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ABSTRACT

This paper presents a method for large-scale retrieval of
piano sheet music images. Our work differs from previ-
ous studies on sheet music retrieval in two ways. First,
we investigate the problem at a much larger scale than pre-
vious studies, using all solo piano sheet music images in
the entire IMSLP dataset as a searchable database. Sec-
ond, we use cell phone images of sheet music as our input
queries, which lends itself to a practical, user-facing appli-
cation. We show that a previously proposed fingerprinting
method for sheet music retrieval is far too slow for a real-
time application, and we diagnose its shortcomings. We
propose a novel hashing scheme called dynamic n-gram
fingerprinting that significantly reduces runtime while si-
multaneously boosting retrieval accuracy. In experiments
on IMSLP data, our proposed method achieves a mean re-
ciprocal rank of 0.85 and an average runtime of 0.98 sec-
onds per query.

1. INTRODUCTION

Imagine the following scenario. A musician is sitting down
in front of a piano learning a new piece of music. She pulls
out her cell phone, takes a picture of the physical page of
sheet music sitting in front of her, and is immediately able
to access Youtube videos of performances of that piece
and alternate editions of the sheet music. In this paper,
we present a method to solve the main technical challenge
of identifying the page of music. This is the camera-based
piano sheet music identification task.

Most previous works on sheet music retrieval come
from the literature on finding correspondences between au-
dio and sheet music. There are three general approaches
to the cross-modal retrieval problem. The first approach
is to convert the sheet music into MIDI using optical mu-
sic recognition (OMR), to compute chroma-like features
on the MIDI, and then to compare the result to chroma fea-
tures extracted from audio. This approach has been applied
to audio–sheet music synchronization [1] [2] [3] [4], and it
translates very naturally to retrieval applications like using
a segment of sheet music to identify its corresponding au-
dio recording [5] or to retrieve the corresponding temporal
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passage from a specific audio recording [6]. The second
approach is similar to the first, except that it replaces the
full OMR with a mid-level feature representation based on
the location of noteheads relative to the staff lines [7] [8].
The third approach is to train a multimodal convolutional
neural network to learn a latent feature space that directly
encodes similarity between chunks of audio and sheet mu-
sic snippets. This approach has been applied to audio–
sheet music alignment [9] [10] and retrieval applications
like using a snippet of audio to retrieve its correspond-
ing sheet music snippet and vice versa [10] [11] [12] [13].
See [14] for an overview of work on cross-modal retrieval
of music data. Also, we note that a recent work [15] has
proposed a neural network-based approach for finding cor-
responding measures between two different sheet music
versions of a piece.

This current study differs from previous work in two
ways. First, we study the sheet music retrieval problem
at a much larger scale. Previous works have studied sheet
music retrieval using searchable databases containing hun-
dreds of sheet music scores or a few thousand short snip-
pets of sheet music. In contrast, we perform experiments
using all solo piano sheet music scores in the entire In-
ternational Library Music Score Project (IMSLP) 1 as a
searchable database. We believe that this is several orders
of magnitude larger than any previous study on sheet music
retrieval. Second, we focus on queries that are cell phone
images of sheet music. Previous works have primarily fo-
cused on synthetic sheet music, scanned sheet music, and
audio recordings as input queries. While there have been
a handful of works that study OMR on cell phone pictures
of sheet music [16] [17] [18] [19] [20], this area of study is
still in its infancy. Even though using cell phone pictures
arguably makes the task much more challenging due to the
additional sources of noise and distortion, we believe that
this change leads to a much more practical, user-facing ap-
plication.

Our approach to the piano sheet music identification
task is to combine a recently proposed bootleg score fea-
ture representation with a novel hashing scheme. The boot-
leg score feature was originally proposed for a MIDI–sheet
music alignment task [8]. A recent work has explored us-
ing the bootleg score features in a hashing framework for
de-anonymizing files in the Lakh MIDI dataset by find-
ing matches in sheet music data [21]. We will show that
this previously proposed fingerprinting approach is far too
slow for our current scenario. Because our task is a real-

1 https://imslp.org



time application, latency is an extremely important factor
(unlike [21], which is an offline task). In this work, we
impose a hard constraint that our system must have an av-
erage runtime of 1 second or less. We diagnose the rea-
son why this previously proposed fingerprinting scheme is
slow, and we develop a novel fingerprinting scheme that is
able to achieve our stringent runtime constraint.

This paper has three main contributions. First, we
propose a novel hashing scheme called dynamic n-gram
fingerprinting. This approach dynamically constructs n-
gram fingerprints of variable length in order to ensure that
each fingerprint is discriminative enough to warrant a ta-
ble lookup. Second, we present empirical validation of our
proposed method on a very large-scale retrieval task. We
perform experiments using all solo piano scores in IMSLP
as a searchable database. We show that dynamic n-gram
fingerprinting achieves both higher retrieval accuracy and
significantly lower runtimes than a previously proposed
approach. Our best system achieves a mean reciprocal
rank of 0.85 and has an average runtime of 0.98 seconds
per query. Third, as a byproduct of this project, we re-
lease the precomputed bootleg score features on all piano
scores in IMSLP. 2 Because this task required a tremen-
dous amount of time and computation involving the use of
a supercomputing infrastructure, we release the features as
a standalone repository in the hopes that it will be useful in
a variety of other MIR-related tasks.

2. SYSTEM DESCRIPTION

Figure 1 shows the architecture of our proposed system.
We will describe the system in two parts: constructing the
database and performing a search at runtime.

2.1 Database Construction

Our first goal is to construct a database which will enable
us to perform searches very efficiently. The process of con-
structing this database consists of three steps, as shown in
the upper half of Figure 1. These three steps will be de-
scribed in the next three paragraphs.

The first step is to convert each sheet music PDF into a
sequence of PNG images. We decode the PDF into PNG
images at 300 dpi, and then resize each image to have a
width of 2550 pixels while preserving the aspect ratio. Be-
cause there is an extremely large range of image sizes in the
IMSLP dataset, we resize the images to ensure that they are
within a range that the bootleg score feature computation
was designed for.

The second step is to compute a bootleg score for each
page. The bootleg score is a recently proposed feature
representation of piano sheet music that encodes the po-
sition of filled noteheads relative to staff lines [8]. The
bootleg score representation itself is a 62 ×N binary ma-
trix, where 62 indicates the total number of possible staff
line positions in both the left and right hands, and where

2 Code for the paper can be found at https://github.com/
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Figure 1. Overview of proposed system.

N indicates the total estimated number of simultaneous
note events. Figure 2 shows a short section of sheet music
and its corresponding bootleg score representation. Note
that this representation discards a significant amount of in-
formation like duration, key signature, accidentals, octave
markings, and clef changes, and it simply ignores non-
filled noteheads (e.g. half or whole notes). Nonetheless, it
has been shown to be effective in aligning sheet music and
MIDI, and we hypothesize that it may also be used effec-
tively for large-scale retrieval. The main benefit of using
the bootleg score representation over a full OMR pipeline
is processing time. Because OMR is typically cast as an of-
fline task, the best-performing systems require a significant
amount of computation. 3 In contrast, the bootleg score
can be computed on a high-resolution image in less than
1 second using a CPU. By focusing exclusively on simple
geometrical shapes like circles (filled noteheads) and lines
(staff lines and bar lines), it can detect objects robustly and
efficiently using classical computer vision techniques.

The third step is to construct the n-gram databases.
The concept of an n-gram is adopted from the language
modeling literature, where the likelihood of a sequence
of N consecutive words is estimated based on the fre-
quency of its occurrence in a large set of data. Here, we
treat each bootleg score column as a word and consider
N consecutive words as a single fingerprint. We gen-
erate four separate n-gram databases for N = 1, 2, 3, 4.
Each n-gram database is constructed in the following man-
ner. First, we concatenate the bootleg score features from
all pages into a single, global bootleg score for each
PDF. Second, we represent each bootleg score column
as a single 64-bit integer. This allows us to represent
the bootleg score very compactly as a sequence of inte-
gers. Third, we consider every n-gram in the sequence
as a fingerprint. For example, if a bootleg score is given
by a sequence of 64-bit integers x1, x2, x3, · · · , then the
set of 3-gram fingerprints for this bootleg score is given
by (x1, x2, x3), (x2, x3, x4), (x3, x4, x5), · · · . Fourth, we
store the location information for each fingerprint in a re-
verse index. For each n-gram database, the hash key is a
(64 · N)-bit fingerprint, and the reverse index stores a list
of (id , offset) tuples for all occurrences of that fingerprint
in the database, where id is a unique identifier for the PDF

3 For example, in a recent survey on state-of-the-art music object de-
tectors [22], the best performing system required 40-80 seconds to pro-
cess each image using a GPU.



Figure 2. A short section of sheet music and its corre-
sponding bootleg score.

and offset specifies the offset in the bootleg score.

2.2 Search

At runtime, our goal is to identify the piece of music show-
ing in a cell phone image query. This process consists of
three steps, as shown in the bottom half of Figure 1.

The first step is to compute a bootleg score on the cell
phone image. This is done using the same feature ex-
traction as in the database construction phase. Note that
the inputs in the offline and online phases are very differ-
ent: whereas the IMSLP data is primarily digital scans of
physical sheet music, the queries are cell phone images of
physical sheet music. This introduces a lot of noise due
to variable lighting conditions, zoom, camera angle, crop-
ping, blur, unwanted objects outside the boundaries of the
page, etc. The only reason we can get away with using
the same feature extractor in these two very different sce-
narios is that the bootleg score feature extraction has no
trainable weights and only a small set of hyperparameters.
This makes it less likely to highly overfit to a set of data. It
is also worth pointing out that the bootleg score feature ex-
traction was originally designed to handle the challenging
case of cell phone images of sheet music, so we surmise
that it will handle the easier case of scanned sheet music
reasonably well.

The second step is to construct a sequence of dynamic
n-gram fingerprints. We will explain and motivate the use
of dynamic n-grams by describing our initial attempts to
solve the problem, the issues with these earlier approaches,
and how the dynamic n-gram addresses these issues.

Our initial attempt was to consider each column of the
bootleg score as a fingerprint. This is equivalent to a
1-gram in the terminology used in this paper. This ap-
proach was proposed in a recent work that attempts to
de-anonymize files in the Lakh MIDI dataset by finding
matches in a set of known sheet music data [21]. When we
implemented this approach, we found that the retrieval ac-
curacy was good, but that the system was far too slow. This
is an acceptable solution in [21] because the task is offline,
but it is an unacceptable solution in our current applica-
tion because we have a very stringent runtime constraint.
Upon further analysis, we found that the frequency distri-
bution of fingerprints was highly peaked and thus ill-suited
for hashing. In other words, there was a small set of finger-

prints that occurred very frequently in the database. These
fingerprints tended to be bootleg score columns containing
a single note event. Because this occurs so frequently in
piano sheet music, it forces the system to process an ex-
tremely large number of spurious fingerprints at runtime,
which significantly slows down the system.

Our second attempt was to use an n-gram fingerprint
to address this issue. This introduces a tradeoff. On
the one hand, as we increase N the fingerprint becomes
more discriminative, which leads to fewer matches in the
database and faster runtime. On the other hand, increas-
ing N increases the likelihood that the fingerprint is er-
roneous, since the entire fingerprint is wrong if even one
of its elements has an error. If we roughly model each n-
gram as N , independent Bernoulli random variables, then
the probability that the entire n-gram is correct decreases
exponentially in N . Given this tradeoff, one very reason-
able approach is to try different values of N and to select
the value that yields the best performance.

The dynamic n-gram gets the best of both worlds. If
a single bootleg word xi (i.e. a bootleg score column
converted to a 64-bit integer) is very distinctive, then we
simply do a table lookup in the 1-gram database. In this
case, it would not benefit us to do a 5-gram lookup if
the first element only occurs a few times in the whole
database. If, however, the bootleg word is very com-
mon, then we prefer not to do a table lookup on the 1-
gram database because this would require us to process
a large number of spurious fingerprints. In this case, we
bump the 1-gram up to a 2-gram and repeat the process.
If the 2-gram fingerprint (xi, xi+1) is distinctive, then we
do a table lookup on the 2-gram database. If (xi, xi+1) is
not distinctive, then we bump the 2-gram up to a 3-gram
(xi, xi+1, xi+2). We repeat this process until the finger-
print is distinctive enough to warrant doing a table lookup
(up to N = 4). As an example, given a sequence of boot-
leg words x1, x2, x3, · · · , one possible dynamic n-gram
sequence would be (x1), (x2, x3), (x3), (x4, x5, x6), · · · .
Note that there is only one hyperparameter γ that speci-
fies the maximum number of fingerprint matches we are
willing to process for every table lookup.

The third step is to search the database using the his-
togram of offsets method. The histogram of offsets was
proposed in [23] as a way to efficiently search a very large
database. It is based on the observation that the true match
in the database will yield a sequence of matching finger-
prints at an approximately constant relative offset. For
example, if a query bootleg word sequence x1, x2, x3, · · ·
matches a reference sequence x̃i, x̃i+1, x̃i+2, · · · , then the
matching fingerprints would all have a relative offset of
i − 1. If we compute a histogram of relative offsets for
all matching fingerprints with that item in the database, we
would see a large spike in the histogram at the bin corre-
sponding to an offset of i− 1. We can therefore compute a
similarity score by constructing a histogram of offsets for
matching fingerprints, and then calculate the maximum bin
count in the histogram. Once we have calculated a match
score for every PDF in the database in this way, we group



the PDFs by piece. The piece match score is calculated as
the maximum score of any of its constituent PDFs. Finally,
we sort the pieces in the database by their match scores.
This yields our final predicted ranked list of pieces.

3. EXPERIMENTAL SETUP

In this section, we describe the data and metrics used to
evaluate our proposed system.

The cell phone image queries were taken from the Sheet
MIDI Retrieval dataset [24]. We include a description of
the dataset here for completeness. This data was originally
created to study the task of aligning a cell phone picture of
piano sheet music and its corresponding MIDI file. It con-
tains 2000 cell phone images of 200 different piano pieces
across 25 well-known composers. For each of the 200
pieces, a PDF from IMSLP was downloaded and printed
onto physical paper. Ten cell phone pictures were taken
across the length of each piece in a variety of locations,
lighting conditions, perspectives, and levels of zoom. The
pictures contain between 1 and 5 lines of music and were
all taken in landscape orientation. We use the same train-
test split as the original paper: 400 cell phone images (cor-
responding to 40 pieces) were used for training, and 1600
cell phone images (corresponding to 160 pieces) were used
for testing. By using the same train-test split as the original
paper, we ensure that the bootleg score feature extraction
has not been tuned to the test data.

The database comes from IMSLP. We first scraped the
website and downloaded all PDF scores and associated
metadata. 4 We then filtered the data by instrumentation
tag label in order to identify a list of solo piano pieces. The
resulting dataset contains 29,310 pieces and 31,384 PDFs
and 374,758 individual images. This is the dataset that we
used to construct the database described in Section 2.1.

We release the precomputed bootleg score features for
all piano scores in the IMSLP dataset in a separate stan-
dalone repository. 5 We believe this is in itself a signif-
icant contribution to the MIR research community, given
the amount of time, memory, and computation required to
generate it. For example, it took us over a month to scrape
the IMSLP website and download all the scores in PDF
format. This set of PDFs was approximately 1.2 terabytes
in size. If the PDFs had been decoded into high-resolution
images, the dataset would be in the tens of terabytes. Be-
cause this was too large to store on disk, we decompressed
each PDF to a set of high-resolution images, computed the
bootleg score features, and then deleted the high-resolution
images to conserve disk space. We performed all feature
computation on the NSF XSEDE supercomputing infras-
tructure [25].

We evaluate our system along two dimensions: retrieval
accuracy and runtime. Because our goal is to identify the
matching piece rather than just the exact same PDF, 6 there

4 We downloaded the data over the span of several weeks in May 2018.
5 https://github.com/HMC-MIR/piano_bootleg_

scores
6 In Section 5.2, we will test how well our system can identify a piece

when only an alternate edition of the sheet music exists in the database.

is always exactly one correct item in the database. Accord-
ingly, we use mean reciprocal rank (MRR) as our measure
of retrieval accuracy. The MRR is calculated as

MRR =
1

N

N∑
i=1

1

Ri
(1)

where N = 1600 indicates the number of test queries and
Ri indicates the rank of the true matching item for the ith

query. In our task, Ri can range between 1 and 29310,
the total number of pieces in the database. MRR ranges
between 0 and 1, where 1 indicates perfect performance.
We also measure the runtime required to process each test
query. The runtime includes all data pre-processing such
as converting the JPG image to PNG format. Note, how-
ever, that the runtimes do not include the network latency
that would be present in a real cell phone application. All
experiments are done on a single core of a 2.1 GHz Intel
Xeon CPU.

4. RESULTS

In this section, we present our experimental results on the
piano sheet music identification task.

We are not aware of previous work that directly studies
sheet music identification based on cell phone images. As
mentioned in Section 1, there are works in the audio–sheet
music alignment literature that have studied cross-modal
sheet music retrieval. These works could in principle serve
as baseline comparisons. However, all of the works we are
aware of would not have been practical to evaluate on our
task for one of two reasons. First, some approaches do not
scale to a large database. For example, approaches that use
subsequence DTW [5] [6] [2] [8] would have exorbitantly
high runtimes on the IMSLP database. Second, some ap-
proaches might have acceptable runtimes at test time, but
would have required too much computation to construct
the database. For example, the sheet–audio alignment sys-
tem in [11] is 20 times slower than our proposed system
and would have exceeded our computational budget on the
XSEDE supercomputing infrastructure. Any approaches
that use OMR to convert the sheet music into MIDI format
would likewise be too computationally expensive.

Nonetheless, we compare our proposed approach to
nine other baseline systems. The first four baselines are
representative of the state-of-the-art in image retrieval in
the computer vision community. These systems were de-
veloped for the Oxford 5k [26] and Paris 6k [27] bench-
marks, where the goal is to identify a famous landmark
in a query image given a database of known images. All
four systems are built on top of pretrained ImageNet clas-
sifiers like VGG [28] and ResNet [29], but they differ in
the method by which they convert model activations into
a final feature representation. The first baseline (MAC
[30]) takes the K × W × H tensor of activations at the
last convolutional layer and computes the maximum ac-
tivation within each feature map. This yields a fixed-size
K-dimensional feature representation regardless of the im-
age size. The second baseline (SPoC [31]) adopts a sim-



System
MRR Runtime

cond 1 cond 2 avg std
MAC [30] .037 .043 1.17s .12s
SPoC [31] .003 .004 1.14s .10s
GeM [32] .025 .029 1.18s .11s
R-MAC [33] .036 .039 .96s .11s
1-gram [21] .709 .659 21.5s 12.5s
2-gram .845 .784 2.76s 1.11s
3-gram .808 .767 1.99s .36s
4-gram .755 .722 1.12s .25s
5-gram .688 .668 1.07s .13s
dynamic n-gram .853 .812 .98s .12s

Table 1. System performance on the piano sheet music
identification task. Condition 1 is when the exact same
PDF exists in the database. Condition 2 is when only an
alternate version of the sheet music is in the database.

ilar approach, but uses average pooling rather than max
pooling. The third baseline (GeM [32]) uses generalized
mean pooling, which is a generalization of both average
and max pooling where the type of pooling is specified by
a single, trainable parameter. The fourth baseline (R-MAC
[33]) applies max pooling over different regions of the im-
age at various scales and combines the results through an-
other pooling stage. All four baselines also apply various
forms of post-processing, such as dimensionality reduction
through principal component analysis, whitening, and L2
normalization. Given a query feature representation, simi-
larity with database images is computed with a simple in-
ner product. In our experiments, we compute piece simi-
larity as the maximum similarity with any page in any of
the piece’s constituent PDFs. We evaluate the baseline sys-
tems with their provided pretrained models. 7 The last five
baselines are equivalent to our proposed system but using a
fixed n-gram fingerprint for N = 1, 2, 3, 4, 5. The 1-gram
system corresponds to the approach proposed in [21].

Table 1 compares the performance of all models. The
systems are presented in three groups: the image retrieval
baselines (top), the fixed n-gram systems (middle), and the
proposed dynamic n-gram system (bottom). The second
column (labeled “cond 1") indicates the MRR on the test
set, and the last two columns indicate the average runtime
per query and corresponding standard deviation. The col-
umn labeled “cond 2" will be discussed in Section 5.2.

There are three things to notice about these results.
First, the image retrieval baselines all perform very poorly.
The best-performing image retrieval system is MAC,
which achieves an MRR of .037. This is not a surprise,
since these systems were not designed for working with
sheet music images, but it does confirm that existing image
retrieval systems do not work out-of-the-box on the sheet
music identification task. We do observe, however, that the

7 Training the baseline systems from scratch would require a large
amount of labeled data (to retrain the ImageNet classifier) and would
constitute a significant research project on its own. In this work, we
simply evaluate the baseline systems out-of-the-box using the provided
pretrained models.

systems achieve results significantly better than random
guessing (approximately .001 MRR). Second, the fixed n-
gram systems show a tradeoff between retrieval accuracy
and runtime. As N increases from 1 to 5, we see the aver-
age runtime decrease from 21.5 seconds to 1.07 seconds.
This reflects the fact that the fingerprint is becoming more
and more discriminative, which leads to fewer and fewer
matches in the database. At the same time, we observe
that the retrieval accuracy decreases from .845 to .688 as
N increases from 2 to 5. This reflects the fact that more
and more fingerprints are erroneous as fingerprint size in-
creases. The increase in MRR from N = 1 to N = 2
indicates that the 1-gram fingerprints are not sufficiently
distinctive. Third, the dynamic n-gram system achieves
both the highest retrieval accuracy (.853) and the lowest
average runtime (0.98 seconds). This indicates that the de-
sign has achieved its intended goal: to avoid the tradeoff
between retrieval accuracy and runtime, and to instead get
the best of both worlds.

5. ANALYSIS

In this section, we conduct four different analyses to an-
swer key questions of interest.

5.1 Failure Modes

The first question of interest is, “What are the failure
modes of the system?" To answer this question, we iden-
tified the queries with poor reciprocal rank values and in-
vestigated the reasons for failure. By far the biggest rea-
son for poor performance was failure in the bootleg score
feature computation. Common mistakes included missed
detection of non-filled noteheads or noteheads occurring
in block chords, notehead detection false alarms arising
from text and other musical symbols on the page, and
staff line estimation errors. Fixing these issues would re-
quire re-designing the bootleg feature computation. An-
other (minor) reason for poor performance came from non-
distinctive sections of music. For example, when there are
repetitive octaves or long sequences of alternating between
two notes in only one hand, this can have a strong match
with unrelated pieces of music.

5.2 Effect of Sheet Music Version

The second question of interest is, “How well does the sys-
tem handle different sheet music versions?" To answer this
question, we ran a separate set of experiments in which we
remove the exact same PDF from the database. This means
that the system can only match against alternate versions
of the sheet music. Because some queries only had 1 sheet
music version in IMSLP, this additional benchmark was
run on a reduced subset of 930 test queries.

The results of this alternate benchmark are indicated in
Table 1 as “Condition 2." We see that the MRR of the fixed
n-gram systems has been reduced somewhere between .02
and .06, and the MRR of the dynamic n-gram system is
reduced by .04. This performance gap between condition



System
MRR Runtime

cond 1 cond 2 avg std
dyn n-gram (20k) .864 .802 1.67s .18s
dyn n-gram (10k) .865 .802 1.53s .16s
dyn n-gram (5k) .860 .803 1.21s .15s
dyn n-gram (1k) .853 .812 .98s .12s

Table 2. Comparison of dynamic n-gram systems with var-
ious values of γ, which specifies the maximum number
of fingerprint matches the system will process on a table
lookup before bumping an N -gram to an (N + 1)-gram.

1 and condition 2 can be interpreted as the additional per-
formance loss that is caused by variations in different sheet
music editions. While this is a nontrivial decrease in per-
formance, the proposed system still has a robust overall re-
trieval accuracy (.812 MRR) when the exact same version
is not in the database.

5.3 Effect of γ

The third question of interest is, “How does system per-
formance vary with γ?" Recall that the dynamic n-gram
approach has one hyperparameter γ that specifies the max-
imum number of fingerprints we are willing to process for
each table lookup. We ran experiments with several values
of γ to determine its effect on system performance.

Table 2 shows system performance for γ ranging from
1000 to 20, 000. As γ decreases, we see a very slight de-
crease in retrieval accuracy (.864 to .853) and significant
improvement in average runtime (1.67s to .98s). In this
case, we have a very nice tradeoff: for only a small sac-
rifice in retrieval accuracy, we can significantly speed up
the system. The dynamic n-gram results in Table 1 corre-
spond to γ = 1000, which is the best system that meets
our constraint of 1 second average runtime per query.

5.4 Fingerprint Distribution

The fourth question of interest is, “How well suited for
hashing is the dynamic n-gram fingerprint distribution?"
As described in Section 2.2, we found that the 1-gram fin-
gerprint proposed in [21] had a frequency distribution that
was very peaked and thus ill-suited for hashing. 8 To see
how well the dynamic n-gram approach addresses this is-
sue, we compared its frequency distribution to the fixed
n-gram approaches.

Figure 3 shows this comparison. Each curve shows the
frequency of different fingerprint values, where the finger-
prints have been sorted from most frequent (left) to least
frequent (right). Both axes are shown on a log scale in or-
der to better visualize the wide dynamic range. Note that
all of the fixed n-gram distributions have approximately
the same total number of fingerprints in the database, so
their only difference is how many unique fingerprint val-
ues there are and how the fingerprints are distributed across

8 Note that the ideal distribution for hashing is a uniform distribution.

Figure 3. Comparing the fingerprint frequency distribu-
tions of the fixed n-gram systems and dynamic n-gram with
γ = 10, 000. For each curve, the fingerprints have been or-
dered from most frequent (left) to least frequent (right).

these different values. The curve for the dynamic n-gram
system corresponds to γ = 10, 000.

Figure 3 shows the same trends that we see in Table
1. The difference, however, is that Figure 3 explains why
the results in Table 1 are the way they are. For example,
we observed earlier that the fixed n-gram systems exhibit
a tradeoff between retrieval accuracy and runtime. Figure
3 explains this tradeoff from a hashing perspective. As N
increases, the fixed n-gram distributions become less and
less peaked, which translates to fewer fingerprint matches
in the database and smaller runtimes. At the same time,
this manner of reducing the peak comes with an exponen-
tial explosion in the number of unique fingerprint values.
This means that the fingerprints will be less generalizable
and more error-prone. We also notice that the only fixed
n-gram curves that intersect early on are the 1-gram and 2-
gram curves. This explains why the 2-gram system is uni-
laterally better than the 1-gram system: it has a less peaked
distribution (smaller runtime) and it has a higher frequency
of fingerprints than the 1-gram system for a large fraction
of fingerprint values (better retrieval accuracy). Finally, we
observe that the dynamic n-gram system has a flatter distri-
bution than any of the fixed n-gram systems across a wide
range of its distribution. This confirms that the dynamic
n-gram approach is able to transform the distribution into
one that is more well-suited for hashing. 9
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