, a notable challenge was to en-
sure that these aims would be met for a large diversity of
individuals, from children who have not yet learned to read
to experts of music and technology.

In order to acquire early feedback on the design, user
tests were employed. Over the course of the project,
dozens of people were asked to play the demos and com-
ment on their experience through both pre-defined ques-
tions and open comments. The first user test in the de-
velopment process revealed that many people do not fully
understand the concept of harmony, but fortunately, further
testing showed that short animated musical examples were
enough for people to comprehend these concepts quickly.
Also, user tests indicated that only a small subset of peo-
ple could read standard music notation. Our intuition was
that using standard notation, rather than a grid based inter-
face would be intuitive and frictionless to anybody only if
the user interface (UI) was responsive with animations and
sound and also if the note input interface was kept sim-
ple. Further user testing of the standard notation input UI
proved this to be correct.

In order to accommodate people of all ages and expe-
riences, a common technique employed is to remove any
advanced feature or unexpected delight from the core ex-
perience and instead integrate them as “easter eggs”. This
allows people of all skill levels to experience the full core
experience without feeling frustrated, while also giving the
rarer advanced user more features. While the core expe-
rience primarily allows eighth notes and tempo changes,
clicking on a special button in the background addition-
ally allowed the user to add sixteenth notes and change the
key – two features that are very confusing to those without
musical backgrounds.
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4.3 Reusable insights

For future projects, we have shown that if the technol-
ogy being used is unfamiliar or perceived as “scary” to
those who know little about it, tethering the experience
to a familiar story and visuals can be a successful strat-
egy. Most people have a limited understanding of musi-
cal concepts such as harmony and standard notation, but it
is possible that people of all ages can quickly acquire an
intuitive understanding of musical concepts through care-
fully designed animated audiovisuals and a simple and re-
sponsive UI. Additionally, injecting content into loading
screens could not only make loading times feel shorter but
also be an excellent space for educational content. Finally,
user testing is crucial when trying to create an experience
using new technology that encompasses a large and diverse
audience – it can reveal serious issues and shortcomings
that are not obvious due to the team’s own background and
domain knowledge.

5. TECHNICAL CHALLENGES

In order for users to interact with Coconet via a web inter-
face, we needed to either port it to run client-side on the
user’s device or host the model on a server with sufficient
speed and capacity to support the number of requests we
were expecting. In fact, we did both: we ported the model
to TensorFlow.js (TF.js) so that it could run on user devices
and added support for Tensor Processing Units (TPU) so
that it could be served on Google Cloud. By running a sim-
ple test on users’ devices to determine the speed of core
tensor operations, we were able to determine whether to
use the TF.js implementation locally, or fall back to a TPU
server to handle the computation. In the end, 47.4% of all
harmonizations were done locally, in TF.js.

5.1 Background: Coconet

Coconet [22] 1 is a versatile generative model of musical
counterpoint that can fill in arbitrarily incomplete scores,
as illustrated in Figure 3.

Figure 3. Coconet can be used in a wide range of musi-
cal tasks, such as completing partial scores, harmonizing
melodies and generating from scratch.

Coconet represents counterpoint as a stack of piano
rolls encoded in a binary three-dimensional tensor x ∈
{0, 1}I×T×P , where I , T , and P denotes the number of in-
struments, time steps, and pitches respectively. xi,t,p = 1

1 Blog post: https://magenta.tensorflow.org/coconet
Code: https://github.com/tensorflow/magenta/tree/
master/magenta/models/coconet

if the ith instrument plays pitch p at time t. Each in-
strument is assumed to play exactly one pitch at a time,
therefore

∑
p xi,t,p = 1 for all (i, t) positions. We

also focus on four-part Bach chorales as used in prior
work [2, 4, 8, 16, 18, 24], and assume I = 4 throughout.

Conventional approaches often factorize the joint dis-
tribution p(x) into conditional distributions of the form
p(xk | x<k), where k indexes a sequence in some predeter-
mined ordering such as chronological. In contrast, Coconet
is an instance of orderless NADE [34,35] and offers direct
access to all conditionals of the form p(xi,t | xC), where
C selects a fragment of a musical score x and (i, t) ∈ ¬C
is in its complement (i.e. the missing parts). To train Co-
conet, we sample a training example x, choose uniformly
how many variables to erase, i.e. |¬C| ∼ U(1, D), and
then choose uniformly the particular subset of variables
¬C to erase. The input X ∈ {0, 1}2I×T×P is obtained by
erasing the piano rolls x to obtain incomplete piano rolls
xC and concatenating this with the corresponding masks,
as shown in Figure 4 (top left) where the yellow gaps indi-
cate erased positions with all pitches set to zero.

Figure 4. Coconet’s generation loop using Gibbs sam-
pling, alternating between (top) filling in the missing parts
and (bottom) erasing random parts to improve the score
through rewriting.

The output predictions for each (i, t) position is a soft-
max over the set of pitches P (top right of Figure 4). The
negative loglikelihood loss is given below, which involves
reweighing by the number of variables erased to ensure that
all conditionals are trained equally.

L(x;C) = − 1

|¬C|
∑

(i,t)∈¬C

∑
p

xi,t,p log p(xi,t,p | xC , C)

In contrast to generating from left to right in one pass,
Coconet uses Gibbs sampling to improve sample quality
through rewriting (see [22] for convergence analysis). Fig-
ure 4 shows how the procedure iterates between filling in
missing parts and then erasing other parts so that they could
be rewritten given the updated context.

5.2 Improving and speeding up Coconet

The original Coconet uses dense convolutions, where filter
weights and their mixing weights W are fully connected
(Equation 1). This makes it unable to fully leverage GPU
parallelization in TF.js (see Section 5.3.2).
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Let s, q index the pitch and time dimension in filters,
and i, j the input and output channels. In dense convolu-
tions, each output position (p, t, j) indexed by pitch, time
and output channel is a sum over the resultant input chan-
nels and also over the positions in each filter (given by the
neighbourhood function). For a 3-by-3 filter this summing
is over the 9 positions.

In contrast, depthwise separable convolutions [6],
shown in Equation 2, factorizes the dense tensor W into
a depthwise tensor V and a pointwise U . As a result, the
multiplications between V and X can be parallelized over
the input channels i in the inner sum of Equation 3.

Y dense
p,t,j =

∑
i

∑
s,q∈neighborhood(p, t)

Ws,q,i,jXs,q,i (1)

Y dsep
p,t,j =

∑
i

∑
s,q∈neighborhood(p,t)

Ui,jVs,q,iXs,q,i (2)

=
∑
i

Ui,j

∑
s,q∈neighborhood(p,t)

Vs,q,iXs,q,i (3)

To further speed up Coconet, we adopt dilated convolu-
tions to grow the receptive field exponentially to reduce
the number of layers needed. As in [36], where in each
block the dilation factors double in each layer for both the
pitch and time dimension and then the block repeats.

The original Coconet was trained on eight measures
(T=128). However, the Bach Doodle is designed for two
measures (T=32), so we retrained the model with the orig-
inal architecture and saw that the loss increased from 0.57
to 0.62 (show in Table 1), possibly because there is less
context. Switching from dense to depthwise separable
convolutions reduced the loss, requiring more filters but
fewer layers. Since Tensorflow.js allows for parallelization
across filters, this still resulted in much faster generation
(see Section 5.3.2). Dilated convolutions reduced both the
number of layers and number of filters and also reducing
the loss. The particular scheme we used is 7 blocks of di-
lation rates (1, 2, 4, 8, 16, 16) for the pitch dimension and
(1, 2, 4, 8, 16, 32) for the time dimension.

Table 1. Comparing frame-wise negative loglikelihood
(NLL) on the 16th-note resolution as in [22] and the gen-
eration time (in seconds) when model was ported to Ten-
sorflow.js (see Section 5.3.2 for details). The bottom three
rows are all trained on two-measure (T=32) random crops.

Convolution type NLL run time

Dense (T=128), 64L, 128f 0.57

Dense (T=32), 64L, 128f 0.62 > 40s
Depthwise separable, 48L, 192f 0.59 7s
Dilated, 45L (7 blocks), 128f 0.58 ∼4s

5.3 Porting Coconet to the Browser

JavaScript is the standard language for browser-based
computation, but native JavaScript is too inefficient to han-
dle the the amount of computation required by Coconet in

a reasonable time for the interaction we desired. TF.js is
a javascript library for GPU-accelerated machine learning.
It makes use of WebGL 2 to leverage the parallel process-
ing power of GPUs to speed up machine learning opera-
tions, supporting the development and training of models,
as well as deployment of trained models on web browsers.
By enabling users to run trained models directly in their
web browsers, it alleviates the need for remote servers to
run those models. This can enable faster, more interactive
experiences between a user and a machine learning system.

While some models can easily be ported to TF.js us-
ing a conversion script, Coconet’s Python TensorFlow im-
plementation used some ops that did not yet exist in TF.js
(e.g., cumsum), and we also needed the flexibility to op-
timize the performance of the model for our use case. We
therefore manually re-implemented Coconet in TF.js our-
selves and have made the code opensource 3 . We also con-
tributed missing ops to TF.js with WebGL fragment shader
code for GPU acceleration.

5.3.1 UI Challenges

TF.js makes use of the async/await pattern for access to
outputs of models and individual TensorFlow operations.
During inference, users receive a callback for when GPU
operations have completed and the result is ready to be
consumed. In this way, there is no blocking of the UI while
waiting for model results. In practice, with large mod-
els like Coconet (which includes many repeated sampling
steps of a deep network), it is still important to cede control
back to the UI explicitly during the course of the model op-
erations, which can be done with the tf.nextFrame()
operation. Our op-by-op code port of the network allowed
us to add these occasional UI breaks, which avoided a poor
user experience where the page would freeze for multiple
seconds during model prediction.

5.3.2 Performance Challenges

The initial port of Coconet to TF.js took over 40 seconds
to do one harmonization. For a satisfying user experi-
ence, we needed to lessen this latency to below 5 sec-
onds. While TF.js is able to take advantage of GPU ac-
celeration, WebGL does not directly support the types of
tensor operations used in deep learning. Instead, these op-
erations must be implemented as shader programs, which
were originally intended to compute the color for pixels
during graphics rendering. This mismatch leads to inef-
ficiencies that sometimes vary by operation. It turned out
that the (unavoidably) inefficient shader implementation of
convolutional layers were the main culprit. By switching to
depthwise-separable convolutions, however, we were able
to avoid many of these performance issues, reducing gen-
eration time to 7 seconds.

As we run Coconet through 64 Gibbs sampling steps,
any improvement to operations that are used in this loop

2 https://developer.mozilla.org/en-US/docs/Web/
API/WebGL_API

3 https://tensorflow.github.io/magenta-js/music/
classes/_coconet_model_.coconet.html
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could lead to a significant saving. We wrote a custom op-
eration using WebGL shaders to fuse together the opera-
tions used in our initial TF.js implementation of the an-
nealing schedule. This schedule by [37] is a sequence of
simple element-by-element operations that is run on every
sampling step during harmonization. Because of the sim-
plicity of the operations (a scalar subtraction, multiplica-
tion, division, and a max operation), we were able to easily
fuse them into a single operation that avoided the over-
head of executing multiple shader programs on the GPU,
speeding up inference by about 5%. The combined savings
of adding depthwise-separable convolutions, shrinking the
model by using dilated convolutions, and using the fused
schedule operation resulted in a reduction of the model la-
tency from 40s to 2s.

5.3.3 Download Size

Due to the number of users we intended to reach as well
as the variety of locations, devices, and bandwidth limits
they would have, we needed to ensure the download size
of the model weights was as small possible. To achieve
this goal, we implemented support for post-training weight
quantization and contributed it to TF.js. This quantization
compresses each float32 weight tensor by mapping the
full range of its dimensions down to 256 uniformly-spaced
buckets in order to represent them as int8 values, which
are then stored along with float32 min and scale val-
ues used to recover the range. During model initialization,
the weights are converted back to float32 tensors using
linear interpolation. By using these quantization, we were
able to reduce the size of the downloaded weights by ap-
proximately 4, resulting in a payload of ∼ 400KB without
any noticable sacrifice in quality.

5.4 Balancing Load Between Tensorflow.js and TPU

We ideally wanted to run the harmonization model com-
pletely on end-user devices using TF.js to avoid the need
for serving infrastructure, which adds cost, effort, and ad-
ditional points of failure. But the speed of harmonization
differs by user device, with older and lower-end devices
taking longer to run the TF.js model code. For devices
where harmonization take more than a few seconds, the
harmonization is instead done by the cloud-served model.
The first step in checking if a device can run harmonization
locally is to check if WebGL is supported on the device,
since that is required for using GPU-acceleration through
TF.js. If WebGL is supported then we perform a speed test
on the model, running a sample melody through its first
four layers. If the latency of this model inference is below
a set threshold, then the TF.js version is used. As there is
overhead on the first inference of a model in TF.js, due to
initial loading of the model weight textures onto the GPU,
we actually run the speed test twice and use the second
measurement to make the decision.

6. DATASET RELEASE AND ANALYSIS

6.1 Data structure

Every user who interacted with the Bach Doodle had the
opportunity to add their composition to a dataset. We
make this entire dataset available at https://g.co/
magenta/bach-doodle-dataset under a Creative
Commons license. Of more than 55 million requests, the
user contributed dataset contains over 21.6 million minia-
ture compositions. The compositions are split across 8.5
million sessions. Each session represents an anonymous
user’s interaction with the Bach Doodle over a single
pageload and may contain multiple data points. Each data
point consists of the user’s input melody, the 4-voice har-
monization returned by Coconet, as well as other metadata:
the country of origin, the user’s rating, the composition’s
key signature, how long it took to compose the melody, and
the number of times the composition was listened to.

6.2 Analysis

We present some preliminary analysis of the dataset to
shed some light on how users interacted with the doodle.
Out of the 21.6 million sequences in the dataset, about 14
million (or 65.7%) are unique pitch sequences, that are
not repeated anywhere in the dataset (without consider-
ing timing information). Overall, the median amount of
time spent composing a sequence was 25.5 seconds, and
sequences were listened to for a median of 3 loops, with a
total of 78.2 million loops listened across the entire dataset.

The sequences come from 109 different countries, with
the United States, Brazil, Mexico, Italy, and Spain rank-
ing in the top 5. Countries that had a small number of se-
quences were all grouped together in a separate category, to
minimize the possibility of identifying users. While many
sessions (∼20%) contained only one request for harmo-
nization (shown in Figure 5), most sessions had 2 or more
harmonizations, either of the same melody, or of a differ-
ent one. As shown in Figure 6, more than 5 million of the
input sequences used the maximum number of notes in the
default version of the doodle, which is 16. It is interesting
to note that despite being an Easter egg, 7.6% of user ses-
sions discovered the advanced mode that allowed them to
enter longer sequences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#requests

0.0M
0.5M
1.0M
1.5M
2.0M
2.5M
3.0M
3.5M
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4.5M

#
se

ss
io

ns

Figure 5. Histogram: number of requests per session

The doodle has 3 presets: Twinkle Twinkle Little Star,
Mary had a Little Lamb, and the beginning to Bach’s Toc-
cata and Fugue in D Minor, BWV 565, which are the 3
most repeated sequences. However, there are also shows
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Figure 6. Histogram: length of sequences

some surprising runner ups, such as Beethoven’s Ode to
Joy, and Megalovania, a popular song from the game Un-
dertale, as well as some regional hits 4 . Overall, users
enjoyed their harmonizations, with 53.8% of all composi-
tions rated as “Good”. Figure 7 gives the breakdown of
user ratings.

4.8%
6.2%

53.8%
35.2%

Rating
Poor
Neutral
Good
No rating

Figure 7. Breakdown of user ratings on harmonized com-
positions.

6.3 Parallel Fifths and Parallel Octaves

The Coconet model that powered the Bach Doodle was
trained to produce harmonizations in the style of Bach
chorales, and one well known characteristic of Bach’s
counterpoint writing is how carefully he followed the rule
of avoiding parallel fifths (P5s) and parallel octaves (P8s).
However, one complaint from advanced users of the app
was the presence of P5s and P8s in the output of the model.
Here, we present some analysis of how frequently and un-
der what circumstances such outputs occurred. To identify
the P5 and P8 occurrences, we used music21 [9].

First, we looked at how frequently P5s and P8s ap-
peared in our training data. We were surprised to find
that in the 382 Bach chorale preludes we used in our
train and validation sets, there were 132 instances of P5s
(0.023/measure) and 51 instances of P8s (0.009/measure).
Given this prevalence, the model may learn to output this
kind of parallel motion. However, many of these instances
can be “excused” because they occur under special circum-
stances such as at phrase boundaries or when using non-
chord tones [10, 15]. Unfortunately, our training data does
not include key signatures, time signatures, or fermatas, so
the model likely learned to treat P5s as more permissible
than was actually the case in Bach’s music.

We then examined the output of the model to see if
P5s/P8s occurred more frequently when user input was
outside the training distribution and if the absence of

4 Visit https://g.co/magenta/bach-doodle-dataset to
interact with visualizations of the top repeated melodies overall and in
each region, as well as regional unique hits.
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e feedback

pitch/delta outside lim
its

positiv
e feedback

pitch/delta within lim
its

non-positiv
e feedback

pitch/delta within lim
its

positiv
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0.10
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0.40
p5/measure
p8/measure

Figure 8. Parallel fifths and octaves per measure

P5s/P8s was correlated with positive user feedback. We
first split the output based on whether users gave posi-
tive feedback or not (non-positive feedback includes neu-
tral, negative, and the absence of feedback). Next, we
split based on whether user input was within the same
pitch range as the soprano lines in the training data (MIDI
pitches from 60 through 81) and whether the maximum
delta between consecutive pitches exceeded that of the
training data (1 octave).

In total, we found 15,816,599 P5s (0.365/measure) and
16,949,818 P8s (0.391/measure) in the model output. Re-
sults split into the four categories are shown in Figure 8.
As hypothesized, P5s/P8s were more common when user
input was out of distribution, and their absence correlated
with positive user feedback. A Kruskal-Wallis H test for
both the number of P5s and P8s showed that there is at
least one statistically significant difference between the
four categories with p < 1e−4. Further, Mann-Whitney
rank tests between the categories showed significant dif-
ferences, each with p < 1e−4. The correlation between
fewer P5s/P8s and positive user feedback is particularly in-
teresting. This could either indicate that users prefer music
with fewer P5s/P8s or it could simply mean that when the
model produces poor output, P5s/P8s tend to be a feature
of that output. In any case, the presence of P5s/P8s seems
to be a useful proxy metric for model output quality. In fu-
ture work, it could be a useful signal during training (sim-
ilar to [23]), evaluation, or perhaps even during inference
where it could trigger additional Gibbs sampling steps.

7. CONCLUSION

The Bach Doodle enabled large-scale participation in
baroque-style counterpoint composition through an intu-
itive sheet music interface assisted by machine learning.
We hope this encourages more creative apps that allow
novices and artists to interact with music composition and
machine learning in approachable ways. With this pa-
per, we are releasing a dataset of 21.6 million instances
of human-computer collaborative miniature compositions,
along with meta-data such as user rating and country of ori-
gin. We hope the community will find it useful for ethno-
musicological studies, music education, or improving ma-
chine learning models.
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