
DEEP LEARNING BASED SOURCE SEPARATION APPLIED TO CHOIR
ENSEMBLES

Darius Petermann1 Pritish Chandna1 Helena Cuesta1

Jordi Bonada1 Emilia Gómez2,1
1 Music Technology Group, Universitat Pompeu Fabra, Barcelona

2 European Commission, Joint Research Centre, Seville
dariusarthur.petermann01@estudiant.upf.edu,

{pritish.chandna, helena.cuesta, jordi.bonada, emilia.gomez}@upf.edu

ABSTRACT

Choral singing is a widely practiced form of ensemble
singing wherein a group of people sing simultaneously in
polyphonic harmony. The most commonly practiced set-
ting for choir ensembles consists of four parts; Soprano,
Alto, Tenor and Bass (SATB), each with its own range of
fundamental frequencies (F0s). The task of source separa-
tion for this choral setting entails separating the SATB mix-
ture into the constituent parts. Source separation for musi-
cal mixtures is well studied and many deep learning based
methodologies have been proposed for the same. However,
most of the research has been focused on a typical case
which consists in separating vocal, percussion and bass
sources from a mixture, each of which has a distinct spec-
tral structure. In contrast, the simultaneous and harmonic
nature of ensemble singing leads to high structural simi-
larity and overlap between the spectral components of the
sources in a choral mixture, making source separation for
choirs a harder task than the typical case. This, along with
the lack of an appropriate consolidated dataset has led to a
dearth of research in the field so far. In this paper we first
assess how well some of the recently developed method-
ologies for musical source separation perform for the case
of SATB choirs. We then propose a novel domain-specific
adaptation for conditioning the recently proposed U-Net
architecture for musical source separation using the funda-
mental frequency contour of each of the singing groups and
demonstrate that our proposed approach surpasses results
from domain-agnostic architectures.

1. INTRODUCTION

Choir music is a well-established and long-standing prac-
tice involving a body of singers performing together. Such
ensembles are usually referred to as choir and may perform
with or without instrumental accompaniment. A choir en-
semble is usually structured by grouping the voices into
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four different sections, each depicting different frequency
ranges for the singers; "Soprano" (260Hz-880Hz), "Alto"
(190Hz-660Hz), "Tenor" (145Hz-440Hz), and "Bass"
(90Hz-290Hz) [1]. This type of structural setting is usu-
ally referred to as a SATB setting. Although different vari-
ants of this structure exist, the SATB is the most well doc-
umented, with several conservatories across Europe dedi-
cated to the study and practice of the art form, highlighting
its cultural significance. This will be the main focal point
of our study.

The segregation of a mixture signal into its components
is a well researched branch of signal processing, known as
source separation. For polyphonic music recordings, this
implies the isolation of the various instruments mixed to-
gether to form the whole. With applications such as music
remixing, rearrangement, audio restoration, and full source
extraction, its potential use in music is of great appeal.
While the task remains similar independently of the type
of setting involved, the nature of the sources (e.g.: speech,
musical instrument, singing voice) and their relations may
entail various challenges and, consequently, require differ-
ent separation methodologies to be employed.

The most studied case of musical source separation fo-
cuses on pop/rock songs, which typically have three com-
mon sources; vocals, drums, bass along with other instru-
mental sources which are usually grouped together as oth-
ers. A large body of research [2–4] has been published in
this field over the last few years, beginning with the con-
solidation of a common dataset for researchers to train and
evaluate their models on. In 2016, DSD100 [5] was first in-
troduced and made available to the public and was later ex-
tended to MUSDB18 [6], which comprises 150 full-length
music tracks for a total of approximately 10 hours of mu-
sic. To this day, MUSDB18 represents the largest freely
available dataset of its kind.

While source separation for the pop/rock case has come
leaps and bounds in the last few years, it remains largely
unexplored for the SATB choir case, despite its cultural
importance. This is partly due to the lack of a consoli-
dated dataset, similar to the MUSDB18, and partly due to
the nature of the task itself. The sources to be separated
in pop/rock have distinct spectral structure; the voice is a
harmonic instrument and has a distinct spectral shape, de-
fined by a fundamental frequency and its harmonic partials



and formants. The bass element to be separated also has
a harmonic structure, but lacks the formants found in the
human voice and has a much lower fundamental frequency
than the human voice. In contrast, the spectrum of a per-
cussive instrument is generally inharmnoic and energy is
usually spread across the spectrum. In contrast, the sources
to be separated in a SATB choir all have a similar spectral
structure with a fundamental frequency, partials and for-
mants. This makes the task more challenging than its more
studied counter part. However, the distinct ranges of fun-
damental frequencies in the sources to be separated can be
used to distinguish between them, a key aspect that we aim
to explore in our study.

We build on top of some recently proposed Deep Neu-
ral Network (DNN) models to separate SATB monoaural
recordings into each of their respective singing groups and
then propose a specific adaptation to one of the models.
The rest of the paper is organized as follow: Section 2
presents and investigates some of the recently proposed
high performance deep learning based algorithms used for
common musical source separation tasks, such as the U-
Net [7] architecture and its waveform-based adaptation,
Wave-U-Net [8]. Section 3 goes over the dataset cura-
tion carried out for this experiment. Section 4 presents
our adaptation of the conditioned U-Net model described
in [9], with a control mechanism conditioned on the input
sources’ fundamental frequency (F0). Section 5 defines
the evaluation metrics and methodology used in this ex-
periment. In Section 5.2 we evaluate and compare how ex-
isting models and our proposed adaptation perform on the
task of source separation for SATB recordings. We then
present and discuss the results. Section 6 finally concludes
with a discussion around our experiment and provide com-
ments on future research that we intend to carry out.

2. RELATED WORK

While source separation has remained relatively unex-
plored for the case of SATB choirs, a number of archi-
tectures have been proposed over the last few years for
musical source separation in the pop/rock case. A com-
prehensive overview of all proposed models is beyond the
scope of this study, but we provide a summary of some
of the most pertinent models that we believe can easily be
adapted to the case in study.

2.1 U-Net

The U-Net architecture [7], which was specifically devel-
oped to process and segment biomedical images, inspired
many subsequent audio-related adaptations due to its un-
precedented performance.

The original model includes an encoding path, which
reduces the initial input into a latent representation (bot-
tleneck) followed by a decoding path, which expends the
channels’ receptive field back into its original shape while
concatenating the feature maps from the contracting path
by the mean of skip connection layers.

One of the first paper to present a U-Net adaptation to-
wards audio source separation was proposed by Jansson et
al. [10], where they propose an architecture which specif-
ically targets vocal separation performed on western com-
mercial music (or pop music). The authors present an ar-
chitecture directly derived from the original U-Net one,
which takes spectrogram representations of the sources as
input and aims at predicting a soft-mask for the targeted
source (either vocal or instrumental). The predicted mask
is then multiplied element-wise with the original mix-
ture spectrogram in order to obtain the predicted isolated
source. It is worth mentioning that for each of the given
sources, a U-Net instance is trained in order to predict its
respective mask. In the case of SATB mixtures, four U-Net
instances are necessary in order to predict each of the four
singing groups.

2.2 Conditioned-U-Net

Depending on the nature of the separation task, its under-
lying process can easily lead to scaling issues. The con-
ditioned U-Net (C-U-Net) architecture, described in [9],
aims at addressing this limitations by introducing a mech-
anism controlled by external data which govern a single
U-Net instance. C-U-Net does not diverge much from the
initial U-Net one; as an alternative to the multiple instances
of the model, each of which is specialized in isolating a
specific source, C-U-Net proposes the insertion of feature-
wise linear modulation (FiLM) layers [11], which repre-
sents an affine transform defined by two scalars - γ and β,
across the architecture. This allows for the application of
linear transformations to intermediate feature maps. These
specialized layers conserve the shape of the original in-
termediate feature input while modifying the underlying
mapping of the filters themselves.

FiLM(x) = γ(z) ˙x+ β(z) (1)

In eq. (1), x is the input of the FiLM layer, γ and β
the parameters that scale and shift x based on an external
information, z [9]. γ and β modulates the feature maps
according to an input vector z, which describes the source
to separate. The condition generator block described in
Figure 1 represents a neural network embedding the one-
hot encoding input z into the most optimal values to be
used by the FiLM layer.

2.3 Wave-U-Net

In [8], the authors present a time-domain adaptation of the
U-Net architecture, which performs the separation opera-
tion on the waveform. As the input is a one-dimensional
signal, the feature maps are computed directly from the
waveform samples through 1D convolution operations.
Because Wave-U-Net takes raw waveforms as input, the
initial U-Net model has to be adapted accordingly in order
to accommodate for the input’s nature. Consequently, the
feature maps along both contracting and expanding paths
are computed by the means of single-dimensional convo-
lution layers. Both paths contain twelve convolutional lay-
ers, each, for a total of 24 layers. In the down-sampling



Figure 1: C-U-Net control mechanism with the vector z,
a one-hot representation of the source to separate, which
dictates the N sets of γ and β values to be used by the
FiLM layer at each of the block of the encoding path, 1 to
N.

path, the receptive field is reduced in half after each layer
while the input feature maps are increased by a factor of
24 every time. On the other hand, in the up-sampling path
the time-context is doubled after every convolutional layer
while the feature maps are reduced, again by 24, after ev-
ery layers. By that mean, the receptive field and the num-
ber of channels of the original input signal will remain
preserved at the output stage. Although Wave-U-Net has
proven to deliver satisfying results on common musical
source separation tasks, the fact remains that waveform-
based architectures in general require more data than their
spectrogram-based counter parts.

3. DATASET

The training data we have curated for this experiment are
composed of the following two datasets:

• Choral Singing Dataset [12] (CSD). Three songs
performed by 16 singers from the Anton Bruckner
Choir (SATB) 1 .

• A proprietary dataset with 26 Spanish SATB songs
by 4 singers, one for each part.

There are very few publicly available choir music
datasets, thus our choice remains limited. To this day
and to the best of our knowledge, there isn’t any existing
dataset which is specifically suited to our task, thus one

1 https://zenodo.org/record/1286570#
.XyGcHy-z3yU

of the subsidiary work of this experiment revolves around
curating a proper and complete dataset to train our vari-
ous models. For our experiment, we take advantage of the
CSD [12]. This dataset was recorded in a professional
studio and contains individual tracks for each of the 16
singers of a SATB choir, i.e. 4 singers per choir section.
It comprises three different choral pieces: Locus Iste, writ-
ten by Anton Bruckner, Nı̄no Dios d’Amor Herido, written
by Francisco Guerrero, and El Rossinyol, a Catalan popu-
lar song; all of them were written for 4-part mixed choir.
The dataset is very well suited for our experiment as the
isolated track for each individual singer will allow us to
proceed the same way as in [13], that is to create artificial
mixes by combining various stems from different groups
together. Using different combinations of all 16 singers,
we created 256 SATB quartets for each piece, which rep-
resent all possible combinations of singers taking into ac-
count the voice type restriction (i.e. exactly one singer per
voice is needed).

The second dataset we use is a proprietary one including
26 songs for exactly one singer per part (i.e. 4 stems per
song), which is a well-suited format for our task as well.
All songs offered as part of this dataset are performed in
Spanish and their length revolves around two to three min-
utes, for a total of 58 minutes of audio data.

Our curation work consists in consolidating these two
datasets and make sure all the data that we are using re-
main consistent and well-formatted across all the audio
stems, which includes length and amplitude normalization,
as well as properties standardization. Most of the files
included as part of the initial datasets were presented as
10-seconds long snippets as opposed to full-length songs,
which isn’t an ideal format to work with. Hence, some ad-
ditional efforts have been devoted to turn these files in a
more convenient and consolidated format.

4. APPROACH

Injecting domain knowledge in DNNs has been proved to
be an effective way to learn complex input-output relations
with high accuracy when the available data happen to be
scarce and limited [14], such as found in our case.

Each of the singing groups in a SATB recordings per-
forms within its own respective frequency range, that is,
the voices’ F0 contour will rarely overlap across the var-
ious groups. This factor makes the sources’ F0 a suitable
discriminative feature, which could be injected in the DNN
during the training stage and potentially improve the sepa-
ration of the various singing groups in SATB recordings.

In this view, we propose to adapt the original C-U-Net
architecture, which initially embeds the instruments to be
separated, z, in order to produce the various FiLM param-
eters (γ, β), and substitute the external control input data
for the F0 track of the target source. The new control input
vector z will thus hold time as well as frequency dimen-
sions.



4.1 Control Input Representation

As previously mentioned, we use the frame-wise F0 as the
external control data of our condition generator network.
This entails that a few preliminary steps are required prior
to proceeding to the training stage. We first automatically
extract the sources’ F0 track using the DIO algorithm [15].
Once the raw pitch tracks are obtained, we convert each
time-step F0 into a one-hot encoded representation as pos-
tulated in [16], that is 60 frequency bins over 6 musical
octaves, with a base frequency of 32.7Hz Hertz, for a to-
tal of 360 frequency bins per time-step. As a result, for
128 time-steps, our control input will be in the shape of
[128, 360].

Figure 2: Control model architecture. The convolution
is performed across the frequency bins for each time-step.
The dense layer provides a specific conditioning for each
frequency bin.

4.2 Control Model

The control model used in our proposed architecture em-
beds the one-hot encoded CQT F0 representation for a
given time-step into a set of transforms of identical shape
as the spectrogram input. This is achieved by modeling the
condition vectors as 1-D data with multiple feature chan-
nels. The condition vectors are then fed into a convolu-
tional neural network (CNN) with a kernel of size 10 seiz-
ing contextual information from the adjacent time-steps.
As a result, all input channels of the initial convolution
contribute to all resulting feature maps in the output of the
first convolutional layer. Finally a dense layer provides a

Figure 3: C-U-Net Control Mechanism adapted to our
task, with the one-hot vector z depicting the various SATB
singing groups’ F0 contour.

specific conditioning for each frequency bin at each time-
step, taking into account the contextual information previ-
ously captured by the CNN. Figure 2 shows the condition
generator architecture in greater details.

As the temporal relation between the external control
input data and the input spectrogram is crucial, it is impor-
tant to apply these affine transformations while the recep-
tive field of the input is still intact. Hence the FiLM layer
is applied prior to the encoding path. Figure 3 shows the
overall structure behind the proposed conditioning archi-
tecture.

We propose two variants of the architecture described
above, each of which differs slightly in the way it embeds
the control input data; the first variant applies a unique
affine transform for each individual frequency bin at every
input time-step. The resulting scalars in the output of the
external CNN model will thus be in the shape [512, 128] for
a given input spectrogram of the same time context. On the
other hand, the second variant applies a single transform
for all frequency bins at a given time-step, resulting in a
set of scalars of shape [1, 128] for 128 spectrogram frames
given in the input. We refer to the two approaches as
"Domain-Specific Global" and "Domain-Specific Local",
respectively and define them with the acronyms C-U-Net
D-S G and C-U-Net D-S L in the rest of this paper. while
the three models covered in Section 2 will be referred to as
"Domain-Agnostic" models.

5. EVALUATION

To assess our proposed approach and show that inject-
ing domain knowledge as control input data to the net-
work improves its performance on SATB recordings, we
evaluate the performances of three domain-agnostic state-
of-the-art DNN models; U-Net, its waveform adaptation



Wave-U-Net, and the original C-U-Net. We then compare
the results with the two domain-specific models proposed
in Subsection 4.2. We evaluate the performance of a model
by computing three metrics, SDR, SIR, and SAR [5], be-
tween the predicted and true audio sources. The three mea-
surement metrics describe the overall quality of the separa-
tion, the level of interference with other sources as well as
the amount of artifact added by the separation algorithm,
respectively. The metrics are computed using the mir_eval
toolbox [17] for each of the SATB singing groups.

5.1 Train - Test Split

Given the limited size of our data, we opted to set apart
one song from the proprietary dataset as well as one singer
per voice for each song from the CSD in order to build
our first use-case test set. The rest of the data was used
for training. This allowed us evaluate the model on unseen
songs and singers. Our second test case contains unison
singing, which was not seen at all during training. As such,
we used the three songs from the CSD with all singers for
evaluation.

5.2 Experiment Results

Subsections 5.2.1 and 5.2.2 present the performance re-
sults for the two test cases described earlier; that is, for
the test set involving exactly one singer per part and the
other involving exactly four singers per part, respectively.
C-U-Net D-A refers to the domain-agnostic architecture
while C-U-Net D-S L and C-U-Net D-S G refer to our two
domain-specific adaptations. For testing, we use the or-
acle fundamental frequency of each of the sources, pre-
computed prior to model inference. In a complete source
separation pipeline, we would complement our system
with the multi-pitch algorithm proposed by [18].

5.2.1 Use-Case 1:

Table 1 portrays the mean SIR and SAR results on all the
SATB parts and average for all five models mentioned in
previous sections. Figure 4a details the SDR score dis-
tributions on our first test set. We observe that our two
adaptations, C-U-Net D-S L and C-U-Net D-S G, call at-
tention to a significant score gap between domain-agnostic
and domain-specific models, with an average increase of
about 1dB SDR and 1.5dB SIR between the two different
approaches. These improvements underline an overall bet-
ter quality of the predicted sources (SDR) as well as a de-
cline in interference between the various predictions. Our
domain-specific architecture hence demonstrates a better
ability to cope with the correlated nature of the various
SATB sources and seem to predict an appropriate spec-
tral mask for each of them. We also observe that our pro-
posed adaptations return the lowest SDR, SIR and SAR
performances for the Bass part, specifically. This could
be due to the fact that the Bass group, among all SATB
groups, shares the highest number of harmonics with its
other source counter parts.

We also note that the mean SDR substantially drops for
the Tenor singing group across nearly all domain-agnostic

models, reaching a negative result with the C-U-Net D-A
architecture (−1.25dB SDR). We speculate that the rea-
son behind such decline can be directly related to the close
nature of the F0 contours of both Alto and Tenor singing
groups, making it harder for domain-agnostic architecture
to distinguish between the two sources. This limitation
brings yet another justification for the conditioning ap-
proach we have taken in this paper.

5.2.2 Use-Case 2:

Figure 4b as well as the bottom portion of Table 1 presents
the SDR, SIR and SAR scores on the second use-case test
set. We observe that the introduction of more complex
mixtures involving a higher number of singers (i.e.: 16
singers in this case) decreases the performance of our pro-
posed models, with an average SDR barely surpassing U-
Net’s for our C-U-Net D-S G model and levelling it out
for the C-U-Net D-S L model. This can be attributed to
the use of the mean of the various pitches present in a
singing group, to represent the pitch of the unison. Since
domain-agnostic models, such as the plain U-Net, don’t
hold this assumption, these architectures are less prone to
errors when exposed to these type of mixture settings 2 .

6. CONCLUSIONS AND FUTURE WORK

In this work we have presented the task of musical source
separation applied to SATB choir recordings. We first de-
scribed the consolidated dataset that we’ve specifically cu-
rated for this experiment and its potential use and appli-
cation for future related research. We then assessed how
well recent domain-agnostic deep learning based architec-
tures for musical source separation performed on this task,
given two different use-cases; 4-singers mixture and 16-
singers mixture separation. An adaptation of the U-Net
architecture was then proposed, consisting in condition-
ing some of the network parameters on the fundamental
frequency contour of each of the SATB mixture sources.
The preliminary results showed that taking advantage of
domain-knowledge during the training process improved
the performance on both of our proposed use-cases. For
the evaluation presented in this paper, we use the oracle F0
is currently used as external control input data to the net-
work. In a complete source separation pipeline, we plan
on combining the task of multi-pitch tracking [18] with
the system presented in this paper. We also plan on val-
idating our evaluation with perceptual listening tests and
exploring applications of the SATB separation. including
remixing, transcription and transposition combined with
the work presented in [19, 20].
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(a) Four-Parts SDR Boxplot Results, Use-Case 1: 4-Singers Mixture

(b) Four-Parts SDR Boxplot Results, Use-Case 2: 16-Singers Mixture

Figure 4: Boxplot SDR results on the five U-Net based models described in previous sections. Subfigure 4a shows the
result distribution over the first use-case test set while 4b depicts the results for the second use-case. For each one of the
SATB parts, the model performing with the highest median is indicated in a dark orange color.

Model Test Use-Case 1 - SIR (dB) Test Use-Case 1 - SAR (dB)
Soprano Alto Tenor Bass Avg. Soprano Alto Tenor Bass Avg.

Wave-U-Net 5.99±2.4 9.19±2.9 4.62±2.1 8.49±3.5 7.07 5.36±1.7 7.11±2.4 4.79±1.4 4.89±1.4 5.54
U-Net 10.28±2.4 10.77±4.1 6.70±3.2 9.45±2.0 9.30 5.35±1.8 7.13±3.0 5.32±1.8 4.94±1.1 5.69

C-U-Net D-A 10.09±2.6 7.81±1.6 3.32±3.3 7.61±2.2 7.21 5.19±1.6 4.41±2.8 2.65±1.2 4.12±2.0 4.09
C-U-Net D-S L 9.71±1.7 12.37±1.5 9.89±2.2 9.71±1.7 10.42 5.44±1.0 8.75±2.0 5.58±1.3 5.51±1.7 6.32
C-U-Net D-S G 12.72±1.8 14.04±1.5 11.79±1.5 9.78±2.1 12.08 7.02±1.1 9.02±1.6 6.86±1.5 5.93±1.6 7.21

Test Use-Case 2 - SIR (dB) Test Use-Case 2 - SAR (dB)
Soprano Alto Tenor Bass Avg. Soprano Alto Tenor Bass Avg.

Wave-U-Net 8.13±2.1 10.02±0.9 6.80±2.2 7.45±2.0 8.10 5.75±1.0 6.73±1.1 4.79±1.5 3.23±0.9 5.13
U-Net 12.41±1.8 13.11±1.2 10.26±1.1 8.50±2.3 11.07 6.31±1.4 7.97±1.0 6.59±1.8 5.27±1.1 6.54

C-U-Net D-A 11.99±1.8 9.08±2.8 5.65±3.1 7.60±2.0 8.58 5.77±1.7 4.60±2.9 3.39±1.8 4.15±1.2 4.48
C-U-Net D-S L 10.32±1.1 13.06±1.7 10.77±1.5 8.89±2.2 10.76 6.02±0.9 8.59±1.2 6.45±1.7 5.59±1.1 6.66
C-U-Net D-S G 12.08±1.5 13.50±2.5 12.05±1.3 8.91±2.1 11.63 6.68±1.2 7.70±1.3 6.17±1.6 5.17±0.8 6.43

Table 1: SIR and SAR mean and standard deviation results on the four SATB parts as well as their average for the five
U-Net based models described in previous sections. The top table depicts the results obtained from the first use-case test
set while the bottom one the second use-case test set.
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