
ESSENTIA.JS: A JAVASCRIPT LIBRARY FOR MUSIC AND AUDIO
ANALYSIS ON THE WEB

Albin Correya1 Dmitry Bogdanov1 Luis Joglar-Ongay1,2 Xavier Serra1

1 Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain
2 SonoSuite, Barcelona, Spain

albin.correya@upf.edu, dmitry.bogdanov@upf.edu

ABSTRACT

Open-source software libraries for audio/music analysis
and feature extraction have a significant impact on the de-
velopment of Audio Signal Processing and Music Infor-
mation Retrieval (MIR) systems. Despite the abundance
of such tools on the native computing platforms, there is
a lack of an extensive and easy-to-use reference library
for audio feature extraction on the Web. In this paper,
we present Essentia.js, an open-source JavaScript (JS) li-
brary for audio and music analysis on both web clients
and JS-based servers. Along with the Web Audio API, it
can be used for efficient and robust real-time audio fea-
ture extraction on the web browsers. Essentia.js is modu-
lar, lightweight, and easy-to-use, deploy, maintain and in-
tegrate into the existing plethora of JS libraries and Web
technologies. It is powered by a WebAssembly back-end
of the Essentia C++ library, which facilitates a JS interface
to a wide range of low-level and high-level audio features.
It also provides a higher-level JS API and add-on MIR util-
ity modules along with extensive documentation, usage ex-
amples, and tutorials. We benchmark the proposed library
on two popular web browsers, Node.js engine, and An-
droid devices, comparing it to the native performance of
Essentia and Meyda JS library.

1. INTRODUCTION

The Web has become one of the most used computing
platforms with billions of web pages served daily, and JS
being an essential part of building modern web applica-
tions. Using HTML, CSS, and JS, developers can make
dynamic, interactive, and responsive web pages by imple-
menting custom client-side scripts. At the same time, the
developers can also use cross-platform run-time engines
like Node.js 1 to write server-side code in JS. The flexi-
bility of using JS on both server and client ends of web

1 https://nodejs.org

c© Albin Correya, Dmitry Bogdanov, Luis Joglar-Ongay,
Xavier Serra. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Albin Correya, Dmitry
Bogdanov, Luis Joglar-Ongay, Xavier Serra. “Essentia.js: A JavaScript
Library for Music and Audio Analysis on the Web”, 21st International
Society for Music Information Retrieval Conference, Montréal, Canada,
2020.

applications arguably makes it one of the most used com-
puter programming languages in the recent years [2]. JS is
also widely used as an entry-level programming language
by the thinkers from design, art, computer graphics, archi-
tecture, and spaces in between where audio processing and
analysis can be relevant.

With the adoption of both HTML5 and the W3C Web
Audio API specifications [14], modern web browsers are
capable of audio processing, synthesis, and analysis with-
out any third-party dependencies on proprietary software.
This allows developers to move most of the audio process-
ing code from the server to the client and can provide better
scalability and deployment, considering that the web-client
has computational resources for the required processing.
Web Audio API provides a JS interface to various prede-
fined nodes for audio processing, synthesis, and analysis.
Even though the provided capabilities are limited, the API
includes the ScriptProcessorNode for developers to add
custom JS code for audio processing. 2 The design of this
node has been criticized by the audio developer commu-
nity since it runs the JS audio processing code on the main
UI thread, which can result in unreliable performance and
audio glitching [15]. As an alternative, AudioWorklet [10]
has been introduced to mitigate this design issue to a great
extent by allowing running custom audio processing code
on a dedicated audio thread. It also allows bi-directional
communication between the audio thread and the control
thread of Web Audio API asynchronously using the web
message ports.

Despite all of these recent developments of Web Audio
technologies, the Audio Signal Processing and MIR com-
munities still lack reliable and modular software tools and
libraries that could be easily used for building audio and
music analysis applications for web browsers and JS run-
time engines. To the best of our knowledge, Meyda [11]
and JS-Xtract [18] are the few available JS libraries that
are ready-to-use and have implementations of a limited set
of MIR audio features. 3 The lack of more extensive al-
ternatives is not surprising, given that writing a new JS
audio analysis library from scratch would require a lot of
effort. Also, JS code for audio processing are prone to per-
formance issues due to the just-in-time (JIT) compilation
and garbage collection overhead, which can be critical for

2 https://www.w3.org/TR/webaudio/
#scriptprocessornode

3 As of May 2020, Meyda only has 20 MIR algorithms.



real-time audio and music analysis tasks. Due to these rea-
sons, researchers and developers often rely on server-side
audio processing solutions using the existing native MIR
tools for writing the required web applications.

Over the last two decades, the existing software tools
for audio analysis have been mostly written in C/C++, Java
and Python and delivered as standalone applications, host
application plug-ins, or as software library packages. Soft-
ware libraries with a Python API, such as Essentia [7], Li-
brosa [23], Madmom [6], Yaafe [22] and Aubio [8], have
been especially popular within the MIR community due to
rapid prototyping and rich environment for scientific com-
putations. Meanwhile, the libraries with a native C/C++
back-end offered faster analysis [24] and were often re-
quired for writing industrial audio applications. Various
web applications for audio processing and analysis have
been developed using these tools. Spotify API 4 (formerly
Echonest), Freesound API [13] and AcousticBrainz [25]
are examples of web services providing precomputed au-
dio features to the end users via a REST API. Besides, nu-
merous web applications were built for aiding tasks such
as crowd sourcing audio annotations [9, 12], audio listen-
ing tests [19, 26] and music education platforms [1, 21] to
mention a few. All these services manage their audio anal-
ysis on the server, which may require a significant effort
and resources to scale to many users.

With the recent arrival of WebAssembly (WASM) sup-
port on most of the modern web browsers [16], one can
safely port the existing C/C++ audio processing and anal-
ysis code into the Web Audio ecosystem using com-
piler toolchains such as Emscripten. 5 WASM is a low-
level assembly-like language with a compact binary format
that runs with near-native performances on modern web
browsers or any WebAssembly-based stacks without com-
promising security, portability and load time. WASM code
was found to be comparatively faster than JS code [17] and
generates no garbage from the code and can run within Au-
dioWorkletProcessor. 6 This makes it an ideal solution to
the problems that were previously hindering us from build-
ing efficient and reliable JS MIR libraries for the web plat-
form [20]. However, taking full advantage of all these fea-
tures can be challenging because it requires understand-
ing concurrent programming wrapped with several JS APIs
and dealing with cross-compilation and linking of the na-
tive code. Even for experienced developers, compiling na-
tive code to WASM targets, generating JS bindings, and in-
tegrating them in a regular JS processing code pipeline can
be cumbersome. Hence, it is essential that an ideal JS MIR
software library should encapsulate and abstract all these
steps and be packaged as a compact build which is easy-to-
use and extendable using a high-level JS API. Besides the
JS API, the potential users might also need utility tools that
are often required while building MIR-based projects, such
as plotting audio features on an HTML page, ready-to-use
feature extractors, and possible integration with web-based

4 https://developer.spotify.com/documentation
5 https://emscripten.org
6 https://www.w3.org/TR/webaudio/

#audioworkletprocessor

Figure 1: Overview of the Essentia.js library in terms of
its abstraction levels.

machine learning frameworks.
In [24], the authors evaluated a wide range of MIR soft-

ware libraries in terms of coverage, effort, presentation,
time-lag and found Essentia 7 [7] to be an overall best per-
former with respect to these criteria. Essentia is an open-
source library for audio and music analysis released under
the AGPLv3 license providing a wide range of optimized
algorithms (over 250 algorithms) that are successfully used
in various academic and industrial large-scale applications.
Essentia includes both low-level and high-level audio fea-
tures, along with some ready-to-use features extractors.
And, it provides an object-oriented interface to fine tune
each algorithm in detail. Given all these advantages and
that the code repository is consistently maintained by its
developers, it is a good potential choice for porting into
WASM target for the web platform.

In this paper, we present Essentia.js, an open-source JS
library for audio and music analysis on the web, released
under the AGPLv3 license. It allows building audio analy-
sis and MIR applications for web browsers and JS engines
such as Node.js. It provides straightforward integration
with the latest W3C Web Audio API specification allow-
ing efficient real-time audio feature extraction on the web
browsers. Web applications written using the proposed li-
brary can also be cross-compiled to native targets such as
for PCs, smartphones, and IoT devices using the JS frame-
works like Electron 8 and React Native. 9

The rest of the paper is organized as follows. Section 2
outlines the design choices, software architecture and var-
ious components of Essentia.js. An overview of potential
use-cases and usage examples are detailed in Section 3.
A detailed benchmarking of Essentia.js across and against
various platforms and alternative JS libraries can found in
Section 4. Finally, we conclude in Section 5.

2. ESSENTIA.JS

Essentia.js is much more than just JS bindings to the Es-
sentia C++ library. It was developed with coherent design
and functional objectives that are necessary for building an
efficient and easy-to-use MIR library for the Web. In this

7 https://essentia.upf.edu
8 https://www.electronjs.org
9 https://reactnative.dev



section, we discuss our design choices, the architecture,
and various components of Essentia.js. Figure 1 shows an
overview of these components.

2.1 Design and Functionality

We chose the following goals and design decisions for de-
veloping the library:

• User-friendly API and utility tools. The Web is a ubiq-
uitous computing platform, and an ideal JS MIR library
should provide a simple, user-friendly API while being
highly configurable for advanced use cases. Essentia.js
ships with a simple JS API and add-on utility modules
with a fast learning curve for new users. The main JS
API is composed of a singleton class with methods im-
plementing most of the functionality (each method is an
algorithm in Essentia). These methods are automatically
generated from the upstream C++ code and documenta-
tion using code templates and scripting as described in
Sections 2.2 and 2.3. We also provide add-on modules
with helper classes for feature extraction and visualisa-
tion that can be used for rapid prototyping of web appli-
cations. A quick preview of the JS API can be seen in
Listing 2.

• Modularity and extensibility. Just like Essentia itself,
the Essentia.js codebase is modular by design. It con-
tains a large amount of configurable algorithms that can
be arranged into the desired audio processing chains.
The add-on utility modules shipped with the library
leverage this functionality to build custom feature ex-
tractors.

• Web standards compliance.Web browsers provide a
standard set of tools for loading and processing au-
dio files using the HTML5 Audio element 10 and the
Web Audio API. Essentia.js rely on these standard fea-
tures for loading audio files or for streaming real-time
audio from various device sources. It also provides
seamless integration with the latest tools in the Web
Audio ecosystem such as AudioWorklets, Web Work-
ers, 11 WASM and SharedArrayBuffer. In addition, JS
conforms to the ECMAScript specification 12 and it is
evolving fast with new features added to the language
every year. For backward and forward compatibility of
our JS code, we wrote our JS API using Typescript (Sec-
tion 2.3).

• Lightweight and few dependencies. It is important for
a JS library to be lightweight since the load times of JS
code can directly impact the UI/UX and performance of
web applications. This includes having fewer dependen-
cies, which also makes the library much more maintain-
able. Taking this into account, Essentia WASM backend
is built without any third-party software dependencies of
the Essentia library except for Kiss FFT. 13 It includes

10 https://www.w3.org/html/wiki/Elements/audio
11 https://w3c.github.io/workers/
12 http://ecma-international.org/ecma-262
13 https://github.com/mborgerding/kissfft

the majority of the algorithms in Essentia, 14 while the
few excluded algorithms can be still integrated into the
WASM backend by compiling and linking with the re-
quired third-party dependencies using our build tools
(Section 2.5). Besides, all the JS code in the library is
passed through a code compression process to achieve
lightweight builds for the web browsers. With all these
efforts we were able to achieve builds of Essentia.js, in-
cluding the WASM backend and the JS API, as small as
2.5MB approximately. We also provide tools for custom
lightweight builds of the library that only include a sub-
set of the selected algorithms to further reduce the build
size (Section 2.5).

• Reproducibility. Using the WASM backend of Essen-
tia ensures identical analysis results across various de-
vices and native platforms on which Essentia has been
previously extensively used and tested. Remarkably, Es-
sentia.js allows reproducing a large amount of existing
code and research based on Essentia as well as, to a cer-
tain extent, other libraries. In particular, it is possible to
use Essentia.js to reproduce common input audio rep-
resentations for the existing machine learning models,
enabling their usage in web applications.

• Easy installation. Essentia.js is easy to install and inte-
grate with new or existing web projects. It is available
both as a package on NPM 15 and as static builds on
our public GitHub repository. In addition, we also pro-
vide continuous delivery network (CDN) through open
source web services.

• Extensive documentation. We provide a complete API
reference together with the instructions to get started,
tutorials, and interactive web application examples. 16

The documentation is built automatically using JS-
doc 17 and the algorithm reference is generated from
the upstream Essentia C++ documentation using Python
scripts.

2.2 Essentia WASM backend

As already mentioned, the core of the library is powered
by the Essentia WASM backend. It contains a lightweight
WASM build of Essentia C++ library along with custom
JS bindings for using it in JS. This backend is generated in
multiple steps.

Firstly, the Essentia C++ library is compiled to LLVM
assembly 18 using Emscripten. Emscripten [28] is a LLVM
to JS compiler which provides a wide range of tools for
compiling the C/C++ code-base or the intermediate LLVM
builds into various targets such as asm.js 19 and WASM.
Secondly, we need a custom C++ interface in order to gen-
erate the corresponding JS bindings which would allow us
access the algorithms in Essentia on the JS side. We used

14 As of May 2020, over 200 algorithms are supported.
15 https://www.npmjs.com
16 https://mtg.github.io/essentia.js
17 https://jsdoc.app
18 https://llvm.org
19 http://asmjs.org



Embind [4] for generating this C++ interface that binds Es-
sentia native code to JS.

Writing custom JS bindings for all Essentia algorithms
can be tedious considering their large amount. Hence, we
created Python scripts to automate the generation of the re-
quired C++ code for the C++ wrapper from the upstream
library Python bindings. Using this scripts, it is possible to
configure which algorithms to include in the bindings by
their name and category. Therefore, it is possible to cre-
ate extremely lightweight builds of the library with only a
few specific algorithms required for a particular applica-
tion. The Essentia WASM backend is built by compiling
the generated wrapper C++ code and linking with the pre-
compiled Essentia LLVM using Emscripten.

Essentia WASM backend provides compact WASM bi-
nary files along with the JS bindings to over 200 Essentia
algorithms. We provide these binaries and a JS glue code
for both asynchronous and synchronous import of Essen-
tia WASM backend, covering a wide range of use cases.
The build for asynchronous import can be instantly loaded
into a HTML page. The synchronous-import build sup-
ports the new ES6 style class imports characteristic of the
modern JS libraries. This build can be also seamlessly in-
tegrated with AudioWorklet and Web Workers for better
performance demanding web applications.

2.3 High-level JS API
Even though it is possible to use the Essentia WASM back-
end with its bindings directly, they have limitations due to
the specifics of using Embind with Essentia: a user needs
to manually specify all parameter values for the algorithms
because the default values are not supported. This is cum-
bersome and to solve this issue we developed a high-level
JS API written using Typescript [5]. Typescript is a typed
superset of JS that can be compiled to various ECMA tar-
gets of JS. In addition, this gives us the benefit of having a
typed JS API which can provide better exception handling.
Again we used custom Python scripts and code templates
to automatically generate the Typescript wrapper in a sim-
ilar way to the C++ wrapper for the WASM backend. The
high-level JS API of Essentia.js provides a singleton class
Essentia with all the algorithms and helper functions en-
capsulated as its methods All the algorithm methods are
configurable similarly to the Essentia’s C++/Python API
itself. Listing 1, shows an example of using the high-level
API of Essentia.js.

2.4 Add-on utility modules
Essentia.js is shipped with a few add-on modules to facil-
itate common MIR tasks. These add-on modules are writ-
ten entirely in Typescript using the Essentia.js high-level
JS API. Currently, we provide two add-on modules:

• essentia.js-extractor contains predefined feature ex-
tractors for common MIR tasks, computing BPM, beat
positions, pitch, predominant melody, key, chords,
chroma features, MFCC, etc. Each extractor implements
the entire processing chain starting from audio input and
outputs the resulting track-level or frame-level features.
These extractors are configurable as well.

Figure 2: Screenshot of a example web application that
use Essentia.js and its add-on modules.

• essentia.js-plot provides helper functions for visualiza-
tion of MIR features, allowing both real-time and offline
plotting in a given HTML element. It uses the Plotly.js
data visualization library, which has a design layout and
functionalities much alike of Matplotlib, 20 and is eas-
ily configurable. Currently, we provide object-oriented
classes for plotting basic MIR features like melody/pitch
contours, spectrograms, chroma, MFCC, etc. The mod-
ule is functionally similar to the display module in Li-
brosa [23].

A full reference of the modules can be found in the doc-
umentation of the library. Both modules can be easily ex-
tended with more functionalities as per the demands of the
user community.

2.5 Build and packaging tools

We provide tools for custom builds and packaging of Es-
sentia.js for the developers and the end-level users:

• Command-line interface (CLI). We provide CLI for
building Essentia.js using some customised shell scripts.

• Docker. We provide a Docker image with static builds
of Essentia with Emscripten and other development de-
pendencies required for building Essentia.js.

• Web application. We also host a website for building
custom Essentia.js online. 21 It allows users to select
specific set algorithms and build settings.

The official Essentia.js builds are bundled using
Rollup 22 and then packaged and hosted using NPM.

3. GETTING STARTED

In this section, we outline several usage examples and ap-
plication scenarios for getting started with Essentia.js.

The library can be imported into a web application us-
ing the following methods:

• HTML <script> tag. The most simple way to use Es-
sentia.js is by using it with the HTML <script> tag.

20 https://matplotlib.org
21 https://mtg.github.io/essentia.js-builder
22 https://rollupjs.org



• NPM. Essentia.js can be also installed from NPM using
the command npm install essentia.js.

• ES6 class imports. Essentia.js can be imported using
the ES6 class style imports in JS. This allows to inte-
grate the library into any modern JS framework. Listing
1 shows an example of using ES6 style imports for an
offline feature extraction task.

• CDN. We also provide CDN links for instantly serv-
ing Essentia.js online using free third-party web services
such as Jsdelivr 23 and Unpkg. 24

There are a lot of potential web applications that can
be built with Essentia.js. The library provides algorithms
for typical sound and music analysis tasks, including spec-
tral, tonal, and rhythmic characterization. In particular,
it is suitable for onset detection, beat tracking and tempo
estimation, melody extraction, key and chord estimation,
sound and music classification, cover song similarity, loud-
ness metering, and audio problems detection among oth-
ers. Figure 2 shows the screenshot of an example web ap-
plication that we include with the library. Below we outline
some of the common application use cases of the library.
We provide an extensive collection of analysis examples
on our website. 25

3.1 Offline feature extraction

Many MIR use cases rely on an offline audio analysis and
feature extraction. Listing 1 shows a simple JS example
of using the library for offline analysis of pitch and on-
sets. For features computed on overlapping frames, Es-
sentia.js provides the FrameGenerator method similarly to
Essentia’s Python API. Frames generated by this method
can be used as an input to other algorithms in the process-
ing chain. The offline feature extraction can be run inside
a Web Worker to improve the efficiency in performance-
demanding web applications.

3.2 Real-time feature extraction

Essentia.js can be used for efficient real-time audio/music
analysis in web browsers along with the Web Audio API.
This can be done by using the ScriptProcessorNode or the
newly introduced AudioWorklet in the Web Audio API:

• ScriptProcessorNode allows users to provide custom
JS code for audio feature extraction in its onprocess

callback. Even though the ScriptProcessorNode is dep-
recated according to the current W3C Web Audio API
specifications, it is still widely used by the developers
because of its cross-browser support.

• AudioWorklet design pattern [10] allows users to write
high-performance real-time audio analysis on a dedi-
cated audio thread. Users can write custom analysis
code by extending the AudioWorkletProcessor and fur-
ther abstract it as a node in the Web Audio API graph

23 https://www.jsdelivr.com
24 https://unpkg.com
25 https://mtg.github.io/essentia.js/examples

// Imports Essentia WASM backend
import {EssentiaWASM} from ’essentia-wasm.module.js’;
// Imports Essentia.js core API
import Essentia from ’essentia.js-core.es.js’;

// Creates Essentia.js instance
const essentia = new Essentia(EssentiaWASM);

// Instance of Web Audio API AudioContext
const audioContext = new AudioContext();
// URL of an audio file
let audioURL = "https://freesound.org/data/previews

/328/328857_230356-lq.mp3";

// Decode audio file as Float32 typed array
const audioData = await essentia.

getAudioChannelDataFromURL(audioURL, audioContext,
0); // audioContext, channel number

// Convert audioData array into vector
const audioVector = essentia.arrayToVector(audioData);

// Onset detection with SuperFluxExtractor algorithm
let bt = essentia.SuperFluxExtractor(audioVector);
console.log(bt.onsets);

// Pitch estimation with PitchYinProbabilistic
algorithm

let pyYin = essentia.PitchYinProbabilistic(audioVector,
4096, 256); // frameSize, hopSize

console.log(pyYin.pitch);

// Shutdown Essentia.js instance and free memory
essentia.shutdown();
essentia.delete();

Listing 1: A simple example of offline audio feature
extraction using Essentia.js via ES6 style imports.

using AudioWorkletNode. 26 Currently, the only limita-
tion is that it is only supports in the latest Firefox and
Chromium-based web browsers.

3.3 Machine learning applications
In the recent years, machine learning (ML) techniques, es-
pecially deep learning have been widely used in a wide
range of MIR tasks. With the support of WebGL and
WASM, modern web browsers are also capable of running
ML applications. Essentia.js can be easily integrated with
popular JS ML frameworks such as TensorFlow.js [27] and
Onnx.js 27 for training and inference. Pre-trained audio
ML models using features computed with Essentia as an
input (e.g., mel-spectrograms, Constant-Q transform, or
chroma) can be easily ported and used for inference in
web browsers. In particular, Essentia now ships with a
collection of pre-trained TensorFlow models for music au-
dio tagging and classification [3]. These models can be
run for inference using Essentia.js and TensorFlow.js li-
braries. Our essentia.js-extractor add-on module provides
a mel-spectrogram extractor for computing the inputs to
these models.

4. BENCHMARK
We tested the performance of Essentia.js in terms of the
analysis time for common MIR audio features on various

26 https://www.w3.org/TR/webaudio/
#audioworkletnode

27 https://github.com/Microsoft/onnxjs



(a) Essentia.js (b) Meyda

Figure 3: Average analysis times (in seconds) for common audio features on a 5-second music clip. "Python (Linux)"
corresponds to the analysis baseline using native Essentia with Python bindings.

platforms, and compared it to the native Essentia library.
In addition, we measured the analysis times for features
available in Meyda and compared them to their Essentia.js
counterparts. To this end, we built a set of test suites using
the JS library benchmark.js and implemented the equiva-
lent features using both libraries. In our benchmark we
measure the time it takes for the entire processing chain
to compute a feature given a 5-second audio segment as an
input. The code used by Essentia.js is equivalent to the one
for Essentia used in Python. The benchmarking of Python
implementation was done using the library pytest with the
benchmark extension. We provide the code and website to
reproduce these experiments online. 28

The results are reported in Figure 3. They include tests
on five different environments:

• Linux with Chrome 84.0.4147.89 run with disabled ex-
tensions.

• Linux with Firefox 78.0.2 in private browsing mode.

• Android 9 (LineageOS 16) with Chrome 84.0.4147.89
in incognito mode.

• Android 9 (LineageOS 16) with Firefox Nightly 200727
06:00

• Linux with Node.js v.13.13.0.

The Linux computer used for all runs is a 2017 DELL
XPS-15 with a 2.80GHz x 8 Intel Core i7-7700HQ proces-
sor, 16GB of RAM and Ubuntu 19.04 as OS. The mobile
phone is a Xiaomi Redmi Note 7 Pro with a Snapdragon
Octa-core 1.7 GHz processor and 6GB RAM. All the tests
were done with the same 5 seconds audio file.

As we can see from Figure 3, the results shows that the
performance of Essentia.js algorithms were considerably
slower when running on Node.js and Firefox and Chrome
on Android compared to Firefox and Chrome on Linux.
Interestingly, Node.js performed worse than Firefox and

28 https://mtg.github.io/essentia.js-benchmarks

Chrome on Android, which was not expected. This is
probably because different vendors have slightly different
implementations of WASM support in their platforms or
due to some other reasons yet to be found. In addition,
WASM is a relatively new technology in active develop-
ment. 29 Many proposals for improving its performance
such as SIMD optimizations and multi-thread support are
under way. We also aim to do detailed benchmarking of
real-time use cases and using the Web Audio API Audio
Worklets in our future work.

5. CONCLUSIONS

We have presented Essentia.js, an open-source JavaScript
library for music/audio analysis on the Web. It is based on
the Essentia C++ library which is commonly used in MIR,
ported to JS via WASM, and compatible with the latest
technologies in the Web Audio ecosystem. To the best of
our knowledge, this is the most comprehensive library for
audio analysis and MIR, which can be run on web browsers
as well as JS server applications. We hope that the library
will contribute to the creation of new online music technol-
ogy tools in educational, industrial, and creative contexts.
The source code of the library is publicly available in our
Github repository. 30 Everyone is encouraged to contribute
to the library.

In our future work, we will focus on improving the per-
formance of the library along with expanding the add-on
modules, particularly on providing pre-trained audio ML
models for audio analysis, classification, and synthesis on
the web client. We also aim to develop interesting web ap-
plications that go beyond typical MIR tasks to attract and
build a diverse user community. The detailed information
about the library is available at the official web page. 31 It
contains the complete documentation, usage examples and
tutorials needed for one to get started.

29 https://webassembly.org/roadmap/
30 https://github.com/MTG/essentia.js
31 https://essentia.upf.edu/essentiajs



6. REFERENCES

[1] MusicCritic: An automatic assessment system for
musical exercises. https://musiccritic.upf.
edu. Accessed: 2020-09-04.

[2] Stack Overflow Annual Developer Survey. https://
insights.stackoverflow.com/survey. Ac-
cessed: 2020-15-04.

[3] Pablo Alonso-Jiménez, Dmitry Bogdanov, Jordi Pons,
and Xavier Serra. Tensorflow audio models in Essen-
tia. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2020), pages
266–270, 2020.

[4] Chad Austin. CppCon 2014: Embind and Em-
scripten: Blending C++11, JavaScript, and the Web
Browser. https://www.youtube.com/watch?
v=Dsgws5zJiwk. Accessed: 2020-15-04.

[5] Gavin Bierman, Martín Abadi, and Mads Torgersen.
Understanding typescript. In European Conference on
Object-Oriented Programming (ECOOP 2014), pages
257–281. Springer, 2014.

[6] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, and Gerhard Widmer. Madmom: A new
python audio and music signal processing library. In
ACM International Conference on Multimedia (MM
2016), pages 1174–1178, 2016.

[7] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
Sankalp Gulati, Perfecto Herrera, Oscar Mayor, Ger-
ard Roma, Justin Salamon, José Zapata, and Xavier
Serra. Essentia: An audio analysis library for music in-
formation retrieval. In International Society for Music
Information Retrieval Conference (ISMIR 2013), pages
493–498, 2013.

[8] Paul M Brossier. The aubio library at MIREX 2006.
In Music Information Retrieval Evaluation Exchange
(MIREX 2006), 2006.

[9] Mark Cartwright, Ayanna Seals, Justin Salamon, Alex
Williams, Stefanie Mikloska, Duncan MacConnell,
Edith Law, Juan P Bello, and Oded Nov. Seeing sound:
Investigating the effects of visualizations and com-
plexity on crowdsourced audio annotations. Proceed-
ings of the ACM on Human-Computer Interaction,
1(CSCW):1–21, 2017.

[10] Hongchan Choi. AudioWorklet: The future of web au-
dio. Ann Arbor, MI: Michigan Publishing, University
of Michigan Library, 2018.

[11] Jakub Fiala, Nevo Segal, and Hugh A. Rawlinson.
Meyda: an audio feature extraction library for the Web
Audio API. In Web Audio Conference (WAC 2015),
pages 1–6, 2015.

[12] Eduardo Fonseca, Jordi Pons Puig, Xavier Favory,
Frederic Font Corbera, Dmitry Bogdanov, Andres Fer-
raro, Sergio Oramas, Alastair Porter, and Xavier Serra.

Freesound datasets: a platform for the creation of open
audio datasets. In International Society for Music In-
formation Retrieval Conference (ISMIR 2017), pages
486–93.

[13] Frederic Font, Gerard Roma, and Xavier Serra.
Freesound technical demo. In ACM International Con-
ference on Multimedia (MM 2013), page 411–412,
New York, NY, USA, 2013.

[14] W3C Audio Working Group. W3C Web Audio
API specifications. https://www.w3.org/TR/
webaudio. Accessed: 2020-15-04.

[15] W3C Technical Architecture Group. Web Audio
API Design Review. https://github.com/
w3ctag/design-reviews/blob/master/
2013/07/WebAudio.md. Accessed: 2020-05-04.

[16] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2017), pages 185–200, 2017.

[17] David Herrera, Hanfeng Chen, Erick Lavoie, and Lau-
rie Hendren. Numerical computing on the web: Bench-
marking for the future. In ACM SIGPLAN Interna-
tional Symposium on Dynamic Languages (DLS 2018),
pages 88–100, 2018.

[18] Nicholas Jillings, Jamie Bullock, and Ryan Stables. JS-
Xtract: A realtime audio feature extraction library for
the Web. In International Society for Music Informa-
tion Retrieval Conference (ISMIR 2016) Late Breaking
Demo, 2016.

[19] Nicholas Jillings, David Moffat, Brecht De Man, and
Joshua D. Reiss. Web Audio Evaluation Tool: A
browser-based listening test environment. In Sound
and Music Computing Conference (SMC 2015), 2015.

[20] Jari Kleimola and Oliver Larkin. Web audio mod-
ules. In Sound and Music Computing Conference (SMC
2015), 2015.

[21] Anand Mahadevan, Jason Freeman, Brian Magerko,
and Juan Carlos Martinez. Earsketch: Teaching com-
putational music remixing in an online web audio
based learning environment. In Web Audio Conference
(WAC 2015), 2015.

[22] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques
Prado, and Gaël Richard. Yaafe, an easy to use and
efficient audio feature extraction software. In Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR 2010), pages 441–446, 2010.

[23] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
librosa: Audio and music signal analysis in python. In
Python in Science Conference (SciPy 2015), 2015.



[24] David Moffat, David Ronan, and Joshua D. Reiss. An
evaluation of audio feature extraction toolboxes. In In-
ternational Conference on Digital Audio Effects (DAFx
2015), pages 1–7, 2015.

[25] Alastair Porter, Dmitry Bogdanov, Robert Kaye, Ro-
man Tsukanov, and Xavier Serra. Acousticbrainz: a
community platform for gathering music information
obtained from audio. In International Society for Music
Information Retrieval Conference (ISMIR 2015), 2015.

[26] Michael Schoeffler, Fabian-Robert Stöter, Bernd Edler,
and Jürgen Herre. Towards the next generation of web-
based experiments: A case study assessing basic au-
dio quality following the ITU-R recommendation BS.
1534 (MUSHRA). In Web Audio Conference (WAC
2015), pages 1–6, 2015.

[27] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann
Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing
Cai, Eric Nielsen, David Soergel, et al. Tensorflow. js:
Machine learning for the web and beyond. In Confer-
ence on Systems and Machine Learning (SysML 2019),
2019.

[28] Alon Zakai. Emscripten: an llvm-to-javascript com-
piler. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA 2011), pages 301–312, 2011.


