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ABSTRACT

This paper develops the hypothesis that symbolic drum
patterns can be represented in a reduced form as a sim-
ple oscillation between two states, a Low state (commonly
associated with kick drum events) and a High state (often
associated with either snare drum or high hat). Both an
onset time and an accent time is associated to each state.
The systematic inference of the reduced form is formal-
ized. This enables the specification of a rhythmic struc-
tural similarity measure on drum patterns, where reduced
patterns are compared through alignment. The two-state
representation allows a low computational cost alignment,
once the complex topological formalization is fully taken
into account. A comparison with the Hamming distance, as
well as similarity ratings collected from listeners on a drum
loop dataset, indicates that the bistate reduction enables to
convey subtle aspects that goes beyond surface-level com-
parison of rhythmic textures.

1. INTRODUCTION

One of the most fundamental areas of both Music Infor-
mation Retrieval (MIR) and music cognition research con-
cerns the modelling of musical similarity, due to the es-
sential importance of similarity in music perception and
the practical utility of similarity models in music retrieval
applications such as recommendation systems. Modelling
similarity for drum patterns is a particular challenging vari-
ant of this research, though one with potential applica-
tion in a wide range of intelligent music production tools
such as drum pattern recommendation systems or auto-
matic drum pattern generation systems.

The challenges of drum pattern similarity modelling
lies in the complex nature of polyphonic rhythm percep-
tion. The integration of coincident rhythms into a resultant
‘multirhythm’ has been argued to be an essential feature of
polyphonic rhythm perception, especially in the context of
drumming music [1]. Rhythmic interactions may also be
a significant aspect of polyphonic rhythm perception, with
complex rhythmic structures said to emerge from the inter-
action between rhythmic levels [2]. In the context of drum
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patterns specifically, rhythmic interaction and instrumental
configuration has been shown to have a significant affect
on the perception of syncopation, a fundamental rhythmic
property [3]. However, in much existing work on drum pat-
tern similarity modelling, similarity is modelled as a linear
combination of monophonic rhythm similarity models cal-
culated on each instrument part, without consideration to
rhythmic interactions or integration.

Our aim is to design new models of similarity for drum
patterns that take into account both rhythmic interaction
and rhythmic integration. The bistate reduction algorithm
proposed in this paper attempts to extract the core struc-
ture of drum pattern as an interaction between two states,
‘Low’ and ‘High’, and to use this reduced representation
to compare drum patterns through alignment.

The drum patterns used in this paper are part of a varied
set of 160 stylistically accurate symbolic patterns recorded
by human drummers on an electronic drum kit, taken from
the Groove library of BFD3 [4], a commercially available
virtual drum kit plugin. Originally collected by [5], the pat-
tern dataset is drawn from a wide range of genres and sub-
genres, with 8 genre groups used: Hiphop/Dance, Funk,
Blues/Country, Pop, Reggae/Latin, Rock, Metal and Jazz.
In addition to multiple genres, they are of varied complex-
ity and function, with some containing fills.

In Section 2, we discuss in greater detail approaches
to modelling monophonic rhythm similarity and assess the
state-of-the-art in drum pattern similarity modelling and its
limitations. In Section 3 and Section 4, we begin discus-
sion of the bistate reduction algorithm and bistate sequence
alignment technique respectively as a novel means of rep-
resenting complex drum patterns and estimating the per-
ceived similarity between them. In Section 5, the sequence
alignment algorithm is evaluated in its ability to predict
human similarity ratings for pairs on drum patterns in our
dataset.

2. RELATED WORK

Models of rhythmic similarity are significant in both music
perception and music informatics research due to rhythm’s
fundamental importance in music. For drum patterns
in particular, models of rhythmic similarity have various
practical applications such as automatic generation of vari-
ations on drum patterns [6,7], or in visually mapping drum
patterns by similarity to facilitate exploration of drum pat-
tern libraries [8, 9].
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Figure 1. Drum pattern Early RnB 33. Velocity is repre-
sented in grey level, from 0 in white to maximum value in
black.
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Figure 2. Reduction of Early RnB 33. State accents are
shown in black and state onsets (if different from accents)
in grey. ‘Low’ corresponds to ↓ and ‘high’ to ↑.

Many models of rhythmic similarity for drum patterns
are based on monophonic rhythm similarity models. These
methods are based on multiple possible representations of
rhythms. The most common method is as a vector consist-
ing of either an onset or silence at each metrical position of
the rhythm. The Hamming distance, a simple and popular
model, works by counting the number of metrical positions
in two rhythm vectors that differ in value (one onset, the
other rest) [10]. The swap or directed-swap distance can
also be calculated between rhythm vectors by counting the
number of swap operations (exchanges between adjacent
metrical positions) that need to be performed to turn one
rhythm into the other [11]. Other possible rhythm similar-
ity measures use inter-onset intervals (IOIs), vectors of the
distance between each successive onset as a multiple of the
smallest possible metrical position. An example of this is
the chronotonic distance [10]. A thorough overview of nu-
merous approaches to rhythm similarity modelling can be
found in [10].

Typically, drum pattern similarity is modelled by stack-
ing these monophonic rhythm similarity models calculated
on each part separately. This has been found to be success-
ful in a few cases; [7] found that the Hamming distance
and directed-swap distance correlated strongly with human
ratings of similarity for drum patterns, with the Hamming
distance outperforming the directed-swap. In [8], the au-
thors found a 2D projection of the Hamming distance could
partially cluster drum patterns in a way that matched their
genre tags for a small dataset of patterns. In a pilot study,
a model similar to the Hamming distance was also found
to correlate to listeners’ similarity ratings for drum pat-
terns [12]. This model counts whether the number of met-
rical positions where rhythms differ, but adds a weighting
metric based on metrical awareness.

The limitation of these models is that by stacking mono-
phonic rhythm similarity measures calculated on each part
separately, they fail to account for effects of rhythmic in-
teraction between instrument parts, or the perception of re-
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Figure 3. Drum pattern Reggae Grooves Fill 3.
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Figure 4. Reduction of Reggae Grooves Fill 3.

sultant ‘multirhythms’ due to the perceptual integration of
simultaneous rhythmic streams. Additionally, while fixed
weighting schemes have been used to weight more percep-
tually important kit instruments [6], these may not be flexi-
ble enough to account for the possibly changing contextual
importance of different instruments in a drum pattern.

3. BISTATE REDUCTION

Basic drum patterns are usually defined by the alterna-
tion of, typically, bass (or “kick”) drum and snare drum
strokes, with a further subdivision on the ride cymbal or
hi-hat 1 . The ordering in this definition implicitly indicates
that the bass and snare drums alternation is of higher level
of salience, while the cymbal or hi-hat subdivision is of
lesser importance.

3.1 Dominant Drum Selection

The first hypothesis guiding the approach presented in this
paper is that drum patterns can be reduced by only focusing
on these two most dominant classes of drum strokes. In the
definition of basic drum patterns above, the two dominant
drums are said to be bass and snare drums. But sometimes
the snare drums can be replaced by, for instance, closed
hi-hat.

For a given drum pattern, we propose a simple method
for selecting the two dominant drums. It consists in or-
dering the drums in a decreasing hierarchical order, and
selecting the two first drums, in this ordered list, that are
active in the given drum pattern. The first selected drum
will be called the Low drum, as it often relates to the bass
drum and to the use of lower frequencies, while the second
selected drum will be called the High drum.

For the drum patterns discussed throughout the paper,
the reduction was performed by using the following hier-
archical ordering: 1. kick drum, 2. snare drum, 3. closed
hi-hat. It was not necessary to consider other drums, since
at least two of these three drums were active in each drum

1 Cf. for instance https://en.wikipedia.org/wiki/Drum_
beat



pattern. In other words, a drum pattern featuring kick drum
and closed hi-hat, but no snare drum, will use kick drum as
Low and closed hi-hat as High. A drum pattern featuring
snare drum and closed hi-hat but no kick drum will use
snare drum as Low and closed hi-hat as High.

For the example shown in Figures 1 and 3, the closed
hi-hat sequence is considered as of less importance and
therefore ignored.

3.2 Two-State Alternation

The second hypothesis developed in the proposed ap-
proach is that drum patterns can be reduced as an alter-
nation between the Low and High drums. This can be for-
malised as an alternation between two states, respectively
designated ↓ and ↑. Figures 2 and 4 shows the reduction
corresponding to the sequences in Figures 1 and 3.

3.2.1 Handling of Simultaneous Strokes

At first sight, to detect the ↓ and ↑ states, we would sim-
ply need to look for the location of alternation between the
Low and High drums. The difficulty comes from the fact
that the two drums are often played together. In such occa-
sions, inference of ↓ or ↑ state relies on the context defined
by the recent past.

For instance in Figure 3, kick and snare drums are
played together at the beginning of beats 5, 6 and 8. Be-
cause the kick drum plays a clear ↓ at the beginning of
beat 4 (i.e., 4.1), which continues with snare drum play-
ing gently (from 4.2 to 4.4). We haven’t heard any clear
↑ state. Therefore, when snare drum and kick drums are
superposed on the next beat (5.1), this is perceived as a ↑.
But because the snare drum is played loudly on the next
tick (5.2), the next beat (6.1) is rather perceived as a ↓.
Same for 8.1.

We propose to explain this phenomenon by hypothesis-
ing that the categorisation ↓ vs. ↑ is based on comparing
each new drum stroke (or superposed strokes) to mental
models of ↓ and ↑ states. And in our modelling, this can be
simplified by comparing to only the mental model related
to one of the states ↓ and ↑, namely the state considered as
currently active.

More precisely, the mental model is represented by a
state s ∈ {↓, ↑, 0} (where state 0 is used solely when start-
ing the analysis, before the first actual state ↓ or ↑ has
been detected) altogether with a series of two velocities
(vM↓ , vM↑ ) ∈ [0, 1]2, called profile of the mental model,
and first initiated to (0, 0). The profile is updated with the
current configuration

(vM↓ , vM↑ ) = (v↓, v↑) (1)

every time there is a state transition.
At any given successive point in the drum pattern, fea-

turing at that instant a Low drum stroke of velocity v↓ ∈
[0, 1] (with 0 indicating no stroke) and a High drum stroke
of velocity v↑ ∈ [0, 1], we consider the following alterna-
tives, which are tested in the indicated order until a suitable
condition is found:
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Figure 4. Reduction of Reggae Grooves Fill 3. When
a state is repeated twice successively, the first square
(lighter) corresponds to the onset time and the second
square to the accent time, with its velocity indicated in
gray-scale. ‘down’ corresponds to # and ‘up’ to ".

3.2.1 Handling of Simultaneous Strokes170

At first sight, to detect the # and " types 2 , we would sim-171

ply need to look for the location of alternation between the172

Down and Up drums. The difficulty comes from the fact173

that the two drums are often played together. In such occa-174

sions, inference of # or " type relies on the context defined175

by the recent past.176

For instance, a Down event followed by a simultaneous177

Down + Up event would be generally reduced to (#, ").178

Similarly, an Up event followed by a simultaneous Down179

+ Up event would be generally reduced to (", #). But this180

would not be necessarily true if the velocity 3 is not con-181

stant. For instance, although a loud Down followed by a182

loud Up followed by a loud Down + Up would be reduced183

to (#, ", #), a loud Down followed by a soft Up followed by184

a loud Down + Up would instead be reduced to (#, ", ").185

For instance in Figure 3, kick and snare drums are186

played together at the beginning of bars 5, 6 and 8. Be-187

cause the kick drum plays a clear # at the beginning of188

bar 4 (i.e., 4.1), which continues with snare drum play-189

ing gently (from 4.2 to 4.4). We haven’t heard any clear190

" state. Therefore, when snare drum and kick drums are191

superposed on the next beat (5.1), this is perceived as a ".192

But because the snare drum is played loudly on the next193

tick (5.2), the next beat (6.1) is rather perceived as a #.194

Same for 8.1.195

We propose to explain this phenomenon by hypothesis-196

ing that the categorisation # vs. " is based on comparing197

each new drum stroke (or superposed strokes) to mental198

models of # and " types. And in our modelling, this can be199

simplified by comparing to only the mental model related200

to one of the types # and ", namely the type considered as201

currently active.202

More precisely, the mental model is represented by a203

type tM 2 {#, "} altogether with a series of two veloci-204

ties (vM
# , vM

" ), called profile of the mental model, and first205

initiated to (�1,�1). At any given time, with a Down206

event of velocity v# and an Up event of velocity v", we207

consider the following alternatives:208

1. If v# > v" + .2, the new event is #. Besides, if209

v# > vM
# � .2, the mental model is set to tM =#210

as well, and its profile is identified with the current211

event:212

(vM
# , vM

" ) = (v#, v") (1)
2 We will avoid using the term state here, as it will be used more specif-

ically in section 3.2.2.
3 In this paper, velocity designates the dynamics of drum strokes.

1 2 3 4 5 6 7 8

Figure 5. Drum pattern N Country Intro with kick drum
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Figure 6. Reduction of N Country Intro. See Figure 4
caption for an explanation.
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loud Up followed by a loud Down + Up would be reduced183

to (#, ", #), a loud Down followed by a soft Up followed by184

a loud Down + Up would instead be reduced to (#, ", ").185

For instance in Figure 3, kick and snare drums are186

played together at the beginning of bars 5, 6 and 8. Be-187

cause the kick drum plays a clear # at the beginning of188

bar 4 (i.e., 4.1), which continues with snare drum play-189

ing gently (from 4.2 to 4.4). We haven’t heard any clear190

" state. Therefore, when snare drum and kick drums are191

superposed on the next beat (5.1), this is perceived as a ".192

But because the snare drum is played loudly on the next193

tick (5.2), the next beat (6.1) is rather perceived as a #.194

Same for 8.1.195

We propose to explain this phenomenon by hypothesis-196

ing that the categorisation # vs. " is based on comparing197

each new drum stroke (or superposed strokes) to mental198

models of # and " types. And in our modelling, this can be199

simplified by comparing to only the mental model related200

to one of the types # and ", namely the type considered as201

currently active.202

More precisely, the mental model is represented by a203

type tM 2 {#, "} altogether with a series of two veloci-204

ties (vM
# , vM

" ), called profile of the mental model, and first205

initiated to (�1,�1). At any given time, with a Down206

event of velocity v# and an Up event of velocity v", we207

consider the following alternatives:208

1. If v# > v" + .2, the new event is #. Besides, if209

v# > vM
# � .2, the mental model is set to tM =#210

as well, and its profile is identified with the current211

event:212

(vM
# , vM

" ) = (v#, v") (1)
2 We will avoid using the term state here, as it will be used more specif-

ically in section 3.2.2.
3 In this paper, velocity designates the dynamics of drum strokes.

1 2 3 4 5 6 7 8

Figure 5. Drum pattern N Country Intro with kick drum
(lower row), closed hi-hat (middle row). Velocity is repre-
sented in grey level, from 0 in white to maximum value in
black.

1 2 3 4 5 6 7 8

up

down

Figure 6. Reduction of N Country Intro. See Figure 4
caption for an explanation.

2. If tM =# and v" > vM
" + .2, the new event is " and213

the mental model is updated to tM =" and its profile214

updated according to equation 1.215

3. If v# = 0, the new event is ". If tM =" as well, its216

profile is updated if v" > vM
" , or if v" >

vM
"
2 and217

v# < vM
# � .2.218

4. Similar to point 2 above, if tM =" and v# > vM
# +.2,219

the new event is # and the mental model is updated to220

tM =# and its profile updated according to equation221

1.222

5. If the current velocity (v#, v") is close to the profile223

of the mental model224

|vM
# � v#| < .1, |vM

" � v"| < .1, (2)

the new event’s type corresponds to the mental225

model’s one, and the profile is updated according to226

equation 1.227

The reasoning behind these heuristics cannot be de-228

tailed in this paper due to space constraint.229

Interestingly enough, this methodology also enables to230

analyse a more problematic example as the one shown in231

Figures 5 and 6. The difficulty here lies in the fact that232

the Up drum does not accentuate " but instead # events,233

except when it is played alone, in such case it emphasises "234

events! The method is able to avoid using this deceptively235

obvious heuristics and base the detection of the # state on236

the subtle high hat events.237

3.2.2 State Onset and Accent Times238

The approach presented in the previous section leads to239

the generation of a sequence of events of types " and #.240

Successive repetitions of events of same type are reduced241

into one single state. This practically means in particular242

that successive repetition of a given drum (while the other243

drum remains silent) are collapsed into one single event.244

However, if the most accented stroke is not the first one,245

this needs to be specifically indicated in the pattern de-246

scription, as it plays an important role in the pattern char-247

acteristics.248

For that reason, to each state are associated three at-249

tributes:250

Figure 5. State transition diagrams, where the current state
is respectively 0 (left diagram), ↓ (middle) and ↑ (right).
For given values for v↓ (X axis) and v↑ (Y axis) is indicated
the next state: ↓ (red) ↑ (blue), 0 (white). See the text for
more explanation.

1. If v↓ > v↑ + .2, the next state is ↓. This corresponds
to the region in dark red in each diagram in Figure
5. The profile is updated. In other words, when the
Low stroke is significantly stronger than the High
stroke, the new state is clearly ↓.

2. Similarly, if v↑ > v↓ + .2, the next state is ↑ (dark
blue region in Figure 5) and its profile updated.

3. If the current state is 0 (i.e, undefined), the next state
is ↓ if v↓ > .2 (light red region in the left diagram of
Figure 5). In other words, at the very beginning of
a drum pattern, an ambiguous mixture of Low and
High drums is associated with ↓, because it is con-
sidered as the default state (while ↑ is a departure
from the default state). If on the contrary v↓ ≤ .2
the next state is ↑ if v↑ > .2 or if v↓ = 0 (light blue
region).

4. If v↓ = 0 and if the current state is ↓, the next state

is ↑ if v↑ >
vM
↑
2 . If on the contrary the current state

is already ↑, the profile is updated only if v↑ > vM↑ .

5. If the current state is ↓ and v↑ > vM↑ + .2, the next
state is ↑ (light blue region in the middle diagram
of Figure 5). In other words, a significant increase
in velocity of the High strike (even if the velocity
remains lower than the Low strike’s one) triggers a
transition to the ↑ state.

6. Similarly, if the current state is ↑ and v↓ > vM↓ +
.2, the next state is ↓ (light red region in the right
diagram of Figure 5).

3.2.2 State Onset and Accent Times

The approach presented in the previous section leads to the
generation of a sequence of states ↑ and ↓. Successive rep-
etitions of a same state are reduced into one single state.
This practically means in particular that successive repeti-
tions of a given drum (while the other drum remains silent)
are collapsed into one single state.

However, if the most accented stroke is not the first one,
this needs to be specifically indicated in the pattern de-
scription, as it plays an important role in the pattern char-
acteristics. For that reason, with each state (excepted the
initial 0 state) are associated three attributes:



↓! (↓) ↑! (↑)
↓! S ↓ S ↓ O A ↓
(↓) S ↓ B ↑
↑! O A ↑ S ↑ S ↑
(↑) B ↓ S ↑

Table 1. Alignment configurations, triggered by state tran-
sitions, in the first sequence (left column) or/and in the sec-
ond sequence (top row). In the absence of transition in any
of the two sequences, no alignment configuration needs to
be defined.

• whether it is ↓ or ↑

• the onset time, i.e., the temporal position of the first
stroke in that successive repetition of strokes

• the accent time, i.e., the temporal position of the
most accented stroke.

4. BISTATE SEQUENCE ALIGNMENT

The third hypothesis developed in this paper is that the per-
ceived distance between two drum patterns can be approxi-
mated by aligning the two corresponding bistate sequences
and estimating the alignment mismatches.

4.1 Alignment principle

To allow the formalisation of this alignment, the set of two
states {↓, ↑} is further decomposed into four states {↓!, ↑
!, (↓), (↑)} in order to take into account all the temporal
relationships:

• ↓! and ↑! corresponds to a new transition to, respec-
tively, ↓ and ↑.

• (↓) and (↑) indicates a continuation of the corre-
sponding states ↓ and ↑.

This leads to a 4× 4 matrix of possible alignment con-
figurations, shown in Table 1. We can distinguish three
types of alignment configurations:

• The two sequences are in same state (“S”), both low
(“S ↓”) or both high (“S ↑”).

• One sequence introduces the opposite state ahead
of the other sequence: “A” if it the first sequence
ahead, “B” if it the second sequence.

• The two sequences are in opposite states (“O”).

The possible transitions between configurations are the
following, as described in Table 1:

• Starting from the same state (for instance S ↓), then
both sequences transition at the same time (for in-
stance S ↑).

• Starting from the same state (for instance S ↓), then
one sequence transitions first (for instance A ↑).

Figure 6. Alignment between two reduced drum patterns
A and B. Penalties are given for each individual state, in-
dicated with a number or ’P’. See the text for more expla-
nation.

• From configuration A or B, if only one sequence
transitions, this leads to S, while if both sequences
transition at the same time, this leads to opposite
states O.

• From O, another double-transition leads to another
O, while a single transition leads to either A or B.

4.2 Numerical distance estimation

The proposed distance model is based on an evaluation of
how well each of the two drum patterns aligns with the
other. For each successive state of each drum pattern, a
penalty is given if that state is not found in the other se-
quence around the same temporal position. Offset in the
temporal positions of the state on the two sequences also
contributes to the penalty.

The basic mechanisms are illustrated below using the
toy example shown in Figure 6. In this first example, we
assume that both sequences start at the same state (↓).

• The first state starts at the same time (t = 1) on
both sequences, leading to a S ↓ configuration with
0 penalty (shown in green in the Figure).

• The next event appears first in sequence A (A ↑ at
t = 2). The same transition appears next in sequence
B (S ↑ at t = 3). It is thus a quasi-synchronised tran-
sition, with 1 tick delay between the two sequences.
A penalty of 1 is therefore given to the new state in
each sequence. (The onset of each state is shown
in orange while the position of the opposite state is
shown in yellow.)

• A transition B ↓ at t = 4 is followed by another
transition back to S ↑. This state ↓ is deleted by
giving the maximum penalty P (in red) and the new
state ↑ at t = 5 (in blue) is ignored.

• A transition A ↓ at t = 6 is followed by a double
transition O at t = 8, which is considered as both
a 2-tick-delayed transition of B to state ↓ and as the
start of a new transition A ↑. Same for the subse-
quent double transition O at t = 9. The new tran-
sition A ↓ being followed by a transition S ↑, that
state ↓ is removed.



Figure 7. Alignment between two reduced drum patterns
A and B. Boxed series of cells show states containing re-
peated strokes, where the accent is the rightmost cell.

• Sequence A continuing after the end of sequence B,
any transition to the opposite state A ↓ (here only at
t = 11) is deleted.

In Figure 7, the sequences starting in opposite states, an
additional ↓ state is added before the start of sequence B,
to which is given a penalty of 4. In this example, since the
next event is a ↓ in sequence B, the previous ↑ is removed.

The rest of Figure 7 illustrates the handling of states
containing repeated strokes with the accentuated stroke ap-
pearing after the initial onset. Concerning the transition to
↑ first by B at t = 3 and then by A at t = 5, the penalty
is only 1 because it is computed between the accent in se-
quence B (at t = 4) and the onset of sequence A. For the
same reason, the next transition to ↓ at t = 7 is considered
without penalty. While B remains in ↓, with its attack at
t = 9, A transitions to ↑ with an attack at t = 8, which is
therefore deleted.

Each penalty is weighted with respect to the corre-
sponding accent velocity. For instance in the case of a
drum stroke of very low intensity (such as a ghost note),
the contribution of this penalty to the overall distance will
be low. Finally the distance between the two sequences is
defined as the maximum between the two weighted sums.

5. EVALUATION

To investigate the potential use of the bistate sequence
alignment algorithm for drum pattern similarity modelling,
we examined its calculated distances between 80 pairs of
drum patterns in our dataset in relation to human-provided
perceptual similarity ratings.

5.1 Methodology

We collected similarity ratings for the drum patterns via
an online listening test. The symbolic patterns were first
synthesized into audio via a generic sampled drum kit. 21
listeners rated similarity for the 80 pairs of patterns using a
continuous scale. Median internal consistency for all par-
ticipants calculated using the ICC (2,1) for the repeated
pairs was 0.85, equaling good agreement. The inter-rater
agreement for the 21 listeners calculated using the same
ICC (2,1) was 0.73, equally moderate-to-good agreement.
The spreads of ratings for each comparison were normally

Similarity Model r p
Hamming Distance 0.604 2.97e-9
Hamming Distance (2 channels) 0.539 2.58e-7
Bistate Sequence Alignment 0.556 8.49e-8
min(Hamming (2 chan), Alignment) 0.606 2.65e-9
min(Hamming, Alignment) 0.692 1.21e-12

Table 2. Pearson correlation coefficient r and p-value be-
tween mean similarity ratings and distance models.

distributed. More information on the collection of this
dataset may be found in [5].

To test the overall extent to which the bistate sequence
alignment algorithm corresponds to perceived similarity,
we calculated the Pearson correlation between the distance
calculated by the bistate sequence alignment algorithm and
the mean of human-supplied similarity ratings. We used
the established Hamming distance as a reference for eval-
uation, since, as indicated in Section 2, it gave the best
results in previous works. The first step of our approach,
presented in section 3.1, can be studied separately by also
computing the Hamming distance on the two main chan-
nels of the drum patterns.

5.2 Results and Discussion

The results can be seen in Table 2. Various values for the
parameter P were tried and the best results were obtained
with P = 8. The Hamming distance’s correlation on the
complete drum patterns is slightly stronger than the bistate
sequence alignment, which is itself very slightly better than
the Hamming distance computed on the two main drum
channels.

When combining the Hamming distance (computed on
the whole drum loops) with the alignment by taking the
minimum of them both, the correlation is better than the
Hamming distance alone, with a correlation of 0.692 vs
0.604. This increase in correlation was found to be statisti-
cally significant (t=1.748, p=0.04). This could indicate that
both these two algorithms capture fundamentally different
aspects of similarity, with the Hamming distance capturing
low-level similarities between rhythms, and the bistate se-
quence alignment capturing qualities relating to rhythmic
interaction and structure.

The difference between the distances can be seen in Fig-
ure 8 where the similarity ratings of all 80 pairs are plotted
alongside distances calculated by both the Hamming dis-
tance and the bistate sequence alignment algorithm.

The differences between the bistate sequence alignment
algorithm and Hamming distance can be further demon-
strated through viewing of some particular examples. Fig-
ure 9 shows a pair of Soul Grooves patterns that share very
similar kick and snare drum patterns while differing on
other drum tracks. Since the similarity was judged by the
listeners as high, this demonstrates the interest, in partic-
ular cases such as this one, in focusing the comparison of
drum patterns on the main kick and snare drums. And in-
deed, computing the Hamming distance on those two main
channels leads to a similarly low distance value (cf. red
arrow in Figure 8).



Figure 8. Comparison of the Z-score of the new proposed distance (in blue), the Hamming distance (in yellow), the
Hamming distance on the two main channels (in purple) and the listeners’ ratings (in red), for each of the 80 pairs of drum
patterns. The red and blue arrows indicate the examples shown in, respectively, Figures 9 and 10.
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Figure 9. Alignment between drum patterns Soul Grooves
2 (top left and center) and Soul Grooves 31 (top right and
bottom). The only penalties contributing to the distance is
a 1-tick offset (in orange) and a deleted state (in red).

Figure 10 illustrates the interest of the method beyond
the simple selection of two main channels. In this example,
the two sequences differ significantly at the surface level,
even if we restrict the scope on the kick and snare drums.
On the other hand, the corresponding reduced bistate se-
quences are similar and show a clear alignment, leading
to a relatively low distance on par with the listeners’ juge-
ment.

6. CONCLUSIONS

This article proposed an attempt to reduce drum patterns
into an underlying core structure with the aim to compare
drum patterns by aligning their reduced representation one
with each other. Clearly the problem of rhythmic reduction
is of high complexity, and is addressed here solely as an in-
termediary step for the establishment of a distance measure
between drum patterns. These mechanisms of selection of
dominant drums and of inference of Low and High states
could be studied further in order to provide more advanced
description of drum patterns.
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Figure 10. Alignment between drum patterns Batucara 3
and Cascara 5 using the same conventions as in Figure 9.

As it could have been expected, the comparison be-
tween the proposed distance and a simple surface-level
Hamming distance concerning their abilities to mimic lis-
teners similarity judgments shows that for the most part,
listeners rely on surface characteristics of the overall rhyth-
mic texture to compare drum patterns. However, in par-
ticular cases the underlying core structure can be of im-
portance as well, and this is where the proposed distance
can be of interest. Combining surface-level and deeper-
level representations seems to improve the overall similar-
ity modelling. We may hypothesise that further progress
in this endeavour could be made possible through the inte-
gration of more refined cognitive models.
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