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ABSTRACT

Data-driven approaches to automatic drum transcription
(ADT) are often limited to a predefined, small vocabulary
of percussion instrument classes. Such models cannot rec-
ognize out-of-vocabulary classes nor are they able to adapt
to finer-grained vocabularies. In this work, we address
open vocabulary ADT by introducing few-shot learning to
the task. We train a Prototypical Network on a synthetic
dataset and evaluate the model on multiple real-world ADT
datasets with polyphonic accompaniment. We show that,
given just a handful of selected examples at inference time,
we can match and in some cases outperform a state-of-the-
art supervised ADT approach under a fixed vocabulary set-
ting. At the same time, we show that our model can suc-
cessfully generalize to finer-grained or extended vocabu-
laries unseen during training, a scenario where supervised
approaches cannot operate at all. We provide a detailed
analysis of our experimental results, including a break-
down of performance by sound class and by polyphony.

1. INTRODUCTION

Automatic Drum Transcription (ADT) aims at deriving a
symbolic annotation of percussion instrument events from
a music audio recording. It is a subtask of Automatic Mu-
sic Transcription, where the aim is to transcribe all events
within a musical piece. An accurate ADT system enables
diverse applications in music education, music production,
music search and recommendation, and computational mu-
sicology.

Early studies on ADT often combined multiple sig-
nal processing, information retrieval, and machine learn-
ing techniques such as support vector machines (SVM)
and hidden Markov models (HMM) [1–3]. While these
methods work well when applied to solo drum recordings,
they often generalize poorly when applied to polyphonic
music [4]. Recent approaches utilizing non-negative ma-
trix factorization (NMF) [5, 6] and deep neural networks
[7, 8] have shown promising performance in the presence
of polyphonic music. However, such systems are often
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Figure 1. Few-shot drum transcription. We input a music
recording and one or more target example sounds into our
trained model, output the likelihood of the selected event
over time, and then post-process to generate onset times
per percussion instrument.

limited to transcribing a very small subset of percussive
sound classes, such as the bass drum (BD), snare drum
(SD), and hi-hat (HH). For deep learning methods, in par-
ticular, this is mainly due to the limited number and size
of ADT datasets, and the small class vocabulary size of
the annotations in these datasets [9–12]. Recently, stud-
ies have utilized synthetic data and deep learning to ex-
pand ADT systems to support transcribing larger vocabu-
laries of 10 or more instruments [11, 13]. However, 10–
20 classes are still far from the wide gamut of percussive
instruments used in recorded music. For example, rare
or non-western percussion sounds are usually considered
out-of-vocabulary. Moreover, when transcribing different
datasets, we often need to manually map the percussion
instruments in a dataset to the limited output vocabulary
of an existing ADT system with reduced granularity. It
can also be challenging for ADT systems that utilize fully-
supervised learning to generalize to different musical gen-
res or diverse drum sounds [11].

Recently, few-shot learning has been proposed for rec-
ognizing and detecting novel sound events [14–17], which
is of great relevance to ADT. Under this paradigm, a model
is trained to learn to recognize novel classes, unseen during
training, given only very few examples from each class at
inference time. Expanding on this, a few-shot sound event
detection system for open vocabularies was recently pro-
posed [14], yielding a search-by-example paradigm where
a human first selects a handful of target example sounds
that are passed to a trained model that automatically locates
similar sounding events within the same audio track. This
work, however, was developed for speech data, while other
studies have focused on environmental sound. The main
challenges in applying few-shot learning to music audio
are the limited size of available datasets and the polyphonic



nature of music audio. While few-shot learning methods
are designed to work with few labeled examples at infer-
ence time, they still require large amounts of labeled data
at train time. Standard few-shot models are designed to
solve multi-class problems where only one class is active
at a time, while polyphonic music is inherently multi-label
since multiple instruments can be active at once.

In this work, we propose a new paradigm for drum
transcription in polyphonic music by introducing few-shot
learning. Instead of trying to train a standard supervised
model with more data for better generalizability, we pro-
pose to incorporate minimal human input with a few-shot
model. Our proposed few-shot drum transcription system
is shown in Figure 1, which can easily adapt to detecting
a novel percussion instrument given a handful (e.g., five)
of labeled target examples. By doing so, we can support
open-vocabulary drum transcription, while minimizing the
human labeling effort in order to make the transcription
process as close to automatic as possible. To address the
aforementioned challenges to applying few-shot learning
to polyphonic music audio, we propose (1) utilizing a large
synthetic dataset for training and (2) transcribing one per-
cussion instrument at a time as a binary classification prob-
lem during inference. We evaluate our proposed model on
multiple real music ADT datasets, compare it to a state-
of-the-art supervised learning benchmark, and provide a
detailed analysis of our model’s performance including
breakdowns by instrument class and polyphony. We show
that our approach not only matches or outperforms past
methods, but enables open vocabulary drum transcription,
which is highly-advantageous for real-world applications.

2. METHODS

2.1 Prototypical Networks with Episodic Training

In our work, we focus on metric learning-based few-shot
methods and, in particular, prototypical networks [18–21].
Prototypical networks have been found to perform well on
several audio-related tasks [14,15,17,22], rely on a simple
training framework, and support efficient feed-forward in-
ference [20], all of which are advantageous for our problem
domain. They are designed to project an input audio exam-
ple into a discriminative embedding space such that simi-
lar sounding events are clustered around a single prototype
(average class embedding) via a neural network. Classifi-
cation is then performed for an embedded query point by
simply finding the nearest class prototype via the squared
Euclidean distance.

Few-shot learning models, and prototypical networks
specifically, are typically trained to solve a C-way K-shot
multi-class classification task. In this setup, the method
is tasked with labeling a query recording with one of C
novel class labels, given K labeled examples per class at
inference time, where K is typically a small number in
the range of one to five. The availability of only very few
examples of the new classes limits our ability to fine-tune
a pre-trained model. To address this, episodic training has
been proposed to train a prototypical network, which mim-

ics the few-shot inference problem during training, im-
proving model generalizability [19]. In each training iter-
ation, a training episode is formed by randomly selecting
C classes from the training set. For each selected class,
K samples are first selected to build a support set S of
size of C × K, while a disjoint set of q samples are se-
lected to form a query set Q of size C × q. Prototypes
M = {µ1, ..., µC} are the mean vectors of the embedded
support samples belonging to each class:

µc =
1

K

∑
(x,y)∈Sc

fθ(x), (1)

where Sc denotes a set of examples labeled with class c and
fθ is parametrized by a neural network. Given a sample xq
inQ, we take a softmax over distances to the prototypes in
the embedding space to obtain per-class likelihoods:

pθ(y = c | xq) =
exp(−d(fθ(xq), µc))∑
c′ exp(−d(fθ(xq), µc′))

, (2)

where d is the squared Euclidean distance function.
The training objective is to minimize the negative log-
likelihood of the true class c:

L(θ) = − log pθ(y = c | xq). (3)

Therefore, in each training episode, the model is learning
to solve a C-way K-shot classification task. By training
with a large collection of episodes, each consisting of a
different set of C classes, the model learns how to learn
from limited labeled data and obtains a class-agnostic dis-
criminative ability. In this work, we train a prototypical
network on a 10-way 5-shot classification task [14] as the
few-shot model in our proposed system.

2.2 Few-shot Drum Transcription

While the training task is a specific C-way K-shot classifi-
cation, the trained few-shot model provides an embedding
function that projects the input data into a discriminative
space in which sound events are classified by finding the
nearest class prototype, where each prototype is derived
from a few examples. We propose to use this embedding
space for percussion sound event detection by providing a
support set containing examples for both the positive (tar-
get) and negative (non-target) classes, and classify a given
query by measuring its distance to the positive and nega-
tive class prototypes. Here, the trained few-shot model is
essentially performing a binary, 2-way, classification at in-
ference time for each target class, ultimately resulting in a
multi-label prediction.

Given a target instrument and an audio track, we first
slice the track into a series of query frames. To construct a
support set of labeled examples for the few-shot model, we
randomly sample target examples from the track as posi-
tive examples, simulating the human input in Figure 1, and
take all frames within the track as negative examples to
model the non-target class. Note that, while the full track
will also contain the target class, previous work has shown
that since the target class is relatively sparse compared to



the full track, this strategy works well [14]. Given the sup-
port set, the trained few-shot model outputs the likelihood
of each query frame containing the target class. Finally, we
perform peak-picking on these probabilities to get a list of
onset locations as is commonly done for ADT [11, 13].

3. EXPERIMENTAL DESIGN

To evaluate the proposed few-shot drum transcription
paradigm, we first train a prototypical network as our few-
shot model on a large synthetic dataset. Then, we apply
the trained model to three real-music ADT datasets to get
transcription performance. We focus on one target instru-
ment at a time and use randomly selected target examples
to simulate human input at inference time.

3.1 Dataset for Episodic Training: Slakh2100

We use the Slakh2100 dataset to train our few-shot model
[23]. Slakh2100 is synthesized from the Lakh MIDI
Dataset [24] using professional-grade sample-based virtual
instruments. It contains 2100 automatically mixed tracks
and accompanying MIDI files, totaling 145 hours of mix-
tures. Slakh2100 is synthesized using eight different drum
patches, where each patch can be viewed as a unique drum-
mer playing a unique drum kit. In each patch, there are
around 25 to 45 different percussion classes, each con-
sisting of a combination of a percussion instrument with a
playing technique. For episodic training, we alternatively
define a class as a specific percussion class (e.g. snare
drum side stick) played by a specific patch, resulting in
a total of 282 classes. Each drum patch has its own MIDI
note-instrument mapping, which does not follow the gen-
eral MIDI convention. We manually check the mapping to
group duplicates and remove empty ones. Each patch is
used to synthesize approximately 250 songs. We partition
the dataset into patch-conditional train, validation and test
splits using 5, 1, 2 patches per split, respectively.

3.2 Evaluation Datasets

3.2.1 ENST-Drums

ENST-Drums is a dataset of recordings from three drum-
mers each playing a different drum kit [9]. It contains drum
onset annotations for 20 classes of percussion sounds.
While the dataset also contains many solo drum record-
ings, we only use the subset of 64 recordings with accom-
paniment for evaluation. The accompaniments are mixed
with corresponding drum tracks using a scaling factor of
1/3 and 2/3 to get natural-sounding mixtures and to be con-
sistent with prior studies [6, 11, 25].

3.2.2 MDB-Drums

MDB-Drums is a set of 23 fully-produced music tracks
from the MedleyDB dataset [10,26]. It contains two levels
of drum onset annotations — we use the finer level which
divides the classes by instrument and playing technique,
resulting in 21 classes.
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Figure 2. Our backbone prototypical network embedding
model architecture.

3.2.3 RBMA13

RBMA13 consists of 30 fully-produced music tracks in the
genres of electronic dance music, singer-songwriter, and
fusion-jazz [11]. The drum sounds of this set are more
diverse compared to the previous sets, and it is considered
a particularly difficult dataset [11]. It contains annotations
for 23 percussive classes.

3.3 Training

For each percussion instrument onset in Slakh2100, we
center a 250 ms context window around the onset as
the input to the model. We compute a log-scaled Mel-
spectrogram from the context window with librosa [27]
using a window size of 46 ms (2048 samples for a sample
rate of 44.1 kHz) and a hop size of 10 ms. In prelimi-
nary experiments, we studied a range of short (160 ms) to
long (500 ms) context windows and found that a 250 ms
window yields consistent, well-performing results across
different datasets. We conjecture that a 250 ms window is
wide enough to capture most percussive onsets, while also
capturing some context around the onset.

To construct a 10-way 5-shot training episode, we ran-
domly sample a drum patch from the training set, sam-
ple 10 percussion instrument classes from the drum patch,
and sample 5 instances per class as the support set. Note
that, while each instance is guaranteed to contain the target
class, it may also contain other sound classes if they over-
lap in time with the target class. The query set is comprised
of 16 separate instances per each of the 10 classes [28].

We use a backbone convolutional neural network
(CNN) to embed the input as shown in Figure 2. It con-
sists of four convolution blocks, each of which has a con-
volutional layer with a 3× 3 kernel, a batch normalization
layer, a ReLU activation layer, and a 2 × 2 max-pooling
layer. To allow our model to handle varying-duration in-
put, we apply max-pooling along the time dimension to
the output of the convolution blocks (rather than a fully
connected layer). Finally, we flatten the feature map to get
an embedding with a dimensionality of 1024. We train our
model using the Adam optimizer [29] in PyTorch [30]
with a learning rate of 0.001 for 100,000 episodes with
early stopping. We choose the best model based on the



Vocab size Model Target examples ENST-Drums MDB-Drums RBMA13

micro macro macro* micro macro macro* micro macro macro*

18 CRNN [11] - 0.67 - 0.74 0.60 - 0.78 0.47 - 0.64

Proto. Net Include 0.55 0.54 0.80 0.58 0.60 0.87 0.56 0.55 0.81
Exclude 0.49 0.45 0.76 0.51 0.49 0.83 0.54 0.50 0.79

Table 1. F-measure evaluated on real polyphonic music datasets under a fixed 18-class vocabulary [11].

Vocab size Model Target examples ENST-Drums MDB-Drums RBMA13

micro macro macro* micro macro macro* micro macro macro*

All Proto. Net Include 0.55 0.54 0.89 0.60 0.61 0.90 0.54 0.53 0.83
Exclude 0.49 0.45 0.87 0.53 0.48 0.88 0.52 0.48 0.81

Table 2. F-measure evaluated on real polyphonic music datasets under all classes that exist in each dataset.

few-shot classification loss on the validation set.

3.4 Evaluation

To evaluate our proposed few-shot drum transcription
paradigm, we apply the prototypical network trained on
Slakh2100 to perform drum transcription on three real mu-
sic datasets. For each dataset, we first evaluate transcrip-
tion under the fixed vocabulary scenario by mapping per-
cussion instruments to a predefined 18-class vocabulary
used in a state-of-the-art ADT system [11] for compari-
son. Then, we transcribe all classes that exist in the test
set, including those classes that do not exist in our training
data, mimicking the open vocabulary scenario.

Given a target class and an audio track, we first pre-
process the track into a series of overlapping query frames
with a 250 ms window size, matching the context window
used during training, and 10 ms hop size. To simulate hu-
man selections at inference time, we randomly sample 5
target examples from the track as positive examples. Then,
we take all frames within the track as negative examples
and predict each query frame as described in Section 2.2.
We run 10 iterations of this prediction process to account
for randomness and concatenate all predictions to compute
performance metrics. We estimate target onset locations
from the model output using the peak picking method de-
scribed in [31]. A frame n is selected as an onset if the
corresponding output probability p(n) meets the following
criteria:

1. p(n) = max(p(n− w1) : p(n+ w2)),

2. p(n) ≥ mean(p(n− w3) : p(n+ w4)) + δ,

3. n− nlast onset > w5,

where δ is a threshold parameter, w1 to w4 are sample off-
set values defining the windows for the max and mean
functions, and w5 is the minimum allowed number of sam-
ples between onsets.

We divide each dataset used for evaluation into three
splits for 3-fold cross-validation. For each fold, we tune
the peak-picking parameters on the validation split using a
randomized search with 1000 iterations, and perform drum

transcription on the test split. Finally, we report the model
performance averaged over the three test splits. For ENST-
Drums, each split contains a different drummer. For MDB-
Drums and RBMA13, we use the same splits as [11].

3.5 Metrics

We compute performance metrics by first using the
onset_evaluation function in madmom [32] to find
matching onset locations with a 20 ms tolerance window.
We then compute F-measure as the primary performance
metric, using both micro and macro aggregation. For mi-
cro F-measure, we aggregate all true positives (TP), false
positives (FP), and false negatives (FN) over all classes and
tracks in the entire dataset. For macro F-measure, we first
compute a track-level F-measure for each track by aver-
aging all class-level F-measures in the track, and we then
average over all track-level F-measures in the dataset to
compute the final metric.

When computing macro F-measure, if an instrument
does not exist in a track and the ADT model under eval-
uation does not predict any corresponding positive labels,
previous work defined its class-level F-measure to be 1
[11]. This convention is informative for a standard super-
vised approach since the model may produce false posi-
tives for non-existing classes. However, a few-shot model
would never predict non-existing classes since there are
no positive examples to begin with, which is one of the
advantages of the few-shot drum transcription paradigm.
Therefore, when evaluating our few-shot model, it makes
more sense to exclude non-existing classes in a track from
the evaluation to avoid artificially inflating the macro F-
measure. For completeness and comparison to previous
work, however, we report both variants, either excluding
non-existing classes in a track (macro F-measure) or fol-
lowing the convention of setting the F-measure for such
classes to 1 (macro* F-measure).

Given that our model requires five user-labeled exam-
ples from the test data in each iteration of prediction, we
can compute the aforementioned performance metrics ei-
ther including or excluding the user-labeled examples. The
former represents the joint human-computer performance
of the proposed paradigm that a user would experience for



a track, while the latter represents our model’s performance
on strictly unlabeled data (i.e., the rest of the track). We re-
port both variants for each metric described in the previous
paragraph (labeled as Include/Exclude in the Tables).

4. RESULTS

4.1 Fixed Vocabulary

We first compare our few-shot drum transcription approach
to a state-of-the-art CRNN model, which was trained on
synthetic data and fine-tuned on real music data, under
a fixed 18-class vocabulary [11]. Note that while NMF-
based methods can be considered more closely related to
our approach, they require iterative optimization at test
time and the determination of the non-negative rank for
the decomposition process can be difficult. Most pre-
vious NMF-based ADT systems were evaluated on solo
drum tracks and a small subset of percussive sound classes
[5, 12, 33]. Therefore, in this work, we choose the CRNN
model as the baseline system and plan to compare our ap-
proach to NMF-based methods as part of future work.

In Table 1 we present model performance on three real
music datasets. From these results, we find three dis-
tinct insights applicable to the fixed vocabulary ADT tasks.
First, the results show that our approach, a prototypical
network trained on synthetic data with only five exam-
ples provided at inference time, gives comparable and in
some cases better performance compared to previous, fully
supervised state-of-the-art results. Second, we see that
our model performance is relatively stable across differ-
ent datasets. Third, our proposed approach outperforms
the supervised model on RBMA13 by a large margin,
which is considered a difficult dataset with diverse drum
sounds [11]. For instance, snare drum sounds on different
tracks in RBMA13 are very diverse and can sound very dif-
ferent. Standard supervised approaches typically struggle
to generalize well for classes with high intra-class varia-
tion. However, while a percussive sound class may exhibit
large intra-class variation across different tracks (e.g. dif-
ferent tracks may have very different snare drum sounds),
it’s often the case that such sound classes display far less
intra-class variation within the same track (e.g., the same
snare drum is used throughout a track). Since our few-
shot model detects a sound class based on target examples
from the same track, it is considerably more robust when
it comes to intra-class variation, as evidenced by the quan-
titative results. This highlights the strength of the few-shot
drum transcription paradigm which instead of aiming at
generalization, aims for quick adaptation with minimal hu-
man input.

4.2 Open Vocabulary

Next, we evaluate our few-shot model under an open-
vocabulary scenario. Here, we evaluate the model against
all the classes in each test set, including classes that were
never seen by the model during training. Specifically, we
evaluate on 20 classes for ENST-Drums, 19 classes for
MDB-Drums, and 20 classes for RBMA13. Classes that do
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Figure 3. F-measure for each percussion instrument in
the RBMA13 dataset. (Left) Under 18-class vocabulary.
(Right) Under all 20 classes. For each instrument, we show
the metrics computed with target examples included (dark
bar) and excluded (light bar).

not appear more than five times in any track in the dataset
are filtered out. Note that 6, 4, and 1 classes within the
full vocabulary of ENST, MDB, and RBMA respectively
do not exist in our training data. The results are presented
in Table 2. Note that we do not compare our model to
the fully supervised model in this scenario since, as noted
earlier, such a model would fail (by design) to recognize
classes that are outside of the training vocabulary. When
we compare these results to those in Table 1 (fixed vocab-
ulary), we note that there is no drop in performance when
moving from a fixed known vocabulary to an open vocabu-
lary with previously unseen sound classes. This is a direct
result of adapting few-shot learning to ADT and highlights
the benefit of our proposed approach.

Next, we break down the performance of the few-shot
model by instrument class under both the fixed and open
vocabulary scenarios on RBMA13, presented in Figure 3.
Here, two out of 18 predefined classes, splash cymbal and
china cymbal, do not exist in RBMA13 annotations and
thus the results for these classes are absent from the figure.
We see that in the open vocabulary scenario, we are able
to transcribe fine-grained classes such as six different tom
drums (orange bars in Figure 3) with comparable perfor-
mance to predicting a coarser, fixed vocabulary. We can
also transcribe Maracas (pink bar in Figure 3) which our
model has not seen at training.

4.3 Transcribing Novel Classes

In the previous section, we saw that the model can detect
a class that is out of the training vocabulary. To evaluate
this more quantitatively, we re-train our few-shot model
on the Slakh2100 dataset while completely excluding three
classes from the training data: bass drum, tambourine, and
clap, representing both common and rare classes. We then
evaluate the model on predicting these three classes in the
Slakh2100 test set and compare the results to those we ob-



Training data Target
examples

H in Slakh2100 test set

micro macro macro*

Slakh2100 Include 0.66 0.66 0.83
Exclude 0.64 0.64 0.83

Slakh2100 - H Include 0.62 0.62 0.81
Exclude 0.61 0.60 0.80

Table 3. F-measure evaluated on three classes: H =
{bass drum, tambourine, clap} in the Slakh2100 test set
when training with the entire Slakh2100 training set or
with three classes held out from the training data.

tain when the three classes are included in the training data.
We present the results in Table 3. We see that the per-

formance of the model is very stable, with only a minor de-
crease in F-measure when predicting classes that are com-
pletely excluded from the training set. This confirms that
with the few-shot training paradigm, our model can detect
entirely unseen classes given just a few examples at infer-
ence time.

4.4 Performance Breakdown by Polyphony

Next, we focus on the target example selection process at
inference time. Due to the polyphonic nature of music
audio, when a target example is selected, it can include
non-target instrument sounds, played at the same time. We
want to investigate how the polyphony of these selected
examples affects transcription performance. To do so, we
repeat our evaluation process three more times, each time
varying the support set such that all positive target exam-
ples have the same degree of polyphony: 1, 2, and 3 or
more (3+). To define the polyphony of each example, we
look at a 20 ms window around its onset and count the
number of percussion instruments that co-occur within the
window. To assess how the performance is affected by the
polyphony of the query, we break down the performance
by the polyphony of the query frames.

We present the results in Figure 4, which show sim-
ilar trends across the three evaluation datasets. First,
we see high performance on the diagonal, where the
polyphony between target and query examples match.
Along the diagonal, performance also increases with in-
creasing polyphony, for which a possible explanation is
that the chance of having exactly matched instrument
sources between target and query examples increases at
high polyphony. That is, the number of different percus-
sion instrument combinations decreases with increasing
polyphony, due to the underlying pattern of drum playing.
Another insight is that when there is a mismatch between
target and query polyphony, having lower polyphony in
target examples than in query examples gives better per-
formance than the other way around (comparing the up-
per right triangle to the lower-left triangle in each fig-
ure). This matches the intuition that when the target ex-
amples have high polyphony, it is difficult for the few-shot
model to latch onto the correct target instrument, result-
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Figure 4. Break down F-measure by polyphony in both
target and query examples.

ing in poor performance even on query examples with low
polyphony. On the other hand, it is easier for the model
to find the target class in common within examples with
lower polyphony.

Overall, the results show that the performance of our
few-shot drum transcription approach can significantly de-
pend on the target examples selected for the support set. In
future work, we plan to build on top of these results to in-
vestigate the best strategy of composing a support set, and
how we can inform user to make effective selections.

5. LIMITATION AND FUTURE WORK

The main limitation of our proposed approach is that it re-
quires the user to provide a few examples at inference time.
If the vocabulary is known in advance and there is suffi-
cient training data for each sound class, a fully supervised
approach has the advantage of not requiring any user in-
tervention. However, when the vocabulary is not known in
advance, or when there isn’t enough training data for every
class, the few-shot paradigm is clearly advantageous. For
future work, we plan to investigate the example selection
process at inference time and the corresponding human el-
ement. This includes studying how we can compose sets of
support examples to maximize performance, and how we
can guide the user to those selections.

6. CONCLUSION

In this work, we address open vocabulary ADT by propos-
ing a few-shot drum transcription paradigm, a combination
of a few-shot model with minimal human input. We train a
prototypical network on the Slakh2100 dataset as the few-
shot model, and evaluate the proposed few-shot drum tran-
scription system on multiple real-world ADT datasets with
polyphonic accompaniment. We show that, given just a
handful of target examples, we can match and, in some
cases outperform, a state-of-the-art supervised ADT ap-
proach under a fixed vocabulary setting. At the same time,
we show that our model can successfully generalize to
finer-grained class labeling and extended vocabularies un-
seen during training. Lastly, we investigate the dependence
of few-shot model performance on the polyphony of target
examples. We show that matching polyphony in target and
query examples gives better performance and when there
is a mismatch, having lower polyphony in target examples
than in query examples gives better results.
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