
CONNECTIVE FUSION:
LEARNING TRANSFORMATIONAL JOINING OF SEQUENCES

WITH APPLICATION TO MELODY CREATION

Taketo Akama
Sony Computer Science Laboratories, Tokyo, Japan

taketo.akama@sony.com

ABSTRACT

We present Connective Fusion, a music generation scheme
by transformational joining of two musical sequences for
creative purposes. Given two shorter sequences as inputs,
our model transforms each of them such that their concate-
nation is more coherent to form a longer sequence, while
each of the transformed shorter sequences retains mean-
ingful similarity with the corresponding input sequence. In
short, our model connects and fuses two contextually unre-
lated sequences in a coherent way. This transformation can
be applied iteratively to gradually fuse the input sequences.
The style latent space is simultaneously learned, allowing
users to control how the two sequences are merged. Our
approach comprises two steps of unsupervised learning: a
deep generative model with a latent space is learned, fol-
lowed by adversarial learning of the transformation func-
tion in the latent space. We demonstrate the usefulness of
our method through the task of melody creation using a
symbolic music dataset.

1. INTRODUCTION

Spurred by the progress of deep neural networks, symbolic
music generation systems, especially the ones with user
controllability have gathered renewed interests these days.
Most of the systems with controllability can be categorized
into generating continuation [1], regenerating arbitrary po-
sitions [2, 3], unsupervised conditional generation [4, 7],
or transforming musical sequences such that musical at-
tributes, concepts, or styles are altered [4–8].

In this paper, we seek another category, generation by
fusing input musical sequences as ideas. Specifically, we
propose Connective Fusion, a generative transformation
scheme which allows two input musical sequences to be
transformed such that the concatenated musical sequence
is musically plausible (See Fig.1 for the illustration). After
the transformation, each of the two sequences has mean-
ingful similarity with the one before the transformation.
Two input musical sequences can also be transformed it-

c© T. Akama. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: T. Akama,
“Connective Fusion: Learning Transformational Joining of Sequences
with Application to Melody Creation”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4
time (bars)

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

55
60
65
70
75
80

pi
tc
h

(a) Given inputs: random combination of two sequences

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4
time (bars)

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4
time (bars)

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

55
60
65
70
75
80

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

55
60
65
70
75
80

pi
tc
h

(b) Transformed outputs of iteration 1,2, and 3

Figure 1: Iterated application of transformation.

0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4
time (bars)

0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

0 1 2 3 4 5 6 7 8
time (bars)

(a) Given inputs: random combination of two sequences
0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4
time (bars)

0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4
time (bars)

56

61

66

71

76

81

pi
tc
h

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

56

61

66

71

76

81

pi
tc
h

0 1 2 3 4 5 6 7 8
time (bars)

0 1 2 3 4 5 6 7 8
time (bars)

(b) Transformed outputs

Figure 2: Transformation with style space exploration.

eratively to gradually increase the coherency of joining
(Fig.1). Our generative transformation differs from pure
transformation in that it permits users to explore or sample
from the style space of how the two sequences are com-
bined (Fig.2). The application of Connective Fusion in-
cludes i) providing users with musical ideas based on not

(a) Pre-training (b) Training (c) Transformation

Figure 3: Connective Fusion schematic diagrams.

necessarily polished ideas on hand, and ii) creating novel
musical flows by combining and fusing musical fragments
of different characteristics in a coherent way.

Technically, our approach is training a transformation
function in an unsupervised learning manner, consisting of
two steps: the pre-training step and the training step. In the
pre-training step, a Variational Auto-Encoder (VAE) [9] is
trained to obtain mappings between the data space and the
latent space. A given pair of musical sequences are fed into
the encoder of the VAE to be mapped to the corresponding
latent vectors in the latent space. In the following train-
ing step, models are trained upon the representation of the
VAE latent space. The transformation function, the gen-
erator is trained adversarially [10] such that transformed
results are indistinguishable from the human-made musi-
cal sequences. Together with the adversarial loss, the sim-
ilarity loss, consisting of the latent space distance before
and after the transformation, is simultaneously taken into
account in order to train models with desired amount of
transformation.

In experiments, we empirically demonstrate that our
method outperforms a baseline method with various pa-
rameter settings in terms of reality and five musical statis-
tics at each transformation amount. We also quantitatively
show that iterated application of our transformation allows
gradual transformation while having comparable to or bet-
ter performance than single (non-iterative) transformation.

Our contributions of this paper are: i) proposing a new
problem setting/task and its solution, ii) presenting a model
and procedure for learning style space, iii) introducing it-
erated application of transformation for gradual transfor-
mation, and iv) demonstrating the performance and the ap-
plication for melody creation.

2. METHODOLOGY

2.1 Problem Scenario

Suppose we have a dataset of sequences Dy = {y(i) =

x
(i)
L ⊕x

(i)
R }Ni=1, where y(i) ∈ Y is the concatenation of two

subsequences x(i)L ∈ X and x(i)R ∈ X . We can consider
Dy as a sequence pair dataset D = {(x(i)L , x

(i)
R)}Ni=1. For

instance, y(i) is a musical sequence of 8 bars, whereas x(i)L

and x(i)R are musical sequences of 4 bars.
Using the dataset D, the scheme of Connective Fusion

basically solves the following task: given two sequences
xL, xR ∈ X , transforming xL to x′L and xR to x′R such that
the concatenated sequence x′L ⊕ x′R becomes more proba-
ble to be a sample inY than xL⊕xR, while the transformed
sequences x′L, x

′
R retain meaningful similarity to the given

sequences xL, xR, respectively. For example, this serves as
a solution for generating longer musical sequences given
shorter musical sequence pairs of any combinations as in-
spiration, which is useful for composing new music based
on unpolished musical ideas on hand.

2.2 Approach

Schematic diagrams of pre-training, training, and transfor-
mation of Connective Fusion are depicted in Fig.3.

2.2.1 Pre-training

Our approach is first training a Variational Auto-Encoder
(VAE) model for obtaining bidirectional mappings be-
tween each sequence x ∈ X and its latent vector z ∈ Z ⊂
Rdz , which has the compressed information of x.

2.2.2 Training

Then we train a generator G that transforms any pair
(zL, zR) ∈ Z × Z to (z′L, z

′
R) ∈ Z × Z that are in-

distinguishable from the pairs in the dataset. The gen-
erator also takes a style vector s ∈ S from the style
space S = [0, 1]ds as an additional input. Formally, the
generator can be written as (z′L, z

′
R) = G(zL, zR, s) and

G : Z × Z × S → Z × Z . The generator G is trained to-
gether with the discriminator D : Z × Z → [0, 1] with the
adversarial learning framework [10]. In addition to the ad-
versarial loss, we add the similarity loss in order to adjust
the degree of similarity before and after the transforma-
tion.

2.2.3 Transformation

Given two sequences xL and xR, these sequences are first
fed to the encoder of the VAE to obtain zL and zR, respec-
tively. The latent vectors zL and zR together with a style
vector s ∈ S sampled from S = [0, 1]ds are then fed to the

generator G to transform zL, zR to z′L, z′R, respectively.
Finally, the transformed latent vectors z′L, z′R are fed to the
decoder to generate x′L, x′R, respectively. The concatena-
tion x′L⊕x′R is the generated sequence. Instead, zL and zR
can also be sampled from the prior distribution p(z), pro-
viding users with scratch generation functionality followed
by the transformation functionality.

The style space S allows us to control how the two se-
quences are connectively fused. For example, as illustrated
in Fig.2 and explained in the experiments Sec.3.3, users
can choose preferred styles of fusion among interpolated
styles on a 2D plane.

We also propose iterated transformation with G, which
consists in applying G repeatedly, drawing two inter-
related trajectories in the latent space. The higher the num-
ber of iterations becomes, the farther the latent vectors tend
to move from the original position. This is useful for users
to control the degree of similarity in transformation.

2.3 Advantage of Approach Using Latent Space

Using the representation inZ but not the one inX i) is use-
ful for defining similarity before and after the transforma-
tion, ii) is computationally inexpensive, and iii) bypasses
the difficult problem of back-propagating through discrete
sampling of sequences.

2.4 Pre-training Detail: Encoder and Decoder
Training with Auto-Encoding VB algorithm

To train the VAE, another dataset D′ = {x(j)}2Nj=1 is

derived from the dataset D = {(x(i)L , x
(i)
R)}Ni=1, where

x(2i−1) = x
(i)
L and x(2i) = x

(i)
R . The encoder model

qθ(x|z) and the decoder model pθ(z|x) in the VAE are
trained with the following optimization problem:

max
θ

E
x∼D′

[
E

z∼qθ(z|x)
[log pθ(x|z)]−KL (qθ(z|x)||p(z))

]
,

(1)
which is the maximization of the variational lower bound
[9], the lower bound of the marginal log likelihood. Here,
KL denotes the Kullback-Leibler (KL) divergence. Note
that the sampling operation z ∼ qθ(z|x) is differentiable
using the reparametrization trick. For the purpose of visu-
alization in Fig.3, we name the two terms in the optimiza-
tion problem Lrec = −Ex∼D′

[
Ez∼qθ(z|x) [log pθ(x|z)]

]
and Lpri = Ex∼D′ [KL (qθ(z|x)||p(z))]. For the rest of
this paper, θ̂ denotes the estimated model parameter after
the optimization of Eq.1. We use normal distribution for
the encoder model qθ(z|x).

2.5 Training Detail: Generator and Discriminator
Training with Adversarial Learning

For notational simplicity, we introduce datasets of latent
vectors Dz = {(z(i)L , z

(i)
R)}Ni=1 and D′z = {z(j)}2Nj=1 corre-

sponding to D = {(x(i)L , x
(i)
R)}Ni=1 and D′ = {x(j)}2Nj=1

respectively, where z
(i)
L = argmaxz qθ̂(z|x

(i)
L), z(i)R =

argmaxz qθ̂(z|x
(i)
R), and z(j) = argmaxz qθ̂(z|x

(j)). The
generator G and the discriminator D are parametrized by
ψ and φ, respectively. In the following, we use short
hand Lp

Dφ
(zL, zR) = − logDφ(zL, zR), Ln

Dφ
(zL, zR) =

−(1− logDφ(zL, zR)), and U = U(0, 1)ds .

2.5.1 Discriminator Loss

In the adversarial learning framework, the discriminator
classifies two sets of samples: the real class and the fake
class. In Connective Fusion, samples in the real class are
latent vector pairs (zL, zR) sampled from the dataset Dz .
Formally, the loss function for the real class of the discrim-
inator is

Lp
dis = E

(zL,zR)∼Dz

[
Lp
Dφ

(zL, zR)
]
. (2)

The fake class for the discriminator are latent vector pairs
(zL, zR) which are obtained by i) sampling independently
with the uniform distribution over the dataset D′z (1st term
of Eq.3), ii) sampling independently from the prior p(z)
(2nd term of Eq.3), iii) the generator G transforming sam-
ples (zL, zR, s), where zL, zR are sampled in the same way
as i, while s are sampled from U , the uniform distribution
over S = [0, 1]ds (3rd term of Eq.3), and iv) the genera-
tor G transforming samples (zL, zR, s), where zL, zR are
sampled in the same way as ii, while s are sampled from U
(4th term of Eq.3). Formally, the loss function is

Ln
dis = E

zL∼D′
z

E
zR∼D′

z

[
Ln
Dφ

(zL, zR)
]

+ E
zL∼p(z)

E
zR∼p(z)

[
Ln
Dφ

(zL, zR)
]

+ E
zL∼D′

z

E
zR∼D′

z

E
s∼U

[
Ln
Dφ

(Gψ(zL, zR, s))
]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[
Ln
Dφ

(Gψ(zL, zR, s))
]
. (3)

Finally, the overall loss function for the discriminator be-
comes

Ldis = Lp
dis + Ln

dis. (4)

2.5.2 Generator Loss

Based on the discriminator, a generator is trained such that
the generated samples become more like the real samples
rather than the fake samples. We consider two kinds of
generated samples which are sampled in the same way as
iii and iv in the previous section 2.5.1. Formally, the loss
function is

Lp
gen = E

zL∼D′
z

E
zR∼D′

z

E
s∼U

[
Lp
Dφ

(Gψ(zL, zR, s))
]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[
Lp
Dφ

(Gψ(zL, zR, s))
]
. (5)

Additionally, we introduce the similarity loss which is the
latent space distance between samples before and after the
transformation:

Lsim = E
zL∼D′

z

E
zR∼D′

z

E
s∼U

[Ldist(zL, zR, s)]

+ E
zL∼p(z)

E
zR∼p(z)

E
s∼U

[Ldist(zL, zR, s)] , (6)

Figure 4: Evaluation of our model on six metrics vs z-distance. The upper/lower rows are transformation results where
inputs are randomly created pairs of test/generated (sampled from prior) data. The color gradient corresponds to the number
of iterations for LP. For all metrics, higher values are better. See Sec.3.5.

Figure 5: Musical statistics are corrected after our trans-
formation. Brighter color indicates higher probability. See
the second paragraph of 3.4.

Figure 6: Analysis of z-distance in the latent space Z . See
the last paragraph of 3.4.

where

Ldist(zL, zR, s) =
1

dz

∥∥∥∥ 1

σ̄2
z

log
(

1 + (z′L − zL)
2
)∥∥∥∥

1

+
1

dz

∥∥∥∥ 1

σ̄2
z

log
(

1 + (z′R − zR)
2
)∥∥∥∥

1

with (z′L, z
′
R) = Gψ(zL, zR, s). (7)

Following the latent constraint paper [6], σ̄z ∈ Rdz is
chosen to be the standard deviation σ(x) ∈ Rdz of the
encoder model qθ̂(z|x) = N

(
µ(x),diag

(
σ2(x)

))
av-

eraged over all the training dataset. Precisely, σ̄z =
1/|D′|

∑
x∈D′ σ(x). Finally, the overall loss function for

the generator becomes

Lgen = Lp
gen + λLsim. (8)

3. EXPERIMENTS

3.1 Dataset

We create datasets from LMD-matched of Lakh MIDI
dataset [11], comprising 45,129 files matched to the song
identity entries in the Million Song Dataset [12]. Each
song has one or several different versions of MIDI files.
We first extract files with 4/4 time signature, use accom-
panying tempo information to determine beat locations,
and quantize each beat into 4. We then split the song
identities into the proportion of 11:1:6:1:1 to create train-
1, validation-1, train-2, validation-2, and test dataset, re-
spectively. Train-1 and validation-1 datasets are for train-
ing proposed and baseline models, whereas train-2 and
validation-2 datasets are for training evaluation models.
We filter out non-monophonic tracks, bass or drum tracks,
and the tracks outside the pitch range of [55, 84]. We con-
duct data augmentation by transposing tracks to all pos-
sible keys if the transposed tracks stay within the pitch
range of [55, 84]. We retrieve 8-bar sliding windows
(with a stride of 1 bar) from each track followed by fil-
tering out windows that have more than one bar consec-
utive rests. Finally, for each split of train-1, validation-1,
train-2, validation-2, and test dataset, we create a dataset
D = {(x(i)L , x

(i)
R)}Ni=1 by assigning the first 4-bars and the

last 4-bars of each 8-bar window to x(i)L and x(i)R , respec-
tively. For encoding musical sequences, we use Melodico-
rhythmic encoding proposed in [3].

Figure 7: Evaluation of iterated application of our model. Iterated application of models with larger λ tends to com-
pare favorably with others. The upper/lower rows are transformation results where inputs are randomly created pairs of
test/generated (sampled from prior) data. The color gradient corresponds to the number of iterations for our method. For
all metrics, higher values are better. See Sec.3.6.

3.2 Implementation Details

2-layered long short term memory (LSTM) [13] is used for
the encoder and the decoder of the VAE, with the number
of latent dimensionality dz = 64. 5-layered multilayer per-
ceptron (MLP) is used for the generator and the discrimina-
tor, where input vectors are simply concatenated and ReLU
activation is employed. Following the latent constraint pa-
per [6], we use the gating mechanism for each of the out-
puts z′L and z′R. For the decoder to generate sequences,
argmax operation is utilized at each time step greedily for
sampling each token. In the adversarial learning, the pa-
rameter updates of the model are alternating between up-
dating the discriminator 10 times and updating the genera-
tor once. Adam optimizer [14] is used for training with the
parameters (α, β1, β2) = (0.000005, 0, 0.9).

3.3 Transformation Examples

Fig.1 and Fig.2 are the transformation examples for λ =
2.0 and λ = 0.3, respectively. In Fig.1b at iteration 1, the
used pitch set of xL becomes aligned to that of xR, and the
note at time around 4 transforms to the one with longer du-
ration to join two input sequences. As the number of iter-
ations increases, the note durations become more uniform,
while retaining similarity to the input sequences in terms
of pitch contours or rhythmic properties. In Fig.2b, four
corners are generated by feeding s randomly sampled from
{0, 1} for each dimension and the others are interpolations.
Interestingly, the time 4 to 8 of the bottom left sequence is
the exact transposition of the right input of Fig.2a, whereas
other sequences has variations and transpositions.

3.4 Evaluation Metrics

We use reality, correlations of five musical statistics eval-
uated against the test data, and z-distance as evaluation

metrics. Reality is defined as the probability that a gen-
erated sequence is classified as human-made. Two-layered
transformer binary classification model is trained on train-
2 and validation-2 datasets, where the pair sequences from
the dataset D are labeled as positive, while the randomly
shuffled pair sequences from the same dataset are labeled
as negative. The mean of output values of this classifica-
tion model and its accuracy are 0.959 and 0.953 on the test
dataset. Reality is a holistic metric of quality which quan-
tifies how likely a sequence is human-made.

As musical statistics, we choose to use key, mean-pitch
(MP), mean-duration (MD) for evaluating whether the first
and the last 4-bars are more musically consistent after
transformation. We also employ pitch-transition (PT) and
duration-transition (DT) for evaluating if transitions be-
tween the first and the last 4-bars are smooth and natural.
Fig.5 illustrates these five musical statistics. For key, MP,
and MD, these values are estimated for the first and the
last 4-bars, which are interpreted as Markov transitions of
musical states, creating matrices as in Fig.5. For PT and
DT, we extract two or three consecutive notes around the
boundary of the first and the last 4-bars, and again com-
pute Markov transition matrices of each statistics as states.
Finally, as a quantitative metric, we compute Pearson cor-
relation coefficient between the matrix made from the test
dataset and the one from the samples outputted by models.
z-distance is a scaled squared Mahalanobis distance

dist(z′, z) = 1/dz(z
′ − z)Σ−1(z′ − z)ᵀ, where Σ =

diag(σ̄2
z). We analyze z-distance in the latent space Z us-

ing song id annotations of the dataset. We randomly sam-
pled 1,000,000 pairs of 4-bar sequences from the entire
dataset, where pairs are sampled either from the same or
different song id, corresponding to intra- and inter-song in
Fig.6. Pairs with identical sequences are filtered out to ana-
lyze the similarity rather than the identicality. Fig.6 shows

that sequences from different song ids are several orders of
magnitude less likely to have smaller (say, less than 1.0 or
3.0) z-distances, compared with those from the same ids.
The difference of z-distances probably comes from the fact
that a lot of variations can be seen within each song id and
similar themes are rarely seen among different song ids
especially for melody, suggesting that smaller z-distances
includes variations and that z-distance encodes musically
meaningful similarity.

Algorithm 1 Latent Perturb (baseline method).
Input: zL, zR, and σLP

1: Smax ← argmaxx pθ̂(x|zL)⊕ argmaxx pθ̂(x|zR)
2: Rmax ← estimate reality of Smax

3: for i = 1 to NumIter do
4: εL, εR ∼ N (0,diag(σ2

LP))
5: SL ← argmaxx pθ̂(x|zL + εL)
6: SR ← argmaxx pθ̂(x|zR + εR)
7: Rtmp ← estimate reality of Stmp = SL ⊕ SR

8: if Rtmp > Rmax then
9: Smax ← Stmp; Rmax ← Rtmp

10: zL ← zL + εL; zR ← zR + εR
11: end if
12: end for
13: return Smax

3.5 Comparisons of Methods

We introduce a naive but strong baseline method called
Latent Perturb (LP), which is summarized in Algorithm
1. Note that the reality estimation model is trained with
the train-1 dataset, and the argmax operation is approx-
imated with the greedy sampling scheme. Compared to
data space, perturbation in the latent space can efficiently
search similar samples with high reality.

Fig.4 shows the comparisons of baseline methods and
ours evaluated on z-distance vs the other evaluation met-
rics, where z-distance is the average of the mean of z-
distances for zL and zR. The reason for choosing LP with
σLP in [0.01, 0.2] is to make sure their resulting evaluation
metrics span the range that the proposed technique “ours”
spans. For samples from the prior as well as from the test
dataset, our methods, especially with larger λ tend to out-
perform in all the metrics, even though LP methods use
abundant computational budgets—100 forward computa-
tions of the decoder model and the classification model.

3.6 Evaluation of Iterated Transformation

Fig.7 illustrates the performance of iterated application of
our transformation. Interestingly, performance of models
with larger λ after several iterations are often compara-
ble to or better than that of models with smaller λ. This
means that a model with larger λ can be used for transfor-
mation with different distances, without sacrificing the per-
formance. For example, as illustrated in Fig.1, the model
with λ = 2.0, if iteratively applied, can be used for grad-
ual transformations with several different distances. Their

quality is as satisfactory as single (non-iterative) transfor-
mation with models of smaller λ.

4. RELATED WORK

Concatenative Synthesis (CS) methods [15, 16] typically
use a large database of source audio segmented into units,
and search units that match each segment of the target au-
dio by unit selection algorithms. Mashup methods [17,18]
combine two or more songs to create entertaining musi-
cal results. Typically tracks from different songs are su-
perimposed and combined. Our Connective Fusion differs
from CS and Mashup in that i) ours is generative rather
than searching and using existing segments of music, ii)
ours tries to combine any segments, whereas CS/Mashup
typically combine some searched segments, iii) ours is un-
supervised learning which does not need any human anno-
tation in the dataset or musical expertise for training mod-
els, and iv) ours is symbolic which is often not the case in
CS/Mashup.

Learning transformation in the latent space has been
studied for image, texts, and music [6, 19–23]. Notably,
Mueller et al. proposed to transform texts to have specified
attributes based on optimization in the latent space [21].
Engel et al. proposed to transform image or music to be-
come more realistic or to have specified attributes in the
latent space by using adversarial learning [6]. Lore et al.
and more recently Jahanian et al. instead proposed to trans-
form image by learning latent space directions [22, 23].

Learning transformation with adversarial learning with-
out paired data has been extensively studied. The input
and output domain of transformation in these studies can
be categorized into the same data domain with different
classes [24] or attributes [6,25], the semantic domain to the
data domain [24], and semantically similar domain such
as simulation to real [26, 27] and unsupervised language
translation [28, 29]. On the other hand, the input and out-
put domains of transformation in this paper are essentially
the same except that they have different lengths/counts.

5. CONCLUSION

We introduced Connective Fusion, a new scheme of inter-
actively generating sequences for creative purposes. Given
two sequences of random combination, our model trans-
forms each of them to similar one such that their con-
catenation is more indistinguishable from human-made
sequences. The transformation model is adversarially
learned in the latent space. Our model equips with user
control—choosing the amount of transformation as well as
exploring in the style space. In experiments of melody cre-
ation on a symbolic music dataset, we empirically demon-
strated that our method outperforms a baseline method of
various parameter settings, and that iterative gradual trans-
formation not just introduced new functionality but also
works as satisfactory as or sometimes better than non-
iterative transformation.

6. REFERENCES

[1] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon,
C. Hawthorne, N. Shazeer, A. M. Dai, M. D. Hoffman,
M. Dinculescu, and D. Eck, “Music transformer: Gen-
erating music with long-term structure,” in Interna-
tional Conference on Learning Representations, 2019.

[2] G. Hadjeres, F. Pachet, and F. Nielsen, “DeepBach:
a steerable model for Bach chorales generation,” in
Proc. of the 34th International Conference on Machine
Learning, 2017.

[3] G. Hadjeres and F. Nielsen, “Anticipation-rnn: en-
forcing unary constraints in sequence generation,
with application to interactive music generation,”
Neural Computing and Applications, vol. 32,
no. 4, pp. 995–1005, 2020. [Online]. Available:
https://doi.org/10.1007/s00521-018-3868-4

[4] J. Gillick, A. Roberts, J. H. Engel, D. Eck, and D. Bam-
man, “Learning to groove with inverse sequence trans-
formations,” in Proceedings of the 36th International
Conference on Machine Learning, ICML, 2019.

[5] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and
D. Eck, “A hierarchical latent vector model for learn-
ing long-term structure in music,” in Proc. of the 35th
International Conference on Machine Learning, 2018.

[6] J. Engel, M. Hoffman, and A. Roberts, “Latent con-
straints: Learning to generate conditionally from un-
conditional generative models,” in International Con-
ference on Learning Representations, 2018.

[7] T. Akama, “Controlling symbolic music generation
based on concept learning from domain knowledge,” in
Proceedings of the 20th International Society for Mu-
sic Information Retrieval Conference, ISMIR, 2019.

[8] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer,
“MIDI-VAE: modeling dynamics and instrumentation
of music with applications to style transfer,” in Pro-
ceedings of the 19th International Society for Music
Information Retrieval Conference, ISMIR, E. Gómez,
X. Hu, E. Humphrey, and E. Benetos, Eds., 2018.

[9] D. P. Kingma and M. Welling, “Auto-encoding vari-
ational bayes,” in 2nd International Conference on
Learning Representations, ICLR, 2014.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial nets,” in Advances in Neu-
ral Information Processing Systems 27, 2014.

[11] C. Raffel, “Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching,” Ph.D. dissertation, 2016.

[12] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” in Proceedings
of the 12th International Conference on Music Infor-
mation Retrieval (ISMIR 2011), 2011.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, pp. 1735–80, 12
1997.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” in 3rd International Conference on
Learning Representations, ICLR, 2015.

[15] A. J. Hunt and A. W. Black, “Unit selection in a con-
catenative speech synthesis system using a large speech
database,” in 1996 IEEE International Conference on
Acoustics, Speech, and Signal Processing Conference
Proceedings, vol. 1, 1996, pp. 373–376 vol. 1.

[16] A. Zils and F. Pachet, “Musical Mosaicing,” in Pro-
ceedings of the International Conference on Digital
Audio Effects, 2001.

[17] N. Tokui, “Massh! - a web-based collective music
mashup system,” in Proceedings - 3rd International
Conference on Digital Interactive Media in Entertain-
ment and Arts, DIMEA 2008, 2008.

[18] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto,
“Automashupper: Automatic creation of multi-song
music mashups,” IEEE/ACM Trans. Audio, Speech and
Lang. Proc., 2014.

[19] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune, “Synthesizing the preferred inputs for neu-
rons in neural networks via deep generator networks,”
in Advances in Neural Information Processing Systems
29, 2016.

[20] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and
J. Clune, “Plug & play generative networks: Condi-
tional iterative generation of images in latent space,”
in Computer Vision and Pattern Recognition (CVPR),
2017.

[21] J. Mueller, D. Gifford, and T. Jaakkola, “Sequence to
better sequence: Continuous revision of combinatorial
structures,” in Proceedings of the 34th International
Conference on Machine Learning, 2017.

[22] L. Goetschalckx, A. Andonian, A. Oliva, and P. Isola,
“Ganalyze: Toward visual definitions of cognitive im-
age properties,” in The IEEE International Conference
on Computer Vision (ICCV), 2019.

[23] A. Jahanian*, L. Chai*, and P. Isola, “On the "steer-
ability" of generative adversarial networks,” in Interna-
tional Conference on Learning Representations, 2020.

[24] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks,” in IEEE International Conference
on Computer Vision, ICCV, 2017.

[25] G. Lample, S. Subramanian, E. Smith, L. De-
noyer, M. Ranzato, and Y.-L. Boureau, “Multiple-
attribute text rewriting,” in International Conference
on Learning Representations, 2019. [Online]. Avail-
able: https://openreview.net/forum?id=H1g2NhC5KQ

https://doi.org/10.1007/s00521-018-3868-4
https://openreview.net/forum?id=H1g2NhC5KQ

[26] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan,
and D. Krishnan, “Unsupervised pixel-level domain
adaptation with generative adversarial networks,” in
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR, 2017.

[27] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind,
W. Wang, and R. Webb, “Learning from simulated and
unsupervised images through adversarial training,” in
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR, 2017.

[28] G. Lample, A. Conneau, L. Denoyer, and M. Ranzato,
“Unsupervised machine translation using monolingual
corpora only,” in International Conference on Learn-
ing Representations, 2018.

[29] M. Artetxe, G. Labaka, E. Agirre, and K. Cho, “Unsu-
pervised neural machine translation,” in International
Conference on Learning Representations, 2018.

