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ABSTRACT

Disentangling factors of variation aims to uncover latent
variables that underlie the process of data generation. In
this paper, we propose a framework that achieves unsuper-
vised pitch and timbre disentanglement for isolated musi-
cal instrument sounds without relying on data annotations
or pre-trained neural networks. Our framework, based on
variational auto-encoders, takes as input a spectral frame,
and encodes pitch and timbre as categorical and continuous
variables, respectively. The input is then reconstructed by
combining those variables. Under an unsupervised train-
ing setting, a major challenge is that encoders are tasked
to capture factors of interest with distinct latent represen-
tations, without access to the corresponding ground-truth
labels. We therefore introduce auxiliary tasks and objec-
tives which leverage pitch shifting as a strategy to create
surrogate labels, thereby encouraging the disentanglement
of pitch and timbre. Through an ablation study we ana-
lyze the impact of the proposed objectives. The evaluation
shows the efficacy of the proposed framework for learning
disentangled representations, and verifies its applicability
to unsupervised pitch classification and conditional spec-
tral synthesis.

1. INTRODUCTION

The generative process from observed data can be de-
scribed as having multiple latent factors of variation to ex-
plain the observations. For example, we may consider that
a musical instrument sound consists of its pitch and timbre
characteristic as the major underlying factors of variation.
The concern of representation learning is to learn a model
that captures such explanatory factors which are expected
to be transferable to downstream tasks [1].

Disentanglement is said to be crucial for a good repre-
sentation [1]. A disentangled representation allocates dis-
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tinct factors of variation into separate dimensions of the
representation, which facilitates an interpretable structure.
Interventions along certain dimensions thereby only affect
the corresponding latent factors, leading to a sparse change
to the observation. In this paper, we propose a framework
for learning disentangled representations of pitch and tim-
bre, the two dominant factors of an isolated musical in-
strument sound. Unlike the supervised frameworks that
address similar tasks [2, 3], we do not rely on data annota-
tions or networks pre-trained on any form of supervision.

Many of the recent endeavors to achieve disentan-
gled representation learning in an unsupervised setting are
based on variational auto-encoders (VAEs) [4]. VAEs
depict a data-generating process p(x, z) = p(x|z)p(z),
where a multivariate latent variable z is first sampled from
a prior distribution p(z), and the observation x is sampled
from the conditional distribution p(x|z) parameterized by
a neural network; a variational distribution q(z|x), also pa-
rameterized using a neural network, is introduced to ap-
proximate the true posterior p(z|x).

In order to achieve disentanglement without access to
data annotations, recent studies have proposed to impose
regularizations on the latent space to promote a factorized
aggregated posterior distribution q(z) [5–7]. These works,
however, demand further probes (e.g., traversal of latent
space) to identify the semantics of the learned representa-
tions. One can also leverage prior knowledge of data struc-
ture and inject specific constraints [8–11]. For example,
factors of variation of speech or video data are categorized
as sequence-level (e.g., speakers) and segment-level (e.g.,
phonetic contents) latent variables [9, 10]. The mentioned
prior knowledge, however, is not trivially applicable to fac-
tors of interest lacking of structural hierarchy (e.g., an iso-
lated musical instrument sound with a constant pitch has
both timbre and pitch as the sequence-level variable).

Given the challenge of disentangled representation
learning in the unsupervised setting, literature has also as-
sumed the accessibility to implicit or weak supervision in
the form of grouped or paired data [12–14]. Our proposed
framework, in contrast, does not require such a form of
supervision; instead, we leverage pitch-shifting to create
paired data, thereby introducing auxiliary objective func-
tions to enhance feature disentanglement.

The underlying assumption of the proposed framework



is that a moderate shift of pitch does not alter the timbre
of the original musical instrument sound; we can thereby
consider the original and its pitch-shifted version as a pair,
and introduce several constraints to promote disentangle-
ment of pitch and timbre. In particular, we adapt the con-
trastive learning method [15] to our framework, and max-
imize the similarity measure of the paired data. We also
employ cycle-consistency loss [16, 17] to further improve
the disentanglement. Moreover, we propose an objective
function that explicitly accommodates the information of
pitch difference that arises from pitch-shifting [18], which
plays a key role for performance improvement. An abla-
tion study is conducted to evaluate the efficacy of the in-
troduced objective functions.

We consider a generative process that samples a cate-
gorical and a continuous latent variable, referred to as pitch
and timbre, respectively, and samples the data conditioned
on both the variables. This manifests the discrete nature
of pitch and introduces a strong inductive bias crucial to
the success of unsupervised disentanglement [19], which
is made feasible as each sample in this study corresponds
to a pitch class in the equal tempered scale.

For evaluation, classifiers are built to predict ground-
truth pitch and instrument labels, which take as input the
learned timbre representation. The low accuracy for pitch,
and the high accuracy for instrument indicate a disentan-
gled timbre representation. We also evaluate the pitch
latent variable in terms of the metrics used for cluster-
ing tasks, which demonstrates the model’s capability of
unsupervised pitch classification. Attributed to the in-
terpretability of the disentangled representation, we can
achieve pitch-conditioning spectral synthesis whereby dis-
entanglement is evaluated through the lens of conditional
generation. We also propose a metric that accounts for con-
sistency and diversity of pitch of the generated data. Our
main contributions can be summarized as follows:

• Propose a framework based on VAEs to tackle unsu-
pervised disentanglement of pitch and timbre.

• Leverage pitch-shifting which enables the auxiliary
objectives that further introduce inductive biases to
improve disentanglement.

• Design a metric that accounts for pitch consistency
and diversity which quantifies the performance of
disentanglement.

We present the proposed framework and the auxiliary
objective functions in Section 2, and detail the implemen-
tation along with the experimental setup in Section 3. The
evaluation methods and the proposed metric are elaborated
in Section 4, followed by experimental results and discus-
sions in Section 5. The paper is concluded in Section 6.

2. METHOD

In this section, we describe the proposed framework, and
present the auxiliary objective functions that are intro-
duced to further enhance the model.

Figure 1: The proposed framework. The dashed lines de-
note sampling, and the cross denotes concatenation.

2.1 Overview

Figure 1 illustrates the proposed framework, which depicts
a data-generating process of x ∈ RF being sampled from
a conditional distribution pθ(x|z, c), referred to as a de-
coder, where c ∈ RK is a categorical latent variable for
pitch, and z ∈ RL is a continuous latent variable for tim-
bre. θ denotes the parameters of the decoder. Variational
distributions qφ(c|x) and qφ(z|x), referred to as the pitch
and timbre encoder, are introduced to approximate the true
posterior distributions. The parameters of the two encoders
are collectively denoted as φ. Under the framework of
variational inference, the generative model is optimized
through the evidence lower bound (ELBO) of pθ(x):

L(θ, φ;x) = Eqφ(z|x)qφ(c|x)[log pθ(x|z, c)]
−DKL

(
qφ(z|x)‖p(z)

)
−DKL

(
qφ(c|x)‖p(c)

)
.

(1)

For the continuous latent variable z, we follow the lit-
erature [4] assuming p(z) = N (0, I) and qφ(z|x) =
N (µφ(x), diag(σ

2
φ(x))). For the categorical latent vari-

able c, we let p(c) = U(0, 1), a standard uniform dis-
tribution over number of categories K, and qφ(c|x) =
Cat(c|πφ(x)). We can treat the pitch encoder as a pitch
classifier that can be trained altogether with the entire net-
work without pitch labels.

A major challenge for the unsupervised disentangle-
ment is that the pitch encoder and timbre encoder are
tasked to capture pitch and timbre features, respectively,
without access to the corresponding labels. The presented
model manifests the discrete nature of pitch with the cate-
gorical variable, thereby encouraging the pitch encoder to
leave timbral information to the timbre encoder.

2.2 Gumbel-Softmax Distribution

In particular, we let ck be a one-hot encoding of pitch, in-
dexed at k, that is sampled from the qφ(c|x). To enable
back-propagation through sampling of the discrete node,
a common technique is to approximate argmax with the
Gumbel-Softmax distribution [20]. We specifically em-
ploy the straight-through estimator, which forward-passes
the one-hot vector ck, and approximates its gradient with
that of the Gumbel-Softmax distribution.



2.3 Auxiliary Objective Functions

Based on the underlying assumption that a moderate shift
of pitch does not change the timbre of a musical instrument
sound, we exploit pitch-shifting, thereby enabling the fol-
lowing auxiliary objective functions to enhance the model.
We refer to x and x′ respectively for the original sample
and the pitch-shifted version throughout, and (z, c) and
(z′, c′) are the corresponding latent variables.

2.3.1 Latent Regression

One obvious auxiliary loss function enabled by pitch-
shifting would be Lregression = ‖z−z′‖22, which we include
in the ablation study for comparison.

2.3.2 Contrastive Learning

We adapt SimCLR [15], a discriminative approach for rep-
resentation learning [15, 21, 22], to our generative frame-
work. Particularly, each sample in a minibatch of size N is
pitch-shifted randomly upward or downward to a number
of semitones, resulting in an augmented minibatch of size
2N . A positive pair of data is defined as (x,x′), and the
other 2(N − 1) pairs are treated as negative ones, instead
of being explicitly defined. The loss function for a positive
pair, indexed as (i, j), is then defined as

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

m=1 1[m 6=i] exp(sim(zi, zm)/τ)
, (2)

where 1[m6=i] ∈ {0, 1} is an indicator function evaluated
as 1 if and only if m 6= i, and τ is a temperature parame-
ter. The final loss Lcontrast is obtained by aggregating Li,j
across all positive pairs. Following SimCLR [15], the co-
sine similarity is used as the similarity measure sim(·, ·).

Intuitively, the loss function attracts z and z′ and re-
pels the other negative pairs that are possibly derived from
different instruments, which is expected to encourage the
timbre encoder to extract pitch-invariant latent variables
whereby the disentanglement is improved.

2.3.3 Cycle-consistency Loss

Cycle-consistency has been proposed to address un-
paired image-to-image translation between different do-
mains [16], which has been incorporated with VAEs to
learn disentangled representations for images [17, 23].

We adopt the approach to further constrain the model
and encourage disentanglement. Specifically, let Ep, Et,
and D denote the pitch encoder, the timbre encoder, and
the decoder, respectively; whereby the cycle-consistency
loss is defined as

Lcycle =‖Et(D(z, c′k))− z‖22 + ‖Et(D(z′, ck))− z′‖22
+CE(Ep(D(z, c′k)), k

′) + CE(Ep(D(z′, ck)), k),

(3)

where k = argmaxk qφ(c|x) (similar for k′), and CE(·, ·)
refers to cross-entropy loss.

Intuitively, given (z, c′k), D should generate a sample
embodying timbre z and pitch category k′, such that Et
and Ep can correctly predict z and k′ in order to minimize

the loss (similar for (z′, ck)). The objective function is
expected to enforce D to faithfully render the given con-
ditioning signals, and to further encourage Et and Ep to
encode the respective factors. Empirically, we freeze the
weights of Et and Ep when back-propagating Lcycle as
suggested in the literature [24].

2.3.4 Surrogate Label Loss

We also propose to exploit the information of the
shifted amount of semitones. Specifically, we minimize
Lsurrogate = CE(Ep(x′), y′). The surrogate label for x′ is
y′ = k + δ, where k = argmaxk qφ(c|x), δ ∈ [−S, S]
denotes the shifted number of semitones, and S is the max-
imum amount of shift. This enforces Ep to acknowledge
the pitch difference. As shown in Section 5, this loss term
plays a key role in reaching the best-performing model.

To sum up, based on the underlying assumption that
moderate shift of pitch does not alter timbre characteris-
tics, all the objective functions are made possible thanks to
the pitch-shifting strategy. The aggregated objective func-
tion to be maximized thereby becomes

L = L(θ, φ;x)− (λ1Lregression + λ2Lcontrast

+ λ3Lcycle + λ4Lsurrogate),
(4)

where λ1, λ2, λ3, and λ4 denote the weights of each loss
term. We conduct an ablation study to investigate the ef-
ficacy of each auxiliary objective in terms of the metrics
elaborated in Section 4.

3. EXPERIMENTAL SETUP

In this section, we describe the dataset used to evaluate our
framework along with the implementation details.

3.1 Dataset

We train the framework using a subset of Studio-On-Line
(SOL) [25], which includes 1,885 samples of 12 musical
instruments and 82 possible pitches. We resample all the
recordings to 22,050Hz, after which they are converted to
short-time Fourier transform (STFT) with a 92ms of Hann
window and 11ms of hop size. Mel-spectrograms with 256
filterbanks are then derived from power magnitude spec-
trum of the STFT. The dataset is split into a training set
(90%) and validation set (10%), both of which have a same
distribution of instruments. The magnitude of the Mel-
spectrogram is logarithmically scaled, and min-max nor-
malized within [−1, 1] using the minimum and maximum
values in the training set. The normalization is performed
corpus-wide to preserve the variety of dynamics.

As a preliminary study, we extract the spectral frame
at 200ms from the processed spectrograms, a time in-
stant that usually displays the sustained part of a musi-
cal note; a datum is therefore referred to as a spectrum
x ∈ R256 of a Mel-spectrogram. To facilitate the tim-
bre encoder to extract pitch-invariant features, we further
derive 30-dimensional Mel-frequency cepstral coefficients
(MFCCs) from the Mel-spectrograms. Therefore, the in-
puts to the timbre and pitch encoder are xMFCC ∈ R30 and



xMel-spec ∈ R256, respectively. For convenience, we refer
x to input data and do not distinguish xMFCC and xMel-spec

in the text and Figure 1. Note that the reconstruction target
for evaluating pθ(x|z, c) remains as the Mel-spectrum.

As mentioned in Section 2, pitch-shifting is employed
to augment the model by enabling the auxiliary objective
functions. This is performed by stretching or shrinking an
audio waveform with linear interpolation, which results in
pitch-shifting in the frequency domain.

3.2 Implementation Details

Both the pitch and timbre encoders are comprised of three
512-unit fully-connected (FC) layers. They differ in the
parametric layer; the pitch encoder outputs a categorical
distribution qφ(c|x) through a FC layer with number of
units equal toK = 82, i.e., the number of possible pitches.
We henceforth refer c to pitch category, which differenti-
ates from the pitch labels y. The timbre encoder, on the
other hand, contains a Gaussian parametric layer, which
outputs two L-dimensional vectors, L = 8, representing
mean µφ(x) and variance σ2

φ(x).
c ∼ qφ(c|x) and z ∼ qφ(z|x) are concatenated as the

input to the decoder for reconstructing x. The straight-
through Gumbel-Softmax estimator [20] and the reparam-
eterization trick [4] enable gradients to back-propagate
through the parametric layers with stochastic gradient de-
scent. The decoder is also composed of three 512-unit FC
layers, which finally outputs x̂ ∈ R256. Except for the two
parametric layers, we use tanh as the activation function,
and batch normalization follows thereafter.

All the experiments are conducted with a batch size
of 256, and the model parameters are optimized using
Adam [26] with a learning rate of 10−4. The model stops
training if the objective function (Equation (4)) does not
improve over 300 epochs, i.e., we do not use any of the
metrics presented in Section 4 as the stopping criteria,
which assures absence of leakage of label information. We
conduct an ablation study of the loss terms in Equation (4);
however, we do not perform an exhaustive search for the
corresponding weights, and instead evaluate λi ∈ {0, 1} to
investigate their effects. Fine-tuning the weights is left for
future work.

4. EVALUATION METRICS

Our evaluation protocol relies on the properties of disen-
tangled representations. From the synthesis point of view,
the pitch of the synthesized spectrum should be invari-
ant to perturbations in the timbre space as much as pos-
sible; from the perspective of analysis, the timbre space
(pitch space) should mostly accommodate timbre informa-
tion (pitch information) while minimizing clues for pitch
(timbre). Accordingly, we consider the following metrics.
Note that ground-truth annotations and pre-trained classi-
fiers are employed only for evaluation purpose.

4.1 Classification Accuracy

We train logistic regression models which take as input the
learned timbre latent variable z and predict labels of instru-
ment and pitch. A well disentangled timbre representation
should yield high accuracy for instrument, and low accu-
racy for pitch.

4.2 Clustering Accuracy (ACC)

During testing, the pitch encoder outputs a categorical dis-
tribution qφ(c|x) from which a pitch category of x can be
assigned as k = argmaxk qφ(c|x). We can thereby con-
sider it as a clustering task and calculate ACC [27] using
pitch labels. Furthermore, since we do not train our model
with pitch labels, the mapping from the inferred pitch cat-
egories to the pitch labels is unknown. For each category,
we thus assign a pitch label that occurs the most within
that category, and pitch classification accuracy can be cal-
culated accordingly. This approximated pitch mapping is
termed PM. Both ACC and PM are served to evaluate the
unsupervised pitch classification.

4.3 Fréchet Inception Distance (FID)

We exploit FID [28] to quantitatively measure the quality
of the synthesized spectrum. The metric measures the dis-
tributional difference between two multivariate Gaussians,
which are fit to features derived from the real and gener-
ated samples, respectively. In our case, the features are ex-
tracted from a pre-trained instrument classifier, using the
identical training data, which shares the same architecture
with the encoder.

4.4 Consistency-Diversity Score (CDS)

In order to assess the model’s capability of pitch-
conditional generation, we propose a metric, termed CDS,
to account for consistency of pk(y|x̂) and diversity of
Ek[pk(y|x̂)], where pk(y|x̂) = p(y|D(z, ck)) is the pos-
terior distribution of a pre-trained pitch classifier given
the generated samples x̂; and Ek[·] denotes marginaliza-
tion over k, where k ∈ {1, 2, . . . ,K}. Note that we can
not simply measure pitch classification accuracy given the
generated samples, as the true mapping from categories to
pitch labels is unknown under the unsupervised setting.

Intuitively, the pre-trained pitch classifier should con-
sistently output similar posterior distribution pk(y|x̂), if
the generated samples x̂ are synthesized conditioned on
a fixed ck regardless of z; and the aggregated distribution
Ek[pk(y|x̂)] should be uniformly distributed over y, which
indicates that the generated samples x̂, when conditioned
on different ck’s, are predicted as having different pitches.
Formally, CDS combines the two indicators as follows:

CDS = −Ek[H(pk(y|x̂))] +H(Ek[pk(y|x̂]))
= Ek[DKL

(
pk(y|x̂)‖Ek[pk(y|x̂)]

)
],

(5)

namely, the marginal KL-divergence of the per-category
and the aggregated posterior. A higher CDS thus hinds
toward better consistency and diversity of pitch manifested
by the generated pitch-conditioning spectrum.



λ1 λ2 λ3 λ4 Pitch Instrument Combine ACC PM FIDrecon FIDrand CDS

0 0 0 0
[ 8.81±3.47 87.68±1.09 89.43±1.85 95.14±0.98 96.04±0.71 21.80±1.05 23.78±1.47 24.33±0.71
] 33.78±7.38 80.90±4.41 73.55±5.77 72.65±4.82 74.46±4.06 24.86±2.27 25.27±1.80 8.49±1.96

M0 16.38±7.65 86.44±2.20 85.02±4.03 78.53±5.68 80.22±6.01 23.93±1.97 26.40±2.39 11.45±2.34

1 0 0 0 M1 17.85±4.52 87.34±1.26 84.74±2.53 77.28±3.47 78.75±3.60 18.86±1.77 21.53±1.10 9.15±1.28
0 1 0 0 M2 20.45±7.98 84.74±2.67 82.14±5.17 77.40±5.01 79.09±6.08 26.00±1.78 26.90±2.28 9.20±1.55
0 0 1 0 M3 32.54±6.28 84.18±1.92 75.81±4.08 80.45±1.58 82.71±1.26 18.68±2.36 20.82±1.67 10.79±2.37
0 0 0 1 M4 17.06±3.83 84.18±1.38 83.55±1.84 74.35±2.75 75.59±3.32 22.36±2.36 24.74±2.17 11.99±2.67
1 1 1 0 M5 18.19±4.79 87.90±1.62 84.85±2.48 78.19±2.35 79.66±2.81 16.73±2.13 21.39±2.49 9.35±2.81

1 1 1 1 M6 14.57±2.29 86.44±2.55 85.93±2.06 79.88±1.84 80.90±2.18 13.76±1.07 19.18±1.90 13.46±1.64

Table 1: The ablation study. For simplicity, we focus more on examining individual effects and do not exhaust all combina-
tions. Each model (per row) is evaluated over all the evaluation metrics. For Pitch and FID, lower numbers indicate better
performance, while the rest suggest the otherwise. The best-performing unsupervised models (], M0-M6) are highlighted.

Note that CDS bears resemblance to Inception Score
(IS) [29]; the latter, however, was originally proposed to
evaluate visual quality of synthetic images, whereas CDS
evaluates the extent to which the model faithfully renders
the conditional signal and enables correct classification.

5. EXPERIMENTS AND RESULTS

We train the framework with different configurations of the
objective function L (Equation (4)), and quantify the per-
formance of disentanglement with the metrics detailed in
Section 4. For each model configuration, we initialize the
model parameters with five random seeds, and report an
averaged score along with standard deviation for each met-
ric.

The results are summarized in Table 1, where we high-
light the best-performing unsupervised models for each
metric. Each row represents a model configuration; the
symbol [ denotes the pitch-supervised model, which is
trained to minimize an additional cross-entropy loss be-
tween the categorical distribution qφ(c|x) and the pitch la-
bels, and is treated as a reference. The symbol ] denotes
the unsupervised model trained without pitch-shifting. The
rest M0-M6 are all unsupervised, utilizing pitch-shifting
with maximum two semitones upward or downward.

For convenience, Ep, Et, and D denote the pitch en-
coder, the timbre encoder, and the decoder, throughout.

5.1 Timbre Space Classification

Using the learned timbre representation z, which we re-
place with µφ(x) (µ in Figure 1) as the input feature to the
logistic regression models, we obtain a relatively low accu-
racy for pitch classification, and a high accuracy for instru-
ment classification, as shown in columns Pitch and Instru-
ment in Table 1. As mentioned previously, low and high
accuracy of pitch and instrument, respectively, indicate
disentanglement of the timbre representation; we thereby
aggregate the two metrics by 1

2 (1−apitch+ainstrument) shown
in column Combine, where apitch and ainstrument are the clas-
sification accuracy.

The pitch-supervised (reference) model attains the best
aggregated score, as Ep is explicitly trained to classify
pitch, thereby preventing pitch leak to Et. Among the pro-
posed models, M6 outperforms in terms of the aggregated

score contributed by low apitch, which implies that com-
bining all the auxiliary loss terms helps prevent pitch from
leaking into the timbre space. Pitch-shifting alone im-
proves the baseline unsupervised model significantly; this
might be due to the rather imbalanced pitch distribution of
the data. The high score attained without additional losses
implies the efficacy of the proposed architectural design on
disentangling pitch and timbre, given the augmented data.

Individually adding the auxiliary objective functions
does not contribute much to the performance. For exam-
ple, while M1-M4 degrade the aggregated score, combin-
ing M1-M3 (M5) approaches the best-performing model
(M6). Notably, we can see that the proposed surrogate la-
bel loss further improves the performance of M5, which
similarly applies to other metrics that follow.

5.2 Unsupervised Pitch Classification

As described in Section 4.2, we can consider Ep as a pitch
classifier trained without labels as in our proposed models.
We thus evaluate the performance with ACC.

We also report the pitch classification accuracy derived
by the approximated mapping from pitch categories to
pitch labels, which is the PM described in Section 4.2.

The supervised model can therefore be treated as the
upper bound of pitch classification accuracy attained by
the unsupervised Ep. M3 is the best model in terms of
both ACC and PM, which could be attributed to the cycle-
consistency that acknowledges the pitch-swapping scheme
during training. This however promotes pitch leak to the
timbre space as shown in column Pitch, which implies
that an accurateEp does not guarantee the absence of pitch
leak, and, without supervision, more constraints are neces-
sary to maintain both the pitch accuracy and timbre disen-
tanglement, as demonstrated by M6.

5.3 Spectral Synthesis

We now turn our attention to the evaluation of generative
tasks. In particular, we first evaluate the timbre representa-
tion by FID between the synthesized spectrum and the real
one. To be more specific, the synthesized data are gener-
ated by D which takes as input z and ck, where z ∼ p(z)
and k = argmaxk qφ(c|x); that is, we first infer ck of the



Figure 2: Pitch-conditioning spectrum generation. Each
column represents a model, the bottom row refers to seed
samples, and the top three rows correspond to generated
samples conditioned on different pitch categories.

validation set, which is then combined with the randomly
sampled z for decoding.

FIDrecon measures between the real and the recon-
structed data, while FIDrand is for the real and the synthe-
sized data. FIDrecon can thus be treated as a lower bound
of the metric. From Table 1, it is clear that M6 prevails.
As discussed earlier, adding the proposed Lsurrogate to M5
makes the best model in terms of FID.

Interestingly, the supervised model does not achieve
satisfying performance, which implies that the discrim-
inability gain of Ep does not correlate well with the gen-
erative quality of timbre features. This similarly applies to
the model that employs only the contrastive loss (M2).

5.4 Pitch-Conditioning Synthesis

Next we evaluate the disentanglement through the lens of
conditional generation. Particularly, we first infer z ∼
qφ(z|x) from the validation set, which we directly take the
mean µφ(x) as the representative latent variable. We then
enumerate all possible pitch categories k ∈ {1, 2, ...,K},
each of which is converted to a one-hot vector and con-
catenated with the inferred z. D consumes the pitch-
conditioned latent vector, and generates samples x̂ which
are then classified by a pre-trained pitch classifier. This
computes p(y|D(z, ck)), and CDS is derived by Equation
(5). We report exp(CDS) to restrict the value in {1,K}.

The supervised model performs well, due to the avail-
able pitch labels during training. M6 outperforms all the
unsupervised models. Notably, Lsurrogate alone (M4) out-
performs M0, and, once again, the loss term further im-
proves M5 to reach the best model M6.

The proposed Lsurrogate synergizes with other loss terms,
as evidenced by comparing M5 and M6 in terms of most
metrics. This is probably attributed to the extra infor-
mation from the amount of pitch-shift, which enables the
model to explicitly account for the pitch difference [18].

Among all metrics, the t-test only yields a significant
difference between the bold and M0 in terms of FID. Apart
from the relatively high variances obtained by M0, this
could be due to the small sample size (five random seeds)
and the suboptimal configuration of values of loss weights,
which we will investigate in future work.

5.5 Qualitative Study

We conclude our evaluation with a qualitative study on
pitch-conditioning synthesis, as demonstrated in Figure 2.
For each model (column), the bottom row refers to three
reconstructed samples (with corresponding z’s) which are
the seed spectrums sampled from the validation set. Each
of the rest of the rows corresponds to generated samples
conditioned on the same z’s but a different c.

As a result, for each model (column), a good perfor-
mance is indicated by a matched harmonic pattern across
all three frames in a row (consistency), and diverse har-
monic patterns across the top three rows (diversity). Note
that the seed samples (bottom row) and the three condi-
tioning pitches are not fixed across the four models, thus
a direct comparison is not available. Nonetheless, we can
have a rough idea that model ] does not perform as well as
others, as harmonic patterns do not clearly appear aligned
except for the one at the third row. This to some extent ver-
ifies the proposed CDS, in terms of which model ] attains
the worst performance, although a study of larger scale is
required for a faithful verification.

We can also observe that the overall timbre, character-
ized by the spectral energy distribution, stays rather consis-
tent along each frame of each column despite the change of
the pitch condition, which verifies the disentanglement.

6. CONCLUSION AND FUTURE WORK

We have proposed a VAE-based framework for unsuper-
vised learning of disentangled pitch and timbre represen-
tation. The framework accommodates a categorical and a
continuous latent variable, with the former embodying the
discrete nature of pitch. We exploit pitch-shifting which
enables the auxiliary objective functions, that are shown to
potentially enhance the performance in terms of the quan-
titative evaluation.

A major challenge for future research is to infer pitch
values from the categorical assignment, without access
to ground-truth annotations. Furthermore, the proposed
model imposes a strong inductive bias to the pitch en-
coder, by restricting degree of freedom through a one-
hot encoded categorical pitch variable. This might pose
a challenge when a tuning difference among instruments
is present in the dataset. Increasing the capacity of the
pitch representation while maintaining enough constraints
for disentanglement is a direction for future work. We also
aim to train the framework on a larger and more structured
dataset [30], and to evaluate the method on data with larger
time scale, for which we aim to learn dynamical latent fac-
tors on top of the global variables that we have studied.
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