
AUDIO QUERY-BASED MUSIC SOURCE SEPARATION

Jie Hwan Lee∗ Hyeong-Seok Choi∗ Kyogu Lee
Music and Audio Research Group,

Graduate School of Convergence Science and Technology,
Seoul National University

{wiswisbus, kekepa15, kglee}@snu.ac.kr

ABSTRACT

In recent years, music source separation has been one of
the most intensively studied research areas in music in-
formation retrieval. Improvements in deep learning lead
to a big progress in music source separation performance.
However, most of the previous studies are restricted to sep-
arating a few limited number of sources, such as vocals,
drums, bass, and other. In this study, we propose a net-
work for audio query-based music source separation that
can explicitly encode the source information from a query
signal regardless of the number and/or kind of target sig-
nals. The proposed method consists of a Query-net and a
Separator: given a query and a mixture, the Query-net en-
codes the query into the latent space, and the Separator
estimates masks conditioned by the latent vector, which is
then applied to the mixture for separation. The Separator
can also generate masks using the latent vector from the
training samples, allowing separation in the absence of a
query. We evaluate our method on the MUSDB18 dataset,
and experimental results show that the proposed method
can separate multiple sources with a single network. In ad-
dition, through further investigation of the latent space we
demonstrate that our method can generate continuous out-
puts via latent vector interpolation.

1. INTRODUCTION

Music source separation, isolating the signals of certain
instruments from a mixture, has been intensively studied
in recent years. Due to the improvements in deep learn-
ing techniques, various approaches using deep learning for
music source separation have been introduced. However,
most of the previous studies are mainly focused on improv-
ing music source separation performances, not the range
of separable sources. To tackle this problem, a few stud-
ies have tried to separate the fixed number of sources of
interest by conditioning one-hot label in the deep learning
network [14, 15].
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While being the most straight-forward approach, we ar-
gue that such an approach is not a proper way to deal with
the outliers when the generic and broadly defined class
labels are the only available data at hand [7, 11]. To un-
derstand this situation more concretely, let us consider the
mismatched situations where the target source is classi-
fied into a certain generic class but still somewhat far from
the general characteristics of that broadly defined generic
class. For example, consider the situation where we de-
sire to separate ‘distorted singing voice’ or ‘acoustic gui-
tar’ sources. In these cases, we can imagine that the perfor-
mance can be boosted if we were to have more fine-grained
labels such as ‘distorted singing voice’ or ‘acoustic guitar’
rather than generic classes such as ‘vocals’ or ‘guitar’. One
of the simplest ad-hoc solutions, therefore, can be manu-
ally annotating such outliers based on the music instrument
ontology and conditioning those new classes into the deep
learning network. Unfortunately, manually annotating an
audio signal has limitation in many aspects. First, labeling
an audio itself is costly. Second, given the same audio sam-
ples, the number of samples per class is reduced, hence it
is likely that the separation performance degrades. Third,
such a method is not scalable to new outlier samples, and
is thus limited.

Figure 1. t-SNE visualization [8] of encoded latent vectors
of the test dataset in MUSDB18. Without any classification
loss, the Query-net is trained to output latent vectors that
provide useful information about various instruments. It is
observable that the latent vectors from the same class are
clustered in the latent space while not being identical.

To deal with these problems, in this paper, a novel au-
dio query-based music source separation framework is pro-
posed. The main idea is to directly compress the diverse au-

878



dio samples into latent vectors – using the so-called Query-
net – so that the audio samples can be mapped into non-
identical points even when the samples are from the same
class as illustrated in Fig. 1. The encoded latent vector
is then fed into a separation network to output a source
whose characteristics is similar to the audio sample taken
into the Query-net. The proposed framework is scalable as
the Query-net is able to encode an unseen singing voice
or instrument sound into the continuous latent space. This
property allows many useful utilities as follows. First, it
is capable of separating various number of sources with a
single network. Second, we can expect an increase in sep-
aration performance especially when the characteristics of
the target source in the mixture is considered far from the
given generic class since the user can manually select and
encode the held-out sound sample that is deemed similar to
the target signal. Third, it allows the natural control of the
output of the separation network by interpolating the latent
vectors in the continuous latent space.

To demonstrate the usefulness of the proposed method,
we show various experiments using the MUSDB18 dataset
[11]. The experiments show that the output of the separa-
tion network is highly dependent on the latent vector which
allows smooth transition in signal level by controlling and
interpolating the latent vectors. Also, we show that the pro-
posed method becomes especially useful when the target
source of interest is far from the general characteristic of
coarsely defined sound class. Finally, we show that the pro-
posed method can be even automated by iteratively encod-
ing the separation output.

2. RELATED WORK

In this section, we first introduce previous music source
separation studies that tried to separate mixture into multi-
ple sound classes. One of the most basic ways is to estimate
several separation masks with a single model. In [10], they
tried to separate four sources with one stacked hourglass
model [9]. While they showed a competitive results the
method is not flexible as the model requires a fixed num-
ber of output. Next, [15] introduced a one-hot label condi-
tioning approach and showed that their proposed method
is capable of separating multiple sources. This method is
more flexible than the aforementioned model but the model
does not assume latent space, therefore, is not capable of
manipulating output other than conditioning the one-hot
label. Finally, [14] showed that they can embed each time-
frequency bin of the mixture into a high-dimensional space
using deep clustering [1] approach. However, this approach
still has a limitation in that the model is not capable of en-
coding the audio signal directly into the latent space. Apart
from the music source separation studies, [21] suggested a
speaker-dependent speech separation method by incorpo-
rating a lstm-based anchor vector encoder which enables
direct encoding of audio signal into a latent space. Using
this technique, they showed that the proposed method can
cluster the time-frequency bin embeddings that are close to
the anchor vector in the latent space.

Figure 2. Illustration of the (a) Query-net and (b) Separa-
tor. The Query-net encodes the query into the latent vec-
tor and it is passed into the Separator by two methods. 1.
Concatenation: The latent vector is concatenated with mix-
ture spectrogram by tiling the latent vector along the spa-
tial dimension. 2. AdaIN: Adaptive instance normalization
is used in every layer of decoder part.

3. PROPOSED METHOD

3.1 Query-based Source Separation

The proposed framework is composed of two deep learning
networks, Query-net Q(·) and Separator S(·). While most
of the previous studies typically use S to extract a single
class source from a mixture, we aim to separate the mixture
by manipulating the additional input signal, a query. By
doing so, we can expect to have a control over the mixture
just by choosing a different query input which can be done
either manually by the user or automatically by the system.
Hence, the query signal is expected to be sampled from a
similar sound class to the target signal within the mixture,
but does not have to be identical. To achieve this, Q directly
encodes the query audio signal into a latent vector so that
we can control the output of S by manipulating the latent
space.

Q is composed of 6 strided-convolutional layers fol-
lowed by gated recurrent unit (GRU) layer. The stack of
strided-convolutional layers are used to extract local fea-
tures from the given query signal. Then, the extracted fea-
tures are reshaped by stacking each feature map along the
frequency axis. Finally, the reshaped tensor is passed into
GRU and the last state of the GRU is used as a summary
of the query signal. As we would like the encoded latent
vector to have a meaningful high-level information, we de-
signed Q to map the query into a small enough dimension
compared to the dimension of the query signal. After the
audio query has been encoded, the summarized informa-
tion is passed into S.

S is a U-Net [13] based network which has proven its
effectiveness in many source separation studies [3, 10, 16,
18,19]. It is a convolutional encoder and decoder with skip-
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connections between the layers. S takes the mixture signal
and estimate a sigmoid mask to separate the mixture into a
source given the summarized information of query from Q.
To effectively pass the summary of the query signal to S,
we applied two methods. First, we simply concatenated the
latent vector along the channel dimension of the input mix-
ture spectrogram expecting the summarized information to
be delivered from the start. Second, we used the adaptive
instance normalization (AdaIN) technique in the decoding
stage of S, which is proven to be effective in many stud-
ies for conditioning latent vectors [2, 4]. AdaIN is simply
done by applying two steps on each output x of the con-
volutional layer (before activation) of the decoder part of
S. First, each i-th feature map xi is normalized using in-
stance normalization technique [2]. Second, affine trans-
formation is applied to the normalized feature map using
learned scale and bias parameters which transforms en-
coded query vector z into ys and yi respectively as fol-
lows, ys = WT

s z, yb = WT
b z, where Ws and Wb denote

the trainable parameters,

AdaIN(xi,y) = ys,i · (
xi − µ(xi)

σ(xi)
) + yb,i. (1)

The overall framework of the proposed method is illus-
trated in Fig. 2.

3.2 Training

3.2.1 Data Sampling

We first describe how the mixture and target source are
selected throughout the training phase.

Let, vi be the single source sampled from i-th source
class, where i ∈ {1, 2, 3...,K} and K denote the total
number of source classes. We split the classes into two
groups by randomly assigning each source class into group
T (Target) and R (Rest) without replacement until every
class is assigned to one of the two groups. Next, we multi-
ply binary value αi to the vi, where αi being sampled from
the Bernoulli distribution, αi ∼ Bernoulli(0.5). This was
done to make sure that there are not too many sources in-
cluded in the mixture. After then, as a data augmentation
strategy [20], we scale each source by multiplying a value
βi to source vi, where βi is sampled from the Uniform dis-
tribution, βi ∼ U[0.25, 1.25]. Finally, the sources in each
group is added to form two waveforms sT and sR and the
mixture m is constructed as the linear sum of sT and sR as
follows,

m = sT + sR =
∑
i∈T

(βi · αi · vi) +
∑
j∈R

(βj · αj · vj).

(2)

As we used magnitude spectrogram as input of the mod-
ules, m, sT , and sR are transformed into short-time-
Fourier-transform (STFT) domain, which we denote in
capital letterM , ST and SR, respectively. Note that, we do
not assume any musicality of mixture signal, hence each
class is sampled from arbitrary mixture tracks.

3.2.2 cVAE with Latent Regressor

To design the proposed framework, we borrow the for-
mulation of conditional variational autoencoder (cVAE).
While the latent vector z can be deterministically encoded
into the latent space, in cVAE framework, z is instead sam-
pled from the Gaussian distribution, where the parame-
ters of the distribution (mean and variance) are estimated
from Q. Then, S is used to reconstruct ST given M and
z ∼ Q(ST ). This is ensured by one of the two objectives
of cVAE, namely, reconstruction loss LR. The purpose of
LR is to guarantee that the output of S is dependent on the
encoded latent vector as follows,

LR = EST∼p(ST ),M∼p(M), z∼Q(ST )[‖ST − S(M, z)‖]1.
(3)

Note that, in training phase, the latent vector z is sampled
using re-parameterization trick to allow backpropagation
in training phase [5].

Next, KL-divergence loss is used to make the distribu-
tion of z be close to the Gaussian distribution N (0, I) to
guarantee a sampling at test time.

LKL = EST∼p(ST ) [DKL(Q(ST )‖N (0, I))] (4)

Apart from cVAE framework, we also adopted latent
regressor used in [24] to enforce the output of S to be
more dependent on the latent vector. First, a random vec-
tor z is drawn from the prior Gaussian distributionN (0, I)
and passed to S. Then, S produces a reasonable output re-
flecting the information in the random vector. Finally, Q is
reused to restore the random vector from the output from
S. Note that, unlike Eq. 3 and 4, only the mean values (µ)
are taken from Q as a point estimate of z.

Llatent = EM∼p(M), z∼p(z)‖z−Q(S(M, z))‖1 (5)

Finally, the total loss can be written as follows,

LTotal = λRLR + λKLLKL + λlatentLlatent. (6)

3.3 Test

During the training phase, S was trained to separate the tar-
get source by using the target source as a query as in Eq. 3.
In the test phase, however, the target source to be separated
from the mixture is unknown. Hence, the target source and
query can no longer be the same. Nevertheless, since we
designed the output dimension of Q to be small enough, the
latent vector z is trained to have a high-level information
such as instrument class. In the test phase, therefore, we
can utilize this property in many ways. For example, when
the user wants to separate a specific source in the mixture,
it is possible to collect a small amount of audio samples
that have similar characteristics but not exactly the same to
the source of interest. Then, the user can extract that spe-
cific source by feeding the collected audio samples into the
Query-net and passing the summarized information to the
Separator.

Apart from the query dependent approach, we can also
take the average of latent vectors of each source class in
the training set and use it as a representative latent vector
that reflects the general characteristics of a single class.
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4. EXPERIMENT

4.1 Dataset

We trained our network with the MUSDB18 dataset. The
dataset consists of 100 tracks for training set and 50 tracks
for test set and each track is recorded in 44.1kHz, stereo
format. The dataset provides the mixture and coarsely de-
fined labels for sources, namely, ‘vocals’, ‘drums’, ‘bass’
and ‘other’. The class ‘other’ includes every instrument
other than ‘vocals’, ‘drums’ and ‘bass’, providing the most
coarsely defined class. We resampled the audio to 22050Hz
and divided each track into 3-second segments. Magni-
tude spectrogram was obtained by applying STFT with a
window size 1024 and 75% overlap. To restore the audio
from the output, Inverse STFT is applied using the phase
of the mixture. We evaluated our method on the test set
of MUSDB18 using the official museval package 1 which
computes signal-to-distortion ratio (SDR) as a quantitative
measurement.

4.2 Experiment Details

The followings are the experimental details of our method.
Q consists of 6 strided-convolutional layers with 4 × 4 fil-
ter size and the number of output channels for each layer
is 32, 32, 64, 64, 128 and 128, respectively. Every strided-
convolutional layer has the stride size of 2 along the fre-
quency axis and only second, fourth and sixth layers have
a stride size of 2 along the time axis. After every convolu-
tional operation, we used instance normalization and relu.
We used GRU with 128 units. The length of the query seg-
ment was fixed to 3-second in every experiment. For S,
the encoder part consists of 9 strided-convolutional lay-
ers and the decoder part consists of the same number of
strided-deconvolutional layers, with a filter size of 4 × 4.
The number of output channels for first, second, and third
layer is 64, 128, 256, respectively, and 512 for the rest of
the layers. Every layer has stride size of 2 along the fre-
quency axis. And stride size along the time axis is set to 2
for every layer except the first layer of the encoder and the
last layer of the decoder.

The dimension of the latent vector was set to 32 and the
batch size was set to 5. The coefficients in Eq.6 were set to
λR = 10, λKL = 0.01, λlatent = 0.5. The initial learning
rate was set to 0.0002 and after 200000 iterations the rate
was decreased to 5 × 10−6 for every 10000-iteration. We
used Adam optimizer with β1 = 0.5, β2 = 0.999.

4.3 Manually Targeting a Specific Sound Source

To validate that our method captures the characteristics of
the audio given in the query and separates them accord-
ingly, we conducted an experiment of separating specific
instruments. As shown in Fig. 3, an audio query of hi-hat
and piano were given to the mixtures of (hi-hat + kick
drum + bass) and (piano + electric guitar). Queries and
mixtures were not from the train set, and both queries were
not sampled from the mixture. We can observe in the hi-hat

1 https://sigsep.github.io/sigsep-mus-eval

Figure 3. Results of manually targeting specific sound
sources. The first row show the separation results of hi-hat
from the mixture of hi-hat, kick drum and bass. The second
row shows the separation results of piano from the mixture
of electric guitar and piano. It is worth noting that the net-
work was never trained to only separate a hi-hat component
from ‘drum’ class nor piano from ‘other’ class.

separation result that the kick drums and the bass which
lie in the low-frequency band were mostly removed while
broadband components of hi-hat remained. The result of
piano separation is not as clear as in the case of hi-hat, but
we can see the guitar was removed considerably.

The noticeable fact is that we trained our method only
with the MUSDB18 dataset, which has no hierarchical
class label information besides the coarsely defined labels
of sources such as ‘vocals’, ‘drums’, ‘bass’ and ‘other’.
Under the definition of class in the dataset, hi-hat and kick
drum are grouped into ‘drums’, and piano and electric gui-
tar into ‘other’. Although our method was never trained
to separate the subclass from the mixture, it was able to
separate hi-hat and piano from the mixture, which can be
referred to as a zero-shot separation. These results indicate
the proposed method can be well applied for audio query-
based separation.

4.4 Latent Interpolation

Furthermore, we conducted a latent interpolation exper-
iment using the mean vector of each source. The mean
vector of each source was computed by averaging the
latent vectors of each source in the training set, zc =
1
Nc

∑
i Q(Sc,i), where Sc,i denotes i-th 3-second magni-

tude spectrogram in the sound class c and Nc denotes the
number of segments in class c.

For the interpolation method, we used the spherical lin-
ear interpolation (Slerp) introduced in [23],

Slerp(z1, z2;α) =
sin(1− α)θ

sin θ
z1 +

sinαθ

sin θ
z2, (7)
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Figure 4. Results of the mean vector interpolation. The
first row shows the interpolation results between vocals
and drums. The second row shows the interpolation results
between drums and bass.

where α denotes the weight of interpolation and θ denotes
the angle between z1 and z2. As shown in Fig. 4, we inter-
polated between the mean vector of sound sources, drums
(zdrums) → bass (zbass) and vocals (zvocals) → drums
(zdrums). We can see the ratio of separated instruments
changes as the weight α changes. These experimental re-
sults show that our method can generate continuous out-
puts just by manipulating a latent space.

4.5 Effects of Latent Vector on Performance

Figure 5. Illustration of two ∆CD cases. (a) shows the
positive ∆CD case where we assume that the performance
should be improved. (b) shows the negative ∆CD case
where we assume that the performance should be wors-
ened.

This subsection investigates the performance improve-
ment varying the latent vector and see in which situation
we can achieve a performance improvement. For the exper-
iment, we first obtained the mean vector of each vocal track
from the entire dataset as follows, zi = 1

Ni

∑
j Q(Si,j),

where i denotes a i-th vocal track, j denotes a j-th seg-
ment in i-th vocal track, and Ni denotes the number of
segments in i-th vocal track. Then, we obtained the mean
vector, zmean = 1

100

∑
i∈training zi, of vocal tracks from

training set. Finally, we retrieved the latent vector of cer-
tain vocal track zretk from the training set which has the

Figure 6. The relationship between SDR improvement
(∆SDR) and cosine distance difference (∆CD) in vocal
tracks.

closest cosine distance (CD) from k-th test vocal track
ztestk = zk, k ∈ test as follows,

k̃ = arg min
i∈training

CD(zi, ztestk), zretk = zk̃. (8)

We compare the performance of two cases where the
goal is to separate a k-th vocal track from test set. The first
case is to use zmean to separate a target source, Ŝmean =
S(M, zmean). The second case is to use zretk to separate
a target source, Ŝretk = S(M, zretk). We defined perfor-
mance improvement in terms of SDR as follows,

∆SDR = SDR(SGTk
, Ŝretk)− SDR(SGTk

, Ŝmean), (9)

where SGTk
denotes k-th ground truth vocal track from

test set. To measure the distance between latent vectors we
used cosine distance (CD(z1, z2) = 1 − (z1/ ‖z1‖2) ·
(z2/ ‖z2‖2)) and defined cosine distance difference be-
tween (ztestk , zretk ) and (ztestk , zmean) as follows,

∆CD = CD(ztestk , zmean)− CD(ztestk , zretk). (10)

Fig. 5 illustrates two possible cases of using zretk . (a)
shows the positive ∆CD case where we assume to induce
positive effect on performance improvement (∆SDR > 0).
In this case, we expect the performance to be improved
since zretk is expected to contain information close to
ztestk compared to zmean. (b) shows the negative ∆CD
case where we assume to induce negative effect on per-
formance improvement (∆SDR < 0). In this case, we ex-
pect the performance to be worsened as the system could
not retrieve a zretk that is close enough to ztestk . To em-
pirically prove our assumption, we show the relationship
between ∆SDR and ∆CD in Fig. 6. We can observe that
the closer the vector gets to the targeted ground-truth vec-
tor, the larger the performance gain becomes, therefore re-
inforcing our assumption that better performances can be
achieved if we can obtain closer latent vectors to the target
latent vector.

4.6 Iterative Method

In this subsection, we seek a performance improvement
by automating the query-based framework in an iterative
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way, which we refer to as an iterative method. The itera-
tive method is done as follows. First, we separate the tar-
get source using the mean vector of certain sound class
zmean. Then, we re-encode the separated source into a
latent space expecting the re-encoded latent vector to be
closer to the target latent vector. Finally, we separate the
target source using the re-encoded latent vector. We verify
the effect of the proposed iterative method and show that
it can be helpful under the harsh condition where the tar-
get sources are far from generic class. The results (Single
step → Iterative) are as follows, ‘vocals’: 4.84 → 4.90,
‘drums’: 4.31 → 4.34, ‘bass’: 3.11 → 3.09, and ‘other’:
2.97 → 3.16. We can see the iterative method noticeably
improves the performance in ‘vocals’ and ‘other’. On the
other hand, the differences are not significant in drums and
bass.

We looked into the tracks which gained significant im-
provement in terms of SDR in vocals. ‘Timboz - Pony’ and
‘Hollow Ground - Ill Fate’ gained more than 0.5dB in SDR
through the iterative method. We found the results intuitive
as the vocals in the two songs feature a growling technique
from heavy metal genres, which can be considered distant
from the general characteristics of vocals.

Figure 7. t-SNE visualization of encoded latent vectors
from each source in the test dataset. Red points denote
the vectors of the tracks which gained more than 0.4dB
in terms of SDR by the iterative method.

To verify our assumptions, we divided each source of
the test set into segments and converted them into latent
vectors. We divided the encoded vectors into two groups,
the ones which gained more than 0.4dB in terms of SDR
by the iterative method and the ones did not. Then, we vi-
sualized the encoded vectors using t-SNE (results shown
in Fig. 7). The red dots in Fig. 7 represent the latent vector
from the group that showed significant SDR improvement
more than 0.4dB. Although some vectors lie around the
center, most of them are located far from the center. These
vectors can be inferred as outliers and the results show that
our iterative method is effective when it comes to separat-

Vocals Drums Bass Other
STL2 [16] 3.25 4.22 3.21 2.25
WK [22] 3.76 4.00 2.94 2.43

RGT1 [12] 3.85 3.44 2.70 2.63
JY3 [6] 5.74 4.66 3.67 3.40

UHL2 [20] 5.93 5.92 5.03 4.19
TAK1 [18] 6.60 6.43 5.16 4.15

Ours (mean) 4.90 4.34 3.09 3.16
Ours (GT) 5.48 4.59 3.45 3.26

Table 1. Median scores of SDR for the MUSDB18 dataset.

ing the sources of distinctive characteristics.

4.7 Algorithm Comparison

In this subsection, we compare our method to other meth-
ods with the evaluation result of the MUSDB18 dataset. As
stated above, our method’s output is dependent on the en-
coded latent vector from a query. For the comparison with
other methods that do not require a query, therefore, we
used the mean vector in the latent space encoded from the
training samples for each source – i.e., we ended up us-
ing four mean latent vectors for ‘vocals’, ‘drums’, ‘bass’,
and ‘other’, respectively. Additionally, to show the upper
bound of our proposed method, we used the encoded la-
tent vector of the ground truth (GT) signal from test set.
Note also that the separation is done with a single network.

Table 1 shows the median scores of SDR of methods re-
ported in SiSEC2018 [17], including our method denoted
as Ours. Although the proposed algorithm did not achieve
the best performance, the results show that it is compara-
ble to the other deep learning-based models that are ded-
icated to separating just four sources in the dataset. This
means that our method is not limited to query-based sepa-
ration, but also can be used for general music source sep-
aration just like as other conventional methods. Addition-
ally, there is room for improvement: applying the multi-
channel Wiener filter and/or using other architecture for
the separator besides U-net could be such an option.

5. CONCLUSION

In this study, we presented a novel framework, consist-
ing of Query-net and Separator, for audio query-based mu-
sic source separation. Experiment results showed that our
method is scalable as the Query-net directly encodes audio
query into a latent space. The latent space is interpretable
as was shown by the t-SNE visualization and latent in-
terpolation experiments. Furthermore, we have introduced
various utilities of the proposed framework including man-
ual and automated approach showing the promise of audio-
query based source separation. As a future work, we plan to
investigate more adequate conditioning method for audio
and better neural architecture for performance improve-
ment.
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