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ABSTRACT

This paper studies composer style classification of piano
sheet music images. Previous approaches to the composer
classification task have been limited by a scarcity of data.
We address this issue in two ways: (1) we recast the prob-
lem to be based on raw sheet music images rather than a
symbolic music format, and (2) we propose an approach
that can be trained on unlabeled data. Our approach first
converts the sheet music image into a sequence of musi-
cal “words" based on the bootleg feature representation,
and then feeds the sequence into a text classifier. We show
that it is possible to significantly improve classifier perfor-
mance by first training a language model on a set of un-
labeled data, initializing the classifier with the pretrained
language model weights, and then finetuning the classifier
on a small amount of labeled data. We train AWD-LSTM,
GPT-2, and RoBERTa language models on all piano sheet
music images in IMSLP. We find that transformer-based ar-
chitectures outperform CNN and LSTM models, and pre-
training boosts classification accuracy for the GPT-2 model
from 46% to 70% on a 9-way classification task. The
trained model can also be used as a feature extractor that
projects piano sheet music into a feature space that charac-
terizes compositional style.

1. INTRODUCTION

We’ve all had the experience of hearing a piece of music
that we’ve never heard before, but immediately recogniz-
ing the composer based on the piece’s style. This paper
explores this phenomenon in the context of sheet music.
The question that we want to answer is: “Can we predict
the composer of a previously unseen page of piano sheet
music based on its compositional style?"

Many previous works have studied the composer clas-
sification problem. These works generally fall into one of
two categories. The first category of approach is to con-
struct a set of features from the music, and then feed the
features into a classifier. Many works use manually de-
signed features that capture musically meaningful infor-
mation (e.g. [1] [2] [3] [4]). Other works feed minimally
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preprocessed representations of the data (e.g. 2-D piano
rolls [5] [6] or tensors encoding note pitch & duration in-
formation [7] [8]) into a convolutional model, and allow
the model to learn a useful feature representation. The sec-
ond category of approach is to train one model for each
composer, and then select the model that has the highest
likelihood of generating a given sequence of music. Com-
mon approaches in this category include N-gram language
models [9] [10] [11] and Markov models [12] [13].

Our approach to the composer classification task ad-
dresses what we perceive to be the biggest common ob-
stacle to the above approaches: lack of data. All of the
above approaches assume that the input is in the form of a
symbolic music file (e.g. MIDI or **kern). Because sym-
bolic music formats are much less widely used than audio,
video, and image formats, the amount of training data that
is available is quite limited. We address this issue of data
scarcity in two ways: (1) we re-define the composer classi-
fication task to be based on sheet music images, for which
there is a lot of data available online, and (2) we propose
an approach that can be trained on unlabeled data.

Our work takes advantage of recent developments in
transfer learning in the natural language processing (NLP)
community. Prior to 2017, transfer learning in NLP was
done in a limited way. Typically, one would use pre-
trained word embeddings such as word2vec [14] [15] or
GloVe [16] vectors as the first layer in a model. The prob-
lem with this paradigm of transfer learning is that the en-
tire model except the first layer needs to be trained from
scratch, which requires a large amount of labeled data.
This is in contrast to the paradigm of transfer learning in
computer vision, where a model is trained on the ImageNet
classification task [17], the final layer is replaced with a
different linear classifier, and the model is finetuned for a
different task. The benefit of this latter paradigm of trans-
fer learning is that the entire model except the last layer is
pretrained, so it can be finetuned with only a small amount
of labeled data. This paradigm of transfer learning has
been widely used in computer vision in the last decade
[18] using pretrained models like VGG [19], ResNet [20],
Densenet [21], etc. The switch to ImageNet-style transfer
learning in the NLP community occurred in 2017, when
Howard et al. [22] proposed a way to pretrain an LSTM-
based language model on a large set of unlabeled data,
add a classification head on top of the language model,
and then finetune the classifier on a new task with a small
amount of labeled data. This was quickly followed by sev-



Figure 1. Overview of proxy classifier training. A lan-
guage model is first trained on a set of unlabeled data, the
classifier is initialized with the pretrained language model
weights, and then the classifier is finetuned on a small set
of labeled data.

eral other similar language model pretraining approaches
that replaced the LSTM with transformer-based architec-
tures (e.g. GPT [23], GPT-2 [24], BERT [25]). These
pretrained language models have provided the basis for
achieving state-of-the-art results on a variety of NLP tasks,
and have been extended in various ways (e.g. Transformer-
XL [26], XLNet [27]).

Our approach is similarly based on language model pre-
training. We first convert each sheet music image into a
sequence of words based on the bootleg score feature rep-
resentation [28]. We then feed this sequence of words into
a text classifier. We show that it is possible to significantly
improve the performance of the classifier by training a lan-
guage model on a large set of unlabeled data, initialize the
classifier with the pretrained language model weights, and
finetune the classifier on a small amount of labeled data.
In our experiments, we train language models on all pi-
ano sheet music images in the International Music Score
Library Project (IMSLP) 1 using the AWD-LSTM [29],
GPT-2 [24], and RoBERTa [30] language model architec-
tures. By using pretraining, we are able to improve the ac-
curacy of our GPT-2 model from 46% to 70% on a 9-way
classification task. 2

2. SYSTEM DESCRIPTION

We will describe our system in the next four subsections.
In the first subsection, we give a high-level overview and
rationale behind our approach. In the following three sub-
sections, we describe the three main stages of system de-
velopment: language model pretraining, classifier finetun-
ing, and inference.

2.1 Overview

Figure 1 summarizes our training approach. In the first
stage, we convert each sheet music image into a sequence
of words based on the bootleg score representation [28],
and then train a language model on these words. Since
this task does not require labels, we can train our language

1 http://imslp.org/
2 Code can be found at https://github.com/tjtsai/

PianoStyleEmbedding.

Figure 2. A short section of sheet music and its corre-
sponding bootleg score. Staff lines in the bootleg score
are shown for reference, but are not present in the actual
feature representation.

model on a large set of unlabeled data. In this work, we
train our language model on all piano sheet music images
in the IMSLP dataset. In the second stage, we train a clas-
sifier that predicts the composer of a short fragment of mu-
sic, where the fragment is a fixed-length sequence of sym-
bolic words. We do this by adding one or more dense lay-
ers on top of the language model, initializing the weights
of the classifier with the language model weights, and then
finetuning the model on a set of labeled data. In the third
stage, we use the classifier to predict the composer of an
unseen scanned page of piano sheet music. We do this by
converting the sheet music image to a sequence of sym-
bolic words, and then either (a) applying the classifier to a
single variable length input sequence, or (b) averaging the
predictions of fixed-length crops sampled from the input
sequence. We will describe each of these three stages in
more detail in the following three subsections.

The guiding principle behind our approach is to max-
imize the amount of data. This impacts our approach in
three significant ways. First, it informs our choice of data
format. Rather than using symbolic scores (as in previ-
ous approaches), we instead choose to use raw sheet music
images. While this arguably makes the task much more
challenging, it has the benefit of having much more data
available online. Second, we choose an approach that can
utilize unlabeled data. Whereas labeled data is usually ex-
pensive to annotate and limited in quantity, unlabeled data
is often extremely cheap and available in abundance. By
adopting an approach that can use unlabeled data, we can
drastically increase the amount of data available to train
our models. Third, we use data augmentation to make
the most of the limited quantity of labeled data that we do
have. Rather than fixating on the page classification task,
we instead define a proxy task where the goal is to predict
the composer given a fixed-length sequence of symbolic
words. By defining the proxy task in this way, we can
aggressively subsample fragments from the labeled data,
resulting in a much larger number of unique training data
points than there are actual pages of sheet music. Once the
proxy task classifier has been trained, we can apply it to the
full page classification task in a straightforward manner.



Figure 3. Overview of AWD-LSTM, GPT-2, and
RoBERTa language models (top) and classifiers (bottom).
Boxes in blue are trained during the language modeling
phase and used to initialize the classifier.

2.2 Language Model Pretraining

The language model pretraining consists of three steps, as
shown in the upper half of Figure 1. These three steps will
be described in the next three paragraphs.

The first step is to convert the sheet music image into a
bootleg score. The bootleg score is a low-dimensional fea-
ture representation of piano sheet music that encodes the
position of filled noteheads relative to the staff lines [28].
Figure 2 shows an example of a section of sheet music and
its corresponding bootleg score representation. The boot-
leg score itself is a 62 × N binary matrix, where 62 in-
dicates the total number of possible staff line positions in
both the left and right hands, and where N indicates the
total number of estimated simultaneous note onset events.
Note that the representation discards a significant amount
of information: it does not encode note duration, key signa-
ture, time signature, measure boundaries, accidentals, clef
changes, or octave markings, and it simply ignores non-
filled noteheads (e.g. half or whole notes). Nonetheless, it
has been shown to be effective in aligning sheet music and
MIDI [28], and we hypothesize that it may also be useful
in characterizing piano style. The main benefit of using
the bootleg score representation over a full optical music
recognition (OMR) pipeline is processing time: computing
a bootleg score only takes about 1 second per page using
a CPU, which makes it suitable for computing features on
the entire IMSLP dataset. 3 We use the code from [28] as
a fixed feature extractor to compute the bootleg scores.

The second step is to tokenize the bootleg score into a
sequence of word or subword units. We do this differently
for different language models. For word-based language
models (e.g. AWD-LSTM [29]), we consider each bootleg
score column as a single word consisting of a 62-character
string of 0s and 1s. We limit the vocabulary to the 30, 000
most frequent words, and map infrequent words to a spe-
cial unknown word token <unk>. For subword-based lan-
guage models (e.g. GPT-2 [24], RoBERTa [30]), we use
a byte pair encoding (BPE) algorithm [32] to learn a vo-
cabulary of subword units in an unsupervised manner. The
BPE algorithm starts with an initial set of subword units

3 In contrast, the best performing music object detectors take 40-80
seconds to process each page at inference time using a GPU [31].

(e.g. the set of unique characters [33] or the 28 = 256
unique byte values that comprise unicode characters [34]),
and it iteratively merges the most frequently occurring pair
of adjacent subword units until a desired vocabulary size
has been reached. We experimented with both character-
level and byte-level encoding schemes (i.e. representing
each word as a string of 62 characters vs. a sequence of 8
bytes), and we found that the byte-level encoding scheme
performs much better. We only report results with the byte-
level BPE tokenizer. For both subword-based language
models explored in this work, we use the same shared BPE
tokenizer with a vocabulary size of 30, 000 (which is the
vocabularly size used in the RoBERTa model). At the end
of the second step, we have represented the sheet music
image as a sequence of words or subword units.

The third step is to train a language model on a set of
unlabeled data. In this work, we explore three different
language models, which are representative of state-of-the-
art models in the last 3-4 years. The top half of Figure 3
shows a high-level overview of these three language mod-
els. The first model is AWD-LSTM [29]. This is a 3-layer
LSTM architecture that makes heavy use of regularization
techniques throughout the model, including four different
types of dropout. The output of the final LSTM layer is
fed to a linear decoder whose weights are tied to the input
embedding matrix. This produces an output distribution
across the tokens in the vocabulary. The model is then
trained to predict the next token at each time step. We
use the fastai implementation of the AWD-LSTM model
with default parameters. The second model is openAI’s
GPT-2 [24]. This architecture consists of multiple trans-
former decoder layers [35]. Each transformer decoder
layer consists of a masked self-attention, along with feed-
forwards layers, layer normalizations, and residual connec-
tions. While transformer encoder layers allow each token
to attend to all other tokens in the input, the transformer
decoder layers only allow a token to attend to previous to-
kens. 4 Similar to the AWD-LSTM model, the outputs of
the last transformer layer are fed to a linear decoder whose
weights are tied to the input embeddings, and the model
is trained to predict the next token at each time step. We
use the huggingface implementation of the GPT-2 model
with default parameters, except that we reduce the vocabu-
lary size from 50, 000 to 30, 000 (to use the same tokenizer
as the RoBERTa model), the amount of context from 1024
to 512, and the number of layers from 12 to 6. The third
model is RoBERTa [30], which is based on Google’s BERT
language model [25]. This architecture consists of multiple
transformer encoder layers. Unlike GPT-2, each token can
attend to all other tokens in the input and the goal is not to
predict the next token. Instead, a certain fraction of the in-
put tokens are randomly converted to a special <mask> to-
ken, and the model is trained to predict the masked tokens.
We use the huggingface implementation of RoBERTa with
default parameter settings, except that we reduce the num-
ber of layers from 12 to 6.

4 This is because, in the original machine translation task [35], the
decoder generates the output sentence autoregressively.



2.3 Classifier Finetuning

In the second main stage, we finetune a classifier based
on a set of labeled data. The labeled data consists of a
set of sheet music images along with their corresponding
composer labels. The process of training the classifier is
comprised of four steps (lower half of Figure 1).

The first two steps are to compute and tokenize a boot-
leg score into a sequence of symbolic words. We use the
same fixed feature extractor and the same tokenizer that
were used in the language model pretraining stage.

The third step is to sample short, fixed-length fragments
of words from the labeled data. As mentioned in Section
2.1, we define a proxy task where the goal is to predict the
composer given a short, fixed-length fragment of words.
Defining the proxy task in this way has three significant
benefits: (1) we can use sampling to generate many more
unique training data points than there are actual pages of
sheet music in our dataset, (2) we can sample the data in
such a way that the classes are balanced, which avoids
problems during training, and (3) using fixed-length in-
puts allows us to train more efficiently in batches. Our
approach follows the general recommendations of a recent
study on best practices for training a classifier with im-
balanced data [36]. Each sampled fragment and its corre-
sponding composer label constitute a single (Xi, yi) train-
ing pair for the proxy task.

The fourth step is to train the classifier model. The bot-
tom half of Figure 3 shows how this is done with our three
models. Our general approach is to add a classifier head
on top of the language model, initialize the weights of the
classifier with the pretrained language model weights, and
then finetune the classifier on the proxy task data. For
the AWD-LSTM, we take the outputs from the last LSTM
layer and construct a fixed-size representation by concate-
nating three things: (a) the output at the last time step, (b)
the result of max pooling the outputs across the sequence
dimension, and (c) the result of average pooling the out-
puts across the sequence dimension. This fixed-size repre-
sentation (which is three times the hidden dimension size)
is then fed into the classifier head, which consists of two
dense layers with batch normalization and dropout. For
the GPT-2 model, we take the output from the last trans-
former layer at the last time step, and then feed it into a
single dense (classification) layer. Because the GPT-2 and
RoBERTa models require special tokens during training,
we insert special symbols <s> and </s> at the beginning
and end of every training input, respectively. Because of
the masked self-attention, we must use the output of the
last token in order to access all of the information in the
input sequence. For the RoBERTa model, we take the out-
put from the last transformer layer corresponding to the
<s> token, and feed it into a single dense (classification)
layer. The <s> takes the place of the special [CLS] token
described in the original paper.

We integrated all models into the fastai framework and
finetuned the classifier in the following manner. We first
select an appropriate learning rate using a range test, in
which we sweep the learning rate across a wide range of

Figure 4. Statistics on the target dataset. The top two
histograms show the distribution of the number of pages
(top left) and number of bootleg score features (top right)
per composer. The bottom figure shows the distribution of
the number of bootleg score features per page.

values and observe the impact on training loss. We initially
freeze all parameters in the model except for the untrained
classification head, and we gradually unfreeze more and
more layers in the model as the training converges. To
avoid overly aggressive changes to the pretrained language
model weights, we use discriminative finetuning, in which
earlier layers of the model use exponentially smaller learn-
ing rates compared to later layers in the model. All train-
ing is done with (multiple cycles of) the one cycle training
policy [37], in which learning rate and momentum are var-
ied cyclically over each cycle. The above practices were
proposed in [22] and found to be effective in finetuning
language models for text classification.

2.4 Inference

The third main stage is to apply the proxy classifier to the
original full page classification task. We explore two dif-
ferent ways to do this. The first method is to convert the
sheet music image into a bootleg score, tokenize the boot-
leg score into a sequence of word or subword units, and
then apply the proxy classifier to a single variable-length
input. Note that all of the models can handle variable-
length inputs up to a maximum context length. The second
method is identical to the first, except that it averages the
predictions from multiple fixed-length crops taken from
the input sequence. The fixed-length crops are the same
size as is used during classifier training, and the crops are
sampled uniformly with 50% overlap. 5

3. EXPERIMENTAL SETUP

In this section we describe the data collection process and
the metrics used to evaluate our approach.

The data comes from IMSLP. We first scraped the web-
site and downloaded all PDF scores and accompanying
metadata. 6 We filtered the data based on its instrumen-
tation in order to identify a list of solo piano scores. We

5 We also experimented with applying a Bayesian prior to the classifier
softmax outputs, as recommended in [36], but found that the results were
not consistently better.

6 We downloaded the data over a span of several weeks in May of
2018.



then computed bootleg score features for all of the piano
sheet music images using the XSEDE supercomputing in-
frastructure [38], and discarded any pages that had less
than a minimum threshold of features. This latter step
is designed to remove non-music pages such as the title
page, foreword, or table of contents. The resulting set of
data contained 29, 310 PDFs, 7 255, 539 pages and a total
of 48.5 million bootleg score features. This set of data is
what we refer to as the IMSLP dataset in this work (e.g. the
IMSLP pretrained language model). For language model
training, we split the IMSLP data by piece, using 90% for
training and 10% for validation.

The classification task uses a subset of the IMSLP data.
We first identified a list of composers with a significant
amount of data (composers shown in Figure 4). We limited
the list to nine composers in order to avoid extreme class
imbalance. Because popular pieces tend to have many
sheet music versions in the dataset, we select one version
per piece in order to avoid over-representation of a small
subset of pieces. Next, we manually labeled and discarded
all filler pages, and then computed bootleg score features
on the remaining sheet music images. This cleaned dataset
is what we refer to as the target data in this work (e.g.
the target pretrained language model). Figure 4 shows
the total number of pages and bootleg score features per
composer for the target dataset, along with the distribu-
tion of the number of bootleg score features per page. For
training and testing, we split the data by piece, using 60%
of the pieces for training (4347 pages), 20% for valida-
tion (1500 pages), and 20% for testing (1304 pages). To
generate data for the proxy task, we randomly sampled
fixed-length fragments from the target data. We sample
the same number of fragments for each composer to en-
sure class balance. We experimented with fragment sizes
of 64/128/256 and sampled 32400/16200/8100 fragments
for training and 10800/5400/2700 fragments for valida-
tion/test, respectively. This sampling scheme ensures the
same data coverage regardless of fragment length. Note
that the classification data is carefully curated, while the
IMSLP data requires minimal processing.

We use two different metrics to evaluate our systems.
For the proxy task, accuracy is an appropriate metric since
the data is balanced. For the full page classification task
– which has imbalanced data – we report results in macro
F1 score. Macro F1 is a generalization of F1 score to a
multi-class setting, in which each class is treated as a one-
versus-all binary classification task and the F1 scores from
all classes are averaged.

4. RESULTS & ANALYSIS

In this section we present our experimental results and con-
duct various analyses to answer key questions of interest.
While the proxy task is an artificially created task, it pro-
vides a more reliable indicator of classifier performance
than the full page classification. This is because the test set
of the full page classification task is both imbalanced and

7 Note that a PDF may contain multiple pieces (e.g. the complete set
of Chopin etudes).

Figure 5. Model performance on the proxy classification
task. This comparison shows the effect of different pre-
training conditions and fragment sizes.

very small (1304 data points). Accordingly, we will report
results on both the proxy task and full page classification
task.

4.1 Proxy Task

We first consider the performance of our models on the
proxy classification task. We would like to understand the
effect of (a) model architecture, (b) pretraining condition,
and (c) fragment size.

We evaluate four different model architectures. In ad-
dition to the AWD-LSTM, GPT-2, and RoBERTa models
previously described, we also measure the performance of
a CNN-based approach recently proposed in [7]. Note that
we cannot use the exact same model in [7] since we do
not have symbolic score information. Nonetheless, we can
use the same general approach of computing local features,
aggregating feature statistics across time, and applying a
linear classifier. The design of our 2-layer CNN model
roughly matches the architecture proposed in [7].

We consider three different language model pretrain-
ing conditions. The first condition is with no pretraining,
where we train the classifier from scratch only on the proxy
task. The second condition is with target language model
pretraining, where we first train a language model on the
target data, and then finetune the classifier on the proxy
task. The third condition is with IMSLP language model
pretraining. Here, we train a language model on the full
IMSLP dataset, finetune the language model on the target
data, and then finetune the classifier on the proxy task.

Figure 5 shows the performance of all models on the
proxy task. There are three things to notice. First, re-
garding (a), the transformer-based models generally out-
perform the LSTM and CNN models. Second, regarding
(b), language model pretraining improves performance sig-
nificantly across the board. Regardless of architecture, we
see a large improvement going from no pretraining (con-
dition 1) to target pretraining (condition 2), and another



Figure 6. Results on the full page classification task.

large improvement going from target pretraining (condi-
tion 2) to IMSLP pretraining (condition 3). For exam-
ple, the performance of the GPT-2 model increases from
37.3% to 45.2% to 57.5% across the three pretraining con-
ditions. Because the data in conditions 1 & 2 is exactly the
same, the improvement in performance must be coming
from more effective use of the data. We can interpret this
from an information theory perspective by noting that the
classification task provides the model log29 = 3.17 bits of
information per fragment, whereas the language modeling
task provides log2V bits of information per bootleg score
feature where V is the vocabulary size. The performance
gap between condition 2 and condition 3 can also be inter-
preted as the result of providing more information to the
model, but here the information is coming from having ad-
ditional data. Third, regarding (c), larger fragments result
in better performance, as we might expect.

4.2 Full Page Classification

Next, we consider performance of our models on the full
page classification task. We would like to understand the
effect of (a) model architecture, (b) pretraining condition,
(c) fragment size, and (d) inference type (single vs. multi-
crop). Regarding (d), we found that taking multiple crops
improved results with all models except the CNN. This
suggests that this type of test time augmentation does not
benefit approaches that simply average feature statistics
over time. In the results presented below, we only show
the optimal inference type for each model architecture (i.e.
CNN with single crop, all others with multi-crop).

Figure 6 shows model performance on the full page
classification task. There are two things to notice. First, we
see the same general trends as in Figure 5 for model archi-
tecture and pretraining condition: the transformer-based
models generally outperform the CNN and LSTM mod-
els, and pretraining helps substantially in every case. The
macro F1 score of our best model (GPT-2 with fragment
size 64) increases from 0.41 to 0.51 to 0.67 across the three
pretraining conditions. Second, we see the opposite trend

Figure 7. t-SNE plot of the RoBERTa model activations
for five novel composers. Each data point corresponds to
a single page of sheet music for a composer that was not
considered in the classification task.

as the proxy task for fragment size: smaller fragments have
better page classification performance. This strongly indi-
cates a data distribution mismatch. Indeed, when we look
at the distribution of the number of bootleg score features
in a single page (Figure 4), we see that a significant frac-
tion of pages have less than 256 features. Because we only
sample fragments that contain a complete set of 256 words,
our proxy task data is biased towards longer inputs. This
leads to poor performance when the classifier is faced with
short inputs, which are never seen in training. Using a frag-
ment size of 64 minimizes this bias.

4.3 t-SNE Plots

Another key question of interest is, “Can we use our model
to characterize the style of any page of piano sheet music?"
The classification task forces the model to project the sheet
music into a feature space where the compositional style of
the nine composers can be differentiated. We hypothesize
that this feature space might be useful in characterizing the
style of any page of piano sheet music, even from com-
posers not in the classification task.

To test this hypothesis, we fed data from 5 novel com-
posers into our models and constructed t-SNE plots [39] of
the activations at the second-to-last layer. Figure 7 shows
such a plot for the RoBERTa model. Each data point corre-
sponds to a single page of sheet music from a novel com-
poser. Even though we have not trained the classifier on
these five composers, we can see that the data points are
still clustered, suggesting that the feature space can de-
scribe the style of new composers in a useful manner.

5. CONCLUSION

We propose a method for predicting the composer of a
single page of piano sheet music. Our method first con-
verts the raw sheet music image into a sequence of musical
words based on the bootleg score feature representation,
and then feeds the sequence into a text classifier. We show
that by pretraining a language model on a large set of un-
labeled data, it is possible to significantly improve the per-
formance of the classifier.
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