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ABSTRACT

This paper describes a statistical music structure analysis
method that splits an audio signal of popular music into
musically meaningful sections at the beat level and clas-
sifies them into predefined categories such as intro, verse,
and chorus, where beat times are assumed to be estimated
in advance. A basic approach to this task is to train a recur-
rent neural network (e.g., long short-term memory (LSTM)
network) that directly predicts section labels from acous-
tic features. This approach, however, suffers from fre-
quent musically unnatural label switching because the ho-
mogeneity, repetitiveness, and duration regularity of musi-
cal sections are hard to represent explicitly in the network
architecture. To solve this problem, we formulate a unified
hidden semi-Markov model (HSMM) that represents the
generative process of homogeneous mel-frequency cepstrum
coefficients, repetitive chroma features, and mel spectra
from section labels, where the emission probabilities of
mel spectra are computed from the posterior probabilities
of section labels predicted by an LSTM. Given these acous-
tic features, the most likely label sequence can be esti-
mated with Viterbi decoding. The experimental results
show that the proposed LSTM-HSMM hybrid model out-
performed a conventional HSMM.

1. INTRODUCTION

Music structure analysis is the fundamental task in the field
of music information retrieval (MIR) [1] because the mu-
sical structure, which consists of several sections including
intro, verse, bridge, and chorus, is one of the most impor-
tant elements of popular music. Most studies have tackled
the segmentation task, which splits audio signals into sev-
eral sections [2–12], the clustering task, which categorizes
such sections into several classes [13–23], or both. Beyond
the clustering task that gives arbitrary labels such as “A”
and “B” to detected sections, we tackle the labeling task
that gives concrete labels such as “verse A”, “verse B”, and
“chorus” [4,24] because such musically meaningful labels
are useful for playback navigation [25]. Because section
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Figure 1. Proposed music structure analysis method.

labels are subjective features of music, the labeling task is
still challenging. Although deep neural networks (DNNs)
have widely been used for frame-level classification tasks
in MIR, they often suffer from frequent musically unnatu-
ral label switching.

In music structure analysis, the homogeneity and repet-
itiveness of acoustic features, the regularity of section du-
rations, and the novelty of section boundaries, have con-
sidered as the four main noticeable aspects of musical sec-
tions [1, 11]. Using a sufficient amount of music signals
with section label annotations, one could train a labeling
DNN in a supervised manner such that the four aspects
are learned implicitly. Another approach is to formulate a
probabilistic generative model of acoustic features that can
explicitly represent the four aspects and infer latent sec-
tions from observed features. A hierarchical hidden semi-
Markov model (HSMM) based on the homogeneity, repet-
itiveness, and regularity, for example, has recently been
proposed for joint segmentation and clustering [26]. The
complementary properties of these approaches call for a
hybrid approach for joint segmentation and labeling.

In this paper, we propose a deep generative approach to
music structure analysis that integrates the labeling capa-
bility of a bidirectional long short-term memory (BLSTM)
network into the classical shallow generative framework of
the HSMM (Fig. 1). The unified model represents the gen-
erative processes of mel-frequency cepstrum coefficients
(MFCCs) that are homogeneous in each section, chroma
features that are repeated in sections of the same label, and
mel spectra, from sections having regular durations. The



BLSTM network that estimates section labels from mel
spectra at the frame level is trained in a supervised man-
ner. The emission probabilities of mel spectra from sec-
tions are computed at run-time by referring to the posterior
probabilities of section labels estimated by the network and
the empirical prior distributions of section labels. Given
acoustic features, the latent section sequence as well as
the initial, transition, duration, and terminal probabilities
of sections are estimated in a Bayesian manner with Gibbs
sampling followed by Viterbi decoding, where the latent
section sequence is initialized by the network to avoid bad
local optima.

The main contribution of this paper is to propose a sta-
tistical joint segmentation and labeling method based on a
Bayesian LSTM-HSMM hybrid model that can be adapted
to each musical piece. Because the statistical characteris-
tics of sections are specific to each musical piece, Bayesian
inference based on the empirical prior distributions of those
characteristics plays an essential role for improving the
performance of music structure analysis. We experimen-
tally show that the proposed method significantly outper-
formed a cascade model using the labeling results of the
BLSTM in the post-processing and an LSTM-HSMM mod-
el using only Viterbi decoding.

2. RELATED WORK

This section reviews music structure analysis methods in
terms of segmentation, clustering, and labeling.

2.1 Segmentation

In the segmentation task, the novelty plays a central role.
Foote [2] detected peaks from a novelty curve obtained by
convoluting a checkerboard kernel with the diagonal el-
ements of a self-similarity matrix (SSM). Jensen [3] de-
tected section boundaries such that a homogeneity- and
novelty-aware cost function is minimized. Goto [4] and
Serrà et al. [5] proposed novelty curves computed from lag
SSMs showing repetitions as vertical lines. These meth-
ods were integrated for better segmentation [6] and the
method [5] was extended for clustering [7]. Recently, Ull-
rich et al. [8] proposed a supervised method based on a
convolutional neural network, which was extended to deal
with coarse and fine boundary annotations [9]. Smith et al.
[10] emphasized the importance of considering the regu-
larity in the main analysis step, not in the post-processing
step. Sargent et al. [11] focused on the regularity to favor
comparable-size sections. Maezawa [12] used an LSTM
network based on a cost function considering the homo-
geneity, repetitiveness, novelty, and regularity.

2.2 Clustering and Labeling

Cooper et al. [13] sequentially performed segmentation [2]
and clustering based on intra- and inter-section character-
istics. Goodwin et al. [14] efficiently detected off-diagonal
stripes as repetitions from an SSM using dynamic pro-
gramming. To deal with the repetitiveness and homogene-
ity, Grohganz et al. [15] converted a repetitiveness-aware

SSM with off-diagonal stripes into a homogeneity-aware
SSM with a block-diagonal structure. Nieto et al. [16] used
a convex variant of nonnegative matrix factorization for
segmentation and clustering. McFee et al. [17] encoded
repetitive structures into a graph and performed spectral
clustering for graph partitioning. Cheng et al. [18] con-
verted a path-enhanced SSM into a block-enhanced SSM
using nonnegative matrix factor deconvolution as in [15].

Several studies have taken a statistical approach based
on generative models for joint segmentation and cluster-
ing. Aucouturier et al. [19] used a standard HMM. Levy
et al. [20] proposed an HSMM based on the regularity of
section durations. Ren et al. [21] proposed a nonparamet-
ric Bayesian HMM that can estimate an appropriate num-
ber of sections. Barrington et al. [22] proposed a nonpara-
metric Bayesian switching linear dynamical system (LDS)
that has the ability of automatic model complexity control.

Only a few studies have attempted to estimate musically
meaningful labels. Maddage et al. [27] proposed a label-
ing method based on a typical music structure and the role
of each section. Paulus et al. [24] performed segmenta-
tion, clustering, and labeling using a probabilistic fitness
measure for the N-grams of sections.

3. PROPOSED METHOD

This section describes the proposed method for music struc-
ture analysis.

3.1 Problem Specification

The task we tackle in this paper is specified as follows:

Assumption: The beat times of a target music audio are
estimated in advance by a beat tracking method [28].
Input: Beat-level chroma features Xc , xc1:T (xct ∈ R12),
MFCCs Xm , xm1:T (xmt ∈ R12), and mel spectra Xs ,
xs1:T (xst ∈ R128) obtained from the target music signal,
where T is the number of beats (quarter notes).
Output: Section labels Z , z1:N (zn ∈ {1, . . . ,K}) with
durations D , d1:N (dn ∈ {1, . . . , L}), where N is the
number of sections, K is the number of distinct section
labels, and L is the maximum number of beats in a section.

The notation i:j represents a set of indices from i to j. Let
X be {Xc,Xm,Xs}, and x be {xc,xm,xs}.

3.2 Model Formulation

As shown in Fig. 2, we formulate a hierarchical HSMM
of observed features X with latent sequences of section
labels and abstract chord labels. Let S , S1:N be a se-
quence of chord sequences, where Sn , sn,1:dn (sn,τ ∈
{1, . . . ,M}) is a chord sequence in section n andM is the
maximum number of chords in a section. The full proba-
bilistic model p(X,Z,D,S) is defined as

p(X,Z,D,S) = p(X|Z,D,S)p(S|Z,D)p(Z,D), (1)

where p(X|Z,D,S) is an acoustic model of observed fea-
tures X, p(S|Z,D) is a left-to-right Markov model of chord



labels S and p(Z,D) is an ergodic semi-Markov model of
section labels Z with durations D.

3.2.1 Semi-Markov Chain of Section Labels

The ergodic semi-Markov model p(Z,D) in Eq. (1) repre-
sents the generative process of section labels Z and their
durations D as follows:

p(Z,D) = p(z1, d1)

N∏
n=2

p(zn, dn|zn−1, dn−1), (2)

where the individual terms are given by

p(z1, d1) = ρz1ψd1 , (3)

p(zn, dn|zn−1, dn−1) = πzn−1znψdn , (4)

p(zN , dN |zN−1, dN−1) = πzN−1zNψdNυzN , (5)

where ρz , πzz′ , and υz are the initial, transition, and ter-
minal probabilities of section labels and ψd is the duration
probability.

3.2.2 Left-to-Right Markov Chain of Chord Labels

The left-to-right Markov model p(S|Z,D) in Eq. (1) rep-
resents the generative process of chord labels S as follows:

p(S|Z,D) =

N∏
n=1

p(sn,1)

dn∏
τ=2

p(sn,τ |sn,τ−1, zn), (6)

where the individual terms are given by

p(sn,1 = 1) = 1, (7)

p(sn,τ |sn,τ−1, zn) = φ(zn)sn,τ−1sn,τ , (8)

where zn is the corresponding section label and φ(z)ss′ is the
transition probability from state s to state s′. The left-to-
right Markov model meets a condition that the initial state
has sn,1 = 1 and sn,τ1 ≤ sn,τ2 for τ1 < τ2. We introduce
a hyperparameter σ that describes the maximum number of
states that may be skipped in a transition; a transition from
state s to state s + σ is allowed. In this way, the model
allows chord labels to be repeated with some variations in
sections of the same label.

3.2.3 Emission of Acoustic Features

Given that the chroma features Xc, the MFCCs Xm, and
the mel spectra Xs are conditionally and temporally in-
dependent, the acoustic model p(X|Z,D,S) in Eq. (1) is
factorized as follows:

p(X|Z,D,S) =
T∏
t=1

χczt,st(x
c
t)χ

m
zt(x

m
t )χszt(x

s
t ), (9)

where zt and st are the section and chord labels at beat
t, respectively, determined by the section-level latent vari-
ables Z, D, and S, and χcz,s, χ

m
z , and χsz are the emission

probabilities of chroma features xc, MFCCs xm, and mel
spectra xs, respectively.

The chroma features xc ∈ R12 are generated depending
on both the section label z and the chord label s having
the left-to-right property. The chord/chroma repetitiveness
is thus represented by applying the same set of emission
probabilities to all sections of the same label. The emission
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Figure 2. Proposed LSTM-HSMM hybrid model.

probability χcz,s(x
c) in Eq. (9) is given by a multivariate

Gaussian distribution as follows:

χcz,s(x
c) = N (xc|µcz,s, (Λc

z,s)
−1), (10)

where µcz,s and Λc
z,s are a mean vector and a precision

matrix, respectively.
The MFCCs xm ∈ R12 are generated depending on the

section label z. This allows the model to capture the homo-
geneity of the timbral characteristics of each section. The
emission probability χmz (xm) in Eq. (9) is also given by a
multivariate Gaussian distribution as follows:

χmz (xm) = N (xm|µmz , (Λm
z )−1), (11)

where µmz and Λm
z are a mean vector and a precision ma-

trix, respectively.
The mel spectra xs ∈ R128 are generated depending

on the section label z. The emission probability χsz(x
s) in

Eq. (9) is computed as follows:

χsz(x
s) = p(xs|z) ∝ p(z|xs)

p(z)
, (12)

where p(z) is a unigram probability of section labels, and
the probability p(z|xs) is estimated by a labeling network
(BLSTM) that infers section labels from mel spectra at the
frame level. Let p(z|xs) be the average of the frame-level
outputs of the network in beat units.

3.2.4 Prior Distributions Based on Musical Knowledge

To use prior knowledge about musical sections, we formu-
late a Bayesian HSMM by putting conjugate prior distribu-
tions on the model parameters Θ , {ρ,ψ,π,υ,φ,µ,Λ}
[26]. We put Gaussian-Wishart prior distributions on the
multivariate Gaussian parameters as follows:

µcz,s,Λ
c
z,s ∼ N (µcz,s|mc

0, (β
c
0Λ

c
z,s)
−1)W(Λc

z,s|Wc
0, ν

c
0),

µmz ,Λ
m
z ∼ N (µmz |mm

0 , (β
m
0 Λm

z )−1)W(Λm
z |Wm

0 , ν
m
0 ),

where mc
0, βc0, Wc

0, νc0, mm
0 , βm0 , Wm

0 , and νm0 are hy-
perparameters. We then put Dirichlet prior distributions on
the categorical parameters as follows:

ρ , ρ1:K ∼ Dirichlet(aρ), (13)

ψ , ψ1:L ∼ Dirichlet(aψ), (14)

πz , πz(1:K) ∼ Dirichlet(aπz ), (15)



υ , υ1:K ∼ Dirichlet(aυ), (16)

φ(z)
s , φ

(z)
s(1:M) ∼ Dirichlet(aφ), (17)

where aρ, aψ , aπz , aυ , and aφ are hyperparameters. The
key advantage of Bayesian inference is that unnecessary
sections can be automatically removed by controlling these
sparseness-related hyperparameters.

Because “verse B” tends to come after “verse A”, and
section durations tend to be the integer multiples of the
four measures in popular music, such a statistical tendency
can be incorporated in the prior distribution. Specifically,
we set aρ to the empirical initial section probabilities aρemp,
aπz to the empirical section transition probabilities aπzemp,
aυ to the empirical terminal section probabilities aυemp,
and aψ to the empirical section duration probabilities aψemp.
These probabilities are multiplied by a constant factor.

3.3 Bayesian Inference

Because the posterior distribution p(Z,D,S,Θ|X) is an-
alytically intractable, we use the Gibbs sampling method.
We first sample the latent variables Z, D, and S from the
distribution p(Z,D,S|Θ,X) and then sample the model
parameters Θ from the distribution p(Θ|Z,D,S,X).

3.3.1 Pretraining

We compute the empirical distributions aρemp, aψemp, aπzemp,
and aυemp from training data.

(
aρemp

)
z

is the number of
times that the sequence of section labels starts from a sec-
tion z.

(
aψemp

)
d

is the number of times that section labels
have a duration d.

(
aπzemp

)
z′

is the number of transitions
from a state z to a state z′.

(
aυemp

)
z

is the number of times
that the sequence of section labels ends with a section z.

3.3.2 Initialization of Latent Variables

To avoid bad local optima, we initialize the section labels
Z and durations D with the labeling network. The frame-
level posterior probabilities of section labels estimated by
the network are averaged in each beat t. A section label of
each beat is estimated to be one that achieves the maximum
value of the posterior probability at the beat. Consecutive
section labels are considered as a single section; however,
when the duration length of an integrated section is shorter
than four beats (one bar), the section is further merged into
a left or right section depending on the posterior probabil-
ities. Because it is inefficient to deal with sections that are
too long, we divide sections with a duration length longer
than 32 beats into 32-beat units. After that, we perform the
sampling of chord sequences S and model parameters Θ.

3.3.3 Sampling Latent Variables

We use the forward filtering-backward sampling algorithm
for sampling Z, D, and S. We introduce variables zt and
dt that denote the section label and duration starting at beat
t−dt+1 and ending at beat t. We also define the marginal-
ized emission probability for this section ωzt(xt−dt+1:t),
which can be calculated by the forward algorithm for the
Markov model of chord labels.

In the forward filtering step for the Markov model of
section labels, we initialize and update the forward vari-
ables αt(zt, dt) = p(zt, dt,x1:t) as follows:

αt(zt, dt = t) = ρztψdtωzt(x1:t), (18)

αt(zt, dt)

=
∑
z′,d′

αt−dt(z
′, d′)πz′ztψdtωzt(xt−dt+1:t). (19)

In the backward sampling step, the section labels Z and
durations D are sequentially sampled in the reverse order:

p(zT , dT |X) ∝ αT (zT , dT ). (20)

When variables zt and dt are already sampled, the vari-
ables zt′ and dt′ at beat t′ = t− dt are sampled according
to the probability

p(zt′ , dt′ |zt:T , dt:T ,X) ∝ αt′(zt′ , dt′)πzt′zt . (21)

Next, the chord labels S are sampled using the sam-
pled Z and D. Each chord sequence Sn is sampled by for-
ward filtering-backward sampling for the Markov model of
chord labels in section n. In the forward filtering step, we
calculate the probabilities ζn,sn,τ recursively as follows:

ζn,sn,1 = p(sn,1,x1|zn, dn)
= δsn,11χzn,1(x1), (22)

ζn,sn,τ = p(sn,τ ,x1:τ |zn, dn) (23)

=

 ∑
sn,τ−1

ζn,sn,τ−1φ
(zn)
sn,τ−1sn,τ

χzn,sn,τ (xτ ),

where xτ is a vector of observed features at the beat τ ∈
{1, . . . , dn} considered in relation to the section boundary,
and χz,s(x) is a merged emission probability p(x|z, s). In
the backward sampling step, the chord sequence Sn is sam-
pled in the reverse order as follows:

p(sn,dn |zn, dn,x1:dn)∝ζn,sn,dn , (24)

p(sn,τ |zn, dn, sn,τ+1:dn ,x1:dn)∝ζn,sn,τφ(zn)sn,τsn,τ+1
. (25)

3.3.4 Sampling Model Parameters

We use the Gibbs sampling method for updating the model
parameters as follows:

ρ ∼ Dirichlet(aρ + bρ), (26)

πz ∼ Dirichlet(aπz + bπz ), (27)

ψ ∼ Dirichlet(aψ + bψ), (28)

υ ∼ Dirichlet(aυ + bυ), (29)

φ(z)
s ∼ Dirichlet(aφ + bφ

(z)
s ), (30)

Λc
z,s ∼ W(Wc

z,s, ν
c
z,s), (31)

µcz,s|Λc
z,s ∼ N (mc

z,s, (β
c
z,sΛ

c
z,s)
−1), (32)

Λm
z ∼ W(Wm

z , ν
m
z ), (33)

µmz |Λm
z ∼ N (mm

z , (β
m
z Λm

z )−1), (34)

where bρ ∈ RK , bπz ∈ RK , bψ ∈ RL, bυ ∈ RK ,
and bφ

(z)
s ∈ RM are vectors that count the sampled data.

bρz is 1 if z = z1 and 0 otherwise, bπzz′ is the number of
transitions from state z to state z′, bψd is the number of
times that sampled sections have a duration of d, bυz is 1



if z = zN and 0 otherwise, and b
φ(z)
s

s′ is the number of
transitions from state s to state s′ in the Markov model
of chord labels in section z. The parameters mc

z,s, β
c
z,s,

Wc
z,s, and νcz,s are calculated as follows:

βcz,s = βc0 +Nz,s, νcz,s = νc0 +Nz,s, (35)

mc
z,s =

1

βcz,s
(βc0m

c
0 +Nz,sx

c
z,s), (36)

(Wc
z,s)
−1 = (Wc

0)
−1 +Nz,sU

c
z,s

+
βc0Nz,s
βc0 +Nz,s

(xcz,s −mc
0)(x

c
z,s −mc

0)
T, (37)

where we have defined

Nz,s =

T∑
t=1

δztzδsts, (38)

xcz,s =
1

Nz,s

T∑
t=1

δztzδstsx
c
t , (39)

Uc
z,s =

1

Nz,s

T∑
t=1

δztzδsts(x
c
t − xcz,s)(x

c
t − xcz,s)

T. (40)

The parameters mm
z , βmz , Wm

z , and νmz can be calculated
similarly.

3.3.5 Viterbi Training

Since the samples from the Gibbs sampler are not neces-
sarily local optima of the posterior distribution, we apply
Viterbi training in the last step of the parameter estima-
tion. Specifically, we apply the Viterbi algorithm (instead
of the forward filtering-backward sampling algorithm) to
estimate the latent variables and update the model parame-
ters to the expectation values of the posterior probabilities
(instead of samples from those probabilities). It is known
that Viterbi training is generally efficient for finding an ap-
proximate local minimum [29].

3.3.6 Refinements

We introduce a weighting factor wdur(≥ 1) for the du-
ration probability to enhance its effect. Specifically, we
replace the probability factor ψd in the forward algorithm
(18) and (19) with (ψd)

wdur . Similar replacements are ap-
plied to the Viterbi training step and the final estimation
step of the latent states explained in Section 3.4. We also
introduce a weighting factor wlabel that balances the emis-
sion probabilities for mel spectra with the other emission
probabilities. We replace the emission probability χsz(x

s)
in (9) with (χsz(x

s))wlabel .

3.4 Estimation of Musical Sections

After training the model parameters Θ, we compute the
maximum a posteriori (MAP) estimate of the musical sec-
tions. Specifically, we maximize the posterior probability
p(Z,D|Θ,X) with respect to the section labels Z and du-
rations D. This can be solved by integrating out the chord
labels S and applying the Viterbi algorithm for HSMMs
[30] to the Markov model of section labels.

4. EVALUATION

Experiments were conducted to investigate the performance
of the proposed method.

4.1 Experimental Conditions

To evaluate our model, we used the 100 pieces from the
RWC Popular Music Database [31] with structure anno-
tations [32] for evaluation. We extracted chroma features
using the deep feature extractor [33] and MFCCs and mel
spectrograms using the librosa library [34]. Beat informa-
tion was obtained using the madmom library [28]. The
labeling network consisted of a single-layer BLSTM with
2048 × 2 cells and a fully-connected layer with output di-
mension K. The network was trained with 10-fold cross
validation, and the empirical distributions aρemp, aψemp, aπzemp,
and aυemp were trained with piece-wise cross validation for
the 100 pieces. For parameter estimation, we iterated the
Gibbs sampling 15 times and the Viterbi training 3 times,
which took around five times longer than the duration of
an input signal with a standard CPU.

The hyperparameters of the proposed model were set as
follows: K = 10, L = 40, M = 16, σ = 1, wdur = 4,
wlabel = 0.5, aρ = 1·aρemp, aπ = 1·aπemp, aψ = 64·aψemp,
aυ = 1 · aυemp, aφ = I, mc

0 = E[Xc], βc0 = 64, Wc
0 =

(νc0 cov[X
c])−1 with νc0 = 512, mm

0 = E[Xm], βm0 = 2,
and Wm

0 = (νm0 cov[Xm])−1 with νm0 = 16, where I de-
notes a vector with all entries equal to 1. The first param-
eter K was determined according to the number of labels
used in [24], as shown in the legend in Fig. 3. The next
two parameters L and M were determined by consulting
the statistics of the annotated data. In the data, most sec-
tions have a length of 40 beats or less. If we assume a
section length of 32 beats (8 measures) and a chord dura-
tion of 2 beats, the expected number of chords in each sec-
tion is 16. The value of σ was set to 1 for simplicity. The
other parameters were determined by a coarse optimiza-
tion w.r.t. the evaluation measures explained below. Each
parameter was optimized by a grid search, fixing the other
parameters. Further optimization of the parameters is left
for future work.

We evaluated the estimation results in terms of segmen-
tation, clustering, and labeling. The qualities of segmen-
tation and clustering were evaluated in the same way as
MIREX [35]. The quality of segmentation was evaluated
by the F-measures of section boundaries denoted by F0.5

and F3.0 [36]. Specifically, an estimated boundary is ac-
cepted as correct if it is within ±0.5/3.0 seconds from the
ground-truth boundary. The precision rate is the percent-
age of correct boundaries in estimated boundaries, the re-
call rate is the percentage of true boundaries that are cor-
rectly estimated, and the F-measures F0.5 and F3.0 are de-
fined as the harmonic means of the precision and recall
rates.

The quality of clustering was evaluated by the pairwise
F-measure denoted by Fpair [37] defined as follows. We
compared pairs of frames (with a length of 100 ms) that
are labeled with the same class in an estimation result with
those in the ground truth. The precision rate, recall rate,



Method
Segmentation Clustering Labeling

F0.5 (%) F3.0 (%) Fpair (%) (%)

GS3 [39] 52.3 73.5 54.2 n/a
SUG2 [40] 25.8 73.7 37.3 n/a
FK2 [41] 30.0 65.7 63.4 n/a
Paulus’09 [24] n/a 63.0 63.7 34.4
Cascade model 38.3 63.9 54.9 38.8
Baseline model 30.6 53.5 43.3 39.5
Proposed model 43.3 66.5 54.6 45.3

Table 1. Evaluation results of a comparative experiment.

and F-measure are defined as follows:

Ppair =
|PE ∩ PA|
|PE |

, Rpair =
|PE ∩ PA|
|PA|

, (41)

Fpair =
2PpairRpair

Ppair +Rpair
, (42)

where PE denotes the set of similarly labeled frame pairs
in the estimation and PA denotes that in the ground truth.
These values are calculated using the mir_eval library
[38]. The quality of labeling was evaluated by the accuracy
in frame units, as in [24]. This is calculated by comparing
a label assigned to each frame in the result and the ground
truth.

For comparison in the segmentation and the clustering,
we refer to GS3 [39], SUG2 [40], and FK2 [41], pub-
lished in MIREX. In addition, for comparison in all three
viewpoints, we quoted the result of [24] and ran two mod-
els, a cascade model and a baseline model. In the cas-
cade model, the frame-level labels obtained by the BLSTM
were counted for each cluster obtained by the HSMM [26].
The most frequently occurring label in a cluster was esti-
mated to be the label in that cluster. Although the baseline
model is similar to the proposed model, it outputs neither
chroma features nor MFCCs and only uses the Viterbi de-
coding to obtain results.

4.2 Experimental Results

Table 1 shows the evaluation results. In the labeling accu-
racy, the proposed method outperformed the other methods
that have the labeling ability. Compared with the cascade
model using the labeling results of the BLSTM in the post-
processing, the proposed model had better performance in
segmentation and labeling. This indicates the effectiveness
of joint segmentation and labeling in the unified probabilis-
tic framework. In addition, compared with the baseline
model using the Viterbi decoding only, the proposed model
achieved better performance in all metrics. This revealed
the effectiveness of piece-specific Bayesian learning based
on the prior distributions. In contrast, the proposed method
did not always achieve the state-of-the-art performance ex-
cept for labeling. It may be because the proposed method
tended to yield unnatural repetitions of the same label with
various lengths. In general, sections of the same label have
approximately the same length. Such a constraint could be
incorporated by introducing a duration probability distri-

0 sec 50 100 150 200 250
intro
verse A

verse B
verse C

chorus A
chorus B

bridge A
ending

pre-chorus
misc

Ground truth

RNN result

Proposed model

Baseline model

Cascade model

Figure 3. Example results by proposed, baseline, and cas-
cade model (RWC-MDB-P-2001 No. 25)

bution specific for each label.
Example results are shown in Fig. 3. The cascade model

yielded some mislabeled sections with correctly estimated
boundaries because the clustering errors of the HSMM were
propagated. In contrast, because the proposed method per-
forms segmentation and labeling simultaneously, such er-
rors were reduced effectively. While the baseline model
yielded errors originating from the errors of the BLSTM,
such errors were corrected in the result of the proposed
method. This suggested that the proposed method has the
ability to prevent such errors by focusing on the homo-
geneity of MFCCs and repetitiveness of chroma features.
We found that the proposed method erroneously estimated
“chorus A” at the beginning of this song as “intro”. Such
errors could be avoided by adjusting the weights of the
initial and emission probabilities or training the BLSTM
with the connectionist temporal classification (CTC) loss
function [42] to remove frequent musically unnatural label
switching.

5. CONCLUSION

We have presented a deep generative approach to music
structure analysis based on a Bayesian LSTM-HSMM hy-
brid model. The model represents the essential character-
istics of sections, homogeneity, repetitiveness, and regular-
ity, with MFCCs, chroma features, and mel spectra. Music
segmentation and section labeling are performed jointly by
unsupervised Bayesian learning of the model. The exper-
imental results showed that the proposed method is effec-
tive for musical structure analysis.

The proposed method considers homogeneity, repeti-
tiveness, and regularity, but not novelty, which has been
emphasized in conventional research [1]. Exploiting this
aspect remains an avenue for future work. It is also im-
portant to deal with further hierarchies [17], as music has
a hierarchical structure moving from motives and phrases
to sections and section groups [43].
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