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ABSTRACT

While common approaches to automatic structural analysis
of music typically focus on individual audio files, our ap-
proach collates audio features of large sets of related files
in order to find a shared musical temporal structure. The
content of each individual file and the differences between
them can then be described in relation to this shared struc-
ture. We first construct a large similarity graph of temporal
segments, such as beats or bars, based on self-alignments
and selected pair-wise alignments between the given in-
put files. Part of this graph is then partitioned into groups
of corresponding segments using multiple sequence align-
ment. This partitioned graph is searched for recurring sec-
tions which can be organized hierarchically based on their
co-occurrence. We apply our approach to discover shared
harmonic structure in a dataset containing a large number
of different live performances of a number of songs. Our
evaluation shows that using the joint information from a
number of files has the advantage of evening out the noisi-
ness or inaccuracy of the underlying feature data and leads
to a robust estimate of shared musical material.

1. INTRODUCTION

Automatic analysis of musical structure from audio is one
of the more challenging tasks in music information re-
trieval (MIR) [1–3]. Reasons for this are the relatively
high-level nature of the problem and its dependence on
lower-level audio descriptors, which have a tendency to be
noisy, as well as the restricted availability of annotated col-
lections in a limited number of musical genres, which are
necessary for tackling the problem with solutions based on
machine learning. However, the growing number of large
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public and online music collections, which are usually
annotated with user-curated metadata (song titles, artists,
recording information, or dates), can potentially be used
for unsupervised structural analysis which may be of con-
siderable musicological value.

This paper introduces an approach for the detection of
temporal structure in large collections of musical audio
recordings where information from a number of related
recordings is combined to improve the quality of results.
From a given set of input audio recordings, e.g. differ-
ent performances of the same song, our method identi-
fies the most commonly occurring sequential structures,
relates them to each other and organizes them hierarchi-
cally. The individual files can then be described, compared
and aligned with each other by referencing this shared
structure. Inspired by techniques used in genetic sequenc-
ing, we combine the use of different alignment methods,
including dynamic programming (DP) and multiple se-
quence alignment (MSA) with graph representations and
search methods. We evaluate our method on a subset of
the Live Music Archive (LMA) of the Internet Archive and
analyze the harmonic content of a large number of perfor-
mances of a selection of songs. We compare the harmonic
essence thus obtained with existing lead sheets and illus-
trate the differences between individual performances in
a few qualitative comparisons. Although the examples in
this paper focus on formal structure determined by har-
monic progressions, the method can easily be used for
structure determined by other musical aspects.

2. RELATED WORK

With the omnipresence of large digital audio collections of
music, the automatic analysis of large corpora is becoming
an increasingly central task in music information retrieval.
Recent research in this area has mainly focused on large-
scale statistical analysis of audio features [4–6], as well as
making these accessible using interactive browsing tools
[7–9]. While the analysis of temporal structure, includ-
ing the identification of musical patterns, motifs, harmonic
progressions, or form across corpora, are relatively well es-
tablished for collections of symbolic music [10–12], only a



few have attempted to use similar analysis methods for au-
dio collections [13–15]. Potential reasons for this are often
discussed and may be due to common problems with au-
dio collections, including mislabeling, duplication, differ-
ing recording quality, or noisy audio features [4, 6, 16, 17].

Many of the methods used jointly in this paper have
previously been applied in different musical contexts. Dy-
namic programming is often used to align audio record-
ings of different performances of the same material, either
audio-to-score or audio-to-audio [18–20], sometimes con-
sidering musical variations and structural differences [21].
While immediate uses include score following, automatic
accompaniment, and computer-assisted production, some
have used alignment methods for classification tasks such
as cover song identification [22] and plagiarism [23].

While the alignments methods most commonly used in
MIR are pairwise, i.e. applied to align pairs of sequences,
such as the Smith-Waterman or the Needleman-Wunsch al-
gorithm [24], there are many methods for directly aligning
multiple sequences commonly used in bioinformatics, but
only a few have so far been applied to musical data. [25]
used multiple sequence alignment (MSA) to eliminate con-
flicts and typos in song lyrics retrieved from the Web. [20]
used their own progressive MSA method as well as Profile
HMMs (Hidden Markov Models) to align different record-
ings of performances of classical music and found the two
methods to lead to comparable results. In [26, 27], which
comes closest to the present work, different MSA libraries
were used along with pattern mining to detect harmonic
patterns in symbolic transcriptions of a set of 138 songs.
The authors were able to identify cover songs as well as
genre clusters with their most characteristic progressions.

There are generally three common approaches to au-
tomatically discovering musical structure in sequences of
feature vectors from individual recordings, via repetition,
novelty, or homogeneity [1]. The first identifies repeat-
ing subsequences whereas the other two identify abrupt
changes or comparatively stable areas. Sections often reap-
pear in slightly varied forms, which has been addressed
in [28]. Recent methods often use combined approaches
using both harmonic and timbre features in order to im-
prove results, e.g. [29]. While music is inarguably orga-
nized hierarchically [2], few approaches enable the detec-
tion of hierarchical structure [30].

Our approach is purely repetition-based, however, not
only in individual recordings, but in the entire collection
of interest. This allows the identification of sections oc-
curring only once in a given piece and leads to more ro-
bust descriptions of the found sections. Similar to our ap-
proach, [31] used automatically detected musical structure
to improve chord label quality for individual pieces.

3. METHOD

Our method consists of a five-step process. Given a set of
recordings, we create an alignment graph based on a num-
ber of self-alignments and pairwise alignments. Then, we
use an MSA to partition the alignment graph and create
a structure graph. We then search the structure graph for
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Figure 1. Overview of the five-step process.

commonly occurring sections and classify them into sec-
tion types. These section types are then grouped into a
hierarchical structure, based on their co-occurrence. Fi-
nally, we complete the structure graph with material from
the individual recordings that was left out by the MSA and
annotate the recordings with section types. Figure 1 shows
an overview of the process.

3.1 Alignment Graph

Given a collection A of K related audio recordings we ob-
tain a feature sequence Ak = (ak1 , ..., a

k
Nk

) of length Nk
for each recording k = 1, ...,K. Each element aki rep-
resents a time segment, such as a beat, bar, or onset, with
corresponding feature information, such as chroma vectors
or chord labels.

A local alignment between two such sequences As, At

is commonly defined as a sequence of pairs p =
(p1, ..., pL) with pl = (sl, tl) ∈ [1, ..., Ns] × [1, ..., Nt]
with a monotonicity constraint 1 ≤ s1 ≤ . . . ≤ sNs ≤ Ns
and 1 ≤ t1 ≤ . . . ≤ tNt

≤ Nt and a step condition
pl+1 − pl ∈ {(0, 1), (1, 0), (1, 1)}. A local self-alignment
can be defined accordingly with As = At.

In our situation it is advantageous to only consider di-
agonal local alignments in order to reduce ambiguity and
noise in the alignment graph. We can achieve this with
a more strict step condition pl+1 − pl = (1, 1),∀l =
1, . . . , L-1.

Due to repetition and variation in the given musical ma-
terial, many sensible local alignments may exist between
each pair of recordings. For example, if in one record-
ing the first of a pair of musical sections is expanded or
another is inserted between the two sections, two indepen-
dent local alignments are still able to capture the common-
ality between the two recordings. The same is true for
self-alignments, which are able to characterize repetition
at different temporal intervals within recordings.

From a large number of such alignments and self-
alignments we can then create an alignment graph GA =
(NA, EA) for collection A with a node for each segment
aki and an edge between each aligned segment pair pl. Due
to the alignments being local, not every node in the graph
is necessarily connected, and some nodes may have many
incident edges.

Due to the large size of many audio collections of in-
terest and the time complexity of alignment algorithms, it
may not be feasible to calculate the alignments between ev-



ery possible pair of recordings. However, for our method
it has proven to be sufficient to select a small subset of
all possible pairings, e.g. n random pairings per recording
(n ∗K alignments) plus all K self-alignments.

3.1.1 Alignment and Self-Alignment Methods Used

Common approaches to alignment are usually designed to
find a single global or local alignment for a pair of given
sequences. For the reasons outlined above we are more
interested in finding multiple local diagonal alignments of
reasonable length. Many common approaches can be mod-
ified for this purpose. Here we discuss the Smith-Waterman
algorithm, which we use in our experiments.

Smith-Waterman is a dynamic programming algorithm
developed in the context of genetic sequence alignment
[32]. For two given input sequences As, At, the sim-
plest variant with a linear gap penalty generates a scoring
matrix Hi,j with dimension Ns + 1 × Nt + 1 and with
Hi,0 = H0,j = 0. Each Hi,j with i, j > 0 is then deter-
mined as follows:

Hij = max


Hi−1,j−1 + sim(asj , a

t
j),

Hi−1,j − PG,
Hi,j−1 − PG,
0

(1)

where sim is a similarity function between feature vectors
and PG is a gap penalty. 1 Depending on the nature of
the feature vectors, one may choose sim to be a simple
cosine similarity, or a function that returns a match score
for identical vectors and else a lower mismatch score.

Starting from the highest score in the matrix, the algo-
rithm then finds the most likely alignment path by tracing
back the origins of the score and ending at a position with a
score of 0. Our modification of the algorithm finds diago-
nal paths by limiting trace-back to matching pairs contain-
ing a maximum number of γ ≥ 0 subsequent diagonal gaps
(mismatches). With one iteration of Smith-Waterman, sev-
eral of these paths may be extracted by gradually removing
found paths from the matrix and setting their values to 0.

Furthermore, due to the fact that some potential paths
can be covered up by higher-rated paths nearby, we pro-
pose an iterative variant of Smith-Waterman where every
element in the neighborhood of a previously found align-
ment path p is set to zero, i.e. ∀pl ∈ p we set Hij = 0 for
sl−δ ≤ i ≤ sl+δ and tl−δ ≤ j ≤ tl+δ. The parameter
δ ≥ 0 controls the minimum distance between alignments,
which can be used for limiting the number of results. 2

Additional ways of improving the performance of the
algorithm and the quality of the resulting alignments that
have proven useful are limiting the number of iterations,
setting a score threshold below which alignments are no
longer considered, or setting a minimum segment length.

Many of the existing methods can also be modified for
self-alignment. With Smith-Waterman, we simply treat the

1 In genetic sequence alignment it is generally more appropriate to re-
place PG with a gap penalty function that distinguishes between opening
and closing a gap and decreases for longer gaps.

2 A similar iterative (‘recursive’) variant was introduced in [19]. How-
ever, there each sequence element is involved in at most one pair.

time ->

tim
e ->

Figure 2. The matrix resulting from a diagonal self-
alignment of a recording of China Doll from the dataset
used in Section 4 (10 longest segments).

trivial diagonal alignment as a previously found path p.
Figure 2 shows an example diagonal self-alignment.

3.2 Structure Graph

The next step is to construct a structure graph that encap-
sulates the most common structural characteristics found
in the given collection. The goal is to identify a large sub-
graph G′A of GA that can be partitioned into a sequence of
partitions P1, . . . , PM of corresponding nodes in G′A, i.e.
Pm ⊂ NA. Each partition contains at most one segment
of each recording, i.e. k 6= l, ∀aki , alj ∈ Pm, and the par-
titions are strictly ordered temporally, i.e. i < j, ∀aki ∈
Pm, a

l
j ∈ Pm+1. For example, if the nodes of GA rep-

resent bars in A, each partition contains bars of different
recordings that can be considered equivalent. Subsequent
partitions may be thought of as recurring sequences, al-
though there may be gaps in individual or all recordings
between to adjacent partitions. Note that ∪Pm may likely
not include all nodes of GA due to significant structural
differences between the individual recordings, hence the
definition of G′A. Figure 3 shows the connection matrix of
an example partition where the z-axis shows the number of
connections between partition pairs.

We can infer such a partition directly from the connec-
tions in GA in an iterative manner. We experimented with
various graph search approaches, e.g. searching for the
most densely connected components with at most one node
per recording and aligning these components temporally,
or with beam search with various partition improvement
and modification methods based on functions that rate the
clarity of the connection matrix of the partition.

However, while these methods work well for relatively
similar input sequences, we obtained better and faster re-
sults for more diverse input material with multiple se-
quence alignments using Profile HMMs [24], a method
common in genetic sequencing where a reasonable simul-
taneous alignment is found for all sequences. A Profile
HMM is a particular type of Hidden Markov Model with
three types of states and a given length L. Match statesMj
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Figure 3. Connection matrix of the partitioned alignment
graph of China Doll (65 recordings). The z-axis shows the
number of connections between the nodes of each parti-
tion pair. The beginning of the song features a regularly
repeating section (verses and solos), followed by a section
that occurs only once but in most versions (interlude and
chorus), followed by a short repeated ostinato (outro).

Figure 4. Transition structure of a Profile HMM [24].

represent segments shared between sequences, insert states
Ij represent possibly multiple consecutive segments par-
ticular to an individual sequence, and delete states Dj rep-
resent segments missing in a particular sequence (the seg-
ment represented by the corresponding match state), where
j = 1, . . . , L (see Figure 4).

There are L match and L delete states, as well as L+ 1
insert states. The emission distributions for the match and
insert states are chosen depending on the input feature se-
quences, e.g. 12-dimensional multivariate gaussian for
chroma vectors, or multinomial discrete distributions for
chord labels. The model is trained with a number of re-
lated sequences, in our case the Ak, using the expectation
maximization variant of Baum-Welch. L is usually chosen
based on the lengths of the input sequences, e.g. their max-
imum, median, mean, or minimum length. Individual state
sequences for each input sequence can be decoded using
the Viterbi algorithm, i.e. we obtain a state label for each
aki . We can then infer the M partitions from the segments
associated with the L match states (M ≤ L), for example
by only keeping the match states that appear in a propor-
tion of at least 0 ≤ λ ≤ 1 of all the sequences.

We now define a structure graph G′′A = (N ′′A, E
′′
A)

whose nodes correspond to the partitions Pm and whose
edges are determined by the most common mutual con-
nections in G′A between the elements of different parti-
tions. More precisely, we add an edge for each node
pair Pm, Pn ∈ N ′′A where Pm ∈ con(Pn, µ) and Pn ∈

time ->

recordings

Figure 5. Juxtaposition of different recordings of China
Doll where colors represent segment types. The different
horizontal offsets illustrate varying lengths of introductory
tuning or announcements. The empty lines are mislabeled
recordings of different songs.

con(Pm, µ). The function con(x, µ) returns the set of
µ > 0 nodes in N ′′A most strongly connected to x:

con(x, µ) = argmax
y∈N ′

A\xµ

|{e ∈ EA | a, b ∈ e, a ∈ x, b ∈ y}|

(2)
where argmaxµ returns the set of µ arguments for which
the function is maximized. The parameter µ should be rel-
atively small for best results, e.g. 0 < µ ≤ 5. For illustra-
tion, the resulting graph is a pruned simple-graph version
of the multigraph of which a connection matrix is shown in
Figure 3. The pruned graph contains only nodes represent-
ing significantly large partitions are kept and simple edges
are established wherever the multigraph has many edges.

3.3 Inference of Section Types and Hierarchies

The structure graph can then automatically be decom-
posed in order to find types of sections recurring in the
collection and within single recordings. The connected
components Cj in G′′A represent sets of equivalent par-
titions of segments recurring at different points in time.
We sort these components by their lowest partition index
minm(Pm ∈ Cj) and group temporally adjacent ones
where Pm ∈ Cj ⇐⇒ Pm+1 ∈ Cj+1 into sequences.
For each of these sequences we can retrieve the corre-
sponding recurrent sections by simply transposing the two-
dimensional arrays of indexes, i.e. (Cj1, . . . , CjJ)T with
j1, . . . , jJ being the sorted indexes of the components in a
given group. Finally, we merge temporally adjacent groups
of sections G,H if for each section in G there is a directly
temporally adjacent section in H and vice versa. Figure 5
shows a visualization of the section types thus obtained for
the partitioned graph shown in Figure 3.

For music with no recurring sections the above proce-
dure may result in only a few or no section types. We
therefore suggest an additional step of inferring bound-
aries between adjacent connected components Cj , Cj+1.
Let ∆j,j+1 = avgk(nk − mk) be the average differ-
ence in index over all recordings k appearing Cj , Cj+1,
where mk, nk are the indexes of the segments of k, i.e.
akmk

∈ Cj , aknk
∈ Cj+1. If ∆j,j+1 ≥ τ for a given thresh-



Figure 6. Visualization of the structural hierarchies of five
different songs from the dataset from Section 4.1. The top-
most is the unflattened hierarchy of China Doll (Figures 3
and 5), all others are flattened. The colors indicate section
types, the vertical axis nesting level.

old τ > 1, we introduce a section boundary between Cj
andCj+1. For example, for τ = 5 we add a section bound-
ary between any two subsequent components where there
are on average 4 segments missing per recording.

Finally, we can simplify the structure by inferring a hi-
erarchy from the obtained section types. This can be done
using a simple recursive search method that identifies the
most frequently recurring adjacent section types and either
combines them into a new type or concatenates them if
they always co-occur. This hierarchy can then be simpli-
fied by further merging adjacent types that always appear
together, and finally flattening nested types if their parts
only occur within them. Figure 6 shows a few visualiza-
tions of example hierarchical structures.

3.4 Annotation of Individual Structures

In a final step of the process, each individual recording
in the collection can be annotated using the found shared
structure. First, we label each segment in the structure
graph with a corresponding section type identified as de-
scribed in the previous section. Then, using the alignment
graph GA we can infer section types for segments that are
not in the structure graph, which may for example be the
case if some recordings contain additional repetitions of
sections. We consider for each segment aki in GA \ G′A
and check which partition Pm in G′′A it is most strongly
connected to, i.e. which partition contains the most seg-
ments connected to aki . Note that some segments, sections,
or entire recordings may remain unlabeled, if they were not
aligned or self-aligned in the first step of the process (Sec-
tion 3.1), due to being entirely unrelated or their features
being too noisy (see Figure 5 for some examples).

Finally, we can annotate each segment that received a
section type with a feature value derived from the shared
structure. We determine a value for each position of every
section type by summarizing the original features of all
segments associated with that position. For example, we
may label the first beat of a section type with the chord la-
bel most frequently occurring among all associated beats.

All corresponding segments in individual recordings can
then be annotated with that label.

4. EXPERIMENTS

We tested our approach on material from the Grateful Dead
collection of the Live Music Archive, 3 which holds more
than 13,000 recordings of over 2,000 shows spanning the
years 1965 to 1995. The large number of recordings of
individual songs and the improvised nature of Grateful
Dead’s performances make this collection particularly in-
teresting for our work.

4.1 Dataset and Preparations

We created a dataset 4 with all performed versions of 15
songs from this collection, selected based on the criteria
that a large number of versions exist and that a correspond-
ing studio recording by the Grateful Dead is available that
could potentially be used as a reference in the future. The
fact that these recordings are live recordings poses addi-
tional challenges to the ones outlined in Section 2. Many of
them contain a considerable amount of crowd noise which
may lead to noisy audio features, and most of these record-
ings were made by amateurs using their analog tape equip-
ment, which means that many of them are out of tune due
to varying tape speed. We addressed the second of these
problems and resampled the audio files after comparing
their rotated chroma features with the ones of the respec-
tive studio version. For a ground truth, we transcribed
the chord progressions beat-by-beat and grouped them into
bars and sections for each of the songs with the help of ex-
isting lead sheets. 5 This level of granularity is particularly
important due to the fact that many of these songs are based
on odd meters (e.g. 7/4 in Estimated Prophet) or contain
metrical changes (e.g. abbreviated 2/4 bars in China Cat
Sunflower). Tuning ratios, a script for downloading and re-
sampling, and transcriptions are published with the dataset.

The experiments described here 6 are based on a sub-
set of the dataset with at most 100 versions of every song.
We extracted triadic chord features using [33] (root notes
and one of the four qualities major, minor, diminished, and
augmented) and summarized them to beats extracted using
Madmom. 7 The summarization process is based on the
statistical mode of the chords in each temporal segment,
i.e. for each segment the chord that was played for the
longest. In order to be comparable with the features, we
simplified the transcribed chords to triads as well.

We used our own implementation of a Profile HMM
and initialized it with L = median input length and with
uniform distributions and transition probabilities, except
match-match 0.999 and delete-insert 0.01. Our Smith Wa-
terman implementation led to the quickest and best results

3 https://archive.org/details/GratefulDead
4 https://github.com/grateful-dead-live/

fifteen-songs-dataset
5 e.g. at http://jdarks.com/GDTab.html
6 Code available at https://github.com/

florianthalmann/ismir2020-shared-structure
7 https://madmom.readthedocs.io



(a) baseline (b) annotated (c) shared
pG 0.691 0.779 0.825
pO 0.411 0.461 0.482

Table 1. Proportion of matched chords in groundtruth and
output for baseline (extracted chords), annotated record-
ings, and shared harmonic structure (averaged over all
recordings in the case of baseline and annotated).

(a) (b) (c)

0.6

0.7

0.8

0.9

Figure 7. Distributions of average proportions of matches
in ground truth pG per song. (a) baseline, (b) annotated
versions, (c) shared structure.

with the following parameter settings: a single iteration,
10 longest alignment segments, minimum segment length
16, γ = 4, δ = 4, λ = .1, µ = 1, τ = 2.

4.2 Results

Due to the fact that there is no previous work with which
to compare our method, we chose to perform an evalua-
tion similar to [31] where structural information is used
to improve chord prediction accuracy. 8 We used Smith
Waterman to align the following sets of sequences with
the ground truth transcriptions: (a) the original extracted
chord sequences as a baseline (b) the sequences annotated
by our method according to Section 3.4 and (c) the shared
harmonic structure identified by our method according to
Section 3.3. We then calculated two measures for each of
the sets of sequences: the proportion of correctly matched
ground truth segments pG as well as the proportion of cor-
rectly matched segments in the output pO, i.e.

pG =
matches in alignment
length of groundtruth

, pO =
matches in alignment

length of output
(3)

Table 1 shows the overall values and Figure 7 shows dis-
tributions of pG per song. pO is lower than pG due to for
example additional repetitions of sections in performances
or the high degree of variation and improvisation in many
of the songs, i.e. there are deviations from the ‘lead sheet’
in individual recordings. However, the fact that on average
the shared harmonic structure matched with the lead sheet
content with an average probability of 82.5% is promising.

8 Note that instead of evaluating the hierarchical structures, which ne-
cessitates a non-trivial generalization of the method suggested in [34] and
will be done in future work, we evaluate the flattened annotations, which
nevertheless result from the process described in sections 3.1 through 3.4.

Figure 8. Visualisation of the segment types for 6 songs
(Box of Rain, Eyes of the World, Franklin’s Tower, Sugar
Magnolia, Casey Jones, and China Cat Sunflower), around
ten recordings each.

4.3 Application

As a more qualitative investigation of the potential of our
approach we created a simple Web application for the in-
teractive exploration of annotations and alignments along
with the underlying recordings. Users can hear the cor-
responding segments of the recordings by clicking on the
colored blocks. Figure 8 compiles six screenshots for dif-
ferent songs that illustrate different shared structures and
individual deviations from them. Whereas Box of Rain
has a very even and simple AABAAB structure with
tiny insertions, other songs, such as Eyes of the World
or Franklin’s Tower, feature longer more open-ended yet
highly repetitive sections. Casey Jones is a combination
of both with four verse/chorus repetitions followed by an
extended jam over part of the chorus.

5. CONCLUSION

We have presented a new method for the extraction of
shared temporal structure from a number of related audio
recordings and shown with both quantitative and qualita-
tive results how such a method could be useful. For exam-
ple, it could provide musicologists a way to systematically
study and explore larger archives of related recordings, or
yield more reliable estimates of audio features for noisy
live music recordings. Besides a more extensive evaluation
and application, future work could include an expansion of
the method for joint use of different kinds of feature vec-
tors, either to improve the inference of sections and hier-
archies for less repetition-based music (analogous to other
approaches to structure inference) or for a more multidi-
mensional analysis of the musical material.
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