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ABSTRACT

Accurate and flexible representations of music data are
paramount to addressing MIR tasks, yet many of the exist-
ing approaches are difficult to interpret or rigid in nature.
This work introduces two new song representations for
structure-based retrieval methods: Surface Pattern Preser-
vation (SuPP), a continuous song representation, and Ma-
trix Pattern Preservation (MaPP), SuPP’s discrete coun-
terpart. These representations come equipped with several
user-defined parameters so that they are adaptable for a
range of MIR tasks. Experimental results show MaPP as
successful in addressing the cover song task on a set of
Mazurka scores, with a mean precision of 0.965 and recall
of 0.776. SuPP and MaPP also show promise in other MIR
applications, such as novel-segment detection and genre
classification, the latter of which demonstrates their suit-
ability as inputs for machine learning problems.

1. INTRODUCTION

This paper builds on the traditions of matrix representations
of songs started by Foote [1]. Specifically, we are princi-
pally interested in the cover song identification task. Recent
content-based approaches to this task include building ob-
jects that compare one recording against a second one [2,3],
comparing slices of recordings to each other [4], creating
a graph of songs on which to perform clustering [5], and
using deep learning [6].

Structure-based approaches to the cover song task begin
by creating representations encoding songs’ structural in-
formation. These structural representations do not always
explicitly encode where repetitions occur (for example, [7]).
In contrast, the aligned hierarchies encode every possible
repeated structure’s placement within a song [8]. Between
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these approaches is recent work by McGuirl et al. [9] which
develops start-end (SE) and start(normalized)-length (SNL)
diagrams. These structure-based musical representations
seek to balance the amount of structural information pro-
vided by leveraging ideas from Topological Data Analysis
(TDA), a field of applied mathematics.

We address issues of SE and SNL diagrams, discussed in
Section 2.2, by transforming SNL diagrams into surface and
matrix representations, called Surface Pattern Preservation
(SuPP) and Matrix Pattern Preservation (MaPP). SuPP and
MaPP are analogous to TDA persistence surfaces and persis-
tence images [10], respectively. These novel representations
can be thought of as two versions of the same concept, with
SuPP as the complete representation containing all possible
structural information, and MaPP as its down-sampled com-
putationally friendly extension. MaPP can be embedded
into Euclidean space 1 making calculations straightforward
using distance functions. Thus, MaPPs are more usable for
machine learning algorithms than their predecessors.

Additionally, SuPP and MaPP are both adaptable to vary-
ing MIR tasks, such as the cover song task, novel-segment
detection, and genre classification, whereas the aligned hi-
erarchies, SE diagrams, and SNL diagrams were created
specifically for the cover song task. We present ways in
which SuPP and MaPP may be adapted for these differ-
ent tasks with a larger focus on the cover song task and
how these new methods compare with results from SNL
diagrams and another extension of the aligned hierarchies.

2. BACKGROUND

Continuing the work begun with the aligned hierarchies [8]
and extended in SNL diagrams [9], SuPP and MaPP are
consecutive representations that are smoothings of SNL di-
agrams. Additionally, MaPP combines the strengths of
the aligned hierarchies and SNL diagrams to build a rep-
resentation that can be used in standard machine learning
algorithms such as k-means clustering or support vector
machines. In this section, we briefly review aligned hierar-
chies and SNL diagrams while highlighting their limitations
to motivate the novel representations proposed in this work.

1 In fact, MaPP can be embedded into any inner product space.



2.1 Aligned Hierarchies

The aligned hierarchies representation encodes all possible
hierarchical structure decompositions of a song on a single
common time axis [8]. While this representation clearly
shows the length of each repeated section, it does not vi-
sually emphasize the differences between the lengths of
repeats using white space. Also, the distance measure for
the aligned hierarchies is inefficient to compute and is quite
coarse [8]. First, the distance measure notes only when
two repeats of the same size line up exactly in terms of
placement within the song. Second, comparisons between
songs under this distance measure require both songs to be
the same number of beats. This last limitation makes using
the aligned hierarchies impractical for cover song detection.

2.2 SE and SNL Diagrams

Motivated by TDA theory, SE and SNL diagrams extend the
aligned hierarchies and overcome the rigidity in comparing
songs with aligned hierarchies. While SE and SNL dia-
grams are more flexible and computationally efficient than
their predecessor, they were built with the cover song task
in mind and are difficult to adapt for other MIR tasks. Fur-
thermore, they are not suitable to use with machine learning
algorithms.

2.2.1 Topological Data Analysis Inspiration

Broadly, TDA is concerned with extracting quantifiable
shape features from large, complex datasets [11–14].
Though not extracting topological information typically
sought by TDA methods, SE and SNL diagrams draw their
inspiration from persistence diagrams [11, 12] which track
how topological features persist across an increasing se-
quence of spatial scales. Just as persistence diagrams are
a collection of 2-D points whose x- and y-coordinates rep-
resent the length scales at which the topological features
appear and disappear, SE and SNL diagrams are collections
of 2-D points whose x- and y-coordinates represent the
start and end (or length) times, respectively, of repetitive
sections in a song. An advantage of the correspondence
between persistence diagrams and SE and SNL diagrams is
that rich mathematical theory from TDA can be extended
to the musical representations for computational tasks.

2.2.2 Structure of SE and SNL

SE and SNL diagrams extend the aligned hierarchies by
transforming them into a representation consisting of a
finite collection of points [9]. Specifically, the SE diagram
for a song is defined as {(si, ei)}Ni=1 ⊂ R2

+, where si and ei
are the start and end times, respectively, of the ith repeated
structure. Similarly, the SNL diagram for a song is defined
as {(α(si/M), ei − si)}Ni=1 = {(s̄i, `i)}Ni=1, where α > 0
is a scaling factor and M is a normalization term related to
the length of the song, with si and ei as above. Figure 1
shows the transition from the aligned hierarchies to the SNL
diagram for Chopin’s Mazurka Op. 6, No. 1. Both the SE
and SNL diagrams add visual emphasis for the differences
between the lengths of the repetitions, but lose the visual
width of each repetition.

2.2.3 Shortcomings of Previous Work

Similar to persistence diagrams, the complex structure of
SE and SNL diagrams makes them unsuitable inputs for
most statistical analyses and machine learning tasks. For
example, these diagrams do not live in an inner product
space and simply computing averages in the space of persis-
tence diagrams, and therefore in the spaces of SE and SNL
diagrams, remains a challenge. The notion of an average
persistence diagram is defined through the Fréchet mean,
which views the space of persistence diagrams as a prob-
ability space [15]. The Fréchet mean is computed as the
solution of a minimization problem and is not guaranteed
to be unique. Moreover, it is non-trivial to compute.

Without a unique and easy-to-compute mean or an inner
product structure, the utility of SE and SNL diagrams for
MIR tasks is limited. In particular, SE and SNL diagrams
cannot be used as inputs for most classification and regres-
sion models, such as support vector machines, which would
otherwise be useful for tasks like genre classification.

2.3 SuPP and MaPP Inspiration

This work continues to leverage TDA theory in the creation
of two new structural representations, SuPP and MaPP. Just
as persistence diagrams are transformed into persistence
surfaces and persistence images [10] through a weighted
sum of Gaussian functions centered at each point in a given
persistence diagram, here we transform SE and SNL into
SuPP and MaPP. The mathematical details of this transfor-
mation are provided in Section 3. Like persistence images,
MaPPs can be embedded into an inner product space, such
as Euclidean space, and can therefore be used as inputs for
machine learning algorithms.

3. METHODS

In this section, we define Surface Pattern Preservation
(SuPP) and Matrix Pattern Preservation (MaPP). SuPP is
a surface representation of SNL diagrams [9] that allows
similar repeated sections to be viewed as a single structure.
Since comparing surfaces computationally is difficult, we
introduce MaPP, the discrete matrix version of SuPP. As a
matrix, MaPP allows for pairwise comparisons using com-
mon distances such as the Euclidean and Frobenius metrics.
The procedure 2 for creating SuPP and MaPP from SNL di-
agrams is outlined below and summarized in Algorithm 1.

3.1 Surface Pattern Preservation (SuPP)

SuPP is a smoothing of a song’s SNL diagram that main-
tains structural information of the song. This smoothing is
achieved by placing a 2-D Gaussian at each point in a song’s
SNL diagram and aggregating overlapping Gaussians.

3.1.1 Defining Repeats as Gaussians

Defining the Gaussians that represent the repeated struc-
tures of the piece is the heart of the transformation from

2 Code is available on GitHub: https://github.com/
cgsavard/ICERM_compare_songs
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Figure 1: From left to right, the aligned hierarchies, SNL diagram, and SuPP corresponding to the score of Mazurka Op. 6,
No. 1 by Chopin. The weights applied to SuPP are the weights used for the cover song task found in Section 4.2.1.

the SNL diagram to SuPP. In general, given a SNL diagram
{(s̄i, `i)}Ni=1, we first place a Gaussian (g) over each re-
peated structure so that (s̄i, `i)→ gi(s̄, `) where

gi(s̄, `) =
1

2πσsσ`
e
−
(

(s̄−Ts(s̄i))
2

2σ2
s

+
(`−T`(`i))

2

2σ2
`

)
, (1)

T = (Ts, T`) : R2 → R2 defines the center of each of the
Gaussians, σs is the standard deviation in the start direction,
and σ` is the standard deviation in the length direction.

The Gaussians can either be centered at the beginning of
a repeated structure, so that T (s̄i, `i) = (Ts(s̄i), T`(`i)) =
(s̄i, `i) is the identity, or in the middle of a repeated struc-
ture, so that T (s̄i, `i) = (Ts(s̄i), T`(`i)) = (s̄i + `i

2 , `i).
This choice is based on the task at hand as well as user
preference. Midpoints correspond to the central beat in
each repeated section, and are therefore a good indicator
for where these structures are occurring, on average, in the
song. For our cover song task experiment, we adjust the SNL
diagrams by choosing to center each Gaussian about the
repeated structures’ midpoints rather than their start times
(i.e., T (s̄i, `i) = (s̄i + `i

2 , `i)). Figure 2 illuminates how
using the start or midpoint of the repeated section for the
Gaussians compares visually for the repetitions in aligned
hierarchies. Other distributions aside from a Gaussian can
also be used and may be preferable for certain MIR tasks.

After determining the appropriate placement of the Gaus-
sians, the next step is to set the two standard deviation pa-

Algorithm 1 Algorithm for constructing SuPP and MaPP

Input: Song’s SNL diagram {(s̄i, `i)}i∈I
for i ∈ I do
• Replace (s̄i, `i) with 2-D Gaussian defined by
µ = (s̄i, `i) and σ = (σs, σ`)

end for
• Aggregate all Gaussians to create a surface by using

the maximum function
• Apply weighting function to surface to create SuPP
• Discretize SuPP to create gridded surface
• Integrate the area under each gridded unit and store

resulting values in a matrix to create MaPP
Outputs: SuPP, MaPP
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Figure 2: How 2-D Gaussians relate to repeated structures
of aligned hierarchies when using the SNL diagram (left) or
the altered SNL diagram with midpoints (right).

rameters that govern the shape of these Gaussians. The
standard deviation σs determines the width of the Gaus-
sians with respect to the start (or time) axis; that is, the
axis representing where each repeat in the song - now rep-
resented as a Gaussian - exists. The standard deviation σ`
determines the width of the Gaussians with respect to the
length axis. These standard deviations control the extent to
which nearby Gaussians will overlap.

3.1.2 Creating the Surface

The next step in the SuPP creation is to aggregate the col-
lection of Gaussians to create a surface. When two or more
Gaussians intersect, which occurs when points in the SNL
diagram are close together, the SuPP value at the intersec-
tion is set to the maximum of the Gaussians rather than
the sum of the Gaussians as is done for persistence sur-
faces [10]. That is, for any SNL diagram {(s̄i, `i)}Ni=1, we
define SuPP as the surface SuPP : R2 → R, where

SuPP(s̄, `) = F (s̄, `) ∗ max
i∈[1,N ]

gi(s̄, `), (2)

for some weighting function F (s̄, `) : R2 → R and gi(s̄, `)
defined in Eqn. 1. Combining the Gaussians over all repeats
allows repetitive structures that are similar in length and
start time to be perceived as the same repeated section. We
use the maximum instead of other aggregators because we
want these similar structures to be treated as one section.
We do not want sections to be more highly weighted if there
are many similar structures in that section. The choices of
σs and σ` determine how close points in SNL need to be for
their Gaussians to substantially blur together.



The weighting function F (s̄, `) governs which type of
repeated structures are emphasized in the resulting surface.
This weight controls the heights of the Gaussians in SuPP,
lifting important sections of the song and suppressing other
sections. The surface weight can be varied by the user
based on the MIR task at hand. In Section 4, we provide an
example of how one may want to set the weighting function.

3.2 Matrix Pattern Preservation (MaPP)

SuPP is a continuous representation carrying all informa-
tion found in SNL diagrams. Beyond this, user-specified
parameters can be set to emphasize various parts of a song.
However, using a continuous surface representation is com-
putationally complex and thus not feasible for many com-
puting tasks. To address this challenge, a transformation of
SuPP into a discrete representation with a natural embed-
ding and metric for comparison, such as MaPP, is necessary.

To create MaPP, SuPP is first sectioned by placing a
grid over the R2 plane over which SuPP is defined. This
discretization is based on a user-defined resolution. Then,
the volume beneath each grid unit of SuPP is computed
using numerical integration. These volumes are recorded as
entries in a matrix with the same dimensions as the gridded
SuPP, resulting in MaPP.

Namely, for a SNL diagram {(s̄i, `i)}Ni=1, the corre-
sponding MaPP is a P × P matrix such that:

MaPP(SuPP)jk =

∫ βk+1

βk

∫ αj+1

αj

SuPP(s̄, `)ds̄d` (3)

where αj = jRs̄P and βk = kR`P are the individual grid
widths and heights given by the user-defined resolution P
and the ranges Rs̄ and R` of the respective axes in the SuPP.

3.3 Embedding MaPP Representations

Since the MaPP representations are matrices, they can be
embedded into various metric spaces. There are many pre-
existing metrics with strong mathematical theory that can
be applied to compute distances between matrices. We use
the Frobenius norm. The Frobenius distance between two
MaPPs A and B is defined as:

dF (A,B) =
√

Tr((A−B) ∗ (A−B)T ), (4)

where Tr indicates the trace [16]. The Frobenius norm
measures the “average” value within the difference matrix
A−B.

With any suitable embedding, we inherently define a
classification space for MaPP representations and the songs
that they represent. Thus, we can employ various computa-
tional techniques to compare songs. We also note that not
all MIR tasks rely on song comparisons, and MaPP can also
be used for exploration within a song.

4. APPLICATION TO COVER SONG TASK

SuPP and MaPP can be used in structure-based retrieval
methods for a variety of MIR tasks. In this section, we show
how these representations can address the cover song task,
and compare our methods with some previous methods.

4.1 Dataset

To test the efficacy of SuPP and MaPP, we use a collec-
tion of Chopin’s Mazurka scores as ∗∗kern files from the
KernScore online database 3 [17]. There are 52 scores in
the Mazurka dataset, and we extract two versions for each
score. The first version of each piece, referred to as the
“expanded” score, plays each repeated section as marked
in the score. The second version, referred to as the “non-
expanded” score, does not respect these repetition markers
and plays marked repeated sections once. As a result, the
data consists of 104 songs with pairs of expanded and non-
expanded versions for each Mazurka piece.

Each score is initially represented as a thresholded self-
dissimilarity matrix (SDM). Following the procedure from
[8, 18], we first extract a chroma vector for each beat in the
score using the Python library music21. We then build
audio shingles 4 for each beat [19–21] by concatenating
S number of consecutive chroma vectors, encoding local
information for each beat. We set the shingle width to
S = {6, 12} and then compute the cosine-dissimilarity
measure between each pair of audio shingles. We finally
create the SDM by thresholding the matrices using T =
{0.01, 0.02, 0.03, 0.04, 0.05}. This SDM is converted to
the aligned hierarchies [8], and then to SNL diagrams [9].
From the SNL diagram, we create a SuPP which is then
discretized to become a MaPP, as described in Section 3.2.

4.2 Experiment

The cover song identification task, or version detection task,
aims to identify recordings that are performances of the
same piece of music. We address this task by creating SuPP
and MaPP representations for each song and calculating
pairwise Frobenius distances between MaPPs. The distance
between two MaPPs is a measurement of structure dissim-
ilarity, which is used alongside a clustering technique to
deem whether songs are covers of the same work.

4.2.1 Setting SuPP Parameters

As discussed in Section 3.1, to create the SuPP representa-
tion we start by defining where the Gaussians representing
each repetition are centered. For addressing the cover song
task, the SNL diagram is adjusted so the horizontal axis
reflects the midpoints of the repeated structures instead of
their start times. 5 We next define σs, σ`, and the weighting
function to determine the size, shape, and height of the 2-D
Gaussians placed over each point in the SNL diagram.

For these experiments, we use a normalized constant
standard deviation for σs, which determines the width of
the Gaussians on the time axis. Recall that the time axis is
normalized in the SNL diagrams so that all songs are placed
within the same range. We set σs = 1

M beats for each
song, where M is the normalization constant, or the total

3 http://kern.humdrum.org/search?s=t\&keyword=
Chopin

4 While we are not using audio data, we still refer to these objects as
audio shingles, as we are using a technique from [19–21] that uses this
name.

5 Results of our experiment were comparable between using start or
midpoint times on the horizontal axis of SNL diagrams.
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structure ABAABA (left) and ABABA (right). By omitting
a middle “A” section in ABAABA, the longer repetitive
sections break down while the shorter ones are preserved.

song length, inherited from the SNL diagram for a given
song. This means that repeats of the same length that start
within two beats (2σs) of each other will overlap, and thus
combine to form a single structure in the SuPP.

The second parameter is σ`, which determines the width
of the Gaussians in the length direction. We use a constant
value for this parameter, setting σ` = 1. Since the songs are
not normalized along this dimension in the SNL diagrams,
no normalization term is needed here. This means that there
will be overlap between repeats centered at the same beat
and those whose lengths differ by up to two beats.

Lastly, we choose a weighting function to apply to our
surface that will give more importance to shorter structures
than longer structures, due to longer repetitive structures
having more variance between cover songs than shorter
ones. An example of this phenomenon can be seen in
Figure 3; a slight change in the overall song pattern, such as
repeating the chorus one fewer time, breaks down the largest
structures while maintaining the shorter repeats. To encode
this importance on smaller-sized structures, we choose the
following piece-wise linearly decreasing function:

F (s̄, `) =


1 ` ≤ `min
1− `−`min

`max−`min `min ≤ ` ≤ `max
0 ` ≥ `max

(5)

where `min and `max are user-specified bounds on the
lengths of repetitive structures included in SuPP. We set
`min = 0 beats and `max = 80 beats in order to include
98% of structures seen in our data. As the length increases
from `min to `max, the weight decreases from one to zero.

4.2.2 Comparing MaPPs

For the cover song task, we set the MaPP resolution to
P = 200, yielding a 200 x 200 matrix. This choice of
resolution follows the work in [10, 22], which shows that
this parameter value is robust, though other resolutions may
be applied. This process is analogous to the resampling in
[7] but is an aggregation within SuPP instead of a sampling.

After creating a MaPP for each song, we compute pair-
wise Frobenius distances and apply a clustering algorithm.
Noting that MaPP encodes a notion of musical structure,
the Frobenius distance offers a measure of the dissimilar-
ity between the musical structures of two different pieces.
For cover songs, we expect this distance to be low because

songs that cover the same piece of music will likely have
similar repeated musical structures.

For the Mazurka scores dataset, each song has exactly
one match, namely the expanded version with repeat mark-
ers honored and the non-expanded version where the rep-
etition markers are ignored. Therefore, we use mutual k-
nearest neighbors with k = 1 to pair the songs. Under this
technique, two songs are only labeled covers of the same
piece if they both claim each other to be their closest “neigh-
bor,” corresponding to the smallest distance computed. If
there is no mutual nearest neighbor, then that song is not
matched to any other in the dataset.

4.2.3 Results

Ten experiments were performed with varying thresholds
and shingle numbers applied to the SDMs. Overall, preci-
sion and recall values across these experiments were consis-
tent (see Table 1) with mean precision of 0.965 and mean re-
call of 0.776. Figure 4 shows these results to be comparable
to similar experiments on average using SNL diagrams [9]
and aligned sub-hierarchies 6 (AsH) [18]. However, MaPP
results have less variability among the ten experiments and
thus show more stability. Additionally, MaPP is more flexi-
ble in its creation, allowing for more user creativity, and it is
more computationally efficient to compare MaPPs than SNL
or AsH representations, as the latter two include optimal
matching steps in their comparisons.

We found that songs with few repetitive structures (and
thus a scarce SNL diagram) make up the majority of the
songs left without a match or improperly matched. There-
fore, our method works best when analyzing songs with
ample repetitive structures. An example of expanded and
non-expanded versions of a score that were not matched
together is shown in Figure 5, visibly due to scarce amounts
of repeated structures in the non-expanded SNL diagram.

6 AsH are extensions of aligned hierarchies that make aggregate com-
parisons using sections of songs instead of one cohesive structure repre-
sentation as with aligned hierarchies.

Threshold (T ) Shingle (S) Precision Recall
6 0.952 0.769

0.01
12 0.975 0.778
6 0.974 0.731

0.02
12 0.964 0.786
6 0.952 0.769

0.03
12 0.976 0.789
6 0.952 0.769

0.04
12 0.976 0.789
6 0.976 0.789

0.05
12 0.954 0.789

Table 1: Experimental results for the cover song task using
midpoint versions of SNL diagrams, normalized constant
σs, constant σ`, and linearly decreasing weight along the
length axis from Eqn. 5.
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varying threshold and shingles for three different methods:
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AsH representations (which varied between 14% and 65%
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5. OTHER APPLICATIONS

Following are two additional examples of how SuPP and
MaPP can be used to address other MIR tasks: novel-
segment detection and genre classification. Preliminary
experimental results show promise with both tasks, and fu-
ture work will include a full analysis of these experiments.

5.1 Novel-Segment Detection

We define novel-segment detection to be finding the bound-
aries between repeated segments and novelty sections. This
is a combination of both the novelty detection and segmen-
tation tasks in MIR [23–25]. These boundaries often distin-
guish between typical segments within a musical piece, like
a verse or a coda, making the segmentation task a natural
application of such detection [23, 24].

For this task, we extend the analysis of MaPP from Sec-
tion 4 by transforming the matrix into a vector; that is, given
a MaPP, we create a 1-D vector by taking the sum of each
column. This projection yields a time-dependent vector
whose entry at a given time step corresponds to the sum
of the structure activity measured by MaPP at that time.
Global and local minima (as specified by user-specific con-
straints) of this projection correspond to regions between
large amounts of structure. Outliers within the collection of
minima correspond to novelty sections, where no repetitive
structure is present for a long period of time. Preliminary
work using this methodology of locating the minima of the
summation projection of MaPP shows promising results,
highlighting the flexibility of MaPP in other MIR tasks.

5.2 Genre Classification

In genre classification, we seek to classify songs by the
genres assigned to them by their recording company. We
use the collection of 104 Chopin’s Mazurkas along with a
selection of 676 Jazz lead sheets [26] from the iRb Corpus
in the ∗∗jazz format to have two genres.

Given that MaPP representations embed into inner prod-
uct spaces, we can use machine learning algorithms for
MIR tasks. MaPP matrix elements become the features for
each song with the number of features set by the resolution
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Figure 5: Mazurka Op. 68 No. 4 expanded (left) and non-
expanded (right) do not match using k-mutual nearest neigh-
bors with k = 1 on their corresponding MaPPs due to scarce
repeated structures in the non-expanded SNL diagram.

parameter. Various machine learning algorithms, imple-
mented in sklearn, 7 are applied to our set of MaPPs as
constructed in Section 4, representing 104 Mazurka scores
and 676 jazz lead sheets. Logistic regression, a Gaussian
kernel support vector machine (SVM), and a polynomial
kernel SVM distinguish between the Mazurka and jazz
pieces with high accuracy of above 94% for each classifier.

6. CONCLUSION

In this paper, we introduce SuPP and MaPP, two musical
representations influenced by TDA theory. We describe
how SuPP and MaPP are built and give intuition into how
parameters may be chosen when applying these represen-
tations to the cover song task. Our accuracies using MaPP
for this task are comparable to previous studies on average
but indicate greater stability among various SDM thresh-
olds and shingles. Preliminary experiments applying SuPP
and MaPP to novel-segment detection and genre classifica-
tion are plausible, demonstrating the adaptability of these
representations for distinct MIR tasks.

We discuss how SuPP and MaPP overcome limitations of
the aligned hierarchies [8] and SNL diagrams [9], and how
they are adaptable with user-specified parameters allowing
for task-specific representations. Unlike its predecessors,
MaPP is well suited for machine learning. Future work
will demonstrate this through various MIR tasks, such as
genre classification, and by applying similar methods to
additional datasets including audio data, such as the Da-
TACOS dataset [27]. A drawback of SuPP and MaPP is the
necessary manual selection of parameters, requiring a deep
understanding of the task at hand.

SuPP and MaPP, alongside SE and SNL diagrams [9],
offer inspiring insights and open up a realm of opportunities
in the intersection of TDA and MIR. These methods are
both grounded in mathematical theory and have practical
applications to the field of MIR, as seen by the effective use
of MaPP for the cover song task. The experiments in this
paper further highlight the utility of TDA-based methods
and explore new opportunities for future experimentation
in the intersection of TDA and MIR.

7 https://scikit-learn.org/stable/
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