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ABSTRACT

The mood of a song is a highly relevant feature for ex-
ploration and recommendation in large collections of mu-
sic. These collections tend to require automatic methods
for predicting such moods. In this work, we show that
listening-based features outperform content-based ones
when classifying moods: embeddings obtained through
matrix factorization of listening data appear to be more in-
formative of a track mood than embeddings based on its
audio content. To demonstrate this, we compile a sub-
set of the Million Song Dataset, totaling 67k tracks, with
expert annotations of 188 different moods collected from
AllMusic. Our results on this novel dataset not only expose
the limitations of current audio-based models, but also aim
to foster further reproducible research on this timely topic.

1. INTRODUCTION

The estimation of moods that a given music track might
evoke or empathize with is a relevant task that has been
active in the Music Informatics Research (MIR) commu-
nity for years [20]. This task, which is also known as mu-
sic emotion recognition, has become even more prominent
thanks to the advent of streaming music services with mas-
sive collections, where understanding the set of moods of
each of their tracks could strongly impact the navigation,
discovery, and recommendations of such collections [32].
This task has been typically approached in two different
ways: i) regressing a continuous mood space such as the
Arousal-Valence one [30], and then clustering such space
to obtain a specific mood vocabulary [37]; or ii) classify-
ing a given track into one or more moods, thus becoming
a multi-label classification problem with a fixed vocabu-
lary [6], which can be seen as a sub-task of the broader
audio tagging problem [27]. In this work, we focus ex-
clusively on the second approach, since it can directly
impact search-by-mood applications, while methods like
metric learning can potentially overcome the limitation of
the fixed vocabulary [5].
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Framed under the context of music recommendation,
mood recognition is particularly interesting. It has been
shown that listener personality correlates not only with mu-
sical taste [29, 41], but also with genre [11], which makes
the development of psychologically inspired approaches
one of the most compelling challenges for recommender
systems [32]. Thus, several related techniques have been
presented: FocusMusicRecommender [40] makes use of
the listener’s behavior history to play tracks that are ap-
propriate given the current listener’s level of concentra-
tion. By incorporating the Five Factor Model [7], collab-
orative filtering [21] is enhanced with personality embed-
dings [10]. Moreover, emotions from a microblogging ser-
vice have been exploited to implement an emotion-aware
recommendation system [9]. Such techniques employ data
beyond the actual audio signal to enhance mood-based rec-
ommenders, inspiring us to make use of listening data to
classify moods to potentially improve the navigation and
recommendation of large music catalogs.

The contribution of this work to the task of mood pre-
diction is two-fold: i) we assemble a set of 67k tracks
from the Taste Profile subset from the Million Song
Dataset (MSD) [2] and match them with human-annotated
moods available from AllMusic. 1 This is, to the best of
our knowledge, the largest expert-annotated mood dataset
available. And ii) by running several experiments on this
proposed dataset we show how listener data are much more
accurate at classifying moods than current audio-based ap-
proaches. Similarly to [17], where its authors discuss how
lyrics can be useful to predict moods better than actual au-
dio, and following the music recommendation approaches
described above, we further argue that listening embed-
dings yield superior results due to their ability to capture
information that is not straightforward to be extracted from
pure audio content only.

The rest of the article is structured as follows: in Sec-
tion 2 we give a formal definition of the mood classification
problem. In Section 3 the data employed in this work are
described. We then detail the mood classification experi-
ments in Section 4. The results of these experiments are
discussed in Section 5. Finally, we draw conclusions and
consider potential future directions in Section 6.

1 https://www.allmusic.com/

https://www.allmusic.com/


2. MOOD CLASSIFICATION
Predicting moods evoked by music is often treated as
an audio classification problem in the MIR community, 2

where audio data are almost exclusively used as input. In
this section we give an overview of this task and its current
approaches.

2.1 Problem definition
Mood tagging is a multi-label classification problem, and
can be considered a subset of the broader audio tagging
task where only those tags that represent moods are con-
sidered. Formally, let x ∈ RE be an embedding represent-
ing a given track, where E is the number of dimensions
in the embedding. Each track is associated with a set of
mood tags from a mood vocabulary T (e.g., “energetic,”
“gloomy,” “happy”), represented by a binary indicator vec-
tor y ∈ {0, 1}|T |. We aim at predicting the set of mood
tags associated with the track, using a learnable function f
that computes the predicted label vector ŷ = f(x).

Note that x can be extracted from any source of data
representing the track. In our case, we will use audio- and
listening-based embeddings.

Other approaches have also framed emotion prediction
as a regression problem of an n-dimensional continuous
space [37], where the 2D Arousal-Valence model [30] is
the most widely used. While this approach has the benefit
of considering moods that are not constrained by a specific
vocabulary, in this work we focus on the multi-label classi-
fication approach due to the direct application to potential
user-based scenarios such as search by typing or by voice.

2.2 Current Approaches
The current state of the art largely approaches music mood
prediction via audio analysis. Early approaches identified
spectral contrast as an informative representation [19], and
a number of other authors confirmed this finding as well as
a variety of other standard audio features [20, 31, 33, 39].
While the relationship between mood and spectral repre-
sentations remains non-obvious, previous work has shown
that human subjects annotate reconstructions from these
representations with reasonable consistency to their origi-
nal form [35]. Still, the problem remained far from solved.

In moving towards increasing model complexity, most
approaches have incorporated deep learning methods that
seek to learn their own representations [34]. In addition
to prediction, audio-based approaches have also been ex-
tended to the problem of segmentation [1]. More recent
approaches have expanded to multi-modal representations
by combining lyrics [8] and others have focused on inter-
pretability of these complex models [6]. At the time of
writing, the authors are not aware of any models which
leverage features derived from user interactions to estimate
the moods of a music track.

3. DATA
The data we collected for this work are derived from var-
ious sources: AllMusic provides mood annotations; The

2 https://www.music-ir.org/mirex/wiki/2019:Audio_Classification_
(Train/Test)_Tasks
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Figure 1: Number of tracks per annotated mood in the
AMS. Due to space limitations, only the names of a subset
of mood tags are shown.
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Figure 2: Number of moods annotated per tracks in AMS.

Echo Nest Taste Profile [25], mapped to tracks in the Mil-
lion Song Dataset, adds listening data; finally, 7-digital
contributes 30s previews as audio data.

We link AllMusic data to the MSD by fuzzy string
matching of artist and track names, and requiring track
lengths to be within ±10s. This results in a dataset of
66 993 matched tracks in total, which we call the AllMusic
Mood Subset (AMS). As opposed to other music tagging
datasets, such as the LastFM Set [4,15,17], AMS provides
a large vocabulary of mood tags annotated by music ex-
perts. While the AllMusic annotations are proprietary, they
can be freely consulted on their website and, moreover, are
available to be licensed.

Finally, we randomly split the AMS into 80% training,
10% validation, and 10% test, resulting in 53 585, 6695,
6713 tracks respectively. The splits are available online 3

to ensure comparability of future results.

3.1 Mood Data

The mood information that we employ in this work has
been human-annotated by experts from AllMusic. These
data were previously employed for mood classification [3,
16] and lyrics sentiment detection [24]. The mood tags are
annotated at an album level, and we unfold them such that
each track is assigned its album-level moods.

The total number of mood tags available is 188. As
previous work noted [16], many tags may describe similar

3 https://github.com/fdlm/listening-moods
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Top Count Bottom Count

Rousing 14 018 Melodic 95
Reflective 13 330 Animated 140
Energetic 13 153 Powerful 148
Earnest 12 873 Driving 163
Passionate 11 438 Introspective 176
Confident 11 092 Flowing 218
Amiable 10 424 Positive 307
Intimate 10 188 Stately 310
Dramatic 10 014 Giddy. 315
Playful 9952 Thoughtful 340

Table 1: 10 top and bottom mood tags based on the number
of tracks they have been annotated in the AMS.

moods (such as “Romantic” and “Sensual”), which tend to
co-occur, and can be clustered into a smaller number of
groups. While we can confirm this by performing man-
ual and/or data-driven explorations on the co-occurrence
matrix, we intentionally kept the original annotations. For
one, we expect modern machine learning methods to cope
with large and possibly overlapping vocabularies. For
another, these tags were curated by expert annotators to
specifically describe how music feels; while they might
characterize similar concepts, they could also provide a
more nuanced view of a song’s mood.

To give a better notion of the moods in this dataset, in
Figure 1 we depict the histogram of number of tracks per
mood tag, which follows a typical long-tail distribution.
The 10 top and bottom annotated mood tags can be seen
in Table 1. As we can see, “Rousing” is the most fre-
quent mood, which appears in 14 018 tracks. On the other
hand, “Melodic” is the least frequent one, associated with
only 95 tracks. On average across the dataset, there are
3258.6±2961.3 tracks for each tag, with a median of 2385.
Furthermore, Figure 2 shows the distribution of number of
mood tags per track. It can be seen that most tracks have
13 moods or less, with an average of 9.1±5.7 tags per track
and the median centered at 9.

3.2 Audio Data

Since the AMS is a subset of the MSD, we gather the audio
data by obtaining the 7-digital 30 second previews associ-
ated with all MSD tracks. These are 128kbps mp3 stereo
files sampled at 44.1kHz.

3.3 Listening Data

We make use of the Taste Profile from the MSD to ob-
tain listening data. These data contain over 28 million
play counts from undisclosed partners associated with L =
1 019 318 listeners and S = 384 546 tracks.

We motivate the usage of such data in the context of
mood classification by showing the relationship between
listening habits and the moods of the tracks played, thus
arguing that such embeddings are likely to contain relevant
data when predicting moods. By mapping the tracks in this
set with the moods from the AMS (and thus reducing the
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Figure 3: Consistency ratios for the top 25 most popular
moods for each user in the AMS.

set of listeners down to 1 012 825, the track set down to
66 993, and the play counts down to ∼9 million) we ob-
serve that listeners play music that tends to be consistent
in terms of its mood. We define the consistency ratio of
a mood as the fraction of times it appears in the listening
history of a given user. Figure 3 shows the consistency ra-
tio of the nth most popular moods aggregated across users.
More specifically, 65.4% of all plays by a given user con-
tain the most popular mood tag for that user; similarly,
around 50.1% of a user’s plays are annotated with their 4th

most popular mood; etc. This exhibits the potential bene-
fits of using listening data, as we confirm in the results of
our experiments described next.

4. EXPERIMENTS

As described in Section 2.1, we treat mood prediction as
a multi-label classification problem, with a function f pre-
dicting mood tags ŷ from an input embedding x. The in-
put embedding can stem from different sources, such as
listening- or audio-based features; we will refer to this
as the embedding type. We will use mostly open models
trained on publicly available datasets in this work. As we
will see, our conclusions follow from these results alone.
Furthermore, we will show results for proprietary mod-
els trained on in-house listener feedback data. While we
acknowledge that these additional results are hardly re-
producible without access to our data and methods, they
demonstrate how our findings translate to an industrial
scale, and are thus a meaningful addition to this work.

4.1 Evaluation Metrics

Our goal is to compare the predictive performance of each
embedding type, i.e., given an input embedding of a certain
type, how well the predicted moods ŷ resemble the true
moods y associated with a track. To quantify this, we will
use macro-averaged average precision as the main evalu-
ation metric, as is commonly used in multi-label classifi-
cation. Average precision summarizes the precision-recall
curve in a single number, and is defined as

AP =
∑
n

(Rn −Rn−1) · Pn, (1)



where Rn and Pn are the recall and precision at the nth

threshold at which the recall changes. Note that we use
macro averaging—we first compute AP for each mood tag,
and then average them to calculate the final result.

In our mood prediction setup, there are two main ques-
tions we need to consider: how do we arrive at the input
embedding x, and how we model and train f . Let us first
explore the various embedding types, before we take a de-
tailed look at f .

4.2 Audio-Based Models

Current mood prediction systems typically use audio-
based features as input. In this work, we use several au-
dio models, pre-trained on different datasets with varying
sizes. This ensures that our results are not specific to a type
of model.

4.2.1 Musicnn

We employ Musicnn [28]—a spectrogram-based convo-
lutional neural network (CNN) for audio tagging—as the
main pre-trained audio-based baseline. It is openly avail-
able 4 and achieves state-of-the-art results. We compare
two variants of this model: a smaller one, trained on ∼19k
tracks from the MagnaTagATune dataset [22], which we
will refer to as MCN-MTT-A; and a larger one, trained on
∼200k tracks from the Million Song dataset, which we
will name MCN-MSD-A. Both variants come pre-trained
to predict 50 tags, a subset of which can be associated with
moods. We refer to Musicnn’s documentation for further
details on its training scheme.

Musicnn is trained to predict tags for 3-second snippets
of audio; however, our setup requires a single embedding
per track. Thus, instead of the final output, we extract the
activation of the penultimate layer of the model as embed-
ding. We first compute embeddings of consecutive non-
overlapping audio snippets of 3 seconds, and then average
all snippet embeddings to form the track-level embedding.
This results in a 200-dimensional vector for MCN-MTT-A,
and a 500-dimensional vector for MCN-MSD-A. Such
global averaging operations are common for music tag-
ging [27].

4.2.2 Short-Chunk CNN

We train a short-chunk CNN [26] from scratch on the
54k training tracks in the AMS. This simple but power-
ful model feeds a Mel-spectrogram through a 7-layer CNN
with 3×3 filters, 2×2 max-pooling layers, and a fully con-
nected layer before the output. For a detailed look into the
training regime and architecture, we refer to the original
paper.

Since this model was trained directly for mood predic-
tion on the AMS, there is no need for transfer learning as
described in Section 4.4. This is a double-edged sword:
although the model is focused on the task at hand, it has to
learn a large vocabulary of tags from the limited data pro-
vided by our dataset. We will refer to this model as SCC-A

4 https://github.com/jordipons/musicnn

4.3 Listening-Based Models

In contrast to audio-based models, listening-based ones
consider user-song interaction as source data. This listen-
ing data comes in the form of a sparse feedback matrix
Y ∈ NL×S , where yl,s is a cell in Y representing the num-
ber of times the listener l has either played or rated the song
s. The former is called implicit feedback, while the latter
is referred to as explicit feedback. Factorizing Y using fac-
torization rank E (corresponding to the desired embedding
dimensionality) yields dense track embeddings x ∈ RE :
the input to our mood prediction model.

4.3.1 Taste-Profile Factorization

We use listening data from the complete Taste Profile of
28M play counts to obtain song embeddings by apply-
ing weighted matrix factorization using alternating least
squares [18] with a rank of E = 200 (chosen empirically).
These data contain relevant information about the track de-
fined exclusively with implicit feedback: how many times
which listeners have listened to which songs. We will call
these embeddings TP-L.

4.3.2 Proprietary Factorization

Large music streaming services possess much larger and
more detailed listening data than openly available re-
sources. To see how the results on open datasets translate
to industrial settings, we derive 200-dimensional embed-
dings from more than 100B in-house explicit user ratings
over the whole music catalog, by applying a weighted ma-
trix factorization algorithm. These embeddings will be re-
ferred to as P-L.

4.4 Transfer Learning

Having computed track-level embeddings x from various
sources, we need to map them to mood tags using a learn-
able function f . This is a transfer-learning scenario: the in-
put embeddings are obtained from a model trained to solve
a different (but related) task, such as collaborative filter-
ing or general audio tagging, and then applied for mood
prediction by learning f .

We model f as a multi-layer perceptron (MLP) with a
binary indicator vector as output, such that ŷ = f (x),
where ŷ ∈ [0, 1]

|T |. Thresholding ŷ gives us the set of
predicted moods. We train f for each embedding type
by minimizing the binary cross-entropy between predicted
vectors ŷ and target vectors y obtained from the true mood
tags.

The performance of MLPs heavily depends on the
choice of hyper-parameters. To enable a fair comparison,
we optimized hyper-parameters for each embedding type
individually using Bayesian optimization [36], monitoring
average precision on the validation set. To limit the com-
putational cost, we only used TP-L and MCN-MSD-A as
input embeddings, since they are the main points of com-
parison. Each setup enjoyed the same, fixed computational
budget of 2 days on a single Tesla M40 GPU, which trans-
lates to around 200 trials per setup. Table 2 shows details
on the search space and the best found configurations. We

https://github.com/jordipons/musicnn


Domain TP-L MCN-MSD-A

No layers [2..4] 4 4
No units [1500..4000] 3909 3933
learning rate [0.0001, 0.005] 4 × 10−4 5 × 10−4

dropout [38] [0, 0.5] 0.25 0.25
weight decay [0, 0.0001] 0 1 × 10−6

Table 2: Hyper-parameters optimized with Bayesian op-
timization, and best found configurations for each embed-
ding type. Search ranges were defined based on limited ini-
tial experiments. For dropout and weight decay, we quan-
tized the interval by 0.125 and 1× 10−6, respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Average Precision

P-L

TP-L

MCN-MSD-A

MCN-MTT-A

SCC-A

0.75

0.47

0.32

0.21

0.16

Figure 4: Overall results for each model.

see that for both embedding types, the best models reach
the upper limit of our search space, which indicates that
even larger models might lead to better results. However,
we saw diminishing improvements for large models, so we
do not expect much further improvement.

We initialize the MLP weights using Kaiming’s
method [14], and use a rectifier activation function [13]
after each layer (the output layer uses a sigmoid). The
input is standardized using mean and standard deviation
estimated on the training set. We then train f for 100
epochs using a cosine-annealed learning rate [23] (with-
out restarts) and a 1-epoch warm-up phase. During train-
ing, we monitor average precision on the validation set to
select the best performing model parameters.

The code to reproduce these experiments is available
online. 5

5. RESULTS
Figure 4 shows the overall results of each embedding type.
As mentioned before, our main analysis will be based on
the results of open models on publicly available data. We
will discuss the results of P-L later.

We see that listening-based embeddings easily out-
perform audio-based ones (TP-L vs. MCN-MSD-A). We
also see a variation within audio-based models. Our exper-
iments were not designed to explain this variation, and the
usual suspects offer insufficient clues: for example, dataset
size might be an issue (200k for MCN-MSD-A vs. 19k for
MCN-MTT-A), but SCC-A was trained on the 54k training
tracks from AMS with worse results—here, dataset size
relative to vocabulary size might have been the issue. Fur-
ther experiments, out of scope of this paper, are necessary
to understand this in depth.

5 https://github.com/fdlm/listening-moods
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Figure 5: Difference of average precision between the best
audio-based model (MCN-MSD-A), and the best listening-
based model on open data (TP-L). Negative ∆AP means
the audio-based embedding performed better. The high-
lighted tags in (a) belong to the same mood cluster.

5.1 Tag-Wise Results

Even though the overall results are clear, some tags might
be easier to predict from audio than from listening data.
To explore this, we subtract the tag-wise average precision
of TP-L and MCN-MSD-A, and show the results in Fig-
ure 5. Indeed, we find 20 tags for which MCN-MSD-A
out-performs TP-L. Moreover, these tags seem to describe
related moods. To verify this, we clustered the 188 moods
using affinity propagation [12], resulting in 13 clusters. We
see that 11 out of the 20 mood tags belong to the same
cluster, as highlighted in Figure 5a. In contrast, the tags in
Figure 5b come from a wider variety of clusters (not high-
lighted). This indicates that it is a single, coherent “mood
subspace” on which audio data is better suited.

5.2 Results by Tag Frequency

As shown earlier, mood tags in the AMS are unevenly dis-
tributed: the least popular tag counts only 95 annotations,
while the most popular track 14k. It is reasonable to as-
sume that uncommon tags are more difficult to predict than
common ones. To evaluate this, we plot the average preci-
sion per tag depending on the tag frequency in Figure 6.

Although we see a direct relation between tag frequency
and average precision, the extent is less than we expected.

https://github.com/fdlm/listening-moods
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Figure 6: Results per tag frequency. Dots represent the
average precision obtained by a tag, that occurs at a fre-
quency shown on the x axis. Lines represent linear regres-
sion models, with shades indicating 95% confidence inter-
vals.

Furthermore, all embedding types seem to be equally af-
fected: with the exception of SCC-A, the regression slopes
of both audio- and listening-based models are notably sim-
ilar. The exception of SCC-A indicates that tag sparsity
may be an issue when training audio models from scratch,
but not so when transfer-learning a model that has been
trained on more balanced data.

5.3 Results of Proprietary Algorithms

So far, we have discussed the results of open methods on
publicly available datasets. However, the attentive reader
has noticed that Figure 4 and 6 demonstrate how P-L per-
forms even better than TP-L. To explain the gap between
TP-L and P-L, we can point to the different nature and
amount of data they were trained on—28M implicit plays
for the former, but more than 100B explicit ratings for the
latter. The sheer amount of data (a factor of ∼3500) and
the stronger signal provided by explicit feedback seem to
be remarkably beneficial.

5.4 Consistency of Audio-Based Models

We have shown that listening-based models clearly out-
perform audio-based models in mood prediction. To
demonstrate this, we selected a wide variety of audio mod-
els that differed in multiple aspects: network architec-
ture, training datasets, and training regime (pre-trained and
trained from scratch). Given these differences, we can ask
if there are aspects of mood that current audio models are
not capable to capture, but listening-based models can. We
try to answer this question by exploring which embeddings
capture similar mood information. If an embedding cap-
tures similar aspects of mood as another embedding, their
tag-wise performance should be correlated—but not neces-
sarily similar in magnitude, as one embedding might just
perform better than the other.

We show the correlation in tag-wise performance in
Figure 7. The remarkable result is that regardless of their
differences, the tag-wise results of all audio-based mod-
els are much more correlated than between audio- and

P-
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Figure 7: Correlation between tag-wise results of differ-
ent embeddings. We see that audio-based ones correlate
strongly with each other, compared to weaker correlations
between listening-based ones.

listening-based embeddings. This indicates that audio-
based models do capture similar aspects, even if they
might not capture it equally well (as the difference between
MCN-MSD-A and SCC-A shows). This does not mean
that the aspects current audio-based models are missing are
not present in the audio at all—just that current models are
not able to extract them.

We do not observe a similar pattern for listening-based
embeddings: TP-L and P-L show weaker correlation. At
this time, we cannot provide a better explanation than re-
ferring to the different nature of explicit and implicit feed-
back data and the sizes of the two datasets.

6. CONCLUSIONS

In this work we have associated 66 993 tracks from the
Million Song Dataset with the AllMusic set to yield the
AMS, the largest dataset available with the following data
modalities: high quality human mood annotations, audio
content, and listening data. Furthermore, we have shown
how listening data surpass audio-based embeddings when
classifying moods in the proposed dataset. The notable
differences in performance between listening- and audio-
based models suggest that either i) current state-of-the-art
audio models are not capable of successfully extracting
certain mood information about a given track; and/or ii)
such mood information is not necessarily present in the
audio content, and thus the usage of other signals such as
listening information may be required to obtain more accu-
rate results. With these findings, we encourage researchers
to employ data beyond audio content when estimating the
mood of a track. In the future, we look to further scrutinize
the tags to better understand which moods might be more
suitable to be extracted by which type of input represen-
tation. Moreover, and along these lines, we would like to
address this task in a multi-modal manner, combining dif-
ferent sources to potentially improve performance of this
compelling and timely problem.
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