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ABSTRACT

Many music information retrieval tasks involve the com-
parison of a symbolic score representation with an audio
recording. A typical strategy is to compare score–audio
pairs based on a common mid-level representation, such
as chroma features. Several recent studies demonstrated
the effectiveness of deep learning models that learn task-
specific mid-level representations from temporally aligned
training pairs. However, in practice, there is often a lack of
strongly aligned training data, in particular for real-world
scenarios. In our study, we use weakly aligned score–audio
pairs for training, where only the beginning and end of
a score excerpt is annotated in an audio recording, with-
out aligned correspondences in between. To exploit such
weakly aligned data, we employ the Connectionist Tempo-
ral Classification (CTC) loss to train a deep learning model
for computing an enhanced chroma representation. We
then apply this model to a cross-modal retrieval task, where
we aim at finding relevant audio recordings of Western
classical music, given a short monophonic musical theme
in symbolic notation as a query. We present systematic
experiments that show the effectiveness of the CTC-based
model for this theme-based retrieval task.

1. INTRODUCTION

Music appears in many different modalities, for example,
as audio or video recordings, in the form of symbolic rep-
resentations, or as graphical sheet music [1]. In partic-
ular, audio recordings and symbolic representations are
of great importance in many music information retrieval
(MIR) tasks. An example is cross-modal retrieval, where a
symbolic score is given as a query, and the task is to iden-
tify relevant audio recordings [2–4]. A general strategy
for matching such different modalities is to use a common
mid-level representation. In music processing, chroma fea-
tures are widely used as mid-level [1,5,6]. These features,
which capture the energy in the twelve chromatic pitch
class bands, are robust against changes in octave, instru-
mentation, and timbre.
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Figure 1. Illustration of a weakly aligned score–audio pair.

In recent years, many studies have shown the benefits
of deep learning models to compute task-specific mid-level
representations [7–10]. These learned features have proven
their effectiveness in many scenarios, for example, audio–
audio retrieval [11–13], chord recognition [9, 10, 14], or
pitch tracking [7, 15, 16]. Training deep neural networks
(DNNs) usually requires aligned training pairs, i.e., in
MIR, music recordings with temporally aligned annota-
tions. For example, the training pairs for a deep salience
model by Bittner et al. [7] consist of time–frequency repre-
sentations (more details in Section 2.2) with fundamental
frequency annotations, where inputs and annotations corre-
spond to each other for all time frames. For popular music,
annotated data sets [17] have led to significant advances in
research on pitch salience representations. However, creat-
ing such strongly aligned training pairs is labor-intensive,
and, for many music scenarios, such data is hardly avail-
able. In contrast to the difficulty in annotating local align-
ments, it may be much easier to annotate global correspon-
dences. In this paper, we use training pairs, where only
global correspondences have been annotated. We denote
these pairs as weakly aligned.

In our contribution, we use a deep learning model to
compute enhanced chroma features, which we then use
as a mid-level representation for a cross-modal retrieval
task. Given a symbolic representation of a monophonic
musical theme as a query and an audio database of West-
ern classical music, the task is to find all audio recordings
in which the theme is played [18, 19]. To obtain a task-
specific chroma variant, we train a deep learning model
with weakly aligned score–audio pairs, where only the be-
ginning and end of a musical theme is annotated in an au-
dio recording. Figure 1 illustrates such a pair for the fa-
mous first theme of Beethoven’s Symphony No. 5. As our



Themes Audio Recordings
# Mean Dur. Total Dur. # Mean Dur. Total Dur.

2048 00:00:09 04:54:58 1114 00:06:26 119:28:27

Table 1. Dat set overview. Duration format: hh:mm:ss.

main contribution, we combine a deep salience model [7]
with a training procedure for weakly aligned data. 1 This
procedure, called Connectionist Temporal Classification
(CTC) [20], allows us to use training pairs of audio ex-
cerpts (in the form of spectral features) as input and musi-
cal themes (as sequences of chroma labels) as output. Us-
ing this CTC-based strategy, we train a model to compute
enhanced chroma features for musical themes. We evalu-
ate these features using more than 2000 themes and 1000
audio recordings and show that they improve the state of
the art for our cross-modal retrieval scenario.

In Section 2, we review several prerequisites, such as
cross-modal retrieval (Section 2.1), deep salience and deep
chroma models (Section 2.2), and the CTC loss (Sec-
tion 2.3). Then, in Section 3, we describe our adaption
of the deep salience model, which computes chroma fea-
tures and can be trained with the CTC loss. We present our
experiments in Section 4 and conclude with Section 5.

2. PRIOR WORK AND PREREQUISITES

2.1 Cross-Modal Retrieval

For our retrieval scenario, we use a data set based on “A
Dictionary of Musical Themes” by Barlow and Morgen-
stern (BM) [21], which contains roughly 10000 musical
themes of instrumental Western classical music. Most of
these themes have also been available as symbolic versions
(MIDI) on the internet. 2 For a subset of the themes, we
annotated their occurrences in audio recordings. In these
annotations, a theme corresponds to exactly one recording,
which, in turn, can correspond to several themes. The an-
notations comprise global correspondences, i.e., the begin-
ning and end of the occurrences, as well as transpositions.
Table 1 shows some statistics for our data set, which con-
sists of 2048 themes from the BM book and 1114 corre-
sponding recordings. The BM book already inspired sev-
eral MIR studies [22, 23]. Some of them [18, 19] used the
same subset for retrieval. We slightly corrected some an-
notations for this paper. A previous study [18] pointed
out the challenges of the task, which are due to the dif-
ferences in modality (symbolic vs. audio), tuning, trans-
position, tempo, and polyphony between the query and the
recordings. The last point means that the themes are mono-
phonic, but they usually appear in polyphonic context in
the recordings (further discussion in Section 5). Previous
work [19] has shown that pitch salience representations are
capable of overcoming the differences in polyphony. In

1 Pre-trained models and code to apply them are available at
https://www.audiolabs-erlangen.de/resources/MIR/
2020-ISMIR-ctc-chroma.

2 Unfortunately, the page is now offline. It is still reachable
with the Wayback Machine without access to the MIDI files:
https://web.archive.org/web/20160209045946/http:
//www.multimedialibrary.com/barlow/index.asp

this paper, building upon these findings, we introduce an
approach for learning a task-specific salience representa-
tion.

2.2 Deep Salience and Deep Chroma Models

Many studies have demonstrated the effectiveness of us-
ing deep learning models to compute task-specific feature
representations. One example is the use of deep salience
models to compute enhanced time–frequency representa-
tions (measuring the saliency of frequencies over time) for
tasks such as melody or multi-pitch tracking [7, 15, 16].
Another example is the use of deep chroma models for
computing enhanced chroma features (encoding the energy
in the twelve chromatic pitch class bands) for chord recog-
nition [9, 10, 14].

This paper is inspired by the deep salience approach by
Bittner et al. [7]. They introduced a feature representa-
tion named harmonic CQT (HCQT) as input for a con-
volutional DNN. The HCQT is a three-dimensional ten-
sor, where the three dimensions are time, frequency (loga-
rithmic scaling), and harmonics. The third dimension en-
sures that harmonically related frequency bins are neigh-
bors across the depth of the tensor. This way, the convolu-
tional kernels of the network can easily exploit harmonic
relationships. Many studies use this deep salience repre-
sentation as a baseline [16,24] or build upon this model for
diverse tasks such as dominant melody estimation [8], in-
strument recognition [25], tempo estimation [26], or chord
recognition [27]. In Section 3, we describe how we adapt
the deep salience model for computing enhanced chroma
features.

The study of Wu et al. [27] is related to ours in two
respects. First, they also use the HCQT representation,
and, second, they use weakly aligned training data. How-
ever, they aim for chord recognition instead of learning a
mid-level representation for cross-modal retrieval. Unlike
us, they take a three-step approach: First, they use a pre-
trained deep chroma extractor to compute features. Sec-
ond, they strongly align their annotations to the chroma
features using a hidden Markov model. Third, they use
a frame-wise DNN classifier for chord recognition. In
our paper, we present a single-step approach to realize the
alignment within the DNN training procedure.

2.3 CTC Loss

Graves et al. [20] originally introduced Connectionist Tem-
poral Classification (CTC) as the task of labeling unseg-
mented feature sequences with recurrent DNNs in the con-
text of speech recognition. However, their training tech-
nique can be used with any DNN architecture. Further-
more, the task can be generalized to any scenario, where
the aim is to map feature sequences to sequences of sym-
bols. If the training data consisted of strongly aligned pairs
of feature and symbol sequences (i.e., each vector of the
feature sequences is labeled with a symbol), then a stan-
dard classification approach could be taken. The key aspect
of CTC is that there is no need for strongly aligned train-
ing data, i.e., the feature and symbol sequences may be of

https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-ctc-chroma
https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-ctc-chroma
https://web.archive.org/web/20160209045946/http://www.multimedialibrary.com/barlow/index.asp
https://web.archive.org/web/20160209045946/http://www.multimedialibrary.com/barlow/index.asp
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Figure 2. Network architectures. Upper: Original archi-
tecture proposed by Bittner et al. [7]. Lower: Adapted
architecture used in this paper. Illustration inspired by [7].

different length, and the temporal correspondence between
both sequences is unknown and may be non-linear.

Several studies from the MIR community used CTC,
e.g., for optical music recognition [28], monophonic
audio-to-score transcription [29], lyrics alignment [30],
and audio tagging [31]. An alternative to CTC for se-
quence learning without aligned training data is the us-
age of an attention mechanism, which, e.g., was used for
monophonic singing voice transcription [32].

In the following, we give the main idea of the CTC loss
function introduced by Graves et al. [20] We describe the
computation of the CTC loss for a single pair consisting of
an audio feature sequence and a symbol sequence. Let

X = (x1,x2, . . . ,xN ) (1)

denote the feature sequence of length N ∈ N, which con-
sists of feature vectors xn ∈ RD for n ∈ [1 : N ] :=
{1, 2, . . . , N} of dimensionality D ∈ N. The second se-
quence of the pair is a symbol sequence

Y = (y1,y2, . . . ,yM ) (2)

of length M ∈ N, which consists of elements ym ∈ A for
m ∈ [1 : M ]. The alphabet A of size A := |A| is the set of
symbols that can occur in the symbol sequence. Typically
M � N . For example, in the case of lyrics alignment,
the alphabet is the set of all considered characters [30]. In
our case, it is the set of the twelve different chroma labels.
The feature sequence X is transformed by a DNN fθ with
parameters θ to a sequence of probability vectors

fθ(X) = P = (p1,p2, . . . ,pN ) (3)

having the same lengthN as the feature sequence and con-
sisting of probability vectors pn ∈ [0, 1]A. We interpret
the probability vector element pn,a for a ∈ [1 : A] as the
probability that the nth feature vector xn corresponds to
the ath symbol in A (assuming an order of the set).

We can now compute the probability of the symbol se-
quence Y given the feature sequence X . For a fixed align-
ment between X and Y , one multiplies all values of the
probability sequence P that correspond to that alignment.
Since the alignment is unknown, instead of a specific one,
all possible alignments between X and Y are taken into

Layer Output Shape Activation Parameters

Input (N , 216, 6)

Conv2D 64 × (3, 3, 6) (N , 216, 64) LReLU 3520
Conv2D 32 × (3, 3, 64) (N , 216, 32) LReLU 18464
Conv2D 32 × (3, 3, 32) (N , 216, 32) LReLU 9248
Conv2D 32 × (3, 3, 32) (N , 216, 32) LReLU 9248
Conv2D 8 × (42, 3, 32) (N , 216, 8) LReLU 32264
Conv2D 1 × (1, 1, 8) (N , 216, 1) Sigmoid 9

Pooling (N , 13) Softmax 217

Table 2. Details of the used DNN model (72970 parame-
ters in total).

account. Let us denote this overall probability as p̂ ∈ R.
Graves et al. [20] described how to compute p̂ in a dif-
ferentiable and efficient way using dynamic programming
similar to the forward algorithm for hidden Markov mod-
els [33]. The final CTC loss for a single training pair is

Lθ(X,Y ) = − log p̂. (4)

This loss function is used in batch gradient descent to up-
date the parameters θ by averaging the loss value over mul-
tiple training pairs in a batch. By this procedure, the pa-
rameters of the network improve to produce probability
sequences that make the ground-truth symbol sequences
more probable.

In our explanation, we left out a crucial detail of the
procedure. For a fixed alignment between X and Y , the
aligned symbol sequence can be represented by an “un-
folded” sequence of lengthN that contains the active sym-
bol for each time step. Let us consider the case of an un-
folded sequence having multiple neighboring time steps
with the same active symbol. So far, we cannot tell if
this means one symbol occurrence with a long duration or
multiple successive occurrences of the same symbol with
shorter durations. To solve this ambiguity, an additional
symbol named blank ε is part of the alphabet A. This sym-
bol serves two purposes: First, it means that no symbol is
active. Second, it indicates a repeated occurrence of the
same symbol if a succession of the same active symbol in
the unfolded sequence is only interrupted by ε.

3. DEEP SALIENCE MODEL ADAPTATION

The DNN model used in this paper is inspired by the deep
salience model proposed by Bittner et al. [7]. In this sec-
tion, we explain our adaption of the model.

Bittner et al. [7] approached the task of melody and
multi-pitch tracking, using a strongly aligned data set of
10 hours. In our case, we aim to learn an enhanced chroma
representation for cross-modal retrieval, employing our
weakly aligned 5-hour data set of 2048 themes. We sim-
plified the original model in several ways to reduce the
number of parameters and memory requirements. Addi-
tionally, we adapted the network so that it can be trained
with the CTC loss and used as a deep chroma extractor.
Figure 2 illustrates the original network architecture and
our adapted version, and Table 2 gives further details for
our version. Compared to the model by Bittner et al. [7],



we introduce the following modifications: First, we use a
frame rate of 25 Hz instead of 86 Hz. Second, we use a
frequency resolution of a third semitone instead of a fifth
semitone. This resolution results in 216 instead of 360 fre-
quency bins. Third, we reduced the number of filter kernels
as well as the size of some of the filter kernels. The latter
reduction accounts for the decreased frequency resolution.
Forth, we use leaky ReLU activations instead of ReLU ac-
tivations to avoid zero gradients [34]. Fifth, we do not use
batch normalization at all, which was used at the input to
each layer in the original model. Instead, we `2-normalize
all columns of the input to the network for being invariant
to dynamic changes. Sixth, we add a pooling layer at the
end, which we explain in the next paragraph.

After the last convolutional layer (with sigmoid activa-
tion), we obtain a representation that we could interpret as
a kind of pitch salience of size N × 216. In our case, we
aim for an output size ofN×13, where theN columns are
probability vectors over the set of the twelve chroma labels
and an additional ε symbol:

A := {C,C#,D, . . . ,B} ∪ {ε}. (5)

Let us consider a single column of size 216 as input, which
we want to transform to a probability vector of size 13. To
compute the first twelve entries, we add up all pitch bins
corresponding to the respective chroma bins. This fixed
pooling has no learnable parameters. To compute the last
entry for the ε symbol, we apply a standard dense layer
(linear activation) to the input column. This layer has 217
learnable parameters (216 weights and a bias). Finally, we
apply the softmax function to the resulting 13-dimensional
vector. We repeat this process for all columns of the input.

In summary, our adapted model differs from the original
model [7] in two important aspects: First, we reduced the
number of parameters from 407 thousand to 73 thousand.
Second, the output of the model is a probability matrix over
the set A instead of a pitch salience representation.

We train this adapted model with the CTC loss, as
described in Section 2.3. The input to the network is
an HCQT tensor computed for an excerpt from an au-
dio recording, where a musical theme is played. Fig-
ure 3a shows a slice of the HCQT features for a record-
ing of the first theme of Beethoven’s Fifth Symphony.
The corresponding symbol sequence is the sequence of
chroma labels of the theme with neither any rhythmic in-
formation nor any temporal alignment to the input. For
our Beethoven example (see also Figure 1), this sequence
is Y = (G,G,G,E[,F,F,F,D). Figure 3b visualizes
the probability sequence for the Beethoven example after
training. We see that the ε symbol has the largest probabil-
ity for most of the time, and the chroma labels only have
large probabilities at the beginning of the corresponding
note events. To use the network output as a feature repre-
sentation, we remove the row corresponding to the ε sym-
bol and interpret the resulting matrix as chroma features.
Finally, we `2-normalize the 12-dimensional chroma vec-
tors to increase the energies in the time segments, where ε
was dominating. Figure 3c shows the normalized chroma
features, which correspond well with the symbol sequence.
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Figure 3. Representations for the first theme of
Beethoven’s Fifth Symphony. (a) HCQT input represen-
tation X (slice corresponding to the first harmonic). (b)
Network output P . (c) Features used for matching.

4. EXPERIMENTS

4.1 Training Details

We split our data set into five folds, where we use three
folds for training, one for validation, and another one for
testing. We ensure that all themes by a composer are part
of precisely one fold. As a consequence, we do not use
themes from the same composer for training and evalua-
tion, thus avoiding a “composer overfitting.” For the train-
ing folds, we perform transpositions (up to a minor third
upwards and downwards) as data augmentation. We per-
form batch gradient descent with a batch size of eight us-
ing the Adam optimizer [35] and a learning rate annealing
procedure. In the first phase of this procedure, the initial
learning rate is 0.001, and we train the model until the loss
for the validation fold does not improve for five epochs. In
the next phase, we halve the learning rate and continue the
training with the model that has the lowest validation loss
among the models of all previous epochs. We repeat ten
such phases. When we finished training, we use the model
with the lowest validation loss as a chroma feature extrac-
tor, and evaluate its effectiveness in the retrieval scenario,
using the query themes from the test fold.

4.2 Retrieval-Based Evaluation

We shortly describe our retrieval pipeline and our evalua-
tion measures following [18, 19]. First, we have a set Q
of symbolic (MIDI) encodings of musical themes, which
serve as queries. Furthermore, we have a collection of au-
dio recordings, which we denote as database documents.
These are actual recordings, not synthesized MIDI files.
For each query, there is exactly one audio document that



(a)
Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.754 0.835 0.861 0.885 0.913 0.792
CBit 0.693 0.788 0.823 0.853 0.896 0.739

(b)
Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.820 0.892 0.910 0.925 0.952 0.854
CBit 0.763 0.844 0.867 0.895 0.931 0.802

Table 3. Retrieval results of the baseline methods (a) using
a feature rate of 10 Hz as reported in previous work [19],
(b) using a feature rate of 25 Hz.

contains a globally corresponding rendition of the query
theme (i.e., matching duration and transposition). For a
fixed symbolic query, the aim is to retrieve the correspond-
ing audio document. To compare the query with a doc-
ument, we convert both into chroma sequences. For the
symbolic query, we simply compute a binary chroma rep-
resentation. For converting the audio recording, we em-
ploy a salience representation (from our CTC or a base-
line approach). Then, we use Subsequence Dynamic Time
Warping (SDTW) to compare the query with subsequences
of the document [1]. In particular, we use the cosine dis-
tance, the step size condition Σ := {(2, 1), (1, 2), (1, 1)},
as well as the weights wvertical = 2 and whorizontal =
wdiagonal = 1. As a result of SDTW, one obtains a match-
ing function, where local minima point to locations with
a good match between the query and a document subse-
quence. We consider the minimal value of the matching
function as the distance between query and document.

To solve the retrieval task, we compute distances be-
tween all documents and the query. We then order the doc-
uments according to ascending distance values. The docu-
ment’s position in this ordered list is called the rank r ∈ N
of the document. The top-K evaluation metric yields a
value of one if the relevant document is among the top K
matches, i.e., r ≤ K. We then average this metric across
all queries. Furthermore, we report the mean reciprocal
rank (MRR), which is the average of 1/r across all queries.

In the cross-validation iterations of our evaluation, we
only use the query themes from the respective test fold to
search within the 1114 documents of our database. The re-
ported average evaluation measures (�) are weighted with
the number of queries from the respective test fold.

4.3 Baseline

As for our baselines, we consider the best-performing rep-
resentations from a previous study [19], namely CBit, using
the original deep salience model for melody estimation by
Bittner et al. [7] 3 , and CBG1, using a model-based salience
representation by Bosch and Gómez [36]. The latter one is
a combination of a source-filter model with harmonic sum-
mation, using threshold parameters (named “BG1”) that
are particularly suited for orchestral music [37].

Table 3a cites the results from the previous study [19],
where a 10 Hz feature rate was used. Since we use an in-

3 Original weights (“Melody 2”). CBit was denoted by CCNN in [19].

|Q| Top-01 Top-05 Top-10 Top-20 Top-50 MRR

1 559 0.891 0.946 0.961 0.971 0.977 0.918
2 373 0.823 0.887 0.917 0.938 0.954 0.855
3 372 0.839 0.911 0.933 0.944 0.954 0.872
4 372 0.903 0.949 0.952 0.962 0.976 0.922
5 372 0.855 0.919 0.935 0.949 0.976 0.885

� 0.865 0.925 0.941 0.955 0.968 0.893

Table 4. Retrieval results for CCTC.

creased feature rate of 25 Hz in this paper, we reproduced
the experiments with this rate. The results are shown in
Table 3b. Just by changing the feature rate, we see a sub-
stantial improvement of the results. For example, for CBit,
the top-1 rate increases from 0.693 to 0.763, which means
that 7 % more themes achieved a rank of 1. Since we cor-
rected some errors in the data set, an improvement of up to
2 % may be due to the revision, but the main improvements
are due to the increased time resolution. The reason for this
may be the following: A fast tempo of Presto corresponds
to up to 200 BPM. Having a quarter-note beat, in such a
tempo, a sixteenth note has a duration of 75 ms, which is
shorter than the length of a frame given the feature rate of
10 Hz. In such cases, the increased feature rate is neces-
sary to represent the musical content in a more meaningful
way.

For both feature rates, the representation CBG1 performs
better than CBit. For example, the respective top-1 rates
are 0.820 and 0.763 for the 25 Hz rate. The results for
CBit may be lower because the training data of the under-
lying DNN consisted mainly of popular music (for overall
240 training tracks, only 22 are tagged as “classical” in
version 1 of MedleyDB [17]). Another possible reason is
that the saliency characteristics in the training data (com-
ing from the “Melody 2” definition of MedleyDB) are dif-
ferent from the characteristics of musical themes.

4.4 CTC-Based Results

We now discuss the results we achieved with our CTC-
based approach CCTC. Table 4 shows the evaluation re-
sults for the five cross-validation iterations. The second
column (|Q|) gives the number of query themes in the re-
spective test fold. This number is larger in the first fold
(559) because this fold contains all BM themes by Ludwig
van Beethoven, which is the most prominent composer of
our data set. The other folds have fewer queries (372 or
373) and are more diverse in terms of composers, having
12 or 13 different composers each. The retrieval results
have some diversity, ranging from a top-1 rate of 0.823 for
test fold 2 up to 0.903 for test fold 4. The last row of the
table shows an average of the results, weighted by the num-
ber of queries used. Overall, we see a substantial improve-
ment compared to the baseline approaches (Table 3b). For
example, the average top-1 rate is 0.865 for CCTC, com-
pared to 0.763 for CBit and 0.820 for CBG1. Improvements
for larger ranks can also be seen, such as in the top-50 rate
(0.968 compared to 0.931 and 0.952, respectively). The re-
sults show that our approach is able to outperform the base-
lines, which have been the state of the art for the task [19].



Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CCTC 0.865 0.925 0.941 0.955 0.968 0.893
CCCE 0.814 0.890 0.907 0.929 0.951 0.849

Table 5. Retrieval results (�) using cross-entropy.

Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CBG1 0.820 0.892 0.910 0.925 0.952 0.854
CCTC 0.865 0.925 0.941 0.955 0.968 0.893
Oracle 0.904 0.947 0.958 0.967 0.983 0.924

Table 6. Retrieval results (�) for an oracle of the baseline
by Bosch and Gómez [36] and our CTC approach.

4.5 Importance of CTC-Alignment

To verify the need for the CTC procedure in our sce-
nario, we performed an additional experiment, where we
assumed a linear temporal alignment between the symbolic
themes and the corresponding excerpts in the audio record-
ings. Here, we changed the training procedure from our
CTC strategy to a standard classification approach, using
categorical cross-entropy (CCE). As output labels, we used
binary chroma representations that we obtained by linearly
scaling the symbolic themes to the same length as the cor-
responding audio excerpts. The ε symbol here only indi-
cates rests in a theme. Note that, in this experiment, we
used the rhythm information and note durations from the
MIDI files, which we did not use in the CTC approach.

The trained model was used as chroma extractor and
then evaluated in the theme retrieval context. The first row
of Table 5 repeats the average evaluation measures from
Table 4 for convenience and the second row presents the
average results for the CCE approach. The evaluation mea-
sures are lower compared to the CTC-based results, e.g.,
having a top-1 rate of 0.814 compared to 0.865. This dif-
ference is due to the non-linear temporal correspondence
between audio recordings and the symbolic themes.

4.6 Oracle Experiment

The model-based approach CBG1 also shows excellent per-
formance for this task. To investigate the relationship be-
tween CBG1 and the CCTC, we evaluated both strategies
with an oracle procedure. For each query, we took the bet-
ter rank: either achieved with CBG1 or CCTC. Table 6 re-
peats the results for the baseline and CTC approaches for
convenience and shows the oracle results in the third row.
The oracle further improves the results for CCTC. For ex-
ample, the top-1 rate is 4 % larger (0.904 instead of 0.865).
For top-K rates with larger K, there are still some small
improvements. The oracle indicates that for some queries,
CBG1 is a slightly better feature representation than CCTC.

5. CONCLUSION

In this paper, we showed the potential of CTC [20] for
training a deep salience model with weakly aligned data.
Adapting a model by Bittner et al. [7] to compute a task-
specific mid-level representation, we improved state-of-
the-art results for a cross-modal retrieval task for musical
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(a)

Figure 4. Second theme of Beethoven’s Piano Sonata
Op. 2, No. 2, first movement. (a) Full score with the
chroma sequence of the theme, (b) standard chroma fea-
tures using the full spectral content, (c) CBG1, (d) CCTC.

themes. To achieve these improvements, the feature com-
putation procedure has to reduce the potential polyphony
of the audio recording, which is a major challenge. We
close our paper with a qualitative example to show the fea-
ture’s properties for a representative polyphonic example.

Figure 4a shows the full score and the chroma sequence
for the second theme in the first movement of Beethoven’s
Piano Sonata Op. 2, No. 2. In this case, the theme is
played by the right hand (upper staff), and the left hand
(lower staff) plays an accompaniment. The sixteenth notes
of the accompaniment present a minor triad (E,G,B) in
the first half and a diminished triad (F],A,C) in the sec-
ond half. Ideally, for our retrieval scenario, we aim for a
chroma representation that only captures energy from the
theme and not from the accompaniment. Figures 4b, 4c,
and 4d show chroma features for the full spectral content,
the baseline salience approach CBG1, and our CTC strategy
CCTC, respectively. In all representations, the main notes
of the theme are well represented. However, some shorter
notes of the theme (e.g., fourth note G or seventh note F])
are most evident in CCTC. In general, CCTC attenuates the
energy in the chroma bands corresponding to the accom-
paniment. The ability to represent the chroma energy of
a musical theme is the main reason why our CTC-based
features are a powerful tool for cross-modal retrieval.

In this study, we excluded the challenges due to differ-
ences in transposition. This could be taken into account by
circularly shifting the chroma features [18], or by incorpo-
rating it into the learning procedure [38]. Furthermore, our
oracle experiment suggests a possible next step of combin-
ing our strategy with traditional salience approaches [36].
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