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ABSTRACT

Informed source separation has recently gained re-
newed interest with the introduction of neural networks
and the availability of large multitrack datasets contain-
ing both the mixture and the separated sources. These
approaches use prior information about the target source
to improve separation. Historically, Music Information
Retrieval researchers have focused primarily on score-
informed source separation, but more recent approaches
explore lyrics-informed source separation. However, be-
cause of the lack of multitrack datasets with time-aligned
lyrics, models use weak conditioning with non-aligned
lyrics. In this paper, we present a multimodal multi-
track dataset with lyrics aligned in time at the word level
with phonetic information as well as explore strong con-
ditioning using the aligned phonemes. Our model follows
a U-Net architecture and takes as input both the magni-
tude spectrogram of a musical mixture and a matrix with
aligned phonetic information. The phoneme matrix is em-
bedded to obtain the parameters that control Feature-wise
Linear Modulation (FiLM) layers. These layers condition
the U-Net feature maps to adapt the separation process to
the presence of different phonemes via affine transforma-
tions. We show that phoneme conditioning can be success-
fully applied to improve singing voice source separation.

1. INTRODUCTION

Music source separation aims to isolate the different in-
struments that appear in an audio mixture (a mixed mu-
sic track), reversing the mixing process. Informed-source
separation uses prior information about the target source
to improve separation. Researchers have shown that deep
neural architectures can be effectively adapted to this
paradigm [1, 2]. Music source separation is a particularly
challenging task. Instruments are usually correlated in
time and frequency with many different harmonic instru-
ments overlapping at several dynamics variations. With-
out additional knowledge about the sources the separation
is often infeasible. To address this issue, Music Informa-
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tion Retrieval (MIR) researchers have integrated into the
source separation process prior knowledge about the differ-
ent instruments presented in a mixture, or musical scores
that indicate where sounds appear. This prior knowledge
improves the performances [2–4]. Recently, conditioning
learning has shown that neural networks architectures can
be effectively controlled for performing different music
source isolation tasks [5–10]

Various multimodal context information can be used.
Although MIR researchers have historically focused on
score-informed source separation to guide the separation
process, lyrics-informed source separation has become
an increasingly popular research area [10, 11]. Singing
voice is one of the most important elements in a musi-
cal piece [12]. Singing voice tasks (e.g. lyric or note
transcription) are particularly challenging given its vari-
ety of timbre and expressive versatility. Fortunately, re-
cent data-driven machine learning techniques have boosted
the quality and inspired many recent discoveries [13, 14].
Singing voice works as a musical instrument and at the
same time conveys a semantic meaning through the use of
language [14]. The relationship between sound and mean-
ing is defined by a finite phonetic and semantic represen-
tations [15, 16]. Singing in popular music usually has a
specific sound based on phonemes, which distinguishes it
from the other musical instruments. This motivates re-
searchers to use prior knowledge such as a text transcript of
the utterance or linguistic features to improve the singing
voice source sparation [10, 11]. However, the lack of mul-
titrack datasets with time-aligned lyrics has limited them
to develop their ideas and only weak conditioning scenar-
ios have been studied, i.e. using the context information
without explicitly informing where it occurs in the signal.
Time-aligned lyrics provide abstract and high-level infor-
mation about the phonetic characteristics of the singing
signal. This prior knowledge can facilitate the separation
and be beneficial to the final isolation.

Looking for combining the power of data-driven models
with the adaptability of informed approaches, we propose
a multitrack dataset with time-aligned lyrics. We explore
then how we can use strong conditioning where the con-
tent information about the lyrics is available frame-wise to
improve vocal sources separation. We investigate strong
and weak conditioning using the aligned phonemes via
Feature-wise Linear Modulation (FiLM) layer [17] in U-
Net based architecture [18]. We show that phoneme con-
ditioning can be successfully applied to improve standard



singing voice source separation and that simplest strong
conditioning outperforms any other scenario.

2. RELATED WORK

Informed source separation use context information about
the sources to improve the separation quality, introduc-
ing in models additional flexibility to adapt to observed
signals. Researchers have explored different approaches
for integrating different prior knowledge in the separa-
tion [19]. Most of the recent data-driven music source sep-
aration methods use weak conditioning with prior knowl-
edge about the different instruments presented in a mix-
ture [3, 5, 7–9]. Strong conditioning has been primarily
used in score-informed source separation. In this section,
we review works related to this topic as well as novel ap-
proaches that explore lyrics-informed source separation.

2.1 Score-informed music source separation

Scores provide prior knowledge for source separation in
various ways. For each instrument (source), it defines
which notes are played at which time, which can be linked
to audio frames. This information can be used to guide
the estimation of the harmonics of the sound source at
each frame [2,4]. Pioneer approaches rely on non-negative
matrix factorization (NMF) [20–23]. These methods as-
sume that the audio is synchronized with the score and use
different alignment techniques to achieve this. Neverthe-
less, alignment methods introduce errors. Local misalign-
ments influence the quality of the separation [21, 24]. This
is compensated by allowing a tolerance window around
note onsets and offsets [20, 23] or with context-specific
methods to refine the alignment [25]. Current approaches
use deep neural network architectures and filtering spec-
trograms by the scores and generating masks for each
source [2]. The score-filtered spectrum is used as input to
an encoder-decoder convolutional neural network (CNN)
architecture similar to [26]. [27] propose an unsupervised
method where scores guide the representation learning to
induce structure in the separation. They add class ac-
tivity penalties and structured dropout extensions to the
encoder-decoder architecture. Class activity penalties cap-
ture the uncertainty about the target label value and struc-
tured dropout uses labels to enforce a specific structure,
canceling activity related to unwanted note.

2.2 Text-informed music source separation

Due to the importance of singing voice in a musical
piece [12], it is one of the most useful source to separate
in a music track. Researchers have integrated the vocal
activity information to constrain a robust principal compo-
nent analysis (RPCA) method, applying a vocal/non-vocal
mask or ideal time-frequency binary mask [28]. [10] pro-
pose a bidirectional recurrent neural networks (BRNN)
method that includes context information extracted from
the text via attention mechanism. The method takes as in-
put a whole audio track and its associated text information

and learn alignment between mixture and context informa-
tion that enhance the separation. Recently, [11] extract a
representation of the linguistic content related to cogni-
tively relevant features such as phonemes (but they do not
explicitly predict the phonemes) in the mixture. The lin-
guistic content guide the synthetization of the vocals.

3. FORMALIZATION

We use the multimodal information as context to guide and
improve the separation. We formalize our problem satisfy-
ing certain properties summarized as [29]:

How is the multimodal model constructed? We divide
the model into two distinct parts [30]: a generic network
that carries on the main computation and a control
mechanism that conditions the computation regarding
context information and adds additional flexibility. The
conditioning itself is performed using FiLM layers [17].
FiLM can effectively modulate a generic source sepa-
ration model by some external information, controlling
a single model to perform different instrument source
separations [3, 5]. With this strategy, we can explore the
control and conditioning parts regardless of the generic
network used.

Where is the context information used? at which place
in the generic network we insert the context information,
and defining how it affects the computation, i.e. weak (or
strong) conditioning without (or with) explicitly inform-
ing where it occurs in the signal.

What context information? We explore here prior infor-
mation about the phonetic evolution of the singing voice,
aligned in time with the audio. To this end, we introduce
a novel multitrack dataset with lyrics aligned in time.

4. DATASET

The DALI (Dataset of Aligned Lyric Information) [31]
dataset is a collection of songs described as a sequence of
time-aligned lyrics. Time-aligned lyrics are described at
four levels of granularity: notes, words, lines and para-
graphs:

Ag = (ak,g)
Kg

k=1 where ak,g = (t0k, t
1
k, fk, lk, ik)g (1)

where g is the granularity level and Kg the number of el-
ements of the aligned sequence, t0k and t1k being a text
segment’s start and end times (in seconds) with t0k < t1k,
fk a tuple (fmin , fmax ) with the frequency range (in Hz)
covered by all the notes in the segment (at the note level
fmin = fmax , a vocal note), lk the actual lyric’s infor-
mation and ik = j the index that links an annotation ak,g
with its corresponding upper granularity level annotation
aj,g+1. The text segment’s events for a song are ordered
and non-overlapping - that is, t1k ≤ t0k+1∀k.

There is a subset of DALI of 513 multitracks with
the mixture and its separation in two sources, vocals
and accompaniment. This subset comes from WASABI



Figure 1. Method used for creating the vocals, accompa-
niment and mixture version.

dataset [32]. The multitracks are distributed in 247 differ-
ent artists and 32 different genres. The dataset contains
35.4 hours with music and 14.1 hours with vocals, with
a mean average duration per song of 220.83s and 98.97s
with vocals. All the songs are in English.

The original multitracks have the mixture decomposed
in a set of unlabeled sources in the form track_1, track_2,
..., track_n. Depending of the songs, the files can be RAW
(where each source is an instrument track e.g. a drum
snare) or STEMS (where all the RAW files for an instru-
ment are merged into a single file). In the following, we ex-
plain how the vocals and accompaniment tracks are auto-
matically created from these unlabelled sources. The pro-
cess is summarized in Figure 1.

For each track τ of a multitrack song, we compute
a singing voice probability vector overtime, using a pre-
trained Singing Voice Detection (SVD) model [33]. We
obtain then a global mean prediction value per tracks ετ .
Assuming that there is at least one track with vocals, we
create the vocals source by merging all the tracks with
ετ >= maxτ (ετ ) · ν where ν is a tolerance value set
to 0.98. All the remaining tracks are fused to define
the accompaniment. We manually checked the resulting
sources. The dataset is available at https://zenodo.
org/record/3970189.

The second version of DALI adds the phonetic informa-
tion computed for the word level [33]. This level has the
words of the lyrics transcribed into a vocabulary of 39 dif-
ferent phoneme symbols as defined in the Carnegie Mellon
Pronouncing Dictionary (CMUdict) 1 . After selecting the
desired time resolution, we can derive a time frame based
phoneme context activation matrix Z, which is a binary
matrix that indicates the phoneme activation over time. We
add an extra row with the ’non-phoneme’ activation with
1 at time frames with no phoneme activation and 0 other-
wise. Figure 2 illustrates the final activation matrix.

Although we work only with phonemes per word infor-
mation, we can derive similar activation matrices for other
context information such as notes or characters.

5. METHODOLOGY

Our method adapts the C-U-Net architecture [5] to the
singing voice separation task, exploring how to use the
prior knowledge defined by the phonemes to improve the
vocals separation.

Input representations. Let X ∈ RT×M be the mag-
nitude of the Short-Time Fourier Transform (STFT) with

1 https://github.com/cmusphinx/cmudict

Figure 2. Binary phoneme activation matrix. Note how
words are represented as a bag of simultaneous phonemes.

M = 512 frequency bands and T time frames. We
compute the STFT on an audio signal down-sampled at
8192 Hz using a window size of 1024 samples and a hop
size of 768 samples. Let Z ∈ RT×P be the aligned
phoneme activation matrix with P = 40 phoneme types
and T the same time frames as in X . Our model takes
as inputs two submatrix x ∈ RN×M and z ∈ RN×P of
N = 128 frames (11 seconds) derived from X and Z.

Model. The C-U-Net model has two components (see
[5] for a general overview of the architecture): a condi-
tioned network that processes x and a control mecha-
nism that conditions the computation with respect to z. We
denote by xd ∈ RW×H×C the intermediate features of the
conditioned network, at a particular depth d in the archi-
tecture. W and H represent the ‘time’ and ‘frequency’ di-
mension and C the number of feature channels (or feature
maps). A FiLM layer conditions the network computation
by applying an affine transformation to xd:

FiLM (xd) = γd(z)� xd + βd(z) (2)

where � denotes the element-wise multiplication and
γd(z) and βd(z) are learnable parameters with respect to
the input context z. A FiLM layer can be inserted at any
depth of the original model and its output has the same di-
mension as the xd input, i.e. ∈ RW×H×C . To perform
Eqn (2), γd(z) and βd(z) must have the same dimension-
aly as xd, i.e. ∈ RW×H×C . However, we can define them
omitting some dimensions. This results in a non-matching
dimensionality with xd, solved by broadcasting (repeating)
the existing information to the missing dimensions.

As in [5, 18, 34], we use the U-Net [18] as conditioned
network, which has an encoder-decoder mirror architec-
ture based on CNN blocks with skip connections between
layers at the same hierarchical level in the encoder and de-
coder. Each convolutional block in the encoder halves the
size of the input and doubles the number of channels. The
decoder is made of a stack of transposed convolutional op-
eration, its output has the same size as the input of the en-
coder. Following the original C-U-Net architecture, we in-
sert the FiLM layers at each encoding block after the batch
normalization and before the Leaky ReLU [5].

We explore now the different control mechanism we
use for conditioning the U-Net.

5.1 Control mechanism for weak conditioning

Weak conditioning refers to the cases where



Model U-Net Wsi Wco Sa Sa∗ Sc Sc∗ Sf Sf ∗ Ss Ss∗
θ 9.83 · 106 +14, 060 +2.35 · 106 +1.97 · 106 +327, 680 +80, 640 +40, 960 +40, 320 +640 +480 +80

Table 1. Number of parameters (θ) for the different configurations. We indicate increment to the U-Net architecture.

• γd(z) and βd(z) ∈ R1: they are scalar parameters
applied independently of the times W , the frequen-
cies H and the channel C dimensions. They de-
pend only on the depth d of the layer within the net-
work [5].

• γd(z) and βd(z) ∈ RC : this is the original config-
uration proposed by [17] with different parameters
for each channel c ∈ 1, ..., C.

We call them FiLM simple (Wsi ) and FiLM complex
(Wco) respectively. Note how they apply the same trans-
formation without explicitly informing where it occurs in
the signal (same value over the dimension W and H).

Starting from the context matrix z ∈ RN×P , we define
the control mechanism by first apply the autopool layer
proposed by [35] 2 to reduce the input matrix to a time-
less vector. We then fed this vector into a dense layer and
two dense blocks each composed by a dense layer, 50%
dropout and batch normalization. For FiLM simple, the
number of units of the dense layers are 32, 64 and 128.
For FiLM simple, they are 64, 256 and 1024. All neurons
have ReLU activations. The output of the last block is then
used to feed two parallel and independent dense layer with
linear activation which outputs all the needed γd(z) and
βd(z). While for the FiLM simple configuration we only
need 12 γd and βd (one γd and βd for each of the 6 different
encoding blocks) for the FiLM complex we need 2016 (the
encoding blocks feature channel dimensions are 16, 32, 64,
128, 256 and 512, which adds up to 1008).

5.2 Control mechanism for strong conditioning

In this section, we extend the original FiLM layer mecha-
nism to adapt it to the strong conditioning scenario.

The context information represented in the input matrix
z describes the presence of the phonemes p ∈ {1, . . . , P}
over time n ∈ {1, . . . N}. As in the popular Non-Negative
Matrix factorization [36] (but without the non-negativity
constraint), our idea is to represent this information as the
product of tensors: an activation and two basis tensors.

The activation tensor zd indicates which phoneme oc-
curs at which time: zd ∈ RW×P whereW is the dimension
which represents the time at the current layer d (we there-
fore need to map the time range of z to the one of the layer
d) and P the number of phonemes.

The two basis tensors γd and βd ∈ RH×C×P where
H is the dimension which represents the frequencies at the
current layer d, C the number of input channels and P the
number of phonemes. In other words, each phoneme p is
represented by a matrix in RH×C derived from Eqn (1).
This matrix represents the specific conditioning to apply

2 The auto-pool layer is a tuned soft-max pooling that automatically
adapts the pooling behavior to interpolate between mean and max-pooling
for each dimension

Figure 3. Strong conditioning example with (γd×zd)�xd.
The phoneme activation zd defines how the basis tensors
(γd) are employed for performing the conditioning on xd.

to xd if the phoneme exists (see Figure 3). These matrices
are learnable parameters (neurons with linear activations)
but they do not depend on any particular input informa-
tion (at a depth d they do not depend on x nor z), they
are rather “activated” by zd at specific times. As for the
‘weak‘conditionning, we can define different versions of
the tensors

• the all-version (Sa ) described so far with three di-
mensions: γd, βd ∈ RH×C×P

• the channel-version (Sc): each phoneme is repre-
sented by a vector over input channels (therefore
constant over frequencies): γd, βd ∈ RC×P

• the frequency-version (Sf ): each phoneme is repre-
sented by a vector over input frequencies (therefore
constant over channels): γd, βd ∈ RH×P

• the scalar-version (Ss ): each phoneme is repre-
sented as a scalar (therefore constant over frequen-
cies and channels): γd, βd ∈ RP

The global conditioning mechanism can then be written as

FiLM (xd, zd) = (γd × zd)� xd + (βd × zd) (3)

where � is the element-wise multiplication and × the ma-
trix multiplication. We broadcast γd and βd for missing di-
mensions and transpose them properly to perform the ma-
trix multiplication. We test two different configurations:
inserting FiLM at each encoder block as suggested in [5]
and inserting FiLM only at the last encoder block as pro-
posed at [3]. We call the former ‘complete’ and the latter
‘bottleneck’ (denoted with ∗ after the model acronym). We
resume the different configurations at Table 1.

6. EXPERIMENTS

DATA. We split DALI into three sets according to the nor-
malized agreement score η presented in [31] (see Table 2).
This score provides a global indication of the global
alignment correlation between the annotations and the
vocal activity.



Train Val Test
Threshold .88 > η >= .7 .89 > η >= .88 .89 > η

Songs 357 30 101

Table 2. DALI split according to agreement score η.

Training Test Aug SDR SIR SAR
Musdb18 Musdb18 False 4.27 13.17 5.17

(90) (50) True 4.46 12.62 5.29

DALI
(357)

Musdb18 False 4.60 14.03 5.39
(50) True 4.96 13.50 5.92

DALI False 3.98 12.05 4.91
(101) True 4.05 11.40 5.32

Table 3. Data augmentation experiment.

DETAILS. We train the model using batches of 128
spectrograms randomly drawn from the training set with
1024 batches per epoch. The loss function is the mean
absolute error between the predicted vocals (masked input
mixture) and the original vocals. We use a learning rate
of 0.001 and the reduction on plateau and early stopping
callbacks evaluated on the validation set, using patience of
15 or 30 respectively and a min delta variation for early
stopping to 1e − 5. Our output is a Time/Frequency mask
to be applied to the magnitude of the input STFT mixture.
We use the phase of the input STFT mixture to reconstruct
the waveform with the inverse STFT algorithm.

For the strong conditioning, we apply a softmax on
the input phoneme matrix z over the phoneme dimension
P to constrain the outputs to sum to 1, meaning it lies on a
simplex, which helps in the optimization.

6.1 Evaluation metrics

We evaluate the performances of the separation using the
mir evaltoolbox [37]. We compute three metrics: Source-
to-Interference Ratios (SIR), Source-to-Artifact Ratios
(SAR), and Source-to-Distortion Ratios (SDR) [38]. In
practice, SIR measures the interference from other sources,
SAR the algorithmic artifacts introduce in the process and
SDR resumes the overall performance. We obtain them
globally for the whole track. However, these metrics are
ill-defined for silent sources and targets. Hence, we com-
pute also the Predicted Energy at Silence (PES) and Energy
at Predicted Silence (EPS) scores [10]. PES is the mean of
the energy in the predictions at those frames with silent tar-
get and EPS is the opposite, the mean of the target energy
of all frames with silent prediction and non-silent target.
For numerical stability, in our implementation, we add a
small constant ε = 10−9 which results in a lower bound-
ary of the metrics to be −80 dB [3]. We consider as silent
segments those that have a total sum of less than−25 dB of
the maximum absolute in the audio. We report the median
values of these metrics over the all tracks in the DALI test
set. For SIR, SAR, and SDR larger values indicate better
performance, for PES and EPS smaller values, mean better
performance.

Model SDR SIR SAR PES EPS
U-Net 4.05 11.40 5.32 -42.44 -64.84
Wsi 4.24 11.78 5.38 -49.44 -65.47
Wco 4.24 12.72 5.15 -59.53 -63.46
Sa 4.04 12.14 5.13 -59.68 -61.73
Sa∗ 4.27 12.42 5.26 -54.16 -64.56
Sc 4.36 12.47 5.34 -57.11 -65.48
Sc∗ 4.32 12.86 5.15 -54.27 -66.35
Sf 4.10 11.40 5.24 47.75 -62.76
Sf ∗ 4.21 13.13 5.05 -48.75 -72.40
Ss 4.45 11.87 5.52 -51.76 -63.44
Ss∗ 4.26 12.80 5.25 -57.37 -65.62

Table 4. Median performance in dB of the different mod-
els on the DALI test set. In bold are the results that signif-
icantly improve over the U-Net (p < 0.001) and inside the
circles the best results for each metric.

6.2 Data augmentation

Similarly as proposed in [39], we randomly created ‘fake’
input mixtures every 4 real mixtures. In non-augmented
training, we employ the mixture as input and the vocals
as a target. However, this does not make use of the ac-
companiment (which is only employed during evaluation).
We can integrate it creating ‘fake’ inputs by automatically
mixing (mixing meaning simply adding) the target vocals
to a random sample accompaniment from our training set.

We test the data augmentation process using the stan-
dard U-Net architecture to see whether it improves the per-
formance (see Table 3). We train two models on DALI and
Musdb18 dataset [40] 3 . This data augmentation enables
models to achieve better SDR and SAR but lower SIR. Our
best results (4.96 db SDR) are not state-of-the-art where
the best-performing models on Musdb18 achieve (approx-
imately 6.60 db SDR) [41].

This technique does not reflect a large improvement
when the model trained on DALI is tested on DALI . How-
ever, when this model is tested on Musdb18, it shows a bet-
ter generalization (we have not seen any song of Musidb18
during training) than the model without data augmentation
(we gain 0.36 dB). One possible explanation for not having
a large improvement on DALI testset is the larger size of
the test set. It also can be due to the fact that vocal targets
in DALI still contain leaks such as low volume music ac-
companiment that come from the singer headphones. We
adopt this technique for training all the following models.

Finally, we confirmed a common belief that training
with a large dataset and clean separated sources improves
the separation over a small dataset [42]. Both models
trained on DALI (with and without augmentation) improve
the results obtained with the models trained on Musdb18.

Since we cannot test the conditioning versions on
Musdb (no aligned lyrics), the results on the DALI test
(4.05 dB SDR) serves as a baseline to measure the contri-
bution of the conditioning techniques (our main interest).

3 We use 10 songs of the training set for the early stopping and reduc-
tion on plateau callbacks



Figure 4. Distribution of scores for the the standar U-Net (Blue) and Ss (Orange).

7. RESULTS

We report the median source separation metrics (SDR,
SAR, SIR, PES, ESP) in Table 4. To measure the sig-
nificance of the improvement differences, we performed
a paired t-test between each conditioning model and the
standard U-Net architecture, the baseline. This test mea-
sures (p-value) if the differences could have happened by
chance. A low p-value indicates that data did not occur
by chance. As expected, there is a marginal (but statisti-
cal significance) improvement over most of the proposed
methods, with a generalized p < 0.001 for the SDR, SIR,
and PES, except for the versions where the basis tensors
have a ‘frequency’H dimension. This is an expected result
since when singing, the same phoneme can be sung at dif-
ferent frequencies (appearing at many frequency positions
in the feature maps). Hence, these versions have difficul-
ties to find generic basis tensors. This also explains why
the ‘bottleneck’ versions (for both Sf ∗ and Sa∗) outper-
forms the ‘complete’ while this is not the case for the other
versions. Most versions also improve the performance on
silent vocal frames with a much lower PES. However, there
is no difference in predicting silence at the right time (same
EPS). The only metric that does not consistently improve is
SAR, which measures the algorithmic artifacts introduced
in the process. Our conditioning mechanisms can not re-
duce the artifacts that seem more dependent on the quality
of the training examples (it is the metric with higher im-
provement in the data augmentation experiment Table 3).
Figure 4 shows a comparison with the distribution of SDR,
SIR, and SAR for the best model Ss and the U-Net. We
can see how the distributions move toward higher values.

One relevant remark is the fact that we can effectively
control the network with just a few parameters. Ss just
adds 480 (or just 80 for Ss∗) new learnable parameters
and have significantly better performance than Sa that adds
1.97·106. We believe that the more complex control mech-
anisms tend to find complex basis tensors that do not gen-
eralize well. In our case, it is more effective to perform
a simple global transformation. In the case of weak con-
ditioning, both models behave similarly although Wsi has
1.955 · 106 fewer parameters than Wco . This seems to in-
dicate that controlling channels is not particularly relevant.

Regarding the different types of conditioning, when re-
peating the paired t-test between weak and strong models
only Ss outperforms the weak systems. We believe that

strong conditioning can lead to higher improvements but
several issues need to be addressed. First, there are mis-
alignments in the annotations that force the system to per-
form unnecessary operations which damages the computa-
tion. This is one of the possible explanations of why mod-
els with fewer parameters perform better. They are forced
to find more generic conditions. The weak conditioning
models are robust to these problems since they process z
and compute an optimal modification for a whole input
patch (11s). We also need to “disambiguate” the phonemes
inside words since they occur as a bag of phonemes at
the same time (no individual onsets per phonemes inside
one word, see Figure 2). This prevents strong condition-
ing models to properly learn the phonemes in isolation, in-
stead, they consider them jointly with the other phonemes.

8. CONCLUSIONS

The goal of this paper is twofold. First, to introduce a
new multimodal multitrack dataset with lyrics aligned in
time. Second, to improve singing voice separation using
the prior knowledge defined by the phonetic characteris-
tics. We use the phoneme activation as side information
and show that it helps in the separation.

In future works, we intend to use other prior aligned
knowledge such as vocal notes or characters also defined in
DALI . Regarding the conditioning approach and since it is
transparent to the conditioned network, we are determined
to explore recent state-of-the-art source separation meth-
ods such as Conv-Tasnet [43]. The current formalization
of the two basis tensors γd and βd does not depend on any
external factor. A way to exploit a more complex control
mechanisms is to make these basis tensors dependent on
the input mixture x which may add additional flexibility.
Finally, we plan to jointly learn how to infer the alignment
and perform the separation [44, 45].

The general idea of lyrics-informed source separation
leaves room for many possible extensions. The present
formalization relies on time-aligned lyrics which is not the
real-world scenario. Features similar to the phoneme ac-
tivation [46, 47] can replace them or be used to align the
lyrics as a pre-processing step. This two options adapts the
current system to the real-world scenario. These features
can also help in properly placing and disambiguating the
phonemes of a word to improve the current annotations.
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