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ABSTRACT

The lack of labeled data is a major obstacle in many mu-
sic information retrieval tasks such as melody extraction,
where labeling is extremely laborious or costly. Semi-
supervised learning (SSL) provides a solution to alleviate
the issue by leveraging a large amount of unlabeled data.
In this paper, we propose an SSL method using teacher-
student models for vocal melody extraction. The teacher
model is pre-trained with labeled data and guides the stu-
dent model to make identical predictions given unlabeled
input in a self-training setting. We examine three setups
of teacher-student models with different data augmenta-
tion schemes and loss functions. Also, considering the
scarcity of labeled data in the test phase, we artificially
generate large-scale testing data with pitch labels from un-
labeled data using an analysis-synthesis method. The re-
sults show that the SSL method significantly increases the
performance against supervised learning only and the im-
provement depends on the teacher-student models, the size
of unlabeled data, the number of self-training iterations,
and other training details. We also find that it is essential
to ensure that the unlabeled audio has vocal parts. Finally,
we show that the proposed SSL method enables a baseline
convolutional recurrent neural network model to achieve
performance comparable to state-of-the-arts.

1. INTRODUCTION

One of the key elements in the success of deep learning
is a large amount of labeled data. However, when the la-
beled data is scarce in a given task, it can be a bottleneck
in leveraging the power of deep neural networks. The issue
has been found in many music information retrieval (MIR)
tasks as well. Among others, melody extraction research
has suffered from it as pitch labeling requires experienced
annotators to handle the annotation tool and the process is
extremely labor-intensive [1].

The lack of labeled data in melody extraction research
has been tackled in several different ways. A popular
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method to alleviate the issue is data augmentation which
increases labeled data by transforming the input audio, for
example, using pitch-shifting [2–4]. Data augmentation,
however, has the limitation in covering the diversity in
the input space. Another approach is using multi-track
audio data [5–7]. This allows to use monophonic pitch
tracking algorithms for the melodic source and therefore
it expedites laborious the pitch labeling. However, multi-
track recording datasets often maintain individual tracks
as stem files where multiple similar sound sources can be
mixed (e.g., main vocal and backing vocal). Therefore,
obtaining clean pitch labels from multi-track audio can be
not straightforward [8, 9]. Recently, melody MIDI files,
which are more easily accessible, have been utilized to
guide melody extraction from audio with transfer learn-
ing techniques from the symbolic to audio domain [3, 10].
MIDI data exhibit greater flexibility than audio on data
augmentation, but still face limitations on representing nat-
ural pitch contours of singing voice, which usually contain
subtle variations such as vibrato and portamento.

Semi-supervised learning (SSL) is another but more
general strategy to address the lack of labeled data. SSL
uses a large amount of unlabeled data, which is usually
easy to collect, jointly with labeled data. A popular class
of SSL methods is based on self-training in the teacher-
student framework. Recent works have combined random
data augmentation with the SSL methods to encourage the
model to produce robust output even when input is per-
turbed. This approach has achieved state-of-the-art per-
formance on image classification [11–13], speech recog-
nition [14], and audio classification [15]. There are a few
MIR researches that used the teacher-student framework
to address the lack of labeled data, for example, in au-
tomatic drum transcription [16] and singing voice detec-
tion [17, 18]. However, to the best of our knowledge, re-
cent advances in SSL methods that leverage the power of
deep neural networks and random data augmentation in the
teacher-student framework have been not studied yet in the
music domain.

In this paper, we apply the SSL methods to vocal
melody extraction with the following contributions. First,
we present the SSL methods for vocal melody extraction
leveraging large-scale unlabeled music datasets. This pre-
vents the model from overfitting to small labeled data and
improve the performance. Second, we compare three se-
tups of teacher-student models along with various audio



data augmentation techniques. We show the model with
the consistency regularization is most effective. Third,
we investigate effective SSL strategies by exploring joint
training, the size of unlabeled data, and the number of
self-training iterations. Fourth, we show that the proposed
teacher-student training method enables a baseline convo-
lutional recurrent neural network model to achieve perfor-
mance comparable to state-of-the-arts. Finally, apart from
the SSL method, we propose large-scale testing data arti-
ficially generated from unlabeled data using an analysis-
synthesis framework, considering the lack of labeled data
even at the testing stage. Evaluation on the diverse and
sizable test set will reinforce the effectiveness of the pro-
posed method. For reproducibility, the source code and
pre-trained model used in this paper are available online 1 .

2. RELATED WORK

The teacher-student framework has been previously stud-
ied in several MIR tasks to address the lack of labeled data.
Wu and Lerch applied the approach to automatic drum
transcription [16]. They used multiple teacher models
based on non-negative matrix factorization (NMF) trained
with different datasets and a student model based on deep
neural network trained with labels from the teachers. They
showed that the student model outperforms the teacher
models. However, it was not a self-training setting where
the teacher model is repeatedly replaced with an improved
student model. Schlüter explored the self-training for
singing voice detection [17]. They first trained a convo-
lutional neural network (CNN) on the original labels with
low-granularity, then a second network on pseudo-labels
with high-granularity from the first network, and a third
network on the summarized saliency maps from the sec-
ond network. They showed this self-improvement worked
up to the third network. However, they conducted the self-
training on weakly-labeled data in the context of multiple-
instance learning and did not used any unlabeled data. Re-
cently, Meseguer-Brocal et al. used the teacher-student
paradigm for singing voice detection to create a large-scale
time-aligned vocal melody and lyrics dataset [18]. They
consistently improved the teacher model by increasing the
correlation between the prediction of the model and the
time-aligned lyrics annotation.

3. METHODS

3.1 Model Architecture

Recent melody extraction algorithms have used CNN [9,
19, 20] and its variants [4, 21, 22] as a standard architec-
ture. Since we focus on the effectiveness of SSL in this
paper, we employ a previously proposed convolutional re-
current neural network (CRNN) which was a baseline ar-
chitecture in [4]. The CRNN architecture consists of 4
ResNet blocks and a bi-directional long short-term mem-
ory layer. We first merge the audio waveforms into a mono
channel and downsample them to 8 kHz. We then calculate
the logarithmic-magnitude spectrogram using short-time

1 https://github.com/keums/melodyExtraction_SSL

Algorithm 1: Train SSL Models
Train a teacher network T1 on labeled data
D = {(xd, yd) : d ∈ (1, ..., N)};

Generate augmented data
Ũ = {x̃u = RAA(xu) : u ∈ (1, ...,M)} from
unlabeled data U = {xu : u ∈ (1, ...,M)};

for i = 1 to k do
Use Ti to generate pseudo labels for U (or Ũ);
Train student network Si using both D and U
(or Ũ) as training data;
Ti+1 = Si;

end

Fourier transform with a 1024-point Hann window and an
80-point hop size.The CRNN architecture takes 31 con-
secutive frames of the spectrogram as input and predicts a
pitch label quantized with a resolution of 1/8 semitone and
ranged from E2 (82.4 Hz) to B6 (1975.7 Hz). The size of
the output layer is 442, including a non-vocal label.

3.2 SSL in the Teacher-Student Framework

Our SSL method is based on self-training in the teacher-
student framework where the teacher model is first trained
with labeled data and then the student model is trained with
artificial labels generated from the teacher model using un-
labeled data. The artificial labels can be the prediction dis-
tribution vector [11, 12] or one-hot vector determined by
the class with a highest confidence [13, 23]. We formally
describe the overall procedure in Algorithm 1. We first
train the initial teacher model T1 using only labeled dataD
where xd are labeled examples and yd are one-hot refer-
ence labels. For unlabeled data U where xu are unlabeled
examples, we use random data augmentation to generate
noisy input data Ũ where x̃u are noisy unlabeled exam-
ples. RandAudioAugment (RAA) is an audio version of
random data augmentation method which is described in
Section 3.4. While it is more effective to use random data
augmentation on the student model only in image classifi-
cation [12], we also try applying it for both teacher and
student models for ablation study. Once we train the stu-
dent model jointly with the labeled data and unlabeled data
(with pseudo labels), we replace the teacher model with the
student model. We repeat the same pseudo labeling and the
training with a new student model.

3.3 Proposed Teacher-Student Models

Our proposed Teacher-Student models are illustrated
in Figure 1. The supervised loss LD is computed with la-
beled data and defined as:

LD =
1

N

N∑
d=1

H(yd, p(y|xd; θs)) (1)

where H(·) denotes the cross-entropy between the pitch
label yd and pitch prediction p(y|x), and θs denotes
a set of parameters of the student model. The super-
vised loss is a common loss term of the three investigated
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Figure 1. Diagram of the three Teacher-Student models.

teacher-student models. Each of them are explained below.

Basic Teacher-Student is a fundamental teacher-student
framework that uses the unlabeled data U but trains the
student network with the pseudo labels generated from the
teacher network. The final loss of Basic Teacher-Student
LB is defined as

LB = LD +
1

M

M∑
u=1

H(yu, p(y|xu; θs)) (2)

where yu is the pseudo labels on U generated by the
teacher network, i.e. yu = p(y|xu; θt) where θt to
denote the parameters of teacher network. The basic
teacher-student model is illustrated in Figure 1(a).

Noisy Teacher-Student takes noisy unlabeled data
Ũ for both of the teacher and student networks using RAA
and the rest is the same as the basic teacher-student model.
The final loss of Noisy Teacher-Student LN is defined as

LN = LD +
1

M

M∑
u=1

H(ỹu, p(y|x̃u; θs)) (3)

where ỹu is a prediction on Ũ generated by the teacher
network, i.e. ỹu = p(y|x̃u; θt). The noisy teacher-student
model is illustrated in Figure 1(b).

Noisy Student takes noisy unlabeled data Ũ only for
the student network while the teacher network takes
unnoised input U to generate the pseudo labels. The idea
is that the student should produce consistent outputs that
minimize the difference from the teacher even though
the input is perturbed [12]. This notion is also similar to
consistency regularization [24,25]. The final loss of Noisy
Student LC is defined as

LC = LD +
1

M

M∑
u=1

H(yu, p(y|x̃u; θs)) (4)

The noisy student model is illustrated in Figure 1(c).

3.4 Data Augmentation

We conducted pitch-shift by± 1,2 semitone on the labeled
data D (audio and corresponding labels). In the melody
extraction task, it has shown that pitch-shifting can im-
prove the generality and performance of the model by in-
creasing the amount of audio and label pairs for differ-
ent f0 [2, 26]. For data augmentation of unlabeled data U ,
we propose RandAudioAugment (RAA) inspired by Ran-
dAugment [27], which is a method of randomly applying
different kinds of transformations to increase image data.
RAA converts audio by randomly selecting multiple au-
dio effects as follows: audio equalizer (low-shelf, high-
shelf), filters (low-pass, high-pass), overdrive, phaser, and
reverb. Here, we use pysndfx that is a Python library de-
signed for applying effects to audio files 2 . We sampled
a random magnitude of each transformation from a pre-
defined range. The implementation details for RAA are
also described in the source code.

3.5 Data Selection

The SSL algorithm using large-scale unlabeled data may
suffer from labeling noise. Unlabeled data are highly
likely to have audio without vocals. Filtering only high-
confidence examples or the top-K examples in image clas-
sification has demonstrated to be an effective method to
handle the labeling noise [12,28]. Likewise, we performed
data selection so that only the tracks with vocal ratios ex-
ceeding a threshold were used for training. To estimate the
ratio of vocals included in the track, we used our singing
voice detector 3 based on CNN based on [29]. Consider-
ing the distribution of vocal ratio in the FMA, we set the
threshold to 0.3.

4. DATASETS

Table 1 shows the simple statistics of the labeled and unla-
beled training datasets and test datasets.

2 https://github.com/carlthome/python-audio-effects
3 https://github.com/keums/SingingVoiceDetection



Dataset Number of Tracks Total Length

Training
(Labeled)

RWC 100 6h 47m
MedleyDB 61 2h 39m

iKala 262 2h 6m

Training
(Unlabeled)

In-house 535 6h 21m
FMA_small 3,521 / 8,000 25h / 60h

FMA_medium 10,639 / 25,000 89h / 208h
FMA_large 40,505 / 106,574 337h / 888h

Test

ADC04 12 4m
MIREX05 9 4m
MedleyDB 12 43m

AST218 218 14h 53m

Table 1. Description of datasets. In FMA, The two num-
bers indicate tracks with vocal (the vocal ratio above 0.3)
and all tracks respectively.

4.1 Labeled Data

We used the three labeled datasets (RWC [30], Med-
leyDB [6], and iKala [7]) and split them into a train and
validation set following [9]. We augmented the training
data by pitch-shifting with ± 1,2 semitone. The total
length of the labeled training data amounts to about 55
hours after the data augmentation.

4.2 Unlabeled Data

As to unlabeled data, we used an in-house dataset crawled
from YouTube and the Free Music Archive (FMA) [31].
The in-house dataset is pop songs with vocals recorded
in a variety of environments. It includes both public-
released and user-uploaded tracks. FMA is a large-scale
open dataset containing up to 106,574 tracks and covers
161 genres of music. We used FMA for performance com-
parison on data scalability. The FMA has three different
subsets depending on the number of the track and genre
included: FMA_small (FMAS), FMA_medium (FMAM ),
and FMA_large (FMAL). We selected vocal tracks from
them as described in Section 3.5 and denote the selected
versions as FMASv, FMAMv , and FMALv , respectively.
We augmented the unlabeled datasets via RAA during
training as described in Section 3.4.

4.3 Test Data

4.3.1 Public Test Sets

We used three public test sets (ADC04 4 , MIREX05 4 , and
MedleyDB) to evaluate the performance of vocal melody
extraction. In this study, we excluded non-vocal tracks
from ADC04 and MIREX05, and used songs not included
in training data for MedleyDB. To obtain the ground
truth for singing voice in MedleyDB, we adopted its
’MELODY2’ annotations. These three datasets have been
commonly used to compare the performance of melody
extraction. However, the number of tracks and the total
length are very limited as shown in Table 1.

4 http://labrosa.ee.columbia.edu/projects/melody/

4.3.2 Proposed Large-Scale Test Set

To make up the scarcity of testing data for evaluating
singing voice extraction algorithms, we propose a new
test set composed of DSD100 [32] and MusDB18 [33].
The two multitrack datasets were originally designed for
source separation. Each track has four isolated stems:
vocals, drums, bass, and others. Following the analy-
sis/synthesis framework [8], the singing melodies for 218
selected tracks 5 were synthesized with automatically gen-
erated f0 contours. In detail, for each song, we extracted
the melody of the vocals with five different pitch trackers,
and each f0 information along with the vocal audio was
fed into the WORLD [34] (D4C edition [35]) vocoder to
reproduce five monophonic variations of the vocal stem.
The original vocal audio was parameterized into harmonic
and aperiodic spectral envelopes, and then resynthesized
with provided pitch contours. Then a mask was applied
to filter intervals without f0 information. For remixing,
the amplitude of the synthesized vocal was weighted to
that of the original vocal stem, and the rest stems were
directly summed up as accompaniments, then mixed with
the weighted synthesized vocal that perfectly matched the
f0 annotation. These 1,090 polyphonic mixtures with ac-
curate and automatic annotations constitute the proposed
analysis/synthesis test set, AST218 6 .

Each track in AST218 has five variations whose vocal
melody was annotated separately with five different pitch
estimators: CREPE [36] (with confidence threshold of 0.5
and 0.7), pYIN [37], and Lu&Su [3] (with time step of
10 and 20ms), as they have different merits. Since there
is no exact way to pinpoint a common optimal confidence
threshold across the entire dataset, we chose two differ-
ent threshold values for CREPE: one is 0.5, suffering from
high false positive (FP) but preserving details; the other
threshold is 0.7, acceptable FP though sacrificing some re-
call. pYIN was chosen for it has even lower FP while pro-
ducing stable and continuous melodic lines when the vo-
cal stem is monophonic. However, it is not stable in the
pholyphonic scenario, which is universal in DSD100 and
MusDB18. In need of other polyphonic-based melody es-
timators to balance the f0 quality, we chose two time step
setups of the Lu&Su model: 20ms, at which this model
is optimized; and 10ms, which provides more continuous
predictions and offers alternative pitch contours when en-
countering multiple melodic vocal lines.

The analysis/synthesis framework has been practiced
successfully in evaluating monotonic pitch trackers [36].
As a sanity check, we evaluated several patchCNN [19] se-
tups on the original and resynthesized ADC04, MIREX05,
and MedleyDB. The differences of OA are within ± 2–
5%, which is acceptable, meaning this framework is also
applicable for polyphonic test set generation.

When evaluating vocal extraction algorithms on
AST218, we averaged the scores from the five variations.
Our pilot study shows that these five pitch contours reach

5 Songs that appear in MedleyDB were excluded for they were part of
the training data, but songs in MusDB18 having counterparts in DSD100
were not removed for they are not exactly identical. Additionally, 12
songs that do not have discernible vocal melodies were also excluded.

6 https://sites.google.com/view/mctl/resource
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Figure 2. Comparison with supervised-learning model and
three student models on three test sets.

consensus over a majority of frames, while the estimations
differ for tricky frames. Rather than manually check on
the estimated f0, we used AST218 in an ensemble manner,
fully leveraging the spirit of automatic pitch annotation.

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Training Details

We used the CRNN architecture with residual connections
and bi-directional long short-term memory in all experi-
ments. The implementation of the model was consistent
with that of the main network of [4]. We trained our mod-
els using Adam optimizer for 70 epochs on 2 GPUs. The
initial learning rate was set to 0.003 in all the experiments.
We used a learning rate schedule that reduces the learning
rate by 0.7 times if validation accuracy did not increase
within three epochs. The model and the training proce-
dures were implemented using Keras 7 [38].

5.1.2 Evaluation

To evaluate the performance of melody extraction, we
mainly used overall accuracy (OA) which combines the ac-
curacy of pitch estimation with voice detection. We also
used three metrics raw pitch accuracy (RPA) for pitch es-
timation, and voicing recall (VR) and voicing false alarm
(VFA) for voice detection [39]. These metric are computed
by mir_eval [40] library designed.

5.2 Experiment 1: Teacher-Student Models

Our first experiment is to demonstrate the efficacy of the
proposed Teacher-Student models for SSL. In this experi-
ment, we trained three Teacher-Student models described
in Section 3.3 using an in-house dataset as unlabeled data.
We evaluated the performance of each model on ADC04,
MIERX05, and MedleyDB, which have been used as stan-
dard test sets for evaluation. As shown in Figure 2, the ba-
sic teacher-student model can achieve 1.1% higher average
OA than the supervised-only model which has 77.7% av-
erage OA. This confirms the possibility of using unlabeled
data to improve the performance of melody extraction. Our
experiment also shows that the noisy student model outper-
forms all the others, having 78.9% average OA.

The noisy student model increases OA by 3.1% with re-
spect to the supervised-only model in MedleyDB, which is

7 We used Keras 2.3.0, Accessed: 15 May 2020
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Figure 3. Comparison with pre-training, fine-tuning, and
joint training methods on three test sets.

especially a challenging dataset because it contains tracks
that are difficult to distinguish between vocals and back-
ground music, or tracks with excessive audio effects. The
results indicate that the student network can be trained re-
liably using the noisy student model, even if the initial
teacher network is not robust to diverse noise. Meanwhile,
the performance of the noisy teacher-student has deterio-
rated, being worse than the supervised-only model. This
degradation is probably because the noised teacher model
is not generating reliable pseudo labels.

5.3 Experiment 2: Joint Training vs. Fine-Tuning

The training methods of the teacher-student framework can
be divided into three approaches depending on how D and
U are used for training: pre-training on only U and then
fine-tuning on D; joint-training on both U and D simulta-
neously. Figure 3 compares the results among pre-training,
fine-tuning, and joint training for the noisy student model.
The jointly trained model achieves 0.8% higher average
OA than the fine-tuned model, with the highest results on
MedleyDB. This indicates that joint training on unlabeled
data and labeled data would help the networks produce a
decision boundary that better reflects real music [41]. In-
terestingly, the average OA of the pre-trained model only
on unlabeled data is higher than that of the supervised
learning model. This suggests that the distribution of un-
labeled data is similar to that of labeled data. Considering
that the in-house dataset consists of pop songs with vocals,
the in-house dataset can be seen as having a similar ten-
dency to the labeled data. It provides insight into the data
selection in the next experiment.

5.4 Experiment 3: Size of Training Data

We investigated the importance of the size and validity of
unlabeled data. To explore the effect of the size of unla-
beled data, we started with the in-house dataset as train-
ing data for the noisy student model and progressively in-
cluded larger subsets of FMA. The results can be seen in
Figure 4. Although the FMA data set contains more nu-
merous tracks than the in-house dataset, the average OA
of FMAS and FMAL is lower than that of the model
trained only with the in-house dataset. Note that the pro-
posed model focuses only on vocal melodies. As a result,
teacher models may suffer from labeling noise generated
by numerous instrument tracks included in the FMA. In
addition, all labels on the instrumental track are classified
as non-vocal pitch, resulting in data imbalance.
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To confirm the validity of the dataset, we performed
data selection for each FMA subset as mentioned in Sec-
tion 3.5 and used them to train each student model. In-
terestingly, as the size of the U increases, the performance
of each model tends to be significantly improved. For ex-
ample, FMALv achieves an average OA of 80.2%, which
is 3.6% higher than the supervised-only model. This indi-
cates that effective SSL requires a large amount of U with
a similar distribution for D.

5.5 Experiment 4: Iterative Training

We iterated the self-training 4 times for the noisy student
model using the in-house dataset and FMALv . The results
are illustrated in Figure 5. We observe that the perfor-
mance continuously increases up to 2 iterations achieving
the highest average OA of 81.1%. Generally, self-training
tends to amplify the error caused by labelling noise dur-
ing training. However, the noisy student model trained
on large-scale unlabeled data can help overcome this diffi-
culty. Nevertheless, increasing the number of training iter-
ations three or more times does not improve performance,
and rather slightly lower the accuracy.

5.6 Comparison with State-of-the-Arts

We compared the supervised-only model (as a baseline)
and proposed the noisy student model (NS) with four re-
cent melody extraction algorithms based on deep neu-
ral networks: the patch-based CNN (patchCNN) [19],
the deep salience map (DSM) [9], the streamlined en-
coder/decoder network (segNet) [21], and the joint detec-
tion and classification model (JDC) [4], which have open-
sourced codes with vocal mode. Each method was run
with its default parameters, and then evaluated on the three
conventional test sets and the newly introduced AST218.

Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN [19] 76.9 / 72.9 69.7 / 73.8 44.0 / 59.3 42.3 / 59.7
DSM [9] 89.2 / 72.2 87.7 / 80.1 80.6 / 75.4 38.9 / 68.3

SegNet [21] 88.7 / 83.3 82.6 / 80.0 70.6 / 75.5 41.5 / 68.1
JDC [4] 90.6 / 83.5 91.4 / 87.4 72.7 / 78.1 55.8 / 75.4

Baseline 78.7 / 76.8 79.9 / 81.5 57.2 / 70.7 56.3 / 69.7
Proposed (NS) 90.4 / 82.2 90.4 / 85.9 76.3 / 79.2 54.2 / 74.2

Table 2. Vocal melody extraction results in terms of (RPA
/ OA) of the proposed and other methods on various test
sets. The proposed model is iterated the self-training two
times using the in-house dataset and FMALv .

Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN 91.8 / 46.1 80.3 / 11.6 60.1 / 22.4 61.6 / 26.0
DSM 95.7 / 61.1 93.9 / 29.4 85.4 / 26.6 44.6 / 7.7

SegNet 95.2 / 38.5 92.2 / 24.0 78.8 / 21.7 51.7 / 10.0
JDC 96.7 / 40.2 97.5 / 18.5 80.5 / 18.3 64.7 / 8.6

Baseline 92.6 / 33.8 89.1 / 15.2 71.0 / 16.7 72.0 / 19.2
Proposed (NS) 97.4 / 42.1 97.3 / 20.4 83.3 / 19.1 61.6 / 9.4

Table 3. Voicing detection results in terms of (VR / VFA)
of the proposed and other methods on various test sets.

Besides, we report the frame-level scores instead of song-
level ones to settle uneven song lengths.

Table 2 and Table 3 list the results of each method on
the four test sets. In general, performances of the proposed
NS model are comparable to other supervised-learning-
based methods and even outperforms others in MedleyDB,
and it effectively improves the OA of the baseline by 4.5–
8.5%. The overall rankings of VR and VFA vary across
the test sets, but the behavior converges in terms of OA.
One can also observe that the AST218 is the most chal-
lenging in the majority of cases. In such a dataset, the per-
formance of the NS model shows that the proposed method
is robust to large-scale evaluation. However, the NS model
improves the baseline except for VR and RPA in AST218.
This result might be because the simple rule-based remix-
ing of vocal and accompaniment tracks in AST218 is dif-
ferent from the artistic practice of mixing engineers, which
can affect voicing detection and, in turn, RPA.

6. CONCLUSION

This study provides a framework of semi-supervised learn-
ing using the teacher-student model for vocal melody ex-
traction. We compared three setups of teacher-student
models and revealed that the NS model is the most effec-
tive and robust to real-world music where various noises
can be present. We showed that large-scale unlabeled data
is effective when they are properly selected. We found
that iterative training for the teacher-student model helps
improve performance. We also confirmed the effective-
ness of the proposed method by evaluating it on artificial
large-scale test data generated from automatically anno-
tated multitrack data. Although these findings are based
only on vocal melody extraction, we believe our method
can be extended to other MIR tasks that suffer from the
lack of labeled data such as automatic music transcription
and chord recognition.
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