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ABSTRACT

We present the design and implementation of a scalable
search engine for large Digital Score Libraries. It covers
the core features expected from an information retrieval
system. Music representation is pre-processed, simplified
and normalized. Collections are searched for scores that
match a melodic pattern, results are ranked on their simi-
larity with the pattern, and matching fragments are finally
identified on the fly. Moreover, all these features are de-
signed to be integrated in a standard search engine and
thus benefit from the horizontal scalability of such systems.
Our method is fully implemented, and relies on ELASTIC-
SEARCH for collection indexing. We describe its main
components, report and study its performances.

1. INTRODUCTION

We consider the problem of searching large collections of
digital scores encoded in a symbolic format, typically Mu-
sicXML [14], MEI [22, 28], or the forthcoming format of
the W3C Music Notation Group [23]. These encodings are
now mature and stable, and we can expect to witness in the
near future the emergence of very large Digital Score Li-
braries (DSL). A representative example of such endeav-
ors is the OpenScore initiative, which aims at publishing
high-quality encoding of public domain sheet music. This
potentially represents millions of scores, and gives rise to
strong needs in terms of collection management tools tai-
lored to the peculiarities of music representation.

In the present paper, we focus on the content-based re-
trieval problem. We consider the search mechanism where
a user submits a monophonic query pattern in order to re-
trieve, from a very large collection of scores, those that
contain one or more fragments “similar” to this pattern.
We further require the search system to be scalable.

With this objective in mind, we propose two main con-
tributions. First, we expose the design of the core mod-
ules of a search engine, namely pre-processing and data
normalization, pattern-based search, ranking, and on-line
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identification of fragments that match the pattern query.
Second, we propose a list of guidelines for integrating
these modules in a standard information retrieval system,
with two main benefits: reduction of implementation ef-
forts, and horizontal scalability.

Our approach is summarized by Figure 1. Pre-proces-
sing, matching, occurrence extraction and ranking are
standard steps in text-based information retrieval systems,
adapted here to the specificities of music representation.
Tokenization, stemming and lemmatization [21] are, in our
case, replaced by a so-called normalization that simplifies
the representation and improves the robustness of the re-
sult. The matching step operates on the normalized repre-
sentation (query pattern and score content). Normalization
and matching are detailed in Section 3.

Obtaining a full score in the result would be of little use
if we were not able to identify all the fragments that actu-
ally match the pattern, called pattern occurrences. This is
necessary, for instance, to highlight them in the user inter-
face. The algorithm is described in Section 4.

Finally, the set of matching scores are sorted according
to the similarity of their occurrences to the pattern. While
pattern matching mostly relies on the melodic profile, the
ranking method focuses on the rhythm (Section 5). Their
combination produces results with highly relevant scores.

The rest of the paper (Section 6) covers our second
contribution, namely the integration of our music retrieval
components in a standard search engine. For the sake
of concreteness, we detail this integration with ELASTIC-
SEARCH (https://elastic.co).

We finally position our work with respect to the state of
the art and lists some useful extensions that could enrich
the search functionalities (Section 7).

2. PRELIMINARIES: SCORES, FRAGMENTS,
AND PATTERNS

Given a melodic pattern P as input, the pattern match-
ing operation retrieves all the scores such that at least one
fragment matches P . Our approach focuses on the pitch
and duration features, generally considered as the most im-
portant parameters for melodic similarity [27]. We model
a score as a synchronization of voices, and each voice as a
sequence of elements< e1, e2, · · · , en >with ei in E×D,
where E is the domain of musical “events” (notes, chords,
rest) and D the musical duration.
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Figure 1. Overview of the main indexing and matching steps
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Let us take the example of a voice VI (Fig. 2). The blue
fragment, denoted by F in the following, is used to illus-
trate the matching operation. VI encodes a melody begin-
ning with a G4 (semi-quarter), followed by a D5 (idem), a
D5 (dotted half), etc. Using some pitches encoding mecha-
nism, for instance the chromatic notation (number of semi-
tones from the lowest possible sound), one obtains the rep-
resentation of this voice as a sequence of pairs:
VI =< (34, 8); (41, 8); (41, 3); (34, 8); (42, 8); (42, 6); (39, 8); · · · >

Given a voice V , we can derive other representations
thanks to transformation functions. We consider two main
categories of transformations: simplifications and muta-
tions. They will be used in the normalization process.

Definition 1 (Simplifications) A voice V can be trans-
formed by the following simplification functions: ε(V ), the
sequence of pitches, π(V ) the sequence of pitch intervals
between events in ε(V ), and ρ(V ) the sequence of duration
(without events) of V .

Intuitively, ε(V ) captures the melodic profile (sequence
of note heights), π(V ) the relative evolution of pitches’
heights, and ρ(V ) the rhythmic profile of a voice. Applied
to VI one obtains:

1. ε(VI) =< 34, 41, 41, 34, 42, 42, 39, 36, . . . >

2. π(VI) =< 7, 0,−7, 8, 0,−3,−3, . . . >

3. ρ(VI) =< 8, 8, 3, 8, 8, 6, 8, 6, . . . >

Definition 2 (Mutations) A mutation MI1→I2 maps an
interval I1 to another interval I2. A mutation family is
a set of mutation functions.

For example,MD = {M1→2,M3→4,M8→9} denotes
a subset of the family of diatonic mutation that transforms
a minor second, third or sixth in, respectively, their major
counterpart, and conversely.

Finally, a fragment is any subsequence of a voice. We
will use the word “pattern” to denote the fragment supplied
by some user as a search criteria.

3. NORMALIZATION AND MATCHING

The matching operation is a Boolean procedure that tells
whether the pattern P and a fragment F are similar to one
another. This similarity concept is subject to a trade-off
between the precision (relevant part of the result) and the
recall (global relevant scores over the result). This is a tra-
ditional information retrieval issue. Let us examine how it
is translated in the realm of symbolic music representation.

Z ZZ��Z
�Z��� Z �Z Z

P1 (Exact match)

ZZZZ�Z� Z ��� Z �Z
P2 (Transposed match)

Z ZZZZ�ZZ� �
��� Z �Z

P3 (Rhythmic variant of P2)

Z ZZZ�Z�Z�� Z �Z
P4 (Melodic variant)

Figure 3. Several matching interpretations

3.1 Discussion

Fig. 3 shows several pattern variants, candidates to match
with the fragment F of VI (blue note heads in Fig. 2).

Exact Match. The strictest matching definition re-
quires both the sequence of pitches (resp. ε(F ) and ε(P ))
and the sequence of durations (resp. ρ(F ) and ρ(P )) to
be identical. If we stick to this definition, F matches only
with pattern P1. The precision is then maximal but we
will miss results that seem intuitive. F will not match for
instance with the transposed pattern P2, all other things be-
ing equal. This is probably too strict for most applications.

Transposed Match. Accepting transposition means
that we ignore the absolute pitch and focus only on inter-
vals, i.e., we compare π() and ρ(), introducing flexibility
in the melodic correspondence. In that case P2 matches F .

Rhythmic Match. Next, consider pattern P3 (Fig. 3),
a rhythmic variant of P2 that does not match F by exact
rhythmic matching. Again, this definition seems too strict,
since short rests, or slight duration adjustments, can typi-
cally be added or removed from a voice to denote a specific
articulation, without severely affecting the music itself. P3

matches F if we compare only π(P3) and π(F ), and ignore
ρ(). Note that rhythmic changes involve not only rests and
durations, but also repeated notes.

Melodic Match. Finally, P4 is a pattern where intervals
have been mutated. The initial minor sixth is replaced by a
major sixth. Since such mutations can be found in imitative
styles (e.g., counterpoint), it can make sense to accept them
as part of the matching definition.

How far are we ready to go in the transformation
process? Fig. 4 shows two extreme examples. Pattern
P5 matches F with respect to the sequence of intervals
(π(P5) = π(F )), whereas pattern P6 is a rhythmic match
(ρ(P5) = ρ(F )). It seems clear that these patterns are
quite far from the considered fragments and that, at the
very least, they should not be given the same importance
in the result set than the previous ones.

Music similarity has been studied for decades now. It
seems obvious that there is no ideal solution that would suit
all situations [12,15] since similarity judgments depend on
many aspects. However, our goal here is not to compute all
the similarities, but to provide a filtering mechanism that
gets rid of the scores that do not match the query pattern.
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Figure 5. Voice normalization.

Algorithm 1 Voice normalization
1: procedure VNORM(V )
2: Input: A voice V
3: Output: A voice V ′, normalization of V
4: V ′ ← V
5: Normalize all note durations in V ′ to a quarter.
6: Merge repeated notes from V ′.
7: Remove rests from V ′

8: return V ′

This mechanism should be simple, efficient, and plugable
in a standard search engine. It does not require to apply a
costly similarity function to the whole collection.

In this perspective, matching-based retrieval is a first
step operated to filter out a large part of the collection. A
simplified similarity function can be used to top rank rele-
vant scores. It is then easy to develop further investigations
(e.g., specialized similarity function) on the result set.

3.2 Normalization

It is generally considered that rhythm plays a prominent
role in the perception of similarity. We therefore rank the
result according to the rhythmic likeness of each retrieved
fragment with the pattern. Filtering is based on the melodic
profile, and its impact depends on how we simplify this
profile in the normalization step. Two extreme choices are
either to keep the exact sequence, increasing the precision,
or to extract the melodic contour, increasing the recall.

In information retrieval systems, normalization is part
of pre-processing steps, usually called analyzers and can
be tuned by the administrator. This flexibility should be
adopted for the symbolic music retrieval as well.

Our current implementation relies on the VNORM() al-
gorithm (Alg. 1), applied to both the pattern and each voice
in the corpus. Fig. 5 shows the voice normalization ap-
plied on patterns F, P1 (top) and P2, P3, P5 (bottom). In
both cases the sequence of intervals obtained by π() on the
normalization is <6,-3,-3,1,2,-2>.

3.3 Matching

Definition 3 A score S matches a pattern P iff, for at least
a voice v in S, and at least a pair [b, e], e > b of offsets (po-
sitions) in v, where the set of voice fragments v[b] · · · v[e]
that match P are called the matching occurrences of S.

π(VNORM(P )) = π(VNORM(v[b] · · · v[e]))

4. FINDING MATCHING OCCURRENCES

Once matching scores have been extracted from the reposi-
tory, it is necessary to identify the corresponding sequences
of pitches that match the given query pattern (on normal-
ized n-grams). For this, we need to look forward to exact

Algorithm 2 Finding matching occurrences
1: procedure FINDINGOCCURRENCES(V , Q)
2: Input: A voice V , a query Q of intervals
3: Output: A set L of fragments
4: for p in LCS(V,Q) do . List of matching patterns
5: L← L ∪ p

match between intervals in the query pattern, and pitches
in score’s voices. Algorithm 2 produces a list of matching
pitches which will be ranked in the next section.

This procedure processes a voice V with a given query
pattern Q. The LCS [1, 20] algorithm (Longest Common
Subsequence) will give in output each matching pattern in
V . It will verify if the pattern Q matches any interval be-
tween two successing pitches from V . The LCS algorithm
iterates on each pitch of V to check each eligible subse-
quence, especially for matching patterns contained into re-
peating subfragments in Q.

5. RANKING

Given a set of fragments that match a pattern P , we now
want to sort them according to a similarity measure, and
put on top the ones that are closest to P . Assume that the
search pattern is our previous F (Fig. 2, blue heads) and
that the result set is {P1, P2, P3, P5}. For all, function π()
composed with the normalization VNORM yields <6,-3,-
3,1,2,-2>. Intuitively P1 and P2 should be ranked first, and
P5 should be ranked last.

It is important to note that this ranking applies to frag-
ments that have an identical melodic pattern. We take ad-
vantage of this specificity to operate at two levels. The first
level measures the similarity of the “melodic rhythm”, i.e.,
the respective duration of pairwise intervals in each frag-
ment. To this end we define the notion of blocks.

Definition 4 Let F be a fragment such that
π(VNORM(F )) = < I1, · · · , In >. By definition of
π and VNORM, each interval Ij , j ∈ [1, n] is represented
in F by a sequence < pi1, e

i
2, · · · , eik−1, pik > such that:

• pi1 and pik are two distinct pitches, and
interval(pi1, p

i
k) = Ii

• each eil, l ∈ [2, k− 1] is either a rest, or a pitch such
that eil = pi1

We call < pi1, e
i
2, · · · , eik−1 > the block Bi of Ii in F .

A block is the largest subsequence of a fragment that
covers a non-null interval. The concept of block is illus-
trated by Fig. 6 for P1, P3 and P5.

The first level of the ranking function evaluates the simi-
larity of two fragments F1 and F2 by comparing the blocks
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Algorithm 3 Ranking procedure
1: procedure RANKING(F1, F2)
2: Input: F1, F2, such that π(VNORM(F1))=π(VNORM(F2))
3: Output: a similarity s ∈ [0, 1]
4: s← 0; d1 ← duration(F1); d2 ← duration(F2)
5: for i := 0 to n do . Loop on the blocks
6: s← s+ |dur(B1

i )/d1 − dur(B2
i )/d2|

7: if s = 0 then s← T ieBreaking(F1, F2)

8: return s/2 . Euclidian normalization [19]

pairwise durations. The rationale is that if these durations
are similar, the only difference lies in either repeated notes
or rests inside each block. Fig. 6 shows for instance that
block durations in P1 and P3 are exactly the same, which
makes them almost identical. The difference is internal to
each block (for instance block 2, in green). On the other
hand, P1 and P5 turn out to be quite dissimilar.

The RANKING function is simple and efficient (Algo-
rithm 3). We first normalize the fragment duration, and
sum up the difference of durations between pairs of blocks.

If it turns out that all block durations are pairwise iden-
tical, a tie-breaking function has to be called. This is the
only situation where we might have to examine internal of
blocks. By definition of blocks, this internal representation
only consists of rhythmic data: rests and repeated notes.
Any standard text comparison method (edit distance, Lev-
henstein distance) can be used.

6. INDEXING

We now describe how our functions can be integrated in a
search engine. For the sake of concreteness, our descrip-
tion relies on ELASTICSEARCH, but the method works for
any similar system (e.g., Solr) that uses inverted index.

6.1 Encoding

An index in ELASTICSEARCH is built on JSON docu-
ments. Each field in such a document can be either in-
dexed, stored or both. Indexing a field means that ELAS-
TICSEARCH supports full-text searches on the field’s con-
tent. Storing a field means that the field’s content is stored
in the index. Our index features an n-gram field for search-
ing, and a sequence field for the ranking.

Given a voice V and the sequence of intervals of its nor-
malization π(VNORM(V )) =< I1,· · · ,Ik >, we compute
the list of n-grams {<Ii, · · · ,Ii+n−1 >, i ∈ [1, k−n+1]},
where n, the n-gram size, is an index configuration param-
eter. If, for instance, the sequence of intervals is <6,-3,-
3,1,2,-2>, the list of 3-grams is {<6,-3,-3>, <-3,-3,1>,
<-3,1,2>, <1,2,-2>}.

Each n-gram is then encoded as a character string which
constitutes a token. These tokens are finally concatenated
in a large character string, separated by a white space. Pos-
itive integers are encoded with a, b, c, etc., and the minus
sign by m, as illustrated in the following:
{"query": {"match_phrase":
{"ngram": "fmcmc mcmca mcab abmb"} } }

6.2 Searching

We can then run keyword queries and, more impor-
tantly, phrase queries where ELASTICSEARCH retrieves
the fields that contain a list of tokens that appear in a spe-
cific order. The previous query shows the"match_phrase"
query which searches the n-gram sequence.

The search engine then does the rest of the job for us. It
finds all the indexed documents such that the n-gram field
contains the phrase. However, by default, ranking is based
on textual features that do not match what we expect. We
therefore need to replace the default ranking method.

6.3 Ranking

Ranking functions can be overridden in ELASTICSEARCH

[32, 35]. To this end, we must provide a Java function that
implements the ranking method exposed in Section 5. This
function is called at query time and produces a similarity
score for each voice. The result is sorted on this value, and
made accessible to the client application via an iterator-like
mechanism [11] called SearchScript.

Our ranking function operates on a voice to identify the
matching occurrences, and to measure the similarity be-
tween the search pattern and each occurrence. We must
store in ELASTICSEARCH an encoding of the voice that
can be accessed during the query evaluation.

6.4 Query expansion

Our method relies on a strict matching of a sequence of
intervals. Since accepting unbounded melodic transforma-
tions would likely return the whole database, we can con-
sider those that can be seen as meaningful from a musical
point of view. For instance, diatonic mutations of inter-
vals (e.g., accepting both minor and major thirds or sixths
in the matching operation) probably makes senses and can
improve significantly the recall of our method.

We have integrated the synonym query expansion
feature of ELASTICSEARCH engine (e.g., the ability
to map “car” to “vehicle”) to implement this feature.
To achieve this, we decided to produce a list of syn-
onyms for major thirds or sixths. These means that
an interval ’c’ can be similar to ’d’ or interval ’h’ to
’i’. The following n-grams are then considered to be:
similarcbh, dbh, dbi, cbi

In order to integrate the list of synonyms to ELAS-
TICSEARCH, it is given to the index as an analyzer
"melodic_transformation" (illustrated in the query Sec-
tion 6.5) and matching n-grams are merged at query time.

To find the matching occurrences, we need to modify
Algorithm 2 in order to integrate the synonyms where in-
tervals (in the LCS algorithm) for major third and sixth
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Figure 7. ScoreSim integration in ELASTICSEARCH

can be authorized, then: 1.5 ∼ 2 and 3 ∼ 3.5. ELASTIC-
SEARCH can be further enhanced by taking into account a
similarity measure between those synonyms (e.g., oriented
graph weighted with similarity values between synonyms).

6.5 Implementation

The integration of our approach in ELASTICSEARCH

needs to preprocess musical scores to normalize them, and
to compute the ranking in the search engine on query-time.

The first step consists in a Python scripts that normal-
izes voices from scores (Alg. 1), extracts n-grams, and pro-
duce JSON documents sent to the ELASTICSEARCH REST
API. Documents also contain corpus and opus ids, sylla-
bles from lyrics voices which can be queried.

Second, to take into account synonyms in ELASTIC-
SEARCH, the list of n-gram synonyms needs to be set of-
fline. We have generated the list of all combinations of
third and sixth transformation for each possible n-gram
available in the repository. This list is imported in ELAS-
TICSEARCH and then processed on-the-fly for each query.

The third step integrates the ScoreSim scoring mod-
ule as a Java program in ELASTICSEARCH. For this, a
SearchScript needs to be inherited in order to produce a
plugin for ELASTICSEARCH. This plugin takes queries’
parameters and instantiates a scoring function which will
process every matching scores. The scoring function
ScoreSim implements Algorithms 2 and 3.

The query below integrates all features that are pro-
posed in our approach: n-gram search (melody.value),
synonyms analyzer (melodic_transformation), and the
ScoreSim function (script_score). In the latter, the pa-
rameter “query” gives the list of pitches used in order to
produce the score value from Algorithm 3. The query
params gives the sequence of the music items (octave,
pitch and duration) that constitutes the pattern in order to
provide distances and rank the result set.
{"query":{ "function_score": {

"query": { "match_phrase": { "melody.value": "mcbb",
"analyzer": "melodic_transformation"}},

"functions": [{"script_score": {
"script": {"source": "scorelib", "lang": "ScoreSim",

"params": {"query":[
{"s":"A", "o":4, "id":"m42", "a":0, "d":8.0},
{"s":"E", "o":3, "id":"m43", "a":0, "d":4.0},
{"s":"G", "o":3, "id":"m44", "a":0, "d":4.0},
{"s":"B", "o":4, "id":"m45", "a":0, "d":6.0}]}}}}]}}}

Figure 7 shows the querying process with the following
steps: 1) transform the melodic pattern into the ELASTIC-
SEARCH DSL (Domain Specific Language), 2) ELASTIC-
SEARCH gets all the matching score corresponding to the

q1 q2 q3 q4
Querying pattern demc mcmcmc bmbb bmbmc
Nb of matching scores 204 719 877 2,225
Nb with query expansion 242 1867 877 2,236

Table 1. Query patterns

given n-gram and eventually to their synonyms, 3) instan-
tiate the ScoreSim plugin and process every score, 4) ex-
tract occurrences on each instance and then its score value,
5) and finally, ELASTICSEARCH sorts the whole result-set
according to the produced scores and sends the result.

6.6 Performance

In order to study the impact of our approach on the com-
putation time, we apply different queries on our corpora.
The corpora size varies by cumulating several corpus, rep-
resenting up to 4,950 polyphonic scores. It is composed of
the whole corpora available here 1 composed of Francœur,
Méthodes, Motet, Psautiers, Sequentia, Timbres, etc.

To study the effect of the matching process, we have
chosen four different queries to apply with various pat-
terns, from infrequent to more frequent ones, based on the
popularity of the stored n-grams. Table 1 gives for each
query pattern the corresponding total number of matches
in the corpora and the number after applying the query ex-
pansion (synonyms). We can see that query q2 is clearly
expanded since mcmcmc has 7 synonyms and produces a
large number of matches (2.5 times more). At the opposite,
query q3 has no synonyms and do not enlarge its result-set.

Figure 8 shows the evolution of the number of matching
scores wrt the corpus size. It gives both matching scores
for normal (plain lines) and expanded queries (dashed
lines). According to the synonyms, we can see that q1
and q4 provide few more matchings, while q2 witnesses
a different behavior where the number of matchings grows
proportionally with the number of synonyms.

The execution time is plotted in Figure 9 for the 4 dif-
ferent queries. It shows both normal pattern queries (plain
lines) and expanded queries (dashed lines). This allows
to investigate both the robustness with respect to various
results sizes, and issues related to false positives.

Each query is sub-linear in the result size. Query q4 is a
frequent pattern which returns 2,225 matching scores (45%
of the corpora). It is executed in 277 ms. The small num-
ber of synonyms has few impacts on the global processing
time. At the opposite, q1 is extremely efficient due to its

1 NEUMA repertory: http://neuma.huma-num.fr/home/
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selectivity. It produces 204 scores in 22 ms. One interest-
ing effect can be seen for query q2 where the number of
matching synonyms leads to more computation time but it
only 2.1 times more (for 2.5 times more matching scores).

Those experiments show that the ranking function takes
less than 0.12 ms to process each score on a single ELAS-
TICSEARCH node (server). The corpus can be spread on
several nodes in order to scale it up horizontally.

7. RELATED WORK

Our approach combines similarity searches based on tex-
tual music encoding, scalable search, and rhythm-based
ranking. The novelty of this approach is their association
in a consistent setting. The rather trivial implementation
makes, in our opinion, our solution quite attractive.

Music similarity has been an active MIR research topic
over the last decades [5]. The general goal is to evalu-
ate the likeness of two musical sequences. A major prob-
lem raised by this definition is that similarity judgments
are highly dependent on both the content being compared
and on the user taste, culture, and experience [12, 15]. A
recent survey [34] summarizes the recent trends observed
in the SMS track of the MIREX competition.

A similarity method is characterized by the choice of
musical parameters. Pitches and durations are generally
considered as expressive enough. Using sequences to rep-
resent both parameters is primarily motivated by our objec-
tive to integrate our methods in a standard search engine,
and to benefit from an index structure. Some important pa-
rameters, e.g., metric accent, structure or harmonic are ig-
nored because they often lead to tree-based encodings that
are hardly indexable. Geometric approaches, such as [33],
are also less suitable in this indexing perspective. Multidi-
mensional structures are complex, and their performances
are known to fall down as the dimension increases [29],
and not yet integrated to off-the-shell search engines.

Textual encoding of symbolic music representation is an
attractive idea in order to use text algorithms. The Hum-
Drum toolkit [17] relies on a specialized text format and
adapts Unix file inspection tools for music analysis. Exact
and approximate string matching algorithms for melody
matching have been used in ThemeFinder [18,30] or Musi-
pedia [26]. Many algorithms for efficient computation of
similarity matching through exhaustive searches have been
proposed [2–4, 7]. Specialized rhythm similarity functions

are proposed and compared in [31].
Text-based approaches are simple solutions, with two

important limitations. First, combining pitches and rhythm
in a single character string for instance is not easy, and
small music variants may result in important syntactic dif-
ferences. Second, these methods do not scale since the
whole database has to be inspected for each query. Sev-
eral indexing methods have been suggested for the edit
distance [8, 24]. The Dynamic Time Warping distance is
another popular method, for which sophisticated indexing
structures have been proposed [13, 16]. None of them is
available beyond research prototypes.

The easiest way to benefit from an inverted index is to
split musical sequences in n-grams. This has been exper-
imented in several earlier proposals [6, 9, 10, 25]. Each n-
gram plays the role of a “token” and search methods apply.

Ranking is an essential part of an information retrieval
system. We believe that our proposal, which combines
1) a pre-processing normalization step, 2) a melodic profile
search and 3) a rhythmic profile ranking, completes ear-
lier attempts to adapt text-based retrieval to music retrieval,
and results in a complete workflow which achieves a sat-
isfying trade-off between the filtering impact, the ranking
relevancy and the overall efficiency.

8. CONCLUSION

We described in this paper a practical approach to the prob-
lem of indexing pattern-based searches in a large score li-
brary. Our solution fulfills three major requirements for
an information retrieval system: (i) it supports search with
a significant part of flexibility, (ii) it proposes a ranking
method consistent with the matching definition, and (iii) it
brings scalability thanks to its compatibility with the fea-
tures of state-of-the-art search engines. We fully imple-
mented our solution, including the internal ranking func-
tion for ELASTICSEARCH, and we will be pleased to sup-
ply our software components to any interested institution
that wishes to propose a content-based search mechanism.
Score analyzers extension. Alg. 1 with the normaliza-
tion of voices can be extended with ad hoc music ana-
lyzers: management of grace notes, the simplification of
melodic profiles, treatment of repeated notes, or cross-
voice melodies, to name a few.
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