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ABSTRACT

This paper addresses the task of score following in sheet
music given as unprocessed images. While existing work
either relies on OMR software to obtain a computer-
readable score representation, or crucially relies on pre-
pared sheet image excerpts, we propose the first system
that directly performs score following in full-page, com-
pletely unprocessed sheet images. Based on incoming au-
dio and a given image of the score, our system directly pre-
dicts the most likely position within the page that matches
the audio, outperforming current state-of-the-art image-
based score followers in terms of alignment precision. We
also compare our method to an OMR-based approach and
empirically show that it can be a viable alternative to such
a system.

1. INTRODUCTION

Score following is a fundamental task in MIR and the basis
for applications such as automatic accompaniment [1, 2],
automatic page turning [3] or the synchronization of live
performances to visualizations [4, 5]. These applications
require a real-time capable system that aligns a musical
performance to a symbolic score representation in an on-
line fashion. To solve this, existing systems either require
a computer-readable score representation (e. g. extracted
using Optical Music Recognition (OMR) [6]) or rely on
fixed-size (small) snippets of sheet images.

Models from the latter category are by design only ca-
pable of handling fixed-sized excerpts of the sheet image
due to a limited action space to predict the next position
in the score. This is a severe constraint, as the sheet im-
age snippet has to (at least partly) correspond to the in-
coming audio excerpt. If it does not match the audio any-
more (due to some tracking error), no proper prediction
can be formed. To overcome this limitation, we attempt
score following directly in the full sheet image, enabling
the system to observe the whole page at any given time.
This makes the problem significantly more challenging,
e. g., due to repetitive musical score structures, compared
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to locally constrained systems that only look at snippets.
To the best of our knowledge, we present the first sys-

tem that requires neither OMR nor any other form of score
pre-processing and directly follows musical performances
in full sheet images in an end-to-end fashion. 1

Specifically, we formulate score following as a refer-
ring image segmentation task and introduce an appropriate
model architecture in Section 3, including a conditioning
mechanism in the form of a Feature-wise Linear Modu-
lation (FiLM) layer [7] as a central building block. In
Section 4, we demonstrate the system on polyphonic pi-
ano music, taken from the MSMD dataset [8]. To ana-
lyze its generalization capabilities, we also test it on real
musical performances taken from the MSMD test split, in
Section 5. The results will show that our model outper-
forms current state-of-the-art image based trackers in terms
of alignment precision, but also that it currently lacks ro-
bustness across different audio conditions.

2. RELATED WORK

Score following approaches can be broadly categorized
into those that rely on the presence of a computer-readable
score representation, such as MusicXML or MIDI, and
those that try to do without such a symbolic represen-
tation. In the former category, techniques like Dynamic
Time Warping (DTW) [4,9,10] and Hidden Markov Mod-
els (HMMs) [11–13] are applied to achieve robust and reli-
able tracking results. The main issue with these approaches
is the need for computer-readable score representations,
which must either be created manually in a tedious and
time consuming process, or automatically extracted using
OMR. In the OMR case, the faithfulness of the symbolic
score to what is depicted on the sheet image strongly de-
pends on the quality of the OMR system, which may in-
troduce errors that impede the actual score following task.
Empirical evidence for this claim was published in [14],
where a DTW-based score following system that relied on
MIDI scores extracted via an OMR system had difficulties
tracking synthetically created test data.

Several recent publications deal with the latter cate-
gory, and investigate score following in the context of
non-computer-readable score representations, represented
as raw sheet images. In [15], the authors propose a multi-

1 Code and data will be made available on-line: https://github.
com/CPJKU/audio_conditioned_unet



Target Frame

Figure 1. Score Following Task as modelled in this work: Given a score (sheet image) and an incoming musical performance (audio),
the goal is to predict the current location in the score in real time. The audio is fed to the tracker frame by frame and the system processes
the last 40 frames to predict the position for the latest frame (the Target Frame marked red in (a)). The ground truth (bounding box around
current score position; see (a)) is given as a binary segmentation mask. The system predicts a probability for each pixel to correspond to
the current audio; thus it highlights those regions that are most likely to match the correct location. Ideally, this should be only a single
region. However, in (b) we see that such a prediction is not perfect: while the highest probability is assigned to the correct position in
staff four, there is also a small likelihood in the last staff, as the notes are the same for both locations. To predict the location correctly,
the system needs to consider the whole audio up to the current point in time, which motivates our design choices introduced in Section 3.

modal deep neural network to predict the position within
a sheet snippet based on a short audio excerpt. In [16]
and [14], score following is formulated as a reinforcement
learning (RL) problem, where the RL agent’s task is to
adapt its reading speed in an unrolled sheet image, con-
ditioned on an audio excerpt. One of the limitations of all
these methods is that they require the score to be repre-
sented in an unrolled form, i. e., staves need to be detected
in the sheet image, cut out and presented to the score fol-
lowing system in sequence.

To overcome this, [17] introduced a system that directly
infers positions within full sheet images for monophonic
piano music. However, the temporal aspect of score fol-
lowing was neglected altogether — based on an audio ex-
cerpt all possible matching positions in the full sheet image
are highlighted, including those that were already played
— making it interesting preliminary work, but not a rea-
sonable score following system. In the following we build
upon their foundation and incorporate long term audio con-
text, proposing the first fully capable score following sys-
tem that works on entire sheet images, without needing any
pre-processing steps.

3. SCORE FOLLOWING AS A REFERRING
IMAGE SEGMENTATION TASK

Similarly to [17], we model score following as an image
segmentation task — more specifically, as a referring im-
age segmentation task. In computer vision, the goal of re-
ferring image segmentation is to identify a certain region
or object within an image based on some language expres-
sion [18, 19]. It shows similar characteristics as the multi-
modal approach to score following — we want to locate the
position in the sheet image that the incoming audio refers
to, meaning we treat the audio as the language expression,
and the score image as the entity to reason about. More

precisely, our modeling setup is as follows: based on the
incoming musical performance up to the current point in
time, the task of the model is to predict a segmentation
mask for the given score that corresponds to this currently
played music, as shown in Figure 1. The ground truth for
this task is chosen to be a region around the current posi-
tion in the score with a fixed width and a height depending
on the height of the staff. While the size of this mask can
be arbitrarily chosen, we define it such that it provides a
meaningful learning target first and foremost.

A challenging question arising with such a setup is how
to combine the different input modalities, audio and score.
While [14–16] learn a latent representation for both input
modalities which are subsequently concatenated and fur-
ther processed, we follow the direction of [17] instead, and
employ a conditioning mechanism that directly modulates
the activity of feature detectors that process the score im-
age. The former setup would be problematic due to the
increasing number of parameters. Furthermore, this de-
sign is able to retain the fully-convolutional property of our
model, i. e., if desired one could process sheet images of ar-
bitrary resolution. 2 In contrast to [17], we apply the con-
ditioning mechanism on top of a recurrent layer to provide
a longer temporal context. This permits the audio input up
until the current point in time to guide the segmentation
towards the corresponding position in the score image. We
argue that it is necessary for this task to have such a long
temporal audio context in order to form more reliable pre-
dictions. For example, it is common to have repeating note
patterns in the score spanning over a longer period of time
in the audio. Existing trackers that use only a fixed-size au-
dio input are not able to distinguish between such patterns,
if they exceed the given audio context.

2 Note that while we do not investigate this further and work with
fixed-sized sheets, this could be useful in a real world application.



Figure 2. Sketch of the FiLM layer [7]. The layer scales and
translates the feature maps x using learned functions s(z) and
t(z), respectively. z is an additional, external input carrying the
conditioning information.

Audio (Spectrogram) 78× 40

2 x ( Conv(3, 1, 1)-24 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-48 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-96 - LN - ELU ) - MP(2)
2 x ( Conv(3, 1, 1)-96 - LN - ELU ) - MP(2)

Conv(1, 0, 1)-96 - LN - ELU
Dense(32) - LN - ELU

Table 1. The context-based encoder used for the experiments.
Conv(f , p, s)-k denotes a convolutional layer with k f × f ker-
nels, padding of p and stride s. We use layer normalization
(LN) [20], ELU activation [21] and max pooling (MP) with a
pool size of 2×2. The output of the last layer is fed into a LSTM
as shown in Figure 3. The network resembles the one used in [8].

3.1 Feature-wise Linear Modulation

The Feature-wise Linear Modulation (FiLM) layer is a
simple linear affine transformation of feature maps, con-
ditioned on an external input [7]. The purpose of using
this layer is to directly interfere with the learned represen-
tation of the sheet image by modulating its feature maps,
assisting the convolutional neural network to focus only on
those parts that are required for a correct segmentation. In
our case, the external input z is the hidden state of a re-
current layer that takes as input an encoded representation
of an audio excerpt. This encoded representation is cre-
ated by a neural network, e. g., as depicted in Table 1. The
FiLM layer itself is defined as

fFiLM(x) = s(z) · x+ t(z), (1)

where s(·) (for scaling) and t(·) (for translation) are arbi-
trary vector-valued functions implemented as neural net-
works. Their values depend on the conditioning vector z,
and together they define an affine transform of the tensor
x which refers to the collection of feature maps of a par-
ticular convolutional layer, after normalization. The affine
transformation is performed per feature map, meaning that
each feature map k is scaled and translated by sk(·) and
tk(·), respectively, with k identifying the k-th output of
the two functions. The number of output values for s(·)
and t(·) is the same as the number of feature maps con-
tained in x, denoted by K (cf. Figure 2).

3.2 Model Architecture

Our model is based on a U-Net architecture similar to the
one used in [22] for detecting musical symbols in sheet
images. U-Nets were originally introduced for medical
image segmentation, to segment an image into different
parts, by classifying each pixel into either foreground or

background [23]. This fits naturally to our interpretation
of the score following task, as a process of segmenting the
sheet image into a region that corresponds to the current
position in the audio input and labelling everything else as
background. The overall architecture, shown in Figure 3,
resembles the one proposed in [17], with several impor-
tant differences. Based on the empirical findings reported
in [17], we decide to incorporate conditioning information
from the audio input in blocks B-H, leaving only blocks
A and I without conditioning. However, we substitute the
transposed convolutions in the decoder part of the network
with bilinear upsampling operations with a factor of two,
followed by a 1 × 1 convolution, both aimed at reducing
checkerboard artifacts in the segmentation [24]. Due to the
small batch size used during training (cf. Section 4.3) as
well as the presence of the recurrent layer, we replace batch
normalization with layer normalization [20].

For deriving the conditioning information from the au-
dio input, we test two different spectrogram encoders. One
takes a spectrogram snippet with a length of 40 frames,
corresponding to two seconds of audio; the spectrogram
is processed by the network shown in Table 1, which is
roughly similar to the one used in [8]. The other version
takes as input a single spectrogram frame, using a dense
layer with 32 units, layer normalization and ELU activa-
tion function. The output of the encoders is fed to an
LSTM [25] layer with 128 units and its hidden state is then
used as the external input z in the FiLM layers.

4. EXPERIMENTS

To study the properties of our proposed approach, we con-
duct experiments on polyphonic piano music provided by
the MSMD [8] dataset. While this section is mainly con-
cerned with comparing data augmentation and different ar-
chitectures, later on in Section 5 we will investigate the
generalization capabilities of the system in terms of 16 real
piano recordings from the MSMD test split. We will also
contextualize the proposed system with related work de-
scribed in [14], which we use as baselines for comparison.

4.1 Data

We use the Multi-modal Sheet Music Dataset (MSMD)
[8], a standard dataset for such evaluations, comprising
polyphonic piano music from various composers including
Bach, Mozart, and Beethoven. The sheet music is typeset
with Lilypond 3 and the audio tracks are synthesized from
MIDI using Fluidsynth 4 together with a piano sound font.
The original MSMD splits used by [14] encompass 354
train, 19 validation and 94 test pieces. The precise align-
ments between audio and sheet music in this dataset are
created automatically. Despite that, it turned out that some
of the pieces still contain alignment errors. We manually
identified and fixed most of these errors, including wrongly
aligned notes and missing or wrongly detected staves. One
piece from the train set was removed, because we were not

3 http://lilypond.org/
4 http://www.fluidsynth.org/
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Figure 3. Audio-Conditioned U-Net architecture. Each block (A-I) consists of two convolutional layers with ELU activation and layer
normalization. The FiLM layer is placed before the last activation function. The spectrogram encoding given by the output of the network
shown in Table 1 is passed through a recurrent layer. The hidden state of this recurrent layer is then used for conditioning in the FiLM
layer. Each symmetric block has the same number of filters starting with 8 in block A and increasing with depth to 128 in block E.

able to fix it. Thus, the cleaned dataset consists of 353
train, 19 validation, and 94 test pieces, which will be made
publicly available. If a piece consists of several pages, each
page is treated as a single piece and the original MIDI
information is partitioned accordingly. 5 Altogether, we
have 945 train, 28 validation and 125 test pages. The ren-
dered score images have a resolution of 1181×835 pixels,
are downscaled by a factor of three to 393 × 278 pixels,
and are used as the input to the U-Net. Preliminary tests
showed that the downscaling does not significantly impact
the performance, and benefits the speed of the training pro-
cess. For the ground truth annotations, we rely on the auto-
matic notehead alignment described in [8]. The notehead
alignments yield (x, y) coordinate pairs in the sheet image,
which are further adjusted for our purposes such that the y
coordinates correspond to the middle of the staff the re-
spective note belongs to. Given these coordinates, we cre-
ate a binary mask with a width of 10 pixels and an adaptive
height depending on the height of the staff (see Figure 1).
The task of the U-Net is now to infer a segmentation mask
given the image of the score together with the condition-
ing information derived from the audio input. Note that
in theory it should be possible to directly predict x and y
coordinates instead of a segmentation mask, however as
shown in [26] this is a much harder task, and we were not
able to achieve acceptable performance so far, even using
their proposed CoordConv layer.

The audio is sampled with 22.05 kHz and processed at a
frame rate of 20 frames per second. The DFT is computed
for each frame with a window size of 2048 samples and
then transformed with a semi-logarithmic filterbank that
processes frequencies between 60 Hz and 6 kHz, yielding
78 log-frequency bins. Lastly, the spectrogram bins are
standardized to zero mean and unit variance. The audio
conditioning network is presented either with 40 consec-

5 This is mainly done to facilitate the training procedure. In an appli-
cation, this could be solved by some simple ‘hack’ that turns pages when
the score follower reaches the end of a page.

utive frames (two seconds of audio) or a single frame at
a time. We use the madmom python library for all signal
processing related computations [27].

4.2 Baselines and Evaluation Measures

In the following, we will present a series of experiments,
comparing the new proposed full-page tracking system to
several baselines (in order to better understand the impor-
tance of some of our design choices) as well as to related
state-of-the-art approaches from the literature.

First, we evaluate two different spectrogram encoders,
as introduced in Section 3.2, vis-à-vis a baseline version of
our system that does not have the capability to summarize
all the audio up to the current point in time, i. e., that does
not have memory in the form of an RNN. We do this in
order to obtain empirical evidence for our argument that
having access to long term temporal information is highly
beneficial for obtaining good approximate solutions to the
score following task. The two different encoders are de-
noted as context-based (CB) and frame-based (FB), using
40 spectrogram frames and a single frame, respectively.
The baseline without temporal context uses the CB en-
coder and replaces the RNN layer with a fully connected
layer of the same size. In the following this baseline will
be denoted as NTC (no temporal context).

The evaluation measures used for this comparison are
of a geometric kind (bounding box pixel error and dis-
tance on printed score page), in order to focus on the new
challenge of full-page orientation: we measure the pixel-
wise evaluation metrics Precision, Recall and F1-score that
were also used in [17], and the mean and median alignment
error between ground truth and prediction in centimeters,
both with the network output thresholded at 0.5. To cal-
culate the alignment error between the ground truth and
the predicted probability mask (recall Figure 1), we calcu-
late the center of mass over all pixels for both masks and
compute the euclidean distance between the two centers to



obtain the alignment error in pixels. Given a resolution of
72 dpi, the error is converted to centimeter using a factor
of 0.0352 cm/pixel, under the assumption that the score
image is printed on a sheet of DIN A4 paper.

In the second experiment we compare our system to
alternative state-of-the-art approaches from the literature:
the first approach is based on an OMR system that ex-
tracts symbolic MIDI information from the sheet image.
The symbolic MIDI information is then synthesized to au-
dio. The system subsequently computes chroma features
with a feature rate of 20 Hz from both the synthesized and
the performance audio, and applies audio-to-audio align-
ment using a form of online DTW [28]. This is the method
described in [14] and will be abbreviated as OMR in the
upcoming result table. The second and third approach, de-
scribed in Section 2, are a multi-modal localization net-
work (MM-Loc) [15] and a Reinforcement Learning (RL)
agent [14, 16], both working with sheet image snippets.

The evaluation measure for this will be of a more
music-related kind (temporal tracking error in the perfor-
mance), reflecting the intended purpose of the systems
(score following), and permitting a direct comparison with
alternative methods. Similarly to [9, 10], we compute,
for each note onset, the absolute time difference between
prediction and ground truth. We set 5 threshold values,
ranging from 0.05 to 5 seconds, and report the cumulative
percentage of notes tracked with an error up to the given
threshold. Given the ground truth alignment from note on-
sets to the corresponding notehead coordinates in the sheet
image, we can interpolate from the predicted positions in
the sheet image back to the time domain. This is straight-
forward for MM-Loc and the RL agent, because they both
already use an unrolled score derived from the groundtruth,
whereas the proposed method requires further processing.
We first need to compute the center of mass of the seg-
mented region to obtain x, y coordinates. We map the y
coordinate to the closest staff, and apply a similar interpo-
lation as before in an unrolled score to get the time differ-
ence between the predicted and actual position in the score.

For evaluating the OMR baseline we face a problem that
has already been noted in [14] — we do not have the re-
quired groundtruth alignment between the OMR-extracted
score and the performance. Given that only onset posi-
tions are evaluated, we are justified to assume a perfect
alignment between score and audio, if for each unit of
time in the audio a constant distance in the score sheet is
travelled. If the OMR system makes no errors, the align-
ment between OMR score and performance is a diagonal in
the DTW global cost matrix, correcting the overall tempo
difference by a linear factor. As in [14], we evaluate the
OMR-based system by measuring the offset of the actual
tracking position relative to the perfect alignment.

4.3 Experimental Setup

All models are trained using the same procedure. We op-
timize the Dice coefficient loss [29], which is more suit-
able than e. g., binary cross-entropy, as we are facing an
imbalanced segmentation problem with far more unimpor-

tant background pixels than regions of interest. To opti-
mize this target we use Adam [30] with default parame-
ters, an initial learning rate of 1e−4 and L2 weight decay
with a factor of 1e−5. If the conditioning architecture in-
volves an LSTM, we use a batch-size of 4 and a sequence
length of 16. For the audio conditioning model without a
temporal context we use a batch size of 64. The weights
of the network are initialized orthogonally [31] and the bi-
ases are set to zero. If the loss on the validation set does
not decrease for 5 epochs, we halve the learn rate and stop
training altogether when the validation loss does not de-
crease over a period of 10 epochs or the maximum number
of 100 epochs is reached. The model parameters with the
lowest validation loss are used for the final evaluation on
the test set. Similar to [17], we perform data augmentation
in the image domain by shifting the score images along the
x and y axis. To investigate whether tempo augmentation
improves model performance, we train all models with-
out tempo augmentation as well as with 7 different tempo
change factors ranging from 0.5 up to 1.5.

4.4 Results

In Table 2, we compare different conditioning architec-
tures, no long term temporal context (NTC), a context of
40 frames (CB) and a single frame (FB) in combination
with an LSTM, respectively. We observe that the NTC
model has the lowest performance, both in terms of the
pixel-wise measures, as well as in terms of its alignment
error. A possible reason for this could be ambiguities in the
sheet image, since audio excerpts could match several po-
sitions in the score. The results for CB and FB support our
initial claim that a long term temporal context is required
for this task. While both models achieve a good perfor-
mance, CB outperforms FB in all measures. On average,
the alignment error is around 1.25 cm and the median is at
0.51 cm, meaning that half of the time our model is less
than 0.51 cm away from the true position. Furthermore,
we observe that tempo augmentation improves the results
for all models.

In Table 3, we compare our best model from Table 2
to several baselines from the literature in terms of the cu-
mulative percentage of onsets that are tracked with an error
below a given threshold. We observe that the context-based
proposed model (CB) outperforms all baselines except for
the highest threshold. This suggests that our method is very
precise on one hand, but on the other hand is not able to
track all onsets with a timing error below five seconds.

5. REAL PERFORMANCES

To test the generalization capabilities of the system under
real recording conditions, we evaluate our best model on
the 16 piano recordings (corresponding to 25 score pages)
from the MSMD test split introduced in [14], for which we
also manually corrected some of the alignments. We com-
pare again to the baselines introduced in Section 4.2, which
are likewise evaluated using the corrected alignments. In
line with [14], we compare four different settings with in-



MSMD (125 test pages)

TA P R F1 dcm d̃cm

NTC 7 0.696 0.665 0.678 3.70 2.37
3 0.770 0.740 0.754 2.78 1.61

CB 7 0.810 0.790 0.799 1.62 0.73
3 0.854 0.835 0.843 1.25 0.51

FB 7 0.790 0.768 0.778 1.82 1.21
3 0.820 0.816 0.816 1.58 0.80

Table 2. Different conditioning architectures with/without
tempo augmentation (TA): no temporal context (NTC), context-
based (CB) and frame-based (FB). For each model the parameters
with lowest validation loss are chosen for evaluation on the test
set. Measures: pixel-wise precision (P), recall (R) and F1, and
mean (dcm) and median (d̃cm) of alignment error in centimeters.

MSMD (125 test pages)

Err. [sec] OMR [14] MM-Loc [32] RL [14] CB

≤ 0.05 44.7% 44.6% 40.9% 73.3%
≤ 0.10 51.9% 49.2% 43.3% 74.7%
≤ 0.50 76.0% 82.2% 79.7% 85.2%
≤ 1.00 85.0% 86.0% 87.8% 88.5%
≤ 5.00 97.4% 92.0% 97.2% 93.7%

Table 3. Our best model (CB) vs. existing baselines, in terms
of onsets tracked with an error below a given threshold. For the
RL agent we report the average over 10 runs due to its stochastic
policy. In contrast to [14], OMR, MM-Loc and RL do not stop
tracking if they fall out of a given tracking window.

creasing difficulty. The first is the same synthetic setting
as in Section 4. The second setting uses the performance
MIDI synthesized with the same piano synthesizer used
during training. The third uses the audio of the “direct
out” audio output of the “Yamaha AvantGrand N2” hybrid
piano used for recording, and the last one uses the audio
recorded via a room microphone.

Table 4 summarizes the results. Overall, we observe
that the proposed system (CB) achieves more precise re-
sults in terms of time difference (i.e., higher percentages
for the tighter error thresholds) in three out of four settings.
For the last setting we observe a worse performance, which
indicates that our model has possibly overfit to the synthe-
sized audio and is not yet robust enough. OMR yields very
robust results in all scenarios, which is possibly due to the
used chroma features. While the results are not as precise,
it outperforms the other methods for higher threshold val-
ues.

A possible explanation for this is that our model has
more freedom in being able to perform big jumps on the
sheet image paper, thus increasing the error possibility.
Models relying on sheet snippets are not designed to per-
form such jumps and thus can also not make very extreme
errors. Furthermore, our model is more sensitive to the au-
dio representation fed into the conditioning mechanism, as
it influences the convolutional filters in multiple layers that
process the sheet image. Overall, we assume that this is
an issue of the synthetic dataset which can be tackled by
training on more diverse performances and a more robust
audio model for the conditioning mechanism.

Err. [sec] OMR [14] MM-Loc [32] RL [14] CB

Original MIDI Synthesized (Score = Performance)

≤ 0.05 37.1% 41.6% 36.5% 69.8%
≤ 0.10 46.1% 44.2% 38.2% 70.6%
≤ 0.50 74.9% 77.6% 72.9% 80.6%
≤ 1.00 86.8% 79.9% 79.8% 82.4%
≤ 5.00 99.6% 90.3% 96.5% 89.1%

Performance MIDI Synthesized

≤ 0.05 28.9% 47.2% 23.4% 56.5%
≤ 0.10 39.8% 49.0% 24.8% 58.1%
≤ 0.50 71.7% 83.2% 54.5% 80.9%
≤ 1.00 83.4% 86.1% 64.0% 84.4%
≤ 5.00 98.8% 96.0% 81.2% 90.1%

Direct Out

≤ 0.05 22.6% 33.8% 27.7% 40.0%
≤ 0.10 33.0% 35.4% 29.1% 41.6%
≤ 0.50 70.3% 59.7% 60.7% 64.2%
≤ 1.00 83.9% 63.4% 73.3% 69.3%
≤ 5.00 99.3% 75.3% 95.5% 81.1%

Room Recording

≤ 0.05 22.6% 20.7% 19.2% 9.4%
≤ 0.10 32.2% 24.3% 20.6% 10.5%
≤ 0.50 70.2% 54.1% 46.6% 21.5%
≤ 1.00 82.7% 57.3% 58.7% 26.2%
≤ 5.00 97.4% 70.2% 89.1% 44.3%

Table 4. Comparing best performing model to several baselines
on a set of 16 real piano recordings (25 pages) from the MSMD
test split. Model evaluation is as described in Table 3, with the
difference that for the RL agent we report the average over 50
runs due to its stochastic policy and the smaller sample size.

6. DISCUSSION AND CONCLUSION

We have proposed the first end-to-end trained score follow-
ing system that directly works on full sheet images. The
system is real-time capable due to a constant runtime per
step, it compares favorably with existing baselines on syn-
thetic polyphonic piano music, and sets the new state of
the art for sheet-image-based score following in terms of
temporal alignment error. However, there are still gener-
alization problems for real piano recordings. While the
model shows a much more precise alignment in most sce-
narios, we see a performance deterioration over different
recording conditions. This will need to be solved in the
future, either with a more robust audio model, or a data
augmentation strategy that incorporates reverberation ef-
fects. Future work will also require testing on scanned or
photographed sheet images, to gauge generalization capa-
bilities of the system in the visual domain as well. As there
is currently no dataset consisting of scanned sheet images
with precise notehead to audio alignments, it will be nec-
essary to curate a test set. The next step towards a system
with greater capabilities, is to either explicitly or implicitly
incorporate a mechanism to handle repetitions in the score
as well as in the performance. We assume that the pro-
posed method will be able to acquire this capability quite
naturally from properly prepared training data, although
we suspect its performance will heavily depend on its im-
plicit encoding of the audio history so far, i. e., how large
an auditory context the recurrent network is able to store.
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