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Preface

Welcome to ISMIR 2021, the 22nd International Society for Music Information Retrieval Conference. ISMIR is the
world’s leading research forum on processing, searching, organizing, and accessing music-related data. Our community
reflects a diversity of scientific disciplines, seniority levels, professional affiliations, and cultural backgrounds. Our goal
is in fostering and stimulating this diversity, leading to better science and better music services. Due to the COVID-19
pandemic, the 22nd ISMIR conference became the second ISMIR to be fully virtual. While this posed unique challenges,
we also took this as an opportunity to expand the reach of ISMIR and improve the inclusivity of the conference. The
organizing team, who came together from all over the world to ensure the success of this event, welcomes you to ISMIR
2021.

I. Scientific Program

ISMIR 2021 Scientific Program comprised two Keynote talks, one WiMIR Keynote talk, 6 tutorials and 104 papers. A
total of 278 abstracts were registered of which 258 were submitted as full papers eligible for review. In keeping with the
practices of the previous years, a two-tier double-blind review process was conducted involving a total of 298 reviewers
and 81 meta-reviewers. Each paper was assigned to a single meta-reviewer and 4 reviewers, to ensure that each would
eventually receive at least 3 completed reviews, accounting for the foreseen limited availability of some reviewers.
Meta-reviewers were also instructed to complete a full review of each of their assigned papers, in addition to the final
meta-review summarizing the individual reviews. Each meta-reviewer was responsible for between 2 and 5 papers, and
each reviewer was responsible for no more than 4 papers. The initial reviewing phase was followed by a discussion
period, in which reviewers and meta-reviewers could discuss and revise their assessments of each paper. Meta-reviewers
were then instructed to summarize the discussion and reviews in the final report. The Scientific Program Chairs (SPC)
finally rendered decisions on each paper. The SPC would like to express their thanks to the ISMIR community of
reviewers for their wholehearted support to this critical aspect of a successful ISMIR technical program.

Table 1 summarizes the submitted papers by subject area together with the corresponding accepted proportion. Figure 1
illustrates the number of papers accepted with at least one contributing author from each region. Geographic affiliations
were inferred from self-reported author affiliations and email addresses. Finally, Table 2 summarizes the publication
statistics over the 22-year-history of the conference.

Table 1: Papers submitted and accepted by subject area

Subject Area Submitted Accepted Accept %

Applications 25 7 28

Domain knowledge 53 19 36

Evaluation, datasets and reproducibility 18 10 55

Human-centered MIR 13 7 54

MIR fundamentals and methodology 14 4 28

MIR tasks 88 29 33

Musical features and properties 43 26 60

Philosophical and ethical discussions 4 2 50

Total 258 104 40.3
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Figure 1: Number of papers accepted with at least one contributing author from each region

Table 2: Summary of publication statistics over the 22-year-history of the ISMIR conference

Year Location Oral Poster Total Authors Unique
Authors

Authors /
Paper

Unique Authors
/ Paper

2000 Plymouth 19 16 35 68 63 1.9 1.8

2001 Indiana 25 16 41 100 86 2.4 2.1

2002 Paris 35 22 57 129 117 2.3 2.1

2003 Baltimore 26 24 50 132 111 2.6 2.2

2004 Barcelona 61 44 105 252 214 2.4 2.0

2005 London 57 57 114 316 233 2.8 2.0

2006 Victoria 59 36 95 246 198 2.6 2.1

2007 Vienna 62 65 127 361 267 2.8 2.1

2008 Philadelphia 24 105 105 296 253 2.8 2.4

2009 Kobe 38 85 123 375 292 3.0 2.4

2010 Utrecht 24 86 110 314 263 2.0 2.4

2011 Miami 36 97 133 395 322 3.0 2.4
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2012 Porto 36 65 101 324 264 3.2 2.6

2013 Curitiba 31 67 98 395 236 3.0 2.4

2014 Taipei 33 73 106 343 271 3.2 2.6

2015 Málaga 24 90 114 370 296 3.2 2.6

2016 New York 25 88 113 341 270 3.0 2.4

2017 Suzhou 24 73 97 324 248 3.3 2.6

2018 Paris 104 337 265 3.2 2.5

2019 Delft 114 390 315 3.4 2.8

2020 Montréal /
Virtual

115 426 343 3.7 3.0

2021 Virtual 104 334 269 3.2 2.6

Special Call for Papers: Cultural Diversity in MIR

Music is often considered a universal language, yet different cultures have created diverse music traditions and colorful
artifacts. This year, the conference organizers wanted to promote the cultural diversity of the ISMIR community and its
research. To this end, the ISMIR2021 Call for Papers included a special call for papers on “Cultural Diversity in MIR”.
This year's Scientific Program Chairs – Zhiyao Duan (University of Rochester, USA), Juhan Nam (KAIST, South Korea),
Preeti Rao (IIT Bombay, India), and Peter van Kranenburg (Meertens Institute, The Netherlands) – organized the call
with a focus on the twin topics of non-Western music and cross-cultural studies. To submit to this call, authors had
expressed their intent during submission.

The submissions to the Special Call underwent the same review process as the papers in the main track, with the same
number of reviews and a similar number of bids per submission, and with meta-reviewers who were carefully chosen to
oversee the review process. In all, 44 papers were submitted to this call, of which 11 were accepted and verified by the
SPC to match the topics of the call. An additional 3 papers were also accepted to the main track as they were verified by
the SPC not to match the special call. Table 3 shows the distribution of submitted papers across subject areas together
with the proportion of accepted papers in each for this special call.

Table 3: Special Call for Papers on “Cultural Diversity in MIR”: Papers submitted and accepted by subject area

Subject Area Submitted Accepted Accept %

Applications 3 0 0

Domain Knowledge 12 3 25

Evaluation, datasets and reproducibility 2 1 50

Human-centered MIR 1 0 0

MIR tasks 14 2 14

Musical features and properties 7 3 43

Philosophical and ethical discussions 2 2 100

Total 41 11 26.8
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Figure 2 depicts the number of Special Call papers accepted with at least one contributing author from each of the
specified regions of the world. The geographic affiliations were inferred from self-reported author affiliations and email
addresses. We note a wide representation of countries with at least a few international collaborations.

Figure 2: Number of papers in the special call accepted with at least one contributing author from each region

Best Paper Awards

Best paper candidates were selected from the 104 accepted papers. The SPC first short-listed 15 papers based on
reviewers’ and meta-reviewers’ nominations as well as the paper review scores. Of these, the SPC nominated 8 paper
candidates under three categories: the Best Paper (3 candidates), the Best Student Paper (3 candidates) and the Best
Special Call Paper (2 candidates), based on their own judgement of the paper attributes as well as the detailed reviewer
comments.
  
Best Paper Award Nominations

Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon, Artist Similarity Using Graph Neural Networks

Hugo F. Flores Garcia, Aldo Aguilar, Ethan Manilow, and Bryan Pardo, Leveraging Hierarchical Structures for Few-Shot
Musical Instrument Recognition

Rodrigo Castellon, Chris Donahue, and Percy Liang, Codified Audio Language Modeling Learns Useful Representations
for Music Information Retrieval

Best Student Paper Award Nominations

Minz Won, Justin Salamon, Nicholas J. Bryan, Gautham Mysore, and Xavier Serra, Emotion Embedding Spaces for
Matching Music to Stories

Daniel Yang and Timothy Tsai, Composer Classification with Cross-Modal Transfer Learning and Musically-Informed
Augmentation

Harin Lee, Frank Höger, Marc Schönwiesner, Minsu Park, and Nori Jacoby, Cross-cultural Mood Perception in Pop
Songs and its Alignment with Mood Detection Algorithms
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Best Special Call Paper Award Nominations

Rujing Huang, Bob L. T. Sturm, Andre Holzapfel, De-centering the West: East Asian Philosophies and the Ethics of
Applying Artificial Intelligence to Music

Rohit M A, Amitrajit Bhattacharjee, Preeti Rao, Four-way Classification of Tabla Strokes with Models Adapted from
Automatic Drum Transcription

The final selections were made by specially appointed judges drawn from experienced researchers for each category. The
following papers received awards:

Best Paper Award
Hugo F. Flores Garcia, Aldo Aguilar, Ethan Manilow, and Bryan Pardo, Leveraging Hierarchical Structures for Few-Shot
Musical Instrument Recognition

Best Student Paper Award
Minz Won, Justin Salamon, Nicholas J. Bryan, Gautham Mysore, and Xavier Serra, Emotion Embedding Spaces for
Matching Music to Stories

Best Special Call Paper Award
Rujing Huang, Bob L. T. Sturm, and Andre Holzapfel, De-centering the West: East Asian Philosophies and the Ethics of
Applying Artificial Intelligence to Music.

During the conference a poll was set up to vote for the best poster and best video presentation and the paper that received
the most votes from participants also received popular choice awards.

Best Poster Presentation (by popular vote)
Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon, Artist Similarity Using Graph Neural Networks.

Best Video Presentation (by popular vote)
Laure Prétet, Gaël Richard, and Geoffroy Peeters, Is There a “Language of Music-Video Clips” ? A Qualitative and
Quantitative Study

Best Reviewer Awards

Based on the scores provided by meta-reviewers on the quality of individual reviews, in relation to the number of papers
reviewed by each reviewer, the SPC selected a total of 16 awardees listed below:

Marcelo Caetano
Andrew Demetriou
Christoph Finkensiep
François Germain
Daniel Harasim
Ben Hayes
Chris Hubbles
Yaolong Ju

Ilaria Manco
Sandy Manolios
Eric Nichols
Emilia Parada-Cabaleiro
Verena Praher
Katharina Prinz
Rafael Caro Repetto
Maximilian Schmitt

II. Diversity & Inclusion (D&I)

The ISMIR 2021 conference took a broad view of Diversity and Inclusion (D&I). Under the leadership of the conference
D&I Chairs, in collaboration with the organizing team at large, ISMIR 2021 offered a variety of initiatives intended to
make the conference a positive, welcoming, and supportive environment for a diverse range of presenters and attendees.
Notably, this year’s virtual conference format, combined with generous sponsor support, enabled an unprecedented level
of financial support to cover registration and childcare costs. Registration waivers were made available to students,
women and other underrepresented minorities in MIR, attendees from low-income countries, presenters in the
“New-to-ISMIR” late-breaking/demo track, and unaffiliated attendees. All attendees were additionally eligible to apply
for childcare grants. The ISMIR 2021 organizers also worked together to write a number of blog posts aimed to decrease
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barriers for participation in the MIR research community, for example, by offering insights into preparing and reviewing
scientific submissions. Finally, the ISMIR conference Code of Conduct remained in place for this year’s virtual format.

Newcomer Initiatives

Coming to a new conference for the first time can be intimidating and overwhelming. At ISMIR this year, the Newcomer
Initiatives Chairs have drawn on the past experiences of the MIR community to provide increased support to newcomers.
The initiatives planned for the conference included a pair of special sessions on “Getting the most out of ISMIR 2021”,
which follow up on a community survey and blog post on the subject published before the conference. The sessions were
hosted by Newcomer Initiatives Chairs Nick Gang (Apple) and Elona Shatri (Queen Mary University of London).
Another new initiative was the creation of Newcomer Squads, which connected ISMIR veterans with groups of
newcomers to answer questions, give advice, and offer support over the course of the conference week.

Women in Music Information Retrieval (WiMIR)

Women in Music Information Retrieval (WiMIR) is a group of people dedicated to promoting the role of, and increasing
opportunities for, women in the MIR field. WiMIR’s initiatives started as informal gatherings around breakfast or lunch
during ISMIR conferences (2011–2014), and moved to formal WiMIR events included in the conference program
(2015–today) garnering a high turnout of both women and allies. These events provide occasions for people to network
and to discuss several important issues ranging from mentorship and conference support, to improving the representation
of women and, more broadly, diversity in the community. In 2018, WiMIR started hosting its own workshop as a satellite
event, in which attendees of all genders participated. These workshops aim to offer participants an opportunity for
networking, put the spotlight on technical work done by women in the field, and foster collaboration between women and
allies by proposing group work led by project guides to try to solve small research problems or to undertake new research
projects that could lead to longer-term collaborations. The ISMIR 2021 D&I Chairs gratefully acknowledge the support
of this year’s WiMIR sponsors, whose contributions support women in the field as well as the broader D&I efforts of this
year’s conference.

WiMIR Plenary and Special Sessions

The ISMIR 2021 conference continued the tradition of including a WiMIR plenary session in the main conference
program. This year’s WiMIR plenary session featured a keynote talk by Laurel Smith Pardue. The ISMIR 2021
conference also included a number of special WiMIR meetup sessions throughout the week, where attendees could
engage in discussion with invited notable women in the field.

WiMIR Special Session 1: Cheng-Zhi Anna Huang (Magenta / Google Brain / Université de Montréal / Mila)

WiMIR Special Session 2: Emma Azelborn (iZotope, Inc.)

WiMIR Special Session 3: Xiao Hu (University of Hong Kong)

WiMIR Special Session 4: Katerina Kosta (ByteDance / TikTok)

Broadening Diversity & Inclusion in MIR

On July 7 2021, the D&I Chairs organized an “ISMIR Diversity & Inclusion Summit” at which invited participants
discussed four topics: Clarifying the goal of D&I efforts at ISMIR; charting the future of WiMIR; maintaining ISMIR
conference accessibility post-COVID; and ethical considerations for ISMIR and WiMIR sponsors. Many possible actions
were considered at the summit, including   using resources to nurture leadership within and provide support to
marginalized and underrepresented groups at ISMIR; altering the organizational structure of WiMIR; continuing hybrid
(i.e., physical/virtual) conference formats; and formalising guidelines and benefits of corporate sponsorship. At ISMIR
2021, these conversations continued at two special sessions on the themes of Broadening D&I and Local Initiatives. Each
featured a Q&A with a panel of guests and discussion with the audience.

Diversity & Inclusion Special Session: Broadening D&I
Moderator: Blair Kaneshiro (Stanford University, USA)
Panelists: Johanna Devaney (Brooklyn College and the Graduate Center, CUNY, USA), Zhiyao Duan (University of
Rochester, USA), Katherine M. Kinnaird (Smith College, USA), Douglas Turnbull (Ithaca College, USA)
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Diversity & Inclusion Special Session: Local Initiatives
Moderator: Jordan B. L. Smith (TikTok / ByteDance, UK)
Panelists: Sakinat Folorunso (Olabisi Onabanjo University, Nigeria), Meinard Müller (International Audio Laboratories
Erlangen, Germany), Elio Quinton (Universal Music Group, UK), Anja Volk (Utrecht University, The Netherlands)

III. Special Sessions

Similar to last year, the Scientific Program Chairs organized six special sessions on trending topics at ISMIR 2021. Brief
introductions and session information is provided below:

Special Session 1: MIR for Human Health and Potential Panel
The MIR for Human Health and Potential Panel brings together researchers from music, cognitive psychology,
neuroscience, mathematics, and computer science to continue discussion of a topic which began at ISMIR2014. This
topic has become increasingly important, especially during an unprecedented global pandemic which has significant
impacts on people’s health, wellbeing and learning, as their interactions with others are restricted due to social distancing
measures.

The COVID-19 pandemic has made music more important as a medium to connect people, to enhance both physical and
mental health, and to advance human potential. Social distancing measures have greatly enhanced interest in eHealth and
eLearning. Integrating music into digital health/learning technologies helps to make music interventions accessible,
scalable, and personalized. Finally, these technological innovations offer effective interventions for health, wellbeing and
learning that are safe and non-invasive.

Research at the intersection of neuroscience, medicine, the science of learning, and MIR has the potential to reveal new
insights into individual variability and personalized interventions; while mobile systems for collecting physiological data
point to promising avenues for ecologically valid studies, and even socially distanced data collection in the home.

Moderator: Ye Wang (National University of Singapore, Singapore)
Panelists: Frank Russo (Ryerson University, Canada), Elaine Chew (CNRS – STMS (IRCAM), France), Gus Xia (NYU
Shanghai, China), Blair Kaneshiro (Stanford University, USA)

Special Session 2: IMS Digital Musicology Study Group
This meeting of the International Musicological Society's Digital Musicology Study Group is open to anyone interested
in applying computational methods to musicological questions. The meeting will consist of a series of short presentations
about ongoing research projects as well as a general discussion about the future activities of the group.

Moderators: Johanna Devaney (Brooklyn College and the Graduate Center, CUNY, USA), Frans Wiering (Utrecht
University, The Netherlands)

Special Session 3: Promoting Cultural Diversity in MIR Research
Promoting cultural diversity in MIR research has been recognized by the MIR community as an important task. ISMIR
2021 is proud of having organized a special call-for-papers on cultural diversity, with an outcome of eleven papers
accepted. The goal of this session is to reflect on this effort and to discuss how to promote cultural diversity in MIR
research in a sustainable manner.

Moderator: Scientific Program Co-Chairs
Panelists: Magdalena Fuentes (New York University, USA), Xiao Hu (The University of Hong Kong, Hong Kong),
Patrick Savage (Keio University SFC, Japan), Li Su (Academia Sinica, Taiwan)

Special Session 4: Computational Creativity for Music
This panel on Computational Creativity for Music will begin by discussing definitions of AI, CC, and what panelists
perceive as important differences between the two. Portrait XO will reflect on an artist's experience of incorporating
algorithms into the creative process – what works, what doesn’t. We will address evaluation, especially work the
academics have done to address how we could/should evaluate computational systems and their outputs. Is it sufficient
for a machine learning paper to rely solely on metrics such as loss/cross-entropy for evaluation? We will get the panelists'
points of view on this, and provide a useful reading list for ISMIR authors aiming to excel at evaluating their creative
MIR research.
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Moderator: Tom Collins (University of York, UK, Music Artificial Intelligence Algorithms, Inc., USA)
Panelists: Anna Jordanous (University of Kent, UK), Dan Ventura (Brigham Young University, USA), Geraint Wiggins
(VUB, Belgium / Queen Mary University of London, UK), Portrait XO (Artist)

Special Session 5: MIR for Music Education
Computer technology, and MIR in particular, has inspired many innovations in music education, including pitch
recognition for singers, score alignment for performance evaluation and AI assistants for student composers. We will
discuss the potential of MIR for the future of music education as well as how the needs of music educators can guide
MIR research.

Moderator: Roger B. Dannenberg (Carnegie Mellon University, USA)
Panelists: Zhiyao Duan (University of Rochester, USA), Anssi Klapuri (Yousician, Finland), Alexander Lerch (Georgia
Institute of Technology, USA), Daniel Ray (Muse Group, UK)

Special Session 6: Ethical Issues in Music Ai – Perspectives on authorship with creative artificial
intelligence in music
In the wake of all the exciting opportunities that creative Ai technology provides artists, a more contentious issue is
emerging: that of authorship. Who can or should be denominated as the author of a work created or co-created alongside
Ai systems? What is the role of the cultural commons from which ML systems draw their creative energies, especially in
situations involving precarious minorities or cultural heritage groups vulnerable to exploitation? How do copyright or
related neighbouring rights approach authorship and ownership in these contexts? How can revenue streams generated by
the creative Ai works be allocated in a fair and sustainable manner? And finally, what consequences will these choices
have for the creative artists, for the industry and for the society at large?
In this session, we will not provide easy answers to these questions, but start exploring them by mapping out authors,
owners and stakeholders in various contexts of music production, performance and consumption. Through the
identification of the networks of influence, power and exclusion, we can start exposing the ethical ecosystems and the
shifting contours of authorship in the Ai music industry. We aim to conduct parts of this session in a workshop format,
facilitating an open discussion with the audience.

Moderators: Andre Holzapfel (KTH Royal Institute of Technology, Sweden), Petra Pauliina Jääskeläinen (KTH Royal
Institute of Technology, Sweden), Anna-Kaisa Kaila (KTH Royal Institute of Technology, Sweden), Sertan Şentürk
(Kobalt Music Group)

IV. Late Breaking/Demo Session

This year’s Late-breaking/Demo (LBD) session introduced two changes to previous years’ iterations of the event. First,
taking advantage of the remote conference format where space is no longer a constraint, there was no upper limit to the
number of submissions accepted, providing more opportunities for people to showcase their late-breaking work. Second,
a New-to-ISMIR special track was introduced wherein student authors who are looking to join the community for the
first time were encouraged to submit their work and receive extra mentoring. The mentoring process included a light
review process where ‘mentors’ assigned to each paper gave constructive feedback, thus giving participants a taste of
peer-review and enabling them to refine their camera-ready submissions and facilitate effective presentations. In total, we
received 38 regular track and 20 special track submissions, respectively. Sixteen ISMIR reviewers served as mentors in
the special track, allowing each mentee to receive up to two reviews with detailed written feedback. With these changes,
we hope to invite more people to our community and inspire future innovations in the LBD format.

V. Music

ISMIR 2021 Music Program could be entitled “A festival of visual music.” We received an overwhelming amount of
works in the category of creative visuals. The unexpected high number of submissions (46) made it very hard to select
the pieces to be presented. However, we think we had a great selection of works — not all of them related directly to
MIR — that constituted an excellent musical counterpart to the scientific program. Split into four short online concerts —
two of less than 30 minutes each, another two around 40 minutes each — the program only featured musical works with a
visual counterpart, be it creative visuals, networked ensembles, or (recordings of) live performances. We realized that
works that had no video (e.g. acousmatic music) should not be presented in this (online) format for reasons that have
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nothing to do with the (sometimes) great quality of the music — it simply would make it very hard to fully appreciate
these works. Here is a list of music pieces that were presented in ISMIR 2021:

Concert 1

Symphony in Blue 2.0, Istanbul Coding Ensemble with Jerfi Aji, piano
Xeno, Enrico Dorigatti
Three Tunes from the Ai Frontiers, Bob L. T. Sturm
toy_5, Eric Lemmon
History Has Stopped at 2021, Vanissa Law

Concert 2

Golden Cuttlefish, Timothy Moyers
Topos, Giuseppe Desiato
Things I Have Seen In My Dreams, João Pedro Oliveira
coalesce;, Tamara E Ray

Concert 3

Lullaby for Stepanakert, Joseph Bohigian & Ensemble Decipher
Butterfly Garden, Donya Quick
Forme Cangianti, Fabio Morreale
Quartet, Ted Moore
Inkblot, Serge Bulat
Music for Virtual Togetherness, Poli∃tnico Choir

Concert 4

Rooftops, Modality
String Quartet, Hendrik Vincent Koops
Apocalypse – Future, Oregon Electronic Device Orchestra
The Seals: Networked ensemble of pre-recorded live performance with creative AI assisted visuals, The Seals
Horizon, Mojtaba Heydari, Frank Cwitkowitz

Music was alive and kicking at virtual ISMIR 2021!

VI. Industry Sessions

The Sponsorship Program Chairs organized eight industry sessions over three themes. Brief introductions and session
information are provided below:

Industry Presentations
Over four sessions, the Sponsors of ISMIR 2021 showcased the research, engineering and product work conducted in
their companies with talks, demos, and (for platinum sponsors) Q&As.

Participating Sponsors: Spotify, Sony, Adobe, Bytedance/Tiktok, Pandora, Yamaha, Deezer, Dolby, Izotope, Orfium,
Utopia Music

Industry Panel: MIR Technologies Across Cultures
Users of MIR technologies come from all around the world. Technologies intended for one sonic landscape sometimes
generalize to others. Sometimes, they require additional patience and research to adapt to a new user base. In this forum,
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panelists from audio industries and academia discussed the exciting opportunities, challenges and lessons learned that
come from implementing audio technologies across users with very different needs and sonic cultures.

Moderator: Gus Xia (NYU Shanghai (CST))
Panelists: Ajay Kapur (California Institute of the Arts), Rujing Huang (University of Hong Kong), Lamtharn “Hanoi”
Hantrakul (ByteDance/TikTok), Oriol “Uri” Nieto (Adobe), Akira Maezawa (Yamaha)

Industry Panel: MIR Technologies and Education
Technology plays a key role in education. This panel will dive into education in its broadest sense, from audio
technologies that directly improve the learning process in music or speech related activities (e.g. learning an instrument,
learning to speak a language), to technologies that aim to guide and educate users in a sound related endeavour (e.g.
music production, video editing, cultivating interest in a new musical style) as well as health and well-being.

Moderator: Xavier Serra (Universitat Pompeu Fabra)
Panelists: Cynthia Liem (Delft University of Technology), Anja Volk (Utrecht University), François Pachet (Spotify),
Fabien Gouyon (Pandora)

Masterclass: CV Review
ISMIR Masterclasses are intended to familiarize current students and recent graduates with interviews and processes they
may encounter when looking for MIR-style roles in industry. This session focused on CV and resumes for audio, MIR
and machine learning related roles. We go through tips and tricks for making your resume stand out with Chris Bakes, a
Campus Recruiter at TikTok and previously University Recruiter at Facebook AI.

Panelists: Chris Bakes (Campus Recruiter, TikTok/ByteDance), Lamtharn “Hanoi” Hantrakul (Research Scientist,
TikTok/ByteDance)

Masterclass: Systems Design Interview
ISMIR Masterclasses are intended to familiarize current students and recent graduates with interviews and processes they
may encounter when looking for MIR-style roles in industry. This session focused on a Systems Design Interview based
on MIR technologies. This type of interview is distinct from the Technical Coding Interview or ML Interview many
attendees may be familiar with. Research code is not Production code. Systems Design tests awareness of the scalability
and maintainability of a solution and the technologies used to robustly achieve the demands of a product. This session
featured a deconstructed mock interview and industry best practices.

Panelists: Peter Sobot (Staff Software Engineer, Spotify), Lamtharn “Hanoi” Hantrakul (Research Scientist,
TikTok/ByteDance), Sertan Şentürk (Lead Data Scientist, Kobalt Music Group)

VII. Lab Showcase

This year, we introduced a new event called the Lab Showcase to the ISMIR conference. Academic labs focusing on MIR
research were invited to showcase their lab at virtual booths. There were 33 lab participants across 17 different countries,
showcasing their labs through live sessions and lab introduction materials at the virtual booths. Participating labs were
also invited to post vacancies together with sponsors in a Job Board. By introducing the Lab Showcase, we hope to give a
perspective on MIR research world-wide, enable connections between institutions and prospective students or
collaborators, and simply make it easier to reach out to and learn more about various labs across the globe.

VIII. Satellite Events

In addition to the main conference, two satellite events were offered to participants:

1. The Music Demixing (MDX) Challenge, November 12, 2021 (online)

2. 2nd Workshop on NLP for Music and Spoken Audio (NLP4MuSA 2021), November 12, 2021 (online)
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Harin Lee, Frank Höger, Marc Schönwiesner, Minsu Park, Nori Jacoby . . . . . . . . . . . . . . . . . . . 366

Reconsidering Quantization in MIR
Jordan Lenchitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

A Unified Model for Zero-shot Music Source Separation, Transcription and Synthesis
Liwei Lin, Gus Xia, Qiuqiang Kong, Junyan Jiang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Pitch-Informed Instrument Assignment using a Deep Convolutional Network with Multiple Kernel Shapes
Carlos Lordelo, Emmanouil Benetos, Simon Dixon, Sven Ahlbäck . . . . . . . . . . . . . . . . . . . . . 389
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Keynote Talk - 1 
 
Jukebox and MuseNet - Generating Raw Audio and MIDI Music 
Christine McLeavey 
Member of Technical Staff (Researcher), OpenAI 
Portola Valley, California, USA 
 
Abstract 
 
Music generation is exciting both as a tool for augmenting human creativity, and as a domain for pushing the current 
capabilities of generative neural net models. OpenAI's MuseNet is a MIDI-based model able to generate music imitating 
hundreds of composers and styles. Composers such as Philip Glass have experimented with the model, and it has been used 
as a co-composing tool for works performed by the BBC Philharmonic, among others. Jukebox is a model that generates 
music with singing in the raw audio domain. Provided with written lyrics and an artist and genre to imitate, the model 
generates complete songs. This talk discusses both MuseNet and Jukebox in more depth, as well as some recent artistic 
collaborations. 
 
Biography 
 
Christine McLeavey is a research scientist at OpenAI where she created MuseNet and collaborated to create Jukebox. 
Groups such as the BBC Philharmonic and SF Symphony have performed pieces co-composed using MuseNet. Also a 
Juilliard-trained pianist and avid chamber musician, she is particularly interested in Human/AI musical collaborations. She 
holds a masters in neuroscience from Stanford, and a degree in physics from Princeton. 
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Keynote Talk - 2  
 
Acoustic Singularities of Some Songs of Oral Tradition 
Michèle Castellengo 
Emeritus Research Director 
CNRS, Sorbonne Université 
 
Abstract 
 
After studying the acoustic properties and sound qualities of several musical instruments (flute, organ) as well as those of 
European vocal techniques, I have directed my research towards the study of songs of oral tradition - thus without notation 
- for which problems of analysis and transcription arise, as well as difficulties due to our own listening references, 
fundamentally different from those of native musicians. 
 
In the course of the presentation we will travel to Central Africa with the Aka Pygmies, to Taiwan with the Bunun, to 
Central Asia with the Mongols and their "diphonic" singing, and back to Europe with a religious polyphonic song of the 
Sardinians. 
 
At the end of this journey we will show that the classical notions of musical acoustics: pitch, intensity and timbre rarely 
correspond, for the human listener, to independent physical parameters, and that it would be necessary to consider the 
apprehension of global forms coordinating these parameters to account for the musical listening. 
 
Biography 
 
After studying music and musicology, Michèle Castellengo joined Emile Leipp's laboratory of musical acoustics where 
she defended a thesis under his direction. In 1982, she joined the CNRS and became director of the laboratory (LAM). Her 
research focuses on the acoustics of flutes, the organ and the sung voice, and more generally on the perception of musical 
sounds. Strongly involved in the dissemination of musical knowledge to musicians, she created in 1989 the class of musical 
acoustics at the Paris Conservatory (CNSMDP) and wrote an exhaustive book of musical acoustics for musicians. Director 
of the LAM and head of the Atiam master's program (University of Paris 6/Ircam/SupTélécom) until 2002, she is now an 
emeritus research director at the CNRS. She pursues her research on the musical perception of sounds within the framework 
of cognitive categorization and more particularly in the field of ethnomusicology. 
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WiMIR Keynote Talk 
 
Improving Diversity and Inclusivity Through Action 
Laurel Smith Pardue 
Software Engineer 
Ableton Live 
 
Abstract 
 
Lack of diversity and inclusion within a community means that important ideas and viewpoints are missing; a community’s 
needs are missed or misrepresented, data is more likely to be biased, and human beings can end up feeling and being 
excluded. The music technology and machine learning fields are known for long-standing issues in diversity with members 
being largely white, male, able-bodied, and originating from wealthy countries. While there are systemic challenges to 
broadening a community, this talk will introduce Dr. Pardue’s work on improving accessibility of musical performance 
before concentrating on potential actionable ways to make the research community more inclusive including focusing 
diversity and inclusivity efforts beyond the single strata of gender to incorporate ethnicity, language, disability, experience, 
and more. 
 
Biography 
 
Dr. Laurel S. Pardue has worked in music technology and instrument design for over 15 years.  She focuses on real-world, 
real-time performance, designing and building instruments including Gamelan Elektrika (debuted in collaboration with 
Kronos Quartet at the NY Lincoln Center in 2010), the world’s first electronic tabla, Tabla Touch, with Kuljit Bhamra 
(launched 2020), and most recently, the Svampolin (3rd place 2020, Guthman Musical Instrument Competition, NIME 
2019 Best Presentation).  She is also a founding member of Bela.io.  She holds 4 degrees from MIT and completed a PhD 
at Queen Mary University of London with Dr. Andrew McPherson with follow-on research positions using technology to 
study the learning of musical instruments at Aarlborg University Copenhagen, and the Sonic Arts Research Centre, Queens 
University Belfast.  Having previously worked as a ProTools software engineer, she is now a programmer for Ableton 
Live.  Dr. Pardue is also an active violinist having appeared at major festivals in Western Europe, NY, SF, live on BBC 
Radios 3,4, & 6, and German television with various artists including Sam Lee, Mishaped Pearls, Bang on a Can, and, as 
Bitchlovsky, playing semi-improvised violin with live electronic music.  She is currently the head of the NIME diversity 
and inclusion committee (https://diversity.nime.org/).  
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Tutorial 1 
 
Tempo, Beat, and Downbeat Estimation 
Matthew Davies, Sebastian Bock and Magdalena Fuentes 
 
Abstract 
 
The highly interrelated topics of tempo, beat, and downbeat estimation from musical audio signals have spanned the entire 
history of MIR. Along with many MIR topics, the uptake of deep learning has fundamentally altered how these rhythm-
oriented tasks have been addressed and has led to a profound increase in performance. This tutorial seeks to position itself 
within this narrative by providing a high-level understanding of historical signal processing-oriented approaches leading 
to hands-on practical experience in building, training, and evaluating the most recent state-of-the-art deep learning 
approaches. Our goal is not only to expose participants to a complete rhythm analysis pipeline, but also to emphasize the 
importance of technical and musical design choices, the reliability of annotated data, and multidisciplinarity. In addition, 
we seek to provide insight into common pitfalls and discuss future challenges. 
 
The tutorial is targeted towards those in the ISMIR community who wish gain comprehensive insight and practical 
experience in tempo, beat, and downbeat estimation of musical audio signals. For those new to this area, we seek to provide 
a hands-on technical and pedagogical guide which can serve as the basis for fostering future research. For those with prior 
knowledge in the area, we hope to convey a solid understanding of recent advances and current state-of-the-art approaches. 
As a prerequisite for participation, we would expect some basic experience in the execution of python notebooks. 
 
 
Biographies of Presenters 
 
Matthew E. P. Davies is a researcher in the Centre for Informatics and Systems of the University of Coimbra (CISUC), 
Portugal. His research interests include the analysis of rhythm in musical audio signals, evaluation methodology, creative 
music applications, and reproducible research. His most recent research has addressed the use of compact deep neural 
networks for the analysis of rhythmic structure, and computational ethnomusicology. 
 
Sebastian Böck received his diploma degree in electrical engineering from the Technical University in Munich and his 
Ph.D. in computer science from the Johannes Kepler University Linz. Within the MIR community he is probably best 
known for his machine learning-based algorithms and as the principal maintainer of open source python library, madmom. 
Currently he works as an AI research engineer for enliteAI in Vienna, Austria. 
 
Magdalena Fuentes is a Provost's Postdoctoral Fellow at the Music and Audio Research Lab and the Center for Urban 
Science and Progress of New York University (NYU). She completed her Ph.D. at Université Paris Saclay on multi-scale 
computational rhythm analysis, with focus on the interaction of microtiming, beats, downbeats and music structure. Her 
research interests include Machine Listening, Self-Supervised Representation Learning, Computational Rhythm Analysis 
and Environmental Sound Analysis. 
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Tutorial 2 
 
Designing Generative Models for Interactive Co-creation 
Anna Huang, Jon Gillick and Chris Donahue 
 
Abstract 
 
Recent advances in generative modeling have enabled AI systems to create realistic musical outputs, and additionally offer 
exciting potential to assist a broad range of music creators. However, these models have limitations that impose a unique 
set of challenges when embedded in interactive environments. 
 
How do we design generative models and interactions that enable new creative (or co-creative) possibilities, while at the 
same time addressing real musical needs and user goals? This tutorial covers a range of considerations that come into play 
when using AI as a design material for creative musical interactions: identifying user needs and interaction opportunities, 
translating our high-level interactive objectives into actionable ML problems, (crudely) codifying desired behavior or 
aesthetics into quantitative metrics that can be hill-climbed during model development, and identifying cadences for 
evaluating progress with users in controlled experiments and in the wild. This process might span multiple projects or 
papers, with each diving deeper on different aspects of the process. We will draw from our own experiences and projects, 
highlighting choices that we made and reflecting on what we might do differently next time as we trace the lifecycle of 
these projects from research to the real world and back. 
 
This tutorial will be geared towards anyone with some experience in MIR who is not already working at the intersection 
of music generative modeling and human interaction but may be interested in learning more. The primary purpose of this 
tutorial is to demystify this daunting process: we will offer guidelines and point out pitfalls, keeping in mind that there is 
no one-size-fits-all protocol. We hope that attendees will leave the tutorial with a clearer understanding of the challenges 
associated with designing, building, and evaluating interactive music AI experiences, and strategies which may help them 
overcome these obstacles. 
 
Biographies of Presenters 
 
Anna Huang is a Research Scientist at Google Brain, working on the Magenta project. Her research focuses on designing 
generative models and tools to make music more interactive and approachable. She is the creator of Music Transformer, 
and the ML model Coconet that powered Google’s first AI Doodle, Bach Doodle. She holds a PhD from Harvard 
University, masters from the MIT Media Lab, and a dual bachelor's degree in computer science and music composition 
from University of Southern California. She is currently co-advising students at Mila, the Quebec AI Institute. She is also 
a guest editor for TISMIR's Special Issue on AI and Musical Creativity, and a judge and organizer for the international AI 
Song Contest. 
 
Jon Gillick is a PhD Candidate at the School of Information at UC Berkeley, where he is also affiliated with the Center 
for New Music and Audio Technologies (CNMAT). His research centers around exploring new ways of creating and 
interacting with music and sound using machine learning. Before coming to Berkeley, he studied Computer Science at 
Wesleyan University in Connecticut and Music Composition and Production at the Pyramind Music Production Institute 
in San Francisco, and he spent time working in the Bay Area as both a freelance composer/audio engineer and as a software 
developer. 
 
Chris Donahue is a postdoc at Stanford University in the computer science department. The primary goal of his research 
is to build AI systems which help humans be more creative. In practice, this often involves both improving generative 
models and designing new interactive environments which make these models more useful to humans. In a music context, 
he is particularly interested in how generative models may allow non-musicians to unlock their dormant musical creativity. 
Before Stanford, Chris completed his Ph.D. at UC San Diego, where he was co-advised by Miller Puckette (music) and 
Julian McAuley (CS). 
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Tutorial 3 
 
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers 
Johanna Devaney, David Sears and Daniel Shanahan 
 
Abstract 
 
Much pitch-related MIR research builds either implicitly or explicitly on music-theoretic domain knowledge. 
Unfortunately, music theory is an esoteric discipline, with many of its canonical organizational principles presented in 
textbooks with dozens of classical musical examples and little indication of how these principles can be applied to other 
musical traditions. This tutorial will introduce fundamental pitch-related concepts in music theory for the ISMIR 
community and relate them to tasks associated with melodic, chord, and structural audio analysis for a range of musical 
styles. It will include sections on the scales, chords, and cadences routinely associated with Western art music of the 
common-practice tradition (~1650-1900), as well as non-Western folk musics and the popular music traditions of the 
twentieth and twenty-first centuries. The three sections will be broken down as follows, with both lecture and hands-on 
coding demonstration components: 
 
• Scales  

o Scale formation (octave equivalence, mathematical properties) 
o Scale and mode types (western and non-Western) 
o Implications for scale and key identification, automatic melody extraction 

• Chords  
o Types (triads, seventh chords, extensions) 
o Representation schemes (e.g., chord labeling) 
o Syntactic principles (e.g., functional harmony, grammars) 
o Implications for automatic chord recognition, pattern discovery 

• Cadences 
o Types 
o Linear/voice-leading patterns 
o Relationship to large-scale formal types (phrases, themes, sonata, etc.) 
o Implications for cadence discovery/classification, automatic segmentation 

 
This tutorial will be of interest  to a broad range of the ISMIR community, but will be of specific interest to MIR researchers 
with limited formal training in music theory. This workshop assumes a basic understanding of musical notation, but does 
not assume prior knowledge of Western music theory. It will be accessible to researchers new to the field, but will also be 
of interest to experienced researchers hoping to incorporate more music-theoretically based models into their research. 
 
Biographies of Presenters 
 
Johanna Devaney is an Assistant Professor at Brooklyn College and the CUNY Graduate Center, where she teaches 
courses in data analysis, music technology, music theory, and sonic arts. Her research focuses on interdisciplinary 
approaches to the study of musical performance, with a particular focus on the relationship between pitch structure and 
intonation in the singing voice. More broadly, she examines the ways in which recorded performances can be used to model 
performance and develops computational tools to facilitate this, primarily the Automatic Music Performance Analysis and 
Comparison Toolkit (AMPACT). Johanna has been active in the ISMIR community since 2008, giving the WiMIR keynote 
in 2020 and currently serving on the TISMIR editorial board. She holds a PhD in Music Technology from McGill 
University.  
 
David R. W. Sears is an Assistant Professor of Interdisciplinary Arts and Co-Director of the Performing Arts Research 
Lab at Texas Tech University, where he teaches courses in arts psychology, arts informatics, and music theory. His current 
research examines the structural parallels between music and language using both behavioral and computational methods, 
with a particular emphasis on the many topics associated with pitch structure, including scale theory, tonality, harmony, 
cadence, and musical form. Recent publications appear in his Google Scholar profile. He holds a PhD in music theory from 
McGill University.  
 
Daniel Shanahan is an Associate Professor of Music Theory and Cognition at Ohio State University. He is interested in 
studying musical transmission, musical communication, and jazz improvisation, and likes to explore these topics with both 
experimental and computational tools. Daniel’s work has been published in Music Perception, The Journal of New Music 
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Research, Musicae Scientiae, and many other outlets. He is an editor of the forthcoming Oxford Handbook of Corpus 
Studies in Music and has been managing editor of Empirical Musicology Review since 2012, serving as the journal co-
editor since 2016. He also serves on the editorial boards of Music Theory Spectrum, Musicae Scientiae, and Indiana Theory 
Review. He holds a PhD in music theory from the University of Dublin, Trinity College. 
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Tutorial 4 
 

Music Classification: Beyond Supervised Learning, Towards Real-world 
Applications 
Keunwoo Choi, Minz Won and Janne Spijkervet 
 

Abstract 
 
Music classification is a music information retrieval (MIR) task to classify music items to labels such as genre, mood, and 
instruments. It is also closely related to other concepts such as music similarity and musical preference. In this tutorial, we 
put our focus on two directions - the recent training schemes beyond supervised learning and the successful application of 
music classification models.  
The target audience for this session is researchers and practitioners who are interested in state-of-the-art music classification 
research and building real-world applications. We assume the audience is familiar with the basic machine learning concepts. 
For those who are not, we kindly refer to [1, 2] to be prepared for this session.  
We plan to present three lectures as follows: 

1. Music classification overview: Task definition, applications, existing approaches, datasets 
2. Beyond supervised learning: Semi- and self-supervised learning for music classification 
3. Towards real-world applications: Less-discussed, yet important research issues in practice 

 
We provide an accompanying code repository and Jupyter notebooks that can be used along with the video presentation. 
With the material, attendees can easily train semi- and self-supervised models with their own audio data. 
[1] A Tutorial on Deep Learning for Music Information Retrieval, Keunwoo Choi et al., 2017 (Concepts in deep learning) 
https://arxiv.org/abs/1709.04396  
[2] An Introduction to Statistical Learning, Daniela Witten et al., 2013 (Chapter 2-4 for ML fundamentals) 
https://www.statlearning.com/ 
 
 

Biographies of Presenters 
 
Keunwoo Choi (website) is a research scientist at ByteDance, developing machine learning products for music 
recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a 
researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source 
projects such as Kapre, librosa, and torchaudio. He argues that he writes some good music. 
 
Minz Won (website) is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in 
Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his 
knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined 
ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to 
Recognize Musical Genre. 
 
Janne Spijkervet (website) graduated from the University of Amsterdam in 2021 with her Master's thesis titled 
"Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised 
learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing 
generative models for music creation. She is also a songwriter and music producer, and explores the design and use of 
machine learning technology in her music. 
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Tutorial 5 
 
Programming MIR Baselines from Scratch: Three Case Studies 
Rachel Bittner, Mark Cartwright and Ethan Manilow 
 
Abstract 
 
This tutorial will walk through the creation of MIR baselines programmed live, including pitch tracking, instrument 
identification, and drum transcription. Each case study will start with building a system and finish with evaluations and 
visualization/sonification, each using different tools and styles of programming. This tutorial is both beginner and 
experienced programmer-friendly and will start from the basics but will move quickly. While the tutorial is not interactive, 
all code will be made available afterwards. 
  
 
Biographies of Presenters 
 
Rachel Bittner is a Senior Research Scientist at Spotify in Paris. She received her Ph.D. in Music Technology in 2018 
from the Music and Audio Research Lab at New York University under Dr. Juan P. Bello, with a research focus on deep 
learning and machine learning applied to fundamental fre- quency estimation. She has a Master’s degree in mathematics 
from New York University’s Courant Institute, as well as two Bachelor’s degrees in Music Performance and in 
Mathematics from the University of California, Irvine. In 2014-15, she was a research fellow at Telecom ParisTech in 
France after being awarded the Chateaubriand Research Fellowship. From 2011-13, she was a member of the Human 
Factors division of NASA Ames Research Center, working with Dr. Durand Begault. Her research interests are at the 
intersection of audio signal processing and machine learning, applied to musical audio. She is an active contributor to the 
open-source community, including being the primary developer of the pysox and mirdata Python libraries. 
 
Mark Cartwright is an Assistant Professor at New Jersey Institute of Technology in the Department of Informatics. He 
completed his PhD in computer science at Northwestern University as a member of the Interactive Audio Lab, and he holds 
a Master of Arts from Stanford University (CCRMA) and a Bachelor of Music from Northwestern University. Before his 
current position, he spent four years as a researcher in the Music and Audio Research Lab (MARL) and the Center for 
Urban Science and Progress (CUSP) at New York University (NYU). His research lies at the intersection of human-
computer interaction, ma- chine learning, and audio signal processing. Specifically, he researches human- centered machine 
listening and audio processing tools for creative expression with sound and understanding the acoustic world. 
 
Ethan Manilow is a PhD candidate in Computer Science at Northwestern University under advisor Prof. Bryan Pardo. His 
research lies in the inter- section of signal processing and machine learning, with a focus on source separation, automatic 
music transcription, and open source datasets and applications. Previously he was an intern at Mitsubishi Electric Research 
Labs (MERL) and at Google Magenta. He is one of the lead developers of nussl, an open source audio separation library. 
He lives in Chicago, where he spends his free time playing his guitar and smiling at dogs he passes on the sidewalk. 
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Tutorial 6 
 
Teaching Music Information Retrieval 
George Tzanetakis 
 
Abstract 
 
The research field of Music Information Retrieval (MIR) has a history of more than 20 years. During this time many 
different tasks have been defined and a variety of algorithms have been proposed. MIR topics are taught around the world 
in a variety of settings both in academia and industry. The teaching of MIR takes many forms ranging from teaching regular 
undergraduate and graduate courses to delivering specialized tutorials, seminars, and online courses. MIR is a 
fundamentally interdisciplinary topic and that creates unique challenges when it is taught. The goal of this tutorial is to 
cover various topics of interest to people involved with teaching MIR. The material covered is informed by modern 
pedagogical practices and how these practices can be adapted to address the unique characteristics of learning about MIR. 
The global Covid pandemic has resulted in increased activity and interest about online learning. Advice and guidelines for 
effective online teaching of MIR will also be provided. The presented concepts and ideas will be illustrated using concrete 
examples and use cases drawn from extensive experience of the tutorial presenter with teaching MIR in a variety of settings. 
Although this is not the primary focus of the tutorial, these examples can also serve as an introduction to MIR for 
participants that are new to the field.  
 
 
Biography of the Presenter 
 
George Tzanetakis is a Professor in the Department of Computer Science with cross-listed appointments in ECE and 
Music at the University of Victoria, Canada. He was Canada Research Chair (Tier II) in the Computer Analysis and Audio 
and Music from 2010 to 2020. In 2012, he received the Craigdaroch research award in artistic expression at the University 
of Victoria. In 2011 he was Visiting Faculty at Google Research. He received his PhD in Computer Science at Princeton 
University in 2002 and was a Postdoctoral fellow at Carnegie Mellon University in 2002- 2003. His research spans all 
stages of audio content analysis such as feature extraction, segmentation, classification with specific emphasis on music 
information retrieval. 
He has designed and developed for Kadenze Inc. the first widely available online program in Music Information Retrieval 
consisting of 3 courses that were launched in December 2020. More than 2000 students from around the world have been 
involved with the program. He is also the primary designer and developer of Marsyas an open source framework for audio 
processing with specific emphasis on music information retrieval applications. His pioneering work on musical genre 
classification received a IEEE signal processing society young author award and is frequently cited. He has given several 
tutorials in well-known international conferences such as ICASSP, ACM Multimedia and ISMIR. More recently he has 
been exploring new interfaces for musical expression, music robotics, computational ethnomusicology, and computer-
assisted music instrument tutoring. These interdisciplinary activities combine ideas from signal processing, perception, 
machine learning, sensors, actuators and human-computer interaction with the connecting theme of making computers 
better understand music to create more effective interactions with musicians and listeners. More details can be found 
http://www.cs.uvic.ca/~gtzan. 
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FOUR-WAY CLASSIFICATION OF TABLA STROKES WITH MODELS
ADAPTED FROM AUTOMATIC DRUM TRANSCRIPTION

Rohit M A Amitrajit Bhattacharjee Preeti Rao
Department of Electrical Engineering

Indian Institute of Technology Bombay, India
{rohitma, amitrajit, prao}@ee.iitb.ac.in

ABSTRACT

Motivated by musicological applications of the four-way
categorization of tabla strokes, we consider automatic clas-
sification methods that are potentially robust to instrument
differences. We present a new, diverse tabla dataset suit-
ably annotated for the task. The acoustic correspondence
between the tabla stroke categories and the common pop-
ular Western drum types motivates us to adapt models and
methods from automatic drum transcription. We start by
exploring the use of transfer learning on a state-of-the-art
pre-trained multiclass CNN drums model. This is com-
pared with 1-way models trained separately for each tabla
stroke class. We find that the 1-way models provide the
best mean f-score while the drums pre-trained and tabla-
adapted 3-way models generalize better for the most scarce
target class. To improve model robustness further, we in-
vestigate both drums and tabla-specific data augmentation
strategies.

1. INTRODUCTION

Tabla, a ubiquitous part of the North Indian art music en-
semble, comprises two drums that can be struck singly or
together with a variety of articulations to give rise to se-
quences of individual and compound strokes of changing
timbre, termed bols. With a set of between 10-20 distinct
tabla bols (depending on playing style) found in practice,
the bols have been traditionally viewed as single entities
of different timbres, and tabla transcription addressed as a
monophonic timbre recognition problem [1].

The earliest work on tabla transcription was reported
by Gillet et. al. [2] who modelled stroke spectra by a 4-
mixture Gaussian Mixture Model for 10-category classifi-
cation using Hidden Markov Models (HMM). Chordia [3]
extended this work by targeting a larger, more diverse
dataset, and using neural network (NN) and tree-based
classifiers to categorize strokes based on spectral and tem-
poral envelope features. Both works mention the difficulty
of generalizing across instruments, and report lower scores

© M. A. Rohit, A. Bhattacharjee, and P. Rao. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: M. A. Rohit, A. Bhattacharjee, and P. Rao, “Four-
way Classification of Tabla Strokes with Models Adapted from Automatic
Drum Transcription”, in Proc. of the 22nd Int. Society for Music Infor-
mation Retrieval Conf., Online, 2021.

on tabla sets not seen in training. Later work [4] used
frame-level mel-frequency cepstral coefficients (MFCC) to
capture bol timbre in an HMM model in a classification
task on a single tabla set. More recent works that make use
of NN and tree-based bol classifiers [5–8] are restricted ei-
ther in their use of small datasets, or the absence of any
instrument-independent performance evaluation.

An important taxonomic level for tabla sounds is based
on which of the two drums is struck and the manner of
striking, giving rise to the three classes: resonant treble
(right drum), resonant bass (left drum), and damped (either
drum); the right & left are with respect to a right-handed
player. That is, the specific manner gives rise to either a
damped stroke with a sharp and short-duration sound or
a pitched (resonant) stroke with ringing sound, which can
further be pitch modulated in the case of the left drum. The
different timbres of the tabla bols are obtained by individ-
ual or combinations of basic strokes, with the combina-
tion of resonant bass and treble (resonant both) being es-
pecially important. In the archetypal drum pattern known
as the theka, subsections of the rhythmic cycle are chiefly
discriminated by the presence or absence of right and left
drum resonant strokes [9,10]. The associated classification
has been useful in the empirical analyses of tabla accom-
paniment in khyal vocal performances [11]. Motivated by
the musicological applications of the above categorization
of tabla sounds, a 4-way stroke classification task was pre-
viously defined exploiting the acoustic characteristics of
the strokes [12]. A training dataset of labelled tabla solo
recordings was created to train a random forest classifier

Figure 1: Spectrograms of samples (at fs=44.1 kHz) of the
3 basic tabla strokes(top) and drum types(bottom). Note
the similarity between (a) Resonant Bass & (d) BD, (b)
Resonant Treble & (e) SD, and (c) Damped & (f) HH
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Category Bols Bass Treble Drumkit

D Ti-Ta, Te-Re, Tak,
Ke, Tra, Kda D/Nil D/Nil HH

RT Na, Tin, Tun, Din D/Nil R SD
RB Ghe, Dhe, Dhi, Dhet R D/Nil BD
B Dha, Dhin R R BD+SD

Table 1: Tabla stroke categories, corresponding bols,
constituent stroke types (Resonant/Damped/none) on each
tabla drum, and western drum equivalents. D - damped, RT
- resonant treble, RB - resonant bass, B - resonant both.

Figure 2: Distribution of stroke categories in our dataset.

with a large set of stroke specific acoustic features, which
was then evaluated on a tabla accompaniment test set.

In this work, we recognise the similarity of the reduced
category tabla stroke classification problem to the auto-
matic drums transcription (ADT) task with its consider-
able published work focused on transcribing the 3 main
percussion instruments in Western popular music – bass
(BD), snare (SD), and hi-hat (HH) [13, 14]. Figure 1 il-
lustrates the correspondence of these drums with the bass,
treble, and damped tabla strokes, respectively. Starting
with segment-and-classify approaches based on extracting
suitable acoustic features for classification from automati-
cally segmented drum tracks using onset detection, more
recent methods for ADT adapt deep-learning based on-
set detection models, trained to directly predict the instru-
ment along with its onset location [14]. We extend previ-
ous available work on 4-way tabla stroke category detec-
tion to use recently proposed convolutional neural network
(CNN) models comprising the state-of-the-art in ADT.

Our chief new contributions include significantly ex-
panding the available training dataset of tabla solo record-
ings with new instruments, and investigating CNN archi-
tectures from ADT literature for the tabla stroke classifica-
tion task. In an attempt to alleviate training data scarcity,
we explore domain adaptation or transfer learning with an
available pre-trained multiclass CNN drums model [15].
To counter target class imbalance, we also investigate ar-
chitecture optimizations with a bank of single-stroke (bi-
nary) CNN classifiers [16]. Finally, we explore a num-
ber of data augmentation approaches including new tabla-
specific transformations inspired by drum-specific aug-
mentation methods from ADT [17]. We present next the
dataset used in this work, followed by the classification
and data augmentation methods and, finally, the results.

Source # tablas Duration # strokes

Tr
ai

n

Train-set of [12] 3 18 min. 6,680
Suppl. data of [18] 3 16 min. 5,178
New 4 42 min 14,742

Total 10 76 min. 26,600

Test-set of [12] 3 20 min. 4,470

Table 2: The various subsets in the train and test datasets.

2. DATASET

An important application of the present work is in classify-
ing tabla strokes played in accompaniment to lead music.
We thus use an existing dataset of realistic tabla accompa-
niment recordings to test our methods. While we would
prefer matched training data, concert audios are not read-
ily available in bleed-free multi-track format. And creating
such a dataset is challenging not only to record, but also
to annotate due to the lack of a precise score. Therefore,
we resort to the use of tabla solo playing and build upon
previous datasets to create a diverse training set. Table 2
lists the sources of our train and test datasets with a com-
mon sampling rate of 16 kHz. The target classes used in
this work, common bols that they map to, and the types
of strokes played simultaneously on each drum to realise
them appear in Table 1. For D, we have damped strokes
on either one or both drums. RT and RB strokes produce
resonant sounds on the corresponding drum and may be
accompanied by a damped stroke on the other drum.

Testing: The test set consists of 10 pieces of only the
tabla accompaniment recorded in perfect isolation to pre-
recorded solo Hindustani vocal tracks. It contains 20 min-
utes of audio and nearly 4,500 strokes. These recordings,
made on 3 unique tabla sets by 2 different artists, are di-
verse in terms of tuning, tala (metre), and tempo.

Training and Cross-Validation (CV): Solo composi-
tions and common theka patterns recorded from 7 differ-
ent tabla-sets are added to the training dataset from [12].
Out of these, 3 are from a previous study [18] for which
written scores are available but are not time-aligned with
the audios. The 4 others were newly recorded for this
work by different artists. In order to achieve better diver-
sity, we choose instruments of sufficiently different tun-
ing, include a variety of playing styles, and cover a wide
tempo range. Annotation was carried out by automati-
cally aligning the composition score (supplied by artists)
with the audios, and replacing the bols with correspond-
ing target stroke categories (Table 1). Given the imperfect
score-stroke matching [3,4], labels were manually verified
to assign the same category to similar sounding bols. The
dataset spans a total audio duration of about 1.25 hours and
contains 26,600 strokes. To perform hyperparameter tun-
ing, we split our training dataset into 3 nearly equal-sized
disjoint folds, with all recordings from a single tabla set
assigned to a single fold, providing instrument indepen-
dent validation. The folds are similar in the distribution of
stroke categories, tonic, and tempo.
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k x Conv: N1  x  3 x m (BatchNorm + ReLU)

k x Conv: N2  x  3 x 3 (BatchNorm + ReLU)

MaxPool: 3 x 1

MaxPool: 3 x 1

Dropout: 0.25

Dense: N3 (BatchNorm + ReLU)

Dropout: 0.25

Dense: 1 (BatchNorm + Sigmoid)

Input: C channels x 80 bins x T frames

Figure 3: General CNN architecture for 1-way model tun-
ing experiments (N2=2xN1). k is # repetitions of the layer.

Variant Hyperparameter values

Baseline C=3, T=15 (150 ms),
k=1, m=7, N1=16, N3=128

"context T=21 (210 ms)
Mid-channel C=1 (middle)
"conv filters N1=32
"dense units N3=256
"conv filt. + "dense units N1=32, N3=256
2x conv layers k=2, m=3

Table 3: The various hyperparameter settings in the tuning
experiments of the 1-way CNN model (of Figure 3).

Figure 2 shows the distribution of strokes across the
four target categories in the train and test sets. We ob-
serve a significant imbalance in both, with damped strokes
being the most numerous and resonant bass being the least.
Although the distributions are similar across datasets, dif-
ferences in the playing styles (solo vs accompaniment) are
likely to contribute to some train-test mismatch.

3. METHODS

We now present the CNN based classification models, their
input-output representations, and the training and hyperpa-
rameter tuning experiments. Subsequently, we outline the
different augmentation methods devised.

3.1 Classification Models

Two CNN-based approaches from drums transcription are
compared - a 3-way model [19], and a bank of separate 1-
way models for each target class [16]. In the former, we
experiment with fine-tuning available pre-trained models
as well as training new models with the same architecture
from scratch. With the 1-way approach, a model for each
stroke category is trained from scratch and their hyperpa-
rameters are optimised separately.

3.1.1 3-way Classification

We use the four 3-way CNN models from the python li-
brary madmom [20], each of which is trained on a different

subset of the MIREX17 drums dataset [15]. During train-
ing of the 3-way CNN, the fourth ‘resonant both’ (B) label
in tabla is replaced by simultaneous onsets in RB and RT
(see Table 1). Model outputs are post-processed during
evaluation to obtain 4-class predictions, by replacing RB
and RT onsets predicted within 10 ms with B.

Based on the common assumed roles for a CNN’s conv
and dense layers of feature extractor and classifier respec-
tively [21, 22], we explore two transfer learning strate-
gies to fine-tune (FT) the pre-trained (PT) models on our
smaller (by ⇡3x) dataset: (a) FT all dense layers while
keeping all conv layers frozen at PT values, and (b) FT all
layers. Under (b), we study three approaches - uniform,
differential, and disjoint. In uniform and differential FT,
all layers are simultaneously tuned, with the learning rate
(lr) kept same for all layers in the former, and different for
conv and dense layers in the latter. Disjoint FT refers to the
alternating (rather than simultaneous) tuning until conver-
gence of the dense and conv layers, in order to reasonably
constrain the updatable parameters at any time. Other fine-
tuning combinations with tuning only a subset of dense
layers were not found to be favorable. While fine-tuning all
layers uniformly has been previously used in audio event
tagging [23], the differential and disjoint approaches are
motivated from speech recognition [24, 25]. Finally, we
consider also the PT initialisation of dense layers in all
cases applicable, in addition to the usual random initial-
isation used for dense layers in domain adaptation. For
baselines, we report results from the pre-trained models,
as well as a new model with the same architecture trained
from scratch (i.e. re-trained) solely on our dataset.

The input & target representations, and the optimizer
used are as originally reported [15], with tabla audios up-
sampled to 44.1 kHz. We expect the reduced bandwidth
of our data to influence the perfomance minimally since
the 8-15 kHz band (which is only faintly energetic in BD
and SD onsets) accounts for a minor fraction of the bins in
the log-scaled spectral representation. Dropout (p = 0.5)
is added before the first dense layer, batch size is increased
to 64, and early stopping with a patience of 10 epochs is in-
cluded. Learning rates are not decayed across epochs and
were empirically determined to be: 1e�5 in re-training,
1e�6 for dense and and a lower 1e�7 for conv layers in
differential FT (to better preserve the generalization capa-
bilities of lower layers), and 1e�6 in all other experiments.

3.1.2 1-way Classification

The general model architecture used for this method ap-
pears in Figure 3. First, a common CNN model architec-
ture (‘Baseline’ in Table 3) is obtained for all stroke classes
by making modifications, targeted at achieving better con-
vergence, to a previous architecture from ADT [16]. The
input to the baseline model is a set of 3 log-scaled mel-
spectrograms of dimensions 80 bands x 15 frames (150 ms)
as proposed previously [26], computed from 16 kHz au-
dios. Target activations are prepared by assigning a value
of 1 to every ground truth onset frame as well as an adja-
cent frame on either side, and 0 to the remaining frames.
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Figure 4: The 15 highest ranked features from the tabla
identification task for each stroke type. Bars and whiskers
show mean and standard deviation across 3 repetitions.

Models are trained to minimize BCE loss for a maximum
of 150 epochs, using the Adam optimizer with lr equal of
1e�4, a batch size of 256, and early stopping with a pa-
tience of 10 epochs.

Considering the different amounts of data available for
each stroke type, we experiment with the input represen-
tation and model architecture to arrive at the best hyper-
parameters for each class. A list of the chosen hyperpa-
rameter settings, along with the baseline, appears in Table
3. The input-related choices are based on experiments in
ADT involving larger context [19] and alternate input rep-
resentations [16]. Architecture variations to the conv and
dense layer sizes are targeted at increasing the model ca-
pacity to benefit classes with more data.

3.1.3 Random Forest Classification

The random-forest based tabla stroke classification system
presented in [12] is re-trained on our newly configured
dataset to use as a baseline. This system uses the high-
frequency content algorithm [27] to first segment tabla au-
dios based on the detected onsets, and then extracts a set
of 49 acoustic features for the 4-way stroke classification
with a random forest. Features relating to the temporal
characteristics of decay portions are found to be especially
important to stroke identity across instruments.

3.2 Data Augmentation Methods

With data augmentation, we seek to simulate tabla in-
strument diversity from different physical structures, tun-
ing, and playing styles. We employ pitch-shifting and
time-scaling (audio-specific), attack-remixing (percussion-
specific), and two methods closely tied to the acoustics and
sound production characteristics of tabla - spectral filter-
ing and NMF-based stroke-remixing (tabla-specific). All

transformations are applied to the time-domain audio sig-
nal. To ensure that the modified audio sounds realistic, we
enlist the help of an expert tabla player to determine the
suitable range for the control parameter in each transfor-
mation. With every augmentation method, we use 4 values
of the parameter (as in Table 4), obtaining 4 versions for
each audio. This is combined with the original dataset,
thus increasing the size to five times the original. During
training, data from two CV folds (along with any augmen-
tations) is used, while only the original data from the third
fold is used for validation.

3.2.1 Pitch-shifting (PS) and Time-scaling (TS)

We use the hptsm algorithm from the python library
pytsmod [28], which first separates an audio into harmonic
and percussive components and then applies appropriate
time-scaling methods to each component. Pitch-shifting is
performed by time-scaling followed by re-sampling. The
parameters ↵ps and ↵ts denote the pitch-shifting (in semi-
tones) and time-scaling factors.

3.2.2 Attack-remixing (AR)

Attack-remixing refers to modifying the relative levels of
attack and decay regions of an audio, and has been used
to augment drums data [16]. Our implementation involves
first applying harmonic-percussive separation (HPS) [29]
to the audio, which leaves all the attacks in the percussive
component and resonant decay portions in the harmonic
component. The percussive component is scaled by a lin-
ear factor, denoted by ↵ar, and remixed with the unmodi-
fied harmonic component.

3.2.3 Spectral Filtering (SF)

Augmenting data by perturbing ‘nuisance attributes’ that
are unimportant in the specific discrimination task, can be
effective [30]. We use the feature ranking of the random
forest classifier to identify acoustic features that capture
instrument characteristics and are less important to stroke
identity. The classifier, as in Section 3.1.3, is re-purposed
to solve a 10-way tabla identification task on our training
set (spanning 10 instruments), using the same features. It
achieves an average f-score of over 0.9 in a random 3-
fold CV performed separately with each stroke category.
From the resulting feature importances presented in Fig-
ure 4, we see that various MFCCs (computed frame-wise
and averaged across stroke segments), representing spec-
tral shape, are most important to instrument differentiation,
with MFCC-1, representing the tilt (balance) between high
and low frequencies, consistently at the top. This moti-
vates the use of particular filtering transformations to mod-
ify spectral shape for the data augmentation.

Due to the contrasting broadband and band-limited na-
ture of tabla attack and decay spectra, it is more effec-
tive to use filters targeting specific bands, instead of the
commonly used random filtering [31]. After first applying
HPS, we filter the bass (0� 200 Hz) and treble (200� 2k
Hz) regions in the harmonic component, and modify the
spectral tilt in the percussive component by changing the
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Method Values Method Values

↵ps -1, -0.5, 0.5, 1 ↵sf-tilt 0.2, 0.5, 2, 3
↵ts 0.8, 0.9. 1.2, 1.3 ↵sr-bass 0.6, 0.8, 1.5, 2
↵ar 0.3, 0.5, 2, 3 ↵sr-treble 0.5, 0.8, 1.5, 2
↵sf-bass 0.2, 0.5, 2, 4 ↵sr-damp 0.2, 0.5, 2, 3
↵sf-treble 0.2, 0.5, 2, 4

Table 4: Parameter values for the augmentation methods.

energy balance across the two halves of the spectrum. The
filter is a Hann window positioned over the corresponding
band and scaled by a linear gain factor, and is multiplied
with each short-time spectral slice. Each filtering operation
(bass, treble, & tilt) is considered a separate transforma-
tion with the corresponding gain factor denoted by ↵sf-bass,
↵sf-treble, and ↵sf-tilt. We also consider a combination of all
three transformations applied simultaneously by randomly
selecting a value for each parameter, while still obtaining
4 augmented versions per audio.

3.2.4 Stroke Remixing (SR)

Given that the compound bols of the tabla are produced by
the independent, though simultaneous, striking of the two
drums, we simulate the expected variations of the relative
strengths of the drums in this mix using non-negative ma-
trix factorization (NMF). We use the NMFToolbox [32] to
perform the decomposition. The activations are randomly
initialised while the templates, a total of 6, computed sep-
arately from attack and decay regions for each of the 3
distinct stroke types (resonant bass, resonant treble, and
damped), are kept fixed. Each template is the average spec-
trum of the corresponding portion of the signal from across
10 isolated instances. A separate set of templates is com-
puted for each tabla instrument in our training set and used
to decompose recordings from the corresponding tabla.

To perform augmentation, we first obtain the audio for
each component from the decomposition, combine the at-
tack and decay portions for each stroke type, and then re-
synthesize audio by mixing the three stroke components
at different linearly scaled levels. We experiment with re-
stricting scaling to only one of the three components at any
time (factors denoted by ↵sr-bass, ↵sr-treble, and ↵sr-damp), as
well as a combination with all components simultaneously
scaled by different randomly chosen factors (similar to the
combination method in filtering).

4. EXPERIMENTAL RESULTS

We evaluate performance using the f-score metric with a
tolerance of 50 ms for the detected onset locations [33].
Scores are obtained separately for each stroke class on in-
dividual tracks and averaged across the dataset. The re-
ported CV scores are the mean across 3 folds. For the
network predictions, local peaks in the output layer acti-
vations are detected and thresholded. The threshold is se-
lected based on maximizing validation set f-score and then
used on the test set. In the transfer learning experiments,
all 4 pre-trained models are tuned separately and used to-

Model Stroke category
D RT RB B

Baseline 84.6 83.2 46.5 83.8
"context 84.3 81.4 41.9 73.0
Mid-channel 84.7 81.7 42.1 75.6
"conv filters 84.7 84.5 44.7 77.6
"dense units 86.7 82.9 40.1 73.6
"conv filters+"dense units 83.5 83.4 43.3 82.0
2x conv layers 84.3 82.4 42.4 75.9

Table 5: CV f-scores of 1-way model tuning experiments
(bold values are highest in the column).

Method Stroke category Mean
D RT RB B

No aug. 86.7 84.5 46.5 83.8 75.4

Pitch-shift 87.2 85.5 51.2 83.9 76.9
Time-scale 88.2 85.0 50.2 82.2 76.4
Attack-remix 84.3 84.2 48.1 81.3 74.5
SF-bass 84.5 80.9 40.4 79.9 71.4
SF-treble 85.8 81.7 48.7 76.0 73.0
SF-tilt 86.3 82.7 43.8 82.0 73.7
SF-all 87.6 84.6 50.7 85.6 77.1
SR-bass 86.0 84.8 43.3 83.6 74.4
SR-treble 86.1 84.8 39.4 79.0 72.3
SR-damp. 86.2 85.3 50.1 86.5 77.0
SR-all 86.8 85.3 48.1 84.4 76.2

Combined 88.5 84.2 53.6 87.9 78.5

Table 6: Comparing the CV f-scores of 1-way models
trained using different augmentation methods (bold values
are overall highest in column, underlined are top 4 among
individual methods). Combined refers to PS+TS+SF-
all+SR-all.

gether (ensemble) by averaging their predicted activations
during cross-validation. On the test set, an ensemble of
12 models (4 from each CV split) is utilised. With 1-way
classification, single models are evaluated during CV and
an ensemble of the 3 models is used on the test set.

1-way model tuning: The cross-validation results of
the tuning experiments with the 1-way models (discussed
in Sec. 3.1.2) appear in Table 5. The input-related modifi-
cations do not lead to improved scores in any class, indicat-
ing that a 3-channel representation with moderate context
duration (150 ms) is optimum for our task. With respect
to model architecture, the baseline appears to be best for
classes with least data (RB and B). The use of more dense
units benefits only the more abundant damped class. With
increased conv layer filters, the f-score for resonant treble
goes up, possibly by better learning its rich and diverse har-
monic content stemming from tabla tuning variations. The
other modifications do not offer any further improvements.

Data augmentation: Table 6 shows the results of train-
ing the 1-way models (with hyperparameters for each class
as identified in the tuning experiments), using the various
augmentation methods. The underlined values are the 4

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

23



Method Stroke category Mean
D RT RB B

Random forest 86.2 / 74.2 77.7 / 75.0 39.7 / 35.3 73.6 / 41.5 69.3 / 56.5
3-

w
ay

Pre-trained (PT) 36.8 / 27.3 15.1 / 9.0 9.8 / 19.8 7.3 / 2.1 17.3 / 14.6
Re-trained 81.0 / 65.5 53.7 / 72.6 15.7 / 22.9 63.0 / 60.0 53.4 / 55.3
FT dense random init. 74.4 / 65.2 55.9 / 75.2 33.6 / 45.6 63.4 / 52.0 56.8 / 59.5
FT dense PT init. 71.7 / 62.4 54.8 / 74.9 29.4 / 34.8 60.9 / 39.1 54.2 / 52.8
Uniform FT all 76.3 / 65.1 59.7 / 79.1 29.5 / 43.3 65.3 / 58.6 57.7 / 61.5
Differential FT all 72.5 / 63.4 58.7 / 77.9 30.0 / 41.2 63.5 / 49.2 56.2 / 57.9
Disjoint FT all: dense rand. init. 77.2 / 67.2 57.4 / 73.1 33.0 / 49.1 65.9 / 60.9 58.3 / 62.6
Disjoint FT all: dense PT init. 74.8 / 65.4 66.4 / 77.4 34.7 / 47.5 66.5 / 56.8 60.6 / 61.8

1-
w

ay No aug. 86.7 / 79.5 84.5 / 84.1 46.5 / 38.0 83.8 / 69.0 75.4 / 67.6
Best aug. 88.5 / 83.3 85.5 / 84.3 53.6 / 34.1 87.9 / 80.1 78.9 / 70.4

Table 7: F-scores (CV/test) from 3-way models compared with the best 1-way models and a random-forest baseline [12]
(values in bold are highest in the column). ‘Best aug.’ represents pitch-shifting for RT and combined aug. for the rest.

highest scores within each class that are better than no aug-
mentation. We note that these are most often from using
one of PS, TS, SF-all, SR-damp, or SR-all. We there-
fore experiment with combining PS, TS, SF-all, and SR-
all (which includes SR-damp), by randomly choosing only
2 out of 4 versions from each method for every audio (to
limit training time), taking the dataset size to 9x original.
Values in bold indicate the highest scores obtained in each
stroke category across all methods (individual and combi-
nation). Overall, we see that except for the resonant treble
class, the combination results in the best f-scores, demon-
strating the benefit of the proposed augmentation methods.

Some notable observations about the individual meth-
ods follow. The improvements from pitch-shifting and
time-scaling underscore the importance of addressing tun-
ing diversity and capturing a wide tempo range when work-
ing with datasets of realistic playing. With tabla-specific
filtering and remixing, the combinations SF-all & SR-all,
which pack more diversity, outperform the corresponding
individual methods in most cases, and consistently give
better f-scores than no augmentation.

3-way vs 1-way: Table 7 compares the CV and test set
scores of the 3-way models against the best 1-way mod-
els and the random forest baseline. In the transfer learning
experiments, we note that tuning conv layers helps, pos-
sibly compensating for low level acoustic differences be-
tween tabla strokes and drums. Of the three approaches
to this, disjoint FT gives higher CV and test scores when
compared to the other two. With regards to random versus
pre-trained initialisation for dense layers in the disjoint FT
setup, better test set scores are obtained with random ini-
tialisation, indicating better generalization, while PT ini-
tialisation gives higher CV scores. Finally, these domain-
adapted models outperform the pre-trained only and the
re-trained (from scratch) 3-way models.

Eventually, we find 1-way models mostly surpassing the
best 3-way model, with data augmentation further enhanc-
ing performance. Test scores are lower than that of CV
train by a few percentage points, attesting to the persistent
mismatch from playing style. Only for the test resonant

bass, the f-score is highest using disjoint FT, which shows
that transfer learning has helped with generalization for the
class with least data. A closer look at disjoint FT versus the
1-way models further reveals that the most difference in f-
score is in resonant both, indicating that treating the combi-
nation stroke as a separate class works better than viewing
it as the superposition of its component stroke classes. Fi-
nally, it is interesting to note that the 3-way models trained
from scratch perform much poorer than the set of similarly
trained 1-way models, demonstrating the benefit of using
separate models specialised for each class in this task.

5. CONCLUSIONS

We presented a four-way tabla stroke classification task for
categories defined by the salient acoustic characteristics of
the basic tabla strokes. Leveraging the similarity of our
target categories with popular Western drumkit classes, we
investigated methods from the automatic drums transcrip-
tion task. We explored the adaptation of available pre-
trained drums models via transfer learning on a new tabla
dataset. Systematic experiments with different transfer
learning strategies reveal significant improvements when
both dense (classifier) layers and conv (feature extractor)
layers of a multiclass CNN model are fine-tuned from the
pre-trained weights in a disjoint fashion. Next, the use of
separate 1-way CNN models with hyperparameters suit-
ably tuned for each of the 4 stroke categories was found to
surpass the more complex 3-class CNN model for all class
accuracies except the most data-constrained resonant bass
category, which benefited from pre-training on drums. Fur-
ther, several data augmentation methods, untested so far in
the context of tabla, were investigated. A method based
on increasing training data diversity, by varying spectral
characteristics that capture instrument-dependence across
strokes, contributed consistently to improved classification
accuracy. Future work will target recurrent architectures
and the combination of transfer learning and data augmen-
tation for further performance gains.

Supplementary: github.com/DAP-Lab/4way-tabla-transcription
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ABSTRACT

Some generative models for sequences such as music and
text allow us to edit only subsequences, given surround-
ing context sequences, which plays an important part in
steering generation interactively. However, editing sub-
sequences mainly involves randomly resampling subse-
quences from a possible generation space. We propose a
contextual latent space model (CLSM) in order for users
to be able to explore subsequence generation with a sense
of direction in the generation space, e.g., interpolation, as
well as exploring variations—semantically similar possi-
ble subsequences. A context-informed prior and decoder
constitute the generative model of CLSM, and a context
position-informed encoder is the inference model. In ex-
periments, we use a monophonic symbolic music dataset,
demonstrating that our contextual latent space is smoother
in interpolation than baselines, and the quality of generated
samples is superior to baseline models. The generation ex-
amples are available online. 1

1. INTRODUCTION

Deep generative models permit sequences of decent qual-
ity to be generated such as music, lyrics, or text, where
standard models generate sequences by sampling from left
to right. However, to make creative works in human-
machine collaborative settings, controllability—such as
modifying unsatisfactory portions with specified inten-
tions—should be improved.

Two major model classes of controllability are (i) latent
space models [1–6] and (ii) positional constraint models
[7–11]. Latent space models enable us to obtain variations
or morphing/interpolations between generated sequences.
Positional constraint models, on the other hand, allow us
to resample a subsequence without changing the rest of the
sequence (context sequences), despite the fact that subse-
quences are sampled randomly and cannot be controlled
with morphing/interpolation or variations. Each class of

1 https://contextual-latent-space-model.github.
io/demo/

c� T. Akama. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: T. Akama, “A
Contextual Latent Space Model: Subsequence Modulation in Melodic
Sequence”, in Proc. of the 22nd Int. Society for Music Information Re-
trieval Conf., Online, 2021.

Figure 1: Contextual Interpolation Examples. Shaded
regions are contexts. For both left and right figures, our
CLSM first generates top and bottom melodies under con-
straints of contexts, and then it generates middle four in-
terpolated points in way that is consistent with contexts.
CLSM with � = 0.012 is used.

models has its own benefits for making generation systems
flexible.

Can we build a hybrid model that enjoys the best of
both worlds as a step towards multifaceted controllability?
We propose a contextual latent space model (CLSM) that
allows for positional constraints while at the same time
enables latent space exploration such as interpolation or
variation. An example usage of CLSM’s interpolation is
narrowing down the candidates of generated subsequences
given context sequences. CLSM variation can be used for
obtaining minor modifications of subsequences selected
among generated ones, given context sequences.

Our approach is based on the framework of variational
inference, where our CLSM is composed of prior and de-
coder models for the generative model and an encoder
model for the inference model. The prior model of CLSM
outputs a latent distribution given context sequences. We
refer to the support of the distribution as the contextual
latent space. The decoder model of CLSM generates sub-
sequences that fit in with the context, given corresponding
points in the contextual latent space. Finally the encoder
model infers the latent space distribution given the entire
sequence.

We show the effectiveness of our approach using mono-
phonic sequences in the Lakh MIDI dataset, a large sym-
bolic music dataset [12]. Compared with the baseline
methods, our CLSM achieves better performance in terms
of the smoothness of the latent space and negative log-
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(a) Model Overview (b) Self-Attention Masks for Decoder Model

Figure 2: Schematic Diagram of Contextual Latent Space Model (CLSM). (a) Linear or MLP layers are omitted for
brevity. (b) Masks indicate whether position u attends to position v.

likelihood of the generated samples. In a listening test,
participants favored the generated samples of our CLSM
more than those of the baselines.

Our contributions are (I) proposing a problem setting
for learning a contextual latent space and providing its so-
lution, (II) proposing novel architectures for the model,
e.g., a masking strategy for the decoder and combinations
of a transformer and LSTM for the encoder and prior, (III)
proposing normalizing flows [13] for conditional priors in
order to learn complex conditional priors, (IV) proposing
an interpolation edit distance ratio to quantitatively assess
the smoothness of latent space, and (V) demonstrating rea-
sonable performance with our CLSM in an application for
symbolic music generation.

2. METHODOLOGY

2.1 Problem Scenario

Let us consider an i.i.d dataset D = {x(i) =

(x(i)
1 , ..., x(i)

K ) 2 AK}Ni=1 of a sequence of symbols xk 2
A of length K, where A is the alphabet set of symbols. We
partition each sequence x into three subsequences xCL ,
xT, and xCR , such that x = xCL � xT � xCR , where �
denotes the concatenation of sequences. We refer to sub-
sequences xCL and xCR as context sequences and subse-
quence xT as the target sequence. Let ⌧ denote a variable
representing a set of indexes of the target sequence such
that ⌧ = {|xCL | + 1, |xCL | + 2, ..., |xCL | + |xT|} 2 T ,
where T is a set of all sets of indexes we would like to
model with. For notational simplicity, we introduce the
shorthand xC = {xCL ,xCR}.

Our goal is to train a generative model with its gen-
erative process being (1) z̃ ⇠ p(z|xC, ⌧) and (2) x̃T ⇠
p(xT|z̃,xC, ⌧), where z 2 Z ⇢ Rdz captures the vari-
ability of xT given xC and ⌧ . We would also like some
distance in the latent space of the prior model to represent
the similarity of xT so that the model can be used for e.g.,
morphing/interpolation or variation generation.

2.2 Model

Fig. 2 is a schematic illustration of our model. Our pro-
posed approach is training a generative model by max-
imizing the marginal log-likelihood log p✓(xT|xC, ⌧) =
log

R
p✓D(xT|z,xC, ⌧)p✓P(z|xC, ⌧)dz. Since its compu-

tation is intractable in the general case, we introduce the
approximate posterior q�(z|x, ⌧) to derive the evidence
lower bound (ELBO) [14]. Formally,

log p✓(xT|xC, ⌧)

= log

Z
p✓D(xT|z,xC, ⌧)p✓P(z|xC, ⌧)dz

= log

Z
q�(z|x, ⌧)

p✓D(xT|z,xC, ⌧)p✓P(z|xC, ⌧)

q�(z|x, ⌧)
dz

�
Z

q�(z|x, ⌧) log
p✓D(xT|z,xC, ⌧)p✓P(z|xC, ⌧)

q�(z|x, ⌧)
dz

= Lrec � Lkl, (1)

where

Lrec = Eq�(z|x,⌧) [log p✓D(xT|z,xC, ⌧)] , (2)

Lkl = KL (q�(z|x, ⌧)||p✓P(z|xC, ⌧)) . (3)

In practice, we introduce weighting factors in ELBO [15].
Then, our optimization problem is:

max
✓,�

Ex2DE⌧2T


1

|xT|
Lrec � �Lkl

�
, (4)

where 1
|xT| is a normalizing factor, and � is a balancing

factor of the two terms. The specific choices of � are ex-
plained in Sec. 3.4.

Since the conditional prior is generally multimodal and
complex, we propose modeling the conditional prior using
normalizing flows [13]:

p✓P(z|xC, ⌧) = p⇠(w|xC, ⌧)

����det
✓
@w

@z

◆���� , (5)

w = f�(z) 2 W ⇢ Rdz , (6)
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where f� : Z ! W is an invertible function, and
p⇠(·|xC, ⌧) is a Gaussian distribution. We choose to use
affine-coupling layers for f�, which was proposed for real-
valued non-volume preserving (realNVP) [16].

The Gaussian distribution and the categorical distribu-
tion are used for the encoder model q�(z|x, ⌧) and the de-
coder model p✓D(xT|z,xC, ⌧), respectively.

The network architectures for parametrizing each distri-
bution are explained in Sec. 2.4.

2.3 Applications

2.3.1 Contextual Interpolation

Given z̃(1), z̃(2) ⇠ p✓P(z|xC, ⌧), we provide a proce-
dure for generating contextual interpolations between x̃(1)

and x̃(2), where x̃(i) = xCL � x̃(i)
T � xCR with x̃(i)

T ⇠
p✓D(xT|z̃(i),xC, ⌧) for i = 1, 2.

First, the interpolated latent vector z̃(↵) with a blending
ratio of ↵ 2 [0, 1] is given by

z̃(↵) = f�1
�

⇣
(1� ↵)f�(z̃

(1)) + ↵f�(z̃
(2))

⌘
, (7)

which means that linear interpolation is performed in the
W space, but not in the Z space, achieving non-linear in-
terpolation in the Z space. Then, z̃(↵) is decoded and
concatenated with the context sequence, yielding x̃(↵) =
xCL � x̃T(↵)� xCR with

x̃T(↵) ⇠ p✓D(xT|z̃(↵),xC, ⌧). (8)

2.3.2 Contextual Variation

Given z̃ ⇠ p✓P(z|xC, ⌧), we provide a procedure for gen-
erating contextual variations of x̃, where x̃ = xCL � x̃T�
xCR with x̃T ⇠ p✓D(xT|z̃,xC, ⌧). Letting � 2 R�0

and ✏ 2 Rdz be a scaling factor of the variation amount
and sampled noise from a normal distribution N (0,⌃)
with ⌃ denoting the covariance matrix of p⇠(w|xC, ⌧),
a variation of the latent vector z̃ is given by z̃(�) =
f�1
� (f�(z̃) + �✏). Then, z̃(�) is decoded and concate-

nated in the same manner as Sec. 2.3.1.

2.4 Network Architecture

2.4.1 Encoder Model

As main architectures, we employ a two-layer “trans-
former encoder” with relative attention [17, 18], fol-
lowed by a two-layer bidirectional LSTM network
(Bi-LSTM) [19, 20]. x is first embedded and added by a
positional embedding before being inputted to the trans-
former. The transformer uses no masks and a sequence
of vectors E = (e1, ..., eK) is outputted. Let ET be a
subsequence of E, consisting of E’s elements, whose
indexes are in ⌧ , i.e., ET = (e|xCL

|+1, ..., e|xCL
|+|xT|).

Only the subsequence ET is fed to the Bi-LSTM. Let
hl and hr denote the last outputs of the Bi-LSTM. They
are concatenated to be fed to two multi layer perceptrons
(MLPs; each for the mean and covariance of the normal

distribution), yielding the encoder model q�(z|x, ⌧) =
N

�
z|MLP(hl � hr), diag(

1
2 exp(MLP(hl � hr)))

�
.

The MLPs consist of two layers with a SELU activation in
between [21].

Concerning the hyper-parameters for the “transformer
encoder,” the token embedding size, the hidden size, the
number of heads, and the dropout rate are set to 128, 256,
8, and 0.1, respectively. The hidden size and the dropout
rate for the Bi-LSTM are set to 256 and 0.1, respectively.
The hidden size of the MLP and the number of dimensions
of z are set to 512 and 128, respectively.

2.4.2 Prior Model

As can be seen in Eq. 5 and Eq. 6, p⇠(w|xC, ⌧) and f�(z)
need to be defined for the prior model.

For p⇠(w|xC, ⌧), as with the encoder model, a two-
layer “transformer encoder” is followed by a Bi-LSTM.
Unlike the encoder model, we replace each of the elements
in the target sequence xT with a positional constraint sym-
bol p. In other words, xCL � p� xCR is fed to the “trans-
former encoder”, where p = (p, p, ..., p) is a sequence of
positional constraint symbols and |p| = |xT|. The hyper-
parameters for the “transformer encoder,” the Bi-LSTM,
and the number of dimensions of z are set to the same val-
ues as in Sec. 2.4.1.

To parameterize f�(z), four-layer affine-coupling lay-
ers are employed. Each of the scale and bias networks of
the affine-coupling layers consists of a three-layer MLP,
where each hidden size is 256, and the activations are leaky
ReLUs with a negative slope of 0.01. For each of the scale
networks, a tanh activation is used after the last linear
layer.

2.4.3 Decoder Model

As a main architecture, we employ a two-layer “trans-
former decoder” with relative attention. Let s be a sym-
bol representing the start of a sequence. The concatenation
s � x is embedded and added by positional embeddings
before being inputted to the transformer.

We propose using an effective encoder-decoder atten-
tion mechanism for the latent space. Each latent vector
z̃ sampled from the encoder model is first fed to a linear
layer to map z̃ 2 Rdz to z̃0 2 Rdzlz , which is reshaped
to form Z̃ 2 Rdz⇥lz , a sequence of lz vectors, where the
dimensionality of each vector is dz. The sequence Z̃ is
then attended to by the transformer by means of encoder-
decoder attention. We set lz = 4 in experiments.

We propose a masking strategy for modeling the de-
coder, as illustrated in the bottom of Fig. 2b. The positions
whose inputs are s, xCL , and xCR are allowed to attend to
positions except those of xT. On the other hand, positions
whose inputs are xT are allowed to attend to positions ex-
cept the future positions of xT.

Let the output of the transformer denote D =
(d1, ...,dK). Let DT be a subsequence of D, consist-
ing of D’s elements whose indexes are in ⌧ , i.e., DT =
(d|xCL

|+1, ...,d|xCL
|+|xT|). Let xT[i] and DT[i] denote
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the ith elements of xT and DT, respectively. Then the de-
coder model is defined as follows: p✓D(xT|z,xC, ⌧) =Q|xT|

i=1 Cat(xT[i]|Softmax(Linear(DT[i]))), where Cat
and Linear denote a categorical distribution and a linear
layer respectively. The hyper-parameters of the “trans-
former decoder” are set to be equal to those of the “trans-
former encoder” in Sec. 2.4.1.

3. EXPERIMENTAL SETUP

3.1 Dataset

We created datasets from LMD-matched of the Lakh MIDI
dataset [12], comprising 45,129 files matched to the song
identity entries in the Million Song Dataset [22]. Each
song has one or several different versions of MIDI files.
We first extracted files with a 4/4 time signature, used
the accompanying tempo information to determine beat
locations, and quantized each beat into 4. We then
split the song identities into a proportion of 11:1:6:1:1
to create train-1, validation-1, train-2, validation-2, and
test datasets, respectively. The train-1 and validation-1
datasets were for training the proposed and baseline mod-
els, whereas the train-2 and validation-2 datasets were for
training evaluation models. The test dataset was for in-
put sequences when evaluating models. We filtered out
non-monophonic tracks, bass or drum tracks, and tracks
outside the pitch range of [55, 84]. We conducted data
augmentation by transposing tracks to all possible keys if
the transposed tracks stayed within the pitch range of [55,
84]. We retrieved 8-bar sliding windows (with a stride of 1
bar) from each track followed by filtering out windows that
had more than one bar of consecutive rests. For encoding
musical sequences, we adopted the melodico-rhythmic en-
coding proposed in [9], where we used the pitch of musical
notes as symbols “55”,...,“84” and used “R” to represent a
rest symbol. We added an extra symbol, “__” representing
that a note is held and not replayed.

3.2 Baseline Methods

3.2.1 VAE

We trained a VAE [14], in which a two-layered Bi-LSTM
and LSTM were used for the encoder and decoder, respec-
tively. The decoder, encoder, and prior models used the
categorical, normal, and standard normal distribution, re-
spectively. The optimization problem is

max
 ,!

Ex2D


1

|x|
�
LVAE
rec � �LVAE

kl

��
, (9)

where LVAE
rec = Eq!(z|x) [log p (x|z)], LVAE

kl =
KL (q!(z|x)||p(z)), and 1

|x| is a normalizing factor.

Given xC, ⌧ , and z̃(1), z̃(2) ⇠ p(z), interpolation is
conducted as follows. First, interpolated latent vector z̃(↵)
is given by

z̃(↵) = (1� ↵)z̃(1) + ↵z̃(2). (10)

Then, z̃(↵) is decoded and concatenated with the context
sequence: x̃(↵) = xCL � x̃T(↵)� xCR with

x̃T(↵) ⇠ p (xT|z̃(↵),xCL), (11)

where p (xT|z,xCL) can be immediately obtained from
the autoregressive decoder model of VAE. Note that the
proposed CLSM has advantages over VAE in terms of
probabilistic dependencies (i) the decoder model of VAE
does not have dependencies on the right context xCR , and
(ii) the prior model of VAE does not have dependencies on
either the left context xCL or the right context xCR . The
property of (i) motivates us to separately quantify the per-
formance of models in two cases: (1) the case where only
the left context exists, and (2) otherwise. In Sec. 4.1, Sec.
4.2, and Fig. 3b, we report the performance of these two
cases separately.

Random generation was conducted as follows. First,
a latent vector was sampled from the prior distribution.
Then, z̃ was decoded and concatenated with context se-
quences in the same manner as the interpolation.

The hyper-parameters of the LSTMs in VAE were set to
be equal to those of the LSTMs in CLSM.

3.2.2 ARNN

Anticipation RNN (ARNN) [9] is a sequence generation
model with positional constraints. Two-layered LSTMs
were used for both Token-RNN and Constraint-RNN. The
hyper-parameters of the LSTMs were set to be equal to
those of the LSTMs in CLSM.

3.3 2D Plane for Comparing CLSM and VAE

The balancing factors � and � of CLSM and VAE consist
in adjusting the trade-off between the reconstruction ac-
curacy and other model performances. Which balancing
factors of CLSM correspond to which ones of VAE? It is
natural to compare models of similar reconstruction accu-
racies or compare models of similar performances (except
reconstruction accuracies). Therefore, in Sec. 4.1, Sec.
4.2, and Fig. 3b, we plot reconstruction accuracies versus
other performance metrics in 2D planes, where the more
the plotted point is in the upper left corner, the better it is.
As discussed in Sec. 3.2.1, CLSM and VAE have depen-
dencies at least on the left context. To make the recon-
struction accuracies of the CLSM and VAE mean basically
identical, we used the left-contextual reconstruction accu-
racy, which is the average of the reconstruction accuracies
of sequences where target sequences end with index |x|,
i.e., there is no right context and only the left context ex-
ists.

3.4 Training Settings

For all models, teacher forcing was used, the batch size
was set to 64, and training was conducted for 2 epochs,
when the losses converged. The Adam optimizer [23] was
used for all models, with the parameters (↵,�1,�2) =
(0.0005, 0.9, 0.999). For CLSM or VAE, we conducted
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(a) Generation Comparison (b) Objective Evaluation (c) Human Evaluation

Figure 3: Generation Comparison and Experimental Results. (a) Shaded regions are contexts. For CLSM and VAE,
� = 0.012 and � = 0.4 are used. (b) For evaluating smoothness (to left), small, medium, and large marker are plots for
number of divisions in interpolation J = 8, 4, 2, respectively. See Sec. 4.1 and 4.2. (c) See Sec. 4.3.

KL-annealing linearly from � = 0 or � = 0 for 2 epochs
[1].

3.4.1 CLSM (Ours)

At every iteration of the training, indexes of the target se-
quence ⌧ = {|xCL |+1, |xCL |+2, ..., |xCL |+ |xT|} 2 T
should be sampled. In the experiments, we chose to use ei-
ther 1, 2, 3, or 4 bars as the target sequence length and
used a stride of 1 bar for the starting index of the tar-
get sequence. Precisely, we sampled (i) |xT| uniformly
from {16, 32, 48, 64} and then (ii) sampled |xCL | uni-
formly from {0, 16, 32, ..., 128� |xT|}. Note that 128 cor-
responds to 8 bars (the sequence length) and that 16 cor-
responds to 1 bar. The balancing factor � in Eq. 4 is set
to {0.004, 0.006, ..., 0.016} in Secs. 4.1, 4.2 and 0.012 in
Sec. 4.3. The expectations of the two terms in Eq. 4 were
approximated with one sample from the encoder model.

3.4.2 VAE (Baselines)

The balancing factor � in Eq. 9 is set to
{0.1, 0.2, ..., 1.0, 2.0} in Secs. 4.1, 4.2 and 0.4 in
Sec. 4.3. The expectations of the reconstruction loss were
approximated with one sample from the encoder model.
The KL loss term was computed analytically.

3.4.3 ARNN (Baseline)

The vanilla ARNN is capable of imposing constraints of
any positions. Since it would be possible that restricting
constraints to those of our T would be advantageous when
evaluated over T , we also trained and evaluated this model,
which we refer to as ARNNT .

3.5 Generation Settings

For CLSM and VAE, each element of sequences was sam-
pled by applying the argmax operation to the categori-

cal distributions of the decoders. For ARNN, multinomial
sampling with a temperature of 1.0 was used.

4. EXPERIMENTS AND RESULTS

4.1 Smoothness Analysis in Latent Space

To assess the smoothness of our latent space, we propose
the interpolation edit distance ratio R(J), which is the
ratio of the distance between adjacent interpolated points
(sequences) to the distance of interpolation end points (se-
quences). Formally, R(J) is the normalized average edit
distance dedit(·, ·) of adjacent points in J-divided interpo-
lated points:

R(J) = E
"PJ�1

j=0 dedit
�
x̃T

� j
J

�
, x̃T

� j+1
J

��

D(J � n)

#
, (12)

where x̃T(·) is defined by Eqs. 7, 8 for CLSM and Eqs.
10, 11 for VAE, while D is the edit distance between
end points defined by D = dedit (x̃T(0), x̃T(J)). Here,
the expectation is approximated by sampling z̃(1), z̃(2) ⇠
p✓P(z|xC, ⌧) for CLSM and z̃(1), z̃(2) ⇠ p(z) for VAE,
where 1K samples of x are uniformly sampled from the
test dataset, and, for each x, ⌧ is uniformly sampled
from T . Since the edit distance dedit

�
x̃T

� j
J

�
, x̃T

� j+1
J

��

sometimes becomes zero, we excluded cases through divi-
sion by J�n instead of J as in Eq. 12, where n is the num-
ber of edit distances that are zero among j = 0, 1, ..., J�1.
We also excluded cases where D(J�n) = 0. The left scat-
ter plot of Fig. 3b shows a comparison of CLSM and VAE.
The small, medium, and large markers are plots for the
number of divisions in interpolation J = 8, 4, 2, respec-
tively. For each J , CLSM performed better than VAE. The
plots of VAE J = 8 overlap with those of CLSM J = 4,
indicating that even 4-divided interpolation of CLSM was
as smooth as 8-divided interpolation of VAE. The results
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are similar in the two cases of “left context only” and “oth-
erwise.”

4.2 NLL Evaluation of Generated Samples

To evaluate the quality of generated samples, we computed
the negative log-likelihood (NLL) of the generated sam-
ples. NLL was computed by using a separately trained
vanilla transformer language model (LM) that had two lay-
ers and was autoregressive. The LM was trained by us-
ing the train-2 and validation-2 datasets defined in Sec.
3.1. The samples to be evaluated were the same as the
8-divided interpolated points in Sec. 4.1. Since ARNN
is not capable of interpolation, only a random sampling
of two points was performed per each context for ARNN.
The right scatter plot of Fig. 3b shows a comparison of the
CLSM, VAE, ARNNs, and the test dataset (Data). CLSM
outperformed VAE by a large margin when we compared
models that were close in terms of reconstruction accuracy
or NLL—a reasonable strategy of comparison as we dis-
cuss in Sec. 3.3. Compared with the ARNNs, the perfor-
mance of CLSM was superior in all settings. The results of
VAE were better in the case of “left context only” than in
the case of “otherwise.” In contrast, for the CLSM and
ARNNs, there were only slight differences between the
two cases. This empirically demonstrates that the decoder
model of VAE has dependencies only on the left context
but not on the right context, as we discuss in Sec. 3.2.1.

4.3 Human Evaluation

To further assess the quality of sequences generated by
each model, we conducted listening tests using Amazon
Mechanical Turk. We sampled 32 sequences from the test
dataset, for which context positions were randomly sam-
pled, and the target sequence lengths were sampled from
1-4 bars. We conducted a pair-wise comparison of the gen-
eration results of each model using the same context se-
quences. We considered all possible combinations, yield-
ing 320 pair-wise comparisons. The order within each pair
was randomized. We chose to use � = 0.012 for CLSM,
since the performance trade-offs are well balanced accord-
ing to the results in Sec. 4.1 and Sec. 4.2. As discussed
in Sec. 3.3 since it is reasonable to choose a VAE model
with a similar reconstruction accuracy to that of CLSM,
we chose � = 0.4 for VAE. Participants with different lev-
els of musical expertise were asked to rate “which music
is better in terms of musicality, naturalness, and creativ-
ity” on a Likert scale. Fig. 3c shows a comparison of the
CLSM, VAE, ARNNs, and the test dataset (Data). CLSM
and Data performed the best in terms of the percentage
of wins (Fig. 3c, top) as well as the percentage of wins
and draws (Fig. 3c, bottom). Interestingly, the ARNNs
tended to outperform VAE when the number of draws was
included, whereas VAE tended to outperform the ARNNs
when only the number of wins was considered. This might
indicate that the performance of VAE tends to be extreme.

5. RELATED WORK

T-CVAE is a transformer-based conditional VAE model for
story completion [24]. VAEAC [25] is a CNN- or MLP-
based VAE that enables us to impose any positional con-
straints. Although their probabilistic frameworks are simi-
lar to ours, the models and architectures are quite different.
Unlike their models, CLSM is demonstrated to perform in-
terpolation in the latent space. Moreover, the data domain
of T-CVAE is story text, and the domains of VAEAC are
image and feature classification/regression datasets, while
ours is for sequence datasets and experimented on music.

Although contexts are not considered for latent vari-
ables, there are several works that use transformers for
learning a global latent variable for sequences using AE
or VAE. For text-style transfer, a “transformer encoder”
outputs are all fed to GRU to yield a latent vector, which
is attended to by a decoder [26]. To learn the styles of
piano performances, a “transformer encoder” outputs are
summed to be attended to by a decoder [27]. In OPTIMUS
for sentence modulation [28] and INSET [29] for sentence
infilling, a CLS token is additionally fed to a “transformer
encoder,” and the output at the position of the CLS yields
a latent vector, which is fed to a decoder either by self-
attention and/or by being added to word embeddings of the
decoder (OPTIMUS) or by being inputted as the first token
(INSET).

For language processing, the authors of UniLM propose
seq-to-seq LM, where they divide a whole sequence into
first and second segments [30]. The self-attention masks
are bidirectional and unidirectional for the first and second
segments, respectively. Our decoder mask is different in
that it divides a sequence into three segments, where the
length of the first and third segments can be zero during the
training or inference phase. Also, the training procedure of
them is BERT-like, which is different from ours [31].

RealNVP has been used for the prior in VAE in order to
improve the performance of VAE [32, 33]. However, these
works are not only in the domain of images but also use
non-conditional priors, which differs from ours.

6. CONCLUSION

We proposed a contextual latent space model (CLSM),
in which the left and/or right contexts of sequences can
be constrained to generate interpolations or variations. A
context-informed prior and decoder constitute the genera-
tive model of CLSM and a context position-informed en-
coder is the inference model.

The latent space of CLSM was quantitatively shown to
be smoother than baselines. Furthermore, the generation
fidelity was demonstrated to be superior to the baseline
methods. It would be useful to apply our approach to other
data domains such as polyphonic music, lyrics, or text. The
benefits of the latent space model are not only enabling in-
terpolations and variations but also enabling transforma-
tions of attributes or style transfer. It would be desirable to
extend our approach to these kinds of applications.
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ABSTRACT

Most of the musical heritage is only available as physical
documents, given that the engraving process was carried
out by handwriting or typesetting until the end of the 20th
century. Their mere availability as scanned images does
not enable tasks such as indexing or editing unless they are
transcribed into a structured digital format. Given the cost
and time required for manual transcription, Optical Music
Recognition (OMR) presents itself as a promising alterna-
tive. Quite often, OMR systems show acceptable but not
perfect performance, which eventually leaves them out of
the transcription process. On the assumption that OMR
systems might always make some errors, it is essential that
the user corrects the output. This paper contributes to a bet-
ter understanding of how music transcription is improved
by the assistance of OMR systems that include the end-
user in the recognition process. For that, we have measured
the transcription time of a printed early music work under
two scenarios: a manual one and a state-of-the-art OMR-
assisted one, with several alternatives each. Our results
demonstrate that using OMR remarkably reduces users’ ef-
fort, even when its performance is far optimal, compared
to the fully manual option.

1. INTRODUCTION

Music is a language used and understood all over the
world, hence being one of the cornerstones of cultural her-
itage. In order to represent this art visually, so that it can be
transmitted and later interpreted as conceived by the com-
poser, many notation systems have developed and evolved
over time. Their engraving in the so-called music score
was mostly done by handwriting or typesetting processes
until the end of the 20th century, thus there exist millions of
music documents only available as physical documents [1].

The ongoing massive digitization of those works by
means of scanners is not sufficient for these sources to be-
come truly accessible. For that, they must be transcribed
in a structured digital format such as MusicXML [2] or
MEI [3], among others, which enables computational tasks

© M. Alfaro-Contreras, D. Rizo, J. M. Iñesta, and J. Calvo-
Zaragoza. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: M. Alfaro-Contreras, D.
Rizo, J. M. Iñesta, and J. Calvo-Zaragoza, “OMR-assisted transcription:
a case study with early prints”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

such as indexing, large-scale analysis, or editing [4]. This
process is often done manually, which leads to an unfea-
sible challenge at a large scale. Thus, the development of
systems capable of automatically performing the transcrip-
tion process is of substantial importance.

Optical Music Recognition (OMR) is the field of re-
search that studies how to computationally read music no-
tation in scanned documents and store them in a digital
structured format [5]. The success of OMR would enhance
the value of all the existing musical heritage in digital li-
braries and facilitate the retrieval of data for musicolog-
ical research. However, while OMR has been an active
research area for decades [6, 7] and current state-of-the-art
systems have shown promising results [5], it is not always
considered as a real alternative to the manual transcription
process. Moreover, there is a lack of technology transfer,
i.e., instead of creating a synergistic environment, the dig-
ital humanities show a certain reticence towards automatic
technologies, as if both were not committed to the same
ultimate goal: to study, make accessible, and preserve the
existing historical sources of music worldwide [8].

We believe that the mistrust lies in the unattainable goal
to which OMR systems have been subjected: a perfectly
accurate transcription. Given the vast range of different
situations present in real-life recognition scenarios, a per-
fectly accurate OMR system is a utopia. Therefore, the
automatic transcription challenge must be understood as a
technology-assisted one, since human-machine interaction
is necessary if there is no tolerance for errors in the tran-
scription [9].

In this paper, we study the extent to which OMR sys-
tems provide real assistance during a transcription process.
For that, we study and compare the transcription process
under two scenarios: a manual-working methodology and
an OMR-assisted one. We chose a corpus that allows us
to compare both workflows with several available open-
source tools. We aim at illustrating how OMR systems fa-
cilitate the transcription process by measuring the average
procedure time per page, to estimate the workdays needed
to transcribe a complete music work written in mensural
notation.

The rest of the paper is organized as follows: Section 2
overviews some related proposals to this topic; Section 3
thoroughly describes the experimental setup; Section 4 re-
ports the obtained results and their main outcomes; and
finally, Section 5 concludes the present work.
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2. BACKGROUND

The digital preservation of musical heritage necessarily in-
volves the encoding in a suitable, symbolic, and computer-
readable format of the musical content described in the
original or scanned, as appropriate, manuscripts. In the
majority of cases, this transcription process follows a man-
ual workflow; that is, the corresponding encoding is man-
ually written directly to the computer (either by typing or
by mouse-driven actions).

Music notation contains a logical structure and more
information than just a series of glyphs positioned over a
staff, which makes the transcription process an inherently
complex task regardless of the tool used for it. All of this
entails a great deal of work that is not feasible at large-
scale levels. The use of automatic technologies, in particu-
lar OMR systems, would greatly facilitate the task at issue.
However, despite a large amount of existing literature on
OMR research [5], hardly any system has been developed
that goes beyond research tools.

Some of the most popular commercial OMR systems
are PhotoScore, 1 SmartScore, 2 and PlayScore. 3 With
high recognition accuracy for printed scores, they consti-
tute a great alternative to users who want to scan and play
musical content. However, they are restricted to only one
type of music notation, namely Common Western Music
Notation (CWMN), and are proprietary solutions, i.e., it
is necessary to pay a license or a subscription to get full
access.

On the side of non-commercial systems, we find the fol-
lowing systems:

• Aruspix, a cross-platform software for OMR of early
music prints, mainly those printed during the 16th
and 17th centuries [10]. It transforms the music con-
tent of each page into an editable digital music for-
mat, allowing the correction of recognition errors by
the user, used as feedback to dynamically improve
its performance. For a more direct correction pro-
cess, Aruspix possesses superimposition and colla-
tion features.

• Audiveris, an OMR system devised to extract the
musical content from printed or handwritten score
sheets in order to edit them further in music edition
applications [11]. It only supports CWMN.

• Rodan, a web-based customizable OMR sys-
tem [12]. The user inputs an image and creates the
most appropriate workflow to process it. Once the
corresponding preferred adjustments are selected,
the same processing can be applied to all similar im-
ages. This is a double-edged sword because it puts
the manuscript at the center of the workflow at the
expense of having minimum knowledge of the tech-
nologies that can constitute an OMR system, some-
thing that is not required for librarians or musicolo-

1 https://www.neuratron.com/photoscore.htm
2 https://www.musitek.com/smartscore-pro.html
3 https://www.playscore.co/

gists. This might pose significant risks to the effec-
tive and timely achievements of the project objec-
tives.

• “MUsic Recognition, Encoding, and Transcription”
(MuRET), a web-based application that divides the
transcription process into different steps [13]. It is
a technology-centered research tool, which allows
the use of different transcription approaches rang-
ing from manual to OMR-assisted ones, producing
in those cases the transcribed contents in standard
encodings. MuRET allows a simultaneous graphi-
cal comparison between the original and the encoded
score, favoring a quick detection of errors.

Despite the various OMR systems developed, their in-
clusion in the transcription process of digital libraries is far
from being widely common. They are relegated to a pure
research application spectrum due to the mistrust caused
by their imperfect behavior, therefore making human su-
pervision necessary.

This paper attempts to provide insights into the use of
OMR systems in the transcription process of a music work
to see whether, despite not being perfectly accurate, the
time spent on error correction compensates for the time
saved, compared to a fully manual transcription paradigm.

3. METHODOLOGY

The main focus of this work is to study to what extent an
OMR approach can be useful for digital libraries in the
music score transcription process. It is important to em-
phasize that we do not intend to benchmark OMR tools.
Therefore, we design a methodology aimed at estimating
the effort, in terms of user time, saved by performing a
transcription process assisted by OMR technology, instead
of a fully manual one.

In the following sections, we thoroughly detail our
methodology. First, we describe and justify the chosen
music collection; then, we illustrate the different transcrip-
tion pipelines considered, as well as the tools and encod-
ing languages involved; and finally, we explain the metrics
considered that allow comparison between the previously
described transcription modalities.

3.1 Corpus

We must first select a suitable music work that allows
meaningful comparisons. The test case considered in this
work is the Magnificat omnitonum cum quatuor vocibus by
Cristóbal de Morales, 4 hereafter referred to as Magnificat
corpus. It is a collection of one hundred and twenty-six
typeset pages corresponding to a Spanish choir book of the
16th century written in white mensural notation. Figure 1
shows a short example of this set.

We have chosen printed mensural notation for several
reasons. First, several open-source tools with varied ap-
proaches are available, which allows us to compare differ-
ent transcription paradigms. Second, the graphical com-

4 RISM A/6 M 3597. http://bdh.bne.es/bnesearch/detalle/bdh0000100234
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Figure 1. Staff from the Magnificat corpus.

plexity of the symbols is quite regular, which lets us
draw conclusions using a low number of transcribed pages.
Given so, we expect that the obtained conclusions can be
extrapolated to other (similar) corpora. Lastly, the choice
of a printed typeset work rather than a handwritten one is
due to the desire of avoiding possible transcription ambi-
guities that may be caused by the specific writing style of
the author of the work, which could affect our study.

3.2 Transcription pipelines

The transcription of a music score is understood as the pro-
cess of fully transcribing the document into a structured
digital format with the ultimate goal of keeping the same
musical information that could be retrieved from the phys-
ical score itself [5]. In this work, we study two main tran-
scription workflows, each one also considering different
alternatives:

(i) A manual transcription, where the musical con-
tent is directly typeset in a chosen standard format,
MEI [3], PAEC [14, 15], or Humdrum [16].

(ii) An OMR-assisted transcription, where the system
performs the score transcription directly from the
corresponding image, and the user corrects possible
errors afterward.

Our objective is to establish a difference, quantified as
the procedure time, between both paradigms. It must be
noted that the transcripts will be verified at all times since
it is established that, with or without the presence of OMR
technology, errors might occur.

In the following sections, we will elaborate on the two
transcription paradigms considered.

3.2.1 Manual transcription modality

In this modality, the manual transcription process com-
monly used in digital libraries is done with the computer by
directly typing the encoding format or choosing graphical
music symbols from a toolbar. To evaluate this paradigm,
we consider the following tools:

• Verovio Humdrum Viewer (VHV) 5 , an online dig-
ital music editor and interactive notation rendering
interface for Humdrum files [17]. Mensural mu-
sic notation can be encoded in Humdrum using the
**mens exclusive interpretation [18].

• Oxygen XML Editor, a paid 6 and multi-platform
editor of widespread use in the Music Encoding Ini-
tiative (MEI) community. MEI is an eXtensible

5 https://verovio.humdrum.org
6 For the experiment, we use a trial version of 30 days.

Markup Language (XML) based format that enables
the transcription of a wide range of music notations.
We use Verovio [19] 7 to render the XML files edited
in Oxygen XML Editor.

• The Computerized Mensural Music Editing
(CMME) is a “what you see is what you get” score
notation tool that allows inputting mensural notation
visually [20]. For this work, it could be considered
as an equivalent to MuseScore 8 , Finale 9 , or
Sibelius 10 but for mensural notation.

• The MuRET web application 11 , using the graphical
annotation modality for manual transcription. When
considering a manual paradigm, MuRET allows two
scenarios: the typesetting encoding of the music
score in one of the standard formats or its manual
annotation at the graphical symbol level. The for-
mer is the same process as the one performed with
VHV or Oxygen XML Editor, whereas the latter is
another approach to the transcription modality pro-
posed by the CMME. The graphical annotation of
MuRET consists of creating corresponding bound-
ing boxes for each of the symbols in the score and
classifying them with graphical labels, selected from
a catalog. The user focuses on finding the shape and
vertical position in the staff that match those of the
to-be-transcribed symbol, without the need of know-
ing its musical meaning. Finally, the tool converts
the sequence of graphical symbols into the final en-
coding that the user must check and correct.

3.2.2 OMR-assisted transcription modality

This modality considers an OMR system to automatically
transcribe the musical content of a music score. Assum-
ing that OMR never guarantees a perfect transcription, the
objective of this paradigm is not improving accuracy but
reducing the effort, measured as time, that users invest in
aiding the machine to attain such perfect results. In this
work, we evaluate this transcription methodology under
two scenarios:

• A pre-built scenario, that is, we use an OMR system
previously built for working with corpora of similar
characteristics. For that, we consider Aruspix, as it
has been created to recognized typeset music scores
of the 16th and 17th centuries, hence being appro-
priate to transcribe the test case considered in this
work—a typeset body of work of the 16th century.

• A from-scratch scenario, that is, we train a new
OMR model for this work. To develop this approach,
training pairs, consisting of problem images together
with their corresponding transcript solutions, are re-
quired. This implies that we need to first manu-
ally transcribe some pages of the corpus in order

7 https://www.verovio.org/index.xhtml
8 https://musescore.org
9 https://www.finalemusic.com

10 https://avid.com/sibelius
11 https://muret.dlsi.ua.es/muret
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to train the model to be able to use it for the tran-
scription of the remaining pages. Therefore, we
will study how many pages are necessary to train a
model that yields results that can be considered ef-
fective. In this scenario, we use the OMR-assisted
workflow of MuRET, as it allows the retraining of
its own OMR model. Thus, the training pages are
transcribed with the aforementioned manual annota-
tion from MuRET.

3.3 Evaluation procedure

To avoid biases in the results, associated both with the lack
of knowledge of musical notation and the use of the tools
considered, a person with a good level of computer liter-
acy and sufficient knowledge of music to understand the
test case has been chosen to carry out the proposed exper-
imentation. The task performer is familiar with the tools
and coding languages considered, and so the transcription
scenarios are not challenging by themselves.

We compare the different transcription modalities by
measuring the time to execute the task at hand, i.e., the
time it takes to transcribe a complete score will be timed,
including that needed for revision and correction of possi-
ble errors processes. This time will be referred to as pro-
cedure time. This will allow us to obtain the average tran-
scription time per page for the different scenarios, which
we will use to estimate the total time needed, measured in
8-hour workdays, to transcribe the entire work with each
of the tools.

4. RESULTS

In this section, we present and discuss the results obtained
in our experiments, in terms of the average procedure time
per page, in the following order: first, those obtained for
the manual paradigm; and second, those concerning the
OMR-assisted one. Afterward, we compare both transcrip-
tion paradigms when estimating the workdays needed to
transcribe the full Magnificat corpus in each of them.

4.1 Manual paradigm

We first introduce the results obtained in a manual tran-
scription process for each of the tools considered in this
scenario, as described in Section 3.2.1. Table 1 shows the
average procedure time per page and its standard deviation.

An inspection of the results in Table 1 reveals that the
tool used in a manual transcription influences the proce-
dure time. On the one hand, we observe that the procedure
time of Oxygen XML Editor is higher than that of VHV.
This is rather expected, since the encoding vocabulary size
is much larger when considering an XML standard format
like MEI, as in the case of Oxygen, instead of the compact
Humdrum syntax, as in the case of VHV, which codifies
music symbols with less than 5 characters. Furthermore,
when considering graphical interfaces for the manual tran-
scription, MuRET depicts a higher procedure time than
CMME. In the latter, the graphical label corresponding to
the musical symbol to be transcribed is directly dragged to

Table 1. Average time and its standard deviation for the
transcription of one page of the Magnificat corpus for each
of the tools considered in a manual transcription paradigm.
Oxygen stands for Oxygen XML Editor.

Manual transcription paradigm
VHV Oxygen CMME MuRET

Average time
per page

270 0600 560 1400 330 3700 490 1900

Standard deviation 30 5200 50 4900 30 0700 110 2700

the desired staff position, while in MuRET a correspond-
ing bounding box must first be created and then graphically
labeled in terms of shape and vertical position in the staff,
respectively, which slows down the correct labeling of the
music symbol.

We consider it necessary to comment on the importance
of a good design of the tool from a user experience point
of view [21], and specifically the ease and speed of error
correction offered by each of the tools used in the man-
ual paradigm, as it has been also shown in other similar
tasks [22]. To begin with, we find that the music sheet is
rendered as it is being transcribed in VHV, which facilitates
the comparison process because a division of the computer
screen allows having both the original score and the tran-
scribed version in the same viewing plane. This facilitates
the detection of errors, which are easily corrected thanks
to the reduced character syntax of the Humdrum encoding
used in VHV. The situation changes in the case of Oxy-
gen XML Editor because it lacks an instantaneous render-
ing. The result cannot be visualized until the transcription
is finished and for that, an external tool, like Verovio, is
required. This makes error correction a slow and tedious
process. 12 On the other hand, the error correction in the
CMME is similar to that of VHV, with the difference that
in the former we correct graphical symbols instead of text
characters. Finally, we must mention that in MuRET, the
source image is present along with the transcription render-
ing during the whole process, facilitating the user’s ability
to detect and correct errors.

Note that we are not drawing conclusions from the stan-
dard deviation values because we believe that they are
mainly caused by the variations in the number of symbols
per page and not by the operation of the different alterna-
tives. We nonetheless provide them for the sake of com-
pleting the results.

4.2 OMR-assisted paradigm

In order to gain insights into the OMR-assisted transcrip-
tion paradigm, two scenarios are evaluated: (i) a pre-built
one, where we employ an OMR system built for working
with corpora of similar characteristics to the one we want
to transcribe (Aruspix), and (ii) a from-scratch one, where

12 The interactive MEI encoding tool MEISE [23] has been discarded
as it failed to render mensural notation.
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an OMR system is built anew by means of MuRET.
We measure the average procedure time per page in

both scenarios. In the from-scratch one, as the goal is to
know the number of pages that must take part in the train-
ing set to achieve a model with an acceptable recognition
accuracy, we will measure the average procedure time by
increasing the training set by one page each time, until
reaching 10 pages. After that, the number of pages will
increase by 5, as the number of pages becomes less rele-
vant. Note that in this case, the procedure time only refers
to the model recognition and the revision of the recognized
manuscript times.

Table 2 and Table 3 show the average times and their
standard deviations obtained in the two OMR-assisted sce-
narios considered. As in the previous paradigm, we will
not take into account the standard deviation during the
analysis because they are mainly caused by variations in
the number of symbols per page.

Table 2. Average time and its standard deviation for the
transcription of one page of the Magnificat corpus for the
pre-built OMR-assisted transcription paradigm, in which
Aruspix is the OMR system used. Standard deviations
are not considered relevant as they are mostly linked to
the variability of the number of symbols of each page and
scarcely to the transcription tool.

Average time
per page

Standard deviation

Pre-built
OMR-assisted paradigm

80 3900 30 1000

It should be noted that Aruspix has been considered as
a static model, i.e., the dynamical improvement feature has
not been used as each page has been recognized indepen-
dently. We want to establish comparisons between two
possible OMR-assisted transcription methodologies.

We now proceed to compare the two OMR-assisted sce-
narios. The pre-built scenario allows us to evaluate how
OMR systems facilitate the transcription process without
the need to transcribe some test pages to first train the
model. Looking at Table 2, we observe that it takes less
than 9 minutes to correctly transcribe a typeset musical
score written in mensural notation. This indicates that we
are leveraging previous efforts and existing labeled data.
Moreover, the transcription process is smooth thanks to
the superimposition feature that allows for straightforward
comparison with the recognized results.

Oppositely, the second situation allows us to study how
many test pages have to be manually transcribed to train
an OMR system before it can be used in the transcription
process. According to the results in Table 3, the average
procedure time decreases as the number of training pages
increases. This drop is very steep at the beginning, es-
pecially when considering relatively small training sets of
three pages or less. A model trained with one page gives
a mean transcription time of approximately 49 minutes,
whereas one trained with 3 pages gives an average proce-

dure time of more or less 12 minutes. Moreover, training
sets of 6 pages, or more, estimate lower transcription times
than the pre-built OMR-assisted scenario.

4.3 Manual vs. OMR-assisted

To establish a comparison between both transcription
paradigms, manual and OMR-assisted, we estimate the
workdays needed for the complete transcription of the
Magnificat corpus in both of them, by multiplying the
number of pages with the average procedure time per page
obtained in Section 4.1 and Section 4.2, respectively.

It is important to note that, as seen in the previous sec-
tions, in both the manual and the pre-built OMR-assisted
paradigms, the average procedure times are constant as
they contemplate static scenarios where both the user ef-
fort and the tool’s performance can be estimated as aver-
ages. Hence, the total estimated transcription time will also
be a constant value. However, in the from-scratch OMR-
assisted scenario, the average transcription time of a page
changes as a function of the number of training pages, as
they influence the accuracy of the model used. Therefore,
the time spent in the transcription of the complete corpus
will vary as a function of the training pages, and to estimate
it, the time spent in manually transcribing those training
pages must be taken into account. We have to point out
that the model’s training time is not considered because it
can be done in background 13 .

Figure 2 reports the workdays needed to transcribe the
Magnificat corpus completely (126 pages) for both tran-
scription paradigms.

By examining Figure 2, we draw several conclusions.
The most important one is that the pre-built OMR-assisted
transcription paradigm yields much shorter times, almost
up to 5 workdays less, compared to the best case of the
manual transcription paradigm. This result could be intu-
ited when comparing the average procedure times per page
obtained in the previous sections. This demonstrates that
OMR systems can be embraced as a really helpful alter-
native, even when it does not completely automatize the
process.

Additionally, the results show that by labeling only 3
pages to train an OMR model, the workdays needed for the
total transcription of the corpus are less than in the manual
paradigm for any of the tools considered there. This means
that even if a model has to be built for a specific corpus,
the OMR model-assisted transcription saves the user time,
compensating for the time spent correcting errors. How-
ever, this trend is not constant; in our case, after 10 pages of
training, the workdays for the from-scratch OMR-assisted
scenario begin to increase. This is because the recognition
accuracy of the model does not increase enough to reduce
the average procedure time per page by a large amount, re-
sulting in the time spent on the manual transcription not be-
ing compensated. In other words, a slight reduction in the
OMR-assisted transcription time, of the order of a minute
per page, does not make up for the manual transcription

13 It takes approximately 7 minutes to train a state-of-the-art OMR
model with a training set of 30 pages with a low-profile GPU unit.
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Table 3. Average times and their standard deviations for the transcription of one page of the Magnificat corpus for the
from-scratch OMR-assisted transcription paradigm. This scenario uses MuRET as it allows to retrain its OMR model.
Times are given as a function of the number of training pages, as they directly affect the accuracy of the model.

From-scratch OMR-assisted paradigm
Training pages 1 2 3 4 5 6 7 8 9 10 15 20 25 30

Avg. time per page 480 0200 3205300 110 5600 90 4800 80 5400 60 4600 50 2500 50 2500 40 5800 40 4700 30 5200 30 3300 30 3100 30 1500

Standard deviation 20 4900 90 2900 30 4000 30 4100 30 1800 30 0900 20 5100 20 4100 20 4500 20 4800 20 4400 20 4200 20 4900 20 4400

Avg. Std. Avg. Std.
100 0

48,03141498 2,815440781 97,250443 0,893988412 229 73509 71487,82815
32,88979124 9,476605693 64,59001374 20,45055882 223 71583 46235,46954
11,93208985 3,669482707 19,38432543 3,401377327 218 69978 13564,76325
9,792356558 3,67607787 14,76892822 3,420740122 212 68052 10050,55103
8,899665842 3,298641402 12,84339748 2,312621205 207 66447 8534,052322
6,764035723 3,155813098 8,23685081 1,893290378 201 64521 5314,498511
5,420739938 2,856163005 5,339366516 1,013545137 196 62916 3359,315837
5,409650193 2,684575052 5,315445975 0,509778614 190 60990 3241,8905
4,960539287 2,757664628 4,346715328 0,724362917 185 59385 2581,296898
4,78523676 2,801649751 3,968588393 0,853499212 179 57459 2280,311205
3,864772265 2,740957435 1,983149708 0,675312127 152 48792 967,6184057
3,575975015 2,692060599 1,360215054 0,531755492 124 39804 541,42
3,520167017 2,812329309 1,239837398 0,884853417 97 31137 386,0481707
3,244909854 2,726518721 0,646108664 0,632921385 69 22149 143,1066079
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Figure 2. Workdays (assuming 8 hours per day) needed to
transcribe the 126 typeset pages of the Magnificat corpus.
In the manual and pre-built OMR-assisted paradigms, the
curves are constant as they simulate static scenarios, where
the user effort can be estimated as an average. However, in
the from-scratch OMR-assisted case, the tendency varies
depending on the number of pages used to train the OMR
system, since this affects the accuracy of such a model and
therefore, the subsequent error correction effort made by
the user. It should be noted that in this scenario there is an
inflection point after which the effort made in the manual
transcription of the training pages does not compensate for
the improvement of the model.

time, of the order of fifty minutes per page, needed to train
such a system.

As the last point to mention, we expect that if more
complex compositions are introduced, such as cross-staff
notation, the difficulty of correction with the correspond-
ing tools increase. In addition, if the OMR systems be-
have as expected, then we could say that the trend of the
curves will maintain and the conclusions drawn can be ex-
trapolated to other corpora. In any case, the methodology
presented would still be valid.

5. CONCLUSIONS

The transcription of existing musical heritage, available
only as physical documents, is a necessary activity for
their preservation, access, and dissemination. Optical Mu-
sic Recognition (OMR) was born with the goal of facili-
tating the manual transcription process by its automation.
However, after decades of research and promising results,

its inclusion in the transcription workflow as a user tool
has not materialized. Acceptable but not accurate results
have relegated OMR systems to just representing a scien-
tific challenge to solve.

For all the stated above, we posed the following ques-
tion in this work: to what extent do OMR systems facili-
tate the transcription process? To answer the question, we
set up an experiment that allows us to draw meaningful
comparisons between two transcription methodologies: a
fully manual one and an OMR-assisted one. For that, we
transcribe the content of a printed early music work writ-
ten in white mensural notation under both paradigms and
compare the procedure time. Additionally, we evaluate the
OMR-assisted paradigm from two points of view: (i) a pre-
built one, where an OMR system built to recognize works
of similar characteristics to those of the test case, to take
advantage of previous efforts and see if the error correc-
tion compensates such savings; and (ii) a from-scratch one,
where we train an OMR system from start, to see if the
manual transcription of the training pages is rewarded later
with the automatic transcription.

The obtained results estimate that in both cases of the
OMR-assisted paradigm, the user time is less than that of
the best case of the manual paradigm, indicating that pos-
terior correction of errors in the automatic transcription is
more than offset by the time saved when compared with
manual transcription. The correct usability of the system
to correct errors is an important issue that needs to be taken
into account, as the usefulness of any transcription tool af-
fects the process itself. Thanks to the simultaneous render-
ing of the transcript, the detection, and change of possible
errors is a smooth process in the OMR-assisted paradigm.

Despite the first impression that OMR systems fail, they
can be considered as a useful transcription tool, as they re-
duce the cost of the most valuable non-renewable resource,
time. As future research, we aim at introducing more com-
plex corpora, such as those involving handwriting and/or
polyphonic pieces, as well as more task completers, to go
beyond a single case study and provide more general in-
sights into the analyzed question.
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ABSTRACT

In recent years, complex convolutional neural network ar-
chitectures such as the Inception architecture have been
shown to offer significant improvements over previous ar-
chitectures in image classification. So far, little work has
been done applying these architectures to music informa-
tion retrieval tasks, with most models still relying on se-
quential neural network architectures. In this paper, we
adapt the Inception architecture to the specific needs of
harmonic music analysis and use it to create a model (In-
ceptionKeyNet) for the task of key estimation. We then
show that the resulting model can significantly outper-
form state-of-the-art single-task models when trained on
the same datasets. Additionally, we evaluate a broad range
of augmentation methods and find that extending augmen-
tation policies to include a more diverse set of methods fur-
ther improves accuracy. Finally, we train both the proposed
and state-of-the-art single-task models on differently sized
training datasets and different augmentation policies and
compare the differences in generalization performance.

1. INTRODUCTION

Determining the key of a music piece is an essential step
when analyzing its harmonic properties. Besides theoreti-
cal music analysis, this property is used for assessing the
harmonic compatibility of music pieces [1], which is cru-
cial when mixing multiple music pieces, as is often done by
disc jockeys. As the determination of the key requires ex-
pert knowledge, systems for automatic key estimation are
crucial for enabling large-scale analyses and enabling ev-
eryone, regardless of prior knowledge and skill, to harness
key information. This can be especially useful for algo-
rithmically generated mixes/playlists (e.g. Spotify’s Daily
Mix 1 ): by optimizing the ordering of these playlists to
maximize harmonic compatibility, the perceived quality of
these mixes can potentially be improved. We believe that

1 https://newsroom.spotify.com/2018-05-18/
how-your-daily-mix-just-gets-you/

© Stefan Andreas Baumann. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Stefan Andreas Baumann, “Deeper Convolutional Neural Net-
works and Broad Augmentation Policies Improve Performance in Mu-
sical Key Estimation”, in Proc. of the 22nd Int. Society for Music Infor-

mation Retrieval Conf., Online, 2021.

for informing these decisions, regardless of whether they
are made algorithmically or by a disc-jockey, improving
the performance of key estimation algorithms is crucial to
enable improvements in the creation of those mixes.

2. METHODS

2.1 Audio preprocessing

Before the audio data is put into the neural network
model, it is preprocessed to generate a time-frequency do-
main representation. To obtain this representation, we
use a Constant-Q transform as implemented in the librosa
Python package [2] with 24 bands per octave distributed
over the range from C1 to C8 and downsample to obtain 5
frames per second, the same framerate as used in [3].

2.2 Model

Many state-of-the-art key estimation models (e.g., [3–6])
use sequential convolutional neural networks which work
on a time-frequency representation of the audio sample.
Recent work has shown that more modern image classifi-
cation architectures like Inception [7] and ResNet [8] are
capable of outperforming at least some sequential archi-
tectures such as VGG [9] and AlexNet [10] on the task
of audio classification [11]. Inspired by these findings,
we present a model, which we call InceptionKeyNet. We
base it on Inception V3 [7], as this architecture has shown
the best performance on 2/3 metrics in an evaluation of
audio classification models [11]. Compared to VGG-like
state-of-the-art feature extractors in key estimation models,
the Inception architecture is appealing as it promises much
lower computational cost for similar performance [7]. Fur-
thermore, it also promises to be especially useful in the
context of localization [12], a property that could be ex-
pected to be advantageous for key estimation, as at least
the determination of the key root requires precise localiza-
tion capabilities. Like in the previously mentioned evalua-
tion, we apply some modifications to the model to adapt it
to the task: our primary modification is the removal of the
local pooling layers from the model. This modification is
necessary, as the exact “location” of features in the spec-
trogam on the frequency axis decides the corresponding
pitch, and applying multiple steps of pooling there would
prevent the model from being able to distinguish between
single pitches. We also adjust the stride of all convolution
layers except for the first one to be 1 for the same rea-
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son. Furthermore, we also remove the auxiliary network
as in [11]. Finally, we scale down the number of filters
by 80% (rounding down to the next integer value) of those
from the original model. We do this to reduce the capac-
ity of the model to compensate for the significantly smaller
number of output classes and training samples as compared
to ImageNet [13], the dataset Inception V3 was optimized
for 2 .

2.3 Training method

For training, we split the training samples into 5 folds of
equal size. We train 5 separate model instances for each
round, where each instance uses a different fold for vali-
dation and trains on the samples from the remaining four,
as is typical for cross-validation. To increase variety in the
data, we only give a random 20s snippet of the whole audio
sample to the model during training, as in [3]. We train the
models with the Adam [15] optimizer with a learning rate
of 0.001 and use a batch size of 32, optimizing the categor-
ical cross-entropy between the 24 output classes – one for
each combination of pitch and either major or minor mode
– and the ground truth target. During training, we use a
dropout rate of p = 0.5.

Furthermore, we use early stopping to determine the
end of the training process, stopping the training when the
loss does not improve over 50 epochs. For the resulting
model, the weights from the epoch with minimal valida-
tion loss are used. Those instances are then combined into
an ensemble, where the class probabilities are averaged to
obtain a single prediction, to further improve performance.

2.4 Datasets

Similar to previous works like [3], we utilize various
datasets spanning multiple genres, for both training and
testing. For training, we use the following datasets:
GiantSteps MTG Key: A dataset of 1486 key annotations

[16] generated from user corrections from the Beatport
service in the same way as the GiantSteps Key dataset
[17]. The music pieces are primarily focused on elec-
tronic dance music [3].

McGill Billboard: A dataset of 742 songs from the Amer-
ican Billboard charts between 1958 and 1991 [18] [19].
While the keys are not annotated in the original version,
there exists a version with key annotations for a subset
of 625 songs [20], which we use. Of these, we were able
to obtain audio excerpts for 617 pieces.

For some trainings, we add an additional dataset, created
using data mining. It consists of 3410 additional key anno-
tations (overlaps with other datasets have been excluded)
for which we have audio excerpts available, primarily fo-
cused on popular music pieces, but also including some
classical pieces.

As only the GiantSteps datasets have audio available as
a part of the dataset, we collect 30-second excerpts for
all dataset entries, resulting in up to two such excerpts

2 Multiple other approaches including modifying the stem and leaving
out some mixed blocks were evaluated, too, but the best performance was
achieved when just scaling down the number of filters.
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Figure 1: The architecture of the feature extractor of the
InceptionKeyNet model. i denotes the input of the model
or a section, ck,n,s (or c(k1,k2),n,s) denotes a 2-dimensional
convolution layer with a kernel size of k ⇥ k (or k1 ⇥ k2),
a stride of s ⇥ s and n filters, followed by batch normal-
ization and ReLU activation. If s is not given, it defaults
to 1. j denotes a layer that joins all preceding layers along
their filter axis. d denotes a Spatial Dropout [14] layer
with Dropout probability p. Different output structures o
are presented and evaluated in 3.1.

per entry. If multiple excerpts are available for a single
music piece, we randomly choose the excerpt to use for
each epoch when training. When validating and testing,
we use the longer 120-second excerpt from the GiantSteps
datasets if available, and choose randomly otherwise, en-
suring that the same excerpts are used between tests.
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2.5 Metrics

For evaluating the performance of key classification mod-
els, we use the same score as used in MIREX evaluations
[21], which we refer to as the “MIREX score”. For this,
we use the mir_eval library 3 [22]. When computing the
score, the predictions are divided into the following cate-
gories to consider how close the classification result is to
the ground truth key:
Correct: Predictions where the root and mode are classi-

fied correctly. These predictions give a full point.
Perfect fifth: Predictions where the mode has been classi-

fied correctly, and the predicted root is either a fifth (7
semitones) higher or lower than the ground truth. These
predictions give 0.5 points.

Relative major/minor: Predictions where the major or
minor key relative to the ground truth key have been
classified. These predictions give 0.3 points.

Parallel major/minor: Predictions where the root has
been classified correctly while the mode differs. These
predictions give 0.2 points.

Any predictions that do not fall under any of the previously
listed categories, give no points. These point scores are
then averaged to obtain the overall MIREX score.

3. EXPERIMENTS

3.1 Model Output Structures

While the original Inception architecture is already theoret-
ically capable of processing inputs of arbitrary size when
some minimum dimensions are met, we also evaluate the
output structure used in the AllConv model and a modi-
fied version of it, to find out whether different output ar-
chitectures affect the model performance. We evaluate the
following three different output structures:
Original: The original output structure from the Inception

v3 architecture, which consists of global average pool-
ing, followed by a fully-connected layer with one neuron
for each class and softmax activation [7].

AllConv-A: A 1 ⇥ 1 convolution layer with one filter for
each class, followed by global average pooling and soft-
max activation as found in the AllConv model [3].

AllConv-B: Our modified variant of the AllConv-A struc-
ture, where the frequency dimension of the convolution
layer is extended to cover the whole frequency axis from
the previous layer.

Original AllConv-A AllConv-B

0.675

0.700

0.725

M
IR

EX
Sc

or
e InceptionKeyNet Output Structures

Figure 2: The validation MIREX score achieved with
three different output structures. Blue crosses correspond
with one model, orange dots represent the median scores.

3 The scoring of fifth errors has to be changed to also accept descend-
ing ones to match the scoring used in the latest MIREX evaluations.

The results from the evaluation are shown in figure 2. It
can be seen that while all three output structures show com-
parable average performance, the original output structure
has a significantly higher variance in validation perfor-
mance than the other two variants. Overall, the perfor-
mance achieved by the different folds is the most consistent
with the AllConv-B variant, so we choose to proceed using
it as the model output structure.

3.2 Augmentation Methods

To artificially increase the diversity of the training dataset,
augmentation can be applied to the input data. While
previous works on key estimation models primarily re-
lied on pitch-shifting as the sole augmentation method
(e.g. [3–6]), we evaluate a range of different augmentation
methods to see whether a more diverse set of augmentation
methods can help improve generalization. We evaluate the
following augmentation methods (see figure 3 for visual-
izations of some of these methods):
Pitch-Shifting: A method that has already been used in

previous works on key classification models [3–6]. It
works by shifting all of the sounds in a recording by
a number of semitones and adjusting the target key root
accordingly. For our evaluation, we test symmetric pitch
shifting ranges, which are defined via the hyperparam-
eter �fmax 2 N0, which controls the discrete uniform
distribution X�f,pitch shift ⇠ U{��fmax,�fmax} used
to randomly determine the pitch shift �fpitch shift. We
precompute all of the potential pitch-shifted versions
for all training samples ahead-of-time and apply it in
the time-domain using SOX 4 [24] before applying the
Constant-Q transform.

Time-Warping: Based on the time-warping methodology
used in the SpecAugment augmentation policy [25] for
speech recognition models, we create a single-parameter
version of their method: we choose six reference points
along the border of the spectrogram, four at the cor-
ners and one in the center of the time axis on each side.
The center points are then randomly moved along the
time axis by a distance of w, with the spectrogram being
warped accordingly. The augmentation hyperparameter
wmax determines the bounds of the uniform distribution
Xw ⇠ U(�wmax, wmax), from which the random val-
ues for w are sampled.

Frequency and Time Masking: Two other augmentation
methods used in the SpecAugment augmentation pol-
icy [25], where a part of the frequency spectrum and a
part of the time axis are omitted. We use two hyperpa-
rameters, fmax and tmax, and choose the width of the
range to be omitted randomly from the uniform distri-
butions Xf ⇠ U (0, fmax) and Xt ⇠ U (0, tmax). We
then choose two random starting points f0 and t0 and fi-
nally omit the frequency bands in the range [f0, f0 + f ]
the time steps in [t0, t0 + t] from the spectrogram.

4 Pitch-shifting with Rubberband [23] and by shifting the spectrogram
were also tested, but it was found that the models trained with these alter-
native methods showed significantly worse performance.
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Loudness Augmentation: We implement loudness aug-
mentation by generating a factor k, with which all of
the magnitudes in the spectrogram are multiplied. This
factor is sampled from a uniform distribution Xk ⇠
U
�
k�1
max, kmax

�
, whose bounds are given via the hyper-

parameter kmax.
Additive Gaussian Noise: Adding noise with a mean

of zero to the input samples is a very straightforward
way of augmentation: we use a Gaussian distribution
X ⇠ N (µ = 0, �2) from which a separate value is sam-
pled randomly and then added to each data point in the
spectrogram, with the noise intensity being controlled
via the hyperparameter �.

Frequency Filtering: Random frequency filtering, as pre-
viously used in [26], is a method where a random filter
is generated, which amplifies or dampens a range of fre-
quencies. The range of affected frequencies is defined
via a Gaussian function, resulting in the amplitude re-
sponse
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with which the values of the spectrogram are multiplied.
We define it in semitone space for simplicity and clamp
the values of the amplitude response at 0 to avoid neg-
ative amplitudes. Each filter is defined via three param-
eters �, s, and f0, which determine the width, amplifi-
cation and location respectively. These parameters are
randomly sampled from three separate uniform distribu-
tions Xs ⇠ U (�smax, smax), X� ⇠ U (0,�max) and
Xf0 ⇠ U (0, fmax). smax and �max are given as hy-
perparameters, while fmax is defined as the maximum
frequency represented in the spectrogram.

Generally, the mentioned augmentation methods are ap-
plied at runtime with random parameters, introducing ran-
dom variations into the input data. The one exception to
this is pitch-shifting, where 2�fmax additional variations
per sample are generated ahead-of-time. These also have
different key root labels, which can help compensating im-
balances in the datasets’ root distribution.

We evaluate these methods by performing a Bayesian
optimization on all of the augmentation hyperparameters,
maximizing the median validation MIREX score over a 5-
fold cross-validation for each evaluated set of hyperparam-
eters. The resulting hyperparameters define our augmenta-
tion policy. Optimizing all of the augmentation method
hyperparameters together as compared to doing so inde-
pendently is important, as different hyperparameter val-
ues for one augmentation method might influence another.
By evaluating all methods simultaneously, we can thus get
more accurate results than with independently optimized
hyperparameters. To get an insight into how each hyperpa-
rameter influences model performance, we look at the fit-
ted Gaussian process from the Bayesian optimization and
compute the conditional probability distribution for that
hyperparameter given that the others are set to “good” val-
ues and did not fail to train. As our condition for a hy-
perparameter value being “good”, we check whether it is
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Figure 3: A visualization of some of the augmentation
methods. The first row shows an entire unmodified spec-
trogram with the reference points for time-warping in their
default position. In the second spectrogram, time-warping
(w = 2.6s) has been applied, and the reference points have
been moved accordingly. The third row shows the warped
spectrogram after frequency-masking (f = 15st) and time-
masking (t = 2.2s) have been applied at random positions,
and the final spectrogram shows the result after applying
frequency filtering (� = 10st; s = 90).

at most 5% larger or smaller than the optimal value we
obtained during our optimization. This way, we get eval-
uations of the performance of our hyperparameters that do
not depend on exact values for the other hyperparameters.

A number of graphs visualizing the effect, which the
hyperparameters corresponding to the different augmen-
tation methods have on the validation performance, are
shown in figure 4. From this, it is clear that loudness aug-
mentation and additive Gaussian noise negatively affect the
validation performance of our model, while pitch-shifting,
time-warping, frequency-masking, and time-masking can
all help improve performance on unseen samples.

For pitch-shifting, it seems that the chosen evaluation
range from 0st to 12st was too small, and even more ex-
treme values might prove beneficial to model performance.
As we did not evaluate higher values in the full optimiza-
tion process, we confine ourselves to the range as men-
tioned earlier and choose a value of 12st for the augmen-
tation policy. For time-warping, frequency-masking, and
time-masking, optimal values can be observed inside the
evaluated range, although the performance improvement
is significantly smaller than with pitch-shifting (especially
so for frequency masking). For frequency filtering, there
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seems to be a “sweet spot” near the middle of the evaluated
range, where validation performance is increased slightly.

The final optimal values we obtained from the Bayesian
optimization process are shown in table 1.
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Figure 4: Estimated effect on the validation MIREX score
for different augmentation methods. The blue line repre-
sents the mean validation performance for the line graphs.
The frequency filtering parameters are presented as a 2-
dimensional map, where the color corresponds to the mean
validation performance.

Method Parameter Value
Pitch-Shifting �fmax 12st
Time-Warping wmax 2.6s
Frequency-Masking fmax 1st
Time-Masking tmax 1.2s
Loudness-Augmentation kmax not applied
Additive Gaussian Noise � not applied
Random Filtering �max 36.25st
Random Filtering smax 30

Table 1: The optimal values for each augmentation hy-
perparameter as determined by a Bayesian optimization
process, for which 178 hyperparameter combinations (re-
sulting in 890 separate models with cross-validation) were
evaluated.

4. EVALUATION

In this section, we evaluate the performance of the Incep-
tionKeyNet model and compare it to two existing state-of-
the-art single-task models. For these comparisons, we use
the following datasets:
GiantSteps Key (GS): A dataset of 604 key annotations

generated from user corrections from the Beatport ser-
vice and a range of smaller datasets, with no overlap
with the GiantSteps MTG Key dataset used for train-
ing [17].

KeyFinder (KF): A dataset of 1000 key annotations from
multiple genres. [29]. We were able to obtain audio ex-
cerpts for 833 of the music pieces.

Isophonics (I): Four datasets containing songs by The
Beatles, Queen, Zweieck, and Carole King. [30]. As we
do not have access to the full recordings, we only use
songs where a single key is annotated, resulting in 151
songs by The Beatles, 8 by Queen, 7 by Zweieck, and 2
by Carole King.

RockCorpus (RC): A dataset with annotations for 200 en-
tries from the Rolling Stone “500 Greatest Hits of All
Time” list [31]. As only the key root is given, we use
a method proposed in [3] to obtain mode annotations:
if at least 80% of the annotated tonic chords are of one
mode, that one is selected for the overall key; otherwise,
the sample is excluded. This results in 188 music pieces,
of which we have audio excerpts for 186.

As we are only working with excerpts and do not have ex-
cerpts available for all entries of the various datasets, the
test scores for the KeyFinder, Isophonics and RockCorpus
datasets are not necessarily directly comparable to results
obtained by other publications. To be able to give fair com-
parisons to other models on all datasets, we replicate or
test them on our datasets when comparing different mod-
els. For the GiantSteps Key dataset, the scores are com-
parable with those in other publications, as we have the
original audio files available.

We compare our model with two other single-task mod-
els: the AllConv [3] and the JXC1 5 [5] models. To ob-
tain fair comparisons, we replicate the models using their
respective preprocessing methods as specified in the orig-
inal publications [3, 5]. We then train each model on our
two different training datasets, and using either only pitch-
shifting or our augmentation policy. For more direct com-
parability, we used the same pitch-shifting range from �6st
to +6st for all three models, which results in a range 1st
wider than used in the original publications for the All-
Conv and JXC1 paper. We use the method of stopping
the training described in subsection 2.3 for the AllConv
model, as testing showed better performance than the de-
fault method. Finally, as we use cross-validation ensem-
bles for our own model, we also use them for the AllConv
and JXC1 models to make the comparison as fair as pos-
sible. Introducing ensembles leads to an average absolute
increase in MIREX score of 3.1% and 3.6% for the All-
Conv and JXC1 models respectively. This is significantly

5 We use JXC1 instead of the JXC2 model as the latter requires training
in a multi-task setting, which would go beyond the scope of this paper.
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Model Test MIREX Scores [%]
Architecture Augmentation GS KF I RC Avg

Small Training Dataset (GiantSteps MTG Key and McGill Billboard)
InceptionKeyNet (ours, ensemble, pitch-shift (�6st to +6st) 73.94 71.31 79.23 78.49 73.69
1.7M parameters per model) our policy 75.50 71.94 78.93 78.28 74.46
AllConv [3] (Nf = 20, ensemble, pitch-shift (�6st to +6st) 74.27 67.78 75.83 77.58 71.74
462k parameters per model) our policy 73.38 66.76 75.36 80.70 71.25
JXC1 [5] (ensemble, pitch-shift (�6st to +6st) 72.27 69.11 76.61 75.48 71.54
12.5M parameters per model) our policy 73.66 68.03 72.80 78.49 71.46

Large Training Dataset (GiantSteps MTG Key, McGill Billboard, and our data mining dataset)
InceptionKeyNet (ours, ensemble, pitch-shift (�6st to +6st) 74.35 70.58 80.24 83.92 74.14
1.7M parameters per model) our policy 75.68 70.49 81.61 84.62 74.75
AllConv [3] (Nf = 20, ensemble, pitch-shift (�6st to +6st) 74.44 68.45 77.14 78.76 72.36
462k parameters per model) our policy 73.06 66.15 74.88 80.70 70.81
JXC1 [5] (ensemble, pitch-shift (�6st to +6st) 74.44 69.27 81.85 81.34 73.45
12.5M parameters per model) our policy 74.62 69.40 79.70 81.61 73.39

Reference Models (weights as in the original publication; trained on other datasets)
AllConv [3, 27] (single model) pitch-shift (�4st to +7st) 74.62 63.76 75.83 73.49 69.56
QM Key Detector v5 [28] (single model) - 57.76 6 48.12 64.40 60.48 54.15

Table 2: The results of our evaluation. The models are separated into groups depending on the datasets they have been
trained on. The GS, KF, I, and RC columns show the test MIREX score on each test dataset; the rightmost column shows
the average of those scores, weighted by dataset size. The best test scores in each group of models is marked in bold font.

larger than the increase of 2.0% that the InceptionKeyNet
model shows, which means that any performance lead of
the InceptionKeyNet model would be larger when com-
paring single models. The results from this evaluation are
shown in table 2. As an additional reference, we also in-
clude the performance of the original trained version [27]
of the AllConv model, which shows comparable average
performance to our reproduction when considering the pre-
viously mentioned gain from using ensembles. Further-
more, we also include the performance of the QM Key De-
tector v5 [28] model on our versions of the test datasets,
even though this model shows significantly worse perfor-
mance across all of our test datasets.

It can be seen that when trained on the same datasets,
the InceptionKeyNet model is able to outperform the All-
Conv and JXC1 models, with the difference between it and
the next best model being 2.72% for the small and 1.30%
for the large training dataset. While all models show im-
proved performance when trained on a larger dataset, only
InceptionKeyNet sees increased performance when our
augmentation policy is applied. This suggests that, while
broader augmentation can improve performance in at least
some cases, the parameters possibly have to be tailored to
each model. It can also be seen that the performance ad-
vantage given by the broad augmentation policy decreases
slightly when the amount of training data increases. This
likely means that the broad augmentation policy is partic-
ularly useful when little data is available.

There also seems to be no clear correlation between
model parameter count and performance, which suggests
that the architecture choice probably plays an important

6 We assume that the very slight deviation compared to the value in
[32] is due to different versions of dependencies of sonic-annotator.

role in deciding a models performance.

5. CONCLUSION

This paper presented an adaptation of the Inception V3 [7]
architecture for harmonic music analysis tasks and used
it to create a model for the key estimation task. We pro-
ceeded to evaluate a broad range of augmentation meth-
ods to find a tailored augmentation policy, and finally
evaluated our model and compared it to two state-of-the-
art single-task models, training all of them on the same
datasets to obtain fair comparisons. These comparisons
showed that the InceptionKeyNet model is capable of sig-
nificantly outperforming state-of-the-art single-task mod-
els when trained on the same data with the same augmen-
tation methods, and that further improvements are possible
when applying a broad augmentation policy.

Ultimately, we believe that the main contribution of this
work is showing that there is still potential to outperform
state-of-the-art models in common harmonic music anal-
ysis tasks when deeper neural network architectures and
matching extensive augmentation schemes are used. We
hope for the presented findings to inspire further research
applying similar approaches to other related MIR tasks,
potentially even combining them into multi-task models.
These have shown promising performance in the past, out-
performing their single-task variant in at least one case [5].

The source code to train and run our model, and the sub-
sets of public datasets where we had audio excerpts avail-
able for training, are available online 7

7 https://github.com/stefan-baumann/
inceptionkeynet.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

47



6. REFERENCES

[1] I. Sha’ath, “Estimation of Key in Digital Music
Recordings,” Master’s thesis, Birkbeck College, Uni-
versity of London, 2011.

[2] B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and Mu-
sic Signal Analysis in Python,” in Proceedings of the

14th Python in Science Conference, vol. 8, 2015, pp.
18–25.

[3] F. Korzeniowski and G. Widmer, “Genre-Agnostic Key
Classification With Convolutional Neural Networks,”
in Proceedings of the 19th International Society for

Music Information Retrieval Conference. ISMIR,
Sep. 2018, pp. 264–270.

[4] ——, “End-to-end musical key estimation using a con-
volutional neural network,” in 2017 25th European

Signal Processing Conference (EUSIPCO). IEEE,
2017, pp. 966–970.

[5] J. Jiang, G. G. Xia, and D. B. Carlton, “MIREX 2019
Submission: Crowd Annotation for Audio Key Esti-
mation,” Music Information Retrieval Evaluation eX-

change, 2019.

[6] H. Schreiber and M. Müller, “Musical Tempo and Key
Estimation using Convolutional Neural Networks with
Directional Filters,” in Proceedings of the 16th Sound

& Music Computing Conference, 2019, pp. 47–54.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the Inception Architecture for
Computer Vision,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Resid-
ual Learning for Image Recognition,” in Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2016.

[9] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,”
in 3rd International Conference on Learning Repre-

sentations, ICLR 2015, Conference Track Proceedings,
2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing

Systems, vol. 25. Curran Associates, Inc., 2012.

[11] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold et al., “CNN architectures for
large-scale audio classification,” in 2017 IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2017, pp. 131–135.

[12] “Going deeper with convolutions,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, 2015, pp. 1–9.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A large-scale hierarchical im-
age database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, 2009,
pp. 248–255.

[14] J. Tompson, R. Goroshin, A. Jain, Y. Lecun, and
C. Bregler, “Efficient Object Localization Using Con-
volutional Networks,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR). IEEE, jun 2015, pp. 648–656.

[15] D. P. Kingma and J. L. Ba, “Adam: A method for
stochastic optimization,” in 3rd International Confer-

ence on Learning Representations, ICLR 2015 - Con-

ference Track Proceedings, 2015.

[16] Á. Faraldo, “giantsteps-mtg-key-dataset,” GitHub, last
accessed on 2021-01-23. [Online]. Available: https:
//github.com/GiantSteps/giantsteps-mtg-key-dataset

[17] P. Knees, Á. Faraldo Pérez, H. Boyer, R. Vogl, S. Böck,
F. Hörschläger, M. Le Goff et al., “Two data sets for
tempo estimation and key detection in electronic dance
music annotated from user corrections,” in Proceed-

ings of the 16th International Society for Music Infor-

mation Retrieval Conference (ISMIR), 2015, pp. 364–
70.

[18] K. Shaffer, E. Vasiete, B. Jacquez, A. Davis, D. Es-
calante, C. Hicks, J. McCann, C. Noufi, and P. Salmi-
nen, “A cluster analysis of harmony in the McGill Bill-
board dataset,” Empirical Musicology Review, vol. 14,
no. 3-4, p. 146, 2020.

[19] “The McGill Billboard Project,” last ac-
cessed on 2020-10-28. [Online]. Available:
https://ddmal.music.mcgill.ca/research/The_McGill_
Billboard_Project_(Chord_Analysis_Dataset)/

[20] F. Korzeniowski, “bb.zip,” last accessed on 2021-01-
23. [Online]. Available: http://www.cp.jku.at/people/
korzeniowski/bb.zip

[21] “2020 Audio Key Detection,” MIREX Wiki,
2020, last accessed on 2020-10-26. [Online].
Available: https://www.music-ir.org/mirex/wiki/2020:
Audio_Key_Detection

[22] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,
O. Nieto, D. Liang, and D. P. W. Ellis, “MIR_EVAL:
A Transparent Implementation of Common MIR Met-
rics.” in Proceedings of the 15th International Society

for Music Information Retrieval Conference. ISMIR,
2014, pp. 367–372.

[23] C. Cannam, “Rubberband,” sourcehut, last accessed
on 2021-01-31. [Online]. Available: https://hg.sr.ht/
~breakfastquay/rubberband/

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

48



[24] C. Bagwell, “SoX - Sound eXchange,” SourceForge,
last accessed on 2021-01-31. [Online]. Available:
http://sox.sourceforge.net/

[25] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “SpecAugment: A Sim-
ple Data Augmentation Method for Automatic Speech
Recognition,” in Proc. Interspeech 2019, 2019, pp.
2613–2617.

[26] J. Schlüter and T. Grill, “Exploring Data Augmenta-
tion for Improved Singing Voice Detection with Neu-
ral Networks,” in Proceedings of the 16th International

Society for Music Information Retrieval Conference.
ISMIR, 2015, pp. 121–126.

[27] “madmom_models/key/2018,” GitHub, last accessed
on 2021-02-17. [Online]. Available: https://github.
com/CPJKU/madmom_models/tree/master/key/2018

[28] C. Cannam, E. Benetos, M. E. P. Davies, S. Dixon,
C. Landone, M. Levy, M. Mauch, K. Noland, and
D. Stowell, “MIREX 2019: Vamp plugins from the
Centre for Digital Music,” Music Information Retrieval

Evaluation eXchange, 2019.

[29] I. Sha’ath, “KeyFinder v2 Dataset,” 2014,
last accessed on 2021-01-15. [Online].
Available: http://ibrahimshaath.co.uk/keyfinder/
KeyFinderV2Dataset.pdf

[30] “Isophonics Reference Annotations,” last accessed on
2021-02-26. [Online]. Available: http://isophonics.net/
content/reference-annotations

[31] T. De Clercq and D. Temperley, “A corpus analysis of
rock harmony,” Popular Music, vol. 30, no. 1, pp. 47–
70, jan 2011.

[32] “2019 Audio Key Detection Results,” MIREX
Wiki, 2019, last accessed on 2020-10-26. [Online].
Available: https://www.music-ir.org/mirex/wiki/2019:
Audio_Key_Detection_Results

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

49



THE MUSIC PERFORMANCE MARKUP FORMAT AND ECOSYSTEM

Axel Berndt
Center of Music and Film Informatics

Ostwestfalen-Lippe University of Applied Sciences and Arts
Detmold University of Music
axel.berndt@th-owl.de

ABSTRACT

Music Performance Markup (MPM) is a new XML format
that offers a model-based, systematic approach to describ-
ing and analysing musical performances. Its foundation is
a set of mathematical models that capture the characteris-
tics of performance features such as tempo, rubato, dynam-
ics, articulations, and metrical accentuations. After a brief
introduction to MPM, this paper will put the focus on the
infrastructure of documentations, software tools and ongo-
ing development activities around the format.

1. MOTIVATION

The performance of a musical piece transforms the musi-
cal raw material (typically a symbolic representation such
as Common Western Music Notation) into a sounding out-
put or equivalent audio signal. One and the same piece of
music can be performed in many different ways. Playing
the raw material exactly as notated is one special kind of
performance, often referred to as “robotic” or “machine-
like”. Human musicians’ performances typically involve
more complex transformations that only partly derive from
the notation. Those are subject to active research in musi-
cology, in particular in the fields of performance research,
Historically Informed Performance Practice, and Music In-
formation Retrieval.

Typical questions are: How can the connection between
audio document and musical score be drawn? How can
the musical realization of a performer be described and put
in relation to printed performance instructions and the per-
formances of other musicians? Especially in the light of
the musical culture of the past century, which has been
strongly coined by audio media, this research field gains
in importance and demands more and more urgently for
suitable tools. Yet there is still a lack of a common, open
data standard that would allow systematic and comprehen-
sive access to the phenomena of music performance and
facilitate the publication and re-use of research results in
the variety of application and research contexts.

Based on several years of prior basic research and
model development, the Music Performance Markup

© A. Berndt. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: A. Berndt,
“The Music Performance Markup Format and Ecosystem”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

(MPM) format was developed to address this problem.
MPM enables several novel research designs. E.g., the
“simulation” or “reconstruction” of a performance allows
the experimental testing of auditory impressions and hy-
potheses about how a performance was precisely made and
by which expressive means a certain effect was achieved.

However, in order for MPM to become an accepted and
useful tool in the communities, we have made further ef-
forts beyond the mere definition of the format. An ecosys-
tem of software tools, guidelines, sample encodings and tu-
torials was developed of which this paper will report, thus,
providing an overview and good entry point for new users.

2. DESCRIBING MUSICAL PERFORMANCES

How can a musical performance be described? The de-
scription of acoustic phenomena on a colloquial level is
problematic in scientific discourse. A subjective listening
impression may be described as a “strong ritardando from
measure x to measure y”, but lacks the necessary precision
in several respects, particularly in terms of initial and fi-
nal tempo, initial and final timing position, and the specific
course of the tempo transition. Another performer may
play a ritardando at the same musical position that is just as
strong but completely different in its execution and effect.
On the other hand, a precise tempo curve may be derived
from timing measurements in the audio data. This would
usually render a very noisy tempo curve, because it is the
sum of several timing features (tempo, rubato, asynchrony,
agogic accents, and unsystematic elements often referred
to as human imprecision) and measurement imprecision.

These two opposing perspectives can be found in all
the formats used in music description and performance re-
search. Accordingly, they can be roughly divided into (1)
measurement series formats and (2) symbolic formats.

The most extreme form of a measurement series for-
mat is certainly the audio recording itself. Without a con-
siderable effort of analysis, however, abstract performance
concepts such as tempo, rubato, dynamics, etc. cannot be
inferred from it. This is therefore a low-level represen-
tation, which by itself does not provide any information
about higher-level structures in the series of measurements.

The first step in inferring volume and tempo character-
istics is audio signal analysis. Note onset positions are de-
termined algorithmically or manually, inter-onset intervals
are measured, spectra are evaluated, amplitude curves are
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generalized to envelopes, peak and sustain levels of indi-
vidual tones are measured, etc. Examples of such analy-
ses and the resulting complex series of measurements can
be found in performance research publications [1]. A tool
widely used in empirical performance research is the Sonic
Visualiser [2]. The resulting measurement series are of-
ten stored in CSV (Comma-Separated Values) format [3].
An extensive data collection in this format is the Mazurk-
aBL dataset with roughly 2000 sound recordings, anno-
tated with loudness and tempo information [4]. The CSV
format is often used for comparing analysis algorithms,
such as in MIREX [5, 6].

For more complex data structures that can no longer be
represented in CSV, the JSON format is a popular alter-
native [7]. It is easy to process, human readable and is
frequently used to relate measurement series to each other,
such as in audio-to-audio and audio-to-score alignment [8].

In contrast to the very detailed data of measurement se-
ries formats, which provide no immediate information on
high-level structures, are the symbolic formats. They de-
scribe the abstract structures, but leave out any specific de-
tail. Although they enable efficient communication about
music, listening impressions and performance concepts,
which for the most part suffices everyday use, they lack the
aforementioned precision required in scholarly discourse.
To take up the above example: When does a ritardando
become a “strong” ritardando? The degree of abstraction
becomes particularly striking when a computer generates
music playback directly from the score and the result is
described as “mechanical”.

Symbolic formats are used mostly to encode music no-
tation. Most notation software and Digital Audio Worksta-
tions (DAWs) use proprietary formats that are optimized
for their particular needs. Open formats are MusicXML
[9], ABC [10], and Lilypond [11]. In addition, specialized
formats such as Humdrum [12] and MEI [13] have become
established in musicology and music editing [14].

Compared to other symbolic formats, the Standard
MIDI File format [15, 16] has a special position. It rep-
resents musical information as control messages. Each
note is represented by a NoteOn-NoteOff pair. The vol-
ume of notes is specified by numerical values which are
interpreted by synthesizers and converted into actual am-
plitude values. Temporal indications are made on a tempo-
independent grid similar to the musical time measure and
are converted into physical time values (milliseconds) only
in connection with tempo messages. Also other parameters
of musical expression (tonality, mixing, DSP effects etc.)
can be implemented as a series of controller messages.
However, meta-structures in those domains are not repre-
sented, so that MIDI clearly corresponds to a measurement
series format in this respect and is also practically used for
such purposes. An example for this is CrestMusePEDB,
a database of several hundred piano performances [17].
Such recordings are typically made with MIDI-fied instru-
ments. The relatively low numerical resolution of MIDI’s
8 and 7-bit numerical values and the fact that volume and
controller values are interpreted differently by each syn-

thesizer [18] are two main criticisms of the format, which
is nevertheless indispensable in today’s practice.

MEI and Humdrum, too, can be extended into hybrids,
as proposed by Devaney and Gauvin [19]. This is achieved
by augmenting the symbolic data by measurement data,
e.g. timestamps for notes. However, these measurements
are not decoded and linked to corresponding larger struc-
tures leaving the gap between both perspectives open.

The essential achievement of MPM is to combine low-
level and high-level perspective. Here, the high-level de-
scription serves to systematically break down the complex
interplay of various performance concepts and features,
which manifests itself in such detailed measurement se-
ries. This descriptive approach opens up new perspectives
for a broader, scientific discourse on music performance.

3. A BRIEF INTRODUCTION TO MPM

MPM is designed as a tandem partner or complement for
symbolic music formats such as MIDI, MusicXML and
MEI. While these encode the score to be interpreted, MPM
describes its musical performance. MPM chooses a model-
based approach for this. Each description primitive is
based on a mathematical model that emulates its corre-
sponding performance feature. For a detailed introduction
to these models see [20]. Currently, the corpus of models
defined in MPM and supported by fundamental research
comprises the following feature types:

Timing: tempo (incl. discrete and continuous tempo
changes), rubato, asynchrony, random/unsystematic
deviations from exact timing,

Dynamics: macro dynamics (incl. discrete and continu-
ous dynamics changes), metrical accentuations, ran-
dom/unsystematic deviations from exact dynamics,

Articulation: with absolute and relative effects on tone
duration, loudness, tuning and timing (e.g. agogic
accents) as well as random/unsystematic fluctua-
tions of duration and tuning.

These models enable MPM to bridge the previously de-
scribed gap between the two opposed approaches (mea-
surement series versus symbolic representation) as they
disambiguate the high-level concepts by explicit map-
pings. Conversely, they can also be used for resynthesis.

MPM allows to define several performances for one and
the same piece of music. In the basic structure of such a
performance a first peculiarity of MPM’s conception be-
comes apparent. Performance instructions can be defined
globally for all parts and locally for a single part. If local
and global information of the same domain compete, the
local dominate. This makes it possible to describe poly-
phonic performances in which, e.g., a solo instrument has
its own freedom of expression while the accompanying or-
chestra follows the global instructions of a conductor.

Both, the global and part environment, subdivide into
header and dated information. The header contains style
definitions, i.e. lookup tables to map literals (“Allegro”,
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<?xml version="1.0" encoding="UTF-8"?>

<mpm xmlns="http://www.cemfi.de/mpm/ns/1.0">

<performance name="a performance"

pulsesPerQuarter="720">

<global>

<header>

<tempoStyles>

<styleDef name="famous conductor">

<tempoDef name="Allegro"

value="133.0"/>

<tempoDef name="Adagio"

value="67.4"/>

</styleDef>

</tempoStyles>

</header>

<dated>

<tempoMap>

<style date="0.0"

name.ref="famous conductor"/>

<tempo date="0.0" bpm="Allegro"

transition.to="Adagio"

meanTempoAt="0.7"

beatLength="0.25"/>

<tempo date="28800" bpm="87.45"

beatLength="0.25"/>

</tempoMap>

<dynamicsMap>

<dynamics date="0.0" volume="80.0"/>

</dynamicsMap>

</dated>

</global>

<part name="Solo Violin" number="1"

midi.channel="0" midi.port="0">

<header/>

<dated>

<dynamicsMap>

<dynamics date="0.0" volume="92.0"/>

</dynamicsMap>

</dated>

</part>

</performance>

</mpm>

Listing 1: A short MPM code example.

“mf”, “staccato” etc.) to numeric values. The dated envi-
ronment, on the other hand, is the place where performance
instructions are specified and assigned to metrical positions
(corr. MIDI ticks) and musical elements (e.g. articulations
to notes via XML IDs). These instructions are organized in
sequential lists, so-called maps, one for each feature type
(e.g. tempoMap, dynamicsMap, rubatoMap, metricalAc-
centuatioMap). Listing 1 demonstrates this structure. The
parameterization of the style definitions and performance
instructions derives from their underlying mathematical
models and translate to attributes in the XML encoding.

To give an impression of one of MPM’s feature models,
the code example involves a tempo slowdown from “Al-
legro” to “Adagio”. The course of tempo curves is mod-
elled with power functions in the interval [0.0, 1.0]. At-
tribute “meanTempoAt” specifies the relative position be-
tween start and end date of the transition where the curve
passes the mean tempo, in this case after 70% of the time
frame (0.7). Detailed documentation of all features, syntax
and models is given on the official website. 1

For music editions, MPM is a tool for the philological

1
https://axelberndt.github.io/MPM/, last access: July

2021.

registration and critical examination. This also leads di-
rectly to use cases in library and archiving contexts. For the
analysis of individual performances, the model-based ap-
proach of MPM provides feature classes that enable an ab-
stracted and differentiated review. MPM does not primar-
ily serve a purely positivistic quantification of music. Cou-
pled with the possibilities of applying the modeled perfor-
mances to symbolic music data to output them as expres-
sive MIDI and audio, it offers, in the sense of transforma-
tive digital intermedia studies [21] a tool for a hermeneu-
tic approach to performance analysis. As an experimental
tool, it can serve to (re)construct performances that have
not survived as audio documents but in textual form, e.g.
in music-practical treatises and performance scores. Be-
yond a purely scientific use, this also shows potential for
application in digital music production.

The model-based description approach of MPM also
motivates new research questions that could not be sys-
tematically addressed so far. For instance, the sharp dif-
ferentiation of timing, dynamics, and articulation into sev-
eral subcategories and their description by means of math-
ematical models had led to questioning the common un-
derstanding of inégalité (the unequal playing of notes of
equal value) as a pure timing feature [22, 23], which is
of relevance for Historically Informed Performance Prac-
tice. Studies based on the models were eventually able
to demonstrate a multifaceted interplay of micro-timing
shifts, accentuation, and changes in tone duration [24].
Further research questions address, e.g., playing inaccu-
racies beyond classical timekeeping and synchronization
studies (incl. variations in loudness, intonation, and artic-
ulation), the interaction of an ensemble depending on ex-
terior conditions (such as acoustics and mutual visibility),
and related questions of timbre research. In addition, anal-
yses on larger corpora of performances can lead to new and
more differentiated insights into music-historical change
processes and formative characteristics of individual per-
formers and schools.

4. DEVELOPING AN ESCOSYSTEM FOR MPM

The primary application areas of MPM are musicologi-
cal edition and performance research as well as computer-
aided music production. The development of tools for the
creation, analysis, presentation and further use involve also
computer science and especially MIR are further applica-
tion areas. When designing the ecosystem around MPM,
the goal was to reduce the barriers to adoption and produc-
tive use of MPM as much as possible.

4.1 Supporting Work in XML Editors

In the domain of digital music editing, working with XML
code and dedicated editors such as Oxygen XML is com-
mon practice and requires a detailed format documentation
and guidelines. This work is supported by convenience
tools, namely code completion and live validation. Both
require an appropriately comprehensive schema definition.
The MPM schema including its documentation was speci-
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Figure 1. Screenshot of the meicoApp. From the MEI data (left, green) MSM (dark blue) and MPM (light blue) are
exported. The MPM here contains one performance, “MEI export performance”, from which the MSM can be rendered
“to Expressive MIDI” (top, yellow). The MIDI data is rendered to audio (top right, red). At the bottom right, two external
soundfonts are included, the left one is activated.

fied in the TEI ODD 2 meta-language, which can be com-
piled into several other schema languages, such as RNG,
XSD and DTD. This provides a maximum compatibility
with all commonly used XML parsers. In addition to the
purely syntactic validation, several Schematron rules en-
able content-based validation. Typical errors, such as miss-
ing references, value range violations, and invalid value
combinations, are detected during validation and commu-
nicated by meaningful warning and error messages.

The documentation is supplemented by several sample
encodings, i.e. example projects with which users can ex-
periment. A continuous integration and custom-developed
transformer translate updates to the MPM schema immedi-
ately into the website (documentation and guidelines) and
release assets (incl. an RNG and XSD compilation). The
format is published under the open source licenses BSD-2
and CC-BY-4.0 and is open to future extensions from the
communities.

4.2 Software Development Tools

The basis for efficient software development for a data for-
mat and its integration into existing software is the Appli-
cation Programming Interface (API). The API enables con-
venient data access and processing (e.g. by means of prede-
fined data structures and functionality for parsing, creating,
processing and storing) without the application developers
having to implement the underlying XML processing or
mathematical models themselves. Thus, the API also rep-
resents a reference implementation. The MPM API was

2
https://wiki.tei-c.org/index.php/ODD, last access:

July 2021.

implemented in Java as part of the converter framework
meico 3 [25]. Meico is an established conversion tool in
the music encoding community and comes with some fea-
tures that mesh well with MPM-related functionality.

In particular, meico offers the currently most compre-
hensive MEI-to-MIDI export. Therefore, it utilizes a pro-
prietary intermediate format, Musical Sequence Markup
(MSM). Its basic structure (global/part, header/dated) par-
allels that of MPM. In MSM all note information (without
performance data) is represented. Meico’s MEI-to-MSM
export was extended to convert all performance instruc-
tions to MPM data. MIDI data can also be converted to
MSM. Thus, via MSM, MPM can already be used in tan-
dem with MEI, MIDI and MSM itself.

Furthermore, a full-featured performance rendering en-
gine has been integrated into the MPM API. This al-
lows the MPM performances to be applied to MSM-
encoded scores and rendered into expressive MIDI se-
quences. These can then be played directly in meico, ex-
ported as MIDI files and converted to audio (WAV, MP3).
For MIDI playback and MIDI-to-audio rendering, third-
party soundfonts (SF2, DLS) can be used or MIDI play-
back can be passed on to an external MIDI port. Thus,
further processing (e.g. by external synthesizers) and mu-
sic production in a DAW are immediately feasible.

However, meico is not only a programming library, but
also provides two application programs in the form of the
meicoApp. The command line application is integrated by
some users into their XML editor as an external call (e.g.
for proof-listening of music encodings) and is also used

3
https://github.com/cemfi/meico, last access: July 2021.
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in scripting environments (e.g. in Python programs). The
graphical application is used as a stand-alone tool and of-
fers more interaction possibilities as well as more versatile
conversion paths, see figure 1. The meico library is also
the core component of the following software tool.

4.3 Graphical Editor and Analysis Tool

For end users, work with MPM should not be restricted to
XML editors, even if this is principally always possible.
Rather, productive authoring and analysis work is to be fa-
cilitated by an efficient, graphical user interface. This mo-
tivated the development of the MPM Toolbox application.
We followed a rather traditional user interface engineering
process. First, paper mockups were used to try out differ-
ent interface approaches and play through usage scenarios.
This was complemented by experiences and feedback from
a workshop with musicologists and editors during Edirom
Summer School 2020. This resulted in the following ob-
servations and corresponding design decisions.

1. A schematic representation of the MPM data must
be present for navigation purposes, and it must also
be fully interactive. But the visual focus is on the
graphical score.

2. The MSM data, i.e. the pure note information, is
needed for matching time indications, voice assign-
ments and references, so it must also be represented.
However, since the focus is on work in the perfor-
mance domain, the MSM does not need to be inter-
active, nor should it take up much display space.

3. The interaction is to be focused on the score display.
This is where new performance instructions are cre-
ated and performance instructions that already exist
in the MPM are positioned. This is done in two dif-
ferent application contexts, (a) the free creation of
performances (creative use case) and (b) the analy-
sis of performance scores, i.e. the interpretation of
signs in the autograph (analytical use case).

4. Not all attributes of performance instructions can
and should be visualized in the score, as this quickly
overloads the display space and impairs readability.
Consequently, dedicated editor dialogs are needed
for creating and editing them, which may employ
their own visualizations to illustrate the values set.

5. The visual placement of performance instructions in
the score is of limited value with respect to their as-
signment to musical parts and temporal placement.
For instance, an instruction may clearly precede a
note, but apply only from that note on.

In accordance with the first two points, the MSM and MPM
data were each implemented in a tree visualization, placed
fairly slim on the left and right border of the application
window. These interface widgets can be both minimized
and detached from the layout, allowing users to freely
place them and arrange their workspace. The MPM tree
is fully interactive. So it is possible to do all work directly

in it. For some types of information, such as style defini-
tions, there is no visual representation in the musical no-
tation practice anyway. These can only be located in the
MPM tree.

The third point presented a particular challenge. While
a generated score image would suffice for the creative use
case (3a), the analytical use case (3b) involves working
with a preexisting score image. In addition, the initial plan
was only to generate the score image from MEI data using
the Verovio music engraving software [26], which practi-
cally excludes some other input sources which MPM Tool-
box should also support. Therefore, it was decided that
the score image will be imported as image data (currently
supported are JPG, GIF, PNG, BMP, and PDF). Those can
be generated from all other formats with widely available
tools and converters. Thus, the MPM Toolbox satisfies
both use cases (3a and b) equally. A built-in score ren-
dering solution may, nonetheless, be added later on.

For interaction in the image space, it is necessary to
know the positions of notes and performance instructions
and to link them to the MSM and MPM data. This is
an opportunity to incorporate Optical Music Recognition
(OMR) techniques. Depending on the condition of the au-
tograph (clean print versus handwritten manuscripts with
many additional markings), the recognition performance
will be of different quality. Therefore, it must always be
possible to perform or correct this work manually. Con-
sequently, this manual linking was implemented with an
efficient input procedure. It automatically iterates over the
notes (MSM) and plays them while the user marks their
position in the score image; the same for MPM. An OMR
solution remains open as a future extension or third party
contribution.

The linking of the note and performance information in
the image space creates a point cloud. If, in the further
course, performance instructions are created or linked in
the image space, these can be set in relation to the sur-
rounding elements and added to the point cloud. In do-
ing so, voice assignment and time position are read from
the surrounding linked elements and set as default values.
This eliminates the need for additional user input in most
cases. According to point 5, however, this can nonetheless
be changed in the editor dialog.

On large and complex score page, such a point cloud
can become very extensive. During interactions in the
score, the points located in the local environment of the
cursor must regularly be determined. To ensure smooth
interaction, the point cloud must be organized in an effi-
cient data structure. For this purpose, different standard
approaches (such as BSP Trees and Quadtrees) were ana-
lyzed. A peculiarity of the application context here is that
interactions mostly take place in a local environment, are
not scattered “chaotically” across the music sheet, but of-
ten even follow the musical sequence. The next interaction
is very likely to occur near the position of the previous.
An efficient data structure for this type of interaction is the
Orthant Neighborhood Graph [27], which was eventually
implemented in the MPM Toolbox.
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Figure 2. Screenshot of the MPM Toolbox. The green note overlays link notes to pixel positions. The blue squares link
performance instructions. In the dynamics editor dialog the course of a crescendo is specified.

According to point 4, it is not practical to display all the
information of the performance instructions directly in the
score, since it is usually printed very compactly anyway
and the remaining space is important for readability. For
this reason, the annotations created with MPM Toolbox
are implemented as semi-transparent and compact over-
lays. The detailed settings of the performance instructions
are done in separate editor dialogs. Each of these dialogs
not only provides the respective input options and visual-
izations, but also actively ensures that the input is valid,
i.e. validates against the MPM schema. Numerous smaller
convenience functions support the user in this process.

Of course, the created performances can also be listened
to via the built-in player widget, sent to an external MIDI
port (synthesizer, DAW) and exported as expressive MIDI
and audio file. The player widget further allows the play-
back of audio recordings. Both, performance rendering
and audio recording can even be played synchronously.
This feature serves the purpose of listening analysis. A
performance description can be iteratively developed and
adjusted to approximate the listening impressions of the
audio recording.

Figure 2 shows a screenshot of MPM Toolbox’s graph-
ical user interface. Source code and executable release as-
sets are published under the GNU GPL 3.0 license. 4

4
https://github.com/axelberndt/MPM-Toolbox, last

access: July 2021.

5. SUMMARY AND NEXT STEPS

MPM allows for the creation of highly detailed music per-
formances. The format is accompanied by a comprehen-
sive schema definition, documentation and sample encod-
ings. An API, including converter and performance render-
ing engine, provides the basis for efficient software devel-
opment around MPM. For example, the API is already in
use as a generator for expressive music performances. For
productive authoring and analysis work apart from XML
editors, the graphical editor software MPM Toolbox was
developed.

As a supplement to the MPM documentation, as well as
a practical introduction to working with MPM Toolbox, a
tutorial project is currently being conceived. In addition,
MPM Toolbox will be supplemented by a comprehensive
module for performance analyses in audio recordings. Op-
tions for interoparability with Sonic Visualizer are being
investigated, e.g. import of onset detection data.

We offer introductory workshops for users and collect
feedback on possible enhancements from the community
regarding new performance features for MPM as well as
its tools. The MPM project is open source and welcomes
suggestions and contributions from the communities.
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ABSTRACT

Sections of guitar parts in pop/rock songs are com-
monly described by functional terms including for exam-
ple rhythm guitar, lead guitar, solo or riff. At a low level,
these terms generally involve textural properties, for ex-
ample whether the guitar tends to play chords or single
notes. At a higher level, they indicate the function the gui-
tar is playing relative to other instruments of the ensemble,
for example whether the guitar is accompanying in back-
ground, or if it is intended to play a part in the foreground.
Automatic labelling of instrumental function has various
potential applications including the creation of consistent
datasets dedicated to the training of generative models that
focus on a particular function. In this paper, we propose
a computational method to identify rhythm guitar sections
in symbolic tablatures. We define rhythm guitar as sections
that aim at making the listener perceive the chord progres-
sion that characterizes the harmony part of the song. A set
of 31 high level features is proposed to predict if a bar in a
tablature should be labeled as rhythm guitar or not. These
features are used by an LSTM classifier which yields to
a F1 score of 0.95 on a dataset of 102 guitar tablatures
with manual function annotations. Manual annotations and
computed feature vectors are publicly released.

1. INTRODUCTION

1.1 Guitar tablatures

As many multi-stringed instruments, the guitar allows to
play a same note in multiple locations on the neck. The
location where the note is played, commonly designated
by the term position, is specified by the combination of a
string name and a fret number. For example, the pitch A3
can be played at fret 2 of the G string or at fret 7 of the D
string. Guitar tablatures, as illustrated in Figure 1, aim at
disambiguating these positions by indicating the string/fret
combinations on which notes must be played. The choice

© David Régnier, Nicolas Martin, Louis Bigo. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: David Régnier, Nicolas Martin, Louis Bigo, “Identi-
fication of rhythm guitar sections in symbolic tablatures”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

of the positions relates to playability and to some extent to
the guitarist playing style [1].

1.2 Functions in guitar tablatures

Similarly to other instruments like the piano, the role of
the guitar in a pop/rock ensemble can potentially be associ-
ated with different functions over a song. Most of the time,
these functions can be gathered within two categories be-
ing accompaniment and melody, generally designated by
the terms rhythm guitar and lead guitar. Although not
central in this paper and less frequent in the context of a
pop/rock ensemble, it is worth noting that the guitar, as
the piano, can simultaneously perform accompaniment and
melody. The piano will typically split the two functions
into left hand and right hand while the guitar will gener-
ally use a specific playing technique called finger picking.

A more general way to describe the function of the gui-
tar is to estimate if it is thought to be perceived in the back-
ground or in the foreground of the song. Accompaniment
parts will generally fit the first category as they often aim
at supporting a main musical part like a singing part or an
instrumental solo. Although melodic parts are generally
thought to be perceived in the foreground, it is not uncom-
mon for a lead guitarist to play an accompanying melody,
possibly improvised, during singing sections. Examples
of this behavior include the verses of the song What’s Up
(4 Non Blondes) or the bridge of the song Cryin’ (Aero-
smith).

Rhythm guitar sections in the pop/rock repertoire
mostly consist in (repetitively) realizing a chord sequence.
Figure 1a illustrates two bars of rhythm guitar. In contrast,
lead guitar appears to be less well-defined as it can be al-
ternately associated with solo parts, as in Figure 1b, riffs
and licks, or hybrid accompanying parts not directly related
to the underlying chord sequence. In this work, we focus
on the detection of rhythm guitar sections. Rhythm guitar
sections are defined as guitar sections that aim at making
the listener perceive the chord progression that character-
izes the harmony part of the song. In pop/rock style, such
chord progressions can often be indicated independently as
chord symbols accompanying melodies and lyrics.

Although rhythm guitar looks more easily definable
than lead guitar, it is common to find ambiguous guitar

58



(a) Extract of a rhythm guitar section from Space Oddity (David Bowie)

(b) Extract of a solo section from Another Brick In The Wall (Pink Floyd)

(c) An ambiguous extract from Sultans of Swing (Dire Straits)

Figure 1. Three guitar tablature extracts.

sections standing at the border of what rhythm guitar could
be. Figure 1c illustrates this ambiguity with an extract of
Sultans of Swing (Dire Straits). A rock song can typically
begin with a guitar riff played as a foreground part, which
is then repeated as a background accompaniment of a vocal
verse. One example of this is the famous introducing riff of
the song Highway to Hell (AC/DC) which switches from
foreground to background as the vocal part begins. Am-
biguities can also appear with punctual arrangement parts
that are generally added during studio recording sessions.

The way ambiguous sections are labelled should be
carefully considered if this labelling aims at separating a
sub-corpus intended to train a rhythm guitar generative
model. On one hand, a strict labelling would reach to a
consistent sub-corpus with limited variety. On the other
hand, a more flexible labelling would reach to a sparser
sub-corpus but richer in variety. This aspect will be further
discussed in Section 4.3.

1.3 Applications in MIR

Modeling instrumental function contributes to improve
various applications in Music Information Retrieval in-
cluding computational music analysis and generation.
Identifying textural features that contribute to a function
improves our knowledge in music theory and our under-
standing of musical style. Systematic studies bring our at-
tention on unexpected and ambiguous cases which eventu-
ally encourage reconsiderations of common definitions.

Automatic function identification can also guide the di-
vision of large corpora into function-specific sub-corpora
that will facilitate the effective training of machine learn-
ing models. For instance, a model trained exclusively on

rhythm guitar sections might be more performant in gener-
ating, analyzing, or transcribing such sections. In contrast,
studying guitar playing techniques like bends, hammer-
on/pull-off, and tapping will benefit from being done on
a corpus of guitar solos as they appear predominantly in
these sections.

2. RELATED WORK

2.1 Guitar tablature modelling

MIR research on guitar tablatures predominantly relates to
automatic fingering, style analysis, and generation.

The automatic fingering task results from the fact that a
same note can generally be played at multiple locations on
the neck of the guitar. This task therefore consists in es-
timating a string/fret combination for each note of a score
in order to optimize its playability. The fingering prob-
lem has been approached with various methods including
HMM from audio signal [2] or symbolic scores [3], and
visual detection [4].

Guitar tablature automatic analysis includes the detec-
tion in audio recordings of specific playing techniques
(bends, hammer-on, pull-off, etc.) [5, 6]. Analysis of au-
dio guitar recordings also include automatic transcription
of tablatures [7] based on the training of CNNs on gui-
tar recording spectrograms, that tackle both the pitch and
fingering estimation. Automatic analysis of symbolic tab-
latures include guitarist style modeling with Markov mod-
els [1] or directed graphs [8], as well as the study of pre-
dominant fretboard positions [9].

Guitar tablature generation has been approached with
various methods including HMMs to generate guitar ar-
rangements from audio polyphonic music [10], integer
programming to generate blues solos [11], and transformer
neural networks to generate fingerpicking tablatures [12].
Of particular relevance in the context of this research, gui-
tar tablature generation has also been limited rhythm guitar
and lead guitar [13, 14] with probabilistic methods.

2.2 Musical function identification

The complementarity between rhythm and lead guitar sec-
tions in pop/rock tablatures can be generalized to the no-
tion of musical function in musical scores. Identifying
whether a section of a part corresponds to background ac-
companiment or to foreground melody relates to texture
modeling [15,16] which has been rarely addressed in sym-
bolic scores so far. In audio recordings however, a number
of works has been achieved to detect solo sections [17–19],
which can employ similar techniques as vocal activity de-
tection [20]. Solo detection contributes to the task of struc-
ture estimation for which a number of research has been
done either on symbolic [21] and audio data [22].

Particularly related to this research, guitar playing
modes (bass lines, chord comping and solo melody impro-
visations) can be detected in audio recordings with signal
processing features [23] but to the best of our knowledge,
there is no research detecting guitar-playing modes from
symbolic tablatures.
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3. HIGH LEVEL FEATURES

Rhythm guitar is considered in this work as a category of
tablature sections that aim at making the listener perceive
the chord progression underlying to the song. This section
presents a set of 31 features that are designed and evaluated
to detect such a behavior.

3.1 Bar-level labels

Although the role of a guitarist in a pop/rock song can
strictly be limited to rhythm or lead guitar, it is common
to see guitar tablatures switching between rhythm parts and
lead parts over a same song. A number of bands have a sin-
gle guitarist who alternates during a song between accom-
panying rhythm parts, and riff /solo lead parts. A global
labelling of guitar tablatures as rhythm or lead might there-
fore lead to approximations and wrong interpretations. In
contrast, trying to characterize the role of the guitar at
the beat level would require unnecessary complexity as
these functional labels tend to span over much larger time
frames. In this work, we propose to assign rhythm guitar
labels to bars of a tablature.

3.2 High level features

The 31 high level features described in this section and
summarized in Table 1 are intended to be computed at each
bar from raw tablature informations. These informations
include note pitches, onsets, durations, string and fret indi-
cations, as well as occurrences of some technical playing
modes specific to the guitar. Note that some features may
derive from combinations of others. For example, the pitch
of a note can be deduced from its string and fret value.

3.2.1 Note-related features

Note related features include the number of notes in the
bar, as well as the presence of single notes (i.e., not played
simultaneously to any other). Pitch-related features in-
clude mean/min/max pitch, pitch ambitus and pitch vari-
ety (i.e., number of distinct pitches). Pitch interval related
features include min/max interval found between 2 succes-
sive single notes and interval variety. Finally we added the
variety of note durations found in the bar.

3.2.2 Chord-related features

A chord is considered here as a set of at least two notes that
are plucked simultaneously. Note that arpeggiated chords
are generally notated in guitar tablatures as successive sin-
gle notes labeled with a let-ring indication. Arpeggios are
therefore not included in this definition of chords.

Chord related features include the presence of chords,
the number of distinct chords and more specifically the
number of n-note chords with n in [2..6]. Two additional
features indicate wether a triad (either minor or major) or a
fifth interval can be formed with the whole set of notes in
the bar.

note features chord features tab features
# notes (7e+2) chords⇤ (2e+3) min fret (2e+3)

single notes⇤ (1e+3) # 2-chords (1e+1) max fret (2e+3)

min pitch (3e+3) # 3-chords (3e+2) mean fret (2e+3)

max pitch (8e+2) # 4-chords (5e+2) min string (3e+3)

mean pitch (2e+3) # 5-chords (2e+2) max string (4e0)

pitch ambitus (1e+3) # 6-chords (9e+1) mean string (7e+2)

pitch variety (2e+3) chord variety (9e+2) l-r(s)⇤ (1e+2)

min interval (3e+1) m/M triad⇤ (5e+2) l-r (100%)⇤ (1e+2)

max interval (1e�1) fifth interval⇤ (1e+2) w.b(s)⇤ (6e0)

interval var (2e+2) bend(s)⇤ (2e+3)

duration var (1e+2) l-h vibr(s)⇤ (8e+2)

Table 1. Features describing tablature bars for the rhythm
guitar detection task. Binary features are indicated with
a ⇤. The importance of each feature in the dataset is indi-
cated by its ANOVA F-value.

3.2.3 Guitar tablature specific features

For each bar, the min/max/mean values of both frets and
string are computed. Playing technique features respec-
tively include the presence of at least one let-ring (l-r), vi-
brato, whammy bar (w.b) and bend indication. A feature
indicating whether the whole bar is covered by a let-ring
indication is added.

4. EXPERIMENTS

The detection of rhythm guitar bars is formulated as
a binary classification problem with two classes being
rhythm-guitar and other. Each bar is described by
the set of features presented above. A classifier is then
trained to predict the label of a bar from its feature values.

4.1 Annotated dataset

For this work, 102 guitar tablatures in the Guitar Pro for-
mat from the mySongBook corpus 1 were analyzed, anno-
tated and checked by two musicians experts in the pop/rock
style. Selected tablatures are mostly in the pop/rock style
with a few exceptions in swing/jazz. Only tablatures of six
strings with standard tuning (E3 A3 D4 G4 B4 E5) were
included in the annotated dataset. Among the 7487 non-
empty bars (60% of the whole dataset), 6051 (82%) were
labeled as RhythmGuitar (the other 1368 ones were
complementarily labeled as other). Different functions
were identified within this complementary class includ-
ing solos, licks, riffs and studio arrangements. No finger-
style tablatures were included as this playing style gener-
ally mixes both accompaniment and lead melody, making
its annotation ambiguous.

Raw tablatures are not available due to legal constraints.
However, computed features and manual annotations are
released 2 in an open licence .

4.2 Feature analysis

File parsing and feature computation were performed
with the music21 python library [24] using a dedicated

1 https://www.mysongbook.com/
2 http://algomus.fr/data/
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parser [25]. Figure 2 shows the value distribution of a se-
lection of features extracted from bars of both classes in
the annotated dataset. To facilitate the comparison of the
two classes, the histograms indicate the proportion of fea-
ture values in each class rather than the actual number of
bars. As expected, rhythm guitar and non-rhythm guitar
bars appear to be respectively correlated with the presence
of chords (80% of rhythm guitar bars) and the presence of
single notes (92% of non-rhythm guitar bars). Non-rhythm
guitar can also be distinguished by a lower number of notes
and distinct chords. Rhythm guitar bars can finally be dis-
tinguished by a lower register that appears in pitch, fret,
and string related features. An ANOVA Fischer test is per-
formed for each feature as an indication of its correlation
with the two classes. The results are displayed on Table 1.

4.3 Rhythm guitar prediction

4.3.1 Evaluation measure

The choice of an evaluation measure of the performance of
classifier that predicts whether a guitar tab bar is rhythm
guitar or not varies depending on the way the result of the
classification is intended to be used.

On one hand, maximizing precision penalizes false pos-
itives and potentially leads to a consistent rhythm guitar
sub-corpus although possibly small and uniform. Such a
corpus would facilitate the training of a model that is ex-
pected to produce typical, but not necessary surprising,
rhythm guitar tablatures. On the other hand, maximiz-
ing recall penalizes false negatives and potentially leads
to a larger sub-corpus with more diversity although more
sparse and including more debatable rhythm guitar exam-
ples. Such a corpus would be appropriate for the training
of a model that aims at generating creative rhythm guitar
tablatures, at the expense of outputs that possibly diverge
from the common definition of rhythm guitar. Note that
for a classifier that outputs a probability (like neural net-
works) moving the decision threshold, that is generally set
by default to 0.5, could also be a way to balance between
consistency and variety.

From an analysis point of view, improving our compre-
hension of what makes a rhythm guitar bar requires to take
into account both false negatives and false positives, which
could be achieved by using accuracy. As the dataset is un-
balanced, we propose to evaluate the F1 score which is de-
fined by the harmonic mean of precision and recall.

4.3.2 Leave-one-piece-out evaluation

Training a machine learning model is often performed by
splitting the dataset into a training set and a validation set.
As bars can highly repeat, in particular in rhythm guitar
sections, all bars belonging to the same piece should be-
long to the same subset to avoid overfitting. The small
size of our dataset lets us adopt a leave-one-piece-out val-
idation process: given the dataset of n pieces, the model is
trained on n�1 pieces and then evaluated on the remaining
one. The process is repeated for the n pieces and the eval-
uation is therefore performed on the whole set of pieces
of the dataset. The leave-one-piece-out method allows to

r.g precision r.g recall F1 score
chords/single notes presence 0.86 0.88 0.87

note + chord features 0.95 0.94 0.94
tab features 0.95 0.93 0.94
all features 0.96 0.94 0.95

Table 2. Precision, recall and F1 score obtained for the
detection of rhythm guitar (r.g) with a LSTM trained on
different set of features.

maximize the quantity of training datas and evaluate the
model on the whole dataset.

Different classifiers were tested including logistic re-
gression, SVM, decision tree and random forest thanks to
the scikit-learn framework [26]. A Long Short-Term Mem-
ory model (LSTM) implemented with the Keras frame-
work [27] happened to provide the best results. The LSTM
has 2 hidden layers of 75 and 10 units. An early stop-
ping process was used to identify the optimal number of
12 epochs. A batch size of 32 was used and bars were
presented to the model by subsequences of 5. It is not sur-
prising to see a recurrent model outperforming standard
classifiers given that bars of the same label are likely to oc-
cur consecutively in the piece as outlined in section 5. The
code is publicly provided 3 .

5. RESULTS AND DISCUSSIONS

Different sets of features among those presented in Sec-
tion 3.2 were tested to evaluate the model. We first con-
sider a baseline model that only looks at the presence of
chords and single notes in each bar. We then evaluate score
based features (first two columns of Table 1). We then
evaluate tablature based features only (third column of Ta-
ble 1). Finally, we evaluate a model taking into account
the whole set of features. In addition to F1 score, Table 2
displays the precision and the recall on rhythm guitar label
predictions.

The LSTM baseline model achieves a F1 score of 0.87.
The LSTM model combining the whole set of features
reaches a F1 score of 0.95, which outperforms other tested
models including logistic regression (F1=0.93), decision
tree (F1=0,91) and random forest (F1=0,93). Although
disjoint, the score feature set and the tab feature set in-
terestingly achieve similar performance. This can partly
be explained by the fact that pitch informations in score
features can be derived from string+fret combinations in
tab features. It is interesting to observe that string/fret
and playing technics indications seem to counterbalance
the absence of chord related informations, although pre-
sumably crucial for rhythm guitar detection. It also worth
to note that both these two feature sets almost yield to the
score obtained with the whole set of features which means
that none of them much improves the other. In the follow-
ing, we present wrong predictions obtained with the model
trained with the whole set of features.

3 https://gitlab.com/lbigo/
rhythm-guitar-detection
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Figure 2. Disitribution of some features on bars annotated with label Rhythm guitar (blue) and other (green).

Figure 3 displays a comparison between reference an-
notations (top line) and predictions (bottom line) for a se-
lection of tablatures of the corpus. Although the model
succeeds in identifying large scale sections, it can still pre-
dict unlikely short sections, sometimes for one unique bar.
For example, the model wrongly predicts unlikely short
rhythm guitar sections in the song Sultans of Swing (Dire
Straits). Similarly, it wrongly predicts unlikely short non-
rhythm guitar sections in the songs Stairway To Heaven
(Led Zeppelin) and You Only Live Once (The Strokes) as
discussed below.

Figure 4 illustrates three examples of false negatives,
i.e. rhythm guitar bars predicted as being non-rhythm gui-
tar bars. Examples 4a and 4b are extracted from songs You
Only Live Once (The Strokes) and Stairway To Heaven
(Led Zeppelin). In these two examples, only the middle
bar is wrongly estimated as non-rhythm guitar. Both these
bars have the particularity to be the final bar of a musical
phrase, leading to a new phrase beginning on the next bar.
In these cases, the rhythm guitar punctually plays a short
melodic lick often referred as a fill, which is not identified
as rhythm guitar by the model. This kind of wrong predic-
tions could probably be avoided by improving the faculty
of the model to capture the tendency of adjacent bars to

have the same label and avoid the prediction of isolated la-
bels, for example using a bidirectional LSTM. Example 4c
is extracted from the song When The Sun Goes Down (Ar-
tic Monkeys). In this example, the guitar starts to play bass
single notes and produces a melodic line which is wrongly
estimated by the model as non-rhythm guitar. This behav-
ior could arguably be qualified as being at the edge of the
common definition of rhythm guitar and it would be diffi-
cult to avoid this kind of wrong predictions without look-
ing at the other tracks of the song (in particular the singing
part), which is out of the scope of this work.

Figure 5 illustrates three examples of false positives,
i.e. non-rhythm guitar bars predicted as rhythm guitar
bars. Example 5a illustrates an extract of a solo part of
the song Hotel California (Eagles) where the guitar repet-
itively plays arpegios of the underlying chord sequence.
Altghough the played notes belong to a rather high regis-
ter, the model is probably misled by the repetiveness, low
variety and the presence of perfect triad as these features
are often correlated with rhythm guitar sections. Exam-
ple 5b consists in a short interlude between a solo section
and the bridge of the song La Grange (ZZ Top). In this
case, the function of the guitar seems to consist in doing a
transition between two sections and could hardly be unam-
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3 Doors Down - KRYPTONITE (E.Guitar III)

4 Non Blondes - WHAT’S UP (E.Guitar I)

Arctic Monkeys - WHEN THE SUN GOES DOWN (E.Guitar I)

Bob Marley - NO WOMAN NO CRY (E.Guitar)

Dire Straits - Sultans of Swing (E.Guitar I)

Django Reinhardt - MINOR SWING (A.Guitar I)

The Eagles - Hotel California (E.Guitar VIII)

Led Zeppelin - Stairway to Heaven (E. Guitar II)

Metallica - NOTHING ELSE MATTERS (E.Guitar II)

The Strokes - YOU ONLY LIVE ONCE (E.Guitar II)

Figure 3. Comparison of manual annotations (top lines)
and predictions (bottom lines) of a some tablatures of the
dataset. Sections labelled as rhythm guitar are displayed
in blue. Other sections are displayed in green. Empty bars
are left in gray.

r.g measures r.g sections mean r.g
section length

isolated
r.g measures

reference 6051 101 77 0
prediction 5923 223 34 44

Table 3. Comparison of consecutiveness of annotated and
predicted rhythm guitar (r.g) bars.

biguously described as rhythm guitar or not. Example 5c
is extracted from a solo section of the song Minor Swing
(Django Reinhardt). The model is clearly misled by the
sudden occurrence of chords here. As it is often the case
gypsy jazz, the guitar punctually includes series of chords
within a solo, that do not necessarily precisely feet the un-
derlying chord sequence. This behavior typically lasts a
few bars before the guitar goes back to melody.

Table 3 illustrates the difficulty of the model to recon-
struct continuous rhythm guitar sections. Although the
proportion of rhythm guitar bars predicted by the model
is close to the one of the reference, these bars are grouped
in smaller and more numerous sections. The model partic-
ularly tends to detect isolated rhythm guitar bars although
the reference annotation do not include any of them.

(a) You Only Live Once (The Strokes)

(b) Stairway To Heaven (Led Zeppelin)

(c) When The Sun Goes Down (Artic Monkeys)

Figure 4. Examples of false negatives. The second bar is
wrongly predicted as non-rhythm guitar on each example.

(a) Hotel Califronia (Eagles)

(b) La Grange (ZZ Top)

(c) Minor Swing (Django Reinhardt)

Figure 5. Examples of false positives. Second and third
bars are wrongly predicted as rhythm guitar.

6. CONCLUSIONS

This study improved our understanding of which features
contribute to a rhythm guitar section. We believe that this
approach can be used to separate a corpus of pop/rock gui-
tar tablatures into consistent sub-corpora dedicated to tab-
lature generation limited to a specific function.

The method presented here could benefit from several
improvements. A finer tuning of the LSTM, or the use
of a bidirectional LSTM, would probably better capture
the tendency of adjacent bars to have the same label and
therefore to limit isolated predictions which appear to be
very unlikely across the corpus. Futur works also include
adding features that look at more structural aspects of the
song like bar location and activity of other tacks, in par-
ticular singing tracks as rhythm guitar if often intended to
accompany singing.
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ABSTRACT

Audio-to-lyrics alignment has become an increasingly
active research task in MIR, supported by the emer-
gence of several open-source datasets of audio recordings
with word-level lyrics annotations. However, there are
still a number of open problems, such as a lack of ro-
bustness in the face of severe duration mismatches be-
tween audio and lyrics representation; a certain degree of
language-specificity caused by acoustic differences across
languages; and the fact that most successful methods in the
field are not suited to work in real-time. Real-time lyrics
alignment (tracking) would have many useful applications,
such as fully automated subtitle display in live concerts
and opera. In this work, we describe the first real-time-
capable audio-to-lyrics alignment pipeline that is able to
robustly track the lyrics of different languages, without ad-
ditional language information. The proposed model pre-
dicts, for each audio frame, a probability vector over (Eu-
ropean) phoneme classes, using a very small temporal con-
text, and aligns this vector with a phoneme posteriogram
matrix computed beforehand from another recording of the
same work, which serves as a reference and a proxy to the
written-out lyrics. We evaluate our system’s tracking ac-
curacy on the challenging genre of classical opera. Finally,
robustness to out-of-training languages is demonstrated in
an experiment on Jingju (Beijing opera).

1. INTRODUCTION

Audio-to-lyrics alignment aims at synchronizing an audio
recording with its corresponding lyrics, in order to retrieve
the position of spoken or sung textual units in the record-
ing. The task has been widely researched in the context
of speech data [1, 2], and recently there has also been very
promising work on polyphonic music [3–6], even on multi-
lingual alignment in a single framework [7]. Robust align-
ment methods would be useful for applications such as
automatic karaoke captioning [8], music or video cutting
based on the lyrics, or automatic subtitling in music videos.

© C. Brazier, and G. Widmer. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: C. Brazier, and G. Widmer, “On-Line Audio-to-Lyrics Alignment
Based on a Reference Performance”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

Other tasks in Music Information Retrieval (MIR), such as
cover detection or score following, could also benefit.

All proposed audio-to-lyrics alignment methods are
composed of an acoustic model, classifying each audio
frame into a set of textual units, and an alignment proce-
dure to obtain the desired lyrics timings. Previous works
in the field [6, 7] use source separation systems as a pre-
processing step to extract the singing vocals beforehand,
even if in [5], the authors mention that the vocal extraction
algorithms can add artifacts in the vocals. In [5], the au-
thors improved their aligners by modeling vowel durations
in their lexicons [9], which permits taking into account cer-
tain pronunciation aspects. Also, in [6], the alignment is
done in several passes, to first spot keyword positions in
the audio, and then consider several smaller alignments in
between the keywords.

The challenging question of real-time audio-to-lyrics
alignment remains open and has not yet been tackled in
the literature. This type of application would have great
value, especially in live concerts and operas where fully
automated subtitle displays could directly help the audi-
ence in following the live story. However, due to the archi-
tecture of existing acoustic models, the types of alignment
algorithms conventionally used, and the additional steps
detailed above, previous methods are not suited to work in
real-time.

In this work, we propose a first audio-to-lyrics align-
ment pipeline that can operate in real-time, 1 in a language-
independent way. Instead of using a pronunciation dictio-
nary to translate the lyrics into phonemes, we propose to
use another recording of the target piece as a reference
and proxy to the lyrics. 2 This method has been widely
used in the domain of score following, for robust tracking
during live orchestra [10] or opera [11] performances. To
this end, we first design an acoustic model that predicts a
frame-wise probability distribution over a pre-defined set
of phonemes. Each prediction is based on a very limited
temporal window, using a future context of 280 ms which
defines the delay of our system. Then, saving all the pre-
dictions in a posteriogram matrix, we perform an OnLine
Time Warping (OLTW) alignment between this (incremen-

1 We will not actually measure runtimes in this paper; the important
aspect of our method is that it solves the problem in an on-line fashion,
without access to future information, and that we can quantify its theoret-
ical latency, based on how it processes the input data.

2 Of course, this will only be practicable in certain domains, where
reference recordings are available.
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tally computed) posteriogram and the one from another
performance that has been generated beforehand.

In this paper, after presenting acoustic models and
alignment strategies of existing works in Section 2, we will
present our on-line alignment system in Section 3. The ro-
bustness and accuracy of our tracker will be evaluated on
two distinct datasets of ‘art’ music (opera) to be described
in Section 4. Results and a discussion will be given in Sec-
tion 5. Finally, our conclusions and open questions will be
presented in Section 6.

2. RELATED WORK

Audio-to-lyrics alignment is an active research topic that
is constantly stimulated by a yearly musical challenge 3

and the appearance of new open-source training datasets
such as DALI [12] or DAMP [13]. Recent works follow
a common pipeline. First, an acoustic model is trained to
extract from the audio signal a ‘posteriogram’ that repre-
sents the frame-wise probability distribution over textual
units through time. On the lyrics side, the text is first trans-
lated into a sequence of textual units that correspond to the
classes of the trained acoustic model. Finally, an align-
ment algorithm is applied between the posteriogram and
the lyrics’ representation, to retrieve textual unit timings
in the audio. In this section, we present existing acoustic
models, detail the alignment process, and show their limi-
tations to operate in real-time.

2.1 Acoustic Model

Acoustic models are Deep Neural Networks whose task
is to classify audio inputs into a sequence of probabilities
over a set of predefined textual units representing the lyrics
present in the audio. They are trained with datasets that
include a multi-modal mapping between lyrics and audio.
Due to the difficulty (or near impossibility) of obtaining
ground truth frame-level annotations, acoustic models are
generally trained with weak annotations, at the sentence
or word level, where the precise alignment between audio
frames and lyrics remains unknown. Inspired by Speech
Recognition [14], models can be trained in different ways.
A first strategy, used in [5, 6], fits a Gaussian Mixture
Model Hidden Markov Model (GMM-HMM) that force-
aligns the lyrics with the audio to generate phone labels
at the frame level. Then, the acoustic model is trained at
the sequence level with the Lattice-Free-Maximum Mutual
Information (LF-MMI) loss function [15], considering the
output of the GMM-HMM as ground truth. [6] combine
this objective with the Cross-Entropy (CE) loss to train the
model at the frame level. Another strategy, used in [4, 7],
aims at directly aligning the audio with the lyrics, using the
Connectionist Temporal Classification (CTC) loss [16].

Acoustic models classify each audio frame into a set of
textual units, which are intermediate lyrics representations.
In [4], the lyrics are represented as a sequence of charac-
ters, whereas [5–7] use a phoneme representation. In the

3 https://www.music-ir.org/mirex/wiki/2020:
Automatic_Lyrics-to-Audio_Alignment_Results

case of a single multilingual acoustic model, using a char-
acter representation is delicate. Even within one language,
a letter can be pronounced differently depending on the
context, which can confuse the acoustic model that tries
to classify audio frames into letters. The phoneme rep-
resentation is more consistent across different languages
and provides better performance since it is not language-
specific. In [7], the authors report better results in using
phonemes as the intermediate representation.

Acoustic models can employ different network archi-
tectures. Existing architectures have been designed to take
advantage of future information to improve the prediction
at each time step, which limits their use to offline applica-
tions. In [4], the authors build a Wave-U-Net that takes as
input windows of raw audio and encodes the information
at different scales. [5, 6] employ a combination of Con-
volutional Neural Networks and Time Delay Neural Net-
work [17] (TDNN-F) layers to model long temporal con-
text. [6] add CNN layers at the beginning of their model
to speed up the training, and a multi-head attention layer
at the end to help focusing on different parts of the input
for each prediction. Each layer is also responsible to ex-
tend the scope of input frames that have a direct influence
on the output frame prediction, that is, its Receptive Field
(RF). From the descriptions of these model architectures,
we derive RF values higher than 1.5s 4 , which is not suit-
able for a real-time application. Finally, the authors in [7]
use a Bidirectional Long Short-Term Memory (BLSTM) to
model the temporal dependencies, which combines back-
ward and forward information about the sequence for every
prediction. Another downside of this architecture is that it
is much slower to train [18].

2.2 Alignment

In the next step, an alignment algorithm is applied between
the posteriogram generated by the acoustic model and the
lyrics. To compare the two modalities, the lyrics must
first be translated into a sequence of textual units match-
ing with the classes of the trained acoustic model. This is
generally done by using open-source pronunciation dictio-
naries such as CMUdict 5 , for English only, or Phonem-
izer 6 , which covers several languages. Then, considering
the posteriogram as our observation sequence and the tar-
get lyrics, Viterbi-based forced alignment is applied to find
the most probable path in the posteriogram that generates
the lyrics. In [19], the author compares two trackers, one
based on Dynamic Time Warping (DTW) between pos-
teriograms and binary posteriograms generated from the
lyrics; and one based on the Viterbi algorithm between the
decoded lyrics from the posteriograms and their ground
truth. The author reports that the first approach, analogous

4 This rough calculation is only based on the respective stack of
TDNN layers and is much higher in practice. For a full descrip-
tion of their architectures, we refer the reader to the scripts avail-
able at respectively https://github.com/chitralekha18/
AutoLyrixAlign and https://github.com/emirdemirel/
ALTA.

5 https://github.com/cmusphinx/cmudict
6 https://github.com/bootphon/phonemizer
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to the audio-to-midi alignment task, does not perform as
well as the Viterbi-based method.

The alignment used in all the above works suffers from
two main limitations. First, the alignment algorithm works
on the full audio recording and the entire lyrics, which does
not permit real-time or on-line application. Second, the
phoneme-based approaches that yield the best alignment
accuracies [7] are dependent on text-to-phoneme tools to
translate the lyrics into a phoneme sequence, according to
the corresponding language. This limits the scope to lan-
guages that are covered by these tools.

3. PROPOSED SYSTEM

Our proposed on-line audio-to-lyrics alignment system is
illustrated in Figure 1. It is composed of an acoustic model
that classifies in real-time each audio frame into a set of
predefined phonemes. Then, instead of using the lyrics se-
quence for the alignment, we use a posteriogram matrix
that is computed beforehand from another recording of the
same work, which serves as a reference and a proxy to the
written-out lyrics. Finally, we apply an OLTW alignment
algorithm to align the two posteriograms, which permits
to retrieve the position of the lyrics in the live recording
with the help of manual lyrics annotations affixed to the
reference.

3.1 Acoustic Model

For our acoustic model, we select the CP-ResNet [20]
architecture that has already proven to perform well in
Acoustic Scene Classification [21] and in Emotion and
Theme Recognition in Music [22]. Based on the ResNet
architecture, the model stacks convolutional layers with
additional residual connections between layers. The CP-
ResNet is designed in such a way that the maximum time
receptive field (RF) is controlled by a hyper-parameter ⇢t
that defines the architecture of the model. For our experi-
ments, we fix ⇢t = 6, and our network architecture is given
in Table 1. The RF of the model can be recursively calcu-
lated with stride and kernel size of each layer (see equation
(1) in [20]). The corresponding RF is equal to 57 frames.
This means that each output vector is dependent on 57 in-
put frames centered around its time position, defining the
latency of our model to 28 frames. The architecture of the
deep network is specified in Table 1.

The acoustic model takes as input 80 Mel-Frequency
Cepstral Coefficients (MFCC) features extracted from the
audio signal, with a sampling rate of 16 kHz, and computed
with a window size of 20 ms and a hop size of 10 ms. It
corresponds to a model latency equal to 280 ms, which we

Layer Filters Kernel Stride Pad

Conv2d+BN+ReLU 64 5⇥5 2,2 1,1
Conv2d+BN+ReLU 64 3⇥3 1,1 1,1
Conv2d+BN+ReLU 64 1⇥1 1,1 1,1

MaxPool2d 1 2⇥2 2,2 0
Conv2d+BN+ReLU (x6) 64 3⇥3 1,1 1,1
Conv2d+BN+ReLU (x2) 128 3⇥1 1,1 1,0
Conv2d+BN+ReLU (x2) 128 1⇥1 1,1 0,0

Conv2d+BN+ReLU 60 1⇥1 1,1 0,0
LogSoftmax - - - -

Table 1. CP-Resnet with ⇢t = 6.

consider acceptable for real-time applications such as, e.g.,
opera subtitling.

The model outputs a vector every 40 ms. The vector is
of length 60 and includes 57 phonemes representing the
union of all phonemes present in the English, German,
French, Spanish and Italian languages, the space token,
the instrumental token, and the mandatory blank token for
CTC training. The five languages correspond to the most
dominant languages present in the DALI dataset [12], with
a bias towards English: the dataset includes 225 hours of
English songs, 20 hours of German, 10 hours of French,
10 hours of Spanish, and 10 hours of Italian, for a total
of 275 hours with hierarchical annotations at the sentence,
word, or note level. The dataset only covers Western musi-
cal genres. The choice of phoneme representation has been
motivated by the multilingual aspect of our work, permit-
ting to train a single model on different languages. The
instrumental token proves to be useful to label audio in-
puts that do not contain singing voice, especially during
silence or instrumental passages.

The model is trained on the DALI 1.0 [12] dataset with
a CTC objective, which permits us to train a model with
weak annotations between audio and lyrics. Each song in
the dataset is cut into windows of 20 seconds with a hop
size of 10 seconds, which limits the size of the input au-
dio feature sequence to a maximum length of 2000 frames.
Due to the real-time constraints, we do not extract the vo-
cals from the audio mixture but we train our model with
original mixtures of singing vocals and polyphonic music.
The corresponding labels of each window are extracted
with the word-level annotations provided by the dataset.
Each word starting and ending in the corresponding time
interval is part of the target annotation sequence of the cor-
responding audio window. Then, the character sequence is
transformed into a phoneme sequence using Phonemizer,
specifying the correct language (which is known at train-
ing time). Empty sequences are classified with the instru-
mental token. During training, the weights of the model
are tuned to maximize the probability of getting the cor-
rect label sequence (or all derivative sequences that have
inserted repetitions or blank symbols), given the input fea-
ture sequence.
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3.2 Alignment

The real-time alignment is realized between two audio per-
formances of the same work, both containing the same
sung lyrics. One performance, the target, corresponds to
the live performance we want to align to the lyrics. The
other performance, the reference, serves as a proxy to the
written-out lyrics. This strategy has two main advantages.
First, it is not dependent on a text-to-phoneme tool any-
more. The pronunciation of the lyrics is contained in the
reference recording and thus, can be decoded by the acous-
tic model. Even if the language of the target song is not
included in the training set, the acoustic model maps both
reference and target into the European phoneme set used
during training. Also, the duration of the phoneme units
is implicitly included in the reference recording, which
means we do not need complex, explicit duration modeling
techniques [9]. As a consequence, we can expect the refer-
ence posteriogram to be more similar to the posteriogram
of the target recording we want to align to the lyrics. How-
ever, the reference has to be linked to the lyrics beforehand,
generally with manual annotations at the word or sentence
level – but this really only depends on the requirements of
the specific application.

We use the OLTW [23] algorithm to align reference and
target posteriograms, skipping blank tokens in both ref-
erence and target sequence. The reference posteriogram
is generated beforehand, feeding only the reference audio
feature sequence to the acoustic model. Then, we generate
in real-time, also with our acoustic model, the probabil-
ity vectors representing the target posteriogram. For each
new vector, we calculate its cosine distance with a range of
8000 posteriogram vectors, centered around the expected
position in the reference posteriogram. This corresponds
to a context of 320 seconds. Then, we calculate recursively
the global cost, applying the standard DTW formula (equa-
tion (4.5) in [24]). The index representing the minimum of
the global cost represents the current time position in the
reference posteriogram.

4. DATA DESCRIPTION

In this work, we select opera recordings to evaluate our
system, for three reasons. First, live opera would be a di-
rect beneficiary of this tracking method, which would sup-
port a fully automatic subtitle display in the opera house
(or in a live streaming application). Secondly, opera lyrics
are challenging to track. Indeed, the genre of classical mu-
sic has been considered by far as the least intelligible genre
among eleven other genres [25]. Thus, evaluating our sys-
tem on opera data is a good robustness indicator. Finally,
opera is a musical genre that consistently produces identi-
cal works in several copies, with the change of the entire
set of artists. Popular datasets in audio-to-lyrics alignment
such as Hansen [26], Mauch [27] and Jamendo [4] do not
include duplicate entries. The two opera datasets currently
in our possession are described in Table 2.

The first is a subset of the Italian opera Don Giovanni by
W.A.Mozart that covers all the recitativo sections. These

Opera Name Duration # Annot.

Don Giovanni Ref_Karajan 0:30:03 639
Targ_Fischer 0:34:58 639
Targ_Manacorda 0:30:40 639

Jingju Ref_Jingju 1:53:53 3,975
Targ_Jingju 3:22:03 9,567

Table 2. Description of Don Giovanni and Jingju datasets.

have been manually annotated with bar lines, making it
possible for us to test the lyrics tracker by measuring how
precisely it aligns target and reference at bar boundaries.
Recitatives, an essential opera component of that period,
have recently been in the focus of opera score following
research [11], but trackers remain brittle. This is due to
the liberty that singers can take in terms of timing, singing
style, etc., and the fact that musical accompaniment is of-
ten improvised and played by different instruments in dif-
ferent recordings. Thus, it would be helpful to be able to
follow the performance based on the content of the sung
lyrics. As reference and proxy to the lyrics, we use a CD
recording conducted by Herbert von Karajan in 1985. The
two live targets are performances that were recorded at the
Vienna State Opera in 2018 and 2019 and conducted, re-
spectively, by Ádam Fischer and Antonello Manacorda,
with completely different casts of singers. For each perfor-
mance, the complete subsections comprising the recitativo
sections only, contain 639 manual bar-level annotations for
a duration of approximately 30 minutes.

The second dataset we will use is a subset of the Jingju
(Beijing Opera) A Capella Singing Audio Dataset [28,29].
It has been recorded in a teacher/student manner, collecting
a capella recordings from professional singers and singing
students, which permits to get pairs of recordings. It is
composed of two opera role types, dan and laosheng, and
includes 20 different reference melodic lines of each role
type with corresponding syllable-level annotations. The
dataset has initially been recorded to evaluate the singing
quality of the students compared to professional singers.
This implies that the recordings sometimes contain mis-
takes in the lyrics, and breaks in between sentences. For
each reference line, we count between 1 and 10 target ver-
sions that serve as target in our experiments.

5. EXPERIMENTS AND DISCUSSION

5.1 Acoustic Model Training

For our experiments, we train two distinct acoustic mod-
els, based on different training subsets of DALI dataset 7 .
The first model, 5lang, includes songs from five languages,
namely English, German, French, Spanish, and Italian.
The second model, english, uses only English data, the
most represented language in the dataset. The different

7 We also tried to train a third acoustic model only on Italian data,
which is the target language of the “Don Giovanni” opera. However, all
alignments diverged. We believe that this is mainly due to the low amount
of training Italian data, 10.8 h, in the DALI dataset, which is significantly
lower than the other proposed languages.
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Dataset Train songs (duration) Valid. songs (duration)

5lang 4027 (259.4 h) 149 (9.4 h)
english 3257 (210.8 h) 39 (2.6 h)

Table 3. Acoustic Model training and validation datasets.

train and validation splits were made publicly available
by [7] 8 and are described in Table 3. Each acoustic model
is trained with the CTC loss, a learning rate of 10�4, and
the ADAM optimizer.

5.2 Evaluation Metrics

As mentioned above, we evaluate our lyrics trackers by
quantifying the precision of the alignment between target
and reference that they produce. The granularity of our
ground truth annotations is at the bar level for Don Gio-
vanni and at the syllable level for the Jingju dataset. We
use the standard evaluation metrics from the field of score
following [30]. For each alignment, we report the mean
tracking error, in seconds, between timestamp annotations
and times detected by our aligner. We also report the pro-
portion of annotations that are detected with an error less
than 1s.

5.3 Lyrics Tracking in Opera

To evaluate our system, we compare its performance with
other following techniques working in real-time. To this
end, we select the State-Of-The-Art (SOTA) live opera
tracker that has recently proved to be robust to track, from
beginning to end, complete live “Don Giovanni” perfor-
mances [11, 31]. The opera tracker applies an OLTW al-
gorithm to align reference and live target audio. Instead
of using posteriograms as input to the OLTW algorithm,
it takes audio features that are directly computed from the
audio recordings. For the study, we compute two types
of features that will serve as tracking baselines and inputs
to our alignment algorithm. The first feature, baseline,
has been inspired from music tracking systems performing
on orchestral performances [32]. The feature calculates
120 MFCCs, but discards the first 20, and is computed
at a sampling rate of 44.1 kHz, a window size of 20 ms,
and a hop size of 10 ms. The second feature, recitative,
was designed specifically with recitatives in mind [31]. It
was tuned to perform best on the recitative subset of the
Fischer recording and was shown to generalize well to the
recitative subset of Manacorda. The feature is composed of
25 MFCCs extracted from Linear Predictive Coefficients
(LPC) that aim at extracting the phoneme information from
the audio. It is computed at a sampling rate of 1500 Hz,
with the same previous window size and hop size.

The results are given in Table 4. Looking at Don Gio-
vanni / Fischer, we see that both new models, using our
5lang and english acoustic models, outperform the SOTA
opera tracker based on baseline and recitative features,

8 https://github.com/deezer/
MultilingualLyricsToAudioAlignment

Opera Name Feature Mean(ms)  1s

DG Targ_Fischer baseline 1,915 66.1%
recitative 955 76.5%
5lang 846 80.5%
english 818 80.5%

Targ_Manacorda baseline 1,503 62.0%
recitative 1,023 69.7%
5lang 824 77.6%

english 963 76.1%
Jingju Targ_Jingju baseline 2,943 61.5%

recitative 3,878 60.0%
5lang 964 87.5%
english 810 89.0%

Table 4. Tracking error on Don Giovanni (DG) and Jingju
opera sub-datasets

the latter of which had been optimized specifically on this
dataset. The mean error has been reduced by at least
100 ms and 80.5% of the bars now show an error below 1s.
A similar picture emerges with DG / Manacorda, where the
mean error goes to 824 ms for the best 5lang model, and
where the 1s threshold improves by 8 percentage points,
relative to the recitative feature tracker. It is also impor-
tant to note that the results of recitative and baseline were
obtained in combination with a dedicated silence detector
which halts the tracking process when there are obvious
pauses. The two new trackers simply use the posteriograms
generated by the acoustic models and still improve track-
ing accuracy.

Secondly, our two models 5lang and english also per-
form best, by a large margin, on the Jingju opera sub-
dataset. The baseline and recitative features were designed
to extract pitch contours, focusing at different parts of the
frequency range. They turn out to be inefficient at track-
ing Beijing Opera a capella recordings. On that task, the
english model achieves the best performance, with a track-
ing accuracy of 810 ms and 89.0% of the syllables being
detected below 1s of error.

5.4 Robustness to Different Languages

Comparing the results, we see that alignment accuracies
are very similar across the two corpora, even though they
contain singing signals in two very different languages,
Italian and Chinese. The two acoustic models were not
trained on Chinese recordings, 9 a language that includes
new phonemes that do not appear in the phoneme set built
from the five European languages present in DALI. Using
phoneme posteriograms as a joint intermediate representa-
tion of the lyrics and of the live input thus seems to be a
remarkably robust choice for multilingual tracking.

Finally, the best results seem to alternate between the
5lang and english acoustic models in the different sub-
datasets. Based on the conclusions of [7], we expected
the 5lang model to perform best. However, and especially
on the Jingju tracking experiment, english yields some-

9 and indeed, Don Giovanni’s language – Italian – was also not repre-
sented in the english acoustic model’s training data.
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times better performance. This may be explained by the
fact that the mapping into the European phoneme set is by
construction incorrect, since the Chinese language is not
in the training dataset. We expect that training our acoustic
model with additional Chinese data would boost the per-
formance.

6. CONCLUSION

We have presented an on-line audio-to-lyrics alignment
method that is capable of operating in a real-time scenario.
It involves an acoustic model, built from a ResNet archi-
tecture, that classifies each audio frame into a vector rep-
resenting the probability distribution over a predefined set
of phonemes, with a delay of 280 ms. In a second step,
a real-time capable alignment algorithm (On-Line Time
Warping) aligns the emerging sequence of vectors to a pos-
teriogram matrix that has been extracted beforehand from
a reference performance of the same work, via our acous-
tic model. In experiments, we showed that our method is
robust and reasonably precise in tracking the lyrics in a
musical genre where the sung lyrics are known to be hard
to understand, and a genre that was not part of the acoustic
model training dataset. Additionally, we also showed ro-
bustness across languages, even if these are not included in
the acoustic model training data. Our results suggest that
it might be fruitful to investigate combinations of our sys-
tem with existing music trackers in the more general task
of opera score following.

Moreover, even if our study focused on the specific
genre of opera (and on two very specific subsets of it), the
method should be directly applicable to other music gen-
res and other languages. The acoustic model was trained
on Western musical genres and consequently, we expect
it to work even better on those genres. As future work,
we plan to evaluate our system on available Western mu-
sic datasets containing pairs of recordings, such as Cov-
ers80 [33], where lyrics are not necessarily identical and
where song structures may differ, and to use offline lyrics
alignment systems to obtain reference annotations.
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ABSTRACT

The visualizations in Wattenberg’s Shape of Song (2001)
were based on pitch-string matching, but there are many
other equivalence classes and similarity relations proposed
by music research. This paper applies recent algorithms
by Carter-Enyi (2016) and Carter-Enyi and Rabinovitch
(2021) with the intention of making arc diagrams more
effective for research and teaching. We first draw on
Barber’s intertextual analysis of Yorùbá Oríkì, in which
tone language texts are circulated through various per-
formances (Barber 1984). Intertextuality is exemplified
through a 2018 composition by Nigerian composer Ayò
Olúranti, then extended to Dizzy Gillespie’s solo in his
recording of “Blue Moon” (ca. 1952). Example visual-
izations are produced through an open-source implemen-
tation, ATAVizM, which brings together contour theory
(Quinn 1997), schema theory (Gjerdingen 2007), and edit
distance (Orpen and Huron 1992). Applications to the
music of Bach and Mozart demonstrate that an African-
centered analytical methodology has utility for music re-
search at large. Computational music research can benefit
from analytical approaches that draw upon humanistic the-
ory and are applicable to a variety of musics.

1. INTRODUCTION

A promising visualization method for musical form and
melodic relationships is the arc diagram, proposed by Wat-
tenberg [1]. 1 An arc diagram is a type of network diagram
in which the nodes are aligned along a single axis. In the
case of a single piece of music (intraopus), the axis repre-
sents time and the arcs connect matches between segments
of the piece. In the case of multiple works (interopus),
pieces might be arranged alphabetically or chronologically
as nodes along the axes, and content matches may still be
represented through a network of arcs. Applied to music,
this visualization technique emphasizes melodic connec-
tions that permeate music instead of stressing sectional di-

1 Wattenberg developed an art exhibit and web app, called the Shape
of Song [2], which is now defunct.

© Aaron Carter-Enyi, Gilad Rabinovitch, Nathaniel Condit-
Schultz. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Aaron Carter-Enyi, Gilad Ra-
binovitch, Nathaniel Condit-Schultz, “Visualizing Intertextual Form with
Arc Diagrams: Contour and Schema-based Methods”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

visions. Understanding form as intertextual (both intrao-
pus and interopus) fits with Africana musics and the zeit-
geist of the information age; of being globally connected
through the Internet. An intertextual approach is antitheti-
cal to western notions of musical works as individual artis-
tic utterances.

In Wattenberg’s Shape of Song, “Each arc connects two
matching passages... [containing] the same sequence of
pitches” [1]. This is a simplistic view of melodic associa-
tions. Arc diagrams have since been applied to audio and
symbolic data to highlight a much greater variety of mu-
sical features [3, 4]. We present new visualizations pro-
duced using ATAVizM 2 , which brings together contour
theory [5, 6], schema theory [7], and edit distance [8]. Be-
cause these methods reveal patterns within and between
works, we consider them intertextual approaches to music
analysis. In Yorùbá Oríkì, tone language texts, such as owé
(proverbs), are circulated through various performances
[9]. Intextuality is exemplified by Nigerian composer Ayò
Olúranti’s "O. mo. lúàbí" (2018) and Dizzy Gillespie’s solo
on “Blue Moon” (ca. 1952). Arc diagrams visualize the
output of recent pattern discovery algorithms by Carter-
Enyi [10] and with Rabinovitch [11]. The first algorithm
was developed specifically for understanding the mapping
of speech tone to song in African cultures. Applications of
the same implementation to the music of Bach and Mozart
demonstrate the extensibility of African-centered method-
ologies, which may contribute novel approaches to music
research at large.

2. UNDERSTANDING FORM AS INTERTEXTUAL

Barber argues against seeing a "work of literature as an iso-
lated artifact," considering the alternative of deconstruc-
tion as practiced by Derrida [9]. Taking Yorùbá praise-
singing (Oríkì) as an example, Barber points out that
the concept of "wholeness is simply inappropriate" for
oral literature which is "constituted and reconstituted only
through the participation of many people," including a
"chain of performers" and audiences. Each performance
is neither entirely unique nor entirely the same, they are
related intertextually. When you deconstruct an Oríkì per-
formance to short praise names, proverbs and riddles it is
composed of, there is really no difference between intero-
pus and intraopus analysis.

2 Desktop and web versions of the app and source code are available:
atavizm.org; radar.auctr.edu/atavizm; github.com/carterenyi/atavizm
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The concept of intertextuality is not new to music schol-
arship. Oríkì itself has often been considered both a form
of literature and a form of music. If Barber’s description of
Oríkì reminds you of the characteristics of jazz or hip hop,
we agree. Thinking "interopus" about music challenges
notions of authorship, copyright, and intellectual property.
Notions that did not exist in many precolonial societies and
still struggle to hold sway in many creative economies.
Patterns may be found across works and throughout an
individual work, repeated with variation. This is exem-
plified by Yorùbá proverbs Olúranti selected as the basis
for "O. mo. lúàbí" (2018). Echoed by Gillespie’s improvi-
sational gestures in his recording of "Blue Moon," which
both quotes and hints at Lorenz/Hart’s melody. Gjerdin-
gen’s schema theory [7] suggests that music making in
18th-century Europe relied on a shared stock of skeletal
patterns, which explains the rapid creation of compositions
and improvisations. Our application to "artworks" by Bach
and Mozart will show how the Prinner schema emerges as
a skeletal structure in two pieces with highly contrasting
surface textures.

3. OPERATIONALIZING INTERTEXTUALITY

Musical themes, motives, and formulas are often trans-
posed or modified and remain recognizable. Such relation-
ships are relevant for both inter- and intraopus analysis.
For example, a fugue subject is initially stated in the tonic
key in a monophonic texture. The answer is a response in
a polyphonic texture in a related key (usually dominant).
Sometimes the answer is an exact transposition (real an-
swer), and sometimes the answer is transposed and mod-
ified (tonal answer). Wattenberg offers the possibility of
matching melodic intervals rather than pitch strings, which
would match some subjects and answers, but not a subject
and tonal answer, in which the subject is both transposed
and modified. There are generic contrapuntal skeletons
throughout 18th-century European music (schemata) that
are embellished in various ways on the musical surface [7].

How do we formally relate the Yorùbá texts in poetry
and in song? The “licks” of bebop musicians? A sub-
ject and tonal answer? Or schemata in 18th-century Eu-
ropean music? Velardo et al. name four bases for Sym-
bolic Melodic Similarity (SMS) systems: cognition, music
theory, mathematics, and hybrid approaches (2017). The
authors mention pitch-class set theory (with a basis in mu-
sic theory and mathematics), but not contour theory (with
a foundation in cognition, music theory, and mathemat-
ics, e.g., Quinn [6]), or schema theory (Gjerdingen [7]).
This paper focuses on a contour-based method [12] and a
schema-based method [11] to operationalize intertextual-
ity on and (slightly) underneath the musical surface, re-
spectively. Of the four pieces analyzed, only the Mozart
analysis bears resemblance to a conventional form analy-
sis (e.g., ABA for an entire work). Arc diagrams offer the
possibility of new perspectives on form that are difficult
to communicate without a network. Musical form in this
context is an emergent property of intertextual relations.

4. A CONTOUR-BASED METHOD

Carter-Enyi’s contour-level algorithm was developed
based on an extensive analysis of Ìgbò and Yorùbá speech,
chant and music as well as a perceptual study with 1409
participants [12]. Contour levels are a modified contour
theory based on a new understanding of tone-level lan-
guages and how tone levels are mapped to music. The fol-
lowing analyses demonstrate the method’s effectiveness as
a basis for analyzing and visualizing musical forms.

4.1 "O. mo. lúàbí" by Ayò Olúranti (2018)

As a composer, Olúranti carefully sets Yorùbá texts
based on their implied pitch and rhythmic contour [13].
"O. mo. lúàbí" is based on a set of Yorùbá owé (proverbs and
adages) about good character. The Yorùbá language has
three tone-levels: low (à), mid (a, no accent), and high
(á). Less is known about the extent to which rhythm is
a contrastive element of speech, but it is clear that lexi-
cal tone distinguishes many words (47 % of two-syllable
words [12]). The following are the six main proverbs in-
corporated into the work in order of their appearance. For
each, the tone sequence is indicated with L for low tone, M
for mid tone, and H for high tone.

1. Ìwà l’èsìn 3 (LL LL). Translation: Character is reli-
gion (meaning religion devoid of good character is worth-
less)

2. Ìwà l’o.ba àwúre (LL MM LHM). Translation: Sup-
plication is important, good character even more.

3. Ìwà l’òrìs.à, bí a bá ti hùú sí ni fií gbè’ni sí (LL LLL,
H M H M LH H M MH LMH). Translation: Character is
god (or salient). One’s behavior determines one’s attitude.

4. Ká wí be.é, ká bá a be.é, iyì ènìyàn nìye.n (H H H, H
H M H, ML LLL LM). Translation: A man is honorable
when his word is his bond.

5. O. mo. lúàbí (MMHLH). Translation: A child born of
good character

6. Tí a ó bàá jé O. s.áká ká kúkú jé O. s.áká. Bí a ó bàá
jé Òs.oko ká kúkú jé Òs.oko. Os.áká-Òs.oko ko ye.ni (H M
LH H MHH H HH H MHH. H M H LH H LMM H HH H
LMM. MHH-LMM M MM). Translation: Be certain with-
out doubt. Be uncertain without doubt. Being neither here
nor there is undesirable.

Because Yorùbá is a tone language, the proverbs have
implied contours which Olúranti adapts as themes and mo-
tives. Some longer proverbs are broken up or abbrevi-
ated (particularly 6). Instances of each tone-level sequence
(strings and substrings in the symbolic data) are indicated
as nodes between color-coded arcs in Figure 1. Because
of the similarity in melodic shape but flexibility in pitch
height and melodic intervals, the setting of tone language
texts has an affinity to contour theory. However, contour
theory, as formalized by Morris [5], could not be applied
to this music because it first requires manual segmentation
(making it incompatible with pattern discovery) and is in-
tended for segments without any repeating pitches (such

3 Subdot indicates an open vowel or an "esh" instead of s. Underlining
is substituted for a subdot where diacritics must be combined.
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Figure 1. Contour-based intraopus arc diagram of Olúranti’s "O. mo. lúàbí" (2018)

Figure 2. Contour equivalence class for three tone-level
Yorùbá proverb and one of Olúranti’s settings.

as a 12-tone row). While Olúranti’s piece may be con-
sidered post-tonal and through-composed, repeated pitches
are used, often to represent the repetition of linguistic
tones. 4 Carter-Enyi’s addition of “windowing” to create
contour levels 5 is based on the concept of tone levels in
African languages [12] and is ideal for finding intertextual
proverbs in Olúranti’s polyphonic composition (see Figure
2. Insertions (epenthesis) and deletions (elision) are com-
mon in language, so for language-based music allowing for
edits to patterns is necessary. Contour level equivalence, as
an effective associative method, may be enhanced through
similarity metrics such as edit distance [8] when appropri-
ate.

4 Schmuckler has applied concepts of contour theory computationally
[14]. However, his method deviates from most music theory and has not
been implemented as an open-source toolbox or application.

5 Quinn’s binary (0,1) annotation of pairwise comparisons was another
necessary improvement over Morris [6]

The intertextuality of Olúranti’s piece is revealed in two
ways by the diagram. First, the color-coding groups pat-
tern instances by their link to a preexisting proverb (intero-
pus). Second, the networks of equivalence and similarity
are linked within the piece by arcs. Some proverbs occur
in a limited range of the piece (notably "Kawibe..." and
"Osaka..."), so are sectional within the piece, but still in-
tertextually linked to Oríkì performance at large. Several
proverbs come together in the final section, a textually and
musically cohesive conclusion.

4.2 "Blue Moon" by Dizzy Gillespie (ca. 1952)

The notion of intertextuality is nothing new in jazz schol-
arship, signifying jazz’s spirit of both continuity and inno-
vation. Carter-Enyi’s algorithm is apt for pattern discov-
ery in jazz improvisation. Unlike Olúranti’s "O. mo. lúàbí,"
where higher precision in contour matching is desirable,
in this case, we applied a more inclusive match by reduc-
ing the “window size” and reducing “redundant” contour
slices [10]. The degree of flexibility or rigidity in finding
melodic relationships depends on the task at hand. In the
context of jazz improvisation, more inclusive settings res-
onate with insider knowledge of listeners to jazz, who may
recognize many extrapolations. Figure 4 includes paren-
theses around repeated notes to indicate that they were ig-
nored in the analysis. To make the contour equivalence
class more inclusive, only one degree of adjacency for con-
tour comparison was used (see Figure 5). Additionally, a
reduction technique was used where identical columns of
the matrix are collapsed to a single column, indicated by
multiple notes being mapped to a single contour node in
Figure 5.
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Figure 3. Contour-based inter/intraopus arc diagram of
Gillespie’s "Blue Moon" (ca. 1952)

Figure 4. Theme from "Blue Moon" (Rodgers/Hart 1934)

Figure 5’s class identifies a wide variety of similar
shapes as equivalent strings. A contour motive from the
opening melody of “Blue Moon” reappears through Gille-
spie’s solo. 6 The most inclusive settings for Carter-Enyi’s
algorithm [10] are used to relate contours that are expanded
or contracted. While it may be debatable whether some of
the instances returned by the algorithm are indeed quota-
tions of the theme, one might indeed question the gesture
in Figure 5. However, in mm. 41-44, the quotation of
the theme is apparent because of a sequence of descending
thirds over iterations of the contour. This sequence is vis-
ible in the arc diagram (Figure 3 where there is a cluster
of instances about two-thirds away through the piece. Al-
though the contours in mm. 41-44 are in expanded form
compared to the “head,” these iterations are tied to the
theme because of the use of sequence and the salience of
similar scale degrees.

6 The transcription analyzed is here is by Jacques Gilbert, many more
are available on his website [15]

Figure 5. Improvisational gesture reduced to a simple con-
tour equivalence class

Similar to Olúranti’s "O. mo. lúàbí," Dizzy Gillespie’s
recording of "Blue Moon" is based on a preexisting "text,"
the Lorenz and Hart song. As in Oríkì and in Olúranti’s
work, intertextuality is a core part of jazz, which in bebop
has an objective quotation or recitation of a complete text
(the "head") and a subjective interpolation of the text in the
solo. Because the insider knowledge of listeners in the jazz
tradition includes recognizing licks that seem to quote the
head in the solo, we set the algorithm to be highly inclu-
sive.

4.3 "Fugue in C Minor" by J. S. Bach (BWV 847)

The following applications demonstrate the effectiveness
of an African-centered computational approach for dis-
covering meaningful patterns in European classical music.
In Figure 6, all statements of the fugue subject of BWV
847 are connected through blue arcs, representing a net-
work between the introduction of the subject and all sub-
sequent statements. The subject has cardinality 20 and,
through eight iterations, 7 accounts for over 20 % of the
pitch content of the piece (160 out of 750 notes). Carter-
Enyi presents a method for calculating a single equivalence
class that incorporates all subject entries and no other seg-
ments using his contour level approach [12]. Specifically, a
4-degree window of adjacency is sufficient to recognize all
subject statements without any false positives (see Figure
7).

5. A SCHEMA-BASED METHOD

Gjerdingen’s schema theory posits shared skeletal contra-
puntal patterns in European music of the 18th century. A
limited number of skeletal prototypes in composition and
improvisation resonates with existing theories of counter-
point and keyboard playing (figured and unfigured bass tra-
ditions). Schemata may be more abstract than the contours
of Yorùbá proverbs, yet schema theory also suggests that
18th-century European music is also an intertextual tra-
dition rather than a collection of distinct "masterworks."
Therefore, schemata are important tools for interopus al-
gorithmic analysis. The following analysis relates pieces
by Bach and Mozart that are contrasting on the surface, yet
draw extensively on Gjerdingen’s Prinner schema: a so-
prano skeleton of 6-5-4-3 above a bass skeleton of 4-3-2-1
or 4-3-2-5-1, typically harmonized with IV-I6-vii6-I or a
similar harmonic progression.

We have operationalized schemata as scale-degree
skeletons that may be matched in various reductions of the
same piece [11]. The method awards points in a score ma-
trix for different syntagmatic (relational) features of notes.
In Figure 8, the first row awards points to notes on a strong
beat (beat 1 or 3). The second row awards points to notes
within a step of notes in the previous window (delineated
by bold lines) that already have points in the first row ("pre-
contiguity"). The third row awards points similarly to the
second row but for contiguity with high-ranking notes in

7 There is agreement among music analysts (including Bruhn and
Schenker) where subject statements are in this fugue.
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Figure 6. Contour- and Schema-based intraopus arc dia-
gram for Bach’s "Fugue in C minor" (BWV 847)

Figure 7. Contour Equivalence Class in BWV 847

the next window ("post-contiguity"). Finally, the points
are totalled and the highest ranking note in each window
is selected, producing the reduction, in this case 6-5-4-3,
similar to Gjerdingen’s Prinner schema.

5.1 Convergence of Contour and Schema

In BWV 847, the subject’s surface contour and the under-
lying schema converge with a nearly identical interpreta-
tion of the piece, except the contour class has an anacrusis
and the schema starts with a strong beat. Figure 6 includes
the contour network in blue and the schema network in red.
Either the contour-level algorithm [12] or schema-based
method [11], when applied to BWV 847, identifies all ap-
pearances of the subject as equivalent in all three voices of
the fugue, whereas pitch strings, interval strings, or other
implementations of contour theory would not identify them
fully. Either algorithm enables pattern discovery without
any specific information about the genre (e.g., the main
theme is at the beginning) to find the most prevalent pat-
tern and visualize it. Depending on whether one wishes to
demonstrate interopus connections, intraopus connections,
or both, one may prefer the contour or schema-based ap-
proach. The contour in Figure 7 is very specific to BWV
847. The reduction in Figure 8 relates the subject to por-
tions of many other pieces, including the primary theme in
K545 (Figure 9.

Figure 8. Schema Equivalence Class in BWV 847

Figure 9. Schema Equivalence Class in K545 (mm. 3-4)

5.2 Divergence of Contour and Schema

In contrast, the contours and schemata suggest very differ-
ent formal understandings of Mozart’s "Sonata in C Ma-
jor" (K545). The arcs above the piano roll in Figure 10
represent a contour-based network. Thinking in terms of
melodic shape highlights the conventional sonata form,
emphasized by the return of the primary theme at the be-
ginning of the recapitulation (terminus of the red arc). The
development is identified by a distinct motive (in yellow)
which forms the core [16]. The schema-based network is
quite different, shown as downward consecutive arcs. Ini-
tial arcs connect the first appearance of musical material to
all other instances. However, consecutive arcs do not place
any emphasis on the first instance. Consecutive arcs are
appropriate for a schema pattern, which is highly intertex-
tual, but not thematic in the traditional sense. Schemata are
more minimalistic or generative because much more mate-
rial can be accounted for by a single equivalence class.

6. CONCLUSION

We are trying to decenter music research from two an-
gles: exploring intertextuality, debunking notions of art as
created by individuals [9]; and, applying African-centered
approaches to analysis (based on [12]. An interopus di-
agram (Figure 11) summarizes the connections between
the works discussed, with contour matches in blue and
schema similarity in red. Yorùbá Oríkì is not western di-
atonic music, so schema theory is not applicable. How-
ever, the schema approximation of scale-degree skeletons
may be relevant to postcolonial music of Africa, such as
"O. mo. lúàbí." Vice-versa, one may not expect contour lev-
els (based on tone levels) to apply to European classi-
cal music because there is an emphasis on idiosyncratic
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Figure 10. Contour (above) and Schema-based (below) intraopus arc diagram for Mozart’s "Sonata in C Major" (K545)

themes. However, part of the take-away of schema the-
ory is that European musicians in the 18th century relied
on a small number of skeletal formulas, so contour mo-
tives are likely interopus as well, which questions the no-
tion of distinct "masterpieces." It is only in the relation-
ship between Rodgers/Hart’s "Blue Moon" and Gillespie’s
improvisation on it that we (appropriately for jazz) see a
match of both contour and schema. 8 Contour and schema,
although copresent, are very independent. Gillespie tests
the bounds of the tonal paradigm of the song, making the
theme an improvisational gesture that is independent from
the harmonic progression, while the rhythm section main-
tains it with some liberty. Similarly, Mozart used the Prin-
ner schema with his main theme and independently of it.
This contrasts with the total interdependence of contour
and schemata in Bach’s subject. In improvisation, we ex-
pect contrapuntal and harmonic patterns to be stretched
by a soloist’s wanderings. However, preservation of both
contours and scale-degree skeletal schemata suggests in-
tentionality. Bach delineates the subject entrances from
the liminal space of the episodes except for a few mo-
tivic fragments of the subject. Simlarly, Dizzy Gillespie
explores the motive of the "Blue Moon" theme, but only
once echoes the full sequence.

Beyond pure research, ATAVizM has applications in ed-
ucation and teaching music theory as an application for vi-
sualizing musical forms designed to be integrated into the
undergraduate theory curriculum. Since 2017, the software
has been used to teach Fugue, Sonata, and Post-Tonal mu-
sic in music major courses and Indian Classical, African

8 Although this was not visualized with an arc, the thematic sequence
with the model repeated at an interval of a descending diatonic third is
replicated at one point by Gillespie in the solo. Both the instance in the
theme and the solo form a similar scale-degree skeleton.

Figure 11. Interopus arc diagram

Choral, and popular music in general education courses in
several US institutions. For teaching contexts, the feature
of the user being able to select which strings are thematic
is essential. Students make selections based on their anal-
ysis of a piece to produce visualizations for analytical pa-
pers. The open-source software presented here includes
(1) pattern-matching algorithms based on heuristics from
music theory (contour and schema) that may be applied to
pitch (and duration in the case of contour), (2) theme iden-
tification by user input or selection, and (3) color-coding
of arcs and a legend. Combining computationally efficient
methods for contour and schema pattern recognition with
ample features for user direction has brought us closer to
reaching the full potential of Wattenberg’s vision for see-
ing the Shape of Song.
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ABSTRACT

Document analysis is a key step within the typical Optical
Music Recognition workflow. It processes an input im-
age to obtain its layered version by extracting the different
sources of information. Recently, this task has been for-
mulated as a supervised learning problem, specifically by
means of Convolutional Neural Networks due to their high
performance and generalization capability. However, the
requirement of training data for each new type of document
still represents an important drawback. This issue can be
palliated through Domain Adaptation (DA), which is the
field that aims to adapt the knowledge learned with an an-
notated collection of data to other domains for which labels
are not available. In this work, we combine a DA strat-
egy based on adversarial training with Selectional Auto-
Encoders to define an unsupervised framework for docu-
ment analysis. Our experiments show a remarkable im-
provement for the layers that depict particular features at
each domain, whereas layers that depict common features
(such as staff lines) are barely affected by the adaptation
process. In the best-case scenario, our method achieves an
average relative improvement of around 44%, thereby rep-
resenting a promising solution to unsupervised document
analysis.

1. INTRODUCTION

Optical Music Recognition (OMR) is a computational pro-
cess that aims to read the music notation from scanned doc-
uments and export their content to a structured digital for-
mat [1]. The countless number of music manuscripts scat-
tered around the world, along with their high variability
due to the different engravings, writing styles, ink colors,
notations, or even the period in which they were written,
represents a great obstacle to tackle this task in a simple
way. In addition, physical formats are inevitably associ-
ated with page degradation over time, which is one of the
motivations for digitizing them.

Given the complexity of OMR, the process is typically
divided into a series of sequential tasks with partial goals.

© F. J. Castellanos, A.-J. Gallego, and J. Calvo-Zaragoza.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: F. J. Castellanos, A.-J. Gallego, and J.
Calvo-Zaragoza, “Unsupervised Domain Adaptation for Document Anal-
ysis of Music Score Images”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

Document
Analysis

BackgroundTextStaffNotes

Figure 1: Overview of the document analysis process for
music score images.

Document analysis is usually one of the most important
tasks, where the relevant elements that make up the image
content are recognized and extracted as different layers of
information, e.g. by classifying each pixel into a set of
categories such as staff lines, music notes, lyrics or back-
ground [2, 3], as shown in Figure 1.

Recent advances in machine learning, and particularly
in Deep Neural Networks (DNNs), have opened up oppor-
tunities to carry out OMR processes effectively [4]. How-
ever, in spite of their high performance and demonstrated
generalization capability in multiple tasks, this formulation
brings an important drawback: the need for training data.
Indeed, this is a common issue associated with machine
learning, which requires labeling (often manually) a rep-
resentative part of the data. However, the large number of
manuscripts to be digitized contributes to making this an
unaffordable task, so it is of great interest to reformulate
this supervised problem to an unsupervised one.

Domain adaptation (DA) is a field that studies how
to adapt the knowledge learned from a labeled collection
of data—source domain—to another related, but differ-
ent one—target domain—in an unsupervised manner. The
idea behind this is the learning of domain-invariant fea-
tures or a common representation between the source and
the target domains. In this way, a model is able to process
images from the target domain without using ground-truth
information of that domain, thus eliminating the require-
ment for labeling images given a new domain. Note that,
in the DA context, although the source domain labels are
available, as the goal is to adapt to the target domain (for
which there are no labels) this type of problem is consid-
ered unsupervised [5].

In this paper, an unsupervised approach based on
Selectional Auto-Encoders (SAEs) and adversarial training
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by means of a Gradient Reversal Layer (GRL) is proposed
to carry out document layout analysis. The goal of this
proposal is to recognize different layers of information—
such as staff lines, notes, lyrics, and background—without
having to manually label images of each new domain. The
goodness of our approach is assessed through experiments
with corpora of different music notations, reporting a sub-
stantial improvement in the performance depending on the
layer at issue.

The rest of the paper is organized as follows. A review
of related work is discussed in Section 2. The formula-
tion of the problem and the description of the methodology
are included in Section 3. The experimental setup and the
empirical results are reported and analyzed in Section 4.
A complementary qualitative evaluation is performed in
Section 5. Finally, Section 6 summarizes the main conclu-
sions, pointing out some potential future work.

2. RELATED WORK

Document analysis is a well-known stage within OMR [6],
already studied in the literature with different strategies.
Traditionally, this problem was addressed by dividing the
task into several smaller consecutive steps. An example
is binarization—used to split foreground and background
information—for which we can also find different solu-
tions, including traditional algorithms [7–9] or even spe-
cific approaches for music documents [10, 11]. There are
also works in which staves and lyrics are split so that they
can be processed separately, such as [12]. Another com-
mon step is the staff-line removal, where staff lines are
eliminated to isolate the music symbols and make easier
their classification. Dalitz et al. [13] reviews traditional
methods, however, this is an active research field in which
new work continually appears [14, 15].

More recently, there is a tendency to formulate doc-
ument analysis as a machine learning problem. Given
its performance and efficiency, the SAE architecture has
been explored for related purposes, such as staff-line re-
moval [16]. In addition, a SAE-based framework [17]
was proposed to detect different layers of information by
training a set of models to recognize each layer separately.
However, although these approaches are usually aligned to
high performance and generalizability, they entail a draw-
back derived from supervised learning: the need to manu-
ally label a portion of each manuscript to generate training
data.

DA aims to palliate this issue by adapting the knowl-
edge learned from a labeled (or source) manuscript to pro-
cess another but related unlabeled (or target) manuscript
in an unsupervised fashion. The adversarial training high-
lights within this field, which is an adaptation strategy in
which different neural networks—or parts of them—are
configured as opposing sides, with the aim of learning
a common representation equally applicable to both do-
mains. A relevant example is Domain-Adversarial Neural
Network (DANN) [18], which presents a categorical neu-
ral network combined with a special type of layer named
Gradient Reversal Layer (GRL). This layer aims to learn

domain-invariant features to perform the DA process.
In this work, we propose to extend the SAE-based su-

pervised framework proposed in [17], in order to combine
it with the GRL so that it performs the learning of domain-
invariant features in an unsupervised fashion. While this
idea has been proven successful for document binariza-
tion [19], we study here its performance for the document
analysis of music score images.

3. METHOD

3.1 Problem formulation

Let S be an annotated or source domain composed by a set
of images with their corresponding ground truth (XS, YS),
where XS contains the scanned images of documents rep-
resented as X i

S = [0, 255]h
i
s ⇥wi

s ⇥c, being X i
S the i-th image

within XS with height hi
s px., width wi

s px., and c channels,
being c = 1 for grayscale and c = 3 for colored images;
and YS standing for a pixel-wise annotation of each X i

S

image for a particular layer, with Yi
S = {0, 1}h

i
s ⇥wi

s , where
1 represents the foreground—or ink—of the layer at issue
(e.g. staff lines, notes, text, etc.) and 0 the background.

Let T be a non-annotated or target domain that consists
of a series of images XT, being X k

T = [0, 255]h
k
t ⇥wk

t ⇥c the
k-th image with no labeling data available.

3.2 Document analysis framework with SAEs

Our approach builds upon the supervised state-of-the-art
document analysis framework proposed by Castellanos et
al. [17], which processes the input images to classify each
pixel into a set of possible categories—staff lines,
notes, text and background. This method is based
on a series of SAE models—namely four models, one per
layer—trained to individually recognize each layer of in-
formation in a supervised fashion. Note that the number of
models represents the number of layers of information of
interest, so the method could easily be extended by using
as SAEs as layers to detect.

This architecture consists of two parts: an encoder, in
which data are processed by a series of consecutive convo-
lution and down-sampling layers, and a decoder, composed
of convolution and up-sampling layers, as many as down-
sampling layers are in the encoder. The output of the SAE
model is a probabilistic map of the same size as the in-
put, but with only one channel, in which the probability of
each pixel belonging to a specific layer is computed. This
scheme can be successfully trained in a supervised manner
when there are ground-truth data available for a portion of
the collection to be processed.

As mentioned above, the framework processes each
category separately with the aim of modeling specialized
SAEs that detect individual layers of information to even-
tually be processed or combined. In order to combine the
individual decisions to provide an actual document analy-
sis result, we eventually label each pixel as that category
for which its SAE retrieves the highest probability. This
combination is mathematically defined as
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Encoding Decoding

X i
S = [0, 255]h

i
s⇥wi

s⇥c

xi,jS = [0, 255]h⇥w⇥c

Yi
S = {0, 1}hi

s⇥wi
s

yi,jS = [0, 1]h⇥w

X k
T = [0, 255]h

k
t⇥wk

t⇥c xk,lT = [0, 255]h⇥w⇥c

GRL
DS = [0]h⇥w

DT = [1]h⇥w

Assembling

Domain classifier

Figure 2: Scheme of our approach for the case of recognition of music notes. It would be repeated for each new layer to
be considered by using its own SAE model trained with the source ground-truth data YS for each layer.

Yk
T = argmax

c2⌃
P (c | X k

T )

where ⌃ represents the entire set of classes or layers of
interest.

It should be noted that the SAE model must be trained
by patches, therefore, each input image is split into a set of
chunks of h ⇥ w ⇥ c px. that are individually processed.
Therefore, once the prediction is made, it is necessary to
assemble all these patches to finally build the full layered
image.

3.3 Unsupervised domain adaptation approach

The method presented in the above section can success-
fully deal with the document analysis task when there are
representative training data of the collection to be pro-
cessed. However, this requires manually labeling some im-
ages of each target manuscript to provide enough training
data for the learning process. Within this context, DA plays
an important role to enable the application of recognition
models when there are no annotations but for one source
domain S .

Our approach addresses the problem of how to adapt a
document analysis model for processing an unlabeled tar-
get collection T . Given such conditions, the model must
be adapted in an unsupervised way. We propose the use of
GRL [18], originally designed for classification tasks, to
face this challenge.

The GRL-based approach makes use of adversarial
training to penalize domain-specific features in order to
train a neural network model capable of dealing with im-
ages from S or T , indistinctly. This special layer is con-
nected to a domain classifier that takes advantage of the
only information available for T : the certainty that the
XT images belong to a different domain than the source.
Hence, the domain classifier shall try to identify whether,
given an image X i

S or X k
T , it belongs to S or T . This

classifier, therefore, will look for domain-specific features
that allow the images of both domains to be differenti-

ated. However, as it is connected to the SAE architec-
ture through the GRL, the gradients calculated as conse-
quence of this classification are reversed in the training
process. That is, GRL penalizes the domain-specific fea-
tures found by the domain classifier, thus achieving a SAE
model which focuses on domain-invariant features. Note
that GRL includes a hyper-parameter � to adjust the con-
tribution of the domain classifier in the training process, to
be empirically studied according to the task.

A graphical outline can be found in Figure 2 with an
example of this method for a single layer, that of note
symbols. The idea of our approach is to use independent
SAEs, each one trained with the ground truth of S for a
specific layer. Thus, our approach applies document anal-
ysis through four SAE models, one for each layer of in-
formation, and finally combines these results based on the
probability of the output layer.

4. EXPERIMENTAL SETUP

4.1 Corpora

For our experiments, we selected three corpora manually
labeled for the considered layers. The details of these
datasets are listed below (some examples of images can
also be found in Figure 3):

• EINSIEDELN: collection of 10 music documents in
Neumatic notation, specifically those of Einsiedeln,
Stiftsbibliothek, Codex 611(89) 1 with an average
size of 6 496⇥ 4 872 px.

• SALZINNES: set of 10 music score images in
Neumatic notation with an average resolution of
5 847 ⇥ 3 818 px., of Salzinnes Antiphonal (CDM-
Hsmu2149.14) 2 .

• CAPITAN: 10 images from a complete Missa of the
second half of the 17th century [20] in Mensural no-
tation with an average size of 2 126⇥ 3 065 px.

1 http://www.e-codices.unifr.ch/en/sbe/0611/
2 https://cantus.simssa.ca/manuscript/133/
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Table 1: Description of the SAE architecture considered, implemented as a Fully-Convolutional Network (FCN). Notation:
Conv(f ,hc,wc,a) represents a convolution operator of f filters, with kernels of hc ⇥wc pixels and an a activation function;
MaxPool(hp,wp) indicates a max-pooling operator with a hp ⇥ wp kernel; UpSamp(hu,wu) stands for an up-sampling
operator of hu ⇥ wu px.; ReLU and Sigmoid denote Rectifier Linear Unit and Sigmoid activations, respectively.

Input Encoding Decoding Output

Conv(64,3,3,ReLU) Conv(64,3,3,ReLU)
MaxPool(2,2) UpSamp(2,2)

[0, 255]256⇥256 Conv(64,3,3,ReLU) Conv(64,3,3,ReLU) [0, 1]256⇥256

MaxPool(2,2) UpSamp(2,2)

Conv(64,3,3,ReLU) Conv(64,3,3,ReLU)
MaxPool(2,2) UpSamp(2,2)

Conv(1,3,3,Sigmoid)

(a) EINSIEDELN (b) SALZINNES

(c) CAPITAN

Figure 3: Examples of some representative regions of the
images from the corpora.

4.2 Metrics

Given the imbalance nature in the distribution of the
classes, F-score (F1) was considered for the evaluation of
the method. In a two-class problem, it is defined as:

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where TP, FP, and FN stand for True Positives or correctly
classified elements, False Positives or type I errors, and
False Negatives or type II errors, respectively. However,
since the experiments will be conducted as a multiple-class
problem, we considered reporting the results in terms of F1

for each class and macro-F1 [21] for a global evaluation,
which is calculated as the average of the F1 obtained for
each class.

Considering that, in our context, the ground-truth data
is often subjective—especially for edge pixels—and that
there are also multiple thin elements—such as staff lines—
we decided to use more suitable metrics for this task, such
as those explained in [2]. Thus, we report the results in
terms of this pseudo-F1, henceforth ps-F1. This metric
considers as TP those pixels whose real class matches with
the prediction in any vertically and horizontally adjacent
pixel.

4.3 Hyper-parameterization

Since this paper addresses an unsupervised formulation for
document analysis through a DA scheme, we considered
the use of SAE as the basis of the model. Table 1 indicates
a detailed description of the neural network, which shall be
repeated for each layer of interest like in the state-of-the-
art document analysis framework [17]. Note that, for sim-
plification reasons, the input image is given in grayscale,
although another color space might be used.

As described, an SAE is trained with patches extracted
from the input images. These patches are randomly se-
lected after each training epoch, for the sake of data vari-
ability. We considered patches of 256⇥ 256 px. Concern-
ing the GRL, we connect it before the last convolutional
block of the decoder, with � = 0.01 and increments of
0.001 per epoch. These decisions were taken by informal
testing. The convolutional weights are optimized by us-
ing the well-known stochastic gradient descent [22] with a
batch size of 12. We carried out a pre-training step with
only S for 50 epochs, before the GRL and target images
become involved, up to a total of 300 epochs, taking 10 000
samples per epoch from each domain. Note that our ap-
proach extracts the same number of samples for each do-
main to properly balance them.

It is worth mentioning that data are divided into parti-
tions for training, validating, and testing, with 60%, 20%,
and 20% of the entire collections, respectively. The vali-
dation partition is used to choose the best model in S , as-
suming the premise that learning domain-invariant features
would allow to similarly process source and target images.
Although this partitioning is only necessary for the source
domain, we applied it in all cases for consistent evaluation.
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Table 2: Average results, in terms of ps-F1 (%), for the
SAE-based framework—state of the art—and our docu-
ment analysis approach based on GRL. The results are
organized according to the music notation of S and T . The
best figures between both models are highlighted in bold.

S ! T Framework
SAE-based SAE-DANN-based

Neumatic ! Mensural
EINSIEDELN ! CAPITAN 48.7 60.0
SALZINNES ! CAPITAN 31.5 55.6
Avg. 40.1 57.8

Mensural ! Neumatic
CAPITAN ! EINSIEDELN 44.7 45.1
CAPITAN ! SALZINNES 55.3 53.5
Avg. 50 49.3

Avg. 45.1 53.6

4.4 Results

In this section, we assess our GRL-based approach and
compare it with the state of the art [17] in unsupervised
domain-adaptation scenarios. Note that our corpora con-
tain different music notational systems—Neumatic and
Mensural. Thus, we consider of great interest the applica-
bility of our method to adapt images across different nota-
tional systems, depicting obvious differences at the graphic
level and making document analysis very challenging.

Table 2 shows the average results for each pair of S
and T considered for experimentation, in such a way that
source and target manuscripts do not match in the type of
music notation. Focusing on the first section of the exper-
iments, when S⌘Neumatic and T ⌘Mensural, we observe
a clear improvement of the DA approach with respect to
the state of the art. Our approach increases the ps-F1 from
40.1% to 57.8% on average, which represents a substantial
relative improvement of 44.1%.

Concerning the second section of results, those in which
S contains pages in Mensural notation and T consists of
Neumatic documents, we realize that two different situa-
tions are presented: the CAPITAN ! EINSIEDELN case,
with a slight improvement from 44.7% to 45.1%, and the
CAPITAN ! SALZINNES, in which the DA technique is
not able to learn adequate features for T , thus reducing
until 2% approximately. Despite this drawback, we may
consider it as marginal, representing changes barely per-
ceptible in the layered resulting image with respect to the
state-of-the-art method.

This phenomenon may be attributed to the fact that the
filters of the neural network are not able to extract domain-
invariant features by using only the ground truth of the
unique labeled domain in these experiments—CAPITAN.
For example, it should be noted that the complexity and
variability of the types of music symbols in Mensural no-
tation are considerably greater than those in Neumatic one,
which presents very uniform symbols and very different
to those in CAPITAN. Besides, the text within CAPI-
TAN shows a certain degree of degradation and different
contrast levels with respect to the rest of the ink, even

Table 3: Average results for each layer of information. The
figures are reported in terms of ps-F1 (%). Note that the
“Bg.” column represents the background layer. The best
results per layer are remarked in bold.

Framework Staff Note Text Bg. Avg.
State of the art

SAE-based [17] 80.6 39.0 8.9 51.8 45.1
Our approach

SAE-DANN-based 82.3 42.4 23.5 66.0 53.6

within the same page. These aspects, as we shall show in
Section 5, may hinder the learning of common features for
both domains, since there are layers of information with
strong differences between themselves.

In order to complement the analysis, Table 3 shows the
average results for each layer of information obtained with
the SAE-based framework and with our method. We can
observe that the DA approach obtains average improve-
ments for all the layers considered. It is worth mentioning
that the staff lines in both music notations are very similar
visually. Mainly, this is why the SAE specialized in recog-
nition of staff lines from images of S may be able to deal
with those staff lines of T . Indeed, focusing on this layer,
we realize that the SAE model obtains a high performance
of 80.6%. Note that these results are obtained by unsuper-
vised experiments, and also note that the ps-F1 obtained
for the staff layer precisely outperforms all the rest of the
layers considered. This means that the SAE model without
DA mechanisms is enough for extracting features from S
capable of detecting staves from T . In spite of this, we can
observe a slight improvement, achieving 82.3% of ps-F1.

Concerning the rest of the layers, the increase of per-
formance of the text and background layers is especially
relevant. Although in the case of text, the performance
may seem low with only 23.5% of ps-F1, note the radical
enhancement with a relative figure over 164%. Besides,
the background layer also has a relative boost of 27%, sup-
posing significant contributions for the unsupervised doc-
ument analysis task. The global average also obtains an
important increase in the results, with a relative enhance-
ment of 18.8% with respect to the state of the art, thus
supporting the idea of our proposal.

5. QUALITATIVE EVALUATION

To finalize the analysis of the results, we now shall discuss
a qualitative evaluation for different scenarios. Table 4
gathers some selected examples.

As regards the first case, in which the document
analysis carries out the extraction of notes in the
SALZINNES ! CAPITAN scenario, i.e. SALZINNES as
source and CAPITAN as target, we observe that the SAE-
based framework does not detect most of the elements. In-
deed, it confuses parts of staff lines with notes, making the
result not even close to what was expected. Oppositely, our
method does differentiate the staff from the notes, obtain-
ing a much more reliable result. Note that the detection still
fails in many cases, particularly in those in which the sym-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

85



Table 4: Selected examples for notes, text, and staff recognition cases. The table compares the extraction of the layer for
the SAE-based framework and our approach. Input images and their corresponding ground-truth data are also provided.

SALZINNES ! CAPITAN (notes) CAPITAN ! SALZINNES (text)

Input

SAE-based

Our approach

Ground truth

SALZINNES ! CAPITAN (staff ) EINSIEDELN ! CAPITAN (text)

Input

SAE-based

Our approach

Ground truth

bols are hollow. We attribute this issue to the fact that the
source images do not contain hollow symbols since they
contain Neumatic notation, so that the ground truth pro-
vided for the training does not include elements with com-
mon features to those involved in the hollow symbols pre-
sented in the Mensural notation. However, in spite of the
clear differences between the symbols of both domains, the
filled symbols are quite well recognized since SALZINNES
also contains ink-filled symbols, but squared, obtaining, in
general, a better recognition to that provided by the state of
the art. These graphic differences can be seen in Figure 3.

Concerning the second case, we analyze an example of
the detection of text when Mensural notation is used as
source—CAPITAN—and the target manuscript is written
in Neumatic notation—SALZINNES. As seen, the state of
the art does not detect almost any pixel associated with this
layer. Although the detection performed by our approach is
not perfect, it does obtain a result that is much closer to the
expected one. This could be used to detect the regions in
which the texts are located to be individually processed by
other mechanisms, for instance, Optical Character Recog-
nition techniques.

Another example is the case in which staff lines must be
identified. In this example—SALZINNES ! CAPITAN—
we observe that the staff-line retrieval is not properly per-
formed by the SAE-based framework. Several parts of the
staff are detected, but it would be quite difficult to recon-
struct the lines due to the poor quality of the prediction.
Conversely, our method can solve this issue by clearly
improving the staff-line detection and obtaining a result
closer to the ground truth. As shown in Table 3, the state-
of-the-art framework achieves competitive average figures
in terms of ps-F1, however, note that this is a selected ex-
ample in which the state of the art does not provide good
results to visually analyze the capabilities of our method.

The last example in Table 4 provides another case of

text recognition. In this scenario, the notation types of
the S and T manuscripts are reversed with respect to
the second example. Specifically, we use a Neumatic
manuscript—EINSIEDELN—as source and the Mensural
one—CAPITAN—as target. We observe that the state of
the art recovers the text with various errors, losing part of
the text and also confusing the background with text. The
DA method improves this result by providing a much more
accurate layered version. Note that, despite the great dif-
ferences between the text of both domains, the method is
able to adapt by searching for domain-invariant features in
order to recognize these elements.

6. CONCLUSIONS

This work presents an unsupervised DA framework for
document analysis of music score images, which builds
upon existing approaches and the so-called Gradient Re-
versal Layer. The idea is based on learning domain-
invariant features that allow transferring knowledge from
a labeled source domain to an unlabeled target one.

Our experiments reveal that the approach is generally
beneficial for the task at issue. The actual improvement
depends on the layer of information considered. Substan-
tial benefits are reported for the layers that depict particular
features at each domain (such as text), whereas layers that
depict common features (such as staff lines) are barely af-
fected by the adaptation process. In addition, we observed
that the source domain is indeed relevant to make the DA
method successful. In the best case, our approach substan-
tially increases the average performance up to 44% of rel-
ative improvement.

In light of these results, future work will focus on evalu-
ating the method with more types of historical manuscripts,
as well as studying the applicability of other DA tech-
niques for document analysis, such as those based on Gen-
erative Adversarial Networks.
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ABSTRACT

We demonstrate that language models pre-trained on cod-
ified (discretely-encoded) music audio learn representa-
tions that are useful for downstream MIR tasks. Specifi-
cally, we explore representations from Jukebox [1]: a mu-
sic generation system containing a language model trained
on codified audio from 1M songs. To determine if Juke-
box’s representations contain useful information for MIR,
we use them as input features to train shallow models on
several MIR tasks. Relative to representations from con-
ventional MIR models which are pre-trained on tagging,
we find that using representations from Jukebox as in-
put features yields 30% stronger performance on average
across four MIR tasks: tagging, genre classification, key
detection, and emotion recognition. For key detection, we
observe that representations from Jukebox are consider-
ably stronger than those from models pre-trained on tag-
ging, suggesting that pre-training via codified audio lan-
guage modeling may address blind spots in conventional
approaches. We interpret the strength of Jukebox’s repre-
sentations as evidence that modeling audio instead of tags
provides richer representations for MIR.

1. INTRODUCTION

It is conventional in MIR 1 to pre-train models on large la-
beled datasets for one or more tasks (commonly tagging),
and reuse the learned representations for different down-
stream tasks [2–10]. Such transfer learning approaches
decrease the amount of labeled data needed to perform
well on downstream tasks, which is particularly useful
in MIR where labeled data for many important tasks is
scarce [11, 12]. Historically-speaking, improvement on
downstream tasks is enabled by finding ever-larger sources
of labels for pre-training—in chronological order: tags [3],
metadata [5, 7, 9, 10], and recently, co-listening data [9].
However, it stands to reason that modeling music audio

* Equal contribution.
1 MIR has a broad definition, but in this paper “MIR” refers specifi-

cally to making discriminative predictions on music audio.

© Rodrigo Castellon, Chris Donahue, Percy Liang. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Rodrigo Castellon, Chris Donahue, Percy
Liang, “Codified audio language modeling learns useful representations
for music information retrieval”, in Proc. of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

(as opposed to labels) could yield richer representations.
Recently, contrastive learning [13] has been proposed as
a pre-training strategy to learn representations from audio
for MIR [14], but this approach has yet to exceed the per-
formance of label-based pre-training on downstream tasks.

Outside of the discriminative MIR landscape, a recent
system called Jukebox [1] demonstrated promising per-
formance for generating music audio. To achieve this
result, Jukebox leverages recent architectural develop-
ments from natural language processing (NLP) by codi-
fying audio—encoding high-rate continuous audio wave-
forms into lower-rate discrete sequences which can be fed
in directly to NLP models. Specifically, Jukebox trains
a Transformer [15, 16] language model, an autoregres-
sive generative model, on codified audio from 1M songs.
Purely for convenience, we refer to Jukebox’s training pro-
cedure as codified audio language modeling (CALM).

While Jukebox already demonstrates that CALM is use-
ful for music generation, in this work we demonstrate that
CALM is also useful as a pre-training procedure for dis-
criminative MIR tasks. To this end, we repurpose Jukebox
for MIR by first using it to extract audio feature represen-
tations, and then training shallow models (probes [18, 19])
on downstream tasks using these features as input (Fig-
ure 1). Relative to representations from models pre-trained
with tagging, we find that representations from Jukebox are
30% more effective on average when used to train probes
on four downstream MIR tasks: tagging, genre classifi-
cation, key detection, and emotion recognition. We also
observe that representations from Jukebox are much more
useful for key detection than those from models pre-trained
on tagging, which suggests that CALM pre-training may
be particularly beneficial for tasks which have little to do
with tagging. This simple setup of training shallow models
on representations from Jukebox is even competitive with
purpose-built state-of-the-art methods on several tasks.

To facilitate reproducibility [11], we release all of our
code for this project, alongside images for Docker contain-
ers which provide full provenance for our experiments. 2

We note that, while CALM pre-training at the scale of
Jukebox requires substantial computational resources, our
post hoc experiments with Jukebox only require a single
commodity GPU with 12 GB memory.

2 Code: https://github.com/p-lambda/jukemir
Containers: https://hub.docker.com/orgs/jukemir
All experiments reproducible on the CodaLab platform:
https://worksheets.codalab.org/worksheets/
0x7c5afa6f88bd4ff29fec75035332a583

88



6

9 7 2 0 0 6 58

…

6 5 2 5 2 0 60

7

Figure 1. Conventional MIR pre-training (left) trains convolutional neural networks on audio spectrograms using
manually-annotated labels from tagging datasets. In contrast, CALM MIR pre-training (middle) involves training a lan-
guage model on codified audio, which has been previously explored for music generation [17, 1]—here, we propose to use
it for discriminative MIR tasks. To determine if CALM pre-training is effective for MIR, we probe for information about
particular MIR tasks (right) in resultant representations. Specifically, we extract features from the learned language model
for the audio in small, task-specific labeled datasets, and use these features to train shallow probing models on each task.

2. CALM PRE-TRAINING

CALM was first proposed by van den Oord et al. and
used for unconditional speech generation [20]. As input,
CALM takes a collection of raw audio waveforms (and op-
tionally, conditioning metadata), and learns a distribution
p(audio | metadata). To this end, CALM adopts a three-
stage approach: (1) codify a high-rate continuous audio
signal into lower-rate discrete codes, (2) train a language
model on the resulting codified audio and optional meta-
data, i.e., learn p(codified audio | metadata), and (3) de-
code sequences generated by the language model to raw
audio. 3 The original paper [20] also proposed a strat-
egy for codifying audio called the vector-quantized vari-
ational auto-encoder (VQ-VAE), and the language model
was a WaveNet [21]. Within music, CALM was first used
by Dieleman et al. for unconditional piano music genera-
tion [17], and subsequently, Dhariwal et al. used CALM
to build a music generation system called Jukebox [1] with
conditioning on genre, artist, and optionally, lyrics.

Despite promising results on music audio generation,
CALM has not yet been explored as a pre-training strat-
egy for discriminative MIR. We suspect that effective mu-
sic audio generation necessitates intermediate representa-
tions that would also contain useful information for MIR.
This hypothesis is further motivated by an abundance of
previous work in NLP suggesting that generative and self-
supervised pre-training can yield powerful representations
for discriminative tasks [22–25].

To explore this potential, we repurpose Jukebox for
MIR. While Jukebox was designed only for generation,
its internal language model was trained on codified au-
dio from a corpus of 1.2M songs from many genres and

3 This third stage is not necessary for transfer learning.

artists, making its representations potentially suitable for a
multitude of downstream MIR tasks. Jukebox consists of
two components—the first is a small (2M parameters) VQ-
VAE model [20] that learns to codify high-rate (44.1 kHz),
continuous audio waveforms into lower-rate (⇠345Hz),
discrete code sequences with a vocabulary size of 2048

(11 bits). The second component is a large (5B parame-
ters) language model that learns to generate codified audio
using a Transformer decoder—an architecture originally
designed for modeling natural language [15, 16]. By train-
ing on codified audio (as in [17, 1]) instead of raw audio
(as in [21, 16]), language models are (empirically) able to
learn longer-term structure in music, while simultaneously
using less memory to model the same amount of audio.

Like conventional MIR models which pre-train on tag-
ging and/or metadata, Jukebox also makes use of genre
and artist labels during training, providing them as condi-
tioning information to allow for increased user control for
generation. Hence, while CALM in general is an unsuper-
vised strategy that does not require labels, transfer learning
from Jukebox specifically should not be considered an un-
supervised approach (especially for downstream tasks like
genre detection). However, by modeling the audio itself in-
stead of modeling the labels (as in conventional MIR pre-
training), we hypothesize that Jukebox learns richer repre-
sentations for MIR tasks than conventional strategies.

3. EXTRACTING SUITABLE REPRESENTATIONS

FROM JUKEBOX

Here we describe how we extract audio representations
from Jukebox which are suitable as input features for
training shallow models. While several pre-trained Juke-
box models exist with different sizes and conditioning in-
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Figure 2. Normalized validation performance of linear
models trained on representations from specific layers of
Jukebox across four downstream MIR tasks. On average,
the strongest representations for these tasks come from the
middle of Jukebox.

formation, here we use the 5B-parameter model without
lyrics conditioning (named “5b”), which is a sparse trans-
former [15, 16] containing 72 layers. Each layer yields
4800-dimensional activations for each element in the codi-
fied audio sequence, i.e., approximately 345 times per sec-
ond. To extract representations from this model for a par-
ticular audio waveform, we (1) resample the waveform to
44.1kHz, (2) normalize it, (3) codify it using the Jukebox
VQ-VAE model, and (4) input the codified audio into the
language model, interpreting its layer-wise activations as
representations. Jukebox was trained on ⇠24-second audio
clips (codified audio sequences of length 8192)—we feed
in this same amount of audio at a time when extracting rep-
resentations. In addition to the genre and artist condition-
ing fields mentioned previously, Jukebox expects two ad-
ditional fields: total song length and clip offset—to ensure
that representations only depend on the input audio, we
simply pass in “unknown” for artist and genre, one minute
for song length, and zero seconds for clip offset. 4

The Jukebox language model yields an unwieldy
amount of data—for every 24-second audio clip, it emits
24 ⇥ 345 ⇥ 72 ⇥ 4800 numbers, i.e., over 10GB if stored
naively as 32-bit floating point. We reduce the amount of
data by mean pooling across time, a common strategy in
MIR transfer learning [4, 8], which aggregates more than
10GB of activations to around 1MB (72⇥ 4800).

3.1 Layer selection

While pooling across time dramatically reduced the dimen-
sionality of Jukebox’s outputs, training shallow classifiers
on 72 ⇥ 4800 features is still computationally expensive.
To further reduce the dimensionality, we use only one of
the layers from Jukebox—the middle layer (36)—yielding
a total of 4800 features per 24 second audio clip. Unlike
conventional pre-training, where the strongest representa-
tions for transfer learning typically lie at the end of the net-
work [26], the strongest representations from pre-trained

4 We observed in initial experiments that passing in ground-truth
conditioning information had little effect on downstream performance.
Hence, we elected to pass in placeholder metadata to maintain the typical
type signature for audio feature extraction (audio as the only input).

Task Size Metrics #Out

Tagging [31] 25860 AUC/AP 50
Genre classification [32] 930 Accuracy 10
Key detection [33] 1763 Score 24
Emotion recognition [34] 744 A/V R2 2

Table 1. Basic information about the four tasks we con-
sider in this work, including the size of each task-specific
dataset in terms of number of labeled examples, relevant
metrics for each task, and the number of model outputs re-
quired for each dataset.

language models tend to lie towards the middle [27–30].
To confirm this observation in our context, we trained lin-
ear models using representations from different layers of
Jukebox on our downstream MIR tasks—average perfor-
mance indeed peaked at the middle layers (Figure 2).

In addition to using the middle layer, we experimented
with two other layer selection strategies: (1) sub-sampling
layers across the network, and (2) selecting relevant lay-
ers in a task-specific fashion. 5 We found that the simplest
strategy of using only the middle layer was equally effec-
tive and more computationally practical 6 than the other
two layer selection strategies.

4. DOWNSTREAM TASK DESCRIPTIONS

We select four downstream MIR tasks to constitute a
benchmark for comparing different audio feature repre-
sentations: (1) tagging, (2) genre classification, (3) key
detection, and (4) emotion recognition. A summary of
the datasets used for each task appears in Table 1. These
tasks were selected to cover a wide range of dataset sizes
(744 examples for emotion recognition vs. 26k examples
for tagging) and subjectivity (emotion recognition is more
subjective vs. key detection is more objective). Addition-
ally, each task has a public dataset with standard evaluation
metrics. We describe each of these tasks below.

4.1 Tagging

Tagging involves determining which tags from a fixed
set of tags apply to a particular song. Categories of
tags include genre (e.g., jazz), instrumentation (e.g., vio-
lin), emotions (e.g., happy), and characteristics (e.g., fast).
There are two large datasets for tagging, which both con-
tain human-annotated tags for 30-second clips: MagnaTa-
gATune [31] (MTT) which contains around 26k clips,
and a tagged subset of 240k clips from the Million Song
Dataset [35] (MSD). While both datasets contain a large
vocabulary of tags, typical usage involves limiting the vo-
cabulary to the 50 most common tags in each.

Because it is the largest non-proprietary MIR dataset,
MSD is commonly used for pre-training models for trans-
fer learning. To mitigate an unfair advantage of methods

5 This procedure selected layers that were the most jointly informative
in a greedy fashion, measured by task performance with a linear probe.

6 While the entirety of Jukebox does not fit on a single commodity
GPU with 12GB memory, the first 36 layers do fit.
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which pre-train on MSD, we use MTT instead of MSD to
benchmark representations on tagging performance. While
both datasets are superficially similar (choosing from 50

tags for 30-second clips), their label distributions are quite
different: MSD is skewed towards genre tags, while MTT
is skewed towards instrumentation tags.

We use the standard (12:1:3) train, validation, and test
split for MTT [3]. Additionally, we report both common
metrics (both are macro-averaged over tags): area under
the receiver operating characteristic curve (MTTAUC), and
average precision (MTTAP). 7 Note that inconsistencies in
handling unlabeled examples for past work on MTT have
been observed [36]—some work discards examples with-
out top-50 tags during training, evaluation, both, or neither.
In this work, we do not discard any examples.

4.2 Genre classification

Genre classification involves assigning the most appropri-
ate genre from a fixed list for a given song. For this task,
we report accuracy on the GTZAN dataset [37], which
contains 30-second clips from 10 distinct genres. We adopt
the “fault-filtered” split from [32] which addresses some of
the reported issues with this dataset [38]. We note that this
task has a high degree of overlap with tagging, as tagging
datasets typically have a number of genres within their tag
vocabulary. In fact, seven of ten genres in GTZAN are
present in the tag list of MSD.

4.3 Key detection

Key detection involves predicting both the scale and tonic
pitch class for the underlying key of a song. We inves-
tigate the Giantsteps-MTG and Giantsteps datasets [33]
which include songs in major and minor scales for all
pitch classes, i.e., a 24-way classification task. As in past
work [39], we use the former for training and the latter
for testing. Because no standard validation split exists
for Giantsteps-MTG, we follow [32] and create an artist-
stratified 4:1 split for training and validation, which we in-
clude in our codebase for reproducibility. The music in this
dataset is all electronic dance music, and the clips are two
minutes in length. We report the typical weighted score
metric for Giantsteps (GS): an accuracy measure which
gives partial credit for reasonable mistakes such as predict-
ing the relative minor key for the major ground truth [40].

4.4 Emotion recognition

Emotion recognition involves predicting human emotional
response to a song. Data is collected by asking hu-
mans to report their emotional response on a two di-
mensional valence-arousal plane [41], where valence in-
dicates positive versus negative emotional response, and
arousal indicates emotional intensity. We use the Emomu-
sic dataset [34], which contains 744 clips of 45 seconds
in length. We investigate the static version of this task

7 Most past work refers to the quantity of average precision as area
under the precision-recall curve.

Representation Pre-training strategy Dimensions

CHROMA N/A 72

MFCC N/A 120

CHOI [4] MSD Tagging [3] 160

MUSICNN [8] MSD Tagging [3] 4194

CLMR [14] Contrastive [13] 512

JUKEBOX [1] CALM [20] 4800

Table 2. Basic statistics about the six representations we
examine in this work.

where original time-varying annotations are averaged to-
gether to constitute a clip-level annotation. Because this
dataset does not have a standard split, it is difficult to di-
rectly compare with past work. To simplify comparison
going forward, we created an artist-stratified split of Emo-
music, which is released in our codebase. We take the
highest reported numbers from past work to characterize
“state-of-the-art” performance, though we note that these
numbers are not directly comparable to our own due to
differing splits. We report the coefficient of determination
between the model predictions and human annotations for
arousal (EmoA) and valence (EmoV).

5. PROBING EXPERIMENTS

Here we describe our protocol for probing for information
about MIR tasks in representations from Jukebox and other
pre-trained models, i.e., measuring performance of shallow
models trained on these tasks using different representa-
tions as input features. We borrow the term “probing” from
analogous investigations in NLP [19,42,43], however such
methodology is common in MIR [2–5, 7–10].

5.1 Descriptions of representations

In addition to probing representations from Jukebox (an
exemplar of CALM pre-training), we probe four additional
representations which are emblematic of three other MIR
pre-training strategies (Table 2). Before pre-training, hand-
crafted features were commonplace in MIR—as archetypal
examples, we probe constant-Q chromagrams (CHROMA)
and Mel-frequency cepstral coefficients (MFCC), ex-
tracted with librosa [49] using the default settings. As
in [4], we concatenate the mean and standard deviation
across time of both the features and their first- and second-
order discrete differences. We also probe two examples
of the current conventional paradigm which pre-trains on
tagging using MSD: a convolutional model proposed by
Choi et al. [4] (CHOI), and a more modern convolutional
model from [8] (MUSICNN). Finally, we compare to a re-
cent MIR pre-training strategy called contrastive learning
of musical representations [14] (CLMR), though we note
that CLMR was trained on far less audio (a few thousand
songs) than the other pre-trained models.

All of these strategies operate at different frame
rates, i.e., they produce a different number of representa-
tion vectors for a fixed amount of input audio. To handle
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Tags Genre Key Emotion

Approach MTTAUC MTTAP GTZAN GS EmoA EmoV Average

(No pre-training) Probing CHROMA 77.6 18.5 32.8 56.5 29.3 5.9 38.7
(No pre-training) Probing MFCC 85.8 30.2 44.8 14.6 47.9 26.5 38.7
(Tagging) Probing CHOI [4] 89.7 36.4 75.9 13.1 67.3 43.4 51.9
(Tagging) Probing MUSICNN [8] 90.6 38.3 79.0 12.8 70.3 46.6 53.7
(Contrastive) Probing CLMR [14] 89.4 36.1 68.6 14.9 67.8 45.8 50.8
(CALM) Probing JUKEBOX [1] 91.5 41.4 79.7 66.7 72.1 61.7 69.9

State-of-the-art [9, 8, 6, 44–46] 92.0 38.4 82.1 79.6 70.4* 55.6* 72.5*
Pre-trained [9, 14, 6, 45, 45, 47] 92.0 35.9 82.1 75.8 67.1* 55.6* 70.8*
From scratch [8, 8, 48, 44, 44, 39] 90.7 38.4 65.8 74.3 70.4* 50.0* 66.2*

Table 3. Comparing performance of probes on representations from a model pre-trained with CALM to other pre-
trained MIR models (top section) to reported state-of-the-art performance (bottom section) across four tasks: (1) tagging
(MTTAUC/MTTAP), (2) genre classification (GTZAN), (3) key detection (GS), and (4) emotion recognition (EmoA/EmoV).
For all six metrics, the max score is 100 and higher is better—see Section 4 for a full description of tasks/metrics. For each
metric, the best probing-based approach and the best approach overall are bolded. We also report an average score across
all four tasks; tasks with multiple evaluation metrics are averaged beforehand. On all metrics, probing JUKEBOX is more
effective than probing representations from other pre-trained models. Probing JUKEBOX is competitive with task-specific
state-of-the-art approaches for all tasks/metrics except key detection (GS). Note that the ordering of citations in the bottom
section corresponds to respective column ordering. * indicates that past work on Emomusic evaluates on different subsets
of the dataset than our work and hence numbers are not directly comparable—see Section 4.4 for details.

this, we follow common practice of mean pooling repre-
sentations across time [4, 8]. While CHROMA, MFCC,
and CLMR produce a single canonical representation per
frame, we note that the other three produce multiple rep-
resentations per frame, i.e., the activations of individual
network layers. For CHOI, we concatenate all layer acti-
vations together, which was shown to have strong perfor-
mance on all downstream tasks in [4]. For MUSICNN,
we concatenate together the mean and max pool of three-
second windows (before mean pooling across these win-
dows), i.e., the default configuration for that approach. For
JUKEBOX, we use the middle layer activations as moti-
vated in Section 3.1. By using a single layer, we mitigate
the potential of a superficial dimensionality advantage for
JUKEBOX, as this induces a dimensionality similar to that
of MUSICNN (4800 and 4194 respectively; see Table 2).

Unlike other representations which operate on short au-
dio windows, CHOI and JUKEBOX were trained on long
windows (29 seconds and 24 seconds respectively). Ac-
cordingly, for the three datasets with short clips (tagging,
genre classification, and emotion recognition all have clips
between 30 and 45 seconds in length), we adopt the policy
from [4] and simply truncate the clips to the first window
when computing representations for CHOI and JUKEBOX.
Because clips from the key detection dataset are longer
(two minutes), we split the clips into 30-second windows
for all methods and train probes on these shorter windows.
At test time, we ensemble window-level predictions into
clip-level predictions before computing the score.

5.2 Probing protocol

To probe representations for relevant information about
downstream MIR tasks, we train shallow supervised mod-

els (linear models and one-layer MLPs) on each task us-
ing these representations as input features. As some repre-
sentations may require different hyperparameter configura-
tions for successful training, we run a grid search over the
following hyperparameters (216 total configurations) for
each representation and task (24 total grid searches), using
early stopping based on task-specific metrics computed on
the validation set of each task:

• Feature standardization: {off, on}
• Model: {Linear, one-layer MLP with 512 hidden

units}
• Batch size: {64, 256}
• Learning rate: {1e-5, 1e-4, 1e-3}
• Dropout probability: {0.25, 0.5, 0.75}
• L2 regularization: {0, 1e-4, 1e-3}

While we use this same hyperparameter grid for all
tasks, the learning objective varies by task (cross-entropy
for genre classification and key detection, independent bi-
nary cross-entropy per tag for tagging, and mean squared
error for emotion recognition) as does the number of probe
outputs (Table 1). Some tasks have multiple metrics—we
early stop on MTTAUC for tagging as it is a more com-
mon metric than MTTAP, and on the average of EmoA and
EmoV for emotion recognition. We take the model with the
best early stopping performance from each grid search and
compute its performance on the task-specific test set.

6. RESULTS AND DISCUSSION

In Table 3, we report performance of all representations
on all tasks and metrics, as well as average performance
across all tasks. Results are indicative that CALM is a
promising paradigm for MIR pre-training. Specifically, we
observe that probing the representations from JUKEBOX
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(learned through CALM pre-training) achieves an average
of 69.9, which is 30% higher relative to the average of the
best representation pre-trained with tagging (MUSICNN
achieves an average of 53.7). Performance of JUKEBOX
on all individual metrics is also higher than that of any
other representation. Representations from all pre-trained
models outperform hand-crafted features (CHROMA and
MFCC) on average. Note that these results are holistic
comparisons across different model architectures, model
sizes, and amounts of pre-training data (e.g., CLMR was
trained on far less data than JUKEBOX), and hence not suf-
ficient evidence to claim that CALM is the “best” music
pre-training strategy in general.

We also observe that JUKEBOX contains substantially
more information relevant for key detection than other
representations. While CHROMA (spectrogram projected
onto musical pitch classes) contains information relevant
to key detection by design, all other representations besides
JUKEBOX yield performance on par with that of a majority
classifier (outputting “F minor” for every example scores
15.0)—hence, these representations contain almost no in-
formation about this task. For models pre-trained with tag-
ging (CHOI and MUSICNN), intuition suggests that this
is because none of the tags in MSD relate to key signa-
ture. For CLMR, we speculate that the use of transposi-
tion as a data augmentation strategy removes information
about key signature. While tagging and CLMR were not
designed with the intention of supporting transfer to key
detection, we argue that it is generally desirable to have a
unified music representation which performs well on many
downstream MIR tasks. Hence, we interpret the compara-
tively stronger performance of JUKEBOX on key detection
as evidence that CALM pre-training addresses blind spots
present in other MIR pre-training paradigms.

In the bottom section of Table 3, we also report state-of-
the-art performance for purpose-built methods on all tasks,
which is further broken down by models which use any
form of pre-training (including pre-training on additional
task-specific data as in [47]) vs. ones that are trained from
scratch. Surprisingly, we observe that probing JUKEBOX is
competitive with state-of-the-art for all tasks except for key
detection, and achieves an average only 4% lower relative
to that of state-of-the-art. On tagging, probing JUKEBOX
achieves similar MTTAUC to a strategy which pre-trains on
a proprietary dataset of 10M songs using supervision [9].
We interpret the strong performance of this simple probing
setup as evidence that CALM pre-training is a promising
path towards models that are useful for many MIR tasks.

We believe that CALM pre-training is promising for
MIR not just because of the strong performance of an
existing model (Jukebox), but also because there are nu-
merous avenues which may yield further improvements.
Firstly, CALM could be scaled up to pre-train even larger
models on more data (Jukebox was trained on 1M songs,
while Spotify has an estimated 70M songs in its catalog).
In [50], it is observed that increasing model and dataset
size yields predictable improvements to cross-entropy for
language modeling in NLP, an insight which may also

hold for CALM pre-training for MIR. Secondly, we an-
ticipate that fine-tuning a model pre-trained with CALM
would outperform our probing setup. Finally, taking a cue
from related findings in NLP, we speculate that CALM pre-
training with a bidirectional model and masked language
modeling (as in BERT [23]) would outperform the genera-
tive setup of Jukebox (that of GPT [51]).

7. RELATED WORK

Transfer learning has been an active area of study in MIR
for over a decade [52, 53, 2, 54]. The predominant strategy
for MIR pre-training using large tagging datasets was first
proposed by van den Oord et al. 2014 [3]. This work pre-
trained deep neural networks on MSD and demonstrated
promising performance on other tagging and genre classi-
fication tasks. Choi et al. 2017 [4] pre-trained a convolu-
tional neural network on MSD and also explored a more di-
verse array of downstream tasks—we use their pre-trained
model as a baseline. More recent improvements use the
same approach with different architectures [6, 8].

Other strategies for MIR transfer learning have been
proposed. Some work pre-trains on music metadata
(e.g., artist, album) instead of tags [5, 7]. In contrast to
the manual annotations required for tagging-based pre-
training, metadata is much cheaper to obtain, but perfor-
mance of pre-training on metadata is comparable to that
of pre-training on tagging. Kim et al. 2020 [10] improve
over Choi et al. 2017 [4] using a multi-task approach.
Huang et al. [9] demonstrate that metadata can be com-
bined with proprietary co-listening data for pre-training
on 10M songs to achieve state-of-the-art performance on
MTT—probing representations from CALM pre-training
on 1M songs achieves comparable performance (Table 3).
Finally, contrastive learning [13] has been proposed for
MIR pre-training [55, 56, 14]—we compare to [14].

While CALM has not previously been explored for MIR
transfer learning, it has been explored for other purposes.
van den Oord et al. 2017 [20] first proposed CALM and
used it for unconditional speech generation. Variations of
CALM have been explored for speech recognition [57, 58]
and urban sound classification [59]. CALM has also been
explored for music generation [17, 1]. Language models
have been used extensively for symbolic music [60–62],
including work on pre-training [63, 64].

8. CONCLUSION

In this work we demonstrated that CALM is a promis-
ing pre-training strategy for MIR. Compared to conven-
tional approaches, CALM learns richer representations by
modeling audio instead of labels. Moreover, CALM al-
lows MIR researchers to repurpose NLP methodology—
historically, repurposing methodology from another field
(computer vision) has provided considerable leverage for
MIR. Finally, CALM suggests a direction for MIR re-
search where enormous models pre-trained on large music
catalogs break new ground on MIR tasks, analogous to on-
going paradigm shifts in other areas of machine learning.
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ABSTRACT

This paper proposes a new self-attention based model for
music score infilling, i.e., to generate a polyphonic music
sequence that fills in the gap between given past and fu-
ture contexts. While existing approaches can only fill in a
short segment with a fixed number of notes, or a fixed time
span between the past and future contexts, our model can
infill a variable number of notes (up to 128) for different
time spans. We achieve so with three major technical con-
tributions. First, we adapt XLNet, an autoregressive model
originally proposed for unsupervised model pre-training,
to music score infilling. Second, we propose a new, mu-
sically specialized positional encoding called relative bar
encoding that better informs the model of notes’ position
within the past and future context. Third, to capitalize rela-
tive bar encoding, we perform look-ahead onset prediction
to predict the onset of a note one time step before predict-
ing the other attributes of the note. We compare our pro-
posed model with two strong baselines and show that our
model is superior in both objective and subjective analyses.

1. INTRODUCTION

A growing body of research work has adopted deep learn-
ing techniques to generate music sequentially, taking only
the past context as a condition while generating. This pa-
per deals with a different setting where both the past and
future context are given, called music score infilling [1–9].
As depicted in Figure 1, the goal of this task is to generate
a short piece of symbolic music that fits in the middle gap.
The generated piece is expected to meet certain require-
ments, e.g., being coherent with the contexts, and having
an appropriate duration span such that the generated piece
will not overflow to the outside of the designated region.
Models with such a capability are useful in a few scenar-
ios. For instance, one may have an inspiration to write two
segments of melodies but somehow do not know how to
connect them [5]. Or, a music piece may have an impaired
part in the middle that requires restoration [10].

© C.J. Chang, C.Y. Lee, and Y.H. Yang. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: C.J. Chang, C.Y. Lee, and Y.H. Yang, “Variable-Length
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Figure 1: Comparison between sequential generation and
music score infilling (a.k.a., music score inpainting).

As reviewed in Section 2, existing models for score in-
filling can be categorized by their representation of musical
scores. Among them, we are interested in the case when
music is represented as a sequence of event tokens such as
note-on and note-off [11], for such a token-based represen-
tation facilitates the use of the self-attention based Trans-
formers [12] for model building, which has been shown
to outperform recurrent neural networks (RNN) in model-
ing sequences [13,14]. 1 However, Transformers are origi-
nally designed for sequential generation: predicting the fu-
ture given the past tokens. Adapting it to account for both
the past and future contexts while generating the missing
token sequence in the middle may not be trivial.

The Infilling Piano Performances (IPP) [9] is the only
pioneering work adapting Transformers for music score in-
filling, to our best knowledge. It achieves so with a simple
approach of “reordering”: the past and future contexts are
concatenated and placed before the missing segment as the
prompt. A standard Transformer decoder is then trained to
autoregressively generate a continuation of a given prompt.
We note that this approach has a strong limitation: the past
and future contexts need to consist of a fixed number of
c notes each, and the missing segment a fixed number of
k notes (c and k can be different). Moreover, as reported
in [9], empirically their model works well only for infilling
a short sequence with k = 16 missing notes; for larger k,
its performance deteriorates and the infilled sequence can-
not connect well with the future context.

In text infilling [25–30], the music infilling counterpart
in natural language processing (NLP), many approaches
have been based on Transformers. For instance, Infill-
ing Language Model (ILM) [29] uses special tokens to in-

1 Token-based representations have also been heavily adopted by re-
cent Transformer models for sequential MIDI music generation [15–24].
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form the language models where to infill text. FELIX [30]
enables BERT [13] to solve the infilling task by letting
BERT predict [PAD] tokens for redundant masked posi-
tions. Both models can perform variable-length text infill-
ing, but they were both tested only on infilling short se-
quences with less than 10 consecutive tokens (words).

This paper proposes a new self-attention based model
to attain long and variable-length music score infilling. In
our experiment, the model is able to generate a variable-
length polyphonic infilled sequence with up to 768 tokens,
or 128 notes, given the past and future contexts. 2 More-
over, our model is able to infill spans of different length
(e.g., 2 bars to 4 bars) without re-training for each span
length. We achieve so with three technical contributions.
First, we employ XLNet [31], a Transformer encoder-based
model, as the model architecture for the first time for mu-
sic generation. Unlike other bidirectional models such as
BERT [13], XLNet can attend to the past and future con-
texts while maintaining its autoregressive predicting order.
We show that music infilling can be attained by XLNet via
a specific factorization order of the token sequence.

Second, we point out that the original XLNet can in-
fill only a fixed-length token sequence, because it relies on
the vanilla positional encoding 3 that requires the length
of the missing segment to be known and fixed in advance.
We propose a musically specialized positional encoding
and a modification of the two-stream attention mechanism
of XLNet to make it feasible for variable-length infilling.
Specifically, our model represents the distance between
two tokens in terms of the number of bars between them,
rather than the exact number of intermediate tokens. Doing
so, the positions of notes are also specified in a musically
more meaningful way.

Third, with our special positional encoding, we need
to know the musical position of the next note to be pre-
dicted in the autoregressive generation process. Therefore,
we adapt the multi-output methodology of the Compound
Word (CP) Transformer [24] to perform look-ahead onset
prediction at each timestep. Specifically, each time, our
model predicts the content-related tokens of the current
note (i.e., PITCH, DURATION, VELOCITY, and TEMPO),
and the position-related tokens (i.e., BAR and SUB-BEAT)
of the next note to look one note ahead.

For evaluation, we compare our model with the two text
infilling state-of-the-arts, ILM [29] and FELIX [30], that
we extend to accept the same token representation as ours
and to generate variable-length infilled sequences. The re-
sults show that our model outperforms these two strong
baselines in both objective and subjective analyses.

For reproducibility, we open source our code at GitHub,
along with examples of the infilling result. 4

2 As described in Section 3.1, we represent a musical note with 6 to-
kens (PITCH, DURATION, etc) in total.

3 Unlike RNNs, the Transformers do not have a built-in notion of the
sequential order of tokens, and thus need to rely on the so-called posi-
tional encodings that “assign” positions to each token [32, 33]. This is
usually done by using a token’s absolute position in the sequence [12], or
by its relative distance to other tokens [34–36].

4 https://github.com/reichang182/
variable-length-piano-infilling

Input: [BLANK] [SEP]

target: [EOS]

Input:

target:

[MASK] [MASK] [MASK] [MASK] [MASK]

[PAD] [PAD]

ILM

FELIX

Figure 2: An illustration of how the baselines, ILM [29]
and FELIX [30], solve the infilling task. For FELIX, the
pre-defined mask length is set to five in this illustration.

2. BACKGROUND

2.1 Related Work on Music Score Infilling

Existing work can be divided by their data representation:
DeepBach-like. DeepBach [1] predicts a missing note

based on the information from the notes around. They use
two RNNs to aggregate the past and future contexts and
a feedforward neural network for the notes occurring at
the same temporal position as the current target note. They
use pseudo-Gibbs sampling to improve the generated score
gradually. Anticipation-RNN [2] introduces a constraint-
RNN to the generation model, enforcing the model to con-
sider the user-defined constraints while generating. Music
InpaintNet [3] also uses an RNN to integrate the informa-
tion within the context. However, they use the encoder of
a bar-wise variational auto-encoder (VAE) to encode mea-
sures into latent vectors first and use the decoder of the
VAE to reconstruct measures from the latent vectors. Mu-
sic SketchNet [4] extends the work of Music InpaintNet to
allow their model to consider user preferences.

DeepBach-like representation represents notes in an el-
egant way. But, it is mainly suitable for scores with a con-
stant number of voices, e.g., four voices for Bach chorale
and one voice for Irish and Scottish folk tunes [37], since
representing multiple notes played at the same time re-
quires more tracks added to the representation. Prior arts
on DeepBach-like representation all use RNNs to deal with
contexts, while we use Transformer-based models, which
have been shown more powerful [16, 38].

Piano roll. Coconet [6] trains a convolutional neural
network (CNN) to complete partial music score and uses
blocked Gibbs sampling as an analogue to rewriting. Naka-
mura et al. [7] use CNN with deconvolutional layers at
the end. The whole model is trained under the framework
of generative adversarial networks. ES-Net [8] represents
music as a sequence of edit events, each of which denotes
either an addition or removal of a note. ES-Net is able to
modify a music score while preventing the accumulation
of errors that autoregressive models are prone to have.

The piano roll representation typically encodes infor-
mation concerning pitch, pitch duration, and beat position
only, not tempo and velocity, which are important to form
an expressive piece. Moreover, as the CNN treats a piano
roll as an fixed-size image, all existing piano roll-based
models can only infill spans of fixed-length (e.g., 2 bars)
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once the CNN was trained. On the contrary, a single model
trained with our methodology can be applied to tasks with
missing spans of different length (e.g., 2 bars to 4 bars). 5

Aside from differences in data representation, some ex-
isting methods impose additional assumptions on data. For
example, the use of bar-wise VAE in Music InpaintNet and
Music SketchNet restrict their usage to cases where the
missing segments start and end at precisely the start or end
position of a bar, while our model is free of this restriction.

Event tokens. IPP [9] is the only work we are aware of
that considers music as a sequence of tokens and employs
the Transformer as the backbone model. Our work differs
from theirs in two aspects. First, their model can only infill
a fixed number of tokens, while ours can do variable-length
infilling. Second, while we both group tokens related to a
note to a tuple (cf. Section 3.1) [15, 24], our representa-
tion is based on the beat-based CP tokens [24], which have
built-in notion of bars and beats.

Converting our data to be acceptable to the aforemen-
tioned models and making them produce variable-length
infilling is not trivial. Hence, in our experiment we adopt
text infilling models [29, 30] as the baselines, for they are
both able to infill variable-length segment by design, not
these music score infilling models.

2.2 Related Work on Text Infilling

ILM [29] replaces the missing segment with a single spe-
cial token [BLANK]. The model learns to predict the orig-
inal contents at the end of the sequence in an autoregres-
sive manner. ILM only changes the input order of tokens
and does not modify the attention mechanism of the vanilla
Transformer. FELIX [30] uses BERT to derive the capac-
ity of utilizing bidirectional contexts. For variable-length
infilling, the missing segment is replaced with a series of
[MASK] tokens of a pre-defined length that is sufficiently
long. The model learns to predict the tokens to infill and
[PAD] tokens to indicate no token here. FELIX is different
from our model and ILM in that it predicts all tokens in
the missing segment at once, and does not consider previ-
ously generated tokens during generation. Both ILM and
FELIX were tested on infilling less than 10 words in the
original papers, while we consider up to 128 notes in our
task. Figure 2 illustrates how these two baselines work.

3. METHODOLOGY

We follow the definition of music score infilling in [3]:
given a past context Cpast and a future context Cfuture, the
task is to generate an infilled segment C⇤, which connects
Cpast and Cfuture in a musically meaningful way. During
training, the model should maximize the likelihood:

P (C⇤|Cpast, Cfuture) . (1)

We consider in this paper the case where the model is a
Transformer encoder and its input is a token sequence com-

5 Moreover, both DeepBach-like and piano roll require a token to hold
at each position; e.g., 100 tokens are needed to represent one second of
piano performance at a temporal resolution of 10ms, regardless of how
many note events there are [15].

Figure 3: An example of a piece of score encoded using
our representation. Note that the BAR and SUB-BEAT to-
kens are for positioning a note event on the time grid [20].

Token type Voc. size Values

Tempo 47 28, 32, ..., 212
Bar 2 0, 1
SUB-BEAT 16 0, 1, ..., 15
Pitch 86 22, 23, ..., 107
Velocity 33 0, 4, ..., 128
Duration 16 1, 2, ..., 16

Table 1: The token vocabulary used in our experiments.
Note that all the vocabulary sizes do not count special to-
kens such as <EOS> and <PAD>, since the use of the spe-
cial tokens are model-dependent.

posing of {Cpast, a masked version of C⇤, Cfuture}. The tar-
get output is the sequence {Cpast, C⇤, Cfuture}. Model loss
is computed over only the middle part related to C⇤.

Moreover, we desire our model not to generate C⇤ all at
once, but one token at a time in an autoregressive manner.
This way, the model builds C⇤ progressively by consider-
ing its previously generated tokens. The training objective
can be factorized to

Y

0<iT

P (ni|Cpast, Cfuture, nj , 0<j<i) , (2)

where n1, ..., nT are the tokens in C⇤. Please note that, in
our setting, the number of tokens T is variable, so does the
number of tokens within Cpast and Cfuture, respectively.

3.1 Compound Word-based Token Representation

We modify the beat-based token representation REMI [20]
and CP [24] to encode our music data. As illustrated in
Figure 3, 6 we describe different attributes of a musical
note through six different tokens—three note-related ones,
PITCH, DURATION, and VELOCITY, and three metric-
related ones, TEMPO, BAR, and SUB-BEAT. 7 Table 1
shows the vocabulary of the adopted token representation.
BAR is encoded to 1 for encountering a new bar, while en-
coded to 0 for staying at the same bar. SUB-BEAT is the
position of a note within one bar, represented in a resolu-
tion of the 16-th note. Following the multi-output method-

6 For simplicity, we use monophonic pieces as examples in all the fig-
ures in the paper, though we actually use polyphonic pieces in experiment.

7 Even though it is not that reasonable to associate a TEMPO event with
each note, we found that the models learn to predict similar tempos for
adjacent notes, thus barely lower the quality of music.
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0 -1 -2 -3 -4 -5
1 0 -1 -2 -3 -4
2 1 0 -1 -2 -3
3 2 1 0 -1 -2
4 3 2 1 0 -1
5 4 3 2 1 0

0 0 -1 -1 -1 -2
0 0 -1 -1 -1 -2
1 1 0 0 0 -1
1 1 0 0 0 -1
1 1 0 0 0 -1
2 2 1 1 1 0

original relative positional encoding relative-bar positional encoding

Figure 4: (Left) the widely-used relative positional encod-
ing vs. (right) the proposed relative-bar positional encod-
ing. Each row shows the positional encodings of a token.

ology of the CP Transformer [24], we may consider the six
tokens defining a note as a group and predict them alto-
gether at once at each timestep. Accordingly, the ni in Eq.
(2) is actually a “super token” (also referred to as a “note”
or a CP token herefater) comprising six tokens. When a CP
token is masked, all its six constituent tokens are masked.

Below, we also refer to BAR and SUB-BEAT as the on-
set of a note, and the other four tokens as the note’s content.

3.2 Learning Bidirectional Contexts through XLNet

We adapt XLNet [31] to predict the masked (missing) to-
kens of C⇤. Unlike other bidirectional models such as
BERT [13], XLNet can effectively address Eq. (2) due to
its special two-stream self-attention mechanism.

Models such as BERT cannot address Eq. (2) because
the missing parts of the input (i.e., nj in Eq. (2)) is re-
placed with a series of masked (CP-)tokens and those parts
cannot be seen by the notes to be predicted after (i.e., ni,
j < i). The idea of two-stream self-attention is to sepa-
rate the input into two streams—the content stream and the
query stream. Each masked token ni is inferred through
the query stream, which masks the content of the target to-
ken at the timestep i. But, in inferring ni, we can attend
to the content of other tokens nj that are before ni through
the content stream, which does not mask any tokens.

The original XLNet model is general and does not re-
quires the masked tokens to be consecutive as the case con-
sidered in Eq. (1). It covers music infilling as a special case
with the following specific permutation order in its permu-
tation language modeling: Cpast ! Cfuture ! C⇤.

3.3 A New Positional Encoding

The adapted XLNet considers both Cpast and Cfuture and
does well in fixed-length infilling, i.e., for scenarios where
the number of tokens in C⇤ is known or pre-defined. How-
ever, to extend the model to variable-length infilling, the
vanilla positional encodings [34] employed in the original
XLNet (and most Transformer-based models) to realize the
sequential order of the tokens become a problem. With-
out knowing the number of tokens in C⇤, we cannot assign
proper positional encoding to the notes in Cfuture. 8

To address this issue, we propose a novel relative bar
encoding to replace the original vanilla relative positional

8 Specifically, while we know the length of C⇤ at training time, we do
not know its length at inference time.

content
stream

query
stream

Use two-stream 
self-attention

Note information is of
notes at different timesteps

Directly apply look-ahead onset
prediction to autoregressive models

(a) (b)

Figure 5: Look-ahead onset prediction with (a) the XLNet
(those shaded are masked tokens) and (b) a Transformer
decoder; the input tokens in (b) are unsynchronized.

embedding [34] adopted by XLNet. While the original po-
sitional encoding represents the relative distance between
two notes in terms of the number of intermediate notes, the
proposed method represents the distance by the number of
bars in between. For instance, tokens within the same bar
are 0 bar apart, and thus get 0 for the relative-bar positional
encoding. However, for notes in the next bar, the current
note is one bar before, and thus will get �1 for the relative-
bar positional encoding. In this way, we only need to know
how many bars Cpast and Cfuture are apart to assign the rel-
ative bar positional encoding to their and C⇤’s notes. 9 See
Figure 4 for an illustration.

3.4 Look-ahead Onset Prediction through XLNet

While Section 3.1 suggests that we predict the six tokens
of a note ni at the same timestep, this is actually not ideal
when it comes to exploiting the relative-bar positional en-
coding. The problem is that we need to know the onset of
ni beforehand to assign a proper relative-bar positional en-
coding to its corresponding input (i.e., a masked CP token)
to the Transformer. To this end, we propose look-ahead on-
set prediction, where the onset of a note ni is inferred one
timestep ahead. Specifically, we modify the XLNet such
that the onset of ni (i.e., BAR or SUB-BEAT) is predicted
along with the content of ni�1 (i.e., four content-related
tokens) at timestep i � 1. The onset of ni is then fed to
the model at timestep i as the query stream input, with the
content part of the query stream input masked, to infer the
content of ni. This is illustrated in Figure 5(a).

There are two design details. First, the onset of the first
note to be infilled should be provided by the user during
inference phase, which may be desirable as the user can
decide where to start infilling. Second, the onset of the next
note also serves as a stop signal; once the model predicts
a special [EOS] token for either BAR or SUB-BEAT of the
next note, the infilling process comes to an end.

The overall architecture is shown in Figure 6. The query
stream inputs are the same as the content stream input ex-

9 Moreover, relative bar encoding actually provides more musically
meaningful information to models than the original positional encoding
does. For example, five notes being played at the same time are consid-
ered as four notes apart for the farthest two notes by the model with the
original positional encoding. However, they are actually notes with the
same onset time in a score.
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for content stream input

for query stream input

For next note

Figure 6: An illustration of the overall architecture pro-
posed in this paper. (1) A specific permutation order of
sequence is given to the model. (2) Tokens except for BAR
and SUB-BEAT are masked to form the query stream in-
put of XLNet. (3) Relative-bar positional encodings are
used instead. (4) BAR and SUB-BEAT from the output of
XLNet are the musical position of the next note.

cept that the content of notes are replaced by mask tokens,
since those are the parts to be inferred. The onset part of
the note (i.e., BAR and SUB-BEAT) is made visible, to al-
low the model to exploit the onset information. We note
that the BAR token fed as input to the query stream only
tells the model whether the note is in a new bar or stays in
the same bar, but not how many bars apart the current note
to the other notes in Cpast, Cfuture and the rest of C⇤. There-
fore, the relative-bar positional encoding is still needed.

3.5 The Necessity of Two-Stream Self-Attention

We are now ready to elaborate more why we are in favor
of XLNet instead of a Transformer decoder such as the one
used by IPP [9]. As depicted in Figure 5(b) and exempli-
fied in Figure 7, to realize the look-ahead onset prediction
needed by the proposed relative bar encoding, the onset-
related tokens and content-related tokens in the input to
a Transformer decoder would be unsynchronized. For in-
stance, the onset of the first input is for ni+1, yet the con-
tent is for ni. Such a mismatch impedes the Transformer
decoder to attend to proper notes through the dot product
of the input embeddings. This is not a problem for XLNet,
since the input tokens in either the content stream or query
stream remain synchronized (e.g., both for ni).

4. EXPERIMENTAL SETUP

Dataset. We use the AILabs-Pop1k7 dataset shared pub-
licly by Hsiao et al. [24], which contains 1,748 MIDI files
of polyphonic pop piano performances, all in 4/4 time sig-
nature. We further quantize the tempo, beat position, du-
ration, and velocity to reduce the vocabulary size, setting
the 16-th note as our minimal temporal resolution for beat
position and duration. There are on average 12.6 notes per
bar. We crop the music into 16-bar pieces with an 8-bar
overlap between successive pieces, yielding in total 19,789
16-bar data for model training.

Detailed Settings. We train all the models on 16-bar
data with up to 512 CP tokens and design the experiment

onset of the next notes

Inputs to the model when applying look-ahead onset
prediction without two-stream self-attention:

Figure 7: Illustration of the problem of a Transformer de-
coder such as IPP [9] for realizing look-ahead onset predic-
tion. To infer the third note in the sequence, it may be ben-
eficial if the model can attend to the first note, since both
notes are at the same sub-beat position (though in differ-
ent bars). However, because the onset-related and content-
related tokens are unsynchronized (cf. Figure 5(b)), the
model may not be able to attend to the proper notes.

with the following conditions in mind. First, Cpast and
Cfuture must be long enough to provide sufficient contextual
information. Second, the length and the musical position
of C⇤ should not be fixed, since we do not know where the
missing segment starts and how many notes should be in-
filled for various cases in the real world. Consequently, for
each token sequence, a range within the middle four bars,
i.e., bar7 to bar10, is randomly selected to be C⇤, such that
Cpast and Cfuture are at least 6 bars long, respectively. Note
C⇤ is not required to start right at the beginning of bar7.
The minimum number of CP tokens to be infilled is set to
half the number of CP tokens within bar7 and bar10. 10

A CP token is transformed before being fed to models.
First, each of the six tokens composing the CP token is
mapped to an embedding with size 256 using a lookup ta-
ble. Then, these embeddings are concatenated and merged
through a linear layer not shared across models, producing
a merged embedding of size 768. All the models accept
these merged embeddings as input and each has 8 heads, 12
self-attention layers, and intermediate layers of dimension
3,072. The output from these models is transformed back
to probabilities with linear projection followed by soft-
max. At inference time, the tokens are sampled through
nucleus [39] with temperature 1.0 and threshold 0.9.

5. EXPERIMENTAL RESULTS

5.1 Objective Evaluation

We evaluate these models with a number of metrics pro-
posed in [22], which are pitch class histogram entropy and
grooving pattern similarity. The former provides us an in-
dicator to the usage distribution of each pitch class within
1 bar and 4 bars, resulting in metrics H1 and H4. The lat-
ter evaluates the rhythmic pattern similarity between bars
(GS). Since the goal of the task is to connect contexts
and generate fluent music, these metrics calculated on C⇤

10 And, note that we do not expect the models to rely on the absolute
musical position within an entire music piece to inference, but should
only rely on the note’s contexts around. Thus, when providing the 16-bar
data to the models, the absolute position of these 16-bar data within an
entire music piece is discarded.
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Figure 8: The difference between “C⇤ and Cpast” and be-
tween “C⇤ and Cfuture” in 3 objective metrics: H1, H4, GS .

should be close to those calculated on Cpast and Cfuture.
Thus we calculate the difference of metrics between C⇤
and Cpast, and also between C⇤ and Cfuture. The lower the
values are, the better the model is. Since these are bar-wise
metrics, we let the models generate all four middle bars,
i.e., bar7 to bar10, instead of a portion of them. From Fig-
ure 8, it seems that our model and ILM learn well to gener-
ate C⇤ coherent to its contexts. The results are even close
to that of the real data. In contrast, FELIX performs poorly
in H1. It is possibly due to the dependency problems be-
tween the masked tokens, since each token is unaware of
what other tokens predict, leading to uncertain tonality.

We also adapt the MIREX-like prediction test [22,40,41]
for testing the models’ ability to infer the correct answer
from contexts. The test includes 1,000 questions generated
from a held-out validation set, with each question com-
prises 6-bar Cpast and Cfuture. The goal of this test is to
select the right infilling from four choices. A model makes
a choice by calculating the average probability of the first
few notes belonging to each choice, and selects the one
with the highest probability. The number of notes to av-
erage from is dependent on the shortest length of all the
choices. In addition, the choices could be randomly se-
lected from a different song, or somewhere from the same
song. The latter is harder since the choices are much more
similar. We name them the simple test (choices come from
different music) and the hard test (from the same music).
The results in Table 2 show that our model outperforms the
other two consistently in both tests. It should be noted that
stability is an important factor for autoregressive models in
this test, since a wrongly predicted note leads to the accu-
mulation of errors in the following prediction. While both
our model and ILM could suffer from such a problem, our
model still performs slightly better.

5.2 Subjective Evaluation

A user study is conducted with in total 30 subjects, where
7 of them are deemed as professionals according to a ques-
tion about their musical background. Each subject is pre-
sented with 3 sets of music randomly selected from the
total 15 sets of music. Within each set, a subject listens
to a music piece with a missing segment, and is then pre-
sented with 4 music pieces, where 3 of them are generated
by the models (Ours, ILM, and FELIX) and 1 of them is
the real music without the missing segment. The subject is

VLI (ours) ILM [29] FELIX [30]

simple test 0.940⇤ 0.796 0.919
hard test 0.467⇤⇤ 0.361 0.398
⇤⇤: leads all others with p < .01; ⇤: with p < .05

Table 2: Accuracy in the MIREX-like prediction test. VLI
denotes the proposed variable-length piano infilling model.

M R I F

all

VLI (ours) 3.27 3.43 2.93 27%
ILM [29] 2.63 2.63 2.67 17%
FELIX [30] 2.83 2.77 2.57 16%
Real 3.83 3.73 2.83 41%

pro

VLI (ours) 3.08 3.38 2.77 24%
ILM [29] 2.69 2.77 2.62 10%
FELIX [30] 2.85 2.62 2.62 14%
Real 3.77 3.92 2.92 52%

Table 3: Results of the user study: mean opinion scores in
1–5 in M (melodic fluency), R (rhythmic fluency), I (im-
pression), and percentage of votes in F (favorite), from ‘all’
the participants or only the music ‘pro’-fessionals.

asked to rate each of the 4 music pieces according to its 1)
melodic fluency: how many wrong notes are there? The
fewer wrong notes, the higher the score; 2) rhythmic flu-
ency: Are there notes played at the wrong time? The less,
the higher the score; 3) impression: how much the sub-
ject is impressed? The more, the higher the score. After
listening to the 4 music pieces, they are asked to choose a
favorite one from them. From the results in Table 3, our
model does beat the other baselines by a large margin. Our
model even has a higher impression score than the real mu-
sic when considering all subjects. However, there is still a
gap between ours and the real data in the “favorite” score,
suggesting that the music generated by our model is still
differentiable from the real music.

6. CONCLUSION & DISCUSSION

In this paper, we have proposed a new model adapted from
XLNet to address music score infilling. Specifically, to
make the model able to perform variable-length infilling,
we replace the token-based distance attention mechanism
in Transformers with a musically specialized one consider-
ing relative bar distance. We have also reported evaluations
showing that our model outperforms two strong baselines.

We do not pay attention to whether the past and fu-
ture contexts are similar in style or theme in this work. It
would be interesting to see in a future work whether our
model can infill a nice transition between two dissimilar
segments. Moreover, by changing the permutation order,
our model can be applied to sequential generation in the
future, to study whether the relative bar encoding improves
the metrical structure of the generated music.
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ABSTRACT

The surprisingness of a song is an essential and seem-
ingly subjective factor in determining whether the listener
likes it. With the help of information theory, it can be de-
scribed as the transition probability of a music sequence
modeled as a Markov chain. In this study, we introduce
the concept of deriving entropy variations over time, so
that the surprise contour of each chord sequence can be
extracted. Based on this, we propose a user-controllable
framework that uses a conditional variational autoencoder
(CVAE) to harmonize the melody based on the given chord
surprise indication. Through explicit conditions, the model
can randomly generate various and harmonic chord pro-
gressions for a melody, and the Spearman’s correlation and
p-value significance show that the resulting chord progres-
sions match the given surprise contour quite well. The
vanilla CVAE model was evaluated in a basic melody har-
monization task (no surprise control) in terms of six objec-
tive metrics. The results of experiments on the Hooktheory
Lead Sheet Dataset show that our model achieves perfor-
mance comparable to the state-of-the-art melody harmo-
nization model.

1. INTRODUCTION

In recent years, deep learning has developed rapidly and
has become the main technology for automatic music gen-
eration. In this study, we focus on the task of automatic
melody harmonization, in which a system needs to assign
appropriate and harmonic chords to a given melody. From
previous studies, we have seen that the models based on
the bidirectional long short-term memory (BiLSTM) per-
form well in this task [1, 2]. Most of them can generate
harmonic chords to harmonize a melody. In [3], by intro-
ducing blocked Gibbs sampling and class weighting, the
model can further generate more reasonable and interest-
ing chords, and is even comparable to human composers.

Based on these previous studies, we hope to further
control the model to generate chords according to both

© Yi-Wei Chen, Hung-Shin Lee, Yen-Hsing Chen, Hsin-
Min Wang. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Yi-Wei Chen, Hung-Shin Lee,
Yen-Hsing Chen, Hsin-Min Wang, “SurpriseNet: Melody Harmonization
Conditioning on User-controlled Surprise Contours”, in Proc. of the 22nd

Int. Society for Music Information Retrieval Conf., Online, 2021.

melody conditions and user instructions. Latent represen-
tation learning is a powerful method that has been widely
used in computer vision [4–6] and speech processing fields
[7, 8] to learn semantically meaningful information of at-
tributes. Such techniques have also been applied to music
processing in several recent works [9–11]. Motivated by
these latent variable models, we modify the variational au-
toencoder (VAE) [12] so that the chord-to-chord mapping
can be trained under the conditions of a melody sequence
and a user-defined temporal contour.

However, in the model, what are the most attractive and
practical controllable conditions for users? Many high-
level subjective emotions, such as happiness, sadness, sur-
prisingness, and interestingness, can describe a musical se-
quence. These emotions seem to be abstract and difficult to
quantify objectively. Fortunately, some of them can be cal-
culated from the information dynamics [13]. Previous mu-
sic theory studies have shown that perceptual qualities and
subjective states, such as uncertainty, surprisingness, com-
plexity, tension, and interestingness, are closely related to
the measurement of information theory, such as relative en-
tropy and mutual information. In [13], the authors explored
this idea in the context of Markov chains using musical se-
quences, resulting a structural analysis, which is largely
consistent with the views of professional human listeners.
Therefore, we use the surprisingness metric, which is de-
fined as the negative log transition probability in a Markov
chain, to generate the time-varying surprisingness contour
of a chord sequence.

Similar to Mellotron, a text-to-speech system that uses
pitch and rhythm contours as conditions to synthesize
speech [14], in the training stage, we concatenate a chord
sequence with additional conditions, namely its corre-
sponding melody and surprise contour, feed them into an
encoder to convert them into latent variables. Then, the
latent variables are concatenated with the melody and sur-
prise contour again, and input into a decoder to reconstruct
the chord sequence. The model is expected to learn the
latent representations of chords when the melody and sur-
prise contour are given. Owing to the sampling mechanism
of the VAE-based model, in the inference stage, we can
randomly sample latent variables from the standard normal
distribution to generate a variety of chords, which cohere
the input melody and propagate according to the required
surprise contour. In addition, we extend the 96 chords used
in [3] to all chord types in the Hooktheory Lead Sheet
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Dataset [15] to expand the chord selection of the model.
Our model is named SurpriseNet. It can harmonize a

melody through user-controllable conditions. The high-
lights of SurpriseNet are two-fold. First, it relieves the
tension between coherence and surprisingness caused by
the melody and user-supplied condition, respectively. In
general, it is easy to catch one factor (i.e., surprisingness)
and lose another. Second, the results show that the vivid
and harmonic chords generated by our model can not only
correspond to the melody, but also strictly follow the given
surprise contour. Several examples are available at http
s://scmvp301135.github.io/SurpriseNet.

2. RELATED WORK

2.1 Automatic Melody Harmonization

Automatic melody harmonization aims to establish a learn-
ing model that can generate chord sequences to accompany
a given melody [16, 17]. In music, a chord is an arbi-
trary harmonic set consisting of three or more notes, which
sounds as if these notes are sounding simultaneously [18].
Conventionally, methods based on hidden Markov mod-
els (HMMs) [19–21] and genetic algorithms (GA) [22] are
commonly used to deal with the task.

Recently, some models based on deep learning have
been proposed. For example, Lim et al. first proposed a
model based on the BiLSTM [1]. The melody is input to
the model to predict the simplified 24 chords(i.e., the ma-
jor and minor triads) in the Wikifonia corpus. Based on
the same model architecture in [1], Yeh et al. proposed
a model called MTHarmonizer, in which the chord types
were extended to 48 by considering major, minor, augment
and diminished chords in a larger corpus (i.e., the Hookthe-
ory Lead Sheet Dataset) [2]. In addition, they integrated
information of chord functions [23] into the loss function
to help chord label prediction [2]. However, there are sev-
eral drawbacks in the above methods, such as overusing
common chords and incorrect phrasing problems. Sun et

al. tried to solve these problems and produced interest-
ing but still reasonable chords by introducing the order-
less NADE training techniques, class weights, and Blocked
Gibbs sampling into their model. They also extended the
chord space to 96 types, including major, minor, augment,
diminish, suspend, major7, minor7, and dominant7 [3].

2.2 Controllable Music Generation

Music generation can be regarded as a conditional estima-
tion problem defined as p(music|condition), where both
“music” and “condition” are usually time-series features.
Related tasks include melody-based chord generation [17]
and chord-based melody generation [23, 24].

An alternative way is to learn the joint distribution
p(music, condition), and then set the condition during the
generation process. Related tasks include automatic mu-
sic completion or accompaniment based on the melody or
chords [25–29]. However, many abstract music factors,
such as music texture, melody contour, or other high-level
subjective perception, are difficult to be explicitly encoded.

Latent representation learning is an ideal solution to
the above problem, because representation learning em-
beds discrete music and condition sequences into a con-
tinuous latent space, and accurately captures the latent in-
formation from the music. Recent research has used disen-
tangled representation learning to achieve controllable mu-
sic generation models for style transfer, texture variation,
and accompaniment arrangement [11]. High-level subjec-
tive perception can also be captured in the latent space to
generate music following the arousal condition [9]. These
studies show that VAEs [30,31] are an effective framework
for learning the representation of discrete music sequences.
We incorporated this idea into our research, and expected
the model to capture the latent information of chords when
conditioned by melody sequences and surprise contours.

3. METHODOLOGY

In this section, we will introduce the calculation of surprise
contours and the model architecture in detail. SurpriseNet
is based on a conditional VAE, and its goal is to learn the
representation of chords when conditioned by the melody
sequences and surprise contours. In the inference process,
the random latent variables, melody conditions, and sur-
prise contours are provided to the decoder to produce har-
monization.

3.1 Surprise Contour

Measures such as entropy and mutual information can be
used to characterize random processes. One of the salient
effects of listening to music is to create expectations for
what is to come next, which may be fulfilled immediately,
after a delay, or not at all depending on the situation. An
essential aspect of this is that music is experienced as a
phenomenon that “unfolds” over time, rather than being
apprehended as a static object presented in its entirety [13].

Consider a snapshot of a stationary random process
taken at a certain time: we can divide the timeline into
the past and present parts, denoted as t � 1 and t, re-
spectively. Here we will consider one of the simplest
random processes, a first-order Markov chain. Let S be
a Markov chain with a finite state space {1, ..., N} such
that St is the random variable representing the t-th ele-
ment of the sequence. We can establish a transition ma-
trix a 2 RN⇥N encoding the distribution of any element
of the chord sequence given the previous element, that is
p(chordt|chordt�1) = at,t�1. According to the definition
in [13], the surprise contour can be derived as the negative
log probability as

Surprisingness = � log p(chordt|chordt�1). (1)

Equation (1) is actually the definition of the information
content in information theory. It means that in a chord se-
quence, the higher the surprise value at a certain time, the
greater the amount of information at that time.
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Figure 1. The structure of SurpriseNet. In the inference
stage, only Decoder and Pre-net are used.
3.2 VAE and Conditional VAE

As described in [31], a common goal for various kinds of
autoencoders is that they compress the salient information
within the input sample into a lower-dimensional latent
code. Ideally, this will force the model to produce compact
representations to capture the important factors of varia-
tion in the dataset. In pursuit of this goal, VAE [30, 32]
introduces the constraint that the latent code z is a random
variable distributed according to a prior p(z).

The generative process of VAE is described as follows.
A latent variable z is generated from the prior distribution
p(z), and the observation x is generated by the generative
distribution p(x|z) conditioned on z; that is, z ⇠ p(z) and
x ⇠ p(x|z). A VAE consists of an encoder ✓, which ap-
proximates the posterior p(z|x), and a decoder �, which
parameterizes the likelihood p(x|z). Following the frame-
work of variational inference, we do posterior inference
by minimizing the KL divergence between the approxi-
mate posterior (i.e., the output of the encoder) and the true
posterior p(z|x) by maximizing the evidence lower bound
(ELBO). The objective function of VAE with Gaussian la-
tent variables is

L̃V AE = E[log p✓(x|z)]�KL(p�(z|x)||p(z)). (2)

In the common case where p(z) is a diagonal-
covariance Gaussian distribution, this can be circumvented
by replacing z ⇠ N (µ,�I) with

z = µ+ � � ✏, (3)

where ✏ is a small random factor.
As for the conditional VAE [12], the conditional gener-

ative process of the model is given as follows. For a given
condition c, z is drawn from the prior distribution p(z|c)
realized by a standard Gaussian distribution, and the output
x is generated from the distribution p✓(x|z, c). Therefore,
the training objective function can be expressed as

L̃CV AE = E[log p✓(x|z, c)]�KL(p�(z|x, c)||p(z|c)).
(4)

BiLSTM
2561

BiLSTM

Linear

Linear

 

 

z

 

Linear BiLSTM Linear Chords

(a) Pre-net

(b) Encoder

(c) Decoder

Surprise

Figure 2. Three main components of SurpriseNet.

Our work is divided into two parts. We first train the
conditional VAE models for 96 or 633 types of chords,
conditioned only on the melody, to observe the perfor-
mance in completing the basic harmonization task. Next,
we select the better conditional VAE to train the final Sur-
priseNet in combination with the surprise contours.

The main architecture of SurpriseNet and its key com-
ponents are shown in Fig. 1 and Fig. 2, respectively. Our
components of VAE follow the structures used in [33] and
MusicVAE [31], and finally combine with the conditional
part [12] to complete the harmonization task. In the train-
ing stage, the surprise contour is processed by the Pre-net
implemented by a BiLSTM, as shown in Fig. 2(a), to ex-
tend the feature from a scalar to a 256-dimensional vec-
tor. Afterwards, the features of the chord, melody, and
extended surprise contour are concatenated and fed into
the encoder to generate a latent code z subject to a stan-
dard normal distribution. The encoder is also implemented
by a BiLSTM, as shown in Fig. 2(b), where the size of
each layer is 256 or 512. Different from the RNN-based
VAE [33] and MusicVAE [31], the frame-wise outputs are
further transformed by two linear layers to respectively
generate the sequential latent variables, µ and �, with di-
mensionalities of 16 or 64.

As for the decoder, instead of performing it in an au-
toregressive manner as in MusicVAE, we concatenate z,
melody, and extended surprise representation frame by
frame as inputs of the decoder to reconstruct the chord se-
quence. The number of layers and hidden size in the de-
coder are the same as those in the encoder. Dropout was
employed with a rate of 0.2 on each BiLSTM to prevent
overfitting. The batch size was set to 64. Early stopping
for 10 epoch patience was applied.

In the inference stage, given the melody and the surprise
contour, the surprise contour is first processed by the Pre-
net. Then, the latent variable is sampled from a standard
normal distribution. Finally, the latent variable, melody,
and extended surprise representation are input to the de-
coder to complete the harmonization process. The imple-
mentation details of the model are available at https:
//github.com/scmvp301135/SurpriseNet.
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4. EXPERIMENTS

4.1 Datasets

We performed experiments on the Hooktheory Lead Sheet
Dataset (HLSD) [15], which contains high-quality and
human-arranged melodies with chord progressions. The
dataset is provided in two formats, event-based JSON files
and MIDI files. Furthermore, there are many types of la-
bels on chords, such as chord symbols and Roman numer-
als for reference. The dataset contains a total of 633 chord
types, including 9th, 11th, 13th, half diminished, and slash
chords. In previous studies conducted on the dataset [1–3],
the number of chord types was simplified to 48 (major and
minor triads) or 96 (major, minor, augment, diminish, sus-
pend, major7, minor7, and dominant7). In this study, we
experimented with two settings, 96 and 633 chord types.

We followed the data split in [3]; the training set con-
tains 17,505 samples, the test set contains 500 samples.
For each song, the melody and chords are aligned every
two beats in a measure, and the chords are encoded into a
one-hot format for training.

4.2 Objective Metrics

For objective evaluation, we used six different objective
metrics proposed in [2]. The first three metrics measure the
quality of the chord progression, and the others measure
the harmonicity between the melody and the chords.

• Chord histogram entropy (CHE): The entropy of the
chord histogram.

• Chord coverage (CC): The number of chord types in a
chord sequence.

• Chord tonal distance (CTD): The tonal distance be-
tween two chords when they are represented by 6-D fea-
ture vectors [34].

• Chord tone to non-chord tone ratio (CTnCTR): The
ratio of the number of chord tones to the number of non-
chord tones.

• Pitch consonance score (PCS): The sum of the conso-
nance scores between a melody note and each note in a
given chord.

• Melody-chord tonal distance (MCTD): The tonal dis-
tance between a melody note and a chord when they are
represented by 6-D feature vectors.

4.3 Surprise Contour Evaluation

The task of user-controlled melody harmonization has
never been seen in the literature. Therefore, there is no
baseline systems for comparison. We decided to use some
statistical methods to evaluate the correlation or causation
between a given contour and the generated sample, instead
of subjective testing.

Unlike the pitch and rhythm error evaluation in Mel-
lotron [14], we used Spearman’s correlation, which is suit-
able for continuous and discrete ordinal values between
two variables. The p-value was used to determine the sig-
nificance of the results under the assumption that there is
no significant correlation between the surprisingness trend

Table 1. Objective evaluation results with respect to var-
ious models. For the metrics related to Chord Progres-
sion, the higher value in CHE and CC means the higher
diversity of the generated chords, and the lower value in
CTD implies that the chord progression is smoother. As
for the metrics related to Harmonicity, the higher value in
CTnCTR and PCS and the lower value in MCTD indicate
better harmonization results. The arrow denotes whether
the metric is the larger the better or the lower the better.

Chord Progression CHE" CC" CTD#

Humans 1.266 4.344 0.628
Sun et al., |S| = 96 1.280 4.900 0.730
CVAE, |S| = 96 1.210 4.712 0.577
CVAE weight, |S| = 96 1.670 7.360 0.620
CVAE, |S| = 633 1.644 7.074 0.730
CVAE weight, |S| = 633 1.934 9.890 0.649

M/C Harmonicity CTnCTR" PCS" MCTD#

Humans 0.726 0.515 1.276
Sun et al., |S| = 96 0.887 0.652 1.052
CVAE, |S| = 96 0.851 0.611 1.110
CVAE weight, |S| = 96 0.841 0.523 1.190
CVAE, |S| = 633 0.767 0.530 1.229
CVAE weight, |S| = 633 0.705 0.476 1.290

of the predicted chord progression and the given surprise
contour. A small p-value indicates strong evidence against
the assumption, which means that the results are correlated
to some extent.

The reason for not using error evaluation, such as the
mean squared error (MSE), is that the harmonization result
is jointly decided by the melody and the surprise contour.
If the error between the generated trend and the given sur-
prise contour is zero, it means that the model completely
follows the surprise contour and ignores the melody con-
ditions. Obviously, this is not acceptable and will lead to
discordant harmonization results.

5. RESULTS

In this section, we will first compare the conditional VAE
models with Sun et al.’s model [3] and human perfor-
mance in terms of six objective metrics. Then, we will
illustrate some harmonization samples generated by Sur-
priseNet based on different surprise contours. The last part
is the correlation analysis.

5.1 Objective Evaluation

The objective evaluation results are shown in Table 1.
Compared with the results of humans and Sun et al.’s
model, we can see that the vanilla CVAE model with-
out using class weights (cf. CVAE, |S| = 96) achieved
comparable results in all metrics. It performed better in
CTD, indicating that the generated chord progression is
smoother. After introducing chord balancing (cf. CVAE
weight, |S| = 96), the CVAE model learned how to sam-
ple rare chords, thereby increasing the chord diversity, as
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Figure 3. The six given surprise contours.

shown in the results in CC and CHE.
We further expanded the chord space to 633 to maintain

the integrity of the chords in the dataset. Due to the ex-
tension of the chord dimension, the deeper CVAE without
using class weights (cf. CVAE, |S| = 633) obtained results
comparable to the vanilla CVAE model with chord balanc-
ing (cf. CVAE weight, |S| = 96). After introducing chord
balancing (CVAE weight, |S| = 633), the deeper CVAE
model achieved the best chord diversity, with an average
of nearly 10 chord types in a musical sequence.

Despite the above improvements, trade-offs in other
metrics (such as CTnCTR, PCS, and MCTD) can be ob-
served. As pointed out in [3], rare chords, such as
7th, 9th, 11th, and 13th, will cause a degradation in the
melody/chord harmonicity metrics, but this is mainly due
to the definition of CTnCTR, PCS, and MCTD. In order to
maintain the diversity of chords, we decided to train Sur-
priseNet with the conditional VAE architecture consider-
ing 633 chord types.

5.2 Generated Samples

We compared the chord generation results of SurpriseNet
(based on CVAE, |S| = 633) and weighted SurpriseNet
(CVAE weight, |S| = 633) based on 6 representative sur-
prise contours, as shown in Fig. 3. The 6 contours were
generated by the sigmoid function, plain line, and normal
distribution, and their reversed profiles, respectively. We
intended to check whether the generated chord progression
really follows the surprise contour to harmonize the given
melody.

To use the sigmoid function to represent the surprise
contour, we first normalized it to match the maximum
value in the surprise contours of the training data. This
contour (cf. Fig. 3(1)) represents a song with lower chord
variation in the first half and higher chord variation in the
second half. The reverse sigmoid function leads to the op-
posite trend (cf. Fig. 3(2)). In the case of plain line, we
used two sequences consisting of zero (cf. Fig. 3(3)) and
the maximum value (cf. Fig. 3(4)) as the surprise contours.
A surprise contour with all values being zero indicates that
there should be no fluctuation in the chord sequence. In
other words, it is expected to see that the given melody
will always be harmonized with the same chord. As for
the surprise contour with all values being the maximum, it

indicates that there should be a lot of up-and-down changes
in the resulting chord sequence. That is, it is expected to
see that the given melody will be harmonized with various
chords. These two cases are considered the most extreme
cases. According to the normal distribution, we expect that
the highest arousal will appear in the middle of the harmo-
nization result (cf. Fig. 3(5)). As for its inverse profile
(cf. Fig. 3(6)), it is expected to generate a plain and more
predictable result in the middle of the chord sequence.

Fig. 4 and Fig. 5 show the harmonization results
of SurpriseNet and weighted SurpriseNet for a 4-measure
melody, respectively. They are displayed in the same or-
der as the function types in Fig. 3. From Fig. 4(1), as
expected, we can see that SurpriseNet generated continu-
ous C chords for the first two measures at the beginning,
and then generated varying chords for the last part of the
song, according to the given sigmoid-like surprise contour
in Fig. 3(1). From Fig. 4(2), we can also see that Sur-
priseNet generated different chords at the beginning, and
then generated more C and G chords that appeared pre-
viously, following the given reverse sigmoid-like surprise
contour in Fig. 3(2). As for the results of weighted Sur-
priseNet (see Figs. 5(1) and 5(2)), the chord progressions
generated were not exactly as expected, but some surpris-
ing and complicated chords were brought in for users’ ref-
erence. Next, given the all-zero surprise contour in Fig.
3(3), it is obvious that both models followed the condition
to generate only one type of chord in the results (see Figs.
4(3) and 5(3)). As for the all-maximum surprise contour in
Fig. 3(4), as shown in Figs. 4(4) and 5(4), it is also obvious
that the results generated by the two models changed in the
chord type almost every two beats, which is the minimum
time unit for changing the chord in the training data. For
the normal distribution contour in Fig. 3(5), the result gen-
erated by SurpriseNet is roughly as expected, with more
chord changes in the middle of the song (see Figs. 4(5)).
But the result of weighted SurpriseNet is quite different
from expectations (see Figs. 5(5)). For the inverse normal
distribution contour in Fig. 3(6), the results of both models
are not in line with our expectations. But we can see that
they are similar to the results generate based on the reverse
sigmoid-like surprise contour in the beginning part of the
song. When the model is initially assigned a high surprise
value, the trend in the first part of the output is similar.

In summary, the above samples generated by Sur-
priseNet are almost in good agreement with our expecta-
tions. The model can indeed generate chords that have
a tendency to follow a given surprise contour. However,
weighted SurpriseNet seems to over concentrate on using
more complicated or rare chords to harmonize the melody
due to the class penalty (i.e., weights), so that the trend is
not clearly consistent with the given contour.

5.3 Correlation Measurement

Because there is no existing model for this task, we use
Spearman’s ⇢ and p-value to evaluate the correlation and
significance between the surprisingness values in the given
surprise contour and the surprisingness values in the gen-
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Figure 4. Samples generated by SurpriseNet.

Table 2. Spearman’s ⇢ and p-value significance of Sur-
priseNet and weighted SurpriseNet.

Method Spearman’s ⇢ p-value

SurpriseNet 0.517 < 0.001
Weighted SurpriseNet 0.406 < 0.001

erated chord progression. From Table 2, we can find that
there is indeed a certain correlation between the given sur-
prise contour and the generated chord progression. Fur-
thermore, SurpriseNet seems to be more controllable than
weighted SurpriseNet, with a higher Spearman’s ⇢. The p-
value shows that there is no significant difference between
the surprisingness trend of the given surprise contour and
the surprisingness trend of the generated chord progression
for the two models. The result implicitly confirms that
given a surprise contour and a melody, these models can
generate the corresponding chords as instructed to com-
plete the melody harmonization task, thereby achieving a
user-controlled model.

6. FUTURE WORK

The HLSD dataset contains rich intonation data, such as
Roman, symbol, secondary, and mode data. We can intro-
duce some approaches from the NLP field, such as mod-
eling these data by referring to various language models.
Moreover, in this work, the rhythmic type of chords is sim-
plified and restricted to two beats in a measure. But in
fact, there are various rhythmic types in the dataset, such
as syncopation and tuplets. Perhaps a disentangled rep-
resentation learning model can be used to capture this in-
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Figure 5. Samples generated by weighted SurpriseNet.

formation, so that we can implement an omni model with
more complicated rhythms.

In addition, surprise is still an open for discussion topic.
In this work, we only consider the surprise in the chord se-
quence. In the future, can also consider the surprise in the
melody sequence at the same time. Moreover, the surprise
can be considered not only as the conditional probability
of past chord events but also as the conditional probability
of the melody sequence at that time. These different con-
siderations will bring different meanings to the surprise.

7. CONCLUSIONS

In this paper, we proposed SurpriseNet, which is based on
a conditional VAE model and combines a surprise con-
tour from the transition probability in a Markov chain,
to achieve a user-controlled melody harmonization task.
From the generated samples, we observed that the model
could accurately generate various harmonic chord progres-
sions according to the given surprise contours. The Spear-
man’s correlation and p-value significance show that there
is a positive correlation between the given surprise contour
and the generated chord progression.

The vanilla conditional VAE model was evaluated in the
basic melody harmonization task. The objective evalua-
tion results show that the conditional VAE model could
achieve performance comparable to the state-of-the-art
melody harmonization model [3]. We expanded the chord
space from 96 to 633 to broaden the range of chord se-
lection for the model. The conditional VAE model could
generate more types of chords, such as 7th, 9th, 11, 13th,
and slash chords, resulting in vivid and harmonic results.
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ABSTRACT

There are many ways to play the same note with the finger-
board hand on string instruments such as the violin. Musi-
cians can flexibly adapt their string choice, hand position,
and finger placement to maximise expressivity and playa-
bility when sounding each note. Violin fingerings there-
fore serve as important guides in ensuring effective per-
formance, especially for inexperienced players. However,
fingering annotations are often missing or only partially
available on violin sheet music. Here, we propose a model
based on the variational autoencoder that generates violin
fingering patterns using only pitch and timing information
found on the score. Our model leverages limited exist-
ing fingering data with the possibility to learn in a semi-
supervised manner. Results indicate that fingering annota-
tions generated by our model successfully imitate the style
and preferences of a human performer. We further show its
significantly improved performance with semi-supervised
learning, and demonstrate our model’s ability to match the
state-of-the-art in violin fingering pattern generation when
trained on only half the amount of labelled data. 1

1. INTRODUCTION

Musicians produce different pitches on string instruments
such as the violin and guitar by pressing on a particu-
lar string with their fingerboard hand (typically the left)
to temporarily reduce its length. The string oscillates
at a higher frequency and a higher pitch is consequently
sounded. However, apart from the lowest and highest notes
of the instrument, the mapping between pitch and fingering
(i.e., where along the fingerboard and with which finger to
press) is not unique [1].

For the violin, musicians are faced with the decision
of selecting an appropriate string, hand position, and fin-
ger placement for every note they play [2]. Such deci-
sions depend on the trade-off between artistic expression
and playability [3]. For example, playing a note on the

1 Example code and supplementary information are available at
https://github.com/vkmcheung/violin-ssvae

© Vincent K.M.Cheung, Hsuan-Kai Kao, and Li Su. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Vincent K.M.Cheung, Hsuan-Kai Kao, and
Li Su, “Semi-supervised violin fingering generation using variational au-
toencoders”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

Figure 1. Our proposed learning model generates violin
fingerings from pitch and timing information found on the
score (Example: Elgar’s Salut d’amour, bars 1-4).

open string is the easiest as no finger placements are re-
quired [2]. However, its distinctive, brighter timbre is of-
ten undesired as it breaks the consistency in sound quality
over a musical context [3, 4]. Musicians instead tend to
play these notes on a lower string with vibrato to achieve a
warmer and richer tone [5]. Likewise, using the same fin-
ger for different pitches consecutively is often avoided as
this incurs a constant shift in hand position that could lead
to poor intonation or unintended glissandi [1]. Selecting
an effective string, position, and fingering combination to
sound each note is therefore a non-trivial aspect of violin
playing that could shape the outcome of a performance.

The importance of violin fingerings is evinced as they
often appear on the musical score as performance direc-
tions or reminders for the musician [6]. They are also used
as a pedagogical aid for inexperienced violinists [7]. How-
ever, the majority of violin sheet music does not come with
fingering annotations. Sampling from the International
Music Score Library Project (imslp.org), one of the
largest digital repositories of public domain sheet music,
85% of 23,142 scores featuring the violin do not contain
any fingering information 2 . In other words, most annota-
tions are still done by hand by the musician, in a process
that requires experience and is often time-consuming [8].
Therefore, there is a crucial need for a model that not only
generates fingerings, but also requires few labelled data as
prior knowledge.

To this end, we propose a violin fingering generation
model based on the variational autoencoder [9–11]. Our

2 Determined by inspecting the first available violin part of every 400th

entry in the category Scores featuring the violin on 3 May 2021.
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model relies only on pitch and timing information found on
the musical score as inputs, and can be trained in a semi-
supervised manner. This allows our model to capitalise
on the predominantly unlabelled existing data in generat-
ing fingerings that conform to the style and preferences of
violinists.

2. RELATED WORK

Work on fingering generation is not exclusive to the violin
and has previously been explored in other musical instru-
ments such as guitar [8, 12, 13] and piano [14–16]. Nev-
ertheless, despite the popularity of the instrument, there
exist few models on violin fingering generation. Early ap-
proaches have focussed on fingering generation through
heuristic rules and dynamic programming. For example,
Maezawa et al. [1, 3, 17] introduced three ‘consistency
rules’ for their model to ensure that generated fingerings
were consistent in direction and magnitude during pitch
and string changes, as well as during a mordent. Fingering
generation was thus achieved by minimising the transition
cost within a context of two and three notes using a musi-
cal score and an audio recording. However, the multimodal
nature of the input and rigidity of these models mean that
adapting generated fingerings to match individual prefer-
ences or styles is not straightforward.

Later works have remedied this problem with learn-
ing models. For example, hidden Markov models have
been trained on violin textbooks [2] to complement par-
tially annotated fingerings [18]. A recent deep learning
model [7] has also combined a pretrained bidirectional
long short-term memory (BLSTM) neural network with
heuristic rules to generate fingerings with different options.
This enabled musicians to select fingerings according to
their preferences in e.g., staying in a lower position, or to
minimise hand-position shifting. However, the paucity of
violin sheet music with labelled fingerings means that there
might not always be sufficient training data. By contrast,
our semi-supervised approach enables our proposed model
to make use of unlabelled data during training to generate
high-quality fingering annotations even in the context of
limited labelled data.

3. METHODS

Here, we briefly review the background behind semi-
supervised variational autoencoders before introducing our
proposed model and metrics for performance evaluation.

3.1 Variational autoencoders (VAEs)

VAEs [9, 10] are a popular class of deep generative mod-
els that are prized for their ability in estimating com-
plex probability distributions through variational inference
[19]. Let X be some observed data generated by la-
tent variable z. We want to learn parameters ✓ and �
that optimise the (log-)likelihood p✓(x|z), parametrised
by ✓, and approximate posterior q�(z|x), parametrised by
�. This is achieved by maximising the evidence lower
bound (ELBO). If we further assume that p(z)=N (0, I)

and q�(z|x)=N (z|µ�, diag(�2
�)), then we can use a

reparametrisation trick to write samples of z as transfor-
mations of a standard Gaussian random variable, i.e.

zi = µi + �i✏ (1)

for some ✏ ⇠ N (0, I). This allows us to compute gradients
of the ELBO to optimise ✓ and � using neural networks,
for which q�(z|x) is often referred to as the encoder and
p✓(x|z) the decoder. In practice, a non-negative hyperpa-
rameter � is often added to the ELBO to control the extent
to which the approximate posterior q�(z|x) resembles the
prior p(z), i.e.

log p✓(x) � Eq�(z|x)[log p✓(x|z)]
� �DKL(q�(z|x) k p(z)).

(2)

We have the original VAE formulation when � = 1, whilst
reconstruction is improved at the expense of a more entan-
gled latent representation when 0 < � < 1 [20, 21].

3.2 Semi-supervised VAEs

The intuition behind semi-supervised VAEs [11] is to capi-
talise on its generative ability and to extend the VAE latent
space to include information from a classifier. Reconstruc-
tion errors from the unlabelled data can then be explicitly
used to update the classifier during backpropagation.

Formally, let (X,Y ) be some observed (partially-) la-
belled data generated by a continuous latent variable z.
Suppose p(z)=N (z|0, I) and p(y)=Cat(y|⇡), where the
latter is a multinomial distribution with distribution ⇡, and
that the likelihood p✓(x|y, z) is parametrised using a neu-
ral network (the decoder). We can again use variational in-
ference to approximate the intractable posterior p(y, z|x)
with q�(y, z|x).

Now assuming that q�(y, z|x)=q�(y|x)q�(z|x), we
can construct the approximate posterior using a neural
network with two components: a multinomial classifier
q�(y|x)=Cat(y|⇡(x)), and a Gaussian encoder with di-
agonal covariance matrix q�(z|x) = N (z|µ�(x),�2

�(x)).
As before, finding suitable values for ✓ and � amounts

to optimising the ELBO. For labelled data, that is

log p✓(x, y) � Eq�(z|x,y)[log p✓(x|y, z)]
� �DKL(q�(z|x) k p(z)) = L(x, y).

(3)

For unlabelled data, we can treat the missing label y0 as
an additional categorical latent variable that generates the
observed data and assume that y0, z are marginally inde-
pendent. However, backpropagating through samples from
a multinomial distribution is problematic as the operation
is not differentiable. Fortunately, we can approximate
this sampling operation with the Gumbel-Softmax distri-
bution [22, 23], for which samples can be drawn via the
reparametrisation trick

y0i =
exp((log(⇡i) + g)/⌧)

PL
j=1 exp((log(⇡j) + g)/⌧)

, (4)
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Figure 2. Model architecture. Our VAE-based model supports semi-supervision by treating missing labels from unlabelled
data as an additional latent variable for reconstructing pitch and timing information.

where g ⇠ Gumbel(0, 1), L denotes the number of
classes, and ⌧ controls how strongly the distribution ap-
proximates the multinomial distribution.

With the two reparametrisation tricks at hand, the
ELBO is now maximised for unlabelled data as follows:

log p✓(x) � Eq�(y0,z|x)[log p✓(x|y0, z)]
� �DKL(q�(z|x) k p(z))

� �DKL(q�(y
0|x) k p⇡(y

0))

= U(x).

(5)

Lastly, a classification loss is introduced to the classifier
q�(y|x) for labelled data. The overall objective of this
model is thus to maximise

J = EDL [L(x, y) + log q�(y|x)] + EDU U(x), (6)

where DL and DU denote labelled and unlabelled data,
respectively.

3.3 Model architecture

Our proposed model (Figure 2) consists of four modules:
embedder, encoder, classifier, and decoder. The embedder
accepts a sequence of notes as inputs, where each note is
represented by a numeric vector denoting its MIDI num-
ber, onset, and duration. The sequence is passed through
embedding layers of dimension 16, 8, and 4 for the three
respective features, concatenated, and then fed into a dense
layer of 64 units with a PReLU activation function before
leaving the module through a layer normalisation layer.

Outputs from the embedder are then passed in parallel
onto the encoder and classifier. These go through a bidi-
rectional long short-term memory (BLSTM) layer of 64⇥2
units in the encoder before being mapped onto a Gaussian
latent space of 16 dimensions as output via a reparametri-
sation trick (Equation 1).

The embedder output is likewise passed through a
BLSTM layer of 128⇥2 units in the classifier. This is fol-
lowed by a dense layer of Nspf units, where Nspf denotes

the number of possible (string, position, finger) arrange-
ments. By considering fingerings as the joint distribution
of string, position, and finger, we can model dependen-
cies between these three labels. Otherwise, different op-
timal (string, position, fingering) combinations might be
predicted for each label separately if only their marginal
distributions are considered. For labelled data, a softmax
activation function is subsequently applied as output of the
classifier. This provides a probability density estimate for
each fingering combination given the input. For unlabelled
data, logits from the dense layer are mapped onto a latent
Gumbel-softmax distribution as outputs via a reparametri-
sation trick as described in Equation 4.

Finally, outputs from the encoder and classifier are con-
catenated and passed through a 128⇥2-unit BLSTM layer
in the decoder. This is followed by three softmax-activated
dense layers of NMIDI, Nonset, Nduration units as outputs,
which denote the number of MIDI, onset, and duration
classes, respectively.

3.4 Dataset

We use a recently published dataset of symbolic violin per-
formance for the current study [7]. This dataset is a com-
pilation of 217,690 note-by-note annotations of 14 solo vi-
olin excerpts as performed by 10 professional violinists.
The excerpts are selected from diverse styles, covering
Western classical music from the Baroque, Classical, and
Romantic period, as well as Eastern folk melodies. Sym-
bolic information from the score include pitch class and
height of each note in addition to its onset and duration
within the bar. They are accompanied by the correspond-
ing string selection, hand position, and finger placement
used by each musician when performing the piece. Ad-
ditional descriptors include bar numbers and bowing, but
were not used in our model as they are not always present
in violin sheet music.
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3.5 Implementation

Pitch class and height of each note in the dataset was con-
verted into its corresponding MIDI number as numerical
input into the model with NMIDI = 47 to include all pos-
sible pitches on the violin (with 0 reserved for missing
notes). As timing information in the dataset was based on
subdividing the crotchet into 210=1024 units, we chose to
discretise onsets into Nonset = 26+25=96 categories (56
are present in the dataset) and duration into Nduration = 32
(26 present) to allow for generalisation beyond excerpts in
the dataset.

String selection ({G,D,A,E}), hand position
({1, . . . , 12}), and finger placement ({0, . . . , 4}) were
combined into a single label consisting of Nspf = 241
classes (with 0 reserved for missing fingerings).

The model was trained on different numbers of excerpts
(see Section 4), but always tested on one, and we report
results following leave-one-out cross-validation. To main-
tain stylistic consistency and for comparison with previous
work [7], we derived training and test data from one vio-
linist (#2 in the dataset). However, it is important to note
that violin fingerings are highly individualised and are de-
pendent on performers’ background and expert ability.

Training was implemented using batch size = 32 and op-
timised using Adam [24] with a learning rate of 0.01. Each
excerpt was divided into sequences of length 32 for train-
ing using a hop size of 16 (i.e., half overlap), and sequences
were right-padded with zeros to maintain the same length.
We trained two separate models for labelled and unlabelled
data simultaneously with shared layers, and oversampled
the smaller dataset size to match the input sizes. Five per-
cent of the training data was reserved for validation, and
training was early-stopped [25] whenever total validation
loss did not improve over 10 epochs, for which the best
weights were retained.

Dense and BLSTM layers were initialised using a Glo-
rot Uniform initialiser [26], whilst embedding layers were
initialised from uniformly distributed samples. L1/L2 reg-
ularisation and L2 regularisation were respectively used
for kernel and bias regularisation in the embedding and
dense layers of the embedder module. In addition to ker-
nel and bias regularisation, L2 recurrent regularisation was
also used in all BLSTM layers. Finally, KL losses were
weighted with � = 0.001 to improve reconstruction qual-
ity, and we set the Gumbel Softmax temperature ⌧ = 0.75.

3.6 Evaluation

We consider a variety of objective measures from informa-
tion retrieval to evaluate model performance. The first is
the F1 score, which we calculate using the model’s most
probable predicted (string, position, finger) combination.
Here, we consider the F1 score as a measure for how well
our model replicates the fingering style of a performer,
since each note can be played with multiple fingerings.

Nevertheless, since our model predicts a probability dis-
tribution of fingerings for each note, we can also examine
the position to which the true label is ranked. This pro-
vides a measure for the quality of predicted fingerings. A

high, if not the highest, ranking should be assigned to the
performer’s chosen fingering. One metric that captures this
intuition is the mean reciprocal rank (MRR) [27], given by

MRR =
1

N

NX

j=1

1

rank(j)
, (7)

where N is the number of notes in the training excerpt and
rank(j) denotes the rank of which the true string, posi-
tion, or finger first appears for note j. Note that because
we modelled the joint distribution of these three labels,
rank(j) may exceed the number of classes in each label.

Furthermore, given the variation in fingerings used
across violinists, it would be interesting to examine the
preference or relevance of our model’s predicted finger-
ings to other performers. We can capture this with a met-
ric known as the normalised discounted cumulative gain
(nDCG) [28]. First, we derive the relevance score of note
j by calculating the proportion of violinists in the dataset
(i.e., 10) who selected a given string, position, and finger
to play the note. Next, we calculate the discounted cumu-
lative gain (DCG) of j that is given by the sum of revelance
scores for the model’s top K predicted labels weighted by
its log rank, i.e.

DCG(j) =
KX

i=1

rel(j)i

log2(i+ 1)
, (8)

where rel(j)i denotes the relevance score of the ith most
probable predicted label for note j. The idealised DCG
(iDCG) can also be computed by taking the DCG where
the K labels are ranked from highest to lowest relevance.
We can then obtain the normalised discounted cumula-
tive gain (nDCG) at K of note j by dividing DCG(j) by
iDCG(j), for which we take the mean across all notes in
the testing excerpt.

4. RESULTS AND DISCUSSION

4.1 Style replication

We first consider the fully-supervised case, where our
model was trained on 13 excerpts and tested on one. As
shown in Figure 3 and Supplementary Table 1, our model
generated violin fingerings with an MRR of 0.873 for
string selection, 0.715 for hand position, and 0.721 for
finger placement. These indicate that the true fingerings
as performed by the violinist were predominantly given
by the model’s most probable predictions. Examining the
confusion matrix (Figure 4) more closely, we see that the
model had a tendency towards predictions in first and third
position. This can also be seen when the model predicted
open strings played by the performer as to be played with
the second or fourth finger 32% of the time. Interestingly,
the converse was not true: the model seemed to have learnt
that open strings should be stylistically avoided, as second
and fourth finger placements by the performer were only
respectively predicted as open strings by the model 3.5%
and 6.5% of the time. However, in rare cases, our model
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Figure 3. Examining effects of semi-supervision for different labelled training excerpt sizes. Significantly improved
performance is observed when our model was trained on both labelled and unlabelled data. The fully supervised case is
also shown for comparison. Filled circles and shaded regions denote mean and standard error, respectively.

failed to capture fingerings played in the 11 or 12th po-
sition. Upon inspection, we found that these notes were
especially high (E7), and our model provided a fingering
for the same pitch class but at an octave lower.

Figure 4. Confusion matrix for our fully supervised model
(normalised such that each row sums to 1). Notice the ten-
dency towards predictions in first and third position.

Regarding F1 scores, our model seemed to perform sub-
stantially better for string compared to position or finger.
This is surprising since violin fingerings were modelled
as the joint probability of (string, position, finger) com-
binations. One possible explanation could be due to the
model’s tendency towards predictions in first and third po-
sition. An incorrectly predicted position would have led
to an incorrect finger placement even if the string was
correctly predicted. Nevertheless, compared to previous
work [7], our model showed noticeable improvement in
F1 scores for string, position, and finger, as well as com-
parable performance in MRR when tested on Elgar’s Salut
d’amour 3 (see Table 1 and Figure 1).

3 For comparison with previous work [7], we took the simple mean of
F1 scores across each class instead of their class-size-weighted mean as
in the rest of this paper.

String Position Finger
MRR F1 MRR F1 MRR F1

Our model (semi-supervised)
1L+6U .563 .291 .448 .120 .481 .147
4L+6U .816 .714 .528 .128 .606 .277
7L+6U .903 .834 .716 .214 .758 .500
Our model (fully-supervised)

13L .906 .830 .726 .305 .776 .636
Previous work (Jen et al., 2021 [7])

13L .913 .667 .729 .241 (-) .412

Table 1. Comparing generated fingerings to Elgar’s Salut
d’amour. Our model exceeded previous work when fully
supervised, and achieved comparable performance when
trained on far fewer labelled data under semi-supervision.
L and U respectively denote number of labelled and unla-
belled excerpts used for training.

4.2 Capturing preference across violinists

We next investigated to what extent the generated fin-
gerings were actually performed (and thus regarded as
preferred) by violinists in the dataset. The high mean
nDCG@1 scores (Figure 3 and Supplementary Table 1) for
string, position, and finger indicate that our model’s most
probable fingering predictions matched those performed
by the professionals, and interestingly, also resembled the
MRR scores. This suggests that the fingering patterns
learnt by our model corresponded to those that showed
the least variation amongst the violinists (even though it
was only trained on one). Higher mean nDCG@3 scores
further indicate that the stylistic variation across violinists
could be adequately captured within the model’s top three
fingering predictions. Taken together, our evaluation mea-
sures suggest that the fingerings generated by our model
matches the style and preferences of human performers.
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4.3 Pitch and timing reconstruction

Our model was also able to reconstruct pitch and tim-
ing information with near-perfect MRR scores (all >0.945,
see Supplementary Table 2). To test the extent recon-
struction depended on the classifier, we replaced its out-
put with zeros during testing. Wilcoxon signed-rank tests
revealed significant differences in MRR for pitch and dura-
tion (p = .003 and p = .024, respectively, corrected using
Holm’s method) when information flow from the classifier
to the decoder was blocked. This was associated with a
2% drop in pitch reconstruction performance, as well as a
marginal 0.1% improvement in duration MRR. The former
is consistent with the fact that fingerings have a direct im-
pact on pitch, whilst the latter suggests that physical con-
straints might shape music as performed by humans.

Nevertheless, structured representations for pitch height
and pitch class could still be seen in the encoder latent
space when visualised using a uniform manifold approx-
imation and projection (UMAP) [29] for dimension reduc-
tion (Figure 5). By contrast, the encoder latent space did
not seem to separate the different fingerings (here we only
show finger placement) into such clear clusters. That is ex-
pected as label information was only fed into the classifier
and was thus only implicit in the encoder.

Figure 5. Visualising the encoder latent space with UMAP.

4.4 Semi-supervised learning

To investigate the effects of semi-supervised learning, we
trained our model using six randomly selected excerpts
as unlabelled data (i.e., without fingerings) and varied the
number of labelled excerpts from one to seven. As control,
we trained our model on the same labelled excerpts only.
If our model could learn from unlabelled data, we would
expect better generated fingerings. This is indeed what we
found: our model trained on labelled and unlabelled data
showed improved performance in all metrics except for the
hand position F1 score (Figure 3, Supplementary Table 1).
As expected, we also noticed a gradual improvement in
performance as the number of labelled excerpts increased.

We further tested for significant effects of semi-
supervised learning using random-intercept linear mixed
models. The interaction between semi-supervision (la-
belled only vs. labelled and unlabelled) and number of
labelled excerpts, as well as lower order terms were en-
tered as fixed effects. Significant interactions for string
MRR, nDCG@1, and nDCG@3 revealed substantial im-
provements (⇡ 11%) under semi-supervision when the ra-
tio between labelled and unlabelled data was 1: 6. That

is helpful, given our sampling (see Section 1) showed that
only 15% of violin sheet music contained fingering infor-
mation. Echoing the above, significant main effects of un-
labelled data (with a mean improvement of around 3-6%)
were also detected in MRR, nDCG@1, and nDCG@3 for
string, position, and finger, as well as F1 scores for string
and position (Table 2).

Finally, we note in Table 1 that our model already ex-
ceeded previous work [7] in string F1 performance when
trained on four labelled plus six unlabelled excerpts, and
achieved comparable performance in other metrics with
seven plus six unlabelled excerpts. This demonstrates our
model’s ability to make use of unlabelled data to improve
fingering generation performance to match the state of the
art model with half the amount of labelled data.

Main effect of semi-supervised learning
F(1,169) p

String 10.05 .00181 **
MRR Position 11.47 .000879 ***

Finger 14.06 .000243 ***
String 6.00 .0153 *

F1 Position 0.28 .597
Finger 11.32 .000948 ***
String 12.45 .000537 ***

nDCG@1 Position 7.15 .00825 **
Finger 12.19 .000614 ***
String 10.76 .00126 **

nDCG@3 Position 13.57 .000309 ***
Finger 16.53 7.34⇥10�5 ***

Table 2. Linear mixed model analyses revealed significant
performance improvements in all except one metric when
our model was trained under semi-supervision. See Sup-
plementary Table 3 for significance of other factors.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a semi-supervised model that
generates violin fingerings from the musical score. Our
approach leverages the generative ability of variational au-
toencoders and reframes fingering generation as an addi-
tional latent variable for learning pitch and timing recon-
structions from unlabelled data. We demonstrated that our
model better replicated the fingering style of a human per-
former and generated fingerings that were more preferred
amongst violinists when trained on both labelled and un-
labelled data. Our method can be readily adapted to fin-
gering generation in other instruments such as piano and
guitar, which also suffer from the same lack of labelled
data [8]. Another possibility is to extend our model with
heuristic rules to tailor generated fingerings for different
playing styles or groups (e.g., pedagogy for violinists at
different skill levels) [2,3,7]. Lastly, that pitch reconstruc-
tion depended on fingering information also highlights the
importance of physical constraints and playability in music
performed by humans. Such aspects are often overlooked,
but should be explored in future machine-based music gen-
eration models if a more human-like quality is desired.
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ABSTRACT

We propose a multimodal singing language classification
model that uses both audio content and textual metadata.
LRID-Net, the proposed model, takes an audio signal and
a language probability vector estimated from the metadata
and outputs the probabilities of the target languages. Op-
tionally, LRID-Net is facilitated with modality dropouts to
handle a missing modality. In the experiment, we trained
several LRID-Nets with varying modality dropout config-
uration and tested them with various combinations of input
modalities. The experiment results demonstrate that using
multimodal input improves performance. The results also
suggest that adopting modality dropout does not degrade
the performance of the model when there are full modality
inputs while enabling the model to handle missing modal-
ity cases to some extent.

1. INTRODUCTION

Singing language identification of music (SLID) is a clas-
sification task of labeling tracks by the languages used in
lyrics. Language information is essential for music dis-
covery and recommendation systems as lyrics play a cru-
cial role in the music listening experience [1]. In reality,
despite its importance, language information is not always
available or accurate, even for established, large-scale mu-
sic streaming services. Such a situation has motivated re-
searchers to develop language identification models using
the most fundamental music data – the audio content itself.

There have been various audio-based approaches in
SLID. Most of them utilize traditional machine learning
classifiers and audio features, similar to early methods for
spoken language identification [2, 3]. The models in [4]
and [5] consist of vocal/non-vocal segmentation, feature
vector quantization, and a simple codebook-based lan-
guage model. More recently, i-vector [6], a popular feature
vector for speech-related tasks, was used in [7, 8], com-
bined with a support vector machine classifier. A vocal
source separation technique that is based on a spatial prop-
erty of stereo music signals was added in a model [9], al-
though it did not improve its performance in the experi-

© K. Choi. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: K. Choi, “Lis-
ten, Read, and Identify: Multimodal Singing Language Identification of
Music”, in Proc. of the 22nd Int. Society for Music Information Retrieval
Conf., Online, 2021.

ment. More recently, the model in [10] uses a modern vo-
cal separation technique [11] and a one-dimensional deep
convolutional neural network. In these approaches, a vocal
source separation module is applied to input signals to ex-
tract relevant features with a cleaner signal, i.e., with a less
amount of accompaniments.

There also have been models that are based on non-
audio modalities. The model in [12] is designed to classify
music videos into language categories by taking visual fea-
tures such as histograms of oriented gradients along with
basic audio features such as MFCCs. In the experiment,
adding video features improved the accuracy of the model
from 44.7% to 47.8% in a 25-language classification task.
Another model in [13] uses language estimation of track
title and album name and showed a comparable perfor-
mance to their in-house audio-based classifier. Notably,
an internal music representation called track vector, which
is estimated using music listening history data, showed the
highest feature relevance – 0.97 – in their experiment. It
re-emphasizes that there is a strong connection between
music listening preference and singing language of music.

It is noteworthy that unfortunately, none of the men-
tioned works is reproducible [4, 5, 7–10, 12, 13] and there
has not been any benchmark in SLID. All the previous
works rely on private datasets and only little details such
as target languages and the number of tracks are known.
This is because of a lack of datasets – there has not been
a publicly available music language classification dataset
until very recently [14]. Some music tagging datasets
may be considered as alternatives if they include language
tags; for example, the million song dataset has language
labels [15]. But their tag popularity is merely at 116th
(‘german’), 135th (‘english’), or below, which are often
excluded in a prevalent problem formulation such as top-
50 classification [16] to suppress noise during training and
evaluation [17].

In this paper, we introduce LRID-Net – Listen, Read,
and Identify-Network, a model that takes audio and tex-
tual metadata (track title, album name, and artist name) to
identify singing language. LRID-Net is based on a combi-
nation of a deep convolutional neural network, MLPs, and
modality dropouts as explained in Section 4. We provide
brief information about Music4All [14], the dataset that we
use, in Section 3. In Section 5, we present our experiment
results including the performance of LRID-Net, a compar-
ison of modalities, and verification of modality dropout.
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There are three main contributions of our work.
Contribution 1: LRID-Net is the first work in SLID that
takes advantage of audio and text inputs, presumably the
two most accessible forms of music data.
Contribution 2: We present the first reproducible work in
SLID by using a public dataset. This enables a rigorous
benchmark to be followed, which is necessary for progress
in modern machine learning research.
Contribution 3: LRID-Net has flexibility in its input data
form – it is designed to work with missing modalities by
adopting modality dropouts. This flexibility makes LRID-
Net a highly pragmatic solution in a real-world scenario.

2. PROBLEM FORMULATION

We define our problem as a singing language identifica-
tion using audio content and metadata. It is reasonable
to expect that in many practical use-cases, (some of) three
selected types of metadata – track title, album name, and
artist name – would be accessible. For example, music
tracks shared on online streaming services usually include
all of them. We exclude other types of data such as vi-
sual features and pre-computed track vectors despite their
benefits shown in [12] and [13], respectively, because their
availability is limited for a subset of commercial music
tracks even for those in industry who have an access to
a large-scale proprietary catalog.

To make our model even more practical, we consider a
missing data scenario. Some or all of the metadata can be
easily missing. For example, indie music tracks shared on-
line (e.g., SoundCloud or Jamendo) usually do not include
any album name, or they can exist but should be considered
missing since titles can be blank or consists of numbers
and/or special characters only, not providing any linguistic
information. The audio could be also missing or not help-
ful at all, for example, a segment that is input to the model
may not contain any vocal part.

From a machine learning point of view, our SLID prob-
lem is a single-label multi-class classification with a multi-
modal, potentially partially missing input. In fact, some
lyrics are multilingual. But we assume that those cases are
negligible, following the dataset we use (see Section 3 for
more details). 1

3. DATASET

We use Music4All dataset [14] which includes 30-second
audio clips (44,100 kHz and stereo), lyrics, and 16 other
metadata such as title, album name, artist name, and Spo-
tify identifier of 109,269 tracks. The dataset also includes
language labels covering 46 languages. They are estimated
from the lyrics using Langdetect, 2 a Python implementa-
tion of Language-Detection [18]. 3

1 English words such as “Yeah”, “Hey", and “Baby" are often used as
musical expressions or interjections in non-English songs and we do not
assume their existence makes a lyric multilingual.

2 https://pypi.org/project/langdetect/
3 We noticed there are errors in the ground truth. But Langdetect is

known to perform at 99% accuracy with documents, which is significant
higher than the performance of the proposed audio-based models.
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Figure 1: Block diagram of LRID-Net. Gray rectangular
boxes indicate non-trainable modules and dotted circles are
modality dropouts (Section 4.4), which are optionally ap-
plied in some of the experiments (Section 5.4).

The distribution of language labels in Music4ALL is
heavily skewed from 84,103 items (English) to 1 item
(Hindi, Slovak, Bulgarian, and Hebrew). We consider
11 labels – top-10 popular languages and an “others" cate-
gory that includes all the other languages. In detail, there
are 84,103 English tracks followed by Portuguese (7,020),
Spanish (3,225), Korean (1,145), Others (1,059), French
(994), Japanese (615), German (577), Polish (446), Italian
(437), and Slovakian (231). There are also 9,417 instru-
mental tracks, but we exclude them because otherwise, the
model would need to learn to perform language identifi-
cation as well as instrumental track classification, which
would distract our analysis.

There does not exist an official training-validation split
of tracks of M4A dataset. We use an 80:20 stratified split
with allocating every artist in only one of the split sets. 4

This prevents artist-dependent information from being a
confounding factor and leaking the information between
training and validation sessions.

4. LRID-NET

4.1 Input Audio Preprocessing

The 44.1 kHz sampled 30-second stereo audio sig-
nals are downmixed and resampled to 22,050 Hz and
converted into 128-bin log-magnitude mel-spectrograms
(128 ⇥ 2580) with 1024-point FFT and 256 hop size us-
ing Kapre [19]. We call this spectrogram xaudio.

4.2 Input Text Preprocessing

The metadata strings are joined in an order of artist name,
album name, and track title and then input to Langde-
tect to estimate a language probability vector. Originally,
langdetect.detect_langs() outputs a probabil-
ity distribution of 55 supported languages. However, there
are some cases where the function fails to estimate proba-
bility, e.g., if the text is blank or a numeric value only. We
add another dimension to indicate those exceptions. This
56-dimensional vector is called xlang .

4.3 Overall model structure

LRID-Net consists of two input branches that are concate-
nated at a late stage of the network.

4 https://github.com/keunwoochoi/music4all_
contrib
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The audio branch, f , is a ResNet-50 with 64 base
channels and outputs a 2048-channel feature map that is
a size of (4 ⇥ 81) [20]. We choose ResNet-50 for its sim-
plicity yet strong performance as shown in [21] for music
tagging. Then, a global average pooling is applied to out-
put a one-dimensional vector length of 2048. This proce-
dure is represented as saudio = f(xaudio).

The text branch, g, is a 3-layer MLP where each layer
consists of a 128-unit fully-connected layer, a batch nor-
malization layer, and a ReLU activation [22], i.e., stext =
g(xlang).

In the output branch, h, the two outputs of the in-
put branches are concatenated, i.e., scat = [saudio; stext]
and input to an MLP. This MLP consists of a 256-unit
fully-connected hidden layer, a batch normalization layer,
a ReLU activation, and an 11-unit fully-connected layer
with a Softmax activation to output the language probabil-
ity, i.e., ŷ = h(scat).

4.4 Modality Dropout

We use modality dropout which was originally introduced
in [23] as ModDrop and is illustrated in the block dia-
gram in Figure 1. Similar to the original dropout [23],
during training time, a modality dropout module replaces
its input with zeros with a probability of r, the dropout
rate. There are two main differences between the original
dropout and modality dropout. 1) The original dropout is
applied to a part (e.g., a single node or a channel) of an in-
put but a modality dropout module drops the whole input
of a modality, i.e., an audio signal or a language probabil-
ity vector. By doing so, it effectively simulates a missing
modality input and lets the model learn to perform the task
without the dropped input. 2) There is no 1/(1�r) scaling
in a modality dropout when the input is not dropped. Dur-
ing test time, a system with LRID-Net inputs a zero vector
to the model if a modality is missing.

5. EXPERIMENT AND DISCUSSION

We performed a series of experiments to demonstrate the
performance and properties of LRID-Net. We use Mu-
sic4All dataset [14] and process audio and text data using
Kapre [19] and Langdetect [18] as detailed in Section 3
and Section 4, respectively. During training, we use Adam
optimizer [24] and early stopping with a patience of 20
epochs. We do not adopt any balancing during batching
and loss computation.

On the metric, we use F1-score, precision, and recall.
As described in Section 3, there is a high imbalance of the
number of data points of each language in the dataset. In
this case, from a user perspective, a macro average can be
used to represent the class-balanced performance to avoid
the bias towards popular languages, too. However, because
they are biased in the same way in the training and valida-
tion sets, weighted (or micro) averaging can be considered
to be more suitable than macro averaging on representing
how successfully the model was trained to minimize the
empirical loss. Acknowledging this issue, we use both of

Text input Precision Recall F1-Score

Artist Name .323 .221 .149
Album Name .399 .378 .284
Track Title .450 .444 .317
Joining All .510 .569 .429

Table 1: The macro averaged performance of Langdetect
prediction with various text inputs. ‘Joining All’ represents
the performance of langdetect baseline.

Text input Precision Recall F1-Score

Artist Name .600 .368 .456
Album Name .750 .576 .652
Track Title .766 .573 .656
Joining All .922 .819 .857

Table 2: The weighted averaged performance of Langde-
tect prediction with various text inputs. ‘Joining All’ rep-
resents the performance of Langdetect baseline.

the averaging methods and focus on the performance with
a suitable one depending on the context.

We present the performance of each language sorted by
its occurrence count, as known as Support, to help under-
standing of any related trend.

5.1 Langdetect baseline

We present the result of a simple solution that is to directly
use the top prediction of text-based language identifica-
tion using Langdetect. This baseline approach is called
Langdetect baseline. We also present a detailed analysis
of the performance and behavior of Langdetect baseline
model to deepen our understanding of the problem and the
following experiment results.

Table 1 and 2 summarize the performance of Langde-
tect baseline based on various text inputs, showing that us-
ing all the metadata (‘Joining All’) performs the best by
achieving an F1-score of 0.429 (macro average) or 0.857
(weighted average). Details of the performance with ‘Join-
ing All’ are presented in Table 3 and its confusion matrix
is illustrated in Figure 2. Note that Langdetect baseline
model is not trained with our dataset, hence support (num-
ber of true items) does not affect the performance.

The F1-scores seem under-performing since Langde-
tect is reported to show 99% accuracy. We conjecture
two reasons for this result. First, music metadata is sig-
nificantly shorter than typical documents and news article,
with which Langdetect was originally trained and tested,
respectively. Second, there is a prevailing usage of En-
glish for artist name, album name, and track title even if
the lyrics are not written in English, especially for those
songs that are internationally consumed.

In detail, the precision and recall shows interesting pat-
terns that are partly related to the second reason; There are
languages where precision is significantly higher than re-
call (Group 1: Korean, Japanese) while precision is signif-
icantly lower than recall for some other languages (Group
2: French, German, Italian, Slovakian). We note that
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Language Precision Recall F1-Score Support

English .969 .859 .911 84,103
Portuguese .897 .695 .783 7,020
Spanish .676 .620 .647 3,225
Korean .444 .003 .007 1,145
Others .092 .700 .162 1,059
French .367 .585 .452 994
Japanese .895 .153 .261 615
German .093 .773 .166 577
Polish .695 .572 .627 446
Italian .229 .748 .350 437
Slovakian .252 .554 .347 231

Table 3: The performance of Langdetect prediction when
all the metadata are concatenated (‘Joining all’). Support
column indicates the number of items in the training set, of
which distribution is preserved in the validation set.

Figure 2: The confusion matrix of Langdetect base-
line model (‘Joining all’). Item counts are converted by
log10(x+ 1).

the languages in Group 1 are only two non-European lan-
guages and suggest two explanations for their patterns.
First, on high precision scores, since Korean and Japanese
use completely different letter systems compared to other
languages, it is very easy for Langdetect to recognize them
if the metadata is written in Korean or Japanese. Second,
the low recall may come from the common usage of En-
glish as mentioned earlier. In such cases, metadata-based
Langdetect would never be able to correctly predict that
the lyrics are written in Korean or Japanese. This is re-
vealed in a deeper dataset analysis. Among the 1,145 Ko-
rean songs in the training set, there are 244 unique artists,
out of which 241 artist names are English. Conversely,
the model almost never misclassifies non-Korean or non-
Japanese songs to Korean or Japanese, respectively. Un-
like Group 1, we did not find any convincing explanation
for the patterns of Group 2.

5.2 Single modality baselines

As additional baseline models, we show experiment re-
sults of single modality models. They are AO (audio-only)

Figure 3: Top - The performance of an text-only model
(TO model). Its precision, recall, and F1-score are
.526 / .415 / .422 (macro averaging) and .896 / .914 / .900
(weighted averaging). Bottom - The performance of an
audio-only model (AO model). The precision, recall, and
F1-score are respectively .387 / .248 / .275 (macro averag-
ing) and .852 / .884 / .857 (weighted averaging).

Figure 4: The performance of Main model with both
modality inputs. The precision, recall, and F1-score are
respectively .688 / .435 / .504 (macro averaging) and
.911 / .922 / .911 (weighted averaging).

model and TO (text-only) model.
First of all, we compare the TO model against Langde-

tect baseline. TO model achieves a comparable macro
averaged F1-score (0.422, a degradation of 0.007) and a
higher weighted averaged F1-score (0.900, an improve-
ment of 0.043) as in Figure 3. Again, this result seems
heavily affected by the class imbalance of the training set.

Second, as illustrated in Figure 3, a lack of a modal-
ity leads to negative effects, often critically to some lan-
guages. AO model completely fails at identifying Others,
Polish, Italian, and Slovakian while TO model fails at Ko-
rean, Japanese, German, and Slovakian.

Third, as summarized in Figure 3, in every metric and
averaging strategy, TO model outperformed AO model,
showing the importance of using metadata. However, this
does not mean audio is less useful than textual data. Ac-
knowledging the limit of the information in the metadata
discussed with Langdetect baseline in Section 5.1, the re-
sult may indicate the opposite that currently, the informa-
tion from text input is almost saturated and more improve-
ment should be based on a better audio understanding.

5.3 LRID-Net: Main Model

In this section, we introduce the experiment result of our
multimodal SLID model, LRID-Net. This LRID-Net net
was trained without any modality dropouts and we call this
model ‘Main model’.
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Figure 5: The confusion matrix of Main model. Item
counts are converted by log10(x+ 1).

Main model shows an improvement over all the afore-
mentioned baseline models. Compared to Langdetect
baseline, it achieves a higher F1-score (+0.048) with a
higher precision (+0.134) and a lower recall (-0.118) on
weighted average. It also achieves a higher F1-score
(+0.075) and a higher precision (+0.158), but a lower recall
(-0.134) on macro average. Main model also outperforms
AO model and TO model, the single modality models, in
every metric and averaging strategy, emphasizing the ben-
efit of using multimodal information.

Among languages, Main model shows low recall rates
for Korean, French, Japanese, German, and Italian as
shown in Figure 4. This pattern is similar to that in
the results of Langdetect baseline as discussed in Sec-
tion 5.1. We conjecture that a similar type of confu-
sion may have happened in Main model, especially if
the 56-dimensional text-based language probability input
computed with Langdetect plays an important role (which
seems true given that TO model outperforms AO model in
Section 5.2). The class imbalance of the training set seems
to penalize recall rates of those languages because a classi-
fication of unconfident items is likely to be biased towards
the mode of the distribution of training items, i.e., English.
This is shown in Figure 5.

The overall improvement of F1-score did not benefit all
the languages equally. The performance of Main model
is rather polarized than Langdetect baseline model. The
F1-scores of 3/4 popular languages (English, Spanish, and
Korean) and Others category are improved in Main model
compared to Langdetect baseline. In the meantime, out of
the six less popular languages, only two languages (Italian
and Slovakian) show an improvement. This might mean
a correlation between the performance and the number of
training data. However, there is a clear exception. Main
model achieves an F1-score of 0.347 for Slovakian, which
both AO model and TO model completely failed.

For some languages, Main model achieved a lower per-
formance than a single modality model, leaving room for
further improvement. For example, Main model is outper-
formed by AO model for Korean and TO model for French
and Italian.

Figure 6: The comparison of metrics of Main model
and models with various modality dropout strategies when
there is no missing modalities in the data. ADr-Main, TDr-
Main, and ATDr-Main indicate models with the same ar-
chitecture but with modality dropouts applied on audio in-
put, text input, and both of the inputs, respectively.

5.4 Modality Dropout

In this section, we discuss the benefits and effects of apply-
ing modality dropout to Main model. We test three modal-
ity dropout strategies: applying modality dropout to audio
input only (ADr-Main model), text input only (TDr-Main
model), and both of the inputs (ATDr-Main model). The
dropout rate is fixed to 0.2 for every model. 5 In ATDr-
Main model, the two dropouts work independently. This
means that during training, stochastically, 4% of training
items would have zero values for both of the inputs where
backpropagation is still applied to update the model. This
leads to strengthen the model to predict the distribution of
the training data and may not be ideal, but we did not ob-
serve any critical issue in practice.

Since there is no language-specific pattern, we present
the averaged metrics only in this section.

5.4.1 Case 1: Complete Modality – Do modality
dropouts have any negative affects?

It is unusual to use modality dropout in music informa-
tion retrieval. We first investigate to ensure that adopting it
does not harm the normal use-cases, i.e., when there is no
missing modality.

As presented in Figure 6, all the models with modal-
ity dropouts - ADr-Main model, TDr-Main model, and
ATDr-Main model achieve comparable or even outper-
forming performances over Main model although they
might not be statistically significant. The effects of Modal-
ity dropout are better reflected on weighted-average scores
than macro-average ones. That is because weighted-
averaged scores are more linearly related to the empirical
loss that our models are trained to minimize. As shown,
modality dropouts only improved those scores. To summa-
rize, adopting modality dropouts does not harm the normal
use-cases.

5.4.2 Case 2: Missing Audio Input

Figure 7 presents the performances of Main model, ADr-
Main model, and ATDr-Main model when audio inputs are
missing, i.e., there is only text input.

5 0.2 was chosen assuming a small portion (for example, 20%) of
tracks would have missing modality in the real use-cases.
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Figure 7: The comparison of metrics of Main model and
models with various modality dropout strategies (see 6 for
details) when there is missing audio modality. Note that as
in Figure 3 (top), TO model, a dedicated text-only model
achieved precision / recall / F1-score of .526 / .415 / .422
(macro averaging) and .896 / .914 / .900 (weighted averag-
ing), respectively.

Figure 8: The comparison of metrics of Main model and
models with various modality dropout strategies (see 6 for
details) when there is missing text modality. Note that as
in Figure 3 (bottom), AO model, a dedicated audio-only
model achieved precision / recall / F1-score of 387 / .248
/ .275 (macro averaging) and .852 / .884 / .857 (weighted
averaging), respectively.

First, surprisingly, Main model - one that is trained
without any modality dropout - performs comparably
with ADr-Main model and ATDr-Main model, which are
trained explicitly to be able to deal with missing audio in-
put. This is an unexpected behavior since there is no rea-
son the model should learn to ignore a zero audio input
(silence) and make a correct prediction solely based on the
text information – but, seems like it does. We find it diffi-
cult to explain it and leave it as a future work.

Second, it is worth comparing these results with that of
TO model (Figure 3, top), a model that is designed and
trained to work with text input only. In all the metrics and
averaging strategies, TO model outperforms all the three
models. For F1-score, even with the best model (ADr-
Main), there is a difference of 0.051 (macro averaging)
or 0.007 (weighted averaging). This indicates that despite
versatility, a model with an audio modality dropout may
not completely replace a dedicated text-only model, espe-
cially if missing audio inputs are highly likely.

5.4.3 Case 3: Missing Text Input

Figure 8 presents the performance of Main model, TDr-
Main model, and ATDr-Main model when text input is
missing, i.e., there is only audio input.

First, there are noticeable improvements by apply-

ing modality dropouts - TDr-Main model and ATDr-
Main model outperformed Main model for the most of the
metrics. ATDr-Main model achieved +0.086 and +0.101
higher F1-scores than Main model does. This result sup-
ports a potential real-world use-case of serving a single
SLID model where metadata may or may not be available.

Second, when compared to AO model (Figure 3, top),
all the three models in Figure 8 are outperformed. This
means, similar to the conclusion of Section 5.4.2, a model
with a text modality dropout may not serve as a perfect
alternative and whether to apply text modality dropout
(as opposed to train two different models, AO model and
Main model) would be a practical choice: the decision
would be based on the ratio of missing-text inputs and the
costs of training and maintaining one vs. two models.

6. CONCLUSION

In this paper, we presented LRID-Net, a deep learning
model for singing language identification (SLID) that takes
advantage of multimodal data. LRID-Net takes an audio
input as well as a text input that combines track title, album
name, and artist name. We also propose modality dropout
in MIR task, which is designed to let a single model be
used with varying input availability. In the experiment,
we showed that i) multimodal input improves the perfor-
mance, ii) a language probability vector of metadata is an
effective representation for SLID, iii) modality dropouts do
not harm the performance when both of the input modali-
ties exist, and iv) modality dropouts make a model robust
with missing input to some extent.

Our research has several limitations. There are some be-
haviors that we could not provide a satisfying explanation
about. Although being useful to some extent, the modal-
ity dropout did not completely fulfill the need of building
multiple models to cope with missing modalities. Due to
the already complicated experiment configuration, we did
not opt for balancing the languages, which would be a nec-
essary step to build a more practical language classifier.

There are many research questions to be answered in
SLID. A data-driven SLID model might learn some non-
linguistic features that are correlated to language labels,
and identifying those mechanisms would lead to building
more robust SLID models. One approach to demystifying
their behavior is to use source separation techniques and
observe how much a model is replying on vocal parts vs
accompaniments. Source separation techniques also could
lead to a better performing model because separated sig-
nals would provide a disentangled input representation that
may be useful for the task. Finally, another highly re-
lated and interesting task is lyric transcription, which can
be combined with SLID, where a mutual benefit is antici-
pated.

7. ACKNOWLEDGEMENT

We thank Jeong Choi, Minz Won, Jordan Smith, Janne
Spijkervet, Gianluca Micchi, and Zhihao Ouyang for their
helpful reviews and discussion on this paper.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

126



8. REFERENCES

[1] J. H. Lee and J. S. Downie, “Survey of music informa-
tion needs, uses, and seeking behaviours: preliminary
findings.” in The 5th International Society of Music
Information Retrieval Conference (ISMIR), vol. 2004.
Citeseer, 2004, p. 5th.

[2] M. Sugiyama, “Automatic language recognition using
acoustic features,” in [Proceedings] ICASSP 91: 1991
International Conference on Acoustics, Speech, and
Signal Processing. IEEE, 1991, pp. 813–816.

[3] L. F. Lamel and J.-L. Gauvain, “Language identi-
fication using phone-based acoustic likelihoods,” in
Proceedings of ICASSP’94. IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
vol. 1. IEEE, 1994, pp. I–293.

[4] W.-H. Tsai, H.-M. Wang et al., “Towards automatic
identification of singing language in popular music
recordings.” in International Society of Music Informa-
tion Retrieval (ISMIR). Citeseer, 2004.

[5] W.-H. Tsai and H.-M. Wang, “Automatic identifica-
tion of the sung language in popular music recordings,”
Journal of New Music Research, vol. 36, no. 2, pp.
105–114, 2007.

[6] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and
P. Ouellet, “Front-end factor analysis for speaker verifi-
cation,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 4, pp. 788–798, 2010.

[7] A. M. Kruspe and I. Fraunhofer, “Improving singing
language identification through i-vector extraction.” in
DAFx, 2014, pp. 227–233.

[8] A. M. Kruspe, J. Abesser, and C. Dittmar, “A gmm
approach to singing language identification,” in Audio
Engineering Society Conference: 53rd International
Conference: Semantic Audio. Audio Engineering So-
ciety, 2014.

[9] J. Schwenninger, R. Brueckner, D. Willett, and M. E.
Hennecke, “Language identification in vocal music.”
in International Society of Music Information Retrieval
(ISMIR), 2006, pp. 377–379.

[10] D. DEL CASTILLO, “End-to-end learning for singing-
language identification,” 2020, master’s thesis, KTH,
School of Electrical Engineering and Computer Sci-
ence (EECS).

[11] K. Drossos, S. I. Mimilakis, D. Serdyuk, G. Schuller,
T. Virtanen, and Y. Bengio, “Mad twinnet: Masker-
denoiser architecture with twin networks for monaural
sound source separation,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE,
2018, pp. 1–8.

[12] V. Chandrasekhar, M. E. Sargin, and D. A. Ross, “Au-
tomatic language identification in music videos with

low level audio and visual features,” in 2011 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2011, pp. 5724–
5727.

[13] L. Roxbergh, “Language classification of music using
metadata,” 2019, master’s thesis, Uppsala Universitet.

[14] I. A. P. Santana, F. Pinhelli, J. Donini, L. Catharin,
R. B. Mangolin, V. D. Feltrim, M. A. Domingues et al.,
“Music4all: A new music database and its applica-
tions,” in 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP). IEEE, 2020,
pp. 399–404.

[15] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” 2011.

[16] K. Choi, G. Fazekas, and M. Sandler, “Automatic tag-
ging using deep convolutional neural networks,” The
17th International Society of Music Information Re-
trieval Conference, New York, USA, 2016.

[17] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “The
effects of noisy labels on deep convolutional neural
networks for music tagging,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2,
no. 2, pp. 139–149, 2018.

[18] N. Shuyo, “Language detection library for java,”
2010. [Online]. Available: http://code.google.com/p/
language-detection/

[19] K. Choi, D. Joo, and J. Kim, “Kapre: On-gpu au-
dio preprocessing layers for a quick implementation of
deep neural network models with keras,” in Machine
Learning for Music Discovery Workshop at 34th Inter-
national Conference on Machine Learning. ICML,
2017.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[21] M. Won, A. Ferraro, D. Bogdanov, and X. Serra, “Eval-
uation of cnn-based automatic music tagging mod-
els,” Proceedings of 17th Sound and Music Computing
(SMC), 2020.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” in International conference on machine
learning. PMLR, 2015, pp. 448–456.

[23] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Mod-
drop: adaptive multi-modal gesture recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 38, no. 8, pp. 1692–1706, 2015.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” 3rd International Conference for
Learning Representations, San Diego, 2015.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

127



ON PERCEIVED EMOTION IN EXPRESSIVE PIANO PERFORMANCE:
FURTHER EXPERIMENTAL EVIDENCE FOR THE RELEVANCE OF

MID-LEVEL PERCEPTUAL FEATURES

Shreyan Chowdhury1 Gerhard Widmer1,2
1Institute of Computational Perception, Johannes Kepler University Linz, Austria

2LIT AI Lab, Linz Institute of Technology, Austria
firstname.lastname@jku.at

ABSTRACT

Despite recent advances in audio content-based music
emotion recognition, a question that remains to be explored
is whether an algorithm can reliably discern emotional or
expressive qualities between different performances of the
same piece. In the present work, we analyze several sets of
features on their effectiveness in predicting arousal and va-
lence of six different performances (by six famous pianists)
of Bach’s Well-Tempered Clavier Book 1. These features
include low-level acoustic features, score-based features,
features extracted using a pre-trained emotion model, and
Mid-level perceptual features. We compare their predictive
power by evaluating them on several experiments designed
to test performance-wise or piece-wise variations of emo-
tion. We find that Mid-level features show significant con-
tribution in performance-wise variation of both arousal and
valence – even better than the pre-trained emotion model.
Our findings add to the evidence of Mid-level perceptual
features being an important representation of musical at-
tributes for several tasks – specifically, in this case, for
capturing the expressive aspects of music that manifest as
perceived emotion of a musical performance.

1. INTRODUCTION

A musical performance, particularly in the Western mu-
sic tradition, is not merely a literal acoustic rendering
of a notated piece or composition. Rather, the piece is
transformed by the performer’s own expressive perfor-
mance choices, relating to such dimensions as the choice of
tempo, expressive tempo and timing variations, dynamics,
articulation, and so on. The emotional effect of a perfor-
mance on a listener can be a consequence both of the com-
position itself, with its musical properties and structures,
and of the performance, the way the piece was played. In
fact, it has been convincingly demonstrated [1, 2] that per-
formers are capable of communicating, with high accuracy,

© S. Chowdhury, and G. Widmer. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: S. Chowdhury, and G. Widmer, “On Perceived Emotion in
Expressive Piano Performance: Further Experimental Evidence for the
Relevance of Mid-level Perceptual Features”, in Proc. of the 22nd Int.

Society for Music Information Retrieval Conf., Online, 2021.

intended emotional qualities by their playing.
The analysis of emotion in music recordings has a long

history in Music Information Retrieval, with many works
addressing content-based emotion regression and classifi-
cation typically using low-level or hand-crafted audio and
musical features [3–6] or using deep learning based meth-
ods [7–9]. However, there has been little research on the
more subtle problem of identifying emotional aspects that
are due to the actual performance, and even less on models
that can automatically recognize this from audio record-
ings. On the latter problem – the one to be addressed in
this paper – the most directly relevant prior work we are
aware of is [10], where 324 6-second audio snippets of dif-
ferent genres (classical, jazz, blues, metal, etc.) were anno-
tated in terms of perceived emotion (valence and arousal),
and various regressors were trained to predict these two
dimensions from a set of standard audio features. The re-
gression models were then used to predict valence-arousal
trajectories over 5 different recordings of 4 Chopin pieces,
but no ground truth in terms of human emotion annotations
was collected. The relevance of the model predictions was
evaluated only indirectly, by comparing similarity scores
between predicted profiles with overall performance simi-
larity ratings by three human listeners, which showed some
non-negligible correlations.

In a recent focused study [11], Battcock & Schutz (re-
ferred to as “B&S” henceforth) investigate how three spe-
cific score-based cues (Mode, Pitch Height, and Attack
Rate 1 ) work together to convey emotion in J.S.Bach’s pre-
ludes and fugues collected in his Well-tempered Clavier

(WTC). They used recordings of the complete WTC Book
1 (48 pieces) of one famous pianist (Friedrich Gulda) as
stimuli for human listeners to rate each performance on
perceived arousal and valence. Their findings suggest that
within this set of performances, arousal is significantly cor-
related with attack rate and valence is affected by both the
attack rate and the mode. However, that study was based
on only one set of performances, making it impossible to
decide whether the human emotion ratings used as ground
truth really reflect aspects of the compositions themselves,
or whether they were also (or even predominantly) affected
by the specific (and, in some cases, rather unconventional)

1 Actually, attack rate as computed by B&S is also informed by the
average tempo of the performance; thus, it is not strictly a score-only
feature.
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Pianist Recording Year
Glenn Gould Sony 88725412692 1962-1965
Friedrich Gulda MPS 0300650MSW 1972
Angela Hewitt Hyperion 44291/4 1997-1999
Sviatoslav Richter RCA 82876623152 1970
András Schiff ECM 4764827 2011
Rosalyn Tureck DG 4633052 1952-1953

Table 1: Pianists and recordings.

way in Friedrich Gulda plays the pieces – that is, whether
the emotion ratings reflect piece or performance aspects.

The purpose of the present paper is to try to dis-
entangle the possible contributions and roles of differ-
ent features in capturing composer-(piece-)specific and
performer-(recording-)specific aspects. To this end, we
collected human ratings of perceived valence and arousal
in six complete sets of recordings of WTC Book 1, and
then performed a systematic study with feature sets derived
from various levels of musical abstraction, including some
extracted by pre-trained deep neural networks.

2. DATA COLLECTION

2.1 Pieces and Recordings

J.S.Bach’s Well-tempered Clavier (WTC) is ideally suited
for systematic and controlled studies of this kind, as it com-
prises a stylistically coherent set of keyboard pieces from a
particular period, evenly distributed over all keys and ma-
jor/minor modes, with a pair of two pieces (a prelude, fol-
lowed by a fugue) in each of the 24 possible keys, for a to-
tal of 48 pieces. Each piece has its own distinctive musical
character, and despite being written in a rather strict style
and not meant to be played in ‘romantic’ ways, the music
offers pianists (or pianists take) lots of liberties in orna-
mentation, but also overall performance parameters (e.g.,
tempo and articulation). For example, there are pieces
in our set of recordings that one pianist takes more than
twice (!) as fast as another.

For a broad set of diverse performances, we selected six
recordings of the complete WTC Book 1, by six famous
and highly respected pianists, all of whom can be consid-
ered Bach specialists to various degrees. The recordings
are listed in Table 1.

2.2 Emotion Annotations and Pre-processing

In accordance with B&S, we will only use the first 8 bars
of each recording for the annotation process and our exper-
iments. These were cut out manually. The participants of
our annotation exercise were students of a course at a uni-
versity, without a specifically musical background. Each
participant heard a subset of the recordings (all 48 pieces
as played by one pianist) and was asked to rate the valence
on a scale of -5 to +5 (11 levels) and the arousal on a scale
of 0 to 100 (increments of 10; a total of 11 levels). They
could listen to a recording as many times as they liked.
Each recording was rated by 29 participants. In total, we
collected 8,352 valence-arousal annotation pairs.

For the purposes of this paper, we take the mean arousal
and mean valence ratings for each recording, and these val-
ues serve as our ground-truth values for all following ex-
periments. The distributions (over the 6 performances) of
these mean ratings for each piece are summarised in Fig-
ure 1.

Figure 1: Distribution of emotion ratings across pianists for ev-
ery piece.

3. FEATURE SETS

In this section, we briefly describe the four feature sets that
we use to model arousal and valence.

3.1 Low-level Features

These consist of hand-crafted musical features (such as on-
set rate, tempo, pitch salience) as well as generic audio
descriptors (such as spectral centroid, loudness). Taken to-
gether, they reflect several musical characteristics such as
tone colour, dynamics, and rhythm. A brief description
of all low-level features that we use is given in Table 2.
We use Essentia [12] and Librosa [13] for extracting these.
The audio is sampled at 44.1kHz and the spectra computed
(when required) with a frame size of 1024 samples and a
hop size of 512 samples. Each feature is aggregated over
the entire duration of an audio clip by computing the mean
and standard deviation over all the frames of the clip (a
‘clip’ being an 8 bar initial segment from a recording).

3.2 Score Features

The following set of features was computed directly from
the musical score (i.e., sheet music) of the pieces instead
of the audio files. The unit of score time, “beat”, is de-
fined by the time signature of the piece (e.g., 4/4 means
that there are 4 beats of duration 1 quarter in a bar). The
score information and the audio files were linked using au-
tomatic score-to-performance alignment. Table 3 describes
the score features in detail.
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Dissonance Total harmonic dissonance computed from
pairwise dissonance of all spectral peaks.

Dynamic
Complexity

The average absolute deviation from the
global loudness level estimate in dB.

Loudness Mean loudness of the signal computed from
the signal amplitude.

Onset Rate Number of onsets (note beginnings or tran-
sients) per second.

Pitch Salience A measure of tone sensation, computed
from the harmonic content of the signal.

Spectral Centroid The weighted mean frequency in the signal,
with frequency magnitudes as the weights.

Spectral Flatness A measure to quantify how much noise-like
a sound is, as opposed to being tone-like.

Spectral
Bandwidth

The second order bandwidth of the spec-
trum.

Spectral Rolloff The frequency under which 85% of the total
energy of the spectrum is contained.

Spectral
Complexity The number of peaks in the input spectrum.

Tempo (BPM) Tempo estimate from audio in beats per
minute.

Table 2: Low-level Features

Inter Onset
Interval

The time interval between consecutive notes per
beat.

Duration
Two features describing the empirical mean and
standard deviation of the notated duration per
beat in the snippet.

Onset Density The number of note onsets per beat. A chord
constitutes a single onset.

Pitch Density The number of unique notes per beat.

Mode

Binary feature denoting major/minor modal-
ity, computed using the Krumhansl-Schmuckler
key finding algorithm [14] (to reflect the fact
that the dominant key over the segment may be
different from the given key signature).

Key Strength This feature represents how much does the
tonality by the "Mode" feature fit the snippet.

Table 3: Score Features

3.3 Mid-level Features

Mid-level features, described in [15], are perceptual musi-
cal features that are intuitively understandable to the aver-
age listener. They seem well-suited to bridge the “seman-
tic gap" between low-level audio features and high-level
descriptors such as emotion and have been shown to be
useful in explainable music emotion recognition [16]. We
learn these features from the Mid-level Dataset [15] using
a receptive-field regularised residual neural network (RF-
ResNet) model [17]. Since we intend to use this model to
extract features from solo piano recordings (a genre that is
not covered by the original training data), we use a domain-
adaptive training approach as described in [18]. We use an
input audio length of 30 seconds, padded or cropped as
required. As these features cannot be strictly defined, Ta-
ble 4 lists a rough description adapted from the questions
in [15] that were shown to the annotators of the dataset to
help them rate the audio clips.

3.4 DEAMResNet Emotion Features

To compare the mid-level features with another deep neu-
ral network based feature extractor, we train a model with

Melodiousness How singable is this music?

Articulation
Overall impression of articulation in terms of
staccato or legato playing style. Higher means
more staccato.

Rhythmic
Stability How easy is it to march-along with the music?

Rhythmic
Complexity

How difficult is it to follow the music by tap-
ping? Rhythmic layers and different meters
correlate with higher complexity.

Dissonance Noisier timbre or presence of dissonant inter-
vals (tritones, seconds, etc.)

Tonal Stability How clear or apparent the tonic and key are.

Minorness Relates to the perceived tonality. More “minor-
sounding" music will have higher minorness.

Table 4: Mid-level Features

the same architecture (RF-ResNet) and training strategy on
the DEAM dataset [19] to predict arousal and valence from
spectrogram inputs. Since this model is trained to predict
arousal and valence, it is expected to learn representations
suitable for this task. As with the mid-level model, we per-
form domain adaptation while training this model also.

Features are extracted from the penultimate layer of the
model, which gives us 512 features. Since these are too
many features to use for our dataset containing only 288
data points, we perform dimensionality reduction using
PCA (Principal Component Analysis), to obtain 9 com-
ponents explaining at least 98% of the variance. These 9
features are named as pca_x with x being the principal
component number.

4. FEATURE EVALUATION EXPERIMENTS

In this section, we evaluate the four feature sets. The aim
of this section is to answer the following questions:

1. How well can each feature set fit the arousal and va-
lence ratings? How do these feature sets compare to
the ones used by B&S? (Sections 4.1 and 4.2)

2. In each feature set, which features are the most im-
portant? (Section 4.3)

3. Which feature set best explains variation of arousal
and valence between pieces? (Section 4.4)

4. Which feature set best explains variation of arousal
and valence between different performances of the

same piece? (Section 4.5)

We use ordinary least squares fitting on the dataset in ques-
tion and calculate the regression metrics. The metrics
we report are adjusted coefficient of determination (R̃2),
root mean squared error between true and predicted val-
ues (RMSE), and Pearson’s correlation coefficient between
true and predicted values (Corr).

4.1 Evaluation on B&S Data

As a starting point, we take the data used by B&S in Ex-
periment 3 of their paper – Gulda’s performances rated on
valence and arousal We perform regression with our fea-
ture sets and compare with the values obtained by B&S
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using their features Attack Rate, Pitch Height, and Mode.
The results are summarised in Table 5.

Arousal Valence
R̃2 RMSE Corr R̃2 RMSE Corr

Mid-level 0.84 0.36 0.93 0.79 0.42 0.91
DEAMResNet 0.91 0.27 0.96 0.69 0.50 0.86
Low-level 0.86 0.29 0.96 0.67 0.45 0.89
Score 0.31 0.74 0.67 0.61 0.55 0.83
B&S (exp 3) 0.48 - - 0.75 - -

Table 5: Regression on Gulda data from B&S [11].

We can see that all three audio-based features perform
considerably well for both arousal and valence to motivate
further analysis.

4.2 Evaluation on Our Dataset

Next, we perform regression on our complete dataset
(comprising of 288 unique recordings – 48 pieces ⇥ 6 pi-
anists). The results summary can be seen in Table 6a. Here
again, we observe that while DEAMResNet Emotion fea-
tures perform best on arousal and Score features perform
best on valence, Mid-level features show a balanced per-
formance across both the emotion dimensions.

To evaluate generalizability, we perform cross-
validation with three different kinds of splits – piece-wise
(all 6 performances of a piece are test samples in a fold,
for a total of 48 folds), pianist-wise (all 48 pieces of a pi-
anist are test samples in a fold, for a total of 6 folds), and
leave-one-out (one recording is the test sample per fold, for
a total of 288 folds). This is summarized in Table 6b.

Arousal Valence
Feature Set R̃2 RMSE Corr R̃2 RMSE Corr
Mid-level 0.68 0.56 0.83 0.63 0.60 0.80
DEAMResNet 0.70 0.54 0.84 0.42 0.72 0.69
Low-level 0.62 0.59 0.81 0.41 0.74 0.67
Score 0.41 0.75 0.65 0.75 0.49 0.87

(a) Regression metrics with our data

Piece-wise Pianist-wise LOO
Feature Set A V A V A V
Mid-level 0.68 0.63 0.68 0.64 0.69 0.65
DEAMResNet 0.67 0.37 0.61 0.41 0.68 0.43
Low-level 0.54 0.20 �0.11 �0.05 0.57 0.30
Score 0.08 0.67 0.39 0.75 0.37 0.74

(b) R̃2 for different cross-validation splits. A: Arousal, V: Va-
lence, LOO: Leave-One-Out

Table 6: Evaluation results on our data

We see that Mid-level features show good generaliza-
tion for arousal and are robust to different kinds of splits.
They also show balanced performance between arousal
and valence for all splits. The good performance of the
Score features on the valence dimension (V), here and in
the previous experiment, is mostly due to the Mode feature;
there is a substantial correlation in the annotations between
major/minor mode and positive/negative valence.

4.3 Feature Importance within Feature Sets

We use the absolute value of the t-statistic of a feature as
the importance measure. T-statistic is defined as the esti-
mated weight scaled with its standard error. We focus on
the audio-based feature sets here, as in most realistic appli-
cations scenarios, the score information will not be avail-
able (and, being constant across different performances,
will not be able to distinguish performance aspects). We
perform a regression using all audio-based features (num-
bering 39 in total) and compare the t-values in Figure 2.

We see that the top-4 and top-2 features in arousal and
valence, respectively, are Mid-level features. These fea-
tures also make obvious musical sense – modality is of-
ten correlated with valence (positive or negative emotional
quality), and tempo, rhythm, and articulation with arousal
(intensity or energy of the emotion).

4.4 Explaining Piece-wise Variation

We observe from the annotation data (see Figure 1) that
the distribution of emotion ratings of each piece is distinct
(here, the 6 performances for each piece form the “distribu-
tion” of the piece). In essence, the mean value of arousal
or valence depends on the piece in question. Therefore,
to take into account this factor of variation, we use linear
mixed models [20] to model arousal and valence.

In this linear mixed effect model, the piece id is con-
sidered as a “random effect” intercept, which models part
of the residual remaining unexplained by the features we
are evaluating (“fixed effects”). A feature set that models
piece-wise variation better than another set would naturally
have a lesser residual variation to be explained by the ran-
dom effect. We therefore look at which feature set has the
least fraction of residual variance explained by the random
effect of piece id, defined as:

Erandom =
Varrandom

Varrandom + Varresidual
(1)

where Varrandom is the variance of the random effect in-
tercept and Varresidual is the variance of the residual that
remains after mixed effects modeling.

Feature Set Arousal Valence
Mid-level 0.50 0.86
DEAMResNet 0.47 0.89
Low-level 0.66 0.90
Score 0.63 0.68

Table 7: Fraction of residual variance explained by the random
effect of “piece id”.

We see from Table 7 that the DEAMResNet emotion
features best explain piece-wise variation in arousal, fol-
lowed closely by Mid-level features. For valence, the per-
formance of all three audio-based features are close, with
Mid-level features performing the best, however, score fea-
tures outperform them with a large margin. This is again
due to the relationship between mode and valence, and
mode covarying tightly with the piece ids.
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Figure 2: Feature importance for audio features using T-statistic. Only features with p<0.05 are shown.

4.5 Explaining Performance-wise Variation

Evaluation of performance-wise variation modelling can-
not be done with the mixed effects approach as in the previ-
ous section because the means (of arousal or valence across
all pieces) are nearly identical for each pianist.

Therefore, we look at one piece at a time and compute
the fraction of variance unexplained (FVU) and Pearsons’s
correlation coefficient (Corr) between predicted and true
values across performances for each such test piece. This
is done as leave-one-piece-out cross-validation, and aggre-
gated by taking the means. The p-values of the correlation
coefficients are counted and we report the percentage of
pieces for which p < 0.1. With only 6 performances per
piece, a significance level of p < 0.05 is obtained for only
a handful of pieces. Since score-features based predictions
are exactly equal for all performances of a piece, these met-
rics are not meaningful, and hence the Score feature set is
not included here.

Arousal Valence
Feature Set FVU Corr (p<0.1) FVU Corr (p<0.1)
Mid-level 0.31 0.58 (47.9%) 0.36 0.42 (27.0%)
DEAMResNet 0.32 0.54 (43.8%) 0.61 0.47 (37.5%)
Low-level 0.43 0.56 (54.2%) 0.75 0.38 (22.9%)

Table 8: Evaluation metrics for performance-wise variation.
FVU: Fraction of Variance Unexplained. Corr: Pearson’s cor-
relation coefficient.

Again, Mid-level features come out at the top in most
measures. To illustrate the modelling of performance-wise
variation, we select a few example pieces that have a high
variation of emotion between performances and plot them
together with the predicted values using mid-level features
in Figure 3. The predicted emotion dimensions follow the
ratings closely, even for performances that deviate from
the average (e.g. the arousals of Gulda’s performance of
Prelude in A major and Tureck’s performance of Fugue in
E minor.)

Figure 3: Some example pieces with high emotion variability
between performances which are modeled particularly well using
mid-level features.

5. PROBING FURTHER

We now describe two additional experiments designed to
further probe the predictive power of our feature sets.

5.1 Predicting Emotion of Outlier Performances

Figure 4 shows two examples of pieces where one perfor-
mance has a vastly different emotional character than the
others – in the first example, Gould even produces a neg-
ative valence effect (mostly through tempo and articula-
tion) in the E-flat major prelude, which the others play in
a much more flowing fashion. A challenge for any model
would thus be to predict the emotion of such idiosyncratic
performances, not having seen them during training.

We therefore create a test set by picking out the out-
lier performance for each piece in arousal-valence space

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

132



Figure 4: Two examples of outlier performances: Prelude # 7 in
Db major, outlier is Gould (left); Prelude #2 in C minor (Gulda,
right).

using the elliptic envelope method [21]. This gives us a
split of 240 training and 48 test samples (the outliers). We
train a linear regression model using each of our feature
sets and report the performance on the outlier test set in
Figure 5. We see again that Mid-level features outperform
the others, for both emotion dimensions. We take this as
another piece of evidence for the ability of the mid-level
features to capture performance-specific aspects. The sur-
prisingly good performance of score features for valence
can be attributed to the fact that for most pieces, the outlier
points are separated mostly in the arousal dimension – the
spread of valence is rather small (though not always: see
the Gould case in Fig. 4) – and the score feature “mode” is
an important predictor of valence (see earlier sections).

Figure 5: R̃2 scores on outlier performances. The outliers
were selected using elliptic envelope on the rated arousal-valence
space. Out of 48 pieces, the number of times each pianist was an
outlier are Gould: 13, Gulda: 10, Tureck: 10, Schiff: 5, Hewitt:
5, Richter: 5.

5.2 Predicting Discrete Emotions

Finally, we evaluate how the feature sets perform in a dis-
crete emotion classification task, which might be relevant
in a music recommendation setting, for instance. The emo-
tion ratings are converted to classes simply by reducing
them to quadrants in the arousal-valence space. In the lit-
erature, these are often associated with the basic emotion
labels happy, relaxed, sad, and angry (in clockwise fash-
ion, starting at upper right). We then train logistic regres-

sion models using our feature sets and report the leave-one-
out cross-validation accuracy in Figure 6. We observe that
in this task, all feature sets perform more-or-less equally
well, again with a slight advantage for the Mid-level fea-
tures. Note that the random choice baseline accuracy is
0.25. An emotion classification model based on mid-level
perceptual features might be attractive for performance-
emotion-aware music recommendation, being able to offer
the mid-level concepts not only as explanations but also as
‘handles’ to search for performances with certain charac-
teristics.

Figure 6: Discrete emotion classification.

6. CONCLUSION

In this work, we evaluated four feature sets – mid-level per-
ceptual features, pre-trained emotion features, low-level
audio features, and score-based features on their ability to
model and predict emotion in terms of arousal and valence.
Specific focus was given on the three audio-based features
and their modelling power over performance-wise varia-
tion of emotion. Mid-level features emerge as the most
robust and important among these.

The search for good features to model music emotion is
a worthwhile objective since emotional effect is a very fun-
damental human response to music. Features that provide
a better handle on content-based emotion recognition can
have a significant impact on applications such as search
and recommendation. Modelling emotion is also becoming
increasingly relevant in generative music, allowing possi-
bilities such as expressivity- or emotion-based snippet con-
tinuation and emotion-aware human-computer collabora-
tive music.

From the experiments presented in this paper, it is clear
that deep-learning-based feature extractors are strong com-
petition to the audio features typically used for emotion
recognition [3]. Here the importance of Mid-level features
is even more pronounced – in addition to being able to
model both arousal and valence well under different condi-
tions, they also provide intuitive musical meaning to each
feature, and have been previously used as the basis for ex-
plainable emotion recognition in [16].
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ABSTRACT

Melodic contour is central to our ability to perceive and
produce music. We propose to represent melodic contours
as a combination of cosine functions, using the discrete
cosine transform. The motivation for this approach is two-
fold: (1) it approximates a maximally informative contour
representation (capturing most of the variation in as few di-
mensions as possible), but (2) it is nevertheless independent
of the specifics of the data sets for which it is used. We con-
sider the relation with principal component analysis, which
only meets the first of these requirements. Theoretically,
the principal components of a repertoire of random walks
are known to be cosines. We find, empirically, that the
principal components of melodies also closely approximate
cosines in multiple musical traditions. We demonstrate the
usefulness of the proposed representation by analyzing con-
tours at three levels (complete songs, melodic phrases and
melodic motifs) across multiple traditions in three small
case studies.

1. INTRODUCTION

Humans are born with a remarkable sensitivity to melodic
contour. This is dramatically illustrated when newborns cry:
the cries of German babies tend to go down in pitch, but
those of French babies go up, even if falling contours are
physiologically easier to produce [1]. By imitating the in-
tonation patterns of their mothers’ language, babies take the
first steps towards a spoken language—helped by exagger-
ated pitch contours of infant directed speech [2]. Contour
perception remains central to speech, for intonation or even
word distinctions, but is also a key ingredient of human
musicality [3]. Dowling famously argued that melodies are
remembered as two independent parts, a scale and a con-
tour [4]. A scale then functions as a ladder “on which the
ups and downs of the contour where hung.” Indeed, when
listening to novel melodies, contours appear to stand out
more than the exact intervals and influence the perceived
similarity of melodies [5]. That has also motivated studies
of contour in MIR, in particular for measuring melodic simil-

© B. Cornelissen, W. Zuidema, and J.A. Burgoyne. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: B. Cornelissen, W. Zuidema, and J.A. Burgoyne,
“Cosine Contours: A Multipurpose Representation for Melodies”, in Proc.
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

arity [6]. As we briefly review below, many representations
of contour have been proposed in answer to the recurring
question: how can one best describe melodic contour?

We propose representing melodies as combinations of
cosine functions. This is motivated by the need for a con-
cise, maximally informative representation: how can we
capture as much of the variability in contour data in as few
dimensions as possible? The easiest solution would be to
use a principal component analysis (PCA). In section 4, we
show empirically that the principal components of melodies
do not take arbitrary shapes, but in fact closely approxim-
ate cosines. We then relate this observation to theoretical
results showing that the principal components of certain
random walks are sinusoidal, as a result of a particular co-
variance structure. The proposed ‘cosine contour’ space
thus closely approximates the optimal solution provided
by PCA, but offers several benefits. The key argument for
this representation is theoretical and we leave a systematic
comparison of contour representations for future work. In-
stead we discuss three case studies that demonstrate the
usefulness of cosine contours.

Cosine contours meet several desiderata for contour rep-
resentations. First, a good representation respects the linear
structure of melody and is invariant to transposition and
tempo changes. Second, the representation should be in-
terpretable and intuitive (and, in particular, avoid some of
the shortcomings of polynomial coefficients). Third, the
representation should support variable levels of abstraction,
so that one can interpolate between a broad summary of
the shape, and the exact pitch curve. Fourth, we look for a
broadly applicable and culturally neutral representation: it
should be able to describe contours from different cultures,
or even from different domains (e.g., speech). It should also
be able to handle both audio and symbolic data, although
we only analyze symbolic data here.

2. WHAT IS MELODIC CONTOUR?

Melodic contour is a general description of a melody’s
shape that abstracts away from the particular pitches and
precise rhythms. It has been characterised in many differ-
ent ways. Ethnomusicologists (and composers) have used
contour typologies: small sets of contour types [7]. David
Huron, for example, distinguished nine types of contours
by comparing the initial and final pitches to the average
pitch on the middle part of a melody [8]. When, say, the
initial is above the middle, which in turn equals the final,
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Figure 1. Cosine contours represent a melodic contour
as a combination of cosine functions. (A) This is illustrated
for a short melodic phrase. (B) A piano roll is interpol-
ated to obtain fixed-length vector of MIDI pitches (black
curve). This vector is approximated using a discrete cosine
transform (coloured curves). Increasing the dimensionality,
from, e.g., 1 (blue) to 3 (green) improves the approximation.
(C) The basis functions correspond to simple shapes. This
makes the cosine contour space interpretable, as illustrated
in (D) for the first two dimensions. Every point in this
space defines a contour shape, varying in what we call the
descendingness and archedness. The orange dot represents
the orange contour from (B).

the melody has a ‘descending-horizontal’ contour. Such
a formal typology can be used in MIR [9], but typologies
have also been defined using verbal descriptions or even
drawings [7, 10]. CantoCore, for example, instructs an an-
notator to look for six types: ascending, descending, arched,
U-shaped, undulating and horizontal [11]. Even though
the types are less sharply defined, such typologies have
inspired cross-cultural generalizations such as the melodic
arch hypothesis: the claim that melodic phrases tend to be
arch-shaped or descending [8, 12–14].

In melody extraction from audio, contours are usually
represented by sequences of pitches ordered in time. Vari-
ous contour features derived from this, such as the range
or pitch deviation, have been used in classification tasks
[15–18]. Contours in symbolic data can be similarly repres-
ented as step curves (figure 1B, black line) [19,20]. Parsons
code drastically simplifies a step curve [21]. It describes
the direction of movement from one note to the next (up,
down, or level) and discards interval size and note durations.
Variants between these two extremes have also been used,
by distinguishing various classes of jump sizes [6]. Another

strategy is to focus on salient notes, typically turning points
(maxima and minima), and to discard other notes [7,18,19].
This often requires special handling of ornaments [20], pos-
sibly tailored to the repertoire. Yet another approach con-
siders the relative ordering of all pairs of notes in a melody,
summarized in a matrix. Such combinatorial models in way
expand rather than reduce the representation, break the lin-
earity of the melody and are sensitive to local changes [20].

Finally, one can describe melodies using continuous
functions. Müllensiefen and Wiggins fit a polynomial func-
tion to a step curve and use the coefficients to represent the
contour [20]. The degree of the polynomial is chosen per
phrase, using the Bayesian information criterion (BIC) to
avoid overfitting. Polynomial coefficients are quite difficult
to interpret, however: they change drastically when the de-
gree changes, and can also be sensitive to changes in the
data, especially when the polynomials are not orthogonal
and introduce correlations between the coefficients (collin-
earity). Instead of fitting a function to the contour, one can
also decompose the contour and express it as a sum of (or-
thogonal) basis functions. Velarde and colleagues have for
example used Haar wavelets as basis functions in musical
pattern discovery [22]. The step-like shapes of those wave-
lets are well suited to describe particular melodic patterns,
but make them less suited for describing the overall contour.
An alternative basis of sinusoidal functions is implicit in
Schmuckler’s use of a Fourier analyses to represent melodic
contour [23]. This has been interpreted as measuring the
‘periodic information’ in a melody, and was reported to
correlate with perceived similarity.

3. DATA

With the broad applicability in mind, we analyze music
from several independent traditions. The choice of tradi-
tions was partly motivated by our aim to analyze contours at
multiple levels of description: we expect (different) regular-
ities at different levels. At the highest level, complete songs
can have characteristic shapes, and those shapes may differ
between traditions. At the smaller level phrases may be
subject to the melodic arch hypothesis cited above. Finally,
at the smallest level, melodic motifs could exhibit sequen-
tial structure, for example when melodies in a repertoire
are formed by stringing together melodic motifs (some-
times called centonization [24]). We also analyze random
segments obtained by slicing a melody at random in approx-
imately phrase-length segments, so that their boundaries
usually do not overlap with actual phrase boundaries [25].

One tradition for which all of these levels are directly
available is Gregorian chant, thanks to two recently re-
leased corpora: the CantusCorpus and the GregoBaseCor-
pus [25]. Gregorian chant has been sung in Roman Catholic
churches for well over a thousand years. The close con-
nection between music and text in chant suggests a natural
subdivision of the music into motifs corresponding to words
or syllables. The notation suggests even smaller motifs: it is
based on small figures, called neumes, that represent short
groups of notes [26]. To analyse motif contours, we use
chants from the CantusCorpus (v0.2) with transcriptions
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of medieval manuscripts, which include neume boundar-
ies. We focus on the two largest chant genres: antiphons
and responsories. Phrase boundaries are not available in
the CantusCorpus, however, and so for that, we turn to the
GregoBaseCorpus (v0.3) of modern chant transcriptions.
Modern chant notation includes explicit breathing marks
(pausas), which have been used to extract phrases [25].

Phrase markings are also included in the Essen Folksong
Collection [27], from which we analyse phrases from Ger-
man and Chinese folksongs. We focus on the two largest
subsets, ‘Erk’ [28] (9782 contours) and ‘Han’ (7601 con-
tours). 1 At the level of complete songs, we also add music
from the Sioux people made available in the Densmore Col-
lection [29, 30]. In the supplementary material, we include
some further analyses of several other traditions from the
Essen and Densmore collections.

We convert all melodies (be it songs, phrases or motifs)
to step contours by extracting note onsets (in quarter notes)
and pitches (in MIDI semitones). We then interpolate a
step function through these points, from which we sample
# = 100 equally spaced pitches. Those pitches are collected
in vectors x = (G0, . . . , G#�1) (black curve in figure 1A),
which are the basic data analysed in this paper. 2

Our starting representation makes several assumptions
that seem reasonable (and common: [13, 14, 22]) when only
interested in contour. First, we ignored all rests. Second, we
normalize the duration of all contours. Both 3-note motifs
and 30-note songs are represented by vectors of 100 pitches.
The relative durations within that melody are of course re-
tained, so we would still see that contours of short motives
are probably simpler than those of long melodies. Third,
we assume Euclidean distances between melodies. This is
usually problematic, but less so when we are only interested
in contour similarity. Our analyses require that all contours
are embedded in a vector space. Using more sophisticated
measures such as dynamic time warping distance, would re-
quire us to reconstruct a space (e.g., using multidimensional
scaling), and make the analyses less transparent. Finally,
note that we do not center the contours to have mean pitch
0. This is sometimes done to make contours transposition
invariant and more directly comparable [14,22,25]. We will
soon see that our proposed representation elegantly resolves
this problem without requiring centring.

4. PRINCIPAL COMPONENTS OF CONTOURS

In this section, we explore principal component analysis
applied to contours. The goal of PCA is to find a set of
orthogonal axes, the principal components, that contain
most of the variance in the dataset. Note that the principal
components, like the original contours from our data, are #-
dimensional vectors, such that the contours and components
can be interpreted and plotted in the same space.

In figure 2A , we show results from applying PCA on a
large dataset of Gregorian chant (similar results with Ger-

1 Much is unclear about the exact (bibliographic) origins of the Chinese
subset of Essen. This is problematic given its wide use in computational
musicology and deserves further attention from the community.

2 See github.com/bacor/cosine-contours for data, code and supplements.
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Figure 2. Principal components of contours (solid lines)
are roughly cosine shaped (dashed) across different levels
(A). This is a result of the particular structure of the cov-
ariance matrix (B): matrices of this type have Fourier basis
functions as their eigenvectors. This is clearest for phrases
(2) or random segments from melodies (3), here of similar
length as phrases. Crucially, we see the same effect for
simulated, contour-like random walks (4). For complete
songs (5) the effect is less clear, probably due to differences
in typical length (C) and data size. Contours in 1–4 are
from Gregorian chant.

man and Chinese folksongs can be found in supplement
S2). We plot the first four principal components of several
types of melodies: short motifs (syllables), phrases, ran-
dom segments of melodies, and complete songs. We show
responsory syllables from CantusCorpus for the motifs, an-
tiphon phrases from the GregoBaseCorpus and finally all
song contours from GregoBaseCorpus.

Surprisingly, we find that the principal components are
highly similar across most of those data sets, and corres-
pond to well-known contour shapes: descending, convex,
and—perhaps—undulating. This is clearest for the phrases
and random segments. For complete songs the effect is
weaker, especially for even smaller datasets (see the sup-
plement S2). Besides small data sizes, the fact that songs
are much longer also plays a role (see fig. 2C). We also
applied the analysis on simulated random walks approxim-
ating phrases: we draw the number of notes from a similar
length distribution, normalize the duration and then sample
# = 100 pitches as before (see supplement S1 for details).
Interestingly, the pattern is now even clearer, suggesting
there must be a mathematical explanation.

To give that explanation, we need to first describe PCA
more formally. We consider a collection of " contour
vectors x< of length # . Denote the sample mean by x̄ =
1

"

Õ
< x< and the centered data by x̂< = x< � x̄. The

first principal component of the dataset is then defined as
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a normalized vector u1 2 R⇡ for which the projected data
{u)

1
x< : 1  <  "} has maximal variance. It can

be shown (e.g., [31]) that this is the case when u1 is an
eigenvector corresponding to the largest eigenvalue _1 of
the covariance matrix

S =
1

"

"’
<=1

(x< � x̄) (x< � x̄)) , (1)

so that Su1 = _1u1. It follows that the projected variance
is given by _1, the largest eigenvalue. The other principal
components similarly emerge as the other eigenvectors of
the covariance matrix.

The covariance matrices (figure 2B) for both random
walks and our empirical data have a particular structure:
they roughly resemble Toeplitz matrices, which have fixed
values along each of their diagonals. Such covariance struc-
tures are frequently encountered in spatial or temporal data,
when the covariance decreases with the distance between
the points [32–34]. With the empirical contours that appears
to be the case (and for random walks it is there by design):
there is higher correlation between successive pitches and
lower correlation between distant pitches. As a result, the
higher covariances are concentrated along the diagonal.
Again, this clearest for the phrases and random segments.
For motifs we see some deviations: two ‘blocks’ in the cov-
ariance matrix, and corresponding jumps half way through
the principal components. This is easily explained by the
fact that motifs often span only two notes. In that case, all
pitches in the first half of the contour are then perfectly
correlated, as are pitches in the final half. Crucially, despite
such deviations from a perfect Toeplitz structure, the prin-
cipal components are still well-approximated by cosines.

If you let a Toeplitz matrix grow in size, it asymptotically
tends towards a circulant matrix, preserving properties such
as eigenvalues and eigenvectors along the way [32]. Circu-
lant matrices have exactly the same values in every row, but
rotated one step to the right with respect to the previous row.
This has the surprising result that all circulant matrices have
the same eigenvectors: basis vectors of the discrete Fourier
transform. For a real and symmetric matrices, like covari-
ance matrices, this results in cosine-shaped eigenvectors of
increasing frequency—exactly what we see in figure 2. We
discuss all of this in more detail in the supplement S2. In
sum, because of a Toeplitz-like covariance structure, the
principal components of melodic contours will tend to look
like cosine functions.

5. COSINE CONTOURS

Next we turn this observation, and its explanation, into a
proposal for a new contour representation. The idea is to
approximate the principal components by cosine functions
and then project the contours on those first few cosines to
obtain a low-dimensional representation. This is exactly
equivalent to taking a discrete cosine transform (DCT) of
the contour [35].

Formally, consider a collection of contours of length #
as before. We approximate the :-th principal component

Figure 3. DCT approximates PCA, the optimal transform,
in terms of the reconstruction error (A) and the explained
variance ratio (B). The reconstruction error is the mean
squared error between an contour and a lower dimensional
reconstruction. Note that data corresponds to figure 2, and
that we did not discard the first component 20 of the DCT in
this figure.

u: by a vector v: =
�
E: (0), . . . , E: (# � 1)

�
whose entries

are given by the cosine function 3

E: (=) = U: · cos

c(2= + 1):
2#

. (2)

Here U0 = 1/
p
# and U: =

p
2/# for : � 1 are normaliz-

ing constants ensuring that v: has unit norm. The projection
of a contour x = (G0, . . . , G#�1) on v: is then given by the
inner product 2: = v): x. Expanding this gives the usual
definition of the discrete cosine transform (DCT-II):

2: =
#�1’
==0

G=U: cos

c(2= + 1):
2#

. (3)

Conversely, the contour can be reconstructed from the coef-
ficients 2: using the inverse transform G= =

Õ#�1

:=0
2:E: (=).

Using only ⇡ < # coefficients, we define our low-
dimensional cosine contour representation as ⇠⇡ (x) =
(21, . . . , 2⇡). Note that we deliberately discard 20. This
coefficient corresponds to a flat line and describes the over-
all pitch height of a contour: exactly what we need to get
rid of to make the contour transposition invariant. In this
way we resolve the centering of contours discussed above.

Why use this representation instead of principal com-
ponents? Indeed, a principal component projection (also
known, in this context, as the Karhunen-Loève transform),
is optimal in several ways [35, 37]. Not only does it decor-
relate the data, it also packs most variance in the first few
transform coefficients (sometimes called energy compac-
tion), and minimizes the reconstruction error when using
only a few coefficients. However, the transformation de-
pends on the data. Concretely, the principal components
of German phrase contours differ from Chinese ones. Any
choice for using one of the two is arbitrary. In contrast,
the DCT is a principled, neutral solution—that approxim-
ates the optimal transform. In fact, the DCT was originally
introduced for similar reasons [35], and was then found
to empirically approximates PCA well in domains ranging
from image to audio [37]. The current results suggest that
the same applies for melodies.

3 These basis functions correspond to the most popular version of the
discrete cosine transform, DCT-II, for which fast implementations are
widely available; others would have been possible [36].
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Figure 4. Songs of three cultures represented in the
cosine contour space (A) show substantial variability. The
average of all contours in a tradition (B–D) also illustrates
this (thick black lines; dashed lines highlight one contour).

6. EVALUATION AND CASE STUDIES

We evaluate proposed contour representation by comparing
it to a principal component transformation, to demonstrate
that representation is close to the optimum. We further
designed three case studies to illustrate its usefulness at
the levels of (1) song, (2) phrases and (3) motifs. The
case studies show that the representation is musicologically
meaningful, as it allows visualization of variation (1), a
quantitative evaluation of constraints on variation (2), and
accurate classification into traditional categories (3). For
simplicity, we only look at two dimensional representations
in these case studies, but higher dimensions may be useful
in practice.

6.1 Optimality

To empirically verify the claim that the DCT approximates
the optimal PCA transform, we compute the reconstruction
error and the explained variance ratio using the same data
as before. The reconstruction error is measured as the mean
square error between a contour and its ⇡-dimensional re-
construction, using either the principal components (PCA)
or cosines (DCT) as basis functions (so for ⇡ = # , the recon-
struction is guaranteed to be perfect). Figure 3A shows that
the reconstruction errors of DCT closely approximate that of
PCA. For the shorter contours (motifs and phrases), the er-
ror very rapidly decreases, indicating that low-dimensional
representations are already effective. Indeed, to explain
95% of the variance using cosine contours, you need 1 di-
mension for motifs, 9 for phrases and 61 for songs (this is
sometimes called the effective dimensionality [38]). 4

6.2 Case Study 1: Visualizing different traditions

Low dimensional representations of song contours are not
likely to be very informative, yet we find that some tradi-
tions can be somewhat distinguished in just two dimensions.

4 However, note that Moore et al [38] show that high-dimensional
random walks can falsely appear to have a low effective dimensionality.
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Figure 5. Phrases of German (A) and Chinese (B) songs
tend to be more descending and arched compared to random
segments from the same melodies, as visible from their
average contours. This can be quantified by comparing
the first (C) and second (D) coefficients of their cosine
representations.

Figure 4 shows song contours from German, Chinese and
Sioux songs. Sioux songs have a striking overall shape
(subplot D), often strongly descending, which is reflected
in the distribution of contour shapes. Similarly, German
songs appear to be more arch-like than songs from the other
traditions.

6.3 Case Study 2: The melodic arch hypothesis

In a second case study, we look at the melodic arch hypo-
thesis, which states that phrases tend to be arch-shaped or
descending [8] (see figure 5A, B) in a way that it becomes
much easier to test (cf. [14]). We observe that the first com-
ponent 21 of a cosine representation roughly measures the
descendingness of the contour, and, similarly, that �1 · 22

measures the archedness. The melodic arch hypothesis can
thus be reformulated as stating that 21 and �22 are larger for
phrases than for random segments of the melodies (cf. [25]).
Comparing Chinese and German phrases, we find that all
are significantly (? ⌧ 0.001) more descending and arched
than the corresponding random segments (see figure 5C, D).
This demonstrates that the coefficients of the cosine contour
representation are musicologically meaningful.

6.4 Case Study 3: Mode classification

In the final case study, we evaluate the performance of this
contour representation on a task: mode classification in
plainchant. Gregorian chant uses a system of eight modes:
Dorian, Phrygian, Lydian and Mixolydian, each in the two
flavours plagal and authentic. Modes differ not only in their
scales, but also in their melodic movement. Plagal melodies
tend to move lower than authentic ones, closer around the
tonal center. In a recent paper we suggest that the mode of
Gregorian chant can be predicted from contours alone, in
that case using a Parsons code contour representation [39].
We sliced up chants in sequences of motifs corresponding
to the notational units (so called neumes) or textual units:
all notes set to one syllable of the text would form a unit,
and similarly for words. Next, we represented chants as
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Figure 6. Motifs used for mode classification in
Gregorian chant. (A) A chant is segmented into motifs
derived from the notation (neumes) or lyrics (syllables,
words). The blue curves show the two-dimensional cosine
contours for those motifs. (B) We discretize the contour
space and represent the chant as a vector of tf–idf weighed
motif frequencies (‘grid cell frequencies’). Dots illustrate
the nonzero entries of this vector for the chant shown above.
(C) The chant is now a walk through contour space, but
our ‘bag of motifs‘ ignores order. (D) Using these vectors
to classify mode, we outperform a previous study using a
Parsons code for the smaller motifs neumes and syllables.

vectors of motif or term frequencies (tf), where each entry
was weighted by the inverse document frequency (df; the
number of chants or documents containing that motif). A
linear support vector machine was then trained on these
tf–idf vectors to predict the mode.

We repeat these experiments using a two-dimensional
cosine representation for the motifs rather than a Parsons
code. There is one technical problem: whereas cosine
contours are continuous, the tf–idf model requires a discrete
vocabulary of motifs. We therefore discretize the cosine
contour space to a grid, and effectively treat every chant as
a sequence of grid-cells (fig. 6C). All in all, this introduces
two new parameters to the experiment: the dimensionality
of the cosine contour and the resolution of the grid. In this
case study, we do not tune these parameters and focus on
two dimensional contours, discretized to a grid between
�20 and 20 with a grid size of 1. For ease of reading, the
figure 6B shows the grid only from �10 to 10.

The results are summarized in figure 6D. We see an
interesting pattern: the cosine contours outperform the ori-
ginal results for small motifs such as neumes and syllables,

but not for words, which are much longer motifs. This
seems to makes sense: two dimensional cosine contours are
a fairly crude approximation of those longer contours, but
may reasonably approximate short motifs.

7. DISCUSSION AND CONCLUSIONS

This paper proposed a novel representation for melodies
using the discrete cosine transform. Observing that the
principal components of melodies tend to be shaped like
cosines, this representation approximates the optimal rep-
resentation in the sense that it packs most variance in a
few dimensions. First, the cosine representation is easily
interpretable, since it presents contours as a linear combina-
tion of cosine functions with intuitive shapes. Second, by
changing the dimensionality, the level of abstraction of the
contour can be varied, allowing arbitrary small reconstruc-
tion error by including more and more dimensions. Third,
this representation allows one to map contours at multiple
levels, from motifs to songs, to one common space. The
cosine representation thus creates a common ground for
comparing contours across traditions and levels. That is
possible as, fourth, the representation is independent of the
data, and in that sense culturally neutral.

The observation that principal components of spatial and
temporal data can have sinusoidal shapes is not novel, but
does not appear to be widely known. Indeed, the sinusoidal
shapes have been interpreted as genuine effects, rather than
mathematical artefacts. For example, one study interpreted
gradients in the principal components of human genetic
variation across the world as evidence for certain migration
events in human history [40]. Closer inspection revealed
that those gradients were sinusoidal ‘artefacts’ analogous
to those reported in the present paper [33]. Closer to MIR,
it has been observed that the training trajectories of deep
neural networks have sinusoidal principal components [41],
for the same reason. Again, a detailed analysis [34] revealed
these were artefacts, but accurately reflecting the behaviour
of high-dimensional random walks [34, 38]. We hope this
paper helps increasing the awareness of this phenomenon.

The present work only begins to explore this new con-
tour representation and raises many further questions. One
particularly promising possibility is the application to audio
data. We only explored symbolic data, but the proposed
representation lends itself well for applications on acoustic
data. One application we hope to explore further is the
analysis of speech intonation using the cosine contour rep-
resentation. A possible other avenue would be the analysis
of folk song recordings, of which vast collections have been
collected. Folk song researchers have often used contour
in some way to organize repertoires [7], and this repres-
entation may contribute to that. Contour typologies have
also be used in cross-cultural comparisons (see e.g. [12]).
Many typologies have been proposed [7, 8, 10, 11], but they
have not been systematically evaluated, and we think the
proposed representation will be valuable there.
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ABSTRACT

Recent advances in deep learning have expanded pos-
sibilities to generate music, but generating a customizable
full piece of music with consistent long-term structure re-
mains a challenge. This paper introduces MusicFrame-
works, a hierarchical music structure representation and
a multi-step generative process to create a full-length
melody guided by long-term repetitive structure, chord,
melodic contour, and rhythm constraints. We first organize
the full melody with section and phrase-level structure.
To generate melody in each phrase, we generate rhythm
and basic melody using two separate transformer-based
networks, and then generate the melody conditioned on
the basic melody, rhythm and chords in an auto-regressive
manner. By factoring music generation into sub-problems,
our approach allows simpler models and requires less data.
To customize or add variety, one can alter chords, basic
melody, and rhythm structure in the music frameworks, let-
ting our networks generate the melody accordingly. Ad-
ditionally, we introduce new features to encode musical
positional information, rhythm patterns, and melodic con-
tours based on musical domain knowledge. A listening test
reveals that melodies generated by our method are rated
as good as or better than human-composed music in the
POP909 dataset about half the time.

1. INTRODUCTION

Music generation is an important component of computa-
tional and AI creativity, leading to many potential appli-
cations including automatic background music generation
for video, music improvisation in human-computer mu-
sic performance and customizing stylistic music for indi-
vidual music therapy, to name a few. While works such
as MelNet [1] and JukeBox [2] have demonstrated a de-
gree of success in generating music in the audio domain,
the majority of the work is in the symbolic domain, i.e.,
the score, as this is the most fundamental representation
of music composition. Research has tackled this question
from many angles, including monophonic melody genera-

© S. Dai, Z. Jin, C. Gomes and R. Dannenberg. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: S. Dai, Z. Jin, C. Gomes and R. Dannenberg, “Con-
trollable deep melody generation via hierarchical music structure rep-
resentation”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

tion [3], polyphonic performance generation [4] and drum
pattern generation [5]. This paper focuses on melody gen-
eration, a crucial component in music writing practice.

Recently, deep learning has demonstrated success in
capturing implicit rules about music from the data, com-
pared to conventional rule-based and statistical methods [4,
6, 7]. However, there are three problems that are difficult
to address: (1) Modeling larger scale music structure and
multiple levels of repetition as seen in popular songs, (2)
Controllability to match music to video or create desired
tempo, styles, and mood, and (3) Scarcity of training data
due to limited curated and machine-readable compositions,
especially in a given style. Since humans can imitate mu-
sic styles with just a few samples, there is reason to believe
there exists a solution that enables music generation with
few samples as well.

We aim to explore automatic melody generation with
multiple levels of structure awareness and controllability.
Our focus is on (1) addressing structural consistency inside
a phrase and on the global scale, and (2) giving explicit
control to users to manipulate melody contour and rhythm
structure directly. Our solution, MusicFrameworks, is
based on the design of hierarchical music representations
we call music frameworks inspired by Hiller and Ames [8].
A music framework is an abstract hierarchical description
of a song, including high-level music structure such as re-
peated sections and phrases, and lower-level representa-
tions such as rhythm structure and melodic contour. The
idea is to represent a piece of music by music frameworks,
and then learn to generate melodies from music frame-
works. Controllability is achieved by editing the music
frameworks at any level (song, section and phrase); we
also present methods that generate these representations
from scratch. MusicFrameworks can create long-term mu-
sic structures, including repetition, by factoring music gen-
eration into sub-problems, allowing simpler models and re-
quiring less data.

Evaluations of the MusicFrameworks approach include
objective measures to show expected behavior and subjec-
tive assessments. We compare human-composed melodies
and melodies generated under various conditions to study
the effectiveness of music frameworks. We summarize our
contributions as follows: (1) devising a hierarchical music
structure representation and approach called MusicFrame-
works capable of capturing repetitive structure at multiple
levels, (2) enabling controllability at multiple levels of ab-
straction through music frameworks, (3) a set of methods
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that analyze a song to derive music frameworks that can
be used in music imitation and subsequent deep learning
processes, (4) a set of neural networks that generate a song
using the MusicFrameworks approach, (5) useful musical
features and encodings to introduce musical inductive bi-
ases into deep learning, (6) comparison of different deep
learning architectures for relatively small amounts of train-
ing data and a sizable listening test evaluating the musical-
ity of our method against human-composed music.

2. RELATED WORK

Automation of music composition with computers can be
traced back to 1957 [9]. Long before representation learn-
ing, musicians looked for models that explain the gener-
ative process of music [8]. Early music generation sys-
tems often relied on generative rules or constraint satisfac-
tion [8, 10–12]. Subsequent approaches replaced human
learning of rules with machine learning, such as statistical
models [13] and connectionist approaches [14]. Now, deep
learning has emerged as one of the most powerful tools to
encode implicit rules from data [4, 15–18].

One challenge of music modelling is capturing repeti-
tive patterns and long-term dependencies. There are a few
models using rule-based and statistical methods to con-
struct long-term repetitive structure in classical music [19]
and pop music [20, 21]. Machine learning models with
memory and the ability to associate context have also been
popular in this area and include LSTMs and Transformers
[4, 6, 22, 23], which operate by generating music one or a
few notes at a time, based on information from previously
generated notes. These models enable free generation and
motif continuation, but it is difficult to control the gener-
ated content. StructureNet [3], PopMNet [24] and Racch-
maninof [19] are more closely related to our work in that
they introduce explicit models for music structure.

Another thread of work enables a degree of controllabil-
ity by modeling the distribution of music via an interme-
diate representation (embedding). One such approach is
to use Generative Adversarial Networks (GANs) to model
the distribution of music [25–27]. GANs learn a mapping
from a point z sampled from a prior distribution to an in-
stance of generated music x and hence represents the dis-
tribution of music with z. Another method is the Autoen-
coder, consisting of an encoder transforming music x into
embedding z and a decoder that reconstructs music x again
from embedding z. The most popular models are Vari-
ational Auto-Encoders (VAE) and their variants [28–33].
These models can be controlled by manipulating the em-
bedding, for example, mix-and-matching embeddings of
different pitch contours and rhythms [29, 30, 34]. How-
ever, a high-dimensional continuous vector has limited in-
terpretability and thus is difficult for a user to control; it
is also difficult to model full-length music with a simple
fixed-length representation. In contrast, our approach uses
a hierarchical music representation (i.e., music framework)
as an “embedding” of music that encodes long-term depen-
dency in a form that is both interpretable and controllable.

Figure 1. Architecture of MusicFrameworks.

Figure 2. An example music framework.

3. METHOD

We describe a controllable melody generation system that
uses hierarchical music representation to generate full-
length pop song melodies with multi-level repetition and
structure. As shown in Figure 1, a song is input in MIDI
format. We analyze its music framework, which is an ab-
stracted description of the music ideas of the input song.
Then we use the music framework to generate a new song
with deep learning models.

Our work is with pop music because structures are rel-
atively simple and listeners are generally familiar with the
style and thus able to evaluate compositions. We use a Chi-
nese pop song dataset, POP909 [35], and use its cleaned
version [36] (with more labeling and corrections) for train-
ing and testing in this paper. We further transpose all the
major songs’ key signatures into C major. We use integers
1–15 to represent scale degrees in C3–C5, and 0 to repre-
sent a rest. For rhythm, we use the 16th note as the min-
imum unit. A note in the melody is represented as (p, d),
where p is the pitch number from 0 to 15, and d is duration
in sixteenths. For chord progressions, we use integers 1–7
to represent seven scale degree chords in the major mode.
(We currently work only with triads, and convert seventh
chords into corresponding triads).

3.1 Music Frameworks Analysis

As shown in Figure 2, a music framework contains two
parts: (1) section and phrase-level structure analysis re-

Figure 3. An example melody and its basic melody. The
basic rhythm form also appears below the original melody
as “a,0.38 b,0.06, ...” indicating similarity and complexity.
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Figure 4. Generation process from music frameworks
within each phrase.

sults; (2) basic melody and basic rhythm form within each
phrase. A phrase is a small-scale segment that usually
ranges from 4 to 16 measures. Phrases can be repeated
as in AABBB shown in Figure 2. Sections contain multi-
ple phrases, e.g., the illustrated song has an intro, a main
theme section (phrase A as verse and phrase B as chorus),
a bridge section followed by a repeat of the theme, and an
outro section, which is a typical pop song structure. We
extract the section and phrase structure based on finding
approximate repetitions following the work of [36].

Within each phrase, the basic melody is an abstraction
of melody and contour. Basic melody is a sequence of half
notes representing the most common pitch in each 2-beat
segment of the original phrase (see Figure 3). The basic
rhythm form consists of a per-measure descriptor with two
components: a pattern label based on a rhythm similarity
measure [36] (measures with matching labels are similar)
and a numerical rhythmic complexity, which is simply the
number of notes divided by 16.

With the analysis algorithm, we can process a music
dataset such as POP909 for subsequent machine learning
and music generation. The music frameworks enable con-
trollability via examples in which a user can also mix and
match different music frameworks from multiple songs.
For example, a new song can be generated using the struc-
ture from song A, basic melody from song B, and basic
rhythm form from song C. Users can also edit or directly
create a music framework for even greater control. Alter-
natively, we also created generative algorithms to create
new music frameworks without any user intervention as
described in subsequent sections.

3.2 Generation Using Music Frameworks

At the top level, section and phrase structure can be pro-
vided by a user or simply selected from a library of already
analyzed data. We considered several options for imita-
tion at this top level: (1) copy the first several measures
of melody from the previously generated phrase (teacher
forcing mode) and then complete the current phrase; (2)
use the same or similar basic melody from the previ-
ous phrase to generate an altered melody with a similar
melodic contour; (3) use the same or similar basic rhythm
form of the previous phrase to generate a similar rhythm.
These options leave room for users to customize their per-
sonal preferences. In this study, we forgo all human control
by randomly choosing between the first and second option.

At the phrase level, as shown in Figure 4, we first gen-
erate a basic melody (or a human provides one). Next, we

generate rhythm using the basic rhythm form. Finally, we
generate a new melody given the basic melody, generated
rhythm, and chords copied from the input song.

3.2.1 Basic Melody Generation

We use an auto-regressive approach to generate basic
melodies. The input xi = (posi, ci, ...) (i 2 1, ..., n) is a
set of features that guides basic melody generation where
posi is the positional feature of the ith note and ci repre-
sents contextual chord information (neighboring chords).
We denote pi of the ith note. Here we fix the duration
of each note in the basic melody to the half-note as in the
analysis algorithm described in Section 3.1. ci contains the
previous, current and next chords and their lengths for the
ith note. posi includes the position of the ith note in the
current phrase and a long-term positional feature indicat-
ing whether the current phrase is at the end of a section or
not.

3.2.2 Network Architecture

We use an auto-regressive model based on Transformer
and LSTM. The architecture (Figure 5) consists of an en-
coder and a decoder. The encoder has two layers of trans-
formers that learn a feature representation of the inputs
(e.g. positional encodings and chords). The decoder con-
catenates the encoded representation and the last predicted
note as input and passes them through one unidirectional
LSTM followed by two layers of 1D convolutions of ker-
nel size 1. Both the input and the last predicted notes to the
decoder are passed through a projection layer (aka. a dense
layer) respectively before they are processed by the net-
work. The final output is the next note predicted by the de-
coder via categorical distribution Pr(pi|X, p1, ..., pi�1).
We also tried using other deep neural network architec-
tures such as a pre-trained full Transformer with random
masking (described in Section 4.1) for comparison.

3.2.3 Sampling with Dynamic Time Warping Control

In the sampling stage, we tried three ways to autoregres-
sively generate the basic melody sequence: (1) randomly
sample from the estimated posterior distribution of pi at
each step; (2) randomly sample 100 generated sequences
and pick the one with highest overall estimated probabil-
ity; (3) beam search sampling according to the estimated
probability. Apart from the above three sampling methods,
we also want to control the basic melody contour shape
in order to generate similar or repeated phrases. We use a
melody contour rating function (based on Dynamic Time
Warping) [21] to estimate the contour similarity between
two basic melodies. When we want to generate a repeti-
tion phrase that has a similar basic melody compared to
a previous phrase, we estimate the contour similarity rat-
ing between the generated basic melody and the reference
basic melody. We only accept basic melodies with a simi-
larity above a threshold of 0.7.

3.2.4 Realized Rhythm Generation

We now turn to the lower level of music generation that
transforms music frameworks into realized songs. The first
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Figure 5. Transformer-LSTM architecture for melody, ba-
sic melody and rhythmic pattern generation.

step is to determine the note onsets, namely the rhythm.
Instead of generating note onset time one by one, we gen-
erate 2-beat rhythm patterns, which more readily encode
rhythmic patterns and metrical structure. It is also easier
to model (and apparently to learn) similarity using rhythm
patterns than with sequences of individual durations.

We generate 2-beat patterns sequentially under the con-
trol of a basic rhythm form. There are 256 possible rhythm
patterns with a 2-beat length using our smallest subdivi-
sion of sixteenths. For each rhythm pattern ri, the input
of the rhythm generation model is xi = (ri�1, brfi, posi),
where ri�1 is the previously generated rhythm pattern, brfi
is the index of the first measure similar to it (or the current
measure if there is no previous reference) and the current
measure complexity; posi contains three positional com-
ponents: (1) the position of the ith pattern in the cur-
rent phrase; (2) a long-term positional feature indicating
whether the current phrase is at the end of a section or not;
(3) whether the ith rhythm pattern starts at the barline or
not. We also use a Transformer-LSTM architecture (Figure
5), but with different model settings (size). In the sampling
stage, we use beam search.

3.2.5 Realized Melody Generation

We generate melody from a basic melody, a rhythm and
a chord progression using another Transformer-LSTM ar-
chitecture similar to generating basic melody in Figure 5.
In this case, the index i represents the ith note determined
by the rhythm. The input feature xi also includes the cur-
rent note’s duration, the current chord, the basic melody
pitch, and three positional features for multiple-level struc-
ture guidance: the two positional features for basic melody
generation (Section 3.2.1) and the offset of the current
note within the current measure. We also experimented
with other deep neural network architectures described in
Section 4.1 for comparison. To sample a good sounding
melody, we randomly generate 100 sequences by sampling

Basic Melody Rhythm Melody
Trans-LSTM 38.7% 50.1% 55.2%
LSTM 39.8% 43.6% 51.2%
Transformer 30.9% 25.8% 39.3%
No M.F. NA 33.1% 37.4%

Table 1. Validation Accuracy of different model architec-
tures. “No M.F.” means no music frameworks used here.

the autoregressive model. We pick the one with the high-
est overall estimated probability. More details about the
network are in Section 4.1.

4. EXPERIMENT AND EVALUATION

4.1 Model Evaluation and Comparison

As a model-selection study, we compared the ability of
different deep neural network architectures implementing
MusicFrameworks to predict the next element in the se-
quence. Basic Melody Accuracy is the percent of cor-
rect predictions of the next pitch of the basic melody (half
notes). Rhythm Accuracy is the percent of correctly pre-
dicted 2-beat rhythm patterns. Melody Accuracy is the ac-
curacy of next pitch prediction.

We used 4188 phrases from 528 songs in major mode
from the POP909 dataset, using 90% of them as training
data and the other 10% for validation. The first line in Ta-
ble 1 represents the Transformer-LSTM models introduced
in Section 3. In all three networks, the projection size and
feed forward channels are 128; there are 8 heads in the
multi-head encoder attention layer; LSTM hidden size is
64; dropout rate for basic melody and realized melody gen-
eration is 0.2, dropout rate for rhythm generation is 0.1; de-
coder input projection size is 8 for rhythm generation and
17 for others. For learning rate, we used the Adam opti-
mizer with �1 = 0.9,�2 = 0.99, ✏ = 10�6, and the same
formula in [22] to vary the learning rate over the course of
training, with 2000 warmup steps.

We compared this model with several alternatives: the
second model is a bi-directional LSTM followed by a uni-
directional LSTM (model size is 64 in both). The third
model is a Transformer with two layers of encoder and
two layers of decoder (with same parameter settings as
Transformer-LSTM), and we first pre-trained the encoder
with 10% of random masking of input (similar to training
in BERT [37]), and then trained the encoder and decoder
together. No music frameworks (the fourth line) means
generate without basic melody or basic rhythm form, us-
ing a Transformer-LSTM model. The results in Table 1
show that the Transformer-LSTM achieved the best accu-
racy. The full Transformer model performed poorly on this
relatively small dataset due to overfitting. Also, in both
rhythm and melody generation, the MusicFrameworks ap-
proach significantly improves the model accuracy.

4.2 Objective Evaluation

We use Transformer-LSTM model for all further evalua-
tions. First, we examine whether music frameworks pro-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

146



Figure 6. This is a generated melody (yellow piano roll)
from our system following the input basic melody (blue
frame piano roll).

Figure 7. A generated rhythm from our system given the
input basic rhythm form. The analyzed basic rhythm form
of the output is very similar to the input.

mote controllability. We aim to show that given a basic
melody and rhythm form as guidance, the model can gen-
erate a new melody that follows the contour of the basic
melody, and has a similar rhythm form (Figure 6 and 7).

For this “sanity check,” we randomly picked 20 test
songs and generated 500 alternative basic melodies and
rhythm forms. After generating and analyzing 500 phrases,
we found the analyzed basic melodies match the target (in-
put) basic melodies with an accuracy of 92.27%; the ac-
curacy of rhythm similarity labels is 94.63%; the rhythmic
complexity matches the target (within 0.2) 81.79% of the
time. Thus, these aspects of melody are easily controllable.

Previous work [38] has shown that pitch and rhythm
distributions are related to different levels of long-term
structure. We confirmed that our generation exhibits sim-
ilar structure-related distributions to that of the POP909
dataset. For example, the probability of a generated tonic
at end of a phrase is 48.28%, and at the end of a section
is 87.63%, while in the training data the probabilities are
49.01% (phrase-end) and 86.57% (section-end).

4.3 Subjective Evaluation

4.3.1 Design of the listening evaluation

We conducted a listening test to evaluate the generated
songs. To avoid listening fatigue, we presented sections
lasting about 1 minute and containing at least 3 phrases.
We randomly selected 6 sections from different songs in
the validation set as seeds and then generated melodies
based on conditions 1–6 presented in Table 2. To ren-
der audio, each melody is mixed with the original chords
played as simple block triads via a piano synthesizer. For
each section and each condition, we generated at least 2
versions, with 105 generated sections in total.

In each rating session, a listener first enters information
about their music background and then provides ratings for
six pairs of songs. Each pair is generated from the same
input seed song using different generation conditions (see
Table 2). For each pair, the listener answers: (1) whether
they heard the songs before the survey (yes or no); (2) how
much they like the melody of the two songs (integer from
1 to 5); and (3) how similar are the two songs’ melodies
(integer from 1 to 5). We also embedded one validation
test in which a human-composed song and a randomized

song are provided to help filter out careless ratings.

4.3.2 Results and discussion

We distributed the survey on Chinese social media and col-
lected 274 listener reports. We removed invalid answers
following the validation test and a few other criteria. We
ended up with 1212 complete pairs of ratings from 196
unique listeners. The demographics information about the
listeners are as follows:

Gender male: 120, female: 75, other: 1;
Age distribution 0-10: 0, 11-20: 17, 21-30: 149, 31-40:

28, 41-50: 0, 51-60: 2, >60: 0;
Music proficiency levels lowest (listen to music < 1

hour/week): 16, low (listen to music 1–15 hours/week):
62, medium (listen to music > 15 hours/week): 21, high
(studied music for 1–5 years): 52, expert (> 5 years of
music practice): 44;

Nationality Chinese: 180, Others: 16 (note that the
POP909 dataset is primarily Chinese pop songs, and lis-
teners who are more familiar with this style are likely to be
more reliable and discriminating raters.)

Figure 8 shows a distribution of ratings for the seven
paired conditions in Table 2. In each pair, we show two
bar plots with mean and standard deviation overlaid: the
left half shows the distribution of ratings in the first condi-
tion and the right half shows those in the second condition.
The first three pairs compare music generation with and
without a music framework as an intermediate represen-
tation. The first two pairs at the bottom compare music
with an automatically generated basic melody and rhythm
to music using the basic melody and rhythm from a human-
composed song. The last two pairs show the ratings of our
method compared to music in the POP909 dataset. We also
conducted a paired T-test to check the significance against
the hypothesis that the first condition is not preferred over
the second condition, shown under the distribution plot.

In addition, we derived listener preference based on the
relative ratings, summarized in Figure 9. This visualiza-
tion provides a different view from ratings as it shows how
frequently one condition is preferred over the other or there
is no preference (equal ratings). Based on these two plots,
we point out the following observations:
• Basic melody and basic rhythm form improve the qual-

ity of generated melody. Indicated by low p-values and
strong preference in “1 vs 3”, “2 vs 3” and “4 vs 5,” gen-
erating basic melody and basic rhythm before melody
generation has higher ratings than generating melody
without these music framework representations.

• Melody generation conditioned on generated basic
melody and basic rhythm has similar ratings to melody
generated from human-composed music’s basic melody
and basic rhythm form. This observation can be de-
rived from similar distribution and near random prefer-
ence distribution in “1 vs 2” and “1 vs 4,” indicating that
preference for the generated basic melody and rhythm
form are close to those of music in our dataset.

• Although both distribution tests suggest that human-
composed music has higher ratings than generated music
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R.Melody Basic Melody Rhythm
0 copy copy copy
1 gen copy copy
2 gen gen copy
3 gen without copy
4 gen copy gen with BRF
5 gen copy gen without BRF
6 gen gen gen with BRF

Table 2. Seven evaluation conditions. Group 0 is human-
composed. R.Melody: realized melody; gen: generated
from our system; BRF: Basic Rhythm Form; copy: di-
rectly copying that part from the human-composed song;
without: not using music frameworks.

Figure 8. Rating distribution comparison for each paired
groups. *For conditions 0 vs 1 and 0 vs 6, we removed the
cases where the listeners indicated having heard the song
before.

in test pairs “0 vs 1” and “0 vs 6” (and this is statistically
significant), the preference test suggests that around half
of the time the generated music is as good as or better
than human-composed music, indicating the usability of
the MusicFrameworks approach.
To understand the gap between our generated music and

human-composed music, we look into the comments writ-
ten by listeners and summarize our findings below:
• Since sampling is used in the generative process, there is

a non-zero chance that a poor note choice may be gen-
erated. Though this does not affect the posterior proba-
bility significantly, it degrades the subjective rating. Re-
peated notes also have an adverse effect on musicality
with a lesser influence on posterior probability.

• MusicFrameworks uses basic melody and rhythm form
to control long-term dependency, i.e., phrases that are
repetitions or imitations share the same or similar music
framework; however, the generated melody has a chance
to sound different due to the sampling process. A human
listener can distinguish a human-composed song from a
machine-generated song by listening for exact repetition.

• Basic melody provides more benefit for longer phrases.
For short phrases (4-6 bars), generating melodies from

Figure 9. Preference distribution for each paired groups.
*For conditions 0 vs 1 and 0 vs 6, we removed the cases
where the listeners indicated having heard the song before.

scratch is competitive with generating via basic melody.
• The human-composed songs used in this study are from

the most popular ones in Chinese pop history. Even
though raters may think they do not recognize the song,
there is a chance that they have heard it. A large por-
tion of the comments suggest that a lot of the test music
sounds great and it was an enjoyable experience work-
ing on these surveys. However, some listeners point out
that concentrating on relatively long excerpts was not a
natural listening experience.

5. CONCLUSION

MusicFrameworks is a deep melody generation system us-
ing hierarchical music structure representations to enable a
multi-level generative process. The key idea is to adopt an
abstract representation, music frameworks, including long-
term repetitive structures, phrase-level basic melodies and
basic rhythm forms. We introduced analysis algorithms to
obtain music frameworks from songs. We created a neural
network that generates basic melody and additional net-
works to generate melodies. We also designed musical fea-
tures and encodings to better introduce musical inductive
bias into deep learning models.

Both objective and subjective evaluations show the im-
portance of having music frameworks. About 50% of the
generated songs are rated as good as or better than human-
composed songs. Another important feature of the Mu-
sicFrameworks approach is controllability through manip-
ulation of music frameworks, which can be freely edited
and combined to guide compositions.

In the future, we hope to develop more intelligent
ways to analyze music and music frameworks supporting
a richer musical vocabulary, generation of harmony and
polyphonic generation. We believe that hierachical and
structured representations offer a way to capture and im-
itate musical style, offering interesting new research op-
portunities.
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ABSTRACT

This paper makes several contributions to automatic
lyrics transcription (ALT) research. Our main contribution
is a novel variant of the Multistreaming Time-Delay Neural
Network (MTDNN) architecture, called MSTRE-Net,
which processes the temporal information using multiple
streams in parallel with varying resolutions keeping the
network more compact, and thus with a faster inference
and an improved recognition rate than having identical
TDNN streams. In addition, two novel preprocessing steps
prior to training the acoustic model are proposed. First,
we suggest using recordings from both monophonic and
polyphonic domains during training the acoustic model.
Second, we tag monophonic and polyphonic recordings
with distinct labels for discriminating non-vocal silence
and music instances during alignment. Moreover, we
present a new test set with a considerably larger size
and a higher musical variability compared to the existing
datasets used in ALT literature, while maintaining the
gender balance of the singers. Our best performing
model sets the state-of-the-art in lyrics transcription by a
large margin. For reproducibility, we publicly share the
identifiers to retrieve the data used in this paper.

1. INTRODUCTION

Empirical studies show that it is a challenging task
even for human listeners to recognize sung words, and
this is more challenging than speech, due to a number
of performance, environment and listener related factors
[1]. Thus the automatic retrieval of sung words through
machine listening, i.e. automatic lyrics transcription
(ALT), can potentially be impactful in easing some of the
time consuming processes involved in composing music,
audio/video/music score captioning and editing, lyrics
alignment, music catalogue creation, etc. Despite its
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potential, the current state of lyrics transcription is far
from being sufficiently robust to be leveraged in such
applications.

With recent advances in automatic speech recognition
(ASR) research and its successful adaptation to singing
data, considerable improvements have been reported in
ALT research [2–4]. In addition to this, newly released
datasets have accelerated the development of the research
field [5, 6]. Through these improvements, the prospect
of applying ALT in the music industry has become more
realistic, assuming that progress continues. Although
promising results have been obtained for a cappella
recordings [2, 4, 7], recognition rates drop considerably in
the presence of instrumental accompaniment [8, 9].

From the perspective of ASR, music accompaniment
can be regarded as noise since non-vocal music signals
generally include minimal or no information relevant to
lyrics transcription, while their presence in the spectral
domain increases the confusions during prediction. For
building more robust acoustic models against noisy
environments, the multistream approach in ASR was
introduced [10], inspired by how the acoustic signals
are split into multiple frequency bands and processed
in parallel in the human auditory system [11]. While
previous research suggested using multiresolution feature
processing [12, 13] or reconstruction of a multi-band
latent representation through autoencoders [14] to achieve
multistreaming ASR, the neural network architecture
recently introduced in [15], Multistreaming Time-Delay
Neural Network (MTDNN), proposes a simplified solution
which is utilized in producing the state-of-the-art for
hybrid / Deep Neural Network - Hidden Markov Model
(DNN-HMM) based ASR [16, 17]. In this work, we
propose a compact variant of MTDNN, referred to as
MSTRE-Net, where streams are diversified by having
different numbers of layers with the goal of reducing the
number of trainable parameters (i.e. model complexity),
and thus the inference times and improving the word
recognition rates.

Additionally, we propose a number of other novel
contributions for improving lyrics transcription
performance. We suggest combined training of the
acoustic model on both monophonic (e.g. DAMP-Sing!
300x30x2 [6]) and polyphonic (e.g. DALI [5]) recordings,
which is shown to improve performance for both cases.
Furthermore, we propose tagging monophonic and
polyphonic utterances with separate music and silence
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tokens explicitly. Our goal for this is to generate
alignments that are more robust against disruptions in
the decoding path, potentially caused by the musical
accompaniment during the non-vocal frames.

One major challenge in ALT research has been
publishing reproducible results, due to the lack of publicly
available evaluation data [18]. Dabike and Barker [2]
shared manually verified annotations for a subset of DAMP
which have been utilized for evaluation in a cappella
singing [4, 7]. The Jamendo (lyrics) dataset [19] consists
of 20 contemporary polyphonic music recordings released
under an open source license. Moreover, despite their
limited nature in terms of size and musical variability,
Hansen [20] and Mauch [21] have been among the two
most commonly used evaluation sets for ALT. In addition
to these, we present a new test set with 240 polyphonic
recordings having a larger span of release dates and
better singer gender balance in order to establish a more
comprehensive lyrics transcription evaluation.

The rest of the paper is structured as follows: we begin
with a summary of essential concepts in the state-of-the-art
approach for hybrid-ASR. The following section explains
how the proposed MTDNN architecture is constructed.
Next, we give details of the data used in experiments, and
introduce a new evaluation set. Finally, we describe the
experimental setup and present results verifying our design
choices through ablative tests.

2. BACKGROUND

ALT can be considered as analogous to Large Vocabulary
Continuous Speech Recognition (LVCSR) for the singing
voice. Similarly, the goal for ALT is predicting the
most likely word sequence, w, given a stream of acoustic
observations, O, which can be expressed in mathematical
terms as follows:

bw = = argmax
w

P (w|O)

= argmax
w

P (w)p(O|w)

= argmax
w

P (w)
X

Q

p(O|Q)P (Q|w), (1)

where elements of Q represent the phoneme classes 1 .
In Equation 1, p(O|Q) is obtained via the acoustic
model. Phonemes are converted to word labels using
a lexicon which defines a mapping between words
and their phonemic representations. The raw word
posteriors are then smoothed with the language model,
P (w) for obtaining grammatically more plausible output
transcriptions, bw.

According to the probabilistic approach of ASR,
phonemes are represented with HMMs where a transition
between connected phone states occurs at every time step
[22]. In our system, we employ the Kaldi toolkit [23],
an open-source ASR framework that represents HMM
states using Weighted Finite State Transducers (WFST)

1 A phoneme is the basic sonic unit of speech. In linguistics, words are
considered to be composed of sequences of phonemes.

Figure 1. DNN-HMM based ASR at operation

[24]. In operation, a WFST graph is generated through
composing posteriors retrieved from the acoustic, language
and pronunciation models. The resulting directed paths of
states form a lattice, a weighted acyclic graphical structure
which can represent multiple output hypotheses.

2.1 Lattice-free Maximum Mutual Information

Most recent ALT systems utilize the state-of-the-art hybrid
DNN-HMM framework where the neural networks are
trained in a sequence discriminative fashion [25]. More
specifically, the best performing lyrics transcribers to date
[2–4, 7, 8] use Lattice-free Maximum Mutual Information
training (LF-MMI) [26], where network parameters are
tuned w.r.t. the MMI objective:

FMMI =
X

u

log
p(Ou|Qu)KP (Wu)P
W p(Ou|Q)KP (W )

(2)

where p(Ou|Qu) is the probability of observing an
acoustic instance O in the utterance u, in Markovian
phone state Qu, and the P (W )’s are the word sequence
probabilities [27]. Optimization w.r.t. MMI aims at
maximizing the shared information between the reference
and target sequences. More explicitly, the terms in
the numerator are calculated per utterance, whereas the
denominator is computed over the entire training set.
Hence, the network parameters are updated to maximize
the probabilities in the numerator and minimize the
denominator. In other words, the goal of MMI training is
to discriminate a certain acoustic observation with its given
utterance.

3. MULTISTREAMING TIME-DELAY NEURAL

NETWORKS

The main body of MTDNN architectures consists of
multiple streams of TDNN layers trained in parallel, where
each stream has a unique time dilation rate (⌧ ). Our
proposed MTDNN variant differs from the original models
[16,17] by having different numbers of layers in the TDNN
streams, depending on ⌧ (Figures 2(b) and 2(c)).

Prior to the TDNN streams, input features x are first
processed by a single stream 2-D Convolutional Neural
Network (CNN) in the front-end of the network,

h = Stacked -2D-CNN (x) (3)
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(a) Single-stream TDNN (⌧=3)

+

(b) MTDNN with identical streams (⌧={3,6,9})

+

(c) MTDNN with distinct streams (⌧={3,6,9})

Figure 2. Different variants of TDNN architectures. From left-to-right, the orange, yellow and cyan blocks represent the
front-end 2-D CNN, TDNN streams and final FC layers preceded by the purple softmax layer

where Stacked -2D-CNN stands for the stack of 2-D
convolutional layers with 3 ⇥ 3 kernels. Inspired by
[4], we apply subsampling on the height axis after each
alternate layer with a factor of 2, in order to get compact
embeddings, h, which are then fed into multiple streams
of TDNNs 2 . Each stream of TDNNs has a unique time
dilation rate, ⌧ , encoding information in different temporal
resolutions,

z
n
t = Stacked -TDNN (h|⌧ = t,N = n), (4)

where z
n
⌧ are the latent variables at the output of the final

(N th ) TDNN layer, and t 2 Z. These are concatenated and
projected to the classification (softmax ) layer by a pair of
fully connected (FC ) layers,

a(s) = softmax (2⇥ FC (Concat(zN⌧1 , z
N
⌧2 , ..., z

N
⌧K ))),

(5)
where a(s) is the activation of the softmax layer
corresponding to the phoneme state s and K is the number
of TDNN streams. We decide the number of layers per
stream w.r.t. to the receptive field (RF ) of the nodes at the
top TDNN layer,

RF zN
⌧
= 2⇥ l ⇥ ⌧ ⇥N, (6)

where l is the frame length of the acoustic feature vectors.
Note that we include an additional 1-D convolutional layer
just before the TDNN streams. This layer does not use
dilation, in order not to skip any frames.

4. DATA

4.1 Training Set

The acoustic models of the previously presented ALT
systems in the literature are built on either monophonic
or polyphonic music recordings. In general, monophonic
models are trained on the DAMPtrain dataset [2, 4, 7],
while DALI is utilized for polyphonic models [9]. We
merge these two datasets, exploiting their size and musical

2 A time-delay neural network consists of 1-D convolutional layers
where the convolution is applied with frames that are dilated on the time
axis [28]. In our architecture, we employ the factorized variant of TDNN
introduced in [29].

variability. We curated the polyphonic subset of the dataset
on the recordings from the most recent version (v2.0) of
the DALI dataset [30], and included only those songs for
which the Youtube links were available and still in use at
the time of the audio retrieval.

4.2 Evaluation Sets

We perform model selection and optimization on the
subsets of the DAMP and DALI datasets, representing
monophonic and polyphonic domains respectively. For
DAMPtest , we use the test split introduced in [2]. For
testing the lyrics transcription performance on polyphonic
recordings, we curated a new subset of DALI-v1.0,
which we give the data selection procedure below.
Finally, we evaluate our best performing model on the
three benchmark datasets used in the literature, namely
the Jamendo, Hansen and Mauch sets and provide a
comparison with the state of the art in Section 6.5.

Set Words Uniq. Words # Utt. # Rec # Singers Avg. Utt. Dur. Total Dur.
LM-corpus 13M 100k 2M N/A N/A N/A N/A
DAMPtrain 686k 5.3k 80k 4.2k 3k 5sec 112h
DALItrain 1.1M 25.5k 227k 4.1k 1.5k 2.48sec 156h
DAMPdev 4k 695 482 66 38 5.12sec 41min
DALIdev 5.7k 941 1.7k 34 16 2.41sec 48min

DAMPtest 4.6k 840 479 70 40 6sec 48min
DALItest 62.8k 4.2k 240 240 160 233sec 15.5h
Jamendo 5.7k 1k 20 20 20 216sec 72min
Hansen 2.8k 585 10 10 9 214sec 35min
Mauch 5.2k 820 20 20 18 245sec 82min

Table 1. Statistics of datasets used in experiments

For tuning the hyperparameters during evaluation, the
language model scaling factor and the word insertion
penalty, we have used the combination of the data from
DAMPdev split [2] and 20 recordings from DALI-v2.0 3 .

4.2.1 The DALI-test set

In this section, we give details of the curation procedure
for the DALItest set. We began from the subset presented
in [31], which initially had 513 recordings and filtered
it according to a number of criteria. Numerous audio
samples were not retrievable from the links provided.
We obtained the Youtube links through automatic search

3 This combined development set is denoted as dev in Section 6.
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using relevant key words. We discarded songs where the
automatically retrieved version was a live performance,
had low audio quality or contained extra background
speech sections unrelated to its corresponding lyrics.
For consistency and fair evaluation, we did not include
songs where the dominant language was not English.
We allowed for an artist to have at most 5 songs.
Among the remaining recordings, we manually selected a
subset having a relatively balanced distribution of singers’
gender, official release dates over decades (see Figure 3)
and variability in terms of singing styles, vocal effects
and music genre. Lyrics were initially obtained from
the annotations provided in [5] and manually verified
following the steps explained in Section 5.1. The final
version of DALItest consists of 240 recordings, which
sets the largest test set for lyrics transcription with
clean annotations. For open science, we publicly share
the data identifiers, cleaned lyrics annotations and a
tutorial to retrieve the corresponding Youtube links at
“https://github.com/emirdemirel/DALI-TestSet4ALT”.

Figure 3. Songs per decade in ALT evaluation sets

5. EXPERIMENTAL SETUP

5.1 Lyrics Preprocessing

Prior to being utilized for training, raw lyrics data
automatically retrieved from online resources (as in DALI)
needs to be normalized, as the transcription rules applied
by lyrics providers are not standardized. We remove all
special ASCII characters except apostrophes. We convert
numeric characters to their alphabetic correspondence.
All text is converted to upper case. We observed
several samples with erroneous hyphenation, explicit
syllabification and repeating letters (possibly indicating
longer uttered syllables or vowels). To cope with
these, we apply automatic hyphenation correction and
canonicalization using the standard open-source NLTK
tools 4 . The output lyrics are then verified and corrected
manually.

5.2 Language and Pronunciation Models

Lyrics often contain uncommon words that are not very
likely to exist in standard pronunciation dictionaries.
For such words that are not in the lexicon, or out-of-
vocabulary (OOV) words, we generate pronunciations
using a pretrained grapheme-to-phoneme (G2P) converter
[32]. In order to produce fair and reproducible results,
we generate pronunciations for the OOV words in the
evaluation sets as well, and do not skip these during
evaluation. We utilize the commonly used CMU

4 These steps are potentially language specific.

English Pronunciation Dictionary 5 as the lexicon and
generate alternative pronunciations by duplicating the
vowel phonemes for each word pronunciation, inspired by
the improvements observed in [7, 33]. A 4-gram language
model (LM) is constructed using the SRILM Toolkit [34].
We use the combination of the lyrics corpus in [2] 6 and
DALItrain . For scientific evaluation, we exclude any songs
which overlap with those in the evaluation sets.

5.3 Discriminating Instrumental and Silent Regions

The hybrid DNN-HMM ASR framework approaches the
continuous word recognition task essentially as a sequence
decoding problem. Within this scope, the presence of
instrumental accompaniment, especially during non-vocal
regions, may disrupt the decoding path, potentially causing
cumulative errors during transcription and alignment.
Traditionally, non-speech regions are represented with a
special silence token within the target class set during
recognition. Here, we propose using separate tokens for
the non-vocal instances in monophonic and polyphonic
recordings. Prior to training, we associate these
tokens with their corresponding silence/music instances by
explicitly adding tags at the beginnings and the ends of the
ground truth lyrics of each utterance (see Table 2). These
tags are represented as words in the lexicon where their
pronunciations correspond to the relevant silence token.

w

Raw w1 w2 ... wN

DAMP <silence> w1 w2 ... wN <silence>
DALI <music> w1 w2 ... wN <music>

Table 2. Music / silence tagging w.r.t. the dataset

For silence and music tagging, we exploit our training
data. As we know the recordings in DAMP and DALI
are monophonic and polyphonic respectively, we apply
tagging w.r.t. the dataset. The pronunciations of these
pseudo-word tags are represented with distinct phonemes
in the lexicon.

5.4 Generating Phoneme Alignments

Since the neural network optimization is performed w.r.t.
phoneme posteriors (as explained in Section 2.1), we need
to extract their timings, i.e. alignments. To generate these,
we train a triphone Gaussian Mixture Model (GMM) -
HMM model on “singer adaptive” features [35], following
the standard Kaldi recipe 7 . At this stage, we compute
per-word pronunciation probabilities following the steps in
[36], and retrain another triphone model using the updated
lexicon transducer. Using this new model, we apply forced
alignment [22] on the training data for generating the
phoneme and word alignments.

5 Link: https://github.com/Alexir/CMUdict/blob/master/cmudict-0.7b.
6 This corpus contains lyrics from all the songs of the artists included

in the Billboard charts between 2015-2018, plus the lyrics in DAMPtrain .
7 We execute the GMM-HMM pipeline at

https://github.com/emirdemirel/ALTA, which is almost the same
procedure as the standard librispeech recipe, with tuned hyperparameters
for singing data.
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5.5 Neural Network Training

DNN training is based on the Kaldi - chain recipe. In the
feature space, we use 40-band filterbank features extracted
with a hop size of 10ms and window size of 30ms. To
achieve singer-adaptive training, we utilize i-Vectors [37]
which represent the singer identity information via global
embedding vectors. Frame subsampling is applied with a
factor of 3 in this training scheme where each subsampled
frame in the input of the neural network is considered to
represent l = 3 ⇥ 10ms = 30ms of context. The data
is fed into the network as audio chunks of 4.2 seconds
(140 frames) in minibatches of 32. We apply a decaying
learning rate with beginning and final rates of 10�4 and
10�5 respectively. Stochastic gradient descent is used as
the optimizer. The training is done for 6 epochs.

6. RESULTS

We report lyrics transcription results based on word
error rate (WER). We begin by comparing performances
obtained using DAMP and/or DALI in training the
acoustic model. Then we test our proposed idea of
discriminating silence and accompaniment instances by
using separate tokens, and perform experiments testing
different topologies of the MTDNN architecture. To
boost the performance further, we train a final model on
augmented data and provide a comparison of our results
with previously published models.

6.1 Multi-Domain Training

According to Table 3, the model trained on DAMPtrain

performs relatively well on DAMPtest , however its
performance drops dramatically on polyphonic recordings.
On the other hand, much better recognition rates are
observed on DALItest when a polyphonic model is
used, but then the polyphonic model performs poorly
on a cappella recordings. Finally, using recordings
from both the monophonic and polyphonic domains
results in improved performance on both polyphonic
and monophonic test sets, although the improvement is
marginal on the monophonic DAMPtest set.

6.2 Music / Silence Modeling

Next, we test whether the explicit music/silence tagging
improves transcription results. At this stage, we use a
single stream architecture (M single

8 in Table 4). Tagging
is applied only in constructing the GMM-HMM model
and for generating alignments. The music/silence tags
were removed during neural network training. Table 3
shows that alignment with music/silence tags did result in
considerably improved recognition results for polyphonic
recordings, but no improvement was evident for the
monophonic case.

6.3 Neural Architecture Design

Here, we test various parameterizations of the
multistreaming architecture. In this stage, we did
not use the explicit music and silence tagging for training
the models. As mentioned in Section 3, we diversify

Train Set DAMPtest DALItest

DAMP 17.64 78.42
DALI 61.95 59.19

DAMP + DALI 17.14 53.86
+ music/sil tag 17.29 47.00

Table 3. Multi-domain training and music/silence tagging
results

each stream of TDNNs in terms of the number of hidden
layers and/or their dimensions. In addition to achieving
improved performance, the goal of these modifications is
to exploit the temporal context to its full extent. For this,
we calculate the number of TDNN layers included w.r.t.
the resulting RF zN

⌧
.

In all MTDNN variants tested, we use 3 TDNN streams
with ⌧ 2 {3, 6, 9}. We begin with finding the optimal
number of TDNN layers for the stream with the smallest
⌧ . For rapid experimentation, we use single-streaming
TDNN models (Msingle

N in Table 4). According to Table
4, using 9 layers sets the optimal setup for ⌧ = 3, having
RF zN=9

⌧=3
= 1620ms. Note that further increasing the

number of TDNN layers to 10 (RF z10
⌧=3

= 1800ms)
did not result in improved recognition, and the model
complexity was much higher (Figure 4). Therefore, we
chose as our baseline a single-stream model with 9 TDNN
layers.

,

Stream Layers Dimension dev DAMPtest DALItest

M single
7 3 7 512 28.06 17.08 54.52

M single
8 3 8 512 28.05 17.14 53.44

M single
9 3 9 512 27.68 17.08 52.25

M single
10 3 10 512 27.67 17.21 53.58

Mmulti
9,a 3-6-9 (9,9,9) (512,512,512) 26.69 16.75 51.38

Mmulti
9,b 3-6-9 (9,4,3) (512,512,512) 26.65 16.45 49.32

Mmulti
9,c 3-6-9 (9,9,9) (512,256,172) 27.13 16.08 52.54

Mmulti
9,d 3-6-9 (9,4,3) (512,256,172) 27.38 16.62 51.92

Table 4. Experiments on NN design

Next, we perform ablative tests on four variants of the
multistream architecture (notated as M

multi
9,{a,b,c,d}). Model

M
multi
9,a have identical TDNN structures (except for ⌧ ),

whereas the variants M
multi
9,{b,c} have reduced N or hidden

dimensions respectively w.r.t. ⌧ at each stream. Both
dimensions of model reduction are applied on M

multi
9,d . In

models Mmulti
9,{b,d}, we reduced the number of layers, N for

the streams with larger ⌧ to keep RF zN
⌧

similar across
all streams. M

multi
9,{b,d} have 4 and 3 layers at the streams

with ⌧ = 6 and ⌧ = 9 having RF values of 1440 and
1620ms respectively. On the other hand, adding one more
layer on the streams with ⌧ = 6, 9 would result in having
RFzN

⌧
� 1800ms which is shown above to be suboptimal

in the single-stream case (see results for M single
10 ).

6.4 Model Selection

The proposed multistreaming setups except M
multi
9,c

outperformed their single-stream counterpart, M
single
9 ,

particularly on DALItest . The best results are achieved
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with M
multi
9,b which has unique N layers across all streams

with the same hidden layer dimension.
To increase confidence in model selection, we

investigate other operational aspects of the tested models.
In Figure 4, we compare the number of trainable
parameters which is a variable related to model complexity,
and the real-time factor (RTF) that measures how fast
a model operates during inference. We compute RTF’s
based on the inference times across all the data used in
evaluation. We repeat this 5 times and report the mean of
all iterations per model. These iterations are performed on
an Intel® Xeon® Gold 5218R CPU.
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Figure 4. Num. trainable parameters (left) & RTFs (right)

According to Figure 4, our best performing model
M

multi
9,b has the second largest number of trainable

parameters. Its model complexity is however much
lower than that of M

multi
9,a , the architecture presented in

[16]. In terms of run time, all multistreaming models
performed faster than single-stream models, with M

multi
9,b

being among the fastest. This shows that our compact
variant has a reduced inference time with an improved
recognition rate as hypothesized in Section 1.

6.5 Comparison with the State of the Art

At this last step, we train a final model combining the
music / silence aware alignment with the best performing
MTDNN architecture, Mmulti

9,b . To boost the performance
further, we apply data augmentation via speed perturbation
with the factors of 0.9 and 1.1, tripling the size of the
training data. In Table 5, we compare our final model
with other lyrics transcribers reported in the literature. We
retrained the acoustic models in [2] (M [2]), and [4] (M [4]),
using the corresponding publicly shared repositories.
M [9] is based on the pretrained acoustic model shared
at https://github.com/chitralekha18/AutoLyrixAlign. The
same language model is used in constructing the decoding
graphs for all the models in Table 5. Note that M [2], [4]
are trained on DAMP (monophonic) and M [9] is trained on
DALI (polyphonic) datasets. We used the best performing
language model scaling factor when reporting the results
in Table 5. We were not able to generate results on
DALItest using M [9] due to the model being highly
memory intensive, as also reported in [8].

In addition to these, we provide a comparison with the
state of the art. The best WER score reported on DAMPtest

is based on M [4] and applies rescoring on the word lattices
generated after the first-pass decoding using an RNNLM
[38]. We did not apply RNNLM rescoring as we did
not achieve consistent improvements across different test

sets according to our empirical observations. For a fair
comparison, we also include the best results in [4] achieved
via n-gram LMs (the scores in paranthesis in Table 5).
On Jamendo, the best WER scores were reported in [8]
where the inference was performed on source separated
vocals. For Hansen and Mauch datasets, the best results are
provided as reported in [9] 8 . In order to evade optimistic
results, we have discarded the overlapping songs between
Hansen, Mauch and DALItrain during training the final
model.

WER

DAMPtest DALItest Jamendo Hansen Mauch

M [2] 16.86 67.12 76.37 77.59 76.98
M [9] 56.90 N/A 50.64 39.00 40.43
M [4] 17.16 76.72 66.96 78.53 78.50

S.O.T.A 14.96 (17.01) [4] N/A 51.76 [8] 47.01 [9] 44.02 [9]

MSTRE-Net 15.38 42.11 34.94 36.78 37.33

Table 5. Comparison with the state-of-the-art.

The results above show that MSTRE-Net outperforms
all of the previously presented models on the polyphonic
sets, with more than 15% , 7% and 6% absolute WER
improvements achieved on the Jamendo, Hansen and
Mauch datasets compared to the previous state of the art
respectively. Notably, we achieved less than 50% WER
on the large DALItest set indicating more than half of the
words across 240 songs were correctly predicted. Our
model also has the best results on DAMPtest achieved via
n-gram LM.

7. CONCLUSION

We have introduced MSTRE-Net, a novel compact
variant of the multistreaming neural network architecture,
which outperforms previously proposed automatic lyrics
transcription models. Our model achieved these results
with lower model complexity and inference time. In
addition, we showed that recognition rates improved
across all evaluation sets after leveraging both polyphonic
and monophonic data in training the acoustic model.
We proposed a novel data preprocessing method for
generating alignments prior to neural network training
which resulted in considerably better word recognition
rates from polyphonic recordings compared to the baseline
approach. Finally, we curated a new evaluation set
that is more comprehensive and varied, while having a
much larger size compared to the previous test data used
in research. For reproducibility and open science, the
identifiers and a tutorial on making use of this data will
be shared with the research community.

Our final model outperformed the previously reported
best ALT results by a large margin, setting the new
state-of-the-art. Through these results, we have taken
an important step in increasing the potential and the
possibility for ALT being an applicable technology in
both Music Information Retrieval research and the music
technology industry.

8 Note that the reason for the WER difference between M [9] and the
scores reported in [9] is due to the bigger language model we used, despite
both models having the same acoustic model.
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ABSTRACT

Modern keyboards allow a musician to play multiple in-
struments at the same time by assigning zones—fixed pitch
ranges of the keyboard—to different instruments. In this
paper, we aim to further extend this idea and examine the
feasibility of automatic instrumentation—dynamically as-
signing instruments to notes in solo music during perfor-
mance. In addition to the online, real-time-capable set-
ting for performative use cases, automatic instrumenta-
tion can also find applications in assistive composing tools
in an offline setting. Due to the lack of paired data of
original solo music and their full arrangements, we ap-
proach automatic instrumentation by learning to separate
parts (e.g., voices, instruments and tracks) from their mix-
ture in symbolic multitrack music, assuming that the mix-
ture is to be played on a keyboard. We frame the task
of part separation as a sequential multi-class classification
problem and adopt machine learning to map sequences of
notes into sequences of part labels. To examine the ef-
fectiveness of our proposed models, we conduct a com-
prehensive empirical evaluation over four diverse datasets
of different genres and ensembles—Bach chorales, string
quartets, game music and pop music. Our experiments
show that the proposed models outperform various base-
lines. We also demonstrate the potential for our proposed
models to produce alternative convincing instrumentations
for an existing arrangement by separating its mixture into
parts. All source code and audio samples can be found at
https://salu133445.github.io/arranger/.

1. INTRODUCTION

Music is an art of time and sound. It often contains com-
plex textures and possibly parts for multiple voices, instru-
ments and tracks. While jointly following the global style
and flow of the song, each part possesses its own char-
acteristics and can develop different musical ideas inde-
pendently. For example, in pop music, guitar and piano
tend to play chords and might span across a large pitch

© Hao-Wen Dong, Chris Donahue, Taylor Berg-
Kirkpatrick and Julian McAuley. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution:
Hao-Wen Dong, Chris Donahue, Taylor Berg-Kirkpatrick and Julian
McAuley, “Towards Automatic Instrumentation by Learning to Separate
Parts in Symbolic Multitrack Music”, in Proc. of the 22nd Int. Society

for Music Information Retrieval Conf., Online, 2021.

(Audio available. 1 )

Figure 1. Proposed pipeline. By downmixing a symbolic
multitrack into a single-track mixture, we acquire paired
data of solo music and its instrumentation. We then use
these paired data to train a part separation model that
aims to infer the part label (e.g., one out of the five in-
struments in this example) for each single note in a mix-
ture. Automatic instrumentation can subsequently be ac-
complished by treating input from a keyboard player as a
downmixed mixture (bottom) and separating out the rele-
vant parts (top). The music is visualized in the piano roll
representation, where the x- and y-axes represent time and
pitch, respectively. Colors indicate the instruments.

range, while bass is usually monophonic and stays in a
lower range. While playing multiple instruments usually
requires multiple performers, keyboardists potentially have
the ability to control many instruments at once. Modern
keyboards often offer the functionality of zoning, which
allows a player to divide the pitch range into zones and as-
sign each zone to a certain instrument. However, zoning is
not ideal given its low flexibility that requires careful con-
figuration and sometimes rearrangement of the music, and
incapability for handling certain genres of music that have
close and possibly overlapping harmony.

In this paper, we aim for the more ambitious goal of
automatic instrumentation—a process that we define as
dynamically assigning instruments to notes in solo mu-
sic. A real-time, online automatic instrumentation model
could allow a musician to have their keyboard performance
instantaneously and seamlessly performed by a different
ensemble. In addition to performative use cases, an of-
fline automatic instrumentation model can also be useful
to assist composers in suggesting proper instrumentation
or providing a starting point for arranging a solo piece, es-
pecially for composers who have less experience arranging
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(Audio available. 1 Colors: first violin, second violin, viola, cello.)

Figure 2. Hard excerpt in the string quartets dataset—Beethoven’s String Quartet No. 11 in F minor, Op. 95, movement 1,
measures 72–83. The tremolos of the first violin (measures 1–3 and 6–10), the double stops for the second violin, viola and
cello (measures 2–3) and the overlapping pitch ranges (measures 2–5) together compose a complex texture. Both models
fail to handle the violins and viola properly, especially the second violin.

for a particular ensemble.
Automatic instrumentation is challenging as it re-

quires domain knowledge of each target instrument, i.e.,
which pitches, rhythms, chords, and sequences thereof are
playable, and it is hard to specify such knowledge by some
fixed set of rules. In view of recent advances in machine
learning, we propose to adopt a data-driven approach to
this task. However, it can be laborious to acquire paired
data of original solo music and their full arrangements.
Given the abundance of multitrack music data, we ap-
proach automatic instrumentation by learning to separate
parts from their mixture in multitrack music, a task we call
part separation (see Figure 1). Assuming that the mix-
ture is to be played on a keyboard and the multitrack is the
target arrangement that we want to generate by an auto-
matic instrumentation model, we thereby have paired data
for solo music and full arrangements.

We frame the new task of part separation as a sequen-
tial multi-class classification problem that aims to map se-
quences of notes into sequences of part labels. We adopt
long short-term memory (LSTM) [1] and Transformer [2]
models for the task. We conduct an extensive empirical
evaluation showing the superiority of our proposed models
to baselines for the related task of voice separation as well
as strategies found in commodity keyboards. To showcase
the potential of our proposed models, we also demonstrate
their ability to produce alternative convincing instrumen-
tations for existing arrangements. Audio for all examples
and more samples are available on the demo website. 1 All
source code can be found in the project repository. 2

1 https://salu133445.github.io/arranger/
2 https://github.com/salu133445/arranger

2. PRIOR WORK

Voice separation is a related task to part separation which
involves separating blended scores into individual mono-
phonic voices. While useful, voice separation is agnos-
tic to constraints imposed by specific instruments—a com-
poser using a voice separation algorithm would have to
manually align voices to appropriate instruments. Some
prior work investigates voice separation in small, carefully-
annotated pop music datasets [3, 4]. Some prior work on
voice separation allows synchronous or overlapping notes
in a voice [5–8]. However, their results are only reported
on small test sets in certain genres. Others have adopted
multilayer perceptrons [3, 9] and convolutional neural net-
works [10] with hand-crafted input features for voice sep-
aration. Another relevant work on hand detection in pi-
ano music used LSTMs to separate notes played by right
and left hands in piano MIDI data [11]. To the best of
our knowledge, no past work has examined the task of part
separation in a general setting for multiple music genres.

In addition to voice separation, prior work has ex-
plored automatic music arrangement. The primary focus
of prior work for automatic music arrangement has been on
reduction—mapping musical scores for large ensembles to
parts playable by a single specific instrument such as the
piano [12–17], guitar [18–20] or bass [21]. This past work
focuses on identifying the least important notes to delete so
that the resultant score is playable on a single instrument,
whereas our work seeks to preserve the original score in
its entirety and satisfy playability for multiple instruments
simultaneously. As an exception, Crestel and Esling [22]
explore strategies for arranging orchestral music from pi-
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ano, though their approach does not guarantee that all notes
in the input piano map to parts in the output.

Music generation is another body of work that has used
neural network sequential models for processing symbolic
music [23]. Simon and Oore [24] proposed a convenient
approach for music generation which involved training re-
current neural network language models on a language-like
“event-based” representation of music. Subsequently, re-
cent work has explored event-based representations using
Transformers [2, 25–30]. In this work, we explore a more
compact input representation of music that passes all of the
information about a note into the model at once, rather than
spreading it out across several events. We also note that
Payne [26] generate music which contains parts for sev-
eral instruments, but their model cannot be directly used to
perform part separation of existing musical material.

3. PROBLEM FORMULATION

Mathematically, we consider a piece of music x as a se-
quence of notes (x1, . . . , xN ), where N is the number of
notes. Each note is represented by a tuple of time ti and
pitch pi, i.e., xi = (ti, pi). Alternatively, we could also
include duration di as an input and have xi = (ti, pi, di).
Each note is associated with a label yi 2 {1, . . . ,K} that
represents the part it is in, where K is the number of parts.
The goal of part separation is to learn the mapping between
notes and part labels. This formulation is rather flexible
and has no assumptions on whether a part is monophonic
or not—it can be a voice, an instrument, a track, etc.

In terms of the context given for predicting the label
of each note, we can categorize part separation models
into three classes: An independent model predicts the la-
bel for each note independently, without any context. An
online model predicts the label of the current note xi given
only past information, i.e., notes (x1, . . . , xi�1), as con-
text. An offline model predicts the label of the current note
xi given past and future information, i.e., the full sequence
of (x1, . . . , xN ), as context. While independent and online
models are preferable for use cases that require real-time
outputs, e.g., live performance. Moreover, the inability to
look into the future makes the real-time setting more chal-
lenging than the offline setting. On the other hand, offline
models can find applications in assisstive composing tools.

4. MODELS

We consider the following input features for our models—
(1) time: onset time, in time step, 3 (2) pitch: pitch as a
MIDI note number, (3) duration: note length, in time step,
and (4) frequency: fundamental frequency of the pitch, in
Hz, computed by the formula f = 440 · 2(p�69)/12. In
addition, we also consider features that encode the metric
time grid of music similar to the BAR and POSITION events
proposed in [28]—(5) beat: onset time, in beat, and (6)
position: position within a beat, in time step.

3 Assuming that the music is in metrical timing, a time step is a fac-
tor of some musically-meaningful unit (e.g., a quarter note) and can be
adjusted to match the desired temporal resolution.

Moreover, to help the models better disambiguate parts,
we also include two simple hints—(7) entry hints: onset
position for each instrument, encoded as a unit step func-
tion centered at its onset time and all zero if the instrument
is not used, and (8) pitch hints: average pitch of each track.
These hints allow the musician to use interactively to make
the instrumentation process more controllable. For exam-
ple, entry hints can be used to control the instruments avail-
able as they serve as switches for the instruments.

For the machine learning models, we consider the
LSTM [1] and its bidirectional version (BiLSTM) [35].
We use a three-layer stacked LSTM with 128 hidden units
in each layer (64 hidden units per layer for BiLSTM).
We also consider two variants of Transformer [36]—one
based on the encoder (Transformer-Enc) and one based on
the decoder (Transformer-Dec). They share the same ar-
chitecture that is composed of three Transformer blocks,
each of which has 128 hidden units and 8 heads in self-
attention computation and 256 hidden units in the inter-
nal feedforward network. However, they have different
attention masks: Transformer-Enc uses only the padding
mask, while Transformer-Dec uses both the padding mask
and the lookahead mask, which blocks its access to future
information and makes it a online model. In this paper,
the LSTM and Transformer-Dec models are made online
models, and the BiLSTM and Transformer-Enc models are
made offline models that take durations as inputs.

5. BASELINE MODELS

In order to gain an insight into how the proposed models
perform, we include two heuristic algorithms and a voice
separation model from the literature in our empirical study.

5.1 Zone-based algorithm

This algorithm simulates a common feature in modern key-
boards where a player can preassign a pitch range (i.e., the
‘zone’) for each instrument and notes will automatically
be assigned to the corresponding instrument as the player
performs. This algorithm finds the optimal zones for the
whole training data and uses these optimal zones at test
time. For the oracle case, the optimal zones for each sam-
ple are computed and used at test time. We note that the
oracle case might not be easily achievable as it can be hard
for a musician to set the zones optimally beforehand, espe-
cially for improvisation.

5.2 Closest-pitch algorithm

The closest-pitch algorithm keeps track of the last active
pitches p0i for each track i. For each incoming pitch p, it
finds the pitch among the last active pitches that has the
closest pitch to p and assigns the upcoming note with the
same label as the chosen pitch. This is a casual model
and it also relies on the onset hints. We can formulate this
algorithm as follows. For i = 1, . . . , N , we have

ŷi =

8
<

:
yi, if xi is an onset
argmin

j2{1,...,K}
(pi � p0j)

2 +Mai, otherwise ,
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Dataset Hours Files Notes Parts Ensemble Most common label

Bach chorales [31] 3.23 409 96.6K 4 soprano, alto, tenor, bass bass (27.05%)
String quartets [32] 6.31 57 226K 4 first violin, second violin, viola, cello first violin (38.72%)
Game music [33] 45.05 4.61K 2.46M 3 pulse wave I, pulse wave II, triangle wave pulse wave II (39.35%)
Pop music [34] 1.02K 16.2K 63.6M 5 piano, guitar, bass, strings, brass guitar (42.50%)

Table 1. Statistics of the four datasets considered in this paper.

where p0i is the last active pitch of track i before time t
and ai indicates whether track i is active, i.e., a concurrent
note has not yet been released. We set M to a large positive
number when we assume each part is monophonic, which
we will refer to as the ‘mono’ version of this algorithm,
otherwise set M = 0.

5.3 Multilayer perceptron (MLP)

We adapt the voice separation model proposed in [9] to the
task of part separation. This model uses multilayer percep-
tron (MLP) to predict the label for the current note based
on hand-crafted features that encodes its nearby context.
We use entry hints rather than predicting them by the pro-
posed voice entry estimation heuristics. We remove the
‘interval’ feature as there is no upper bound for the number
of concurrent notes and change the proximity function to
L1 distance. The oracle case of this model replaces error-
prone prior predictions with ground truth history labels. In
our implementation, we use three fully-connected layers
with 128 hidden units each.

6. DATA

In order to examine the effectiveness of the proposed
models, we consider four datasets—(1) Bach chorales in
Music21 [31], (2) string quartets in MusicNet [32], (3)
game music in Nintendo Entertainment System (NES)
Music Database [33] and (4) pop music in Lakh MIDI
Dataset [34], which are diverse in their genres, sizes and
ensembles (see Table 1 for a comparison).

As these datasets are noisy in different ways, we need
to further clean the data. For the game music dataset, we
discard the percussive noise track in the original dataset as
they do not follow the standard 128-pitch system used in
other tracks. For the pop music dataset, we use a cleaned
subset derived in [37], which contains only pop songs. We
mapped the instruments to the five most common instru-
ment families—piano, guitar, bass, strings and brass. We
follow the General MIDI 1 specification on the mapping
from an instrument to its instrument family. Instruments
that fall outside of these five families are discarded. We
note that the lead melody track might occasionally be dis-
carded during the mapping process due to the high variance
on instruments used for the melody track.

Moreover, we discard songs with only one active track
as the task becomes trivial in this case. We note that all
Bach chorales, string quartets and most pop songs are in
metrical timing, where a time step corresponds to some
fraction of a quarter note. Thus, we downsample them into
24 time steps per quarter note, which can cover 32nd notes

Musical
score

Ground
truth

Online
LSTM
prediction

Offline
BiLSTM
prediction

(Audio available. 1 Colors: piano, soprano, tenor, bass.)

Figure 3. Example of the Bach chorales dataset—Wer nur

den lieben Gott läßt walten, BWV 434, measures 1–5. The
LSTM model makes two errors for the bass, as indicated by
the arrow. The BiLSTM model gives a perfect prediction.

and triplets. As songs in the game music dataset are in ab-
solute time, we downsample them to a temporal resolution
equivalent to 24 time steps per quarter note in a tempo of
125 quarter notes per minute (qpm).

Finally, we split each dataset into train–test–validation
sets with a ratio of 8 : 1 : 1 except the game music dataset,
where we use the original splits provided with the NES
Music Database. We use MusPy [38] and music21 [31] for
processing MIDI and MusicXML files.

7. EXPERIMENTS

7.1 Implementation details

We use a batch size of 16, a sequence length of 500 for
training and a maximum sequence length of 2000 for val-
idation and testing. We clip the time by 4096 time steps
(i.e., roughly 170 quarter notes), the beat by 4096 beats,
and durations by 192 time steps (i.e., 8 quarter notes). We
randomly transpose the music by -5 to +6 semitones during
training for data augmentation. We use the cross entropy
loss with the Adam optimizer with ↵ = 0.001, �1 = 0.9
and �2 = 0.999 [39]. We apply dropout [40] to prevent
overfitting and layer normalization [41] to speed up the
training. All models are implemented in TensorFlow [42]
and experiments are run on NVIDIA GeForce RTX 2070s.

7.2 Qualitative results and error analysis

We present in Figures 2 to 5 several examples in the four
datasets. Some representative cases include overlapping
pitch ranges or chords for two polyphonic instruments
(see Figures 2 and 5), overlapping melodies and chords
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(Audio available. 1 Colors: pulse wave I, pulse wave II, triangle wave.)

Figure 4. Hard excerpt in the game music dataset—Theme

of Universe from Miracle Ropit’s Adventure in 2100. Both
models perform poorly when there is a sequence of short
notes crossing a single long note.

Ground
truth

Online
LSTM
prediction

Offline
BiLSTM
prediction

(Audio available. 1 Colors: piano, guitar, bass, strings, brass.)

Figure 5. Hard excerpt in the pop music dataset—Blame It

On the Boogie by The Jacksons. The BiLSTM model cor-
rectly identify and separate the overlapping guitar melody
and piano chords, while the LSTM model fails in this case.

(see Figure 5) and a sequence of short notes crossing a sin-
gle long note (see Figure 4).

7.3 Quantitative results

We conduct an extensive empirical evaluation over differ-
ent dataset and models in different settings. We present
the results in Table 2. 4 First, we notice the improved
performance for the oracle cases on the MLP baseline.
The large gap of performance is possibly because it pre-
dicts each note independently and the errors can prop-
agate over time. This emphasizes the need to incorpo-
rate sequential models for this task. Moreover, the BiL-
STM model outperforms its LSTM counterpart for most
cases. This is reasonable as the BiLSTM model has ac-
cess to the future information, which could, for exam-
ple, help identify the direction of an arpeggio. Further,
the LSTM and BiLSTM models outperform their Trans-
former counterparts—Transformer-Dec and Transformer-
Enc, respectively—across all settings. However, the Trans-
former models benefits from faster inference speed at test
time as compared to the LSTM models. Finally, we notice
that the proposed models perform relatively poorly on the
string quartets and game music datasets, possibly because
the two violins in the string quartets dataset and the two

4 Due to high computation cost, we report the oracle cases for the zone-
based algorithm and MLP model on a subset of 100 test samples, and omit
the oracle case of the zone-based algorithm for the pop music dataset.

Model Bach String Game Pop

Online models
Zone-based 73.14 58.85 43.67 57.07
MLP [9] 81.63 29.85 43.08⇤ 33.50⇤

LSTM 93.02 67.43 50.22 74.14
Transformer-Dec 91.51 57.03 45.82 62.14

Zone-based (oracle) 78.33 66.89 79.54⇤ †

MLP [9] (oracle) 97.59 58.16 65.30 44.62

Offline models
BiLSTM 97.13 74.38 52.93 77.23
Transformer-Enc 96.81 58.86 49.14 66.57

Online models (+entry hints)
Closest-pitch 68.87 50.69 57.14 47.45
Closest-pitch (mono) 89.76 42.82 49.91 32.28
LSTM 92.70 62.64 62.11 74.19
Transformer-Dec 91.17 62.12 56.73 67.19

Offline models (+entry hints)
BiLSTM 97.39 71.51 64.79 75.59
Transformer-Enc 93.81 56.72 54.67 67.23

⇤Reported on a subset of 100 test samples due to high computation cost.
†Omitted due to high computation cost.

Table 2. Comparison of our proposed models and baseline
algorithms. Performance is measured in accuracy (%).

Emb Dur EH PH Bach String Game Pop

92.10 37.29 43.89 58.78
X 93.02 67.43 50.22 74.14
X X 96.17 66.96 51.38 78.17
X X 92.70 62.64 62.11 74.19
X X X 95.95 68.17 63.35 74.74
X X 92.87 70.20 67.45 75.89

Table 3. Effects of input features to the online LSTM
model. Performance is measured in accuracy (%). Ab-
breviations: ‘Emb’—pitch, beat and position embedding,
‘Dur’—duration, ‘EH’—entry hints, ‘PH’—pitch hints.

pulse waves in the game music dataset are sometimes used
interchangeably. We examine the use of pitch hints to help
the models in the following section.

7.4 Effect of input features

In order to compare the effectiveness of different input
features, we also report in Table 3 the performance for
the LSTM model with different input features. First of
all, pitch, note and beat embedding leads to improvements
on all datasets, especially significant on the string quartet
(30% gain) and pop music (15% gain) datasets. Second,
entry hints improve the performance by 10% for the game
music dataset, which is possibly because it helps disam-
biguate the two interchangeable pulse wave tracks. Inter-
estingly, they have negative impacts on the Bach chorales
and pop music datasets. Third, duration inputs are always
helpful and help achieve the highest accuracy on the Bach
chorales and pop music datasets. For example, durations
would be critical in distinguishing the overlapping guitar
melody and piano chords in the example shown in Figure 5.
Last, pitch hints improve the performance for all datasets
but Bach chorales, possibly because the vocal ranges for
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(a)

(b)

(c)

(Audio available. 1 Colors: piano, guitar, bass, strings, brass.)

Figure 6. Quando Quando Quando by Tony Renis—(a) original instrumentation and the versions produced by (b) the
online LSTM model without entry hints and (b) the offline BiLSTM model with entry hints. The LSTM model assigns the
chords to the guitar, the most common instrument in the pop music dataset except the high pitches, which are assigned to
the strings. The BiLSTM model is able to separate the long chords from the short ones and assigns the former to the piano.

Strategy Bach String Game Pop

Time encoding
Raw time 91.97 37.26 44.10 37.92
Raw beat and position 93.13 66.72 48.60 68.42
Time embedding 92.21 68.31 49.32 70.64
Beat and position emb. 93.02 67.43 50.22 74.14
Data augmentation
No augmentation 93.03 69.36 49.03 70.73
Light augmentation 92.85 68.66 46.38 71.10
Strong augmentation 93.02 67.43 50.22 74.14

Table 4. Comparisons of time encoding and data augmen-
tation strategies for the online LSTM model. Performance
is measured in accuracy (%).

SATB are strict in chorales. Pitch hints help achieve the
highest accuracies for the string quartets and game music
datasets as they help disambiguate interchangeable tracks.

7.5 Effects of time encoding

In this experiment, we examine the effects of time encod-
ing. In particular, we consider four variants—(1) raw time
as a number, (2) raw beat and position as two numbers, (3)
time embedding and (4) beat and position embedding (see
Section 4 for the definition of beat and position). We report
in Table 4 the results and we can see that using raw time
gives the worst performance. Interestingly, the other three
encoding strategies achieve comparable performance.

7.6 Effects of data augmentation

In this experiment, we compare the following three strate-
gies of data augmentation—(1) no augmentation, (2) light

augmentation, where each song is randomly transposed by
-1 to +1 semitone during training and (3) strong augmenta-

tion, where each song is randomly transposed by -5 to +6
semitones during training. We report in Table 4 the results.
We can see that data augmentation is generally harmful for
the Bach chorales and string quartets datasets, possibly be-
cause classical music has strict rules on the pitch ranges of
voices and instruments. However, for game and pop music
datasets, where rules on keys and pitch ranges in classical
music are loosened, the models yield better performance
with proper data augmentation.

8. DISCUSSION

In Figure 6, we depict the original instrumentation of the
song Quando Quando Quando alongside the instrumenta-
tions generated by our best performing models for both the
online and offline settings. While neither model produces
an instrumentation identical to that of the original, both
produce instrumentations that “cluster” notes similarly to
the original and are reasonable rearrangements of the song.
This indicates a fundamental ambiguity of the task, though
we note that such ambiguity is less present in some gen-
res than others—our models are able to achieve high ac-
curacy on the Bach chorales dataset despite its small size.
However, for larger and more diverse datasets (e.g., the pop
music dataset), accuracy might not be the best metric for
measuring the performance of the models, and we plan to
include human evaluations in future work.

One limitation of this work lies in the generalizability
to real keyboard music since the downmixed music might
not be playable on a keyboard, e.g., having more than ten
concurrent notes or impossible fingering. Moreover, we
did not use the MIDI velocity information in our models,
and it could provide an additional signal for separation.

Finally, in addition to its immediate musical applica-
tions, we believe that our proposed part separation task
may be useful for large-scale pre-training of symbolic mu-
sic models. Pre-training music generation models on large,
heterogeneous music corpora has already been observed to
improve performance [27, 43]. Given that our proposed
task represents an additional source of musical knowledge
supervision, we speculate that additionally pre-training on
this task could improve performance for many downstream
tasks, e.g., genre classification and melody extraction.

9. CONCLUSION

In this paper, we have proposed a new task of part separa-
tion in multitrack music and examined its feasibility under
both the online and offline settings. Through a compre-
hensive empirical evaluation over four diverse datasets, we
showed the effectiveness of our proposed models against
various baselines. We also presented promising results for
applying part separation models to automatic instrumenta-
tion. Moreover, we discussed the fundamental ambiguity
and limitations of the task and future research directions.
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ABSTRACT

Previous work has shown that neural architectures are able
to perform optical music recognition (OMR) on mono-
phonic and homophonic music with high accuracy. How-
ever, piano and orchestral scores frequently exhibit poly-
phonic passages, which add a second dimension to the task.
Monophonic and homophonic music can be described as
homorhythmic, or having a single musical rhythm. Poly-
phonic music, on the other hand, can be seen as having
multiple rhythmic sequences, or voices, concurrently. We
first introduce a workflow for creating large-scale poly-
phonic datasets suitable for end-to-end recognition from
sheet music publicly available on the MuseScore forum.
We then propose two novel formulations for end-to-end
polyphonic OMR—one treating the problem as a type of
multi-task binary classification, and the other treating it
as multi-sequence detection. Building upon the encoder-
decoder architecture and an image encoder proposed in
past work on end-to-end OMR, we propose two novel de-
coder models—FlagDecoder and RNNDecoder—that cor-
respond to the two formulations. Finally, we compare the
empirical performance of these end-to-end approaches to
polyphonic OMR and observe a new state-of-the-art per-
formance with our multi-sequence detection decoder, RN-
NDecoder.

1. INTRODUCTION

As society continues to become more and more dependent
on digitization as a means of storing information such as
photos, addresses, and music, now is a perfect time to re-
fine the technology required to digitize sheet music. Orga-
nizing scanned music can be a tedious task to do manually.
For example, each image must be labeled with several at-
tributes, the most basic being the title, composer, arranger,
and page number. Assuming that all of these are input cor-
rectly, a user could then navigate through a large-scale col-
lection somewhat easily. However what if a user wanted to
filter the scores by attributes such as instrument, key signa-

© Sachinda Edirisooriya, Hao-Wen Dong, Julian McAuley
and Taylor Berg-Kirkpatrick. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution:
Sachinda Edirisooriya, Hao-Wen Dong, Julian McAuley and Taylor Berg-
Kirkpatrick, “An Empirical Evaluation of End-to-end Polyphonic Optical
Music Recognition”, in Proc. of the 22nd Int. Society for Music Informa-
tion Retrieval Conf., Online, 2021.

Figure 1. Examples of the MuseScore Polyphonic Dataset
(MSPD) and its hard subset (MSPD-Hard)—(top) an easy
excerpt in MSPD and (bottom) three excerpts that can be
found in both MSPD and MSPD-Hard.

ture, time signature, or tempo? What if a user had a score,
but wanted to transpose it to a different key? Manually do-
ing all of the annotation required for these demands when
uploading sheet music scans would be impractical, and this
is where optical music recognition (OMR) can shine.

Over the past few years, data driven approaches to opti-
cal music recognition have become attractive ways to solve
the problem. The improvement in the accuracy of systems
built using these tools is very exciting, however they are
far from perfect in challenging circumstances. One visual
challenge relatively unique to optical music recognition
is detecting multi-voice music, also known as polyphonic
music. Previous work has mentioned that their approaches
to OMR cannot sufficiently solve this problem to the same
extent as they have solved monophonic OMR [1, 2].

In view of the lack of a large-scale polyphonic dataset
for end-to-end polyphonic OMR, we introduce a workflow
for acquiring annotated samples from sheet music publicly
available on the MuseScore forum [3]. As an initial at-
tempt to the challenges of polyphonic OMR, we only con-
sider single-staff scores. Our objective with this dataset is
to empirically evaluate the performance of three different
architectures on the task of end-to-end polyphonic OMR,
where the input is a staff line image and the output is a
symbolic sequence that can be encoded into common mu-
sic notation formats such as MusicXML. Voice informa-
tion is not included in this process.

We propose two novel neural architectures for end-to-
end OMR, namely FlagDecoder and RNNDecoder, which
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are both encoder-decoder models based on the architec-
ture proposed by Calvo-Zaragoza et al. for monophonic
scores [4], hereafter referred to as the baseline. One fea-
ture common to all three models is their mechanism for
encoding each image: a CNN followed by a bidirectional
LSTM. The architectures differ, however, in their decod-
ing mechanism. The baseline architecture uses a fully con-
nected layer as a symbol classifier on the encoded image.
Our proposed FlagDecoder treats polyphonic OMR as a
multi-task binary prediction problem, simultaneously de-
tecting whether each pitch and staff symbol is present or
not, along with the rhythm if the symbol is a note. Our
other proposed architecture, RNNDecoder, uses a vertical
RNN decoder over the symbols appearing at each verti-
cal image slice, giving the model the capacity to output
a predetermined number of symbol predictions at a single
horizontal position of an image.

In this paper, we first introduce the current state of poly-
phonic OMR research. Then we introduce our procedure
for building a large-scale dataset of exclusively polyphonic
music data. Finally we perform an empirical evaluation
of our proposed architectures introduced above, and find
that they both outperform past work in terms of symbol
error rate, with the RNNDecoder achieving a new state-
of-the-art performance on end-to-end polyphonic OMR.
All source code is available at https://github.com/
sachindae/polyphonic-omr.

2. BACKGROUND

2.1 Optical music recognition (OMR)

Previous work on polyphonic OMR has been limited. One
of the main approaches to it has been a two-step process
of first segmenting each musical symbol [5–9] and then
identifying the relationships between them through a post-
processing step [10]. The challenge with building a sys-
tem using this method is that errors add up from both
sub-systems. Particularly the latter task, more formally
known as forming a musical notation graph, can be quite
challenging, with the state-of-the-art being far from per-
fect [10]. Another approach to OMR has been to treat it
as an end-to-end task as proposed by [4, 11], where the
complete symbolic sequence corresponding to an image is
output by the system. Among the end-to-end approaches,
there have been a variety of training objectives used for the
task such as Connectionist Temporal Classification (CTC)
loss, cross-entropy loss, and Smooth-L1 loss [4, 11, 12].
While applied to monophonic and homophonic music [13]
successfully, there have not been any conclusions on the
framework’s capability of being extended to polyphonic
notation.

2.2 Datasets for OMR

Several datasets have been proposed for musical symbol
classification [14–19]. Others have been proposed for
training end-to-end OMR systems on single-stave hand-
written music scores [2] and typeset images for mono-

Figure 2. Examples from the dataset where the staff line
is not cropped perfectly.

Figure 3. Example of the label encoding adopted in this
paper.

phonic scores [11, 20, 21]. However, these datasets are ei-
ther small in size or contain only monophonic scores.

3. MUSESCORE POLYPHONIC DATASET

Given the size of datasets such as PrIMuS [20] that have
been used to show the effectiveness of an end-to-end ar-
chitecture on monophonic OMR, we decided to come up
with a dataset of similar size to do the same for polyphonic
OMR. Using 19,432 MuseScore files available to down-
load online [22], we were able to generate 124,671 varied-
width single-staff images of exclusively polyphonic music
along with their ground truth labels. To determine whether
a given sample is polyphonic or not, we check if the music
encoding defines multiple voices within a single measure.

To generate the dataset, we first used the MuseScore
software plugin API (separate from the MuseScore forum
mentioned above) to reduce the page height of the render-
ing to easily generate single staff line images. Then we
executed a script to remove credit text which covered up
some music symbols. After that, we used the MuseScore
plugin API to generate MusicXML and PNG files from the
MuseScore files. Lastly, we parsed the MusicXML to gen-
erate labels for each of the images, and removed sparse
(music with only rests) and non-polyphonic data from the
dataset.

The difficulty of the samples has quite a large range,
from simple excerpts with two-note chords to dense no-
tation as shown in Figure 1. Also, many samples are not
perfectly cropped resulting in an additional implicit task of
extracting the staff line from noisy environments. We ar-
gue however that this creates a more realistic environment
as OMR systems should be able to handle these kinds of
interferences shown in Figure 2.

For our experiments with this dataset, we used a
70/15/15 split for training, validation, and test respectively.
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MSPD MSPD-Hard

Min Mean Max Min Mean Max

Length (symbols) 3 70.59 819 41 79.2 679
Length (measures) 1 4.15 55 1 2.11 8
Density (symbols/measures) 3 20.3 165 41 52.8 165
Polyphony (voices) 2 2.05 4 2 2.42 4

Table 1. Statistics of the MuseScore Polyphonic Dataset (MSPD) and its hard subset (MSPD-Hard).

3.1 Data annotation

Due to our primary focus being polyphony, we chose to
use a minimal symbol set sufficient to represent pitch and
rhythm accurately, apart from tuplets. More specifically,
we do not care about symbols such as dynamics, ties, tu-
plets, staccatos, accents, and other staff text. Instead, the
only musical symbols we chose to label are clefs, key
signatures, time signatures, barlines, and the notes them-
selves (pitch and rhythm). Inspired by the labeling scheme
used to train models for end-to-end monophonic and ho-
mophonic OMR [4, 13], we approached the task of poly-
phonic OMR in the same way, with the “Advance position”
encoding proposed by Alfaro et al. for representing homo-
phonic music as a one-dimensional sequence reading from
left to right. This encoding adds a ‘+’ symbol between each
sequential occurrence of notes and symbols, and orders the
individual notes of a chord from bottom to top, as seen in
Figure 3. Throughout the rest of this paper, we will refer
to the non-note music symbols described above (clefs, key
signatures, time signatures, and barlines) as staff symbols.

3.2 MSPD-Hard

While we are interested in the performance on the average
polyphonic images, we also want to have a means to push
an OMR system to its limit so we can better determine an
upper bound on the capabilities. To do this, we created
a subset of the test set of all the samples with a density
(defined by number of symbols per measure) of at least 41,
resulting in 900 samples, which we will refer to as MSPD-
Hard. The bottom three images in Figure 1 are samples
from the hard subset.

The statistic that sticks out the most when comparing
the two (see Table 1) is of course the density. While it may
seem strange that the mean symbol length of the hard test
set is similar to the full test set, we observed that this is
because the more dense samples tend to contain measures
that are filled with symbols, thus fewer measures can fit per
image on average. Lastly, the hard subset samples tend to
have a higher level of polyphony, measured by number of
voices defined by the MusicXML files, as expected.

4. ARCHITECTURAL COMPARISON FOR
POLYPHONIC OPTICAL MUSIC RECOGNITION

As we mentioned in Section 2, several training objectives
have been used for end-to-end OMR. Due to many recent
works showing the effectiveness of CTC [23] for OMR [2,

4, 13], we chose to train all of the considered architectures
using the same objective. The equation below shows the
objective that CTC aims to maximize, where y represents
the target sequence, z the alignment, x the sequence of
vertical image slices (i.e. fixed-width slices of a staff line
as shown in Figure 4), and ✓ the model parameters.

max
✓

P (y |x; ✓) = max
✓

X

z

P (y, z |x; ✓) . (1)

4.1 Architecture overview

At a high level, all of the architectures we compared share
the same structure. The two components are an encoder
and a decoder. The function of the encoder is firstly to ex-
tract features about the image while creating vertical slices
through pooling, and secondly to give global context of the
image encoding to each local image slice. The goal of the
decoder is to use the representations created by the encoder
and predict the symbols that are present in each of the ver-
tical image slices. Finally, we use CTC to marginalize over
the alignment of these slices for training. Due to the effec-
tiveness of this end-to-end architecture on monophonic and
homophonic music [4, 13], we chose to keep the encoder
fixed and instead look to different decoding strategies that
could be better suited for dense polyphonic music.

4.2 Encoder details

The encoder we use is the one described by Calvo-
Zaragoza et al, with 2x less width pooling [21]. First,
the image is fed through a deep convolutional neural net-
work (CNN) to extract relevant learned features. These
two-dimensional feature representations of each vertical
image slice are then flattened to a vector to create a se-
quential representation suitable for a recurrent neural net-
work (RNN). The purpose of the RNN in this context
is to give some awareness of the surrounding representa-
tions to each image slice’s encoding, which is essential to
help identify symbols that may span multiple image slices.
We chose to use a bidirectional Long Short-Term Memory
(LSTM) [24, 25] for its effectiveness in end-to-end OMR
as empirically shown by Baro et al. [2]. A visualization of
the encoder components can be seen in Figure 4.

4.3 Baseline decoder

The baseline architecture we evaluated includes the en-
coder mentioned above, followed by a simple decoder con-
sisting of two parallel fully connected layers to classify the
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Figure 4. Illustration of the image encoder used in this paper.

pitch and rhythm of the symbol appearing in each verti-
cal image slice. By design, this decoder is only capable of
outputting a single symbol prediction at each image slice,
a characteristic not ideal for polyphonic music.

4.4 FlagDecoder

To incorporate the multi-dimensional nature of polyphonic
music while being trained on a one-dimensional sequence,
we propose the BinaryVector. We observed that there are
a fixed number of positions on a staff line that a note can
appear on, indicating its pitch when combined with knowl-
edge of the clef, key signature, and any accidentals. Based
on this, one possible decoding for a vertical image slice
could be an n-dimensional (where n is the sum of the num-
ber of note positions and the number of staff symbols) vec-
tor where the value of each dimension indicates whether or
not the corresponding pitch or staff symbol appears in the
image slice. This can be achieved using the sigmoid acti-
vation function. For inference, we apply a threshold of 0.5
to determine if a symbol is present or not.

Since we also need rhythm and accidental information
for OMR, we modify this BinaryVector approach so that
each note position on the staff has a corresponding rhythm
and accidental classifier as opposed to a binary classifier
that is only applicable for staff symbols. Visualizing this in
Figure 5, there is a binary vector for the staff symbols, and
a matrix for the notes, together resembling a flag hence the
name FlagDecoder. To handle the case when two voices
are playing the same note, we include two rows in the note
matrix for each note position on the staff.

The FlagDecoder first uses two parallel fully connected
(FC) layers for the note positions and staff symbols to re-
duce the dimensionality. Then the note latent representa-
tion goes through two separate FC layers (for rhythms and
accidentals) to produce the note matrix, and the staff sym-
bol latent representation is connected to another FC layer
to produce the BinaryVector.

4.5 RNNDecoder

An alternative approach to those mentioned above, which
maintain a single dimensional sequence, is to embrace the
fact that polyphonic music is inherently multi-dimensional.

Based on the near perfect results that have been shown in
previous published work on monophonic OMR with the
baseline decoder, we took a new approach to the challenge
of polyphony that breaks up the task into several simpler
versions. Rather than representing polyphonic music as
a one-dimensional sequence, we propose RNNDecoder, a
recurrent decoder that is run across each image slice verti-
cally, allowing for multiple outputs at a single image slice.
This can ideally handle polyphony better than the baseline
decoder, and can be trained trivially using the perspective
that there are multiple one-dimensional sequences occur-
ring from bottom to top in each image. To allow for align-
ment at inference time, we add a “noNote” symbol to the
labels, as shown in Figure 6.

As we mentioned above, the RNNDecoder can gener-
ate a fixed number m of outputs per image slice. Since
the largest number of notes and staff symbols we observed
present in a single horizontal position of an image was 10,
we chose to have m = 10 for our experiments. The key
difference between the RNNDecoder and the baseline is
that a hidden state is included while generating each out-
put prediction, and is concatenated to the current image
slice encoding before going through the classifier. More
specifically, at each image slice as each output is gener-
ated, this hidden state is updated like the hidden state of
an RNN as in Figure 5, and fed through the same classifier
along with the image slice encoding 10 times. As shown
in Figure 6, this new decoder can be trained without using
the “Advance position” label encoding.

4.6 Objective functions

As we mentioned in Section 4, CTC aims to maximize the
likelihood of a target symbolic sequence. For the baseline
decoder, we use two target sequences – one for rhythm and
one for pitch – and jointly minimize those two CTC losses.
On the other hand for the FlagDecoder, we just use a sin-
gle target sequence where each "symbol" is a unique flag
configuration (see Figure 6), meaning it represents a com-
bination of notes and staff symbols as opposed to just a
single word from a symbol vocabulary. Lastly for the RN-
NDecoder, we use the same two target sequences used in
the baseline, but we use 10 of them, thus optimizing the
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Figure 5. Illustrations of the three decoder architectures examined in this paper.

arithmetic mean of the CTC losses over the m sequences.
The loss functions are shown below in Equation (2):

LBaseline = LPitch + LRhythm ,

LFlagDecoder = LFlag ,

LRNNDecoder =
1

m

mX

i

(LPitch + LRhythm) ,

(2)

where LPitch, LRhythm and LFlag are the corresponding
CTC losses.

5. EXPERIMENTS

5.1 Implementation details

All models were trained using stochastic gradient descent
with the Adam optimization algorithm [26]. We used a
learning rate of 10�4 and a batch size of 16. Additionally,
each image goes through a short preprocessing stage where
they are inverted so that black pixels take on the highest
value while white pixels are 0, and subsequently resized to
a fixed height of 128 pixels.

5.2 Experiment setup

For evaluation, we follow recent literature [2] and use Pitch
and Rhythm Symbol Error Rate (SER) as our evaluation
metric of choice. This metric measures the edit distance
at a symbol level between a predicted sequence and the
ground truth sequence. More precisely, it can be written as
the sum of insertions (I), deletions (D), and substitutions
(S) normalized by the ground truth sequence length (N ),
i.e., SER = (I +D + S)/N .

In addition to staying consistent with previous litera-
ture, we also chose to evaluate Pitch and Rhythm SER
separately to be able to compare the difficulties of the
two tasks and gain insight on where improvements can be
made. The two sets of data we used for evaluation are the
full test set containing 18,700 images, and the hard test set
containing 900 images, both of which were discussed in
depth in Section 3.

Figure 6. Examples of the different symbolic sequence
representations used to optimize the decoders—(top) Base-
lineDecoder using “Advance position” encoding, (middle)
FlagDecoder and (bottom) RNNDecoder, where number of
outputs is 10.

5.3 Experiment results

We first compare the three different decoders using the full
test set. An interesting result is that the Pitch SER is higher
than the Rhythm SER across the board for all of the mod-
els. For the baseline and RNNDecoder, we believe this is
due to the fact that pitch is affected by clef, thus when a clef
prediction is off, or in particularly wide images, the correct
clef may not be represented in an image slice encoding, re-
sulting in incorrect decoding. Additionally when there are
multiple neighboring notes together, identifying the correct
pitches naturally seems more challenging than identifying
the correct rhythms due to requiring more fine grained fea-
tures to discern the exact pitches. We believe using an ag-
nostic representation of pitch as described in [20] could
potentially result in better pitch performance.
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MSPD MSPD-Hard

Decoder model Rhythm SER (%) Pitch SER (%) Rhythm SER (%) Pitch SER (%)

Baseline 7.39 10.28 14.11 18.83
FlagDecoder 6.67 9.82 9.86 17.98
RNNDecoder 3.92 5.64 5.82 8.57

Table 2. Performance of the three decoders on MuseScore Polyphonic Dataset (MSPD) and its hard subset (MSPD-Hard).

Figure 7. Comparison of the three decoders on an example
with dense chords. Red blocks indicate the errors.

While our FlagDecoder only slightly outperforms the
baseline on the full test set, the RNNDecoder appears to
perform twice as well as the baseline on the full test set,
achieving a new state-of-the-art performance. Further eval-
uating the performances of the new decoding methods on
the hard test set (MSPD-Hard) highlights our decoders’
strengths over the baseline decoder. With the baseline, the
error rate nearly doubles, whereas with the proposed de-
coding strategies, the error rate increases by a smaller fac-
tor when dealing with difficult data, with the Pitch SER of
the FlagDecoder being the exception.

5.4 Error analysis

We also examine some qualitative results on examples
from MSPD-Hard to examine the upper bound perfor-
mance of the decoders. From Figure 7 we see that in the
first measure which contains several huge chords nearby,
the baseline is neither able to separate them by outputting
a ‘+’ symbol nor output the correct number of notes. The
FlagDecoder handles the first two chords well, but is likely
thrown off by the sharps in the third chord. The RNNDe-
coder performs the best in the first measure, just missing a
single note and accidental in the last chord, and deals with
the polyphony in following measure perfectly. Figure 8 is
challenging due to its high level of polyphony, which the
baseline decoder clearly struggles with. In this example,
both the FlagDecoder and RNNDecoder perform similarly,
however the FlagDecoder actually handles the first chord

Figure 8. Comparison of the decoders on an example with
four levels of polyphony. Red blocks indicate the errors.

with 4 voices correctly rhythmically whereas the RNNDe-
coder makes a minor mistake.

6. CONCLUSION

In this work, we first introduced a workflow for generating
datasets from MuseScore files which will be beneficial for
the research community given the massive amount of sheet
music publicly available on the MuseScore forum. We then
used this to create a large-scale dataset suitable for end-to-
end polyphonic optical music recognition (OMR), and pro-
posed two novel decoding strategies for the task, namely
FlagDecoder and RNNDecoder. Further we performed an
empirical comparison of the performance of these methods
on polyphonic OMR, and observed a new state-of-the-art
performance with the RNNDecoder.

One of the main limitations of this work is generaliz-
ability, a problem that many supervised machine learning
systems struggle with. While our system can perform ex-
tremely well on images generated from the MuseScore en-
graver, it is not able to do well out of the box on music gen-
erated by other engravers. We are also aware that there are
many viable implementations of the new decoding meth-
ods we proposed that could potentially give better perfor-
mance, and hope to evaluate them in the future when we
have the required computing resources. In addition, adapt-
ing these methods to multi-staff music will allow more ver-
satility in usage. Lastly, we hope to address the challenge
of generalizability in the future as it is currently one of the
major barriers preventing neural network-based OMR sys-
tems from being deployed widely.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

172



7. REFERENCES

[1] J. Calvo-Zaragoza, J. Hajič jr., and A. Pacha, “Under-
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[8] A. Pacha, J. Hajič jr., and J. Calvo-Zaragoza, “A base-
line for general music object detection with deep learn-
ing,” Applied Sciences, vol. 8, no. 9, p. 1488, 2018.

[9] Z. Huang, X. Jia, and Y. Guo, “State-of-the-art model
for music object recognition with deep learning,” Ap-
plied Sciences, vol. 9, no. 13, p. 2645, 2019.

[10] A. Pacha, J. Calvo-Zaragoza, and J. Hajič jr., “Learn-
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ABSTRACT 

This paper presents a Hardanger fiddle dataset “HF1” with 
polyphonic performances spanning five different emo-
tional expressions: normal, angry, sad, happy, and tender. 
The performances thus cover the four quadrants of the ac-
tivity/valence-space. The onsets and offsets, together with 
an associated pitch, were human-annotated for each note 
in each performance by the fiddle players themselves. 
First, they annotated the normal version. These annota-
tions were then transferred to the expressive performances 
using music alignment and finally human-verified. Two 
separate music alignment methods based on image regis-
tration were developed for this purpose; a B-spline imple-
mentation that produces a continuous temporal transfor-
mation curve and a Demons algorithm that produces dis-
placement matrices for time and pitch that also account for 
local timing variations across the pitch range. Both meth-
ods start from an “Onsetgram” of onset salience across 
pitch and time and perform the alignment task accurately. 
Various settings of the Demons algorithm were further 
evaluated in an ablation study. The final dataset is around 
43 minutes long and consists of 19 734 notes of Hardanger 
fiddle music, recorded in stereo. The dataset and source 
code are available online. The dataset will be used in MIR 
research for tasks involving polyphonic transcription, 
score alignment, beat tracking, downbeat tracking, tempo 
estimation, and classification of emotional expressions. 

1. INTRODUCTION 

1.1 Hardanger Fiddle Music 

The Hardanger fiddle is a traditional stringed solo instru-
ment played in the southern parts of Norway. It features 
resonance strings producing a characteristic resonating 
sound. The flat fingerboard and bridge enable the per-
former to play several strings simultaneously and the po-
lyphony level of the music is generally 2. Fast trills are 
frequently used as ornaments. Lack of annotated audio ex-
cerpts makes data-driven research on Hardanger fiddle 
music hard and this study is an attempt to remedy the situ-
ation. Our vision is to create a dataset with annotated 

pitched onsets and offsets so that accurate polyphonic tran-
scription systems can be trained in future studies, enabling 
researchers to transcribe vast existing libraries of historical 
audio recordings.   

1.2 Transcription Datasets in MIR  

Researchers have used many different techniques to create 
annotated datasets for polyphonic transcription in the past. 
One method is to record individual voices in isolation to 
facilitate easier annotation. Examples include the four-
voiced Bach10 dataset [1], the TRIOS dataset [2] consist-
ing of musical trios, a five-voiced woodwind recording [3], 
the audio-visual URMP dataset [4], and the MedleyDB 
multitracks dataset [5]. For polyphonic instruments, the 
annotation of many simultaneous notes can be cumber-
some and time-consuming. Another method for those 
kinds of instruments has therefore been to generate the 
sounds and annotations directly from MIDI. The technique 
has been used for piano datasets [6-8], but has also been 
applied across the full range of the general MIDI instru-
ment specification [9]. To increase the variability and the 
size of the dataset, researchers can use data augmentation, 
varying tempo, pitch, dynamics, and timbre during synthe-
tization [9]. 

Although the MIDI generation strategy is appealing be-
cause of its efficiency, synthesized MIDI often lacks the 
full range of variation and complexities found in real per-
formances. Researchers can in this case instead create da-
tasets by synchronizing sheet music with an associated re-
cording. This approach was adopted by Thickstun, et al. 
[10] who used dynamic time warping (DTW) applied to 
log-frequency spectrograms focused on lower frequencies.  

1.3 Mood Datasets in MIR  

Datasets spanning different moods/emotions are devel-
oped to enable researchers to train and test music emotion 
recognition (MER) systems. Many MER datasets use the 
valence-arousal model [11], with the valence and arousal 
variables annotated by human listeners. Examples include 
the MoodSwings [12], Emotion in Music [13], AMG1608 
[14], DEAM [15], and PMEmo [16] datasets.  

For a few datasets, performers have been asked to play 
the same piece of music with different emotional expres-
sions. Li, et al. [17] asked violinists to perform classical 
compositions according to different expressive musical 
terms (e.g., tranquillo) and used the resulting dataset for 
modeling. Gabrielsson and Juslin [18] asked performers to 
play with the emotional expressions “happy”, “sad”, 
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“angry”, “fearful”, “tender”, “solemn”, and “no expres-
sion”, analyzing the recordings both quantitatively and 
through listening tests. Performers control the musical ex-
pression by varying, e.g., phrasing, tempo, timing, articu-
lation, and dynamics [19-24] and the perceptual aspect of 
such features has also been modeled extensively [25-27]. 
Note that these types of features are among those varied 
for data augmentation applied to MIDI (or audio files), but 
when they are introduced by real musicians, they will be 
richer in scope and better capture the variability that can 
be expected in other real performances. It is therefore ap-
pealing to create a dataset where each song is performed 
with several musical expressions, using music alignment 
to transfer annotations between the different perfor-
mances. Not only will this bootstrap the annotation effort 
while retaining variation in the annotated notes, it will also 
introduce a new dataset for emotional expression, where 
researchers can, in extension to analyzing the audio files, 
utilize the annotations as a symbolic representation for 
MER. This strategy is therefore explored in this study. 

1.4 Score Alignment 

The task of aligning a musical score with an associated au-
dio file has been fairly widely studied, with researchers of-
ten opting for various flavors of DTW. Implementations 
differ regarding how they compute a similarity metric/fea-
ture space for alignment. Researchers can either synthesize 
or add harmonics to the score [10, 28-30], convert both 
score and audio to a chroma-space [31], or alternatively 
learn the feature space for alignment [32-35], casting the 
task as an optimization problem. 

The aforementioned strategies are aligning across full 
note lengths, but it is mainly the onsets that provide infor-
mation about timing [36]. It has therefore been suggested 
that they can be improved by detecting onsets in the audio 
[30]. One strategy in this direction is to apply DTW to a 
half-wave rectified spectral flux (SF) [36]. Ewert, et al. 
[37] instead start from a chroma before computing the flux. 
Kwon, et al. [38] used a polyphonic pitch tracker to com-
pute the feature space and found that the best results were 
achieved when including pitched onsets across the full 88-
note range. This strategy concerning the feature space is 
the closest to our implementation, but we decided to forego 
DTW. Our motivation for, and implementation of, image 
registration techniques for music alignment are described 
in Section 3. 

2. OVERVIEW AND MOTIVATION 

Our primary objective with this study was to create a da-
taset of Hardanger fiddle music with annotated onsets and 
offsets. In particular, our focus was on the annotated on-
sets. Annotating Hardanger fiddle music is non-trivial. It 
is polyphonic and contains ornaments with very fast tone 
sequences. In our preliminary studies, we learned that it is 
rather time-consuming for Hardanger fiddle musicians to 
produce annotations for tunes that they are unfamiliar with, 
and accuracy may sometimes be lacking. Furthermore, our 
overarching project also strives to collect additional data 
on expressive Hardanger fiddle performances. These cir-
cumstances led to the following design: 

1. Hardanger fiddle performers are tasked to record five 
versions of songs they are familiar with, using the ex-
pressions: normal, sad, angry, happy, and tender. 

2. They annotate notes in the normal recording from 
scratch, using computer assistance tools as aid. 

3. The normal recording is aligned with the expressive 
recordings using music alignment, so that the normal 
annotations can be automatically transferred to them. 

4. Performers go through the aligned annotations and 
make adjustments to ensure that they are correct. 

The strategy gives us a few advantages: 

• Does not introduce bias concerning timing. Since the 
normal recording is annotated from scratch, and the 
score alignment only used for aligning the two audio 
recordings, we do not impose priors regarding the ex-
act location of, e.g., onsets in the music, which would 
have been the case if an algorithm produces the initial 
annotations.  

• Ensures that annotators annotate songs they are fa-
miliar with. It is easier to be accurate and efficient 
when annotating a song that you are familiar with, and 
note sheets are not exhaustive since they do not cover 
the rich ornamentation in Hardanger fiddle music. 

• Provides five times the training and testing data for 
polyphonic transcription. With real performances of 
bowed instruments, the sound characteristics will vary 
each time a phrase is played. Thus, repeated se-
quences, particularly of ornaments, still provide train-
ing and testing data with high “entropy”.  

• Creates a dataset that can be used for additional tasks 
in future studies. Our experimental design provides us 
with both audio and symbolic data of performances 
with varying emotional expressions. This data can be 
used to study how mood is expressed on the Hardan-
ger fiddle and to develop music alignment systems.  

• Enables us to scale future annotation tasks within the 
same framework. The method will connect each note 
in the expressive performances with the notes in the 
normal performance. Thus, if we assign higher-level 
features to these notes, such as their metrical position, 
we can automatically transfer that information to the 
expressive performances. 

3. MUSIC ALIGNMENT ALGORITHMS 

Tempo variations in music are often observed and modeled 
as gradual changes developing over several successive 
notes. Friberg [39] fitted ”phrase arches” to piano perfor-
mances, with accelerando in the start and ritardando in the 
end of the phrases. Other researchers fit their observations 
using spline-shaped profiles [40] or fit the final ritardando 
using a quadratic polynomial [41]. 

The DTW algorithm is “local” in scope and will not 
model differences in tempo and gradual tempo variations 
observed across longer sections. This means that it can, 
e.g., fail to accurately stretch matched notes of different 
lengths or, when the feature space is focused on onsets, fail 
to produce convincing tempo curves for sections where the 
feature space is empty. The resulting warping path can 
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therefore become rather irregular and is also discrete, not 
fitting to a finer scale than the time frame hop length. Var-
ious remedies have been proposed to alleviate these issues, 
for example introducing special silence frames to “stretch 
out” pauses between notes [28] or trying to smooth the 
warping path in post-processing [29]. This study explores 
if techniques developed for image registration can be use-
ful as an alternative approach. Through a free form defor-
mation with a B-spline grid [42] (Section 3.2), we optimize 
across multiple frames, utilizing a smoothness penalty to 
constrain neighboring grid points from moving inde-
pendently while achieving sub-frame resolution. By adopt-
ing the Demons algorithm to music alignment (Section 
3.3), we instead also test a 2-dimensional alignment ap-
proach, where individual pitch bins are allowed to diverge 
somewhat from the warping path in order to account for 
natural variations in timing between concurrent notes. 

3.1 Onsetgram and Preprocessing 

The temporal alignment is performed on a 2-dimensional 
“Onsetgram,” consisting of onset activations distributed 
across pitch and time. The onset activations are first com-
puted using the polyphonic transcription system developed 
by Elowsson [9], trained on a wide variety of music. In that 
system, an initial network detects framewise f0 activations, 
which are used to identify the contours of the music. An 
additional network then operates across each detected con-
tour, computing an onset activation at each time frame of 
the contour. The smoothed thresholded onset activation 
function was used (cf. [Eqs. A8-A11, 9]). The onset acti-
vations were inserted at the corresponding pitch bin and 
time frame of the Onsetgram, which had a pitch resolution 
of 1 cent/bin. A Hann window of width 151 bins (cents) 
was then used to smooth the Onsetgram across pitch. Fig-
ure 1 shows the smoothed Onsetgram in green overlaying 
the f0 activations in blue. 

The pitch range of the Onsetgram was set to 2 semitones 
below the lowest annotated pitch to 2 semitones above the 
highest annotated pitch. The pitch resolution was also 
scaled down to 4 bins/semitone. To speed up processing, 
the hop size was set to 23.2 ms by keeping only every 
fourth time frame of the original Onsetgram.   

Figure 1. The Onsetgram used for music alignment in 
green overlaying f0 activations in blue across which the on-
set activations were computed. The excerpt is from the 
song Haslebuskane, also featured in Figures 2 and 3. 

Before applying the image registration algorithms, a 
start- and endpoint was computed for both audio files by 
finding the first and last time frame with a signal level 
within 10 dB of the average signal level of the audio file, 
as described by Elowsson and Friberg [43]. The normal 
Onsetgram was then re-scaled to have the same length as 
the Onsetgram of the emotional expression using linear in-
terpolation. The annotations were also re-scaled using the 
same transformation. 

3.2 B-spline Algorithm 

The B-spline music alignment implementation uses low-
level MATLAB functions for B-spline image registration 
from Kroon [44, 45]. The particular non-rigid B-spline 
alignment method was first introduced by Rueckert, et al. 
[42]. It is a free-form deformation with a B-spline grid, 
typically performed at multiple image scales (pyramid 
levels). For a precise mathematical formalization of the 
process, cf. [41, p. 64-65]. A multi-scale approach can be 
beneficial for two reasons – iterations performed at a 
coarser scale will converge fast, and the risk of reaching 
local minima is reduced. Since music may contain closely 
spaced repetitions, it seems reasonable to first align the 
coarser overall structure, ensuring that repetitions are not 
misaligned, and to then adjust notes at finer scales.  

The temporal grid spacing for the first iteration was 256 
frames (5.9 seconds), and at each subsequent iteration, this 
spacing was halved, ending with a grid spacing of 4 frames 
(93 ms) at the finest level. To avoid a too local scope with 
abrupt changes in the tempo curve at the finest level, the 
smoothness penalty of the B-spline implementation was 
used [44, 45]. This smoothness penalty constrains neigh-
boring grid points from moving independently, simulating 
the bending energy of a thin plate of metal [42, 46]. We set 
the penalty to 0.3 at the finest pyramid level, halving it at 
each level such that it was 0.005 at the coarsest scale. 

The pitch spacing was set such that the whole pitch di-
mension of the image was contained between two grid 
points at all pyramid levels, and the pitch dimension of 
these grid points reset after optimizing at each level. 

After fitting the normal Onsetgram to the Onsetgram of 
the emotional expression, the resulting forward transfor-
mation field was applied to the annotations, changing their  

 

Figure 2. The forward transformation field at each pyra-
mid level for aligning the sad and normal recordings of the 
tune Haslebuskane.  
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timing using linear interpolation. The aligned annotations 
were finally “tuned” as described in Section 3.4. Figure 2 
shows the transformation field for all seven pyramid levels 
when aligning the sad and normal recording of the tune 
Haslebuskane. 

3.3 Accelerated “Demons” Algorithm 

The diffusion model known as the Demons algorithm for 
non-rigid image registration was introduced by Thirion 
[47]. It uses the gradient ∇⃗⃗ 𝑓 from the fixed image f to com-
pute a “demons” force for deforming a moving image m. 
Wang, et al. [48] modified the algorithm by also including 
the gradient of the moving image ∇⃗⃗ 𝑚, using bi-directional 
forces,  

�⃗� = (𝑚 − 𝑓) × ( ∇⃗⃗ 𝑓

|∇⃗⃗ 𝑓|
2
+𝛼2(𝑓−𝑚)2

+ ∇⃗⃗ 𝑚

|∇⃗⃗ 𝑚|
2
+𝛼2(𝑓−𝑚)2

).     (1) 

The normalization factor 𝛼 introduced by Cachier, et al. 
[49] allows the force strength to be adjusted adaptively in 
each iteration. The displacement field �⃗�  is computed for 
both time (�⃗� 𝑥) and pitch (�⃗� 𝑦) deformations in each itera-

tion and added to the corresponding overall displacement 
fields Tx (time) and Ty (pitch). We used this “accelerated 
Demons” algorithm, operating over 7 pyramid-levels with 
70 iterations at each level, setting 𝛼 to 0.4 as proposed by 
Wang, et al. [48], using the basic demon example code 
from Kroon and Slump [50] as a starting point but adapting 
the registration to the music alignment task. The Onset-
gram of the recording with an emotional expression was 
used as the moving image and the Onsetgram of the normal 
recording used as the fixed image. The computed displace-
ment field could then be used as a backward transfor-
mation to transfer the annotations to the recordings with 
emotional expressions. 

In its original formulation, the computed displacements 
�⃗� 𝑥  and �⃗� 𝑦  for each iteration is smoothed before being 

added to the overall displacement fields Tx and Ty. We in-
stead opted to smooth Tx and Ty directly in each iteration. 
To understand why this improves performance, recall that 
the Onsetgram is sparse and that we must be able to accu-
rately move annotations between locations in the moving 
and fixed image that contain no salience information (e.g., 
offsets). By applying the smoothing operator directly to Tx 
and Ty, we iteratively “saturate” the displacement field 
with deformations also at locations where no gradients can 
be found in the Onsetgrams. This process also helps us 
smooth out irregular displacements resulting from errone-
ous transcriptions. The smoothing was done using Hann 
windows of length 33 across time and length 3 across pitch 
for Tx and length 17 and 3 for Ty. The reader is further re-
ferred to Cachier, et al. [49] for a discussion concerning 
the benefits of smoothing operations applied at various 
stages of the process. 

Restrictions were set on Tx and Ty to ensure that the de-
formations were not bigger than desirable from a music-
theoretical standpoint. For Tx, during each iteration before 
smoothing, we thresholded the displacement at each bin to 
not diverge more than 100 ms from the average displace-
ment in each time frame. This means that annotations at 
different pitches can be moved freely but not diverge rela-
tive to each other too much. Thus, an annotation of a bass 

note and a note in the treble where the bass note is played 
slightly before the treble note in the fixed image, but where 
circumstances are reversed in the moving image, can be 
transferred receiving correct timing, but never to such an 
extent that the interpretation of the score would be vastly 
different (>100 ms). For Ty, a fixed threshold of 70 cents 
was instead used, such that the pitch could not be displaced 
more than this. 

The displacements fields (backward transformations) 
were applied to the annotations, changing their timing us-
ing linear interpolation. Since the incorporation of a 
threshold on Tx could hinder the algorithm from displacing 
time globally, the mean displacement for �⃗� 𝑥  across all 
pitch bins is also added to Tx before thresholding and 
smoothing. Furthermore, since the Onsetgram only acti-
vates at onsets, Ty may not be particularly suitable for tun-
ing the annotations. As a default, the post-processing step 
for tuning (Section 3.4) was instead applied. However, ap-
plying Ty directly for tuning was tested in the ablation 

 

Figure 3. The Onsetgrams of both the normal and sad re-
cordings of the tune Haslebuskane (pane 1), the backward 
transformation (displacement) fields Tx and Ty (panes 2 
and 3), and the aligned Onsetgrams (pane 4). 
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study in Section 5.2. Figure 3 shows the Onsetgrams of 
both the normal and sad recordings of the tune Hasle-
buskane (pane 1), the displacement fields Tx and Ty (panes 
2 and 3), and the aligned Onsetgrams (pane 4). 

3.4 Tuning 

A method for adjusting the pitch of each note was added 
as a post-processing step, motivated by the fact that the 
fiddle does not have fixed frets and the pitch of individual 
notes can vary relatively much. For each annotation to be 
tuned, a rectangular area was first extracted from the f0 ac-
tivations (blue in Figure 1), bounded by the onset and off-
set and extending 100 cents in both pitch directions from 
the annotated pitch. The average across time was com-
puted and the resulting pitch vector smoothed with a Hann 
filter 41 cents wide. Only smoothed parts computed with-
out zero-padded edges were kept, making the length 80 
cents in both pitch directions. Peaks were detected and 
weighted based on how close they were to the annotated 
pitch as well as their pitch salience magnitude, opting to 
select the peak with the highest computed weight, and 
moving the annotation to its pitch. 

Performances may drift “locally” in pitch through into-
nation on the fingerboard, such that the pitch of notes in 
short phrases with no open strings all are a bit higher or 
lower than in another recording of the same song. The tun-
ing algorithm adapts to this by not allowing one note to be 
changed more than 45 cents in relation to the weighted av-
erage tuning change of other notes close in time and pitch. 
Due to space constraints, the reader is referred to the 
MATLAB implementation and its corresponding help text 
for precise details on all settings for the tuning algorithm. 

4. DATASET 

4.1 Recording and Annotation 

The recordings were done by two Hardanger fiddle musi-
cians, Henrik Nordtun Gjertsen (HNG) and Astrid Garmo 
(AG), who were students at the Norwegian Academy of 
Music. They recorded well-known Hardanger fiddle tunes 
in a relatively dry room in stereo using a Zoom H6 recorder. 

The annotations were done by the same musicians using 
the software Annotemus1 developed in MATLAB. An-
notemus has a graphical user interface and provides func-
tionality for creating annotations on top of a graphical rep-
resentation of the audio file. We used the f0 activations 
shown in blue in Figure 1 for this purpose. The aligned 
annotations were all initially created using the B-spline 
method which was being developed in conjunction with 
the annotation process.  

The performers could use various key commands as an 
aid during annotation. This includes audio playback of the 
current window, playback between the start and end of one 
or several selected notes, playback that starts prior to a se-
lected annotated note and ends at the annotated onset posi-
tion, playback with a click at each annotated onset position, 
and playback with a synthesized version of the annotated 
score played in one of the stereo channels. The performers 
were instructed to first try the playback that ends at the 

 
1 https://www.uio.no/ritmo/english/projects/mirage/software/ 
2 https://www.uio.no/ritmo/english/projects/mirage/databases/ 

annotated onset position for locating the exact onset times 
for the normal recording and the click and synthesized 
functionality for verifying annotations, but were free to use 
whichever method they felt most comfortable with. 

All playback functionality is offered with the option of 
slowing it down to an arbitrary speed selected by the an-
notator. Since Hardanger fiddle music contains frequent 
sequences of very fast note successions, the slowdown 
functionality was used extensively during the annotation 
process. The onset timing evaluation condition for poly-
phonic transcription is usually set to 50 ms. This means 
that we can only allow a very narrow margin of error for 
the annotations to ensure that they can be reliably used for 
evaluation. We encouraged performers to be very careful 
regarding onsets, and try to keep errors within 20 ms. Lis-
teners notice time-displacements of just 10 ms on average 
[51], but since fiddle music has rather undefined transients 
at onsets, a narrower margin than 20 ms is very hard to 
achieve. For both annotators, their first annotations were 
rejected, and they were encouraged to improve the quality 
regarding aspects that did not meet our high standards.  

4.2 Dataset Overview 

The final dataset consists of 19 734 annotated notes across 
40 stereo recordings of 8 tunes. The audio recordings and 
annotations are available online,2 as well as MATLAB 
source code.3 The dataset is summarized in Table 1.  

Title Notes Length ID 

Haslebuskane 2 828 4:35 HNG 

Havbrusen 4 114 8:50 HNG 

Ivar Jorde 1 665 3:52 AG 

Låtten som bed om noko 1 819 4:51 AG 

Signe Uladalen 2 177 4:30 AG 

Silkjegulen 2 906 5:38 HNG 

Valdresspringar 1 692 3:49 AG 

Vossarull 2 533 6:34 HNG 

Total 19 734 42:38  

Table 1. The eight tunes of the dataset, each performed 
with five different emotional expressions. The number of 
notes and the length of the recordings are computed as the 
total across the five variations. The ID identifies the musi-
cian. The last row provides totals across the dataset. 

5. MUSIC ALIGNMENT EVALUATION 

5.1 Main Results 

The performance of the two methods was evaluated by 
matching onsets aligned from the normal version with the 
human-verified onset of the expressive version and meas-
uring their distance. The two aligned recordings frequently 
vary, e.g., in ornaments, which means that many notes will 
not have a counterpart in the other recording. To account 
for this, we used weighted bipartite matching to first 

3 https://github.com/aelowsson/music-alignment 
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connect onsets of the two recordings, where the weight for 
how well a pair matches falls using a half Hann window 
up to a distance of 5 seconds and 70 cents respectively. 
Regular unweighted bipartite matching is not ideal in this 
circumstance since it can create incorrectly matched pairs 
containing ornaments with no counterparts, whenever two 
such ornaments, one in each recording, are within 5 sec-
onds of a real correct pair of onsets with a similar pitch. 
The F-measure ℱ  was measured for the matched onset 
pairs only, leaving out the around 3 % of onsets with no 
counterpart that were unmatched.  

Table 2 shows the results, with the F-measure for onsets 
within 80 ms (ℱ80) highlighted in bold. We note that the 
Demons algorithm was more accurate even though the B-
spline method was used as a starting point for the aligned 
expressive performances. Since this algorithm is also 
faster (the full dataset aligned in 2.5 minutes on an i7-
6700K processor), it was our focus in the ablation study. 

 𝓕𝟓𝟎 𝓕𝟖𝟎 𝓕𝟏𝟓𝟎 𝓕𝟑𝟎𝟎 Avg 

B-spline 91.1 95.9 98.2 99.2 28.9 ms 

Demons 95.4 98.3 99.1 99.5 23.0 ms 

Table 2. F-measures at different distance metrics as well 
as the average distance (Avg) between matched onsets for 
the B-spline and Demons music alignment methods. 

5.2 Ablation Study 

Various settings of the Demons algorithm were tested in 
an ablation study: 

• Tx Thresh: Instead of a 100 ms threshold we tested a 
strict zero threshold (0) or used no threshold (None). 

• Ty: Foregoing the use of Ty completely (No Ty), also 
skipping the tuning stage (No TT), applying Ty to the 
annotations instead of using the tuning algorithm (Ap-
ply), or using the default setting but without threshold-
ing (No Th). 

• Tx Mean: Testing to not add the mean displacement 
for �⃗�  to Tx before thresholding and smoothing (None). 

• �⃗⃗� 𝒙 : Smoothing �⃗� 𝑥  instead of smoothing Tx, tested 
across time (�⃗� 𝑥 Ti), time and pitch (�⃗� 𝑥 TP), or across 
pitch only (�⃗� 𝑥 Pi). 

• Tx Smooth: Smoothing Tx across time with shorter or 
longer Hann windows (15 or 45). 

Figure 4 shows the results of the ablation study as the dif-
ference in performance at ℱ80. The 95 % confidence inter-
vals (CIs) illustrated with black bars were derived from the 
difference in ℱ80 for individual tunes between the default 
setting and the tested setting. This difference was sampled 
with replacement from the tunes 8 × 4 = 32 times to com-
pute a single overall outcome, and the procedure repeated 
106 times to compute a distribution of possible outcomes, 
from which the 5th and 95th percentile could be extracted.  

6. CONCLUSIONS 

We have created an annotated Hardanger fiddle dataset 
with performances spanning five emotional expressions. 

 
Figure 4. The results of the ablation study for the Demons 
method, showing the change in F-measure relative to the 
default setting. Black bars indicate 95 % CIs. Note that the 
x-axis has been spliced to accommodate the lower result 
for the �⃗� 𝑥 TP setting.  

The process of creating accurate note annotations for real 
polyphonic instrument recordings can be cumbersome, 
and we hope that the developed techniques and source 
code can be useful to other researchers in the field. 

Two music alignment algorithms based on image regis-
tration were created and analyzed. The Demons algorithm 
is faster and easier to adapt to music and it also produces 
the best alignments. It can be noted that the alignment is 
evaluated using two separate annotations, so if a matched 
pair of notes have annotations that are 40 ms off each, they 
may just fail on the ℱ80 evaluation metric even if the align-
ment is performed perfectly. Furthermore, ornaments with 
no counterpart (see Section 5.1) may still be erroneously 
matched if they are within 5 seconds of each other. Thus, 
even with a few missed notes on the ℱ80 metric, we can 
still suspect that the alignment is very accurate overall. In-
formal closer analysis of the alignments also indicates that 
this is the case. 

The ablation study indicates that the proposed default 
settings for the Demons algorithm are well-adjusted. We 
note that smoothing across Tx instead of �⃗� 𝑥 is an important 
ingredient for successful Demons music alignment. The 
100 ms threshold for individual pitch bin displacements in 
Tx relative to the mean displacement is an important addi-
tion (Tx Thresh), and should be combined with adding the 
mean displacement for �⃗�  to Tx before thresholding and 
smoothing (Tx Mean). 

We intend to expand the annotations to also contain 
higher-level metrical information. Furthermore, we intend 
to develop models for polyphonic transcription and MER 
based on the dataset, something that we hope other re-
search groups will do as well. 
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ABSTRACT

We introduce the MetaMIDI Dataset (MMD), a large scale
collection of 436,631 MIDI files and metadata. MMD
contains artist and title metadata for 221,504 MIDI files,
and genre metadata for 143,868 MIDI files, collected
during the web-scraping process. MIDI files in MMD
were matched against a collection of 32,000,000 30-
second audio clips retrieved from Spotify, resulting in
over 10,796,557 audio-MIDI matches. In addition, we
linked 600,142 Spotify tracks with 1,094,901 MusicBrainz
recordings to produce a set of 168,032 MIDI files that are
matched to the MusicBrainz database. We also provide a
set of 53,496 MIDI files using audio-MIDI matches where
the derived metadata on Spotify is a fuzzy match to the
web-scraped metadata. These links augment many files in
the dataset with the extensive metadata available via the
Spotify API and the MusicBrainz database. We anticipate
that this collection of data will be of great use to MIR re-
searchers addressing a variety of research topics.

1. INTRODUCTION

Large-scale metadata-rich MIDI datasets containing audio-
MIDI matches [1–3] are indispensable in a wide variety
of research contexts. For example, the Lakh Midi Dataset
(LMD) [3] has been applied in many different contexts,
including training generative music systems [4, 5], tempo-
estimation [6], genre classification [7] and even as a pri-
mary data-source for new datasets [8, 9]. Motivated by
the widespread demand for datasets of this nature, we cre-
ated the MetaMIDI Dataset (MMD), which contains 2.4
times the number of MIDI files in the LMD, and audio-
MIDI matches associating MIDI files with Spotify and
MusicBrainz. To put the following numbers into context,
we note that there is a many-to-one relationship between
Spotify track ids and the actual audio recording. In this
paper, we describe the process of assembling the dataset,
which consists of the following contributions:

• Collection of 436,631 MIDI files.

• Scraped artist + title metadata for 221,504 MIDIs
(10 times more than the LMD).

© J. Ens, P. Pasquier. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: J. Ens,
P. Pasquier, “Building the MetaMIDI Dataset: Linking Symbolic and Au-
dio Musical Data”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

• Scraped genre metadata for 143,868 MIDIs.

• An improved audio-MIDI matching procedure,
which produced 10,796,557 audio-MIDI matches
linking 237,236 MIDIs to one or more tracks on
Spotify.

• 829,728 high reliability audio-MIDI + scraped meta-
data (artist and title) matches linking 53,496 MIDIs
to one or more tracks on Spotify.

• A method for linking Spotify tracks and Mu-
sicBrainz recordings, producing 8,263,482 unique
links that associate 1,094,901 MusicBrainz record-
ings with 600,142 Spotify tracks.

• 168,032 MIDIs matched to MusicBrainz IDs via the
Spotify/MusicBrainz linking procedure.

2. DATA COLLECTION

We scraped publicly available websites and were able to
amass a collection of 436,631 unique MIDI files. Candi-
date websites were selected using a search engine to query
various phrases including keywords such as MIDI, music,
and a variety of musical genres. A list of the sites scraped
and the number of MIDI files found on each site is pro-
vided in the dataset. Where possible, we also collected
additional metadata, such as the artist, title and genre of
associated with a particular MIDI file.

3. AUDIO MIDI MATCHING

To augment MMD with additional metadata, we match the
MIDI files against a large metadata-rich collection of au-
dio clips. Although the LMD is comprised of audio-MIDI
matches against the Million Song Dataset [10], we decided
to use 30-second preview clips made available through the
Spotify API 1 . The primary motivation for this decision
was the fact that the Spotify API provides over an order of
magnitude more data. Using the Spotify API, we were able
to collect 32,000,000 30-second MP3 files (over 13TB of
raw data). To compute the audio-MIDI matches, we model
our approach after the procedure employed by Raffel [3],
who matched the 176,581 MIDI files in the LMD with
1,000,000 audio files in the Million Song Dataset [10].
However, we make some modifications to the matching al-
gorithm to accommodate the large amount of data which
was collected.

1 https://developer.spotify.com/documentation/web-api/
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Raffel’s audio-MIDI matching procedure is comprised
of two stages [3]. In the first stage, which we refer to as
the blocking stage, audio-MIDI pairs which are unlikely
to be a match are removed from consideration. In the
second stage, which we refer to as the matching stage,
a confidence score (on the range [0,1]) is computed for
each remaining audio-MIDI pair. To be considered a valid
match, the audio-MIDI pair must have a confidence score
greater than 0.5. To compute the confidence score for an
audio-MIDI pair, Raffel computes the Constant-Q Trans-
form (CQT) [11] for the audio file and the audio-rendered
MIDI file, using 48 logarithmically-spaced bins from C2
to B5 (12 bins per octave). Then, the dynamic time warp-
ing (DTW) algorithm is used to find the optimal alignment,
from which the confidence score is directly computed [3].
Although this procedure produces good results, it is ex-
tremely slow, as DTW has quadratic run-time, which makes
this approach intractable.

To speed up the matching process, Raffel proposes
learning distance preserving low-dimension embedding
spaces, which should allow for highly dissimilar matches
to be efficiently removed from the search space. Raffel ex-
plores two approaches, an attention-based network (H1)
that embeds arbitrary length CQT matrices into a 128-bit
hash code [12], and a convolution-based network (Hk) that
maps k ⇥ 48 CQT matrices into 32-bit hash codes [13],
which can be used to transform a n⇥ 48 CQT matrix into
a sequence of bn

k c 32-bit hash codes. Using trained embed-
ding networks H1 and H8, Raffel employs the following
procedure to match a single MIDI CQT m against a set of
audio CQTs A.

1. Blocking Stage

(a) Compute DH(H1(a),H1(m)) for each a 2 A,
where DH is the bitwise hamming distance.

(b) Construct a set A0, containing the t1 = 100,000 a 2

A that are closest to m, using the distances calculated
in 1a.

(c) Compute DTW(H8(a),H8(m)) for each a 2 A0.

(d) Construct a set A00 containing the t2 = 250 a 2 A0

that are closest to m, using the distances calculated
in 1c.

2. Matching Stage

(a) Compute DTW(a,m) for each a 2 A00 and record any
matches with more than .5 confidence.

3.1 Modifications to the Matching Procedure

According to Raffel’s measurements, it takes an average
of 108 seconds on a single CPU to match one MIDI file
against 1,000,000 Audio files. As a result, without making
modifications to Raffel’s procedure, it would take roughly
558 days on a 32-core CPU to match our collections of
audio and MIDI files. In order to optimize the audio-
MIDI matching procedure to our specific context, we make
changes to the blocking stage. Notably, since we do not
modify the second stage, and use Raffel’s code 2 to com-

2 https://github.com/craffel/midi-dataset

pute the confidence scores, our matches can be considered
to be the same quality as those found in the LMD.

The simplest modification involved implementing a c++
version of the DTW code for 32-bit hash sequences, used
in the blocking stage, which runs 2 times faster than Raf-
fel’s jit-compiled Cython implementation according to our
measurements. We also reconsider the use of the attention
based embedding network H1 in Steps 1a and 1b. Using
Raffel’s approach, Step 1a can be computed very quickly,
accounting for less than 1% of the total algorithm run-time.
However, due to the low reliability of distance measure-
ments in this embedding space, relatively few audio files
can be removed from consideration. As a result, Step 1c
takes much longer to run, accounting for roughly half of
the total run-time. One reason for the limited accuracy of
this approach, is that H1 must embed MIDI and audio
CQTs into the same 128-bit hash code, despite MIDI files
being much longer than the audio files.

To address this issue, we use DW, defined in Eq. 1, to
compute the distances in Step 1a. Given an n ⇥ 48 MIDI
CQT m and an audio CQT a, we build a set of 30-second
length sub-sequences (Xm) from m, as defined in Eq. 1a,
where s is the stride. Using H128 we map each 30-second
length CQT matrix (i.e. 646⇥48) x to a hash code by split-
ting x into contiguous windowed sub-sequences, comput-
ing H128(·) for each sub-sequence, and concatenating the
resulting hash codes. Formally, we refer to this process as
H

?
k, which we define in Eq. 1b, where � denotes concate-

nation. Then, as shown in Eq. 1c, we compute the bitwise
hamming distance (DH) between H

?
128(x) and H

?
128(a) for

each x 2 X
m, considering the minimum distance to be

representative of the distance between m and a.

X
m = {m[si :si+646] : 0  i <

�
n�646+1

s

⌫
} (1a)

H
?
k(x) = �{Hk(x[ki :k(i+1)]) : 0 i<

�
||x||

k

⌫
} (1b)

DW(a,m) = min({DH(H
?
128(a),H

?
128(x)) :x2X

m
})
(1c)

3.2 Training the Embedding Networks

We derive our neural network architecture from the one
used by Raffel [3]. The first section of the network is
comprised of k groups, with each group is containing 2
3⇥3 convolutional layers, followed by a 2⇥1 max pooling
layer. The second section contains two dense layers with
2048 units each, followed by a 32-dimensional output. The
ReLU activation is used in all layers, except for the last
layer, which uses the tanh activation function to effec-
tively binarize the output. For the H128 network, which
learns to downsample a sequence of 128⇥ 48 CQT matrix
into a 32-bit hash code, there are k = 5 groups, using the
filter sizes 64, 64, 64, 32, and 16 for each group respec-
tively. For the H8 network, which learns to downsample a
8⇥48 CQT matrix into a 32-bit hash code, there are k = 3
groups, using 64, 32, and 16 filters per group respectively.
We train H128 and H8 using the same triplet loss as Raffel.
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Figure 1. Percentage of MIDI files matched at thresholds.

In terms of training data, we use the 116,189 audio-MIDI
matches from the LMD, which we split into testing, vali-
dation and training datasets. We train each network with
a learning rate of 1e�4, and early stopping on validation
every 1000 batches, using Keras [14].

3.3 Evaluating the Embedding Networks

To evaluate the expected accuracy of distance calculations
using our trained embedding networks, we use the same
method proposed by Raffel. For a known audio-MIDI pair
(m, a), we measure the distance between m and a set of
1,000,000 audio files X , with a 2 X , to determine the rank
of the correct match. After repeating this process for 1,000
audio-MIDI pairs in our test set, we can measure the pro-
portion of MIDI files where the correct match ranks below
a particular threshold. The results are presented in Figure
1, including results previously presented by Raffel for pur-
poses of comparison [3]. Although Raffel used different
data to train and evaluate the embedding, we can be fairly
confident in the reliability of our comparison, as the curve
for our H8 embedding network (Step 1c (Ours)) is nearly
identical to the curve for Raffel’s H8 embedding network
(Step 1c (Raffel)). Although using DW slows down Step
1, the results demonstrate that it is much more accurate,
which means we can reduce the number of comparisons
needed in Steps 1c and 1d, which ultimately speeds up the
algorithm, as Step 1c accounts for roughly half of the total
run-time.

3.4 Matching Against 32,000,000 Audio Files

Clearly, a large factor contributing to the run-time of the
matching algorithm is the threshold levels (t1, t2) for each
stage of the search. Raffel et al. determine t1 and t2 based
on the evaluation method presented in Figure 1. However,
this approach is merely a proxy for what we are actually
trying accomplish. Put simply, in matching a large collec-
tion of MIDI files with a large collection of Audio Files,
we are trying to maximize the number of matches. In or-
der to get a sense of the relationship between run-time and
the number of matches, we run our matching procedure
with 1,000 MIDI files and 10,000,000 audio files, using
various thresholds. The results in figure 2 show that we
pay a high computational cost to increase the number of

MIDIs matched. For example, increasing the thresholds
from t1 = 100,000 / t2 = 250 to t1 = 1,000,000 / t2 =
2,500 increases the run-time by 560%, while only yield-
ing a 10% increase in the number of MIDIs matched and a
200% increase in the number of Audio files matched.

Due to memory limitations, it is not possible to match
a MIDI CQT against all 32,000,000 audio CQTs at once.
As a result, we subdivide the audio CQTs into four chunks,
and process them each separately. In light of the results in
the previous section, we decided to set t1 = 100,000 and
t2 = 250 for each chunk. In Table 1, we report the results
of the Audio-MIDI matching procedure. In comparison to
the LMD, where only 26% of the MIDI files were matched
to at least one Audio file, we were able to match 56% of
the MIDI files, for a total of 237,236 MIDI files matched.
Notably, our modifications to the matching procedure also
had a substantial impact on the run-time, as the average
run-time per match was only 3.3 times more than the run-
time for LMD matching, despite matching against over 32
times more audio.

3.5 High Reliability Audio-MIDI Matches

Although the audio-MIDI matches are fairly reliable, Raf-
fel notes that it is not uncommon for there to be false pos-
itives when an audio-MIDI pair share the same chord pro-
gression [3]. To address these issues, we produce a subset
of the audio-MIDI matches which are more reliable, using
artist+title metadata that was collected during the scrap-
ing process. In short, we only retain audio-MIDI matches
where the title or artist scraped with the MIDI file is a
fuzzy match to the metadata on Spotify. Since artists and
title metadata frequently contain extraneous information,
we remove all content in parenthesis or square brackets,
and remove all content following a dash. As a result, the
Spotify track titled "Rain Is Falling (Karaoke Version) -
Originally Performed By Electric Light Orchestra" would
be reduced to "Rain is Falling" after pre-processing. We
measure the similarity between two strings using cosine
similarity on their tri-gram profiles, and only keep matches
when the similarity exceeds .8 for either the artist or the ti-
tle metadata. Once this procedure has been completed, we
are left with 53,496 (12%) matched MIDI files and 829,728
total matches.

4. LINKING SPOTIFY AND MUSICBRAINZ

To further expand the dataset, we make links between Spo-
tify track ids to MusicBrainz recording ids using a classi-
fier trained on audio features. Although AcousticBrainz
Labs has provided an archive 3 of the Echo Nest map-
pings between MusicBrainz and Spotify, we were only
able to match 24,363 MIDI files to MusicBrainz IDs us-
ing this resource. To train our classifier, we gathered a set
of ground truth data using International Standard Record-
ing Codes (ISRC), which are provided by both Spotify and
MusicBrainz. Although Spotify provides this information
for almost all of their tracks via their API, only a percent-
age of recordings in the MusicBrainz database have been

3 https://labs.acousticbrainz.org/million-song-dataset-echonest-
archive/
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Figure 2. The number of MIDI files matched, Audio recordings matched and average match run-time for different thresh-
olds. On the left, the first value denotes t1 and the second value denotes t2.

Dataset MIDIs Audio
Source

Matching
Method

Matched
MIDIs

Matched
Audios

Total
Matches

Percentage of
MIDIs Matched

LMD 176,581 MSD [10] Audio 45,129 31,034 116,189 25.6%
MMD 436,631 Spotify Audio 237,236 2,209,941 10,796,557 52.7%
MMD 436,631 Spotify Audio + Text 53,496 347,703 829,728 12.3%
MMD 436,631 MusicBrainz? Audio 168,032 1,094,901 8,384,256 38.5%
MMD 436,631 MusicBrainz? Audio + Text 34,174 408,922 1,232,909 7.8%

Table 1. Statistics for the audio-MIDI matching. Note that the MusicBrainz matches were computed by combining the
Spotify audio-MIDI matches and the Spotify-MusicBrainz links (Section 4). The Percentage of MIDIs Matched column
reports the percentage of MIDI files in the respective dataset that have at least one match to an audio file. Total Matches
denotes the total number of unique audio-MIDI pairs matched.

labeled with an ISRC code. Using the ISRC codes which
were available, we were able to compile about 100,000
unique ground truth matches. This data was divided into
training, validation and testing sets.

We use the AcousticBrainz API 4 to obtain features for
recordings in the MusicBrainz database, since the actual
audio is not provided by MusicBrainz or AcousticBrainz.
To extract features from the 30-second Spotify preview
clips, we use the same feature extractor as AcousticBrainz
(Essentia [15]). Using the low-level features extrated via
Essentia, we obtain a feature vector of dimension 1773 to
represent each audio clip. Then we trained a classifier to
predict whether a pair of vectors, one collected from the
AcousticBrainz database, and another from Spotify, corre-
spond to the same recording. To train the classifier, we ex-
pose the model to ground truth matches, where the Acous-
ticBrainz recording and Spotify recording share the same
ISRC, and negative matches, where both recordings do
not share the same ISRC. To construct a negative match,
we randomly select one recording from each data source
(AcousticBrainz and Spotify). Note that for training, val-
idation and testing we make sure the model is exposed to
both conditions (ground truth and negative match) an equal
number of times.

We use the XGBoost library [16] to train a gradi-
ent boosting model. To determine the optimal hyper-
parameters for the model, we perform a grid search us-
ing the following parameters: nestimators {2500, 5000},
learning rate {.1, .25, .5, .75}, and max depth of {2, 3, 4}.
To evaluate the models, we calculate the accuracy with
which the model was able to predict if the pair of record-
ings was a positive (ground-truth) or negative match. We
found the model with nestimators=2500 learning rate=.25
and max depth=4 to perform the best on the validation set,
achieving 97.6% accuracy. To give us some indication that

4 https://acousticbrainz.org/data

we are not simply over-fitting on the validation set, we
compute the accuracy of the best model using the testing
set. Based on the fact that the best model scored 97.5%
accuracy on the test set, which was only used once, we can
be fairly confident that the model will generalize with this
level of accuracy.

Since, at the time of writing, there are 5,534,103 unique
recordings in the AcousticBrainz dataset, and 2,209,941
Spotify audio previews (see Table 1) which we want to
match against, collecting the model’s predictions for each
pairwise match would be extremely computationally ex-
pensive. To make this process feasible, we first match
all the artists in the MusicBrainz database against a list
of artists from Spotify using tri-gram cosine distance with
a threshold of .7. Then we match each the titles of each
recording if the artists were a match, once again using tri-
gram cosine distance with a threshold of .7. Then for each
potential match, we use the classifier to predict whether it
is actually an audio match. Consequently, the error rate
should be lower than 2.5% since matches must also have
similar metadata (artist title) to be considered a match. The
entire process took about 3 days on a single computer.
In Table 2 below, we outline the results of the Spotify-
MusicBrainz linking process. We provide details on the
MIDI-MusicBrainz matches which were derived from the
audio-MIDI matches in Table 1.

5. ANALYZING THE DATASET

5.1 Overview Statistics for the Midi Files

In order get a sense of the type of data that was col-
lected, we compute the distributions for several features.
We parse a MIDI file into a set of tracks, where a track
is simply the set of note onsets and offsets belonging to
a (MIDI track,channel,instrument) tuple. Each
track is subdivided into a sequence of bars, using the time
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Matched
Spotify IDs

Matched
MusicBrainz IDs

Spotify-MusicBrainz
Matches

MIDI-MusicBrainz
Matches

MSD Echo Nest Archive 1,307,152 675,240 3,168,164 24,363
ISRC Matches 104,404 69,006 104,404 82,951

Ours 600,142 1,094,901 8,263,482 168,032

Table 2. Statistics for the Spotify-MusicBrainz matching.

signature information present in the MIDI file. Due to
space limitations, we present a few of the most pertinent
features below, providing a more comprehensive overview
elsewhere 5 :

1. Number of Tracks : The number of tracks, as de-
fined above, in a MIDI file.

2. Beat Length : The total length in quarter note beats
of an entire MIDI file.

3. Notes Per Bar : The number of note onsets occur-
ring in a bar. We measure this on each track sepa-
rately, so that we do not conflate notes per bar and
number of tracks.

We compute the distribution of each of these features
across three different sets of data: the LMD, MMD, and
their symmetric difference MMD � LMD. These distri-
butions are shown in Figure 3. On a whole, the graphs
demonstrate that LMD, MMD � LMD and MMD are all
fairly similar, however there are some differences worth
noting. The two most obvious differences, are the beat
length and number of tracks. The difference in beat length
distributions can mainly be explained by the fact that two
of the sites we scraped MIDIs from only provide 30s pre-
view MIDI clips for free. Since the musical quality of these
shorter MIDIs is comparable to that found in the LMD, we
saw no real reason to exclude these files. The difference in
track counts per MIDI does not have an obvious explana-
tion, but is worth noting nonetheless.

5.2 Estimating the Reliability of Scraped Metadata

To gauge the reliability of the scraped metadata, we ana-
lyze instances where metadata was collected for the same
MIDI file (md5 checksum) from multiple sources. In to-
tal, there are over 10,000 MIDI files which satisfy this cri-
teria. For each of these MIDI files, we compare the ti-
tle/artist and genre/category metadata separately. For the
title/artist metadata, we concatenate this metadata into a
single string, delimited by a "-", and compute cosine simi-
larity on their tri-gram profiles. For the genre metadata, we
compute tri-gram cosine similarity between each pairwise
combination of elements between two genre/category lists,
and report the maximum similarity. The mean similarity
is 73.7% for title/artist metadata and 1.1% for genre meta-
data. Immediately apparent, is the significant discrepancy,
as title/artist metadata appears to be fairly consistent from
site to site, while genre metadata is not. Further manual
analysis reveals that the genres/categories are often very
generic, which may make them unsuitable for some pur-
poses. In some respects, this is not altogether surprising,

5 https://github.com/jeffreyjohnens/MetaMIDIDataset

as determining the genre/category of a piece of music is
a highly subjective process, and other research has shown
a significant level of disagreement [17]. However, with
regards to the artist/title metadata, these results seem to in-
dicate that we can be fairly confident in this form of meta-
data. It is worth noting that this type of analysis does not
rule out cases where artist/title metadata on multiple sites
was derived from a single inaccurate source to begin with.

5.3 False Positives and Audio Midi Matching

Using the standard and high-reliability sets of audio-MIDI
matches, we can further analyze the source of false posi-
tives in the matching procedure. To do this, we compare
the genre distribution of each set of audio-MIDI matches.
Since Spotify uses more than 5,000 genres, many of which
contain descriptors of particular locations (ex. Louisville
Indie) or languages (ex. Spanish Indie Pop), we pre-
process the data to remove geographical locations, de-
monyms and languoids. This results in about 2,500 genres.
To further aggregate these genres into broader categories
we employ a graph embedding approach. Using the Spo-
tify API, we collect a list of genres for 336,507 different
artists. For example, the band U2 has a genre list contain-
ing three genres: Irish Rock, Permanent Wave, and Rock.
Note that after we apply our pre-processing procedure, U2
has two genres: Rock and Permanent Wave. Of particu-
lar interest for our purposes here, is artists which have a
genre list containing more than one genre, as the overall
frequency with which two genres co-occur within genre
lists should provide a good indication of their similarity.

Then we construct a graph where each genre is a node,
and the edge weights between nodes are the count of co-
occurrences within the genre lists. To create the embed-
ding, we use the Node2Vec algorithm [18], which cre-
ates an embedding space that is trained on relations found
within the graph. Similar to the word2vec algorithm [19],
where adjacent groupings of words inform the embedding,
random walks on the graph are used to infer a context
for each node. We use the nodevectors 6 implementation
of Node2Vec to learn a 32-dimensional embedding space,
training with random walks of length 30 for 100 epochs.
To determine a small set of k representative genres, we use
Agglomerative Hierarchical Clustering with Ward linkage
to partition the embedded genre vectors into k clusters. In
order to give each cluster a human-readable label, we count
the frequency with which each of the genres belonging to
the cluster is used in the genre lists. The most frequently
used genre is taken as the label for each genre. We set
k = 15, which produces the following set of genres: indie,
rock, experimental, jazz, pop, metal, musica, electronic,

6 https://github.com/VHRanger/nodevectors
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Figure 3. The distributions for various features computed on LMD, MMD � LMD and MMD.

Figure 4. The distribution of genres for matched MIDI
files using two methods: audio and audio + text.

folk, choir, classical, punk, punk rock, hip-hop, and elec-
tronica. We admit that our decision to set k = 15 is fairly
arbitrary, however, due to the nature of our clustering pro-
cedure, selecting a different value for k would not have a
large impact. For example, setting k = 16 produces the
same set of 15 genres with one new genre cluster.

In Figure 4 the genre distributions are plotted for each
version of the matching procedure. Since we can be fairly
confident that the audio + text matches are more accu-
rate, analyzing the discrepancies between the genre distri-
butions can help identify some of the shortcomings of the
DTW audio-MIDI match algorithm. In the audio matches
distribution, we see a large increase in pieces classified as
pop and electronic, which indicates these pieces are likely
the source of most of the error. This may be a byproduct
of their simple harmonic structure, and/or the prevalence
of remixes and covers within these particular genres.

6. USING THE METAMIDI DATASET

The dataset, as well as a detailed description of its contents,
can be accessed through the MetaMIDI Dataset reposi-

tory 7 . Throughout the dataset, MIDI files are identified
by their md5 checksum. We provide mappings from md5
checksums to Spotify track ids and MusicBrainz record-
ing ids, which can be used to access a plethora of meta-
data. The MusicBrainz database provides access to vari-
ety of linked entities including artists, recordings, releases,
composers, producers, recording engineers and labels. De-
tailed attributes are available for most entities. For exam-
ple, the MusicBrainz entry for the group Bon Iver, provides
the date and location where the group was established, a
list of aliases, a set of genre tags, and a comprehensive list
of links to external websites. Using the Spotify API, a vari-
ety of metadata can be accessed, including track-based au-
dio features such as danceability, valence, liveness and en-
ergy; and additional metadata ranging from genre to artist
popularity.

7. CONCLUSION

Although the primary contribution is the dataset itself, we
have also provided reusable insights related to the audio-
MIDI matching algorithm and the Spotify-MusicBrainz
linking procedure. One limitation worth noting, is the un-
certainty in relying on Spotify’s 30-second clips to per-
sist into the future, which unfortunately has already be-
come an issue with the 7Digital clips in the Million Song
Dataset [10]. With regards to the dataset, we anticipate
a wide variety of potential use-cases for this data. Since
many generative systems have been trained using the Lakh
MIDI Dataset [4, 5, 9], the MMD will undoubtedly be a
valuable asset to research in this area, as it features 2.4
times more MIDI files. More broadly, the metadata that
our audio-MIDI matches provide access to, as well as the
audio-MIDI matches themselves, can be used to support a
variety of scientific inquires related to MIR and Musicol-
ogy.

7 https://github.com/jeffreyjohnens/MetaMIDIDataset
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ABSTRACT

Voice leading is considered to play an important role in the
structure of Western tonal music. However, the explicit
voice assignment of a piece (if present at all) generally
does not reflect all phenomena related to voice leading. In-
stead, voice-leading phenomena can occur in free textures
(e.g., in most keyboard music), or cut across the explicitly
notated voices (e.g., through implicit polyphony within a
single voice). This paper presents a model of proto-voices,
voice-like structures that encode sequential and vertical re-
lations between notes without the need to assume explicit
voices. Proto-voices are constructed by recursive combina-
tion of primitive structural operations, such as insertion of
neighbor or passing notes, or horizontalization of simul-
taneous notes. Together, these operations give rise to a
grammar-like hierarchical system that can be used to in-
fer the structural fabric of a piece using a chart parsing
algorithm. Such a model can serve as a foundation for
defining higher-level latent entities (such as harmonies or
voice-leading schemata), explicitly linking them to their
realizations on the musical surface.

1. INTRODUCTION

A basic observation about tonal structure in music is that
notes tend to form vertical and horizontal relations, which
are generally not explicit in representations of the musi-
cal surface such as a score or a recording. An example of
these relations can be seen in Figure 1. The initial line of
sixteenth notes in the right hand, for example, forms an
arpeggiation of a D-minor chord. A reduction or simpli-
fication of the piece might realize this chord as a single
vertical entity, but the vertical relation between the notes
D5, A4, F4, and D4 is not directly encoded in the score.
Similarly, the two A4s of this arpeggiated chord are part of
a line that first moves to the neighbor note B[4 before re-
turning to A4 on the fourth beat of the first bar. Again, this
connection is not explicitly represented in the score, much
less so in a recording.

Sequential relations between notes are sometimes
equated with voices [1] that are either explicitly given (e.g.

© C. Finkensiep and M. Rohrmeier. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: C. Finkensiep and M. Rohrmeier, “Modeling and Inferring
Proto-Voice Structure in Free Polyphony”, in Proc. of the 22nd Int. So-
ciety for Music Information Retrieval Conf., Online, 2021.

!
!!!

!

!! !! ! !
!
!!

"
#
"

! !
!$

"
! !

%&' (

%&) !! !* ! !! (
+,

! -! !

Figure 1: An example of free polyphony in J. S. Bach’s
Allemande BWV 812 I. Sequential structures (such as the
A-B[-A motion across the first measure) are generally not
explicit in the score.

in monophonic melodies or strict polyphony), or inferred
through voice separation [2, 3, 4, 5, 6, 7, 8, 9]. However,
sequential relations do not always coincide with voices: A
single voice can exhibit implicit polyphony [10, p. 367][11]
(also called implied or latent polyphony), i.e., consist itself
of several implied sub-voices. For example, in the upper
voice in Figure 1, the notes of the D-minor chord belong
to separate voices on a more abstract level. Similarly, se-
quential connections can go across different voices, such
as the A4 moving to B[4 while the notated voice continues
to C]4.

Implicit (or more generally free) polyphony is com-
monly understood as forming a set of parallel and inde-
pendent auditory streams [12, 13, 1] that are inferred from
the musical surface by connecting notes into sequences.
The present paper, in contrast, proposes a model of free
polyphony that departs from this view in several respects:
First, free polyphony is understood as a network of lines
that can be connected to each other rather than a set of in-
dependent streams. Second, this network is not defined
through inference from the surface, but rather explicitly
constructed in a generative process that creates the net-
work in successive steps. Inferring this network from a
piece is then based on inverting this process, i.e., parsing
the piece. Third, connections between notes are not based
on continuing a stream, but instead follow from elabora-
tion of existing structures through fundamental and musi-
cally interpretable operations, adopting a top-down view
instead of a left-to-right view on voice-leading structure
[14, 15]. We name the resulting lines in the network proto-
voices, since – like voices – they connect notes to sequen-
tial lines but cannot be themselves implicitly polyphonic.
This paper presents a formal definition of the proto-voice
model as a recursive process, and describes a parsing algo-
rithm that can infer the proto-voice structure from a score.
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This model does not yet account for other musical aspects
such as rhythm and meter, harmony, form, or motivic and
thematic material. However, it is intended to further the
understanding of polyphonic structure on formal grounds,
and could potentially serve as a module in a more complete
system for musical analysis.

The idea of modeling free polyphony as a recursively
generated network of lines is central to Schenkerian anal-
ysis [16]. However, the constructions in Schenkerian anal-
ysis are specific to Western Common Practice music and
more high-level than the generic operations that give rise
to proto-voices. Thus, the proto-voice model can be un-
derstood as a formal foundation for describing richer con-
cepts of musical structure (such as the ones appearing in
Schenkerian analysis or other analytical frameworks), and
it is applicable to a wider range of musical styles that make
use of implicit or free polyphony (such as Jazz or melodies
in Pop/Rock). 1 However, because of these similar ideas,
the model presented here is related to models that formal-
ize sub-systems of Schenkerian analysis [18, 19, 20, 21,
22, 23, 24, 25, 26, 27], and to grammatical models of mu-
sical structure in general [14, 15, 28, 29, 17, 30, 31, 32,
33]. While proto-voices inherit some of their concepts,
most notably the interval-replacement method developed
in [25], modeling the structure of free polyphony has yet
been an unsolved problem.

2. THE PROTO-VOICE MODEL

2.1 Constructing Proto-Voices

At the core of the model proposed in this paper are a num-
ber of operations that establish primitive and strictly step-
wise horizontal relations between notes. These relations
include repetitions, stepwise ornaments to a note (neighbor
notes), and notes that fill larger intervals stepwise (passing
notes). While the notion of a step generally depends on
what is considered a step in the respective style, we con-
sider a step to be a diatonic second for the purpose of mod-
eling tonal music in the diatonic tradition.

All of these operations relate notes to one or two ref-
erence notes, or parents. Following Yust [25], operations
with two parents are represented by edge replacement: If
the two parent notes p1 and p2 are connected by an edge
p1 ! p2, then this edge can be replaced by a child note
together with two new edges to the parents: p1 ! c! p2.

Formally, proto-voices are represented as a graph that
contains one vertex per note, one vertex each for the be-
ginning (o) and the end (n) of the piece, and two types of
edges: Regular edges indicate a sequential connection be-
tween two notes (or o/n) that may be used for elaboration
by introducing a repetition or a neighbor of either parent
note (or of both if the parents have the same pitch). The in-
terval along a regular edge is always within the range of a
step (unless one of its vertices is o or n), and this property

1 The principle of recursive ornamentation is also used in non-Western
styles, such as Indian classical music [17], the model presented here is
specifically inspired by Western tonal music. However, some of the for-
mal techniques presented here might also be useful for expressing struc-
tural relations specific to other styles.

is maintained through the elaboration operations. Passing
edges indicate connections between two notes with an in-
terval that is larger than a step (introducing a new, subordi-
nate proto-voice). They must be filled with passing notes
from either end until only stepwise connections remain.

The generation of a piece starts with the empty piece
o! n and recursively applies one of several elaborations
rules. Single-sided rules pick a note and insert either a
repetition or a neighbor note to its left or right:

x =) x0 ! x repeat-before (1)
x =) x ! x0 repeat-after (2)
x =) n ! x left-neighbor (3)
x =) x ! n right-neighbor (4)

Double-sided rules pick an edge and insert along it one
new note and two new edges:

o! n =) o ! x ! n root-note (5)
x1 ! x2 =) x1 ! x0 ! x2 full-repeat (6)
x! y =) x ! y0 ! y repeat-before’ (7)
x! y =) x ! x0 ! y repeat-after’ (8)
x1 ! x2 =) x1 ! n ! x2 full-neighbor (9)

Passing rules, finally, fill passing edges with passing notes
from either end until the progression is fully stepwise:

x 99K y =) x! p 99K y passing-left (10)
x 99K y =) x 99K p! y passing-right (11)
x 99K y =) x! p! y passing-final (12)

In these rules, matching letters indicate matching pitches,
indices disambiguate parent notes with the same pitch,
and apostrophes mark inserted repetitions of parent notes.
Neighbor notes n must be a step away from their parents,
(disregarding their octaves to allow for octave displace-
ment). Similarly, passing notes p must be a step from the
parent(s) they are directly connected to and lie within the
interval spanned by both parents. Note that none of these
rules produce passing edges, which establish new connec-
tions between previously unconnected lines and thus re-
quire some additional structure (see Section 2.2. An exam-
ple proto-voice derivation of the previous example (Figure
1) is shown in Figure 2.

2.2 Temporal Organization

While proto-voices model the sequential organization of
notes, they do not specify when notes are simultaneous.
On the musical surface, simultaneity of notes is implied by
their onsets and durations. However, notes that are tem-
porally displaced on the surface can often be regarded as
forming a vertical sonority on a higher level of abstraction,
such as the arpeggiated d-minor chord in the beginning of
Figure 1. In order to express these latent vertical config-
urations, simultaneity is modeled through slices, segments
of a piece in which the same notes sounds. A piece (or
a reduction of a piece) is then represented as a sequence
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Figure 2: A proto-voice derivation of the notes in Figure
1. The position of a note is chosen to indicate its pitch
and onset in the piece. Later derivation steps hide some
edges from earlier steps in the interest of readability. Note
that each note is shown exactly once here, unlike in the
final model, which represents each note once per slice it
occurs in. Furthermore, pitches in different octaves have
been merged to simplify the graph.
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Figure 3: The three operations on outer structure. The
slices and transitions to be elaborated are shown at the top
while the lower part shows the generated structure.

of slices. Notes that are simultaneous with several non-
simultaneous notes (such as the bass note D in Figure 1)
are split among the corresponding slices but remain con-
nected by edges, thus ensuring that a surface note is gener-
ated through a single generation process.

Proto-voices are integrated into the slice structure by
attaching their edges to the transitions between two slices.
Note that transitions can only contain edges that connect
notes in the slices adjacent to the transition. Long-distance
edges are thus represented in latent transitions, i.e. transi-
tions in a reduction of the piece. As a consequence, edges
“vanish” in a well-defined manner during the generation
process, namely whenever a transition is replaced through
one of the generative operations. Since slices and tran-
sitions contain notes and edges, respectively, we call the
slices and transitions outer structure, and the notes and
edges inner structure.

Formally, a slice s is defined as a multiset (or bag) of
pitches. A transition t = (sl, e, sr) relates two slices sl
and sr and a configuration of edges e = (ereg, epass), which
in turn consists of a set of regular edges ereg (which must be
used at least once by a subsequent operation) and a multiset
of passing edges (which must be used exactly once). 2

Outer structure is transformed by three operations: A
split (Figure 3a) is a rule of the form

t �! t0l s
0 t0r (13)

that replaces a transition t by inserting a new slice s0 and
two new transitions t0l and t0r. During this operation, each
edge in the transition and each note in an adjacent slice
can be elaborated by one or more inner operations. The
resulting edges can either be discarded, or kept to form the
new edges of t0l and t0r. As a result, each transition only
contains edges that will be used subsequently.

A horizontalization, or spread (Figure 3b) has the form

tl s tr �! t0l s
0
l t

0
m s0r t

0
r, (14)

and replaces a slice s by distributing its notes to two child
slices s0l and s0r. This way, a latent vertical configuration of
notes can be sequentialized. In order to simplify parsing,
a restriction is made on this distribution: At least one side
must inherit all instances of a specific pitch, while the other
may inherit fewer instances, i.e.,

pk 2 s ) pk 2 s0l pk�m 2 s0r or (15)

pk 2 s ) pk�m 2 s0l pk 2 s0r, (16)
2 Passing edges are treated differently to avoid filling a single passing

edge several times.
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Figure 4: An example derivation of a short cadential
phrase. In each split operation, the edges of the elabo-
rated transition (grey in (b)) are replaced using inner elab-
oration operations. The passing edge from e to c is intro-
duced during the spread of the top-level {e, c} slice.

where k denotes the number of occurrences of pitch p in s,
and 0  m  k. This way, the s can always be inferred
deterministically from s0l and s0r by taking for each pitch
the maximum number of occurrences in s0l or s0r.

In the process of a spread, passing edges may be intro-
duced between arbitrary pairs of notes, and regular edges
may be introduced between notes with the same pitch. This
way, the introduction of passing edges becomes a local
operation that is guaranteed to respect the temporal order
of notes. Since all edges in a transition must be used, a
spread is only allowed when no edges from the parent
transitions tl and tr are lost by moving notes to the oppo-
site side. While this operation does not change the contents
of tl and tr, it replaces s with s0l and s0r respectively, which
makes this operation context-sensitive.

Finally, a freeze (Figure 3c) marks a transition as ter-
minal, stopping the generation process for this transition:

t �! t. (17)

It is only allowed when the transition contains only repe-
tition edges, which are turned into ties, creating notes that
span several surface slices.

An example derivation using these three operations can
be seen in Figure 4. We use a notation similar to the max-
imal outerplanar graphs (MOPs) introduced in [25], with
the root transition on top, surface of the piece on the bot-
tom, and rule applications indicated by polygons. How-
ever, since the derivations here contain latent slices that do
not occur on the surface, these derivation graphs are not
outerplanar.

3. A PARSING ALGORITHM FOR
PROTO-VOICES

3.1 Representing Derivations

The parsing algorithm for the proto-voice model produces
a set of possible derivations of the input score. Such a
derivation can be represented as a list of rule applications
in leftmost derivation order. This representation is known
from context-free grammars: the result of the derivation
is obtained by applying each rule in the list to the left-
most non-terminal symbol of the current sequence. This
is possible because the derivation below each non-terminal
of a string is independent from the derivations below all
other non-terminals of the string. In the proto-voice gram-
mar, this independence property does not hold, because the
context-sensitive operation spread can link two otherwise
independent transitions (and all their ancestors). However,
the idea of a leftmost derivation can still be applied here.

The maximal left-hand side of a single rule consists
of two transitions. Thus, instead of the leftmost non-
terminal, we consider the two leftmost non-terminal transi-
tions as the context for each rule application. Freezing the
left of the two transitions moves the context to the right.
A spread consumes both transitions of the context and
pushes its children onto the list of open transitions. In
order to allow the right parent of a spread to be the re-
sult of a split, splits can be applied to either the left or
the right transition of the current context. However, in or-
der to disambiguate the derivation order, we restrict right
splits to always happen after left splits or freezes. If
only a single transition is left, then only a split or freeze
can be performed. Thus, the derivation shown in Figure
4a can be unambiguously described as the leftmost deriva-
tion split, spread, freeze, split-left, split-left,
freeze, freeze, freeze, freeze.

Under these restrictions, certain configurations are not
possible. In particular, the right parent transition of
a spread cannot be the left child transition of another
spread. However, this outer configuration is equivalent
– with respect to the resulting inner structure – to another
configuration where the two spreads are applied in reverse
order. Thus, the generative power of the grammar (with re-
spect to proto-voice structure) is not restricted by exclud-
ing this non-leftmost configuration.

A similar observation above can be made between
splits and spreads: Whenever a split is made after a
spread (i.e. on its left or right child transition), it could
as well have been made before the spread (generating its
left or right parent transition, respectively), generating the
same inner structure. Therefore, we can add another re-
striction on the derivation order that forbids splits to be
applied to the left or right child transitions of a spread, fur-
ther removing the redundancy between (internally) equiv-
alent derivations.

In a similar fashion, it is possible to reduce the num-
ber of derivations further by eliminating redundancy in the
internal structure. For example, slices that are exact rep-
etitions of one of their neighbors can be generated in two
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ways, either by a split that only uses repeat-� opera-
tions on one side, or by a spread that produces identical
child slices. Since the latter is required for passing edges,
the former case might be excluded as redundant. Similarly,
the repeated horizontalization of a vertical configuration
can generate the same surface configuration in many differ-
ent ways, which can be prevented by restricting spreads to
be strictly left- or right-branching (unless intercepted by a
split). Both of these restrictions, however, exclude some
derivations with slightly different semantics than their per-
mitted counterparts, so it depends on the use cases whether
such restrictions are appropriate. 3

3.2 Parsing

Previous models of hierarchical tonal structure have relied
on two approaches to structural inference: Grammar-based
models use variants of classical parsing techniques such as
chart parsing [28, 27] while MOP-based models work with
triangulations of polygons [25, 21]. The proto-voice model
can be parsed using a bottom-up chart parsing algorithm
that is adapted to account for the context-sensitive spread
operation. A transition chart stores all potential latent tran-
sitions, similar to the non-terminal chart in a context-free
parser. In addition, a verticalization chart stores items that
represent the “core” of a spread, i.e. the parent slice and
the middle transition (including the two child slices). This
core is then combined independently with the left and right
child transitions, disentangling the two reductions and re-
ducing the combinatorial complexity. 4

The items in the transition chart are tuples (t,�, Il, Ir),
consisting of a transition t, a score �, and two IDs Il and
Ir that express combination restrictions on the left and the
right of the transition, respectively. By default Il and Ir
have a default value ⇤ which indicates that they can com-
bine with other transitions with the default value. The left
and the right parent transitions of a spread, however, de-
pend on each other through a common child (the spread
operation itself). They are therefore marked with a special
ID on their adjacent sides and can only combine with other
transitions with a compatible ID. IDs are based on the left
side of the verticalization, i.e. its left child slice and its
parent slice. The details of the spread operation as well as
the middle and right child transitions are stored in the item
of the right parent transition, while the left parent transi-
tion only keeps a reference to the left child transition. This
way, combining any pair of compatible left and right parent
transitions restores a complete and valid spread operation
with all its children. While this “trick” reduces complexity
by exploiting some properties specific to the proto-voice
grammar, it is not known whether it reduces the overall
complexity of the parser from exponential to polynomial
in the number of input slices.

3 For example, with a strictly right-branching model, the expansion of
the D-minor chord in Figure 1 must happen from left to right. If it is
desired to split the chord first into quarter-note slices and then into eight-
note slices (to respect the metric structure), strict right-branching does not
work.

4 For a given verticalization, instead of considering each pair of left
and right transitions (|L| · |R| operations), the left and right transitions
can be processed independently (|L|+ |R| operations).

The score � of a transition represents the set of leftmost
derivations from the transition to the surface it covers. It is
computed bottom-up by combining the scores of the tran-
sition’s children. When two transitions are combined, their
scores are combined by concatenating each alternative on
the left with each alternative on the right. 5 When pars-
ing a split operation, this result is prepended with the
split itself, which yields the score of the parent transition.
The score representing a spread operation, however, must
be distributed across the two parent transitions. This fol-
lows the same scheme as described above: the left parent
keeps the score of the left child L; the right parent takes the
scores of the right child R, the the middle child M , and the
rule application the spread itself h. However, since the
correct leftmost sequence of operations should apply the
scores in the order hLMR the scores of the parent edges
are partial, and the parser ensures that these fragmented
derivations are handled in a way that always restores the
correct sequence of derivation steps when recombined. 6

Algorithm 1 The steps of the parsing algorithm.
V  {}
T  unfreeze each input transition
for n from 2 to |input|� 1 do

V  [ verticalizations of all Tn

T  [ left vert. of all Tn ⌦ Vn and T<n ⌦ Vn

T  [ right vert. of all Vn ⌦ Tn and V<n ⌦ Tn

T  [ merges of all Tn ⌦ Tn and T<n ⌦ Tn

return To!n

The parser fills the chart bottom-up using the algorithm
shown in Algorithm 1. Here, merge refers to the inverse of
a split, left and right verticalization refer to combining a
left or right child with a verticalization item, respectively.
Tn and Vn refer to the sets of chart items with a surface
coverage of n slices, and ⌦ creates the pairs of those items
that are adjacent (i.e. their connecting slices match with
respect to position and content) and have compatible IDs.

The inner structure of each operation is parsed by in-
verting the operation, computing all possible inputs. For
spread and freeze, this is trivial since their parent ele-
ments are unique, if they exist. For split, all possible par-
ent transitions are computed that generate every note in s0

using all mandatory edges in t0l and t0r (and possibly other
edges that have been dropped and thus not included in t0l
and t0r).

A reference implementation of the parser written in
Haskell is provided. 7

5 In the parser, this operation is represented symbolically, which is
more efficient than actually computing all combinations of alternatives.

6 In particular, since fragmented derivation sets are not always re-
combined right away, they need to combine with other operations such
as splits and other spreads. The formal details of this are beyond the
scope of this paper, but they are documented in the parser implementa-
tion.

7 https://github.com/DCMLab/protovoices-haskell/tree/
ismir2021
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4. DISCUSSION AND CONCLUSION

The proto-voice model is flexible enough to express highly
complex configurations of free polyphony. However, this
generative power comes at the cost of being highly am-
biguous. The suspension sequence in Figure 4, for exam-
ple, has 131 valid derivations, while the first half measure
(including the upbeat) of the Bach example (Figure 1) al-
ready has 119,940 derivations. While this flexibility of the
model allows analysts to express very subtle interpretative
nuances, it also generates the problem that a single piece
or excerpt has too many derivations to reasonably com-
pare, and that any non-trivial piece takes far too long to
parse exhaustively in practice. The first problem can be
solved by introducing a probabilistic variant of the model
that weights derivations according to their probability [32,
28]. The second problem might be resolved by a heuristic
parser that does not guarantee globally optimal solutions.

There are structural configurations assumed in some
theories that require an even higher flexibility than what is
provided by the proto-voice model. For example, Schenke-
rian theory allows the unfolding (i.e. horizontalization) of
entire progressions (such as the parallel thirds 3-2 and 1-7
in Figure 4) into a single sequence (such as 1-7-3-2(-1)).
Such an operation would either require the progression to
be represented as a single entity (to which the operation
could be applied), or the ability to apply operations to non-
entity contexts (similar to how spread is applied to two
transitions and a slice).

The inner structure and operations of proto-voices are
similar to those of MOP-based approaches [25, 21, 24]
for monophonic and homophonic sequences. From these,
the model inherits the ability to represent double parents
and, by extension, lines of notes with a start and a goal.
However, proto-voices use these ideas to solve the much
more complex problem of free polyphony. The key insight
that makes this extension possible is the separation of adja-
cency on the surface and adjacency in a line of notes, and
the explicit representation of line adjacency in the proto-
voice graph. In monophonic sequences, surface and line
adjacency seem to be the same, but even this assump-
tion does not generally hold: As the example of implied
polyphony shows, even monophonic voices can (and gen-
erally do) have a polyphonic latent structure. Put bluntly,
there is no such thing as a monophonic melody.

The outer structure (and its integration of inner opera-
tions) is similar to an approach presented by Marsden [27],
that parses single-sided Schenkerian operations based on a
grammar on slices. In particular, Marsden’s grammar uses
context notes to model conditions of two-sided operations,
which makes the grammar context-sensitive in a very sim-
ilar way as proto-voices. 8 While Marsden’s model does
not rely on explicit voices – and thus in principle can parse
inputs in free polyphony – it also does not generate voice-
like structure among the notes, but rather individual bi-

8 In [27], this context-sensitiveness is handled by parsing with a
context-free parser and then removing inconsistent derivations, while the
proto-voice parser only constructs consistent derivations, but this is just
an implementation detail.

nary dependency relations. A similar point can be made
for models working on piano-roll representations such as
many neural network approaches [34, 35, 36]: While they
can work with freely polyphonic inputs, they generally
do not explicitly establish polyphonic structure among the
notes in the score.

There is, however, a deeper, more philosophical dif-
ference between the proto-voice model and the other ap-
proaches based on Schenkerian analysis: The proto-voices
attempt to isolate and formalize the structural principles
and primitives that give rise to free polyphony, instead of
encoding the higher-level concepts and operations of a par-
ticular analytical framework. The two structural princi-
ples here are elaboration and recursion, where the former
consists of the application of primitives and the latter just
arises from the fact that elaboration can be applied to the
output of a previous elaboration of the same kind. The
structural primitives boil down to essentially two opera-
tions: stepwise insertion of notes (in all its variants) and
horizontalization of simultaneous elements, which operate
with the two basic relations on simultaneity and sequen-
tiality in complementary ways.

These operations are primitive for two reasons: First,
they provide what can be considered the lowest level of
musically meaningful relations. Even more basic repre-
sentations of music (such as audio or piano-roll represen-
tations) do not express musical relations (except incidental
simultaneity) explicitly. Second, the basic entities and rela-
tions can be combined to express higher-level entities and
relations from more specific analytical frameworks, such
as different forms of harmonic analysis, Schenkerian anal-
ysis, or schema theory. A simple example of such a high-
level concept can be seen in Figure 4, which constructs
the voice-leading pattern of a 2-3 suspension in a prin-
cipled way: first, a progression is generated that moves
two voices down in parallel thirds, then another time inter-
val is inserted in which the upper voice moves while the
lower voice remains, creating the dissonant second. Sim-
ilarly, the derivation in Figure 2 explicitly constructs an
initial ascent [37] from D to F and the harmonic progres-
sion I�V 7� I , and describes their relation to the musical
surface. The preparatory function of the dominant chord
and its dependency on the tonic [15] are even reflected by
its notes, which are all ornaments of the following tonic
harmony.

The structural principles and primitives postulated by
this model are certainly not exhaustive. For one, they
do not account for musical parameters such as harmony
and key, timbre, or rhythm and meter. Furthermore,
there might be additional structural primitives that estab-
lish other relations between objects than stepwise motion
and simultaneity. Finally, there might be other relevant
structural principles, such as abstraction of particular con-
figurations into patterns, or the repetition of complex struc-
tures or patterns. However, since principles and primitives
are generally orthogonal, the current model can be con-
sidered as a module of a more comprehensive model of
musical structure.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

194



5. ACKNOWLEDGEMENTS

We thank all members of the Digital and Cognitive Mu-
sicology Lab at EPFL (in particular Petter Ericson and
Daniel Harasim) as well as the anonymous reviewers for
their valuable feedback, and Claude Latour for generously
supporting this research. This project has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 760081 – PMSB.

6. REFERENCES

[1] D. Huron. Voice Leading: The Science Behind a Mu-
sical Art. MIT Press, Sept. 2, 2016. 273 pp.

[2] E. Chew and X. Wu. “Separating Voices in Poly-
phonic Music: A Contig Mapping Approach”. In:
Computer Music Modeling and Retrieval. Ed. by
U. K. Wiil. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2005, pp. 1–20. DOI:
10.1007/978-3-540-31807-1_1.

[3] R. de Valk and T. Weyde. “Deep Neural Networks
with Voice Entry Estimation Heuristics for Voice
Separation in Symbolic Music Representations”. In:
Proceedings of the 19th International Society for
Music Information Retrieval Conference. 19th In-
ternational Society for Music Information Retrieval
Conference (ISMIR 2018). Paris, France, May 25,
2018.

[4] N. Guiomard-Kagan, M. Giraud, R. Groult, and
F. Levé. “Comparing Voice and Stream Segmenta-
tion Algorithms”. In: Proceedings of the 16th IS-
MIR Conference. International Society for Music
Information Retrieval Conference (ISMIR 2015).
Malaga, Spain, Oct. 2015, pp. 493–499.

[5] J. Kilian and H. H. Hoos. “Voice Separation-A Lo-
cal Optimization Approach.” In: International Con-
ference on Music Information Retreival. 2002.

[6] P. B. Kirlin and P. E. Utgoff. “VOISE: Learn-
ing to Segregate Voices in Explicit and Implicit
Polyphony.” In: Proceedings of the Sixth Interna-
tional Conference on Music Information Retreival.
ISMIR. London, 2005, pp. 552–557.

[7] D. Makris, I. Karydis, and E. Cambouropoulos.
“VISA3: Refining the Voice Integration/Segregation
Algorithm”. In: Proceedings of the Sound and Mu-
sic Computing Conference 2016. Hamburg, Ger-
many, 2016.

[8] A. McLeod and M. Steedman. “HMM-Based Voice
Separation of MIDI Performance”. In: Journal of
New Music Research 45.1 (Jan. 2, 2016), pp. 17–
26. DOI: 10.1080/09298215.2015.1136650.

[9] D. Temperley. “A Unified Probabilistic Model for
Polyphonic Music Analysis”. In: Journal of New
Music Research 38.1 (Mar. 1, 2009), pp. 3–18. DOI:
10.1080/09298210902928495.

[10] E. Aldwell and A. Cadwallader. Harmony and Voice
Leading. Cengage Learning, 2018. 722 pp.

[11] E. Cambouropoulos. “‘Voice’ Separation: Theoret-
ical, Perceptual and Computational Perspectives”.
In: Int. Conf. on Music Perception and Cognition
(ICMPC). 2006, p. 12.

[12] A. S. Bregman. Auditory Scene Analysis: The Per-
ceptual Organization of Sound. MIT press, 1994.

[13] E. Cambouropoulos. “Voice And Stream: Percep-
tual And Computational Modeling Of Voice Sepa-
ration”. In: Music Perception 26.1 (Sept. 1, 2008),
pp. 75–94. DOI: 10.1525/mp.2008.26.1.75.

[14] F. Lerdahl and R. S. Jackendoff. A Generative The-
ory of Tonal Music. MIT press, 1985.

[15] M. Rohrmeier. “Towards a Generative Syntax of
Tonal Harmony”. In: Journal of Mathematics and
Music 5.1 (Mar. 1, 2011), pp. 35–53. DOI: 10.1080/
17459737.2011.573676.

[16] H. Schenker. Free Composition:(Der Freie Satz):
Heinrich Schenker; Translated and Edited by Ernst
Oster. Longman, 1979.

[17] C. Finkensiep, R. Widdess, and M. Rohrmeier.
“Modelling the Syntax of North Indian Melodies
with a Generalized Graph Grammar”. In: Proceed-
ings of the 20th International Society for Music In-
formation Retrieval Conference (Delft, The Nether-
lands). Delft, The Netherlands: ISMIR, Nov. 4,
2019, pp. 462–469. DOI: 10 . 5281 / zenodo .
3527844.

[18] R. E. Frankel, S. J. Rosenschein, and S. W. Smo-
liar. “Schenker’s Theory of Tonal Music—Its Ex-
plication through Computational Processes”. In: In-
ternational Journal of Man-Machine Studies 10.2
(Mar. 1, 1978), pp. 121–138. DOI: 10.1016/S0020-
7373(78)80008-X.

[19] S. W. Smoliar. “A Computer Aid for Schenkerian
Analysis”. In: Proceedings of the 1979 Annual Con-
ference. ACM ’79. New York, NY, USA: ACM,
1979, pp. 110–115. DOI: 10.1145/800177.810043.

[20] J. Rahn. “Logic, Set Theory, Music Theory”. In:
College Music Symposium 19.1 (1979), pp. 114–
127.

[21] P. B. Kirlin and P. E. Utgoff. “A Framework for Au-
tomated Schenkerian Analysis”. In: (2008), p. 6.

[22] P. B. Kirlin and J. Yust. “Analysis of Analysis: Us-
ing Machine Learning to Evaluate the Importance
of Music Parameters for Schenkerian Analysis”. In:
Journal of Mathematics and Music 10.2 (May 3,
2016), pp. 127–148. DOI: 10 . 1080 / 17459737 .
2016.1209588.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

195



[23] P. B. Kirlin and D. D. Jensen. “Probabilistic Mod-
eling of Hierarchical Music Analysis.” In: Proceed-
ings of the 12th International Society for Music In-
formation Retrieval Conference. 12th International
Society for Music Information Retrieval Conference
(ISMIR 2011). 2011, pp. 393–398.

[24] P. B. Kirlin and D. L. Thomas. “Extending a Model
of Monophonic Hierarchical Music Analysis to Ho-
mophony”. In: Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Con-
ference, ISMIR 2015, Málaga, Spain, October 26-
30, 2015. Ed. by M. Müller and F. Wiering. 2015,
pp. 715–721.

[25] J. D. Yust. “Formal Models of Prolongation”. Uni-
versity of Washington, 2006.

[26] A. Marsden. “Representing Melodic Patterns as
Networks of Elaborations”. In: Computers and the
Humanities 35.1 (Feb. 1, 2001), pp. 37–54. DOI:
10.1023/A:1002705506386.

[27] A. Marsden. “Schenkerian Analysis by Computer:
A Proof of Concept”. In: Journal of New Music Re-
search 39.3 (Sept. 1, 2010), pp. 269–289. DOI: 10.
1080/09298215.2010.503898.

[28] D. Harasim, M. Rohrmeier, and T. J. O’Donnell.
“A Generalized Parsing Framework for Genera-
tive Models of Harmonic Syntax”. In: Proceed-
ings of the 19th International Society for Mu-
sic Information Retrieval Conference, ISMIR 2018,
Paris, France, September 23-27, 2018. Ed. by E.
Gómez, X. Hu, E. Humphrey, and E. Benetos. 2018,
pp. 152–159.

[29] D. Harasim, T. J. O’Donnell, and M. A. Rohrmeier.
“Harmonic Syntax in Time: Rhythm Improves
Grammatical Models of Harmony”. In: Proceed-
ings of the 20th ISMIR Conference. 20th Interna-
tional Society for Music Information Retrieval Con-
ference. CONF. ISMIR, 2019, p. 335. DOI: 10 .
5281/zenodo.3527812.

[30] É. Gilbert and D. Conklin. “A Probabilistic Context-
Free Grammar for Melodic Reduction”. In: Interna-
tional Workshop on Artificial Intelligence and Mu-
sic, IJCAI-07. 2007.

[31] M. Granroth-Wilding and M. Steedman. “A Robust
Parser-Interpreter for Jazz Chord Sequences”. In:
Journal of New Music Research 43.4 (Oct. 2, 2014),
pp. 355–374. DOI: 10 . 1080 / 09298215 . 2014 .
910532.

[32] S. Abdallah, N. Gold, and A. Marsden. “Analysing
Symbolic Music with Probabilistic Grammars”. In:
Computational Music Analysis. Ed. by D. Mered-
ith. Cham: Springer International Publishing, 2016,
pp. 157–189. DOI: 10.1007/978-3-319-25931-
4_7.

[33] O. Melkonian. “Music as Language: Putting Prob-
abilistic Temporal Graph Grammars to Good Use”.
In: Proceedings of the 7th ACM SIGPLAN Interna-
tional Workshop on Functional Art, Music, Model-
ing, and Design. FARM 2019. Berlin, Germany: As-
sociation for Computing Machinery, Aug. 23, 2019,
pp. 1–10. DOI: 10.1145/3331543.3342576.

[34] W. Chi, P. Kumar, S. Yaddanapudi, S. Rahul, and
U. Isik. “Generating Music with a Self-Correcting
Non-Chronological Autoregressive Model”. In:
Proceedings of the 21st International Society for
Music Information Retrieval Conference. Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2020). Montreal, Canada: ISMIR,
Oct. 11, 2020, pp. 893–900. DOI: 10 . 5281 /
zenodo.4245578.

[35] Z. Wang, D. Wang, Y. Zhang, and G. Xia. “Learn-
ing Interpretable Representation for Controllable
Polyphonic Music Generation”. In: Proceedings of
the 21st International Society for Music Informa-
tion Retrieval Conference. International Society for
Music Information Retrieval Conference (ISMIR
2020). Montreal, Canada: ISMIR, Oct. 11, 2020,
pp. 662–669. DOI: 10.5281/zenodo.4245518.

[36] Z. Wang, Y. Zhang, Y. Zhang, J. Jiang, R. Yang,
G. Xia, and J. Zhao. “PianoTree VAE: Structured
Representation Learning for Polyphonic Music”.
In: Proceedings of the 21st International Society
for Music Information Retrieval Conference. Inter-
national Society for Music Information Retrieval
Conference (ISMIR 2020). Montreal, Canada: IS-
MIR, Oct. 11, 2020, pp. 368–375. DOI: 10.5281/
zenodo.4245446.

[37] A. Cadwallader and D. Gagné. Analysis of Tonal
Music: A Schenkerian Approach. Third Edition. Ox-
ford, New York: Oxford University Press, Mar. 24,
2011. 432 pp.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

196



PKSPELL: DATA-DRIVEN PITCH SPELLING AND
KEY SIGNATURE ESTIMATION

Francesco Foscarin Nicolas Audebert Raphaël Fournier S’niehotta
CEDRIC (EA4629), CNAM Paris, HESAM Université, France

{francesco.foscarin, nicolas.audebert, fournier}@cnam.fr

ABSTRACT

We present PKSpell: a data-driven approach for the joint
estimation of pitch spelling and key signatures from MIDI
files. Both elements are fundamental for the production of
a full-fledged musical score and facilitate many MIR tasks
such as harmonic analysis, section identification, melodic
similarity, and search in a digital music library.

We design a deep recurrent neural network model that
only requires information readily available in all kinds of
MIDI files, including performances, or other symbolic en-
codings. We release a model trained on the ASAP dataset.
Our system can be used with these pre-trained parameters
and is easy to integrate into a MIR pipeline. We also pro-
pose a data augmentation procedure that helps re-training
on small datasets.

PKSpell achieves strong key signature estimation per-
formance on a challenging dataset. Most importantly, this
model establishes a new state-of-the-art performance on the
MuseData pitch spelling dataset without retraining.

1. INTRODUCTION

Music listening is a complex cognitive process that involves
the organization of sound events in time and frequency
structures. This process creates patterns of thought that
depend either on general principles of cognitive psychology
or on prior knowledge and common practices of the relevant
musical style system [1]. As far as tonal music is concerned,
pitches are related and arranged to create a complex system
of perceived stability and instability that gravitates around a
tonal center, usually identified by a scale or a chord [2]. In
this paper, we focus on two aspects of the tonal framework:
pitch spelling and key signature.

1.1 Pitch Spelling

In tonal music, the classification of pitches in 12 pitch-

classes, each one uniquely identifying a set of frequencies
that are n octaves apart, is enriched with some tonal infor-
mation and creates the higher-level representation of tonal-

pitch-classes. Each tonal-pitch-class consists of a diatonic

© F. Foscarin, N. Audebert, and R. Fournier S’niehotta. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: F. Foscarin, N. Audebert, and R. Fournier
S’niehotta, “PKSPELL: Data-Driven Pitch Spelling and Key Signature
Estimation”, in Proc. of the 22nd Int. Society for Music Information

Retrieval Conf., Online, 2021.

Figure 1. Pitch-classes and corresponding tonal-pitch-
classes.

name in [C,D,E, F,G,A,B] and an accidental among
double-flat ([), flat (Z), natural(^), sharp (\), double-sharp
(]). 1 For every pitch-class, there are multiple correspond-
ing tonal-pitch-classes, called enharmonic equivalents (see
Fig. 1). The task of choosing a single name between the
possible enharmonic equivalents is called pitch spelling.

1.2 Key Signature

Key signatures inform about the tonal center of the piece
and are commonly identified in music by a certain number
of sharps or flats (whose positions are fixed) or by a tonal-
pitch-class (see Fig. 2). Combined with pitch spelling,
they also improve readability, according to the principle of
notation parsimony [3], i.e., the minimization of the number
of symbols (accidentals) displayed in the score.

Tightly related to the key signature, the key also adds
information about the mode (major or minor). Keys are con-
sidered in literature either on a global scale (i.e., one global

key for one piece) or a local scale (i.e., multiple local keys

for one piece) resulting from modulations and tonicizations
(see [4] for a complete description of these concepts). A
formalization of the relation between local keys, global key,
and key signatures is missing in the literature and it is not
the goal of this paper to have a musicological discussion on
this topic. As a first approximation, the key signature can

1 More accidental types, like triple sharps could exist in theory, but they
are not used in common music notation.
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Figure 2. Corresponding key signatures representation in a
musical score, tonal-pitch-class and number of accidentals.

be considered a global feature of the piece. It occasionally
changes if the tonal center shifts significantly from its previ-
ous position, although it does not move as much as the local
key. A possible motivation is that, since the key signature
is employed in music notation, the principle of parsimony
applies and it “smoothes” short key changes.

1.3 Pitch Spelling and Key Signature Estimation

Multiple reasons motivate systems that perform pitch
spelling and key signature estimation. Such information is
necessary for the creation of full-fledged musical scores,
e.g., as the last step of automatic music transcription or
music generation systems. Furthermore, those elements are
employed for other MIR tasks: key signature annotations
are useful for music search and section identification, and
pitch spelling facilitates harmonic analysis and melodic pat-
tern matching [3, 5]. However, they are not represented in
“low-level” formats, such as audio and MIDI files 2 , which
constitute most of the available digital musical encoding.

1.4 Related Works

Several authors have developed automatic systems that per-
form pitch spelling from MIDI data. Most of them consist
in algorithmic approaches based on musicological insights
only, without any learning. Some authors think the selec-
tion of the appropriate tonal-pitch-class is a function of
the local key [6, 7] or a combination of the local key and
voice-leading information [5,8], i.e., the temporal evolution
of notes within each voice. Others base pitch spelling on a
type of interval optimizations [9], on the principle of nota-
tional parsimony, or a combination of the two criteria [3].
Another formulation of the problem as a generative proba-
bilistic model is proposed by Teodoru et Raphael [10]. They
model voices with independent Markov chains conditioned
on a hidden state that contains the local key information.

For evaluation purposes, the early algorithmic ap-
proaches were compared by Meredith [7] on a dataset of
216 pieces by 8 baroque and classical composers. The
highest accuracy at the time was obtained by Meredith’s
ps13 algorithm, especially when small temporal variations
were introduced to simulate a MIDI file generated from a

2 Albeit key signatures can be encoded in a MIDI file as metadata, they
are often absent.

performance. Teodoru and Raphael [10] also tested their ap-
proach on the same dataset (without tempo deviation) with
high accuracy. More recent works [9, 11] did not increase
the total accuracy. In this paper, we compare our results
with Meredith’s ps13 algorithm and Teodoru and Raphael’s
approach with conditional independent voices (CIV).

While those approaches yield a very high accuracy
(� 99% of notes are correctly spelled), they are not de-
signed to be easily employed in larger MIR pipelines. ps13
has 3 different outputs, whose tonal pitch classes are trans-
posed by diminished seconds (e.g., one piece in C\, one
in DZ and one in B]) and does not indicate how to select
the “best” version. Both ps13 and CIV parameters are set
by hand 3 , thus making them difficult to generalize across
composers and datasets. Moreover, the code of CIV is not
publicly available. Finally, both approaches do not provide
key signatures, so they cannot be used alone to produce a
complete pitch encoding for a musical score. Other pitch
spelling systems are implemented in music notation soft-
ware (e.g., Finale, MuseScore) but no information about
their functioning mechanism and performance is available
and they require key signatures as input.

Little attention has been given in the literature to the key

signature estimation problem from MIDI files, in favor of
the related task of key estimation [12–15] (see Section 1.2).
A direct comparison of our results with other approaches is
therefore not possible, but we put our results into perspec-
tive by comparing them with the state-of-the-art approach
for global key estimation of López et al. [15].

1.5 Our approach

We propose the PKSpell system for jointly estimating pitch
spelling and key signature. It yields high accuracy, is easy
to integrate into a MIR pipeline, and works on any kind
of MIDI file (including MIDI generated from human per-
formance) or other symbolic encodings. Trained on the
ASAP dataset [16], PKSpell achieves strong key signature
estimation performance on the Albrecht dataset [14] and es-
tablishes a new state-of-the-art pitch spelling performance
on the MuseData dataset [7] without retraining. Implemen-
tation and pre-trained model are publicly available 4 .

We design a deep learning approach based on recurrent
neural networks (RNN) that can model correlations in input
sequences of variable lengths [17]. We use a dedicated
network structure inspired by musicological considerations
on the relation between local keys, pitch spelling, and key
signatures (details in Section 2.3). Our system models each
input note with a pair (pitch-class, duration) that does not
require high-level temporal information such as downbeat
and time signature or voice separation to be produced. With
the proposed dedicated preprocessing of the note durations
and data augmentation procedure (see Sections 2.1 and 2.2),
our approach can generalize to different tempos, time signa-
tures, and key signatures. This makes it possible to train our
model on a small-size dataset of musical scores. Moreover,

3 CIV could be trained, but the authors report that the results are worse
than with handset parameters.

4 See https://github.com/fosfrancesco/pkspell
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by cross-validating on a separated dataset, we show that
with the pre-trained parameters, our system can correctly
handle a variety of different tonal pieces. Finally, our multi-
task approach to pitch spelling and key signature estimation
increases the performance on both tasks.

2. METHOD

The pitch spelling and key signature information are the
results of the relations between different notes. We employ
a recurrent neural network architecture, which can learn all
those relations for pieces of different lengths. This class of
models employs a big number of parameters to correctly
learn the input-output function. Our choice of input/output
representation helps to keep their number as low as possible,
and the data augmentation procedure we propose allows us
to learn them from a relatively small dataset.

2.1 Input and output formats

Multiple approaches have been proposed for the problem
of transforming a MIDI file into a sequential representa-
tion [18–20]. Since we target all kinds of MIDI inputs
(see [21] for a description of different MIDI formats), we
cannot assume to have information such as voice separation,
time signature, downbeat, and beat positions. We employ
a simple note-based representation that was proposed by
Lopez [15]: a piece is modeled as a sequence of notes
@ = {⌘1, ⌘2, ..., ⌘N}, ordered according to the temporal
position of their onsets. If multiple notes have the same
onset position, we take the notes in low-to-high order. 5 For
each note ⌘, we consider two features: pitch-class p[⌘] and
duration d[⌘]. The usage of note durations is common in
key estimation approaches (e.g., [1, 12]), and stems from
the musicological intuition that longer notes have a stronger
impact than shorter notes in defining the tonal context.

To group all possible note durations in a limited number
of classes, we run an (unsupervised) 1-dimensional k-means

algorithm for all note durations (see Fig. 3). We use the
dynamic programming algorithm presented by Gronlund
et al. [22] that has complexity O(kN + NlogN), for k

classes and a sequence of length N . We select k = 4. This
classification cannot be considered more than a rough indi-
cation of relative duration and it is not meant to precisely
identify beats, downbeats, and other metrical information.
Moreover, it will show its limits if there are tempo changes
or time signature changes inside the piece. Yet, we found
that it improved our model results at a small computational
cost and, compared to other possible approaches, e.g., quan-
tization to some discrete durations, it has the advantage of
generalizing to different tempos and time signatures.

The output is a sequence of tonal-pitch-classes ⌧ [⌘]
(among the 35 in Fig. 1) and a sequence of key signatures
[⌘] (among the 15 in Fig. 2), one for each note ⌘ in input.
Computing a key signature for each note might seem exces-
sive, since we may expect the key signature to change only
a few times during a piece. However, this is necessary as

5 However, the ordering choice does not impact the results.

Figure 3. One-dimensional clustering of note durations for
2 pieces expressed in milliseconds. Each vertical line repre-
sent a duration and dotted grey lines are cluster centroids.
The piece at top is faster than the piece at the bottom. To
facilitate the understanding, the kernel density estimation
of the note durations is also displayed.

we do not know in advance how many changes there are in
a piece, nor do we have precise metrical information.

2.2 Data augmentation

Studies in cognitive psychology [23] have proved that lis-
teners perceive as identical two pieces if all their notes
are transposed by the same interval. It is common to use
this property of music perception to augment a dataset by
transposition [18, 24]. For our goals, we must transpose
pitch-classes (input) and tonal-pitch-classes and key signa-
tures (output) to have a correct ground truth for training.

The possible transpositions of tonal-pitch-classes and
key signatures move through a spiral of fifths [12]. When
reported to the same octave, each transposition can be iden-
tified with a diatonic interval, notated with an interval num-
ber and type, e.g., augmented 4th, perfect 5th, minor 2nd.
For pitch-classes, instead, we are limited to 12 chromatic

intervals that can be simply identified by integers. In Fig. 4
we report the most common diatonic intervals (the ones
closer to the center of the spiral of fifths) associated with
their respective chromatic interval.

Since our goal is to learn an input-output mapping, we
cannot accept multiple sequences of tonal-pitch-classes that
correspond to the same sequence of pitch-class. That means
that we need to select only one diatonic interval for every
chromatic interval. To do so, we use a heuristic based on
the principle of parsimony, i.e., we choose the diatonic
transposition which generates the set of tonal pitch classes
with the lowest number of accidentals. For each piece
and each chromatic transposition, we transpose the tonal
pitch class by all corresponding diatonic intervals, then we
discard transpositions that contain non-accepted accidentals
(e.g., triple sharps). Finally, we select as the “valid” diatonic
transposition the one with the smallest count of accidentals,
where [ and ] count as 2, and \ and Z count as 1. This allows
us to produce up to 11 variants for each piece, although
the number is lower if all diatonic intervals for a certain
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Figure 4. Chromatic intervals (orange), corresponding dia-
tonic intervals (black) and examples from the tonal-pitch-
class C. The abbreviation for diatonic types are “P”: perfect,
“M”: major, “m”:minor, “A”: augmented, “d”: diminished,
“AA”: doubly augmented.

chromatic interval generate a discarded transposition.

2.3 RNN Architecture

With our input and output choice, the pitch spelling and key
signature estimation problems for one piece can be seen as
a sequence of multi-task classification problems. Our goal
is to assign to each input (i.e., pitch-class p + duration d)
two labels: one among the available tonal-pitch-classes ⌧
and one among the key signatures . Formally, for a piece
C and each note ⌘ 2 @C we seek to learn the function
F : x[⌘] ! y[⌘], where x[⌘] = p[⌘], d[⌘] is our input and
y[⌘] = ⌧ [⌘],[⌘] is our output.

We want the output for each note to be dependent on
the notes around it, and the length of our sequences (i.e.,

the number of notes in a piece) is not fixed. We select as
the core of our model a recurrent neural network (RNN),
that can store information about the “context” in its internal
state for variable-length sequences of inputs. Such a model
can be trained in a supervised fashion on an annotated
dataset that contains for each piece a sequence of pairs
{(x[⌘], y[⌘]), 8⌘ 2 @C}. We optimize the parameters ✓

w.r.t. a classification loss function L:

✓
⇤ = argmin

✓

X

C

X

⌘2@C

L(F✓(x[⌘]), y[⌘])

We select L as the sum of two cross-entropy-loss func-
tions [25], one for the key signature and one for the tonal-
pitch-class. Since L is differentiable, the model parameters
can be optimized using Stochastic Gradient Descent (SGD).

We use a bidirectional RNN to tie the output at a certain
note to the past and future inputs. From a musicological
standpoint, “seeing the future” is useful e.g., to know where
a certain note will resolve. As shown in Fig. 5, the model
has two recurrent layers, each one coupled with a linear
layer. The first produces the tonal-pitch-classes and the
second produces the key signatures. This architecture is
based on the musicological hypothesis that pitch spelling
depends on the local key [6, 7] and the key signature is a
“smoothed” version of the local key. Assuming the first
layer encodes information about the local key, we aggregate
this information in the second recurrent layer to infer the
key signature.

Figure 5. Model architecture. For each pitch-class p and
duration d in input, a tonal-pitch-class ⌧ and a key signature
 are produced.

According to the principle of multi-task learning [26,27],
jointly producing two outputs allows the model to learn
shared representations, thus enabling a better generalization
on both our original tasks.

3. EXPERIMENTS AND RESULTS

We train our model on the pieces from the ASAP
dataset [16]. The dataset provides 222 compositions from
several composers over two centuries: Bach, Beethoven,
Chopin, Schubert, Haydn, Liszt, Schumann, Mozart, Rach-
maninoff, Ravel, Debussy, Scriabin, Glinka, Brahms,
Prokofiev, Balakirev. We remove two pieces because they
overlap with the dataset that we use for pitch spelling eval-
uation (see Section 3.2). All the information we need for
training can be easily extracted from digitally encoded mu-
sical scores, i.e., MusicXML scores for the ASAP dataset.
Such scores contain note durations, tonal-pitch-classes, and
key signatures. From tonal-pitch-classes it is straightfor-
ward to produce pitch-classes using the function in Fig. 1.
Duration and pitch-classes are then encoded as one-hot
vectors, concatenated to a single vector, and fed into our
model. Training on real MIDI performances could also
be performed as long as a note-wise score to performance
alignment is available. Unfortunately, ASAP does not pro-
vide this alignment, and other datasets that provide such
information are considerably smaller.

To evaluate the benchmarked approaches, we use the
accuracy, i.e., the percentage of correctly inferred symbols.
We also use the error rate (1 � accuracy) to improve the
readability of some results.
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3.1 Hyperparameter search

Our model has five major hyperparameters to consider: type
of optimizer, learning rate, batch size, type of recurrent cell,
and number of parameters (number of layers and hidden
state dimension for each RNN). To find the best combina-
tion, we perform a grid search by training our model on
85% of ASAP (187 pieces, 2033 after data augmentation)
and validating on the remaining 15% (33 pieces).

Optimizer. We compare various optimizers from the
deep learning literature, including gradient descent algo-
rithms with adaptive learning rates or momentum. We find
no significant difference in accuracy; though Adam [28] is
easier to tune and converges faster than traditional SGD.

Learning rate. All networks are trained for 40 epochs,
i.e., 40 passes over the whole augmented training set. We
find that a starting learning rate of 0.01, divided by 10 after
20 epochs, allows for fast and robust convergence.

Batch size. We feed mini-batches of sequences in paral-
lel to our model. For batches larger than 32, changing the
batch size has no impact on performance. Larger batches
tend to increase convergence speed but with a higher GPU
memory consumption; thus we settle for a batch size of 32.

Recurrent cell. We compare LSTM [29] and GRU [30]
cells. While the accuracy is similar with the two cells, we
find that GRU cells are faster and use less memory.

Number of parameters. There are two ways to increase
the number of parameters in the RNN: widen it by increas-
ing the hidden dimension, or deepen it by stacking more
layers. More parameters generally entail better performance
on the train set but not necessarily on the test set due to
overfitting. Dropout [31] is required to alleviate overfitting
for a depth greater than 1 or a hidden dimension higher than
⇡ 200. For each of the two RNN in our final model, we set
depth 1 and hidden dimension 300 (150 in each direction).

3.2 Main results

We evaluate the pitch spelling and key signature estimation
results separately.

For pitch spelling, we compare with ps13 and CIV on
the MuseData dataset proposed by Meredith [7]. It consists
of 216 pieces (195 972 notes) from 8 classical composers
(see Table 1) and is also available in a “noisy” version,
where some noise is artificially introduced in the onset and
offset positions to roughly simulate human performances.
There are no pieces in common with our training dataset.
It is worth noting that both ps13 and CIV tune their pa-
rameters on the test data; this can induce overfitting and
thus an optimistic estimate of the system’s performance.
We may notice, for example, that the pieces used to train
CIV (all Beethoven’s, one-third of Haydn’s, and one-third
of Mozart’s), correspond to the pieces in which CIV has
the highest performance compared to our system. More-
over, both ps13 and our system are evaluated on the “noisy”
dataset, while CIV is evaluated on the quantized dataset. We
report our evaluation results in Table 1. PKSpell establishes
new state-of-the-art performances on the pitch spelling task.
It does 256 errors, around 25% less than CIV (343) and 75%
less than ps13 (1064). The learned model has an excellent

generalization, going close to zero error if the pieces have a
unique strong tonal center (e.g., Corelli, Handel, Telemann,
Vivaldi). More difficult are instances when multiple modula-
tions happen during a short time span (e.g., Bach chorales),
and especially around abrupt key signature changes (e.g.,

Beethoven). The error count for Haydn is particularly high
because of the piece Symphony No. 100 in G major, where,
at measure 166 there is a sudden change from DZ major to
C\, to make the music easier to read with fewer accidentals.
This kind of enharmonic key change is rare in music and our
system fails to detect it. 6 It is worth noticing that, while
our model allows a pitch-class to be classified in a non-
correspondent tonal-pitch-class (e.g., 2!G\), this kind of
error is completely absent in our results. Our model learns
very easily to perform the mapping of Fig. 1, especially
when using the augmented dataset.

While a direct evaluation of the key signature estimation
is not possible due to the lack of other approaches targeting
this task, we put into perspective our results by evaluating
our system on the Albrecht dataset [14] and comparing it
with the state-of-the-art results for the global key signature
estimation of López et al. [15]. Our task can be considered
easier because we do not need to separate major keys from
minor keys; however, while we are considering all enhar-
monic key signatures (e.g., DZ with five flats is considered
equivalent to C\ with seven sharps), López is flattening all
enharmonic versions of a key to the same class. After re-
moving the pieces in common with ASAP, we are left with
932 pieces. We correctly classify 97% of the global key
signatures. For comparison, López et al. correctly classify
94% of the keys. Of the 29 misspelled pieces, eight are
mapped to enharmonically equivalent key signatures, in
particular, there is confusion between the C\ and DZ and
between F\ and GZ. The remaining 21 wrong estimations
are off by one accidental, i.e., the predicted key signature is
the relative 4th or 5th of the true key signature.

3.3 Ablation Studies

We perform several ablation studies to understand how our
design choices impact the model performance. For each
experiment, we remove one element from PKSpell and see
how this affects the model performance. If the element is
useful, we expect a reduction in the accuracy (see Fig. 6).

Single RNN. As previously introduced, PKSpell uses
two recurrent layers, one for pitch spelling and another
for key signature estimation. To evaluate this idea, we
build a model that has a single recurrent layer for both
tasks. A detailed analysis shows that one-layer-PKSpell
slightly outperforms the two-layer model when the tonal
center is very stable. However, the two-layer model majorly
improves the results for more pieces with modulations and
key changes. On the ensemble of considered composers,
the usage of two separate RNN layers boosts the accuracy,
especially for key signature estimation (+3%).

Separate learning. Multi-task learning can help lever-
age domain-specific information contained in related but

6 ps13 manually transposes half of this piece before evaluation. There
is no indication of its treatment by CIV.
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Bach Beethoven Corelli Handel Haydn Mozart Telemann Vivaldi Total

ps13 [7] 0.17%
(42)

1.41%
(345)

0.04%
(11)

0.26%
(68)

0.94%
(220)

0.23%
(282)

0.34%
(82)

0.39%
(114)

0.59%
(1064)

CIV [10] 0.10%
(25)

0.10%
(25)*

0.08%
(20)

0.02%
(6)

0.45%
(110)*

0.33%
(79)*

0.05%
(13)

0.27%
(65)

0.18%
(343)

PKSpell
0.08%

(19)
0.23%
(56)

0.02%
(5)

0.02%
(5)

0.49%
(121)

0.14%
(35)

0.02%
(4)

0.04%
(11)

0.13%
(256)

Table 1. Error rate and the number of errors (between parentheses) for different composers in Meredith’s Musedata pitch
spelling dataset [7]. For ps13 and CIV, we took these values from the respective papers. The symbol * marks the results for
the composers used to set the parameters for CIV. The best result for each composer is highlighted in bold.

Figure 6. Accuracies for the ablation tests. Results are
reported on the validation set of ASAP (33 pieces).

different tasks. This is the case in our system, as the accu-
racy for both PS and KS estimation improves when trained
jointly compared to two distinct RNNs used separately.

No data augmentation. In theory, more data should
improve the generalization of the model, provided that the
augmented samples are representative of future observa-
tions. In our case, data augmentation provides a significant
accuracy boost, especially for key signature estimation.

No durations. We use the duration of notes as an input
feature for our model. While this is common in key estima-
tion systems, multiple approaches to pitch spelling in the
literature do not use this information [3, 7]. We find that
durations improve our results, especially for KS estimation.

Unidirectional RNN. The RNN layers we consider can
process a sequence either in one direction (usually left-to-
right, LTR) or in a bidirectional manner, both LTR and RTL.
We expect the bidirectional processing to perform better
since the model also “sees” future notes. In our ablation
experiment, both PS and KS accuracies increase by more
than 1 point by using both directions (we keep the same
number of parameters by dividing the hidden dimension by
2 when we use the bidirectional model). Note, however,
that the unidirectional LTR model still works reasonably
well and could be used for a real-time version of our system.

4. CONCLUSIONS AND PERSPECTIVES

We introduce PKSpell, a novel system for joint pitch
spelling and key signature estimation that reaches new state-
of-the-art performances on pitch spelling, is easy to inte-
grate into a MIR pipeline, and works on any MIDI file,
including human performances. To reach this goal, we per-
form multi-task learning with an RNN model inspired by
musicological insights. We propose a data augmentation
procedure and a preprocessing of note durations to general-
ize to different transpositions, tempos, and time signatures.
We consider a minimal set of inputs (pitch-classes and note
durations) that do not require high-level information such
as time signature, voice separation, and downbeat position.
The pre-trained model we provide can be used “as-is” and
offers good performance for classical music of different
centuries. Thanks to the ablation study, we directly observe
the impact of the design choices of our system.

Possible future work concerns the evaluation of PKSpell
on different styles of tonal music e.g., pop, folk, and jazz.
We expect it to perform well on pop and folk due to their
low harmonic complexity. Jazz can be more challenging
because of the extensive use of chord extensions and alter-
ations. It is also interesting to study how non-strictly-tonal
music in the ASAP dataset (e.g., Debussy) impacts the train-
ing of our model. While concepts such as key signature
and pitch spelling are less significant for non-tonal music,
they are still used to write musical scores. Since PKSpell
is not based on strong tonal principles, we expect it to be
able to learn those rules as long as some coherent rules exist
for pitch spelling and a large enough dataset is provided.
A more in-depth analysis can be performed on the treat-
ment of rhythmical information, by considering different
ways to group duration values and by varying the number
of groups. Other improvements may be done on the model
architecture: the state of the art for sequence-to-sequence
problems has shifted toward recurrent attentional models
and transformers. However, the length of the sequences we
are considering (more than 15 000 notes for certain pieces)
poses a considerable challenge for full attentional mecha-
nisms, whose memory requirements are quadratic with the
input sequence length. Models that scale linearly have been
recently proposed [32, 33] and could be a solution for this
problem. Finally, it would be interesting to employ our
model to perform local and global key estimation.
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ABSTRACT

The Filosax dataset is a large collection of specially com-
missioned recordings of jazz saxophonists playing with
commercially available backing tracks. Five participants
each recorded themselves playing the melody, interpreting
a transcribed solo and improvising on 48 tracks, giving a
total of around 24 hours of audio data. The solos are an-
notated both as individual note events with physical tim-
ing, and as sheet music with a metrical interpretation of
the timing. In this paper, we outline the criteria used for
choosing and sourcing the repertoire, the recording process
and the semi-automatic transcription pipeline. We demon-
strate the use of the dataset to analyse musical phenomena
such as swing timing and dynamics of typical musical fig-
ures, as well as for training a source activity detection sys-
tem and predicting expressive characteristics. Other poten-
tial applications include the modelling of jazz improvisa-
tion, performer identification, automatic music transcrip-
tion, source separation and music generation.

1. INTRODUCTION

The study of jazz improvisation has often focused on mod-
elling what to play, most recently via deep learning tech-
niques such as transformers [1], language models [2] and
GANs [3]. Other recent work [4] has suggested that how

to play is of equal importance when generating convincing
synthesised performances. To properly examine the minu-
tiae of how a performer plays, one requires a wealth of
clean, isolated and consistent recordings, which are hard
to come by when looking specifically at jazz music.

Another issue when researching the expressive nature
of jazz performances is the difficulty of making pair-wise
comparisons between performers. This is because there is
very little overlap between the recorded corpora of any two
musicians, especially when hoping for consistency of both
key and tempo. Whereas classical music researchers can
draw upon multiple recordings of the same pieces [5, 6],
jazz music researchers have only sparse instances of dupli-
cated “head” statements and common “licks” upon which
to make their comparisons.

© D. Foster and S. Dixon. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
D. Foster and S. Dixon, “Filosax: A Dataset of Annotated Jazz Saxo-
phone Recordings”, in Proc. of the 22nd Int. Society for Music Informa-

tion Retrieval Conf., Online, 2021.

These were the motivations behind the commissioning
and curation of the Filosax dataset, which was designed
to provide both the isolated recordings and homogeneity
of stimuli to allow for the analytical fidelity and inter-
participant consistency that are required. The period 2020-
2021 inadvertently proved a good period for enrolling will-
ing participants, as COVID-related lockdowns meant that
there was a dearth of live performing opportunities, and
hence expert performers and improvisers had more time
and inclination to take part than they might otherwise have
done. The downside of the lockdown backdrop was that
we were unable to record the musicians in exactly the same
environment. We attempted to mitigate for this by collat-
ing an environment-agnostic recording kit, which was sent
between the participants and meant that the recordings are
as consistent as possible.

A novel aspect of the dataset is the dual note-level an-
notations that accompany the audio data. The first is a
segmentation of the soloist audio into discrete note-events
with pitch tags and precise timings, which allows the user
to determine exactly how a note was played. The precise
perturbations of pitch, amplitude and timbre can be mea-
sured and quantified, unencumbered by the requirement to
filter out (or interpolate from) the accompaniment. The
second is a sheet music representation (at a level of de-
tail akin to the “Omnibook” series 1 ), where each note is
assigned a place in the metrical grid by an expert human
jazz transcriber. The mapping between the two annotation
layers provides, perhaps, the most useful insight: given a
sequence of notes, how does the performer play each one,
given its position in the sequence?

We recognise that a set of annotated, source separated
recordings will also be of use to researchers in related
fields, some of which are discussed in section 7. Due to
licensing issues, the full Filosax dataset cannot be made
publicly available, but suitable researchers are welcome to
apply to the authors to receive copies of the non-copyright
material and annotations, along with instructions on how
to purchase the copyrighted material and automatically re-
construct the full dataset.

2. RELATED WORK

The Weimar Jazz Database (WJD) [7] was a landmark in
annotated jazz data, with 456 manually transcribed solos
by 78 performers, and featuring music from a broad range

1
https://www.halleonard.com/series/OMNIBK?

subsiteid=65&&dt=item#products
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of eras (1925-2009). The inclusion of additional infor-
mation about idiom, style, and form allow it to be used
for many MIR purposes as well as ethnomusicological re-
search. For our purposes, it is hampered by the medium
(stereo mixes) and original choice of repertoire (chosen by
the performers for artistic rather than scientific reasons)
from which the authors could only take samples. There
are only 3 pieces played by multiple tenor saxophonists
(“Body and Soul” by 12 musicians, “Night and Day” and
“U.M.M.G.” both by 2 musicians), and there are no read-
able (human corrected) score representations.

The “Dig That Lick” project developed pattern mining
within the WJD [8] as well as the collation of the DTL1000
dataset [9], a set of automated transcriptions of 1750 solos
from 1060 tracks. The algorithm used for transcribing the
melody/lead line achieves a mean F1 score of 0.85, which
the authors suggest is adequate for large-scale pattern min-
ing, but implies that a significant amount of manual correc-
tion would needed for the data to be of sufficient accuracy
for note-level analysis.

The MedleyDB database [10] contains almost 200
tracks with full mixes and separate instrumental/vocal
stems in a variety of styles and with pitch annotations for
the lead line. Less than 10, however, are appropriate jazz
recordings, representing approximately 15 minutes of data.

The best practices for the definition and presentation of
an MIR dataset [11, 12] were useful in guiding the design
and presentation of our dataset. The processes of compil-
ing and annotating the DALI dataset [13] (of synchronised
note/lyric annotations) were similar to the approaches that
we have used, as is the means of addressing the issues
around the distribution of copyrighted material.

3. DATASET CURATION

The diversity within the corpus of recorded jazz music is
so broad that an attempt to capture the full variety of it
within a database of this size would be futile. We chose
to set a goal of a focusing on depth over breadth and, to
this end, decided that we would record a single instru-
ment (the tenor saxophone, possibly the most ubiquitous
melodic instrument in recorded jazz) and a narrow scope
of mid-tempo “standards” with a quasi-fixed tempo, in 4/4
time and a “swing” feel. We chose to engage five expert
performers and improvisers on the instrument, to capture
a variety of expressive approaches and to allow for inter-
participant comparisons to be made.

3.1 Repertoire

To collect a sufficiently varied set of notes, whilst captur-
ing sufficient repeated elements, we decided to base the
dataset on a representative repertoire of pieces. Each par-
ticipant would record themselves playing these pieces with
the same accompaniment, and on each piece would play
the melody (the “head”), interpret a transcribed solo, and
improvise their own solo.

3.1.1 Accompaniment

A dataset which fully encompasses the jazz improvisation
process would capture the interaction between the soloist
and rhythm section. The Filosax dataset does not attempt
to capture this, as to do so would sacrifice the comparisons
which it allows to be made between the various perfor-
mances under identical conditions. Hence, the interaction
process is only in one direction: the soloist can respond to
what is heard on the accompaniment, but there is no oppor-
tunity for the accompaniment to respond or for a feedback
loop to be established.

We chose to use pre-recorded accompaniments from
Jamey Aebersold 2 , a commercial library of “play-along”
tracks recorded between 1967 and the present day. The
library consists of over 1000 tracks of jazz standards,
recorded with different musicians but with a similar au-
dio presentation of piano+drums in the left channel and
bass+drums in the right channel. The use of commer-
cial recordings for this purpose greatly extended the po-
tential repertoire from which we could choose: the alterna-
tives were to use freely available resources (of which there
are very few), commission more recordings or to use syn-
thesised accompaniments. Using any of the alternatives
would be to the detriment of the range or quality of the
data, or would require much more sophisticated record-
ings. The downside to using the commercial recordings is
that we will be unable to distribute them with the dataset.

3.1.2 Solo transcriptions

For the transcribed solos, we sought a group of celebrated
jazz artists, whose stylistic output was somewhat similar
to each other. We selected 6 such musicians who met the
following criteria:

• Made recordings in the 1950’s, 1960’s and 1970’s,
• Made recordings with a discernible and repeated chord

sequence,
• The set of their recorded corpus intersects with the set

of available backing tracks (in the same key and at a
similar tempo).

The musicians chosen (who could broadly be described as
performing within the “hard-bop” sub-genre) were: Stan
Getz, Dexter Gordon, Tubby Hayes, Joe Henderson, Sonny
Rollins and Ben Webster. Each is represented in the dataset
by 8 extracts of their recorded solos, from the private col-
lections of the authors, which were transcribed and typeset
by the authors. The details of the original recordings were
made available to participants, in case they felt it would be
useful in developing their own interpretation.

3.1.3 Piece choice

All of the available Jamey Aebersold accompaniment
tracks were examined and meta-data extracted (tempo, key,
duration, number of choruses, time signature, rhythmic
feel). Candidate pieces were found using the following cri-
teria:

2
http://jazzbooks.com/jazz/JBIO
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• Entirely in 4/4 time, with a quasi-fixed tempo (allowing
for gradual changes),

• With a “swing” feel throughout,
• A repeated chord sequence with sufficient harmonic

movement to not be classed as “modal” (which we
define as having multiple sections where a single
chord is held for longer than 4 bars),

• Tempo in the range 100-240 beats per minute,
• An accompaniment consisting exclusively of piano,

bass and drums.

This truncated list was cross-referenced with the discogra-
phies of the jazz artists listed in section 3.1.2 where, for a
piece to be considered, the recorded version must be: in the
same key, within 10% of the backing track tempo, and with
at least 1 “chorus” of improvisation by the artist. When a
selection (larger than 8) was available, a broad range of
tempos, keys and modalities was sought. The full list of
pieces is given on the dataset web page 3 .

3.2 Participants

The five musicians recruited to make the recordings were
all known to the authors as expert performers and impro-
visers on the tenor saxophone. They were invited to partic-
ipate on the understanding that they had access to an appro-
priate space in which to record themselves, a good quality
instrument and a computer capable of making the record-
ings. On completion of the recordings, they were asked
to take part in an informal follow-up session to review the
transcriptions and to reflect on their experiences of making
the recordings. Each read and agreed to the ethics, infor-
mation and participation forms associated with the study,
and was compensated with an Amazon gift voucher for
£100 on completion of their recordings.

3.3 Recording

The recordings were made consecutively by the five par-
ticipants, in their own homes, having been supplied with a
set of materials, recording equipment and instructions.

3.3.1 Materials

For each of the 48 pieces, the participants were supplied
with a printed copy of the sheet music and a copy of the
corresponding digital audio workstation (DAW) file (seg-
mented into bars and choruses) to record into. Access to
the materials was given prior to receiving the recording
equipment, in case they wanted to prepare.

3.3.2 Equipment

A flight case of equipment was shipped between the partic-
ipants, containing an Aston Stealth microphone, a Focus-
rite Scarlett Solo USB audio interface, a reflection shield,
closed-back headphones, microphone stand, XLR cable
and USB cable. Directions on how to assemble and set up
the equipment were given, where the settings for the micro-
phone and audio interface were prescribed. Suggestions of
how to choose and prepare a suitable room were included,

3
https://dave-foster.github.io/filosax/

as well as the exact positioning of the microphone from the
instrument.

3.3.3 Instructions

Participants received a document containing detailed infor-
mation on the goals of the data collection, and how to ap-
proach their interpretation of the material. For the “head”
section, they were told to perform this freely, as if in a live
performance: adding, removing, changing or moving notes
as they please (whilst still ensuring that it is identifiably the
melody). For the interpretation of the recorded solo, they
were asked to play accurately, to the best of their ability,
without intentionally changing notes but with grace notes,
articulation, slurs and “scoops” as they felt. For the im-
provised sections, they were asked to approach this more
as a practice session than a concert: that is, to include rep-
etition, longer notes, and to explore the full tessitura and
dynamic range of the instrument, more than they might
otherwise do in a concert setting.

4. ANNOTATION

The recordings in their entirety were annotated at two lev-
els: firstly, an accurate list of note start times, end times,
and homogenised pitch (semitone granularity); secondly,
a simplified sheet music representation, where an inter-
pretation of the intended rhythm was notated, using a
pre-determined set of granularity assumptions. Figure 1
shows the semi-automatic transcription pipeline that was
developed for the expedited and accurate annotation of the
recordings. Commercially available software was used to
aid with the rough segmentation of the audio into discrete
note events, before standard MIR packages were used to
obtain the absolute temporal boundaries of each event.

4.1 Initial Annotation

4.1.1 Bar / Beat Annotation

The annotation process began before the recordings were
made. The backing track audio files were imported into
the DAW Logic 4 , having first been normalised into the
range [�1, 1] in Audacity. The “Smart Tempo” function (a
proprietary beat mapping algorithm) was used to annotate
the file into bars and beats, and corrected by the authors
where the downbeat or tempo scale was wrongly inferred.
Choruses were duplicated or deleted at this stage, so that
the duration of each piece was between 5:50 and 6:20 min-
utes. Finally, markers were added to correspond with the
rehearsal marks on the sheet music, to visually guide the
participants whilst they were recording.

4.1.2 Approximate note segmentation

When a participant returned a completed file, the note seg-
mentation transcription could take place. This was ini-
tially done with the Logic “Flex Pitch” function (another
proprietary algorithm, which performs pitch and onset de-
tection), with human correction both before and after con-
version to MIDI. The authors found that, on average, 9%

4
https://www.apple.com/uk/logic-pro/
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Figure 1: The annotation pipeline. Blocks with dashed lines signify those steps which are manually checked.

of notes in a file needed revising for pitch, timing, sepa-
ration or concatenation. At this stage, the ground truths
regarding the correct number (and order) of note events,
their homogenised pitches and approximate timings were
established, with the exact values being confirmed at a later
stage, described in section 4.2. This workflow was found
to maximise the utility of the human intervention (identi-
fying pitches and approximate note boundaries), allowing
the exact timings to be sought automatically.

4.1.3 Sheet music representation

The resulting MIDI track from the previous stage was du-
plicated for the basis of the sheet music representation,
which was found to be of sufficient accuracy for this pur-
pose. A granularity of triplet semiquavers was used, but
only for notes which were as short as that (for example, in
a rapid run of notes). In the main, we determined that a
quantisation to a grid of quavers (for both onsets and off-
sets) would best match the idiomatic style of notation and,
by doing so, adhere to the convention of notating off-beat
quavers as being “on the grid”, regardless of the amount
of “swing” that was used to delay them. After this ini-
tial quantisation, notes of a shorter duration were human-
edited for rhythmic value on a case-to-case basis, where an
ethos of readability over absolute temporal accuracy was
employed in ambiguous cases.

Grace notes were consistently notated as acciaccatura,
placed a triplet semiquaver ahead of the beat, for easier
identification later in the pipeline. No slurs, dynamics or
articulations are included in the annotations, which are left
by the authors for possible future rounds of annotation,
where the audio data could be used to generate suggestions
in each case. In the sheet music which accompanies the
dataset, there is a small exception, in that staccato crochets
are used for readability whenever an on-the-beat quaver is
followed by a quaver rest (similarly for staccato quavers).

4.2 Refined Annotation

4.2.1 Note boundaries

The three audio files (saxophone and split backing track)
were exported from Logic, along with a MIDI file, contain-
ing the bar and beat timings and the two sets of note anno-
tations. These were all processed by a Python script (us-
ing mido 5 for MIDI functions), for finding accurate note
timings and for serialising the data into the final database
format. The former was performed by separating the audio
into “phrases” (consecutive sequences of notes found in the

5
https://github.com/mido

sheet music representation) by identifying gaps between
note events in the score representation. These “phrases”
may not correspond with the traditional definition, as they
can contain just a single note.

The time values from the approximate note segmenta-
tion were used as estimates of the temporal mid-point of
each note, so for a note Nk with approximate start and end
times t̂sk and t̂

e
k, the mid-point t̂mk = (t̂sk + t̂

e
k)/2.

We formally describe the process for refining the note
boundaries as follows. Each performer’s interpretation of
a piece is said to consist of a sequence of I phrases (Pi)Ii=1,
where each phrase Pi is a sequence of Ki sounding entities
Nk with approximate start, mid-point and end (t̂sk, t̂mk and
t̂
e
k), start time t

s
k, end time t

e
k and pitch fk. Hence,

Pi =(Nk)
Ki
k=1, where Nk = (t̂sk, t̂

m
k , t̂

e
k, t

s
k, t

e
k, fk).

(1)
The phrases do not overlap, so Pi(teKi

)  Pi+1(ts1) for
each i. Iterating by phrase, the corresponding audio was
analysed using both the Madmom [14] “CNNOnsetPro-
cessor” and Essentia [15] PYIN [16] implementation, giv-
ing a sequence of onsets (Oj)Jj=1, a pitch curve F (t)
(a sequence of real or null values for each time frame
t 2 [Pi�1(tek), Pi+1(t̂s1)) and a loudness curve L(t) (a se-
quence of loudness values for each time frame t).

The start time tsk and end time tek (in frames, where tsk <

t̂
m
k < t

e
k) for each Nk is determined by looking backward

and then forward from the mid-point, so,

t
s
k = max{tek�1, F

s
null + 1, Ls

quiet + 1}, (2)

t
e
k = min{F e

null � 1, Ofirst , L
e
quiet}, (3)

where F
s
null and F

e
null are the time steps of the first null

pitch value encountered, counting backwards and forwards
from the mid-point t̂mk respectively, Ofirst is the first onset
encountered after the mid-point, and L

s
quiet and L

e
quiet are

the first times (before and after the mid-point) when the
loudness L < Lthresh , a threshold value. The notes are
sequential and monophonic, hence t

e
k  t

s
k+1 for each k.

In the event of a continuous pitch curve and absence of
a detected onset on or around the expected position of the
boundary between two entities Nk and Nk+1, we define:

t
e
k =

8
>>>><

>>>>:

t̂
e
k, whenfk = fk+1,

argmint{F (t) >
fk + fk+1

2
}, whenfk < fk+1,

argmint{F (t) <
fk + fk+1

2
}, whenfk > fk+1.

(4)
Where an onset occurs before the first pitch value (likely

due to a breath or key noise) or there is a gap in the pitch
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curve between neighbouring notes (tek < t
s
k+1), an un-

pitched entity object is recorded in the sequence. If KP
i

is the number of pitched entities and K
U
i the number of

unpitched entities in each phrase Pi, then Ki = K
U
i +K

P
i

and K
P
i � K

U
i .

The output of this process is manually validated by the
annotator by listening concurrently to the original record-
ing and a synthesised version of the annotations.

4.2.2 Note attributes

With the exact timing of all the notes now known, the at-
tributes of each note can be extracted. Another Python
script is employed to automate this process, where it cap-
tures both the continuous curves and interpolates landmark
values. The pitch curve is extracted (again with the Essen-
tia PYIN function, and constrained to the vicinity of the
determined pitch), and the average pitch, time to average
pitch, and average vibrato rate and extent (using Essentia
functions) are all estimated. Similar curves and features
are extracted for amplitude, spectral centroid and spectral
flux. It is these attributes that we identified as crucial to the
initial goal of studying expressive performance: other use
cases for the dataset may require different features, the ex-
traction of which could be automated in a similar fashion.
The chord(s) over which the note is played is derived from
the published chord sequence, and used to derive the scale
degree(s) relative to the chord root.

4.3 Dataset structure

The dataset D is presented as an ordered set of uniquely
identifiable sounding entities (pitched and unpitched),
which have the following attributes:

• start_time,
• end_time,
• musician_number,
• piece_number,
• bar_number,
• bar_type (head, written solo or improvisation),
• tempo.

In addition, pitched entities have the following attributes:

• MIDI_pitch,
• score_start_time,
• score_end_time,
• score_rhythmic_position,
• score_rhythmic_duration,
• is_grace_note,
• chord_changes (an array, of length 1 for short

notes, and possibly > 1 for longer notes),
• scale_degrees (an array).

The entities are collected sequentially in a JSON file (con-
forming to the JAMS specifications [17]), allowing for
easy searching, analysis and n-gram construction. The
data is also made available as a set of both MIDI and
MusicXML files (the latter just containing the sheet mu-
sic representation), although the entities themselves con-
tain all the information needed to reconstruct both of these
formats. The attributes described in section 4.2.2 are also
contained in the JSON file, as are the corresponding full
curve values.

Figure 2: The ‘swing ratio’ of a single participant as a function
of tempo. Each point represents the mean tempo and ratio of
quavers played in a single piece.

5. ANALYSIS

We present the results of two analysis studies of the Filosax
dataset, making comparisons with previous analysis of
similar data, as demonstrations of how the dataset can be
used.

5.1 Swing Ratio

The presentation of the pitched entities (described in
section 4.3) allows for the “groove” or “swing” of
a note to be instantly calculated, by comparing the
score_start_time attribute (the time at which
the note starts in the score representation) to the
start_time attribute (when the note actually starts).

Figure 2 shows the “swing ratio”, the duration of the
first of a pair of quavers divided by the duration of the sec-
ond, as a function of the current speed of the piece. The
blue line-of-best-fit shows the same negative correlation
found in other analyses of swing rhythm [18–20].

5.2 Enclosed notes

“Enclosing” notes is a device used in the construction of
“bebop” phrases, where a chord tone is preceded by both
a note above and below (diatonically or chromatically). To
show how the dataset can be used for deriving performance
parameters, we search the dataset for instances of these 3-
grams of consecutive quavers.

Figure 3 shows the range of loudness values where the
third note is an off-beat chord tone, and the preceding notes
are above and then below that pitch. The graph on the left
is derived from instances where one or both of the preced-
ing notes are greater than a tone away, and on the right
where both preceding notes are within a tone (“enclosed”).

In the first case, the notes are given almost equal empha-
sis, whereas the second case shows a characteristic empha-
sis on the first and (to a lesser extent) third notes, by means
of “ghosting” (placing less emphasis on) the second. The
ranges derived could be used as probability distributions
for generating phrase-level performance instructions.
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Figure 3: Relative loudness of quavers approaching an off-beat
chord tone (3) from above (1) and below (2).

6. EXPERIMENTS

6.1 Activity detection

The Filosax dataset was used to train a system for saxo-
phone activity detection from mixed recordings, that out-
puts a binary value for each time frame. The solo saxo-
phone recordings were used to generate the ground truth,
and mixes of the three stems were used as input. A varia-
tion of the U-Net architecture used for the similar task of
vocal detection [21] was employed, and various input rep-
resentations were experimented with.

The best performing combination used a CQT input
(achieving an AUROC mean of 0.933), slightly higher than
was achieved for vocal activity detection in the original pa-
per (AUROC mean of 0.924). Neither the use of joint train-
ing (separation and detection), HCQT input nor HCQT
with phase input yielded any improvement in results.

6.2 Expressive Timing

A sequence-to-sequence language model was used to pre-
dict performance parameters by framing the problem as
a translation task: a “sentence” of “words” (a phrase of
notes, using attributes from the dataset) was “translated”
into a sequence of expressive instructions (timing, loud-
ness and articulation, all derived from the dataset) via word
embeddings and a context vector.

This preliminary system was able to learn the funda-
mentals of “swing” rhythm (despite it not being explicitly
encoded in the input representation), but the rendered out-
put, in its current state, is not of a standard that will impact
the bookings of any human jazz musicians. Refinement of
this system will form the basis of future research.

7. POTENTIAL APPLICATIONS

We outline several potential applications for the Filosax
dataset, outside the field of expressive performance.

7.1 Jazz Improvisation

The dataset contains multiple hours of improvised jazz so-
los, with corresponding chord and form annotations, which
those researching what to play could use to train their sys-
tems, either as a standalone resource or augmenting an-
other dataset. The range of performances of the “head” of
each piece could aid in the study of melody interpretation,
and the performances of the transcribed solo could inform
research in jazz education.

7.2 Predominant Melody Extraction

Predominant melody extraction in jazz has been restricted
to using note annotations with the ensemble record-
ing source [22, 23]. With the Filosax dataset, this
type of system could be trained with various mixes of
soloist/accompaniment, potentially leading to a system
which is more robust to variations in melodic prominence.

7.3 Source Separation

Similar to the previous use case, the 3 distinct audio stems
could be leveraged to develop jazz-specific source separa-
tion architectures, or existing architectures could be trained
with the data. This could lead to improved methods for
isolating the solo instrument on jazz recordings which, in
turn, could inform more accurate automated data collection
from ensemble recordings.

8. DISTRIBUTION

The backing tracks and the melodies are all under copy-
right, so the Filosax dataset cannot be made public. To
ensure reproducibility and to facilitate the adoption of the
dataset, we will allow researchers (on application) to ac-
cess the saxophone recordings, annotations and sample
notebooks on the Zenodo repository 6 . We will also pro-
vide the list of backing tracks required, and a Python mod-
ule for checking, normalising and segmenting (see section
4.1.1) the files, in order to accurately reconstruct the data.
The module is part of mirdata [24], an open-source tool for
the distribution of datasets and corresponding annotations,
which ensures that the user has the canonical version of all
the components.

9. CONCLUSION

No jazz musician ever decided the programme of their con-
cert or album based on what might be useful to future sci-
entists, nor intentionally played an identical chorus to that
played by one of their peers because it would provide use-
ful data. We propose that the introduction of the Filosax
dataset somewhat tackles these issues, and does so without
unduly compromising the stylistic or artistic credibility of
the music. The data has already proved to be an invalu-
able resource for our ongoing research, and we share our
rationale, methodology and the data itself in the hope that
it may also be for others.

6
https://zenodo.org
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ABSTRACT

We introduce a novel and interpretable path-based music
similarity measure. Our similarity measure assumes that
items, such as songs and artists, and information about
those items are represented in a knowledge graph. We find
paths in the graph between a seed and a target item; we
score those paths based on their interestingness; and we
aggregate those scores to determine the similarity between
the seed and the target. A distinguishing feature of our sim-
ilarity measure is its interpretability. In particular, we can
translate the most interesting paths into natural language,
so that the causes of the similarity judgements can be read-
ily understood by humans. We compare the accuracy of
our similarity measure with other competitive path-based
similarity baselines in two experimental settings and with
four datasets. The results highlight the validity of our ap-
proach to music similarity, and demonstrate that path in-
terestingness scores can be the basis of an accurate and
interpretable similarity measure.

1. INTRODUCTION

The concept of similarity is central to music information
retrieval, as it underpins important applications like rec-
ommender systems and visualisation in user interfaces [1].
In recent years, there has been a surge in the use of knowl-
edge graphs to solve various information retrieval tasks.
For example, knowledge graphs have been applied to rec-
ommender systems [2] and question answering [3]. In this
work, we use knowledge graphs to gauge music similarity.
We introduce a novel path-based similarity measure. We
represent items, such as songs and their artists, and infor-
mation about those items in a knowledge graph; we find
paths in the graph between a seed and a target item; we
score those paths; and we aggregate the scores to deter-
mine the similarity between the seed and the target.

We propose to score paths based on interestingness. In-
terestingness is introduced in [4] as a way of distinguishing

© G. Gabbolini and D. Bridge. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: G. Gabbolini and D. Bridge, “An interpretable music similarity
measure based on path interestingness”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

Path (in natural language) Int.
George Jones was married to Tammy Wynette. 0.60
Tammy Wynette was the parent of the
artist Georgette Jones and George Jones
was also the parent of the same artist.

0.56

Tammy Wynette wrote “Our Private Life”
and George Jones also wrote the same song. 0.45

Tammy Wynette has made country music,
and so did George Jones. 0.34

Tammy Wynette was based in United States and
George Jones was based in the same country. 0.31

Tammy Wynette was a solo artist,
and George Jones was a solo artist. 0.29

Table 1. An example of the working of our proposed sim-
ilarity measure. In this example, it is given the artists
Tammy Wynette and George Jones as seed and target
items.

more interesting from less interesting paths in a knowledge
graph. In [4], the authors use what they call segues to con-
nect a song to the next song, e.g. in a playlist. Segues are
translations into natural language of interesting paths in a
knowledge graph. We also employ the path-to-text mod-
ule from [4], useful to translate paths to natural language.
In this paper, we are extending [4] by showing that these
paths and their interestingness scores can be the basis of an
accurate and interpretable similarity measure.

For example, given the artists Tammy Wynette and
George Jones as seed and target, our algorithm finds six
paths between the two items, then it assigns an interest-
ingness score to the paths, and it aggregates the scores to
determine the similarity. It can convert the paths to natural
language for display to a user. We report in Table 1 its nat-
ural language translations of the paths (Path column) and
the interestingness scores (Int. column).

A distinguishing feature of our similarity measure is its
interpretability. Miller defines interpretability as the de-
gree to which a human can understand the cause of a deci-
sion [5]. According to this definition, our similarity mea-
sure is interpretable. Users can understand the causes of a
similarity score by looking at natural language translations
of the paths used to compute it, ranked by their interest-
ingness. For example, a user can understand why our al-
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gorithm thinks that Tammy Wynette and George Jones are
similar, when presented with the ranked list of explanations
in Table 1. Notice how the interestingness score intuitively
reflects the interestingness of the paths. For example, two
artists being married has higher score than two artists both
being solo singers.

Music similarity measures are usually not interpretable,
e.g. see [6]. This may be related to a system-centric re-
search protocol, which is common in the field, and con-
sists of laboratory experiments conducted without end-user
involvement, e.g. the evaluation of algorithms on digital
databases [7]. This protocol is pragmatic but it may have
contributed to widening the “semantic gap” in music simi-
larity measures, which sets a bound on user satisfaction [1].
The term “semantic gap” refers to the discrepancy between
high-level perception of similarity by humans and the low-
level numerical data used by algorithms [8]. For example,
a user might perceive two songs as similar because of their
lyrics, while an algorithm might be limited to using ab-
stract statistical descriptors operating on the audio signals.
One way of alleviating the semantic gap is the introduction
of mid-level features. Mid-level features either combine
low-level features or extend them to ones that incorporate
additional, higher-level knowledge [1]. Another way of re-
ducing the gap is the adoption of interpretable similarity
measures. An interpretable similarity measure can narrow
the gap between the low perceptual level of an algorithm,
which makes a decision about similarity, and the high per-
ceptual level of a human, by providing an explanation for
the human to understand the decision.

The remainder of the paper is organised as follows: in
Section 2, we frame our similarity measure in the litera-
ture of the subject; in Section 3, we formalise our similar-
ity measure; and, in Section 4, we validate our similarity
measure in four experimental conditions. The source code
supporting this study is freely available. 1

2. RELATED WORK

The concept of similarity is central to Music Information
Retrieval. Over the years, researchers have proposed many
ways of measuring music similarity, which can be cate-
gorised based on the data they use. We might, for exam-
ple, categorise them into two: content-based approaches
that use the audio signal; and context-based approaches
that use information about artists and the pieces of music
themselves, e.g. their lyrics, listening logs, and so on [9].
We refer the reader to the book by Knees & Schedl [6] for
an extensive review of content-based and context-based ap-
proaches. The similarity measure that we propose in this
paper is context-based.

Some of the context-based approaches make use of
knowledge graphs. These approaches represent entities
from the music domain and information about those en-
tities as nodes in a graph, and they use graph structure to
gauge similarity. (We define knowledge graphs more for-
mally in Section 3.1.)

1 https://github.com/GiovanniGabbolini/ipsim

Many knowledge graph-based approaches to the mea-
surement of similarity are path-based. They use the ex-
istence of paths between the seed and the target entities
to determine similarity. Path-based algorithms usually
score paths based on some criteria, and then aggregate path
scores to determine similarity. For example, in [10] Leal
et al. describe Shakti. Shakti scores each path by sum-
ming hand-crafted node weights and edge weights, and
then dividing by the cube of the path length. Shakti only
considers paths whose length falls below a fixed thresh-
old. In [11], Strobin & Niewiadomski extend Shakti by
setting node and edge weights using a genetic algorithm.
This extension evolves different sets of weights indexed by
path length, and considers paths of any length. They adjust
node weights by considering centrality, i.e. the number of
in-going and out-going edges of a node.

Passant proposes another path-based algorithm, called
LDSD [12]. LDSD considers only paths of length up to
two. It assigns low scores to paths whose type is com-
mon in the context of the seed and target entities. Piao &
Breslin extend LDSD in [13]. They propose four variants
of LDSD, which correct the path scoring mechanism with
global information, such as the frequency of path types in
the whole knowledge graph. In a comparative study, Piao
et al. show that LDSD largely outperforms Shakti in accu-
racy [14].

The similarity measure that we propose in this paper is
also path-based. It is different from the works in the liter-
ature as we employ a novel scoring mechanism for paths,
based on their interestingness.

As well as path-based approaches to the measurement
of similarity, there are also embedding-based approaches.
These work by representing the knowledge graph in a
dense, low-dimensional feature space, which tries to pre-
serve as much of the graph’s structural information as pos-
sible. There are several ways to learn knowledge-graph
embeddings. We refer the reader to [15] for a survey. Once
the embeddings are learned, the similarity between entities
can be computed on their vector representations using, for
example, cosine similarity.

Path-based and embedding-based approaches to the
measurement of similarity differ in their interpretability.
In [16], Du et al. provide a characterization of approaches
based on their potential for interpretability. They intro-
duce the concept of intrinsic interpretability, which is
achieved by constructing self-explanatory models. Path-
based approaches typically exhibit intrinsic interpretabil-
ity, since the paths used to gauge similarity can be consid-
ered to be self-explanatory. Embedding-based approaches
do not exhibit intrinsic interpretability, since the embed-
dings used to gauge similarity cannot be considered to
be self-explanatory. As a consequence, path-based ap-
proaches are interpretable after the translation of the paths
to natural language, while embedding-based approaches
can become interpretable only after the introduction of a
post-hoc model, built to generate explanations [16].

Path-based approaches are not the only category of sim-
ilarity measures to feature intrinsic intepretability. For ex-
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Figure 1. A simple knowledge graph.

ample, if items are described by sets of tags, then Jaccard
similarity over tags also exhibits intrinsic intepretability.
The similarity can be explained by showing the tags shared
between the seed and the target. Even so, we find a scarcity
of interpretable similarity measures in the literature; the
book [6] contains very few, for example.

We mention that Passant’s LDSD is also interpretable,
since Passant implements a mechanism to translate paths
to natural language [12] .

3. METHOD

As we have already indicated, our approach to the mea-
surement of similarity of entities in knowledge graphs is
path-based. It builds on work described in [4], where the
authors introduce interestingness as a way of distinguish-
ing more interesting from less interesting paths in a knowl-
edge graph.

In the following, we first introduce some preliminary
concepts, then we review [4]’s definition of interesting-
ness, and finally we introduce our similarity measure.

3.1 Preliminaries

Both our work and [4] make use of a knowledge graph G as
an abstract representation for items and information about
those items. In the experiments that we report later in this
paper, items are artists; in [4], items are songs. But the
approach is domain-independent: items can be any entities
of interest.

A knowledge graph is a set of triples G =
{(e, r, e0) | e, e0 2 E, r 2 R}, where E and R
denote, respectively, the sets of entities (nodes)
and relationships (edges). For example, the knowl-
edge graph of Figure 1 contains three triples,
{(e1, r1, e2), (e1, r2, e2), (e2, r3, e3)}. A special
subset of entities I ✓ E, are the items. Every
entity has a type and a value. For example, if an
entity represents an artist, then its type is “artist”
and its value is the URI of that artist. Every edge
(relationship) has a type also. For example, an edge
that connects two artists who have collaborated will
have “collaborated with” as its type.

A path p in G is an ordered list of entities and edges in
G, p = [e1, r1, ..., rn�1, en] where each triple in p
must be in G. For example, with reference to the
knowledge graph of Figure 1: [e1, r1, e2, r3, e3] is
a path; [e1, r1, e2, r1, e3] is not a path, as the triple
(e2, r1, e3) is not in the knowledge graph. The type
of p is the ordered concatenation of the entity and
edge types in p.

The function paths(i1 , i2 ) finds the paths in G from the
item i1 2 I to the item i2 2 I , without visiting any other
item in I and without cycles. In other words, if items are
songs, for example, then the function finds paths between
pairs of songs, where the paths are not allowed to contain
any intermediate songs.

3.2 Interestingness

In [4], the interestingness of a path in a knowledge graph
is defined as a weighted combination of three heuristics:

Rarity Let T be the set of all path types in G; and let f(t)
be the number of paths in G that are of type t. The
rarity of a path p is defined as:

rarity(p) = 1� f(type(p))

maxt2T f(t)

Unpopularity Let edgeset(e) be the set of in-going and
out-going edges to and from an entity e 2 E in G.
The centrality of an entity e is:

centrality(e) = min

0

@1,
|edgeset(e)|

median
e02E

|edgeset(e0)|

1

A ,

given type(e0) = type(e)

The unpopularity of a path p is defined as:

unpopularity(p) = 1� min
e2p\E

(centrality(e))

Shortness If we define length(p) as the number of edges
in path p, then the shortness of a path is given by:

shortness(p) =
1

length(p)

The interestingness of a path p in G is given by:

interestingness(p) = w1rarity(p)+

w2unpopularity(p)+

w3shortness(p)

Its values range from zero to one. w1, w2, w3 are parame-
ters to be tuned, subject to w1 + w2 + w3 = 1.

In [4], the authors run a user trial where participants are
asked to evaluate segues. They find that interestingness
positively correlates with human perceptions of quality:
interestingness is high for segues perceived as high-
quality, and vice versa. This lends credence to the idea
of using their definition of interestingness in the similarity
measure that we are proposing in this paper.

3.3 Similarity

We define the similarity between two items i1 2 I and
i2 2 I as an aggregate of the interestingness of the paths
between them:

sim(i1, i2) =
X

p2paths(i1,i2)

interestingness(p) I(p, n)
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where I is an indicator function: I(p, n) = 1 if
length(p)  n, and 0 otherwise. n is a parameter whose
value determines whether the aggregation restricts atten-
tion to shorter paths or whether it considers all paths (n =
1). It is not clear a priori whether it is beneficial to put a
limit on path length and, if so, what limit to use. For ex-
ample, [12] use only paths of length up to three, while [11]
uses all paths. In our case, we leave the choice open by in-
troducing the parameter n to be tuned. The interestingness
weights w1, w2, w3 are also parameters to be tuned.

In the following, we refer to our similarity measure as
IPSIM (Interesting Path Similarity). IPSIM is domain-
independent. In the rest of this paper, we focus on the
music domain, and in particular the case where items are
music artists. The reason we focus on artist similarity is
that it is a common choice in the literature and there is an
amount of data to use in offline experiments.

4. EXPERIMENTS

We provide an evaluation for IPSIM in the case of music
artists. In this evaluation, we are particularly interested in
evaluating the accuracy that IPSIM is able to achieve.

4.1 Knowledge graph

We represent an artist with their MusicBrainz URI. 2 This
representation can be easily changed with only minor mod-
ifications to the rest of our implementation, e.g. if artists
were instead represented by their Spotify URIs.

Our implementation uses a knowledge graph with 30
distinct node types and 205 distinct edge types. It is built
with data that we harvest from two resources:

MusicBrainz We use MusicBrainz as the main source of
factual data. We exploit the MusicBrainz APIs. 3

They allow us to navigate the MusicBrainz database,
and offer entity-linking functionalities. We mine dif-
ferent sorts of factual data, ranging from the birth
places of the artists to the genres that they play.

Wikidata We use Wikidata as an additional source of
factual data. 4 There exists a mapping from Mu-
sicBrainz URIs to Wikidata URIs, making it easy to
use both resources. From Wikidata, we mine bio-
graphical data about artists that is not available in
MusicBrainz, e.g. the awards that an artist has won.

We provide a complete description of entities and relation-
ships that build up the knowledge graph that we use in this
paper in the additional materials. 5

4.2 Experiment design

As highlighted by Knees & Schedl [1], there is no agree-
ment upon the best method to evaluate the quality of mea-

2 https://musicbrainz.org/
3 https://python-musicbrainzngs.readthedocs.io/

en/v0.7.1/
4 https://wikidata.org/
5 https://doi.org/10.5281/zenodo.5121460

sures of music similarity. Every method has its own ad-
vantages and disadvantages. In this paper, we assess music
similarity measures using two common experimental set-
tings. The first uses a similar-artists ground-truth, and the
second uses user-artist interaction histories.

4.2.1 Using a ground-truth

This evaluation procedure replicates the one in [17]. The
procedure uses datasets that are composed of tuples of the
form (seed artist, similar-artists ground-truth). In other
words, for each seed artist, it gives a list of artists that have
been independently judged to be similar to the seed, these
artists being regarded as the ground-truth. We employ two
datasets:

MIREX: This dataset comprises 188 seed artists. The
ground truth is based on similarity judgements ex-
pressed by experts during the MIREX Audio Music
Similarity and Retrieval Task.

LastFM-g: This dataset comprises 2336 seed artists. The
ground truth is based on similarity judgements gath-
ered from the Last.fm APIs. 6

See [17] for additional details on these datasets.
To evaluate a similarity measure on a given dataset, we

do the following. For every seed artist, we use the similar-
ity measure to score the other artists and then to rank them
by decreasing similarity with the seed. Then, we compare
this ranking @N with the ground-truth from the dataset,
according to the standard accuracy metrics nDCG and Pre-
cision, or Pr for short.

4.2.2 Using interaction histories

This protocol uses a dataset that records how users have
interacted with artists. We denote with U , I the sets of
users and artists resp. and with |U |, |I| their cardinalities.
Lower case letters u, i refer to u 2 U , i 2 I . In this case,
the dataset is organised as a matrix R 2 R|U |⇥|I|. Each
cell rui > 0 of R accounts for a user-artist interaction. If a
user u is not known to have interacted with an artist i, then
rui is zero.

We employ two datasets of this kind:

LastFM-h: In this Last.fm dataset (which is different from
the one described earlier), rui is the listening count
by user u of artist i [18]. 7 We filter out users who
have listened to fewer than five artists, and artists
listened to by fewer than five users. We end up with
1877 users and 2828 artists. We convert listening
counts to ratings on a 1–5 scale following the pro-
cedure given in [19]. For every user, we hold-out
at random 40% of her interactions, and we keep the
other interactions as training data. We further split
the held-out interactions into two equal-sized parts,
to form validation and test data. Finally, we remove
the interactions where rui < 4 from the validation
and test data so that they only contain artists that the
users like.

6 last.fm
7 https://grouplens.org/datasets/hetrec-2011/
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Facebook: This dataset, from the Second Linked Open
Data-enabled Recommender Systems Challenge,
contains items liked by users in three domains:
movies, books and music. 8 We focus on music
artists, by keeping only items of types: music_artist
and music_band. We filter out artists liked by fewer
than five users, and those whose MusicBrainz URI
cannot be resolved. We end up with 52069 users and
4435 artists. In this case, rui = 1 if the user u likes
the artist i. For every user, we hold-out 40% of her
interactions at random, and we keep the others as
training data. We further split the held-out interac-
tions into two equal-sized parts, to form validation
and test data.

For these two datasets, the evaluation procedure uses
the similarity measure as a core component within a rec-
ommender system. The design of the recommender system
is inspired by [13], chosen because of its heavy reliance on
similarity, which is what we are trying to evaluate. We de-
fine the user profile of a user u as the artists she has rated
(in the training set):

P (u) = {j|ruj 6= 0}.

Let NN (k, i, P (u)) be the set of k most similar items in
P (u) to an artist i. The predicted relevance score for a
user u and an artist i, indicated as rui, is computed as:

rui =

(
0 if i 2 P (u)
P

j2NN (k,i,P (u)) ruj sim(i, j) if i 62 P (u)

For every user, we compute the relevance score rui for
every artist i 2 I , and rank the artists by decreasing score.
Then, we compare this ranking @N and the held-out test
data (or validation data, as appropriate), according to the
standard accuracy metrics nDCG and Precision, or Pr for
short. We take higher recommendation accuracy to be an
indication of a higher quality similarity measure.

4.3 Baseline similarity measures

We include in our experiments three baselines. The first
is a random algorithm (RND), useful to set a lower bound
on the performance. It rates the similarity between two
items to be a random number between zero and one. The
other two (COUNT and LDSD) are path-based algorithms.
By comparing our path-based approach to other path-based
similarities, we reduce the number of confounders, so we
can investigate whether our idea of using interestingness as
a scoring mechanism for paths is a good one. In fact, the
path-based similarity measures that we use in this experi-
ment all use the same knowledge graph and the same paths,
and differ only in the way the paths are scored and how the
scores are aggregated. COUNT is a simple path-based algo-
rithm that works by counting the number of paths between
items. It is equivalent to substituting 1 for the argument
to the sum in the definition of sim given earlier. LDSD is
an accurate path-based algorithm that proposes a carefully-
designed weighting heuristic for paths [12].

8 https://lists.w3.org/Archives/Public/
public-vocabs/2015Feb/0046.html

w1 w2 w3 n k
MIREX 0.3 0.1 0.6 2 NA
LastFM-g 0.0 0.1 0.9 2 NA
LastFM-h 0.0 0.0 1.0 2 40
Facebook 0.9 0.0 0.1 1 1

Table 2. Optimal parameters found for IPSIM.

4.4 Parameter tuning

IPSIM has some parameters, as indicated in Section 3.3.
Additionally, the experiment using listening histories in-
troduces another parameter, i.e. the number of neighbours
k used by the recommender system, as described in Sec-
tion 4.2.2. We set the parameters with a grid-search, opti-
mizing nDCG@10 on the validation data. For the experi-
ment using a ground-truth, we tune the parameters of IP-
SIM. For the experiment using listening histories, we tune
the parameters of IPSIM and we tune k for each of RND,
COUNT, LDSD and IPSIM. We report the optimal param-
eters found for IPSIM in Table 2. The optimal values of
the parameter k for RND, COUNT and LDSD are, respec-
tively, 5, 10 & 40 in LastFM-h and 1, 1 & 7 in Facebook.

The optimal parameter configurations change from
dataset to dataset. This might be due to the different na-
ture of the datasets. MIREX features human judgements of
artist similarity; the algorithmic judgments to be found in
LastFM-g might not completely agree with these. Schedl
et al. [7] suggest that human perception of similarity is in-
fluenced by user factors, such as user context (e.g. mood)
and user properties (e.g. musical training). User factors
might have directly influenced the people who annotated
MIREX, but not the algorithm used to construct LastFM-
g. The remaining two datasets, LastFM-h and Facebook,
gather another kind of data, i.e. interaction histories, but
they are gathered in different ways. In LastFM-h, unless
the user intervenes, the next recommended song is played
automatically, whereas, in Facebook, users are interacting
with artist fan pages in what is usually a more deliberate,
conscious and considered way.

In three of the four datasets, at least one of the three in-
terestingness heuristics of IPSIM receives a weight of zero.
We may find an explanation for this in the median number
of paths between artists: 19 in MIREX, 13 in LastFM-g,
and seven in both LastFM-h and Facebook. MIREX is the
only dataset where all three weights are non-zero, and is
also the dataset with the highest median number of paths
between artists. In general, the use of a more complex
model (with non-zero weights for each component) might
be beneficial only when the dataset refers to artists in the
knowledge graphs for whom there exists a rich variety of
paths, e.g. when considering popular artists.

4.5 Results

We conduct the experiments described in Section 4.2. We
compare IPSIM against the baselines described in Section
4.3 (RND, COUNT, LDSD). We set the parameters of the
similarity measures and the recommender as described in
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Figure 2. Accuracy of similarity measures on the MIREX, LastFM-g, LastFM-h and Facebook datasets, as measured by
Precision at cutoffs from one to 100.

nDCG@5 nDCG@10 Pr@5 Pr@10
RND 0.023 0.022 0.026 0.023
COUNT 0.065 0.057 0.062 0.052
LDSD 0.102 0.094 0.096 0.088
IPSIM 0.136⇤⇤⇤ 0.114⇤ 0.130⇤⇤⇤ 0.101⇤

Table 3. Accuracy of similarity measures on the MIREX
dataset, as measured by nDCG and Precision at cutoffs five
and ten. ⇤: p<0.05; ⇤⇤: p<0.01; ⇤⇤⇤: p<0.001.

nDCG@5 nDCG@10 Pr@5 Pr@10
RND 0.002 0.002 0.002 0.002
COUNT 0.037 0.030 0.033 0.025
LDSD 0.103 0.086 0.095 0.075
IPSIM 0.111⇤⇤ 0.094⇤⇤⇤ 0.103⇤⇤ 0.083⇤⇤⇤

Table 4. Accuracy of similarity measures on the LastFM-
g dataset, as measured by nDCG and Precision at cutoffs
five and ten. ⇤: p<0.05; ⇤⇤: p<0.01; ⇤⇤⇤: p<0.001.

nDCG@5 nDCG@10 Pr@5 Pr@10
RND 0.001 0.000 0.001 0.000
COUNT 0.015 0.012 0.014 0.010
LDSD 0.025⇤⇤⇤ 0.020⇤⇤ 0.022⇤⇤⇤ 0.016
IPSIM 0.016 0.017 0.017 0.017

Table 5. Accuracy of similarity measures on the LastFM-
h dataset, as measured by nDCG and Precision at cutoffs
five and ten. ⇤: p<0.05; ⇤⇤: p<0.01; ⇤⇤⇤: p<0.001.

nDCG@5 nDCG@10 Pr@5 Pr@10
RND 0.001 0.001 0.001 0.001
COUNT 0.017 0.014 0.016 0.012
LDSD 0.021 0.018 0.019 0.017
IPSIM 0.024⇤⇤⇤ 0.021⇤⇤⇤ 0.023⇤⇤⇤ 0.020⇤⇤⇤

Table 6. Accuracy of similarity measures on the Facebook
dataset, as measured by nDCG and Precision at cutoffs five
and ten. ⇤: p<0.05; ⇤⇤: p<0.01; ⇤⇤⇤: p<0.001.

Section 4.4 using the validation data. We report the re-
sults on the test data. We verify the significance of differ-
ences between IPSIM and LDSD with Wilcoxon signed-
rank test.

Tables 3 & 4 report on the experiment that uses a
ground-truth. IPSIM outperforms all the baselines in both
the MIREX and LastFM-g datasets. We notice that IP-
SIM scores accuracy at least double that of COUNT in
both datasets. The increase in performance with respect
to LDSD is statistically significant in both datasets.

Tables 5 & 6 report on the experiment that uses listen-
ing histories. IPSIM is always more accurate than COUNT.
IPSIM always outperforms LDSD in Facebook but outper-
forms LDSD in only one case in LastFM-g, and the differ-
ence in this case is not statistically significant.

We investigate more deeply how accuracy varies with
the cutoff in Figure 2. For the four datasets, the fig-
ure shows the Precision of the similarity measures as a
function of the cutoff. The figure confirms that IPSIM
has higher precision than LDSD on LastFM-h for cutoffs
greater than ten, but the precision of IPSIM drops for cut-
offs < 10. We also notice that, on MIREX, LastFM-g
and Facebook, IPSIM outperforms LDSD for every cut-
off ranging from one to 100.

The results provide evidence that interestingness can be
the basis of an accurate similarity measure.

5. CONCLUSIONS AND FUTURE WORK

The results of the experiments highlight the validity of our
approach to music similarity (at least in the case of mu-
sic artists), and demonstrate that the interestingness scores
of [4] can be the basis of an accurate and interpretable sim-
ilarity measure. Future work might include a comparison
of the performance of our similarity measure against an
even wider range of music similarity measures. We are
also interested in using the proposed similarity measure in
a related-item recommender system, that can meaningfully
guide users in their exploration of the items by means of
the interpretability of the similarity measure.
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ABSTRACT

Deep learning work on musical instrument recognition
has generally focused on instrument classes for which we
have abundant data. In this work, we exploit hierarchical
relationships between instruments in a few-shot learning
setup to enable classification of a wider set of musical in-
struments, given a few examples at inference. We apply
a hierarchical loss function to the training of prototypical
networks, combined with a method to aggregate prototypes
hierarchically, mirroring the structure of a predefined mu-
sical instrument hierarchy. These extensions require no
changes to the network architecture and new levels can be
easily added or removed. Compared to a non-hierarchical
few-shot baseline, our method leads to a significant in-
crease in classification accuracy and significant decrease in
mistake severity on instrument classes unseen in training.

1. INTRODUCTION

Musical instrument recognition is a machine learning task
that aims to label audio recordings of musical instruments,
typically at a fine temporal granularity (second by sec-
ond) [1–3]. Musical instrument recognition can be viewed
as a subtask of Sound Event Detection (SED), which con-
sists of identifying and locating any type of sound event
(e.g., car horn, dog bark) in an audio recording [4–6].

Labelling audio tracks is extremely important for or-
ganizing the dozens of tracks in a typical Digital Audio
Workstation (DAW) recording session [7,8], but manual la-
belling is a tedious process. Automated musical instrument
recognition could enable automated track labeling. Au-
tomated second-by-second labeling could go further, en-
abling navigation through recording projects by traversing
musical instrument labels, rather than waveform visualiza-
tions. This would be especially helpful for audio engineers
with low or no vision, as existing interfaces leave acces-
sibility as an afterthought [9] and navigating by visually
examining waveforms is not a viable option for them [10].

A barrier to incorporating instrument recognition into
DAWs is that most existing deep learning techniques must

© H. Flores Garcia, A. Aguilar, E. Manilow and B. Pardo.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: H. Flores Garcia, A. Aguilar, E.
Manilow and B. Pardo, “Leveraging Hierarchical Structures for Few-
Shot Musical Instrument Recognition”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

Figure 1. Overview of our method. Prototypes from a set
of embedded support examples at a fine-grained level (bot-
tom left) are aggregated to make a set of metaprototypes
at a coarser-grained level (top left). In this way, we learn
a hierarchical set prototypes that corresponds to a musical
instrument hierarchy (right).

be trained on instruments that have abundant labeled train-
ing data. The datasets that support these systems only fo-
cus on the limited set of instrument classes that have suffi-
cient data [11–17]. However, the vast diversity of musical
instrument sounds necessitates supporting a broader set of
instrument classes [18]. While expanding current datasets
with more diverse coverage can ameliorate this issue, col-
lecting human annotations for a large number of audio files
is a tedious, time consuming task [19, 20], and there will
always be unanticipated sound categories that an end-user
would like to automatically label.

Therefore, musical instrument recognition systems
should be able to dynamically expand their vocabularies
after deployment, to conform to end-user needs. This re-
quires an approach that lets a system learn a new sound
category given only a few examples that can be provided
by an end user, a la few-shot learning.

Using a hierarchical system, like the widely-used
Hornbostel-Sachs hierarchy [21], to organize and classify
musical instruments has broad precedent in many human
cultures [22]. We can take advantage of a musical in-
strument hierarchy, like the widely-used Hornbostel-Sachs
hierarchy [21], to improve few-shot learning. A system
could learn a feature space meaningful for unseen classes
that share hierarchical ancestry with the classes seen dur-
ing training. For example, the Chinese zhongruan is a
plucked string instrument that shares ancestry with other
chordophones in the Hornbostel-Sachs hierarchy (like the
guitar), which might be more common in datasets of West-
ern instruments. A model could leverage the hierarchi-
cal relationship between an instrument it has never been
trained on (e.g. the zhongruan) and more common instru-

220



ments seen during training (e.g. the guitar) to produce a
meaningful representation of the new instrument with only
a few support examples.

In this work, we propose a simple extension to pro-
totypical networks [23] that imposes a hierarchical struc-
ture on the learned embedding space (Figure 1). We first
create prototypes from an initial set of embedded support
examples at the most granular level. We then aggregate
these initial prototypes into new prototypes correspond-
ing to a coarser hierarchical level, in a manner reminis-
cent of agglomerative clustering [24]. Repeating this pro-
cess lets our system represent classes at many granular-
ities of a predefined instrument hierarchy. We also pro-
pose a weighted, hierarchical extension of cross-entropy
loss to ensure the network learns the hierarchy. Compared
to a non-hierarchical few-shot baseline [25], our method
shows a significant increase in classification accuracy and
significant decrease in mistake severity on unseen instru-
ment classes.

2. RELATED WORK

Musical instrument recognition can be performed in
single-source contexts [26–29], where only a single sound
source may be active at any given time, as well as in multi-
source contexts [13–15, 30, 31], where multiple sound
sources may be active at the same time. We consider the
single-source case, as the vast majority of audio in a studio
music production workflow is single-source.

Hierarchical structures have shown to be effective for
many machine learning tasks, such as text classification
[32] and image classification [33, 34]. In fact, Bertinetto
et al. [35] propose a hierarchical image classification ap-
proach that uses a similar exponentially weighed hierarchi-
cal loss function to the one proposed here, although they do
not focus on a few-shot setting, as we do, and they favor
learning broader classes, whereas we are also interested in
finer classes. Hierarchical structure was explored for mu-
sical instrument recognition by using fixed signal process-
ing feature extraction techniques [29,36,37]. Here, we use
deep learning methods to flexibly learn a feature space that
mirrors musical instrument hierarchies.

Recent work has studied how hierarchical structures
can be incorporated into neural network models for dif-
ferent tasks. In the automatic speech recognition (ASR)
domain, CTC-based hierarchical ASR models [38–40] em-
ploy hierarchical multitask learning techniques, particu-
larly by using intermediate representations output by the
model to perform intermediate predictions in a coarse-to-
fine scheme. Manilow et al. [41] have shown that hierar-
chical priors can have significant benefits for performing
source separation of musical mixtures. None of these sys-
tems, however, were designed for few-shot learning.

Previous deep learning systems have been proposed for
multilevel audio classification [42–44]. However, none of
these systems work in a few-shot setting and they require
either specialized network architectures or complex data
pipelines to learn a hierarchy. Our approach is a simple
extension to incorporate hierarchy into an established few-
shot learning paradigm.

Recent work in audio tagging and sound event detec-
tion tasks has explored few-shot learning in the audio do-
main [19, 25, 45–47], though none of this work assumed
any hierarchical structure.

Here, we propose a method for hierarchical representa-
tion learning in a few-shot setting, leveraging the increased
flexibility of both hierarchy and few-shot methods for mu-
sical instrument recognition.

3. BACKGROUND

3.1 Few-shot Learning

In a few-shot classification setting, we consider a target
class k 2 K for a set of target classes, K, of size |K|. Let
xs be a single support example drawn from a set of exam-
ples S , called the support set. Assume N labeled support
examples (i.e., shots) per class k, totalling N ⇥ |K| labeled
examples. We define Sk as the subset of S containing the
examples of class k.

We are provided an unlabeled query set Q of M unla-
beled examples. The goal of the task is to label each query
example xq 2 Q with a target class k 2 K. A neural net-
work model f✓ projects both the support and query sets into
a discriminative embedding space. The query is assigned
to the class of the support set it is closest to, according to
distance metric d.

3.2 Prototypical Networks

Prototypical networks [23] compute an embedding vector
for each instance in Sk. The prototype, ck, for class k is
the mean vector of all the support embeddings belonging
to class k:

ck =
1

|Sk|
X

xs2Sk

f✓(xs). (1)

Using a distance function d, we can produce a probabil-
ity distribution over the set of classes K for a given query
xq by applying a softmax over the negated distances from
the query to each class prototype:

p(ŷq = k|xq) =
exp (�d(f✓(xq), ck))P
c
0
k
exp (�d(f✓(xq), c0k))

. (2)

We use the Euclidean distance as d in this work.

4. METHOD

Musicologists have long categorized musical instruments
into hierarchical taxonomies, such as the Hornbostel-Sachs
system [21], which classifies musical instruments into a
hierarchy corresponding to their sound producing mech-
anisms. We can improve upon existing few-shot models
by leveraging the hierarchical structure intrinsic to musical
instrument taxonomies. To do this, we extend prototypical
networks by training on a multitask scenario composed of
multiple classification tasks, one for each level of a class
tree, where the prototype for a parent node in the class tree
is defined as the mean of the prototypes for each of the
parent node’s children.
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We impose hierarchical structure on our few-shot task
by constructing a tree, T , with height H , starting from a
set of leaf nodes. We define the leaf nodes as the same
set of classes, K, that we defined for our standard few-
shot setup in Sec. 3.1. We then define the parents of the
leaf nodes by aggregating classes, k 2 K. For musi-
cal instrument recognition, we aggregate classes accord-
ing to a predefined instrument hierarchy (e.g., Hornbostel-
Sachs). We iteratively aggregate child classes up to the
max height of the tree H . We index the tree as Ti,h, where
i 2 Ki indexes over the set of sibling classes at level h,
for h = 0, . . . H , with level 0 containing the most specific
classes and level H containing the broadest. In our nota-
tion H = 0 describes a tree with no hierarchy and is equiv-
alent the non-hierarchical prototypical network defined in
Sec. 3.2. H = 1 has two levels, and so on.

4.1 Hierarchical Prototypical Networks

We define our proposed hierarchical prototypical network
by extending typical prototypical networks [23] to a hierar-
chical multitask learning scenario, where we wish to label
each query example, xq 2 Q, at multiple levels of our class
tree, T . Here, labeling at each level is a separate task.

Like a normal prototypical network, we use a network
f✓ to produce embeddings for every example in the support
set. The mean of these embedded support examples creates
an initial set of prototypes (Eq. 1). We deviate from the
typical setup by considering this initial set of prototypes as
the lowest level of our tree, T , and aggregating these initial
prototypes again to make another set of prototypes repre-
senting the next level. The prototypes at this higher level
are, thus, prototypes of prototypes, or metaprototypes, and
define a hierarchy according to the structure of our tree,
T . We continue to iteratively aggregate prototypes in this
fashion for all levels of our tree. The prototype for each
parent class at level h+1 is notated cTi,h+1 and is the mean
of the members of its support set STi,h . For levels h > 0,
each example x̂s, is itself a prototype:

cTi,h+1 =
1

|STi,h |
X

x̂s2STi,h

f✓(x̂s), (3)

This process is shown in Figure 1.
Given a query example xq , we use the network to cre-

ate an embedding f✓(xq) and measure its distance to each
class prototype or metaprototype cTi,h at a given level h.
Given these distances, we output H probability distribu-
tions, one for each level in our class tree:

p(Ti,h|xq) =
exp (�d(f✓(xq), cTi,h))P

c
0
Ti,h

exp (�d(f✓(xq), c0Ti,h
))
. (4)

We note that Eqs. 1 and 2 are special cases of the pro-
posed Eqs. 3 and 4, evaluated at h = 0. Our generalization
allows multi-task few-shot classification at multiple levels
of a hierarchical class tree.

Our proposed method does not require any specific net-
work architecture. Instead, it provides a hierarchical la-

bel structure for support examples xs to be aggregated to-
gether, forming fine-to-coarse representations (i.e., cTi,h )
that we can leverage and optimize with. This exposes the
potential for a model to be trained with multiple concurrent
hierarchies, a direction for future work.

4.2 Multi-Task Hierarchical Loss

We now set up a learning objective, where we minimize
the cross-entropy loss between the predicted distribution
and the ground truth class for each level in the class tree.
The intuition behind our approach is that we can use a hier-
archically structured objective to encourage our model to
produce an embedding space with discriminative proper-
ties at both coarse and fine granularities, allowing some of
these coarse features to generalize beyond the training set
of fine grained leaf classes to their unseen siblings in the
class tree. We use an exponentially decaying sum of loss
terms for each level in the hierarchy [35]:

Lhierarchical =
HX

h=0

e
�↵·hL(h)

CE
, (5)

where L(h)
CE

denotes the cross-entropy loss for the clas-
sification task at height h, and ↵ is a hyperparameter that
determines the decay of each loss term w.r.t height. Setting
↵ > 0 places more more weight on finer-grained tasks,
↵ < 0 places more weight on coarser-grained tasks, and
↵ = 0 weighs all tasks equally. We note that H = 0 re-
duces to the non-hierarchical (baseline) definition of the
problem, where we only optimize for the fine-grained task.

5. EXPERIMENTAL DESIGN

We evaluated our proposed hierarchical prototypical ap-
proach using a non-hierarchical prototypical method [25]
as a baseline. We evaluated all models on a few-shot musi-
cal instrument recognition task, measuring standard classi-
fication metrics (F1) as well as mistake severity. We con-
ducted ablations for class tree height, choice of class hier-
archy, and proposed loss function.

5.1 Datasets

For all experiments, we trained and evaluated using iso-
lated tracks from the MedleyDB [48] and MedleyDB 2.0
[49] datasets. MedleyDB contains multi-track recordings
of musical instruments and vocals. We excluded record-
ings that do not have fine-grained instrument labels (e.g.,
“brass” was excluded because the audio could be of trum-
pets, trombones, etc.). Additionally, we considered sec-
tions of a single instrument to be the same class as the in-
strument itself (e.g. "violin section" and "violin" both be-
long to the class "violin"). Altogether, the dataset consists
of 63 different instruments, with 790 tracks in total.

For training and evaluation, we removed the silent re-
gions of each audio track. We then split the remainder of
the track into 1 second segments with a hop size of 0.5
seconds, where each 1 second segment is an input example
to the model. All audio was downsampled to 16kHz. For

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

222



each example, we compute a 128-bin log-Mel spectrogram
with a 32ms window and an 8ms hop. After preprocess-
ing, our training and evaluation datasets contained 539k
and 56k 1-second examples, respectively. We performed
silence removal using pysox [50].

5.2 Network Architecture

The backbone network architecture used in all experiments
was based on the prototypical network described in Wang
et al. [47]. It uses a log-Mel spectrogram as input, and con-
sists of four CNN blocks, where each convolutional filter
has a kernel size of 3 ⇥ 3, followed by a batch normaliza-
tion layer, a ReLU activation, and a 2⇥2 maxpooling layer.
After the last convolutional block, we applied maxpooling
over the time dimension, to obtain a 1024-dimensional em-
bedding. Finally, we added a linear projection layer that
reduces the 1024-dimensional embedding to 128 dimen-
sions.

5.3 Hornbostel-Sachs Class Tree

We used a musical instrument hierarchy inspired by the
Hornbostel-Sachs [21] taxonomy, 1 (maximum height of
4) which is organized by the sound production mechanisms
of each instrument. Since similar sound production mech-
anisms can lead to similar sounds, we believe this is a nat-
ural organization that our model can leverage to learn dis-
criminative features at different levels of a class hierarchy.

5.4 Episodic Training and Evaluation

We have a musical instrument hierarchy tree, where indi-
vidual instrument classes are leaf nodes (e.g. violin, gui-
tar). Nodes at higher levels (h > 0) are instrument fami-
lies, (e.g. bowed strings, plucked strings). Our goal is to
observe classification performance on previously-unseen
leaf classes (e.g. zhongruan, erhu). Therefore, we created
a data split of 70% train, 30% evaluation, with no over-
lap between train and evaluation classes at the leaf instru-
ment level (h = 0). We further added the constraint that
the classes in both testing and evaluation sets be distributed
evenly among the instrument families (h > 0). This avoids
a problem where, for example, the train set consists only
of percussion and the evaluation set consists only of chor-
dophones. All experiments shared a train/evaluation split.

For each experiment, we trained every model in a few-
shot learning scenario using episodic training. Each model
was presented with a unique |K|–way, N–shot learning
task (an episode) with M queries per leaf class at each
training step. We constructed an episode by sampling a
set of |K| instrument classes from the training data. For
each of these |K| classes, we sampled N + M audio ex-
amples. Here, for each class k, N = |Sk| is the number
of "shots" in the support set and M is the size of the query
set.

We trained all models using the same random initializa-
tion for a maximum of 60,000 steps with early stopping
after the evaluation loss stopped improving for 4500 steps,

1 See: https://en.wikipedia.org/wiki/Hornbostel-Sachs

using the Adam optimizer and a learning rate of 0.03. Dur-
ing training, we set |K| = 12, N = 4, and M = 12. We
evaluated each trained model on episodes constructed from
the test data. For each evaluation, we made 100 episodes,
with |K| = 12, M = 120. All hyperparameters were fixed
except those we ablated, as described below.

5.5 Evaluation Metrics

We used the F1-score as our primary classification metric,
reporting the distribution of F1 scores computed for each
episode, evaluated for predictions made at the finest level
of the hierarchy.

Similar to Bertinetto et al. [35], we used the hierar-
chical distance of a mistake as a metric indicative of a
model’s mistake severity. Given a class tree, the hierarchi-
cal distance of mistake is defined as the height of the low-
est common ancestor (LCA) between the prediction node
and ground truth node when the input is misclassified (that
is, when the model makes a mistake).We report the aver-
age hierarchical distance of a mistake over all evaluation
episodes.

For all hierarchical models, we measured mistake sever-
ity with respect to its own hierarchy. For the non-
hierarchical model, we evaluated with respect to our pro-
posed 4-level version of the Hornbostel-Sachs hierarchy,
as we believe that its organization is meaningful.

6. EXPERIMENTS

We now describe specific experiments to measure the ef-
fects of different design choices. We trained and evaluated
all models using the procedure described in Section 5. Our
experiment code is available online 2 .

6.1 Tree Height

To observe the effect of tree height on classification, we
constructed shorter trees from the Hornbostel-Sachs class
tree by removing every leaf node’s parent until the desired
max height of the tree is met. We trained and evaluated five
models using our proposed class tree, shortened to differ-
ent heights H 2 {0, 1, 2, 3, 4}, where H = 0 is the base-
line, non-hierarchical case inspired by Wang et al. [25].
Each model was trained with ↵ = 1 and evaluated with
N = 8 support examples per class, at inference.

Results are shown in Figure 2. All variations of the pro-
posed model achieved a better classification performance
than the baseline. The best F1 score was seen at H = 1,
with a mean value of .8111 over all evaluation episodes.
Compared to the baseline mean score of .7792, this is a
4% improvement. A Wilcoxon signed-rank test showed
that all of our proposed models achieve a statistically sig-
nificant improvement when compared to the baseline, with
p < 10�7 for all hierarchies. These results show that incor-
porating our method into a prototypical network can lead to
statistically significant improvements in classification per-
formance under few-shot learning conditions.

2 https://github.com/hugofloresgarcia/music-trees
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Figure 2. F1 scores for models trained with class trees of
varying height H , evaluated over 100 episodes. Means are
shown as green triangles. Note that H = 0 is our baseline
model (Wang et al. [25]), as it is trained without a class
tree.

Surprisingly, a shallow tree with only the coarsest cat-
egories and the leaf nodes (H = 1) achieved the high-
est increase in performance. We believe this is due to the
small number of classes encountered in a training episode
(in our case, 12). At a given level of the tree, at least 2 of
the classes in the support set need to have a parent node in
common for our method to be able to compute a meaning-
ful metaprototype that can be leveraged by our loss. As a
class tree gets deeper, the number of nodes at a given level
can grow exponentially, meaning that our support set of 12
classes has a lower chance of finding meaningful group-
ings at deeper levels. This indicates that loss terms for
levels closer to the leaf nodes are more likely be identical
to the non-hierarchical loss. Though the loss term for the
coarsest level is still present in these deeper trees, it has
a smaller impact on the gradient of the primary loss func-
tion, as loss terms are weighted to decay exponentially as
the height increases. We believe training with a higher |K|
can help leverage deeper hierarchies better. However, we
leave this for future work.

6.2 Number of Support Examples

We evaluated our best proposed model (H = 1, ↵ = 1)
as well as our baseline model by varying the number of
support examples N provided to the model, where N 2
{1, 4, 8, 16}. Results are shown in Figure 3 (left). We no-
tice that increases in performance are greater when more
support examples are provided, with the smallest increase
(+2.17% in the mean relative to baseline) occurring when
N = 1. Our model achieved a statistically significant im-
provement on all test cases (p < 10�4 for all N ).

As shown in Figure 3 (right), our model achieved a
lower hierarchical distance of a mistake, on average. A
Wilcoxon signed-rank test indicates that all improvements
are statistically significant (p < .0005). This means that,
when making incorrect predictions, our method was more
likely to make predictions that are closer to the ground
truth in terms of the class hierarchy (i.e., lower mistake
severity). We believe it is fair to assume that mistake sever-
ity from a sound production perspective (as in our class hi-
erarchy) is related to mistake severity in predictions made
by humans. That is, a human is more likely to confuse a
viola for a violin than to confuse a viola for a drum.

Figure 3. Model comparison between the baseline model
and our best proposed model (H = 1), evaluated under
conditions with a different number of shots (support exam-
ples) provided during inference.

6.3 Arbitrary Class Trees

To understand how the choice of hierarchy affects the re-
sults of our model, we evaluated the same prototypical net-
work architecture trained using the Hornbostel-Sachs hier-
archy and also 10 randomly generated class trees. We gen-
erated each tree by performing random pairwise swaps be-
tween leaf nodes in our original class tree, doing so 1000
times for each node. For this experiment, all trees were
trained with (H = 3, ↵ = 1), and evaluated with N = 16.

Results for our evaluation of random class hierarchies
are shown in Figure 5. Our best performing random hi-
erarchy in terms of classification performance ("random-
best") achieves an F1 score comparable to our proposed
hierarchy (p > 0.05) though with a larger spread. Addi-
tionally, "random-best" obtains much worse mistake sever-
ity relative to the hierarchy it was trained on. This indi-
cates that the model was not able to generalize the hier-
archical structure it was trained on to out-of-distribution
classes. On the other hand, our worst performing random
hierarchy, "random-worst", caused a statistically signifi-
cant deterioration in both classification performance and
mistake severity compared to the baseline (p < 0.005).
Even though the random-best model fairs comparably to
Hornbostel-Sachs model, it is impossible to know a pri-
ori whether any random tree will produce good results,
therefore for practical uses (i.e., within a DAW), we find
Hornbostel-Sachs to be a suitable choice.

6.4 Hierarchical Loss Functions

To measure the impact of our proposed multi-task hier-
archical loss, we compared it to a reasonable baseline
"flat" loss. As our baseline approach, we treated hierarchi-
cal classification as a single-task, multilabel classification
problem, where the ground truth is a multi-hot vector, with
1s for the leaf ground truth node and all of its ancestors
in the tree, and 0s otherwise. Furthermore, we minimized
the binary cross entropy between each individual predicted
node and ground truth node. Note that this required us to
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Figure 4. Difference in F1-score between our best proposed model (H = 1, ↵ = 1) and the baseline (Wang et al. [25]) on
all instruments in the test set. Both models were evaluated with N = 8.

Figure 5. Comparison between the best and worst per-
forming models trained on random hierarchies. The hier-
archical distance of a mistake is calculated using the hier-
archy the model was trained on. For the baseline (Wang
et al. [25]) , we calculated the hierarchical distance of a
mistake using the Hornbostel-Sachs hierarchy.

use a sigmoid function instead of Eq. 2, which uses a soft-
max function. Additionally, we performed a hyperparam-
eter search to find the best value of the ↵ parameter for
our proposed loss function (Section 6.4) using the search
space ↵ 2 {�1,�0.5, 0, 0.5, 1}. For this experiment, all
trees were trained with H = 4 and evaluated with N = 16.

Results are shown in Figure 6. We observe that only
the models with ↵ > 0 cause an improvement over Wang
et al. [25]. Moreover, the flat loss causes a severe degra-
dation in classification performance. This may be because
training prototypical networks using a binary, one-vs-all
formulation could yield a much less discriminative embed-
ding space. Wang et al. [25] found a similar result: training
prototypical networks with a binary formulation did not
yield performance improvements.

6.5 Examining All Instrument Classes

In Figure 4, we examine the classification performance
of every instrument in our test set. We compare our best
model (H = 1, ↵ = 1) to the baseline model from Wang
et al. [25], evaluated with N = 8. For clarity, we re-
port the difference in F1 Score between the models. Our
model beats the baseline on 18 of the 24 classes in the test
set. In particular, our model shows a substantial improve-
ment (+16.56%) in F1 Score when classifying zhongruan,
which may be rarely seen in a dataset composed of Western

Figure 6. Evaluating the loss function. We vary ↵ in
our proposed hierarchical loss from negative (emphasize
loss on broader categories) to positive (emphasize loss on
finer categories) and additionally compare to a "flat" binary
cross entropy (BCE) baseline.

music. Figure 4 demonstrates that, overall, our hierarchi-
cal few-shot model is better at identifying a wider range of
instrument classes than the baseline. This is important if
we desire to make systems that are more robust to biases in
the training data and, thus, can classify more a diverse set
of instrument types.

7. CONCLUSION

We presented an approach for incorporating hierarchical
structures in a few-shot learning model for the purpose of
improving classification performance on classes outside of
the training distribution. Our method builds on top of pro-
totypical networks by computing prototypical representa-
tions at fine and coarse granularities, as defined by a class
hierarchy. We showed that our proposed method yields sta-
tistically significant increases in classification performance
and significant decreases mistake severity when evaluated
on a classification task composed of unseen musical instru-
ments. Moreover, we found that the choice of hierarchical
structure is not arbitrary, and using a hierarchy based on
the sound production mechanisms of musical instruments
had the best results. We hope our work enables users with
diverse cultural backgrounds with the ability to classify di-
verse collections of musical instruments. Future directions
include examining new types of hierarchies, learning mul-
tiple hierarchies simultaneously, and the unsupervised dis-
covery of hierarchies from unlabeled data.
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ABSTRACT

This paper uses the emerging provision of human har-
monic analyses to assess how reliably we can map from
knowing only when chords and keys change to a full
identification of what those chords and keys are. We do
this with a simple implementation of pitch class profile
matching methods, partly to provide a benchmark score
against which to judge the performance of less readily in-
terpretable machine learning systems, many of which ex-
plicitly separate these when and what tasks and provide
performance evaluation for these separate stages. Addi-
tionally, as this ‘oracle’-style, ‘perfect’ segmentation in-
formation will not usually be available in practice, we
test the sensitivity of these methods to slight modifica-
tions in the position of segment boundaries by introduc-
ing deliberate errors. This study examines several cor-
pora. The focus on is symbolic data, though we include
one audio dataset for comparison. The code and corpora
(of symbolic scores and analyses) are available within:
https://github.com/MarkGotham/When-in-Rome

1. INTRODUCTION

Since the pioneering work of Carol Krumhansl and col-
leagues in the 1980s, [1,2] there have been several propos-
als for prototypical key profiles in tonal music based on
the relative importance of the constituent pitches in a key
(examples follow in context below). The motivations and
data for this approach derive usually from either psycho-
logical tests (asking ‘how well does this pitch fit this key
context?’, for instance), empirical usage data (‘how often
is it used?’), or a combination of the two. The working
hypothesis is that there exists a link between this pair: that

© Mark Gotham, Christof Weiß, Stephanie Klauk, Meinard
Müller, Rainer Kleinertz. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Mark
Gotham, Christof Weiß, Stephanie Klauk, Meinard Müller, Rainer Klein-
ertz, “ What if the ‘When’ Implies the ‘What’?: Human harmonic anal-
ysis datasets clarify the relative role of the separate steps in automatic
tonal analysis”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

substantial past exposure to the statistical regularities of a
musical style forms a mental representation which affects
our expectations when listening.

The main task for these ‘prototypical’ profiles in the
empirical domain is automatic key finding, either for an en-
tire work (‘what is the key of this piece’), or for passages
(keys plural) with the latter often approached in terms of
key matching for the usage within ranges delimited by a
moving window [3, 4].

The idea is that if these prototypical pitch profiles give
us a strong sense of the relative usage of each pitch in a
key, and we also also have data for the actual pitch usage
in a score or audio source of interest, then we can simply
compare the source with the prototypes for each key and
find the one that fits best.

Several more sophisticated algorithms have been pro-
posed to replace the whole practice of matching profiles
[5, 6], or enhance that practice in place [7], but there is an
enduring attraction to the clarity and simplicity of this ap-
proach. That clarity and simplicity could have a particular
significance now for evaluating the more opaque machine
learning approaches that increasingly dominate this field.
While these architectures can be hard to interpret, they of-
ten separate the constituent tasks (notably here segmenta-
tion from identification) such that their performance can be
compared with simpler techniques. 1

1.1 Prototype Profiles: Comparing Like with Like

At their simplest, prototype profiles consist of a binary sep-
aration with (typically) a value of 1 for membership of
the collection, and 0 otherwise across the pitch classes (0–
11), discounting the differences of octave or enharmonic
spelling. For instance, such a ‘binary’ profile for the chord
of C-major (CEG) would be given as: 2

[1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]

while the key of C-major (CDEFGAB) is represented by:

[1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]
1 On segmentation as part of chord analysis with machine learning in

symbolic data, see especially [8, 9].
2 Note that we speak only of ‘representation’ here: there is clearly

more to both chords and keys that these simple pitch class profiles.
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‘Rotations’ of these profiles cover all the transposition-
equivalent sets, in this cases encompassing all major triads
and all major keys respectively.

Alternatively, profiles can be constructed from the em-
pirical evidence of either psychological ‘goodness of fit’
studies or from musical practice, for instance, by taking
the pitch class profile (hereafter, PCP) of all events in a
dataset (‘symbolic’ or audio) considered relevant.

These more subtly weighted profiles help to address
vexed issues like scale degrees 6 and 7 in the minor mode.
They can also help to introduce other, potentially important
contextual sensitivity in response to variables that limit the
effectiveness of a one-size-fits-all approach to the profile.
Literature on symbolic datasets of Western classical music
specifically include accounts of: 3

• Repertoire. [11] demonstrates changing PCPs for
repertoire created during the historical period in
which there is a move from modality to tonality. 4

• Specific keys. [14] demonstrate a small but signifi-
cant effect of key on the resulting usage profiles, re-
inforcing the received wisdom that tonal composers
do not regard transposition as a neutral change.

• Partial pieces. [11, 14, 15] and others demonstrate
that drawing prototype profiles from a short passage
at the beginning and/or end improves performance.

1.2 The Part versus the Whole

The last of these points is significant for our purposes.
Given that common practice tonal music almost always
starts and ends unequivocally in the same, main key, it
makes perfect sense that these regions would be more
tonally-stable, and thus provide a better indicator of what
the PCP for within-key music looks like.

And while the benefit may be only slight for identify-
ing the key of an overall piece, we can realistically expect
a greater improvement for shorter, partial piece compar-
isons. This is because the whole practice of profile match-
ing depends on comparing like with like.

In the extreme case, if we used a chord template for
key matching or vice versa, we should expect the system
to perform worse on average. More realistically, this ap-
plies to the vast grey area between chord and key. For
instance, what could be a clearer statement of key than a
simple V7-I progression? Assuming the two chords have
equal length and exactly one instance of each constituent
pitch, this equates to an overall PCP in C major of:

[1, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 1].

Several of the main PCPs in the literature would confuse
this short passage in C major for one in G major despite the
presence of F and lack of F]: the double weighting of the
pitch G is enough to tip the balance. This is not to criticise

3 See [10] for a recent overview of the audio literature on these topics
that has no overlap with the symbolic papers cited here.

4 There has also been a notable, recent return to probe-tone psycholog-
ical study of repertoire difference. See [12] (after [13]) on distinguishing
‘classical’ and ‘rock’ styles.

any specific scholarship or PCP, but simply to illustrate the
problem with applying a key-matching profile to a passage
that is too short.

In general, to build PCPs that perform well for the task
of identifying keys within a piece effectively, we may have
most success by creating those profiles from passages that
are firmly attested to be in a given key, rather than assumed
to be so. The barrier to generating these PCP models in this
way is that it requires us to know what the keys are and
where they change in the first place, yet that is the problem
that we are trying to solve [14, p.532]. One solution is to
build up corpora of human annotations in other, relevant
(‘similar’) music, which can then serve as a model for an
automatic approach to new cases that do not come with a
manual analysis.

1.3 Human analyses for keys and chords

Fortunately, recent years have seen the creation of sev-
eral human harmonic analysis corpora. 5 Equipped with
this data, we can do better than taking entire works or
even shorter spans of an arbitrary length as the basis for
our PCPs, focussing instead on passages corresponding
exactly to these human-defined segmentations, and build-
ing up profiles from passages more robustly ‘known’ to be
within-key. 6 Profiles from individual passages can then
be combined with other, comparable passages according
to the user’s priorities (e.g., repertoire, length, key, and po-
sition in work) to yield new models for profile matching.

Moreover, these full harmonic analysis datasets enable
us to apply the same logic to the equivalent task for chords.
While the field of automatic chordal analysis is at least as
established as the equivalent for key, repertoire-based PCP
models for chord recognition are rarely available, at least
for ‘classical’ music and symbolic data. This is entirely un-
derstandable given that chord-level analysis is much more
fine-grained than key-only: they take longer to create, and
are harder to manage when alignment issues are concerned
(e.g., for multiple sources).

In both cases, the human analyses provide both full de-
tails of what the chords and keys are, but also when they
change. This allows us to take the when information alone,
segment the corpora into short segments for each chord or
key, and compare the PCP of that passage to a reference
profile to assess how reliably the when implies the what.

This paper undertakes that comparison for the case of
both chords and keys, and across several corpora. Further,
we consider how dependent this process is on the exact
segmentation by introducing systematic errors to see how
deleteriously this affects the results. In all cases, we at
least start with simple, highly interpretable conditions: `1-
normalisation and the Manhattan comparison metric; sim-
ple (e.g., binary) reference profiles; and a clear separation
of ‘known’ information (the ‘when’ of segmentation) from
the ‘tested’ part (the ‘what’ of identification).

5 Datasets with full (chord and key) analyses of Western classical mu-
sic include [16–20].

6 This does not, of course, account for inter-analyst disagreement. We
should avoid the term ‘ground truth’ for human annotations.
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2. CORPORA

For comparison, this study draws together a range of
sources across repertories (within the symbolic domain)
and data types (both audio and symbolic representations
of one repertoire). Specifically, for the audio-symbolic
comparison, we use the Beethoven sonata first move-
ments with score and audio data from [21] and analyses
originally from [17]. The audio-analysis alignment in-
cludes key- but not chord-level section data, so this is cur-
rently limited to the key-level study.

The corresponding score-analysis alignment is as de-
tailed at the ‘When in Rome’ repository, 7 and includes
both keys and chord. ‘When in Rome’ provides a single,
consistent, human- and computer-readable format for all
publicly-shared, encoded corpora of Roman numeral har-
monic analyses of notated works. 8 First reported in [19],
the repository continues to grow and currently includes
ca.450 analyses of works by 100 composers (unevenly dis-
tributed) for a total of ca.100,000 Roman numerals.

The largest of the new datasets within this framework
comprises over 150 analyses of 19th-century songs from
the OpenScore Lieder Corpus. 9 This provides a useful
and interesting counterpoint for across-repertoire compar-
isons, balancing similarity and difference. The songs are
from a similar time period to the Beethoven sonata move-
ments (overlapping, though mostly later), for similar forces
(the solo piano now joined by a voice part), and generally
slightly shorter (but not always).

The Beethoven sonatas and lieder provide the main two
symbolic corpora studies here, supplemented in one case
by the Bach Well Tempered Clavier collection, also from
the ‘When in Rome’ meta-corpus, and as reported in [19].

2.1 Data preparations for across-domain comparison

Despite the self-evident differences between audio and
symbolic data, we seek to make the representations as sim-
ilar and comparable as possible. To that effect, as well
as taking a frame-by-frame approach to audio (sampling
rate 10Hz), we approach the symbolic data in a compara-
ble way, converting encodings via musicXML to a simi-
lar ‘slice’ representation that encodes a new data point for
each change of pitch in the score. 10

In both cases, given segment timing information, frames
and slices within the corresponding segment can be com-
bined into single PCPs and compared (via the same nor-
malisation) to reference profiles. For the symbolic data,
we provide the full set of these ‘slice’ files as well as an-
other set of files recording the pitch-class profiles for each
section asserted to be in one key at the ‘When in Rome’
repository. This makes processing faster and less depen-
dent on external libraries, which in turn makes replication
studies more practical.

7 https://github.com/MarkGotham/When-in-Rome
8 In addition to [17], this includes [16, 18] and more.
9 Originally reported in [22]; now released as an MIR dataset in [23].

10 See [24] (after [25]) for more details and code.

Specifically, for every symbolic source, these files pro-
vide the metadata (including title and composer) and
record for each key-section at least the:

• key: tonic pitch (such as E[) and mode (major or
minor, indicated by case, e.g. ‘F]’ versus ‘f]’);

• profile: the raw (not normalised) PCP of usage;

• start and end ‘offset ’: as measured from the start
of the piece in ‘quarter note’ symbolic values as well
as the ‘quarter length’ recording the difference;

• start, end, and length in measures: the equivalent
measurements using symbolic ‘measures’.

For the audio sources, we use absolute duration in seconds
as the primary measurement of time.

From this point, it is easy and computationally inexpen-
sive to build new model PCPs from the entries relevant to a
specific use case. For instance, to assess the best-fit minor
key for passages of 20 measures’ duration, we may want
to build and use a model profile from all minor-key entries
of between, say, 15 and 25 measures, ignoring shorter or
longer passages, and perhaps also restricting the sample
to the composer and / or genre in question. Alternatively,
these ‘typical’ ranges could also be used to inform param-
eter setting for variable window size.

2.2 Two qualifications: subjectivity and similarity

First, it bears repeating that human analysis datasets –
valuable as they are – are naturally and necessarily sub-
jective. While we often see strong agreement for simple
cases, analysts differ greatly in their view of more com-
plex passages. Then again, that is exactly the object of
this research area. If there were strict, comprehensive rules
mapping from a score or audio source to a single, ‘correct’
analysis, there would be no need for either the corpora or
the studies presented by this paper and the wider field.

Second, while it is expedient initially to work with sim-
ple, True/False data for the presence/absence of a match
between human and computational key choice (as we do
here), chords and keys really exist in a relative proximity
relation. For more on the kinds of ‘errors’ that are typi-
cal, see [26]’s early examination of the tendencis of certain
reference profiles and [20, 27] on discrepancies between a
computer reading and several manual annotations of local
key in Schubert’s Winterreise song cycle.

3. CHORD-LEVEL SEGMENTATION

We begin with the case of chord identification, a problem
operationally defined here as the selection from among 9
distinct chord types in any of the 12 transpositions, mak-
ing for 108 options in total. In these studies we test chord
and key identification from the corresponding segmenta-
tion separately, so chords are defined in ‘absolute’ terms
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Figure 1. A comparison of `1-normalised profiles for the
major triad with binary values (blue), alongside values
from the Lieder (green) and Beethoven (purple) corpora.

(e.g. the triad C major) rather than in relation to a key
(‘tonic’ or ‘I’ in the key of C-major). 11

3.1 Included v.s. excluded chords by type and %

The 9 chords types in question are the four triads (major,
minor, diminished, augmented) and five of the most com-
mon sevenths (dominant, major, minor, diminished, half-
diminished). Around 95% of all chords in the corpora are
accounted for by one of these. The remaining ca.5% of
cases deemed outside the scope for the current study in-
clude: additional seventh types such as sevenths built on
augmented triads (relatively rare); all further tertian chords
(i.e., 9ths: there are no 11th or 13th chords in the corpora);
some chromatic chords like augmented sixths; and detailed
entries using RomanText’s syntax for supporting missing,
added, and altered tones.

To support other approaches to this problem, we provide
code for simplifying these chords to what might be consid-
ered the ‘nearest’ corresponding member of the canonical
9 types. For instance, this means removing the 9th of a
9th chord to yield a 7th chord, and ‘completing’ incom-
plete triads. All the same, we operationally exclude these
cases in the present comparisons as they do not directly re-
flect the analyst’s stated view. The ‘N/A’ values on Table 1
provide exact numbers of these cases, corpus by corpus.

3.2 Repertoire-specific profiles

Complementing the binary profiles, we create and use a
new set of PCPs extracted from the corpora at hand. Given
robustly aligned data, the method for this is straightfor-
ward: for each chord (in the analysis), identify the triad
or seventh type, extract the PCP (from the corresponding
range of the score), rotate it to place the chord’s root on C
(pitch class 0), add each PCP usage value to running totals
for the relevant triad or seventh type.

11 This testing of key and chord separately accounts for most of the
relevant considerations, though it is worth noting that the Roman numeral
encoding includes other, intermediary information such as ‘secondary’
key tonicizations.

Repertoire Matches analysis Total % True from
True False N/A True+False

Binary reference profiles:
Bach 1149 865 95 2109 57.051

Beethoven 3782 2058 61 5901 64.760
Lieder 8395 2897 505 11797 74.345

Winterreise 1899 660 96 2655 74.209
Profiles from Beethoven:

Bach 1182 832 95 2109 58.689
Beethoven 3880 1960 61 5901 66.438

Lieder 8187 3105 505 11797 72.503
Winterreise 1874 685 96 2655 73.232

Profiles from Lieder:
Bach 1237 777 95 2109 61.420

Beethoven 4101 1739 61 5901 70.223
Lieder 8695 2597 505 11797 77.001

Winterreise 2013 546 96 2655 78.664

Table 1. Chord-level segmentation to chord identification,
separating values for correct (‘True’), incorrect (‘False’)
and out of scope (‘N/A’).

An alternative strategy would keep separate PCPs with-
out transposition. We decide against that approach here.
First, the datasets are not that large, and some chord types
(such as augmented triads) are rather rare: this suggests
erring on the side of caution, creating fewer distinct chord
type PCPs from a greater number of repertoire instances.
Second, the lieder dataset is central here, and it is common
practice to transpose those songs to a variety of keys de-
pending on the vocal range of the performer. Composers
are aware of this, and it stands to reason that key-specific
writing is rarer here than in symphonies, say. Finally, and
related, it is not obviously better to keep chords separate
by absolute triad (e.g., recording a PCP for C major) than
by within-key, functional status (e.g., for all tonic major
triads). We anticipate further investigation of these areas
as the provision of analysis corpora grows and matures.

For illustration, Figure 1 plots the `1-normalised pro-
files for the major triad as extracted from the Beethoven
and lieder corpora along with the (also normalised) binary
profile. Note how the binary profile (blue line) preserves
equal weighting of C, E, and G (pitch classes 0, 4, and 7),
while the repertoire cases place greater emphasis on the
tonic, C, less on E and G, and include some use of the non-
chord tone pitch classes.

3.3 Results

Table 1 provides comparative data for this task across the
corpora and prototypes. Specifically, we begin with the bi-
nary profiles discussed above, applying these to the Bach,
Beethoven and Lieder corpora, as well as single collection
from within the corpus (Schubert’s Winterreise) for com-
parison. We then apply the same method with new chord
PCPs extracted from the Beethoven and Lieder corpora.

In all cases, we `1-normalise both the source PCP and
the 108 reference profiles, take the Manhattan distance be-
tween the two, and return the top-choice from among those
108 options. Each individual case is a match if and only if
the top-choice is the same as that given by the analyst. The
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Figure 2. A comparison of `1-normalised profiles for the
major mode with values from C.S. (blue) and Q.W. (green).

final score is given by the percentage of ‘correct’ responses
(computational process matches human judgement) from
the total cases (excluding those out of scope).

These results suggest two main observations. First, the
success rate of ca.70% across the board is relatively high,
considering the simplicity of the algorithm, and the fact
that any divergence counts as a failure, including the often
slight difference between V and V7. This appears to in-
dicate that the where of segmentation is a significant part
of the problem: once ‘solved’, even simple algorithms per-
form very well in determining the what of identification.

Secondly, we should consider the effect of using
repertoire-specific PCPs. For these tasks, the lieder PCPs
substantially improve results on all corpora, while the
Beethoven PCPs are more mixed: they perform better than
the binary PCPs on the Bach and Beethoven corpora, but
worse for the lieder. The success of the lieder PCPs may
speak to the benefit of using PCPs that reflect averages
across a more diverse corpora. This has significant ram-
ifications for the field, given that most corpora still pursue
a single, focussed repertoire of works by one composer.

4. LOCAL-KEY LEVEL SEGMENTATION

Turning to the equivalent task for local key, there are sev-
eral, existing PCPs available. Figure 2 illustrates the differ-
ence between two contrasting profiles from the literature
used here. First, Craig Sapp (C.S.) [26] provides delib-
erately simple (nearly binary) profiles. Specifically, Sapp
starts with values of 1 for within-key and 0 for chromatic
pitches, but adds ‘an additional value of 1’ to the tonic and
dominant pitch classes (0 and 7) to mitigate ‘modal confu-
sion between relative major and (natural) minor keys’.

This profile provides a clear, discrete point of com-
parison for more fine-tuned, continuous alternatives, no-
tably Quinn and White (Q.W.) [14] which distinguishes
itself as the only set of profiles to go beyond transposition-
equivalence and offer key-specific usage profiles. 12 As

12 Note that although Figure 2 provides a major-key composite for di-
rect comparison, the present study uses their key-specific profiles.

Reference Manhattan Euclidean Manhattan
Profile to human to human to Euclidean

Lieder
C.S. 74.640 73.583 92.123
A.S. 76.177 74.928 92.315
Q.W. 77.618 76.081 93.756

Beethoven (symbolic)
C.S. 70.529 73.300 87.657
A.S. 79.345 80.353 92.191
Q.W. 85.39 82.620 93.199

Beethoven (audio)
C.S. 51.263 51.136 82.828
A.S. 63.763 61.490 84.722
Q.W. 68.813 67.298 87.879

Table 2. The percentage of segments for which the com-
parison metrics match the human judgement.

part of the ‘When in Rome’ repository, we provide these
along with all published profiles, enabling others to exper-
iment with the full range. As Figure 2 shows, the two dis-
tributions differ primarily in their handling of scale degrees
3 and 6 (pitch classes 4 and 9).

For this test, we expand the corpora to include the
Beethoven audio, and add a third reference profile from
Albrecht and Shanahan (A.S.) [15]. We also include an
additional comparison between using the `1-normalisation
with Manhattan distance metric, and the `2-normalisation
with the Euclidean distance, comparing each to the human-
asserted key and additionally to each other.

Table 2 sets out the results in the form of percentages
of segments determined by analysts to be in a single key
for which the comparison metrics yield a match, choosing
from among the 24 keys (12 major, 12 minor). In all cases,
the Q.W. profile, `1-normalisation and Manhattan distance
metric perform best (as highlighted in bold on the Table).
The reference profiles are particularly compelling (the nor-
malisation/distance metric paints a more mixed picture). It
is perhaps also reassuring that the symbolic and audio cor-
pora follow the same trend.

5. SENSITIVITY TO SEGMENTATION ERROR

While it is useful to know how profile matching performs
given ‘perfect’ segmentation data, for most prospective use
cases, we need to know the effect of ‘near-misses’ in the
segmentation. This is important given the subjectivity of
human analysis annotation in general, and the fact that seg-
mentation appears to be a particularly variable element.

To that effect, let us return to the Beethoven audio cor-
pus as a test case for considering the effect of segmentation
‘error’. For this final test, we introduce systematic segmen-
tation errors across the range of likely ‘near misses’. This
means varying both the length of the segment (making it
longer or shorter) as well as the position of that modifica-
tion: adjusting the start of the segment, the end, or both
(sharing the length change equally between start and end,
centring the new span form on the original range).

The dataset comprises 792 key-segments with a mean
duration of 17.8 seconds and a standard deviation of 24.2
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Extra length Applying adjustment to:
in seconds the end the start both

(total) (shared)
-8 sec. 35.859 39.394 35.101
-4 sec. 49.369 51.136 49.116
-2 sec. 58.838 57.323 57.828
-1 sec. 65.404 61.869 61.995
0 sec. 68.813 – –
1 sec. 66.162 68.182 66.793
2 sec. 61.742 62.626 63.889
4 sec. 53.914 49.495 52.146
8 sec. 45.202 35.606 38.510

Table 3. The percentage of segments yielding a match
when deliberately diverging from the analyst-defined sec-
tion length (using Q.W.’s PCPs). The central duration of
0 seconds refers to the ‘correct’ (analyst defined) length;
negative values are shorter; positive are longer.

due to a long tail (many segments last more than a minute),
and we adjust the length by ± 1, 2, 4, and 8 seconds
per segment. In the original, segment boundaries create
contiguous blocks: the end of one segment is the start of
the next. As such, increases (positive length errors) mean
overlapping segments such that frames originally near the
boundary will be considered as part of both the foregoing
and following segments. In this scenario, the first and last
segments of each movement also extend into the preceding
and following silence.

Decreases (negative length error) mean introducing
gaps such that there are boundary passages between seg-
ments that are not considered at all. In a few cases (of
short segments subject to a large change), the segment may
be shortened by more than its total length, thus creating a
segment with a (musically meaningless) negative duration.

To operationalise an approach to these situations, both
the silent frames and the negative-duration (non-existent)
segments return a flat profile with equal weighting for each
pitch class. This, in turn, always makes the same choice of
best key (an arbitrary one that is usually wrong).

Table 3 and Figure 3 set out the results. Perhaps the
most notable outcome here is the asymmetry: shortening
a segment is typically more damaging than extending it,
particularly in the ‘start’ condition and the most relevant
range of small timing errors. While some of this effect
may be due to the handling of negative length described
above, that would affect start and end conditions equally
and almost never have a bearing on small changes of ± 1
second. Instead, a start error of +1 second leads to a drop
in performance of only 0.631%, while the equivalent error
of �1 yields more than 10 times the drop: 6.944%.

On the one hand this is surprising. Reducing the seg-
ment length means the new passage is still within the range
defined by the analyst to be in-key. In this case, we have
lost some of the relevant, within-key material, but not
added anything from the neighbouring sections in differ-
ent keys. We might expect this to be barely any more dif-
ficult than no change, and certainly less problematic than
extending into another segment in a different key.

Figure 3. The effect of segmentation errors on the
Beethoven audio corpus by error size (x-axis, seconds) and
the position of the error (start of segment, end, or shared).

On the other hand, the moments at which we enter a new
key area often announce themselves with material charac-
teristic of the new key such as a dominant seventh chord.
According to that view, starting late means missing impor-
tant material. Viewed this way, it is unsurprising at least
that late starts adversely affect key recognition.

6. CONCLUSION

This paper has sought to demonstrate both the utility of
human analyses for evaluating automatic key- and chord-
detection in general and specifically how the very simple
information contained therein for when chords and keys
change can be significant for determining the what of full
harmonic analyses. We demonstrate this with very sim-
ple algorithms that are fully transparent, interpretable, and
computationally lightweight.

At a minimum, the results provide important bench-
mark values for the equivalent task within machine learn-
ing architectures that have become popular tools for this
field. It may also suggest more efficient work-flows for
producing human analyses by separating the tasks which
computational processes can perform well from those for
which we really need expert annotators.

Having demonstrated the relatively high performance of
such simple methods for exact matches, a final section con-
siders the effect of small errors in segmentation. There ap-
pears to be an asymmetrical effect of error type by length
and position, with late starts being notably damaging for
even the shortest adjustments. As these artificial errors
emulate a more realistic scenario for many data-driven pro-
cesses that do not have segmentation information available,
this result may have significant implications, for instance
in setting window size and tolerance thresholds.

In short, the what is highly interrelated with the when,
at least in the ‘idealized’ case of full, manual, human har-
monic analysis. Segmentation may not be all we need, but
it certainly does contribute a great deal, especially relative
to the simplicity of the information it encodes.
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ABSTRACT

Previous research in music emotion recognition (MER) has
tackled the inherent problem of subjectivity through the
use of personalized models – models which predict the
emotions that a particular user would perceive from music.
Personalized models are trained in a supervised manner,
and are tested exclusively with the annotations provided by
a specific user. While past research has focused on model
adaptation or reducing the amount of annotations required
from a given user, we propose a methodology based on
uncertainty sampling and query-by-committee, adopting
prior knowledge from the agreement of human annotations
as an oracle for active learning (AL). We assume that our
disagreements define our personal opinions and should be
considered for personalization. We use the DEAM dataset,
the current benchmark dataset for MER, to pre-train our
models. We then use the AMG1608 dataset, the largest
MER dataset containing multiple annotations per musical
excerpt, to re-train diverse machine learning models using
AL and evaluate personalization. Our results suggest that
our methodology can be beneficial to produce personalized
classification models that exhibit different results depend-
ing on the algorithms’ complexity.

1. INTRODUCTION

Historically, the field of MER has mainly focused on ex-
tracting meaningful acoustic features from audio and as-
sociating them to possible emotions that music can con-
vey [1]. Machine learning algorithms are trained with
these features and then linked with the emotional judge-
ments that annotators report to perceive or feel when lis-
tening to the music [2] – ultimately presented as "ground
truth" to the algorithms. One of the key issues to MER

© J.S. Gómez-Cañón, E. Cano, Y.-H. Yang, P. Herrera and
E. Gómez. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: J.S. Gómez-Cañón, E. Cano,
Y.-H. Yang, P. Herrera and E. Gómez, “Let’s agree to disagree: Consensus
Entropy Active Learning for Personalized Music Emotion Recognition”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

is the difference between perceived and induced emotions:
perceived emotions are the listeners’ judgements with re-
spect to musical properties (e.g., key, tempo, timbre), while
induced (or felt) emotions are those that the music may
arouse within the listener. Despite the effort from the field
of music cognition to better understand the psychological
differences between these emotions [3–6], their contrast
poses a fundamental obstacle to the field of MER. Namely,
the construction of the needed "ground truth" results ques-
tionable: (1) listeners are commonly confused between
perceived and induced emotions when reporting their emo-
tional judgements, (2) the inherent subjectivity from the
annotation task is typically addressed by averaging the sev-
eral annotations into a common "ground truth", and (3) the
annotation procedure is a highly demanding task resulting
in small datasets with few annotations per music excerpt.
Nonetheless, researchers from the field of MER have tack-
led this problem by: (1) identifying whether the listener’s
response is based on the judgement of perceived or induced
emotions [7] and attempting to train listeners [8], (2) using
exclusively the emotion reports from a particular listener
or group of listeners to produce personalized and group-
based models [9], and (3) introducing AL methods to re-
duce the amount of annotations required to train such algo-
rithms (see Section 2). Given the importance the construc-
tion of a "ground truth" for MER, we address two research
questions in this paper:

RQ1 - Can we exploit human agreement in music emo-
tion annotations as input for AL methodologies to produce
personalized models?

RQ2 - What is the impact of the choice of classification
algorithm on personalization of MER systems?

The rest of this paper is structured as follows: Sec-
tion 2 reviews basic definitions and previous work, in Sec-
tion 3 we detail the methodology of our study, including
the proposed consensus entropy methods and classification
schemes. Section 4 provides results of our study which are
later discussed in Section 5.

2. RELATED WORK

Individual differences of listeners have a significant im-
pact on the performance of a MER algorithm. To this

237



extent researchers have proposed two distinct solutions to
tackle the subjectivity issue [1,9]: group-based and person-
alized MER models. Group-based MER assembles anno-
tators according to individual factors (e.g., sex, age, music
experience) and create a common "ground truth" for this
group. Personalized MER uses the annotations from a spe-
cific user to train a machine learning model. Yang et al. [9]
tested both approaches for the regression task and found
that: (1) group-based methods do not outperform general
models (i.e., models which are trained with the common
"ground truth" from the complete set of users), and (2) per-
sonalized algorithms largely outperform general models.
However, Gómez-Cañón et al. [10] studied the influence of
native language and self-reported lyrics comprehension on
the agreement of annotations and their impact on group-
based MER classification. The authors found substan-
tial differences in the annotations of users with different
mother tongues (consistent with findings from [11, 12]),
and a direct impact of individual differences (i.e., famil-
iarity, preference, and lyrics comprehension) on the agree-
ment of these annotations. The authors also reported that
group-based MER algorithms trained on the annotations of
users that reported understanding the lyrics, consistently
outperformed general models for a small dataset with a
large amount of annotations per excerpt, contradicting re-
sults by Yang et al. [9]. More research is needed on the
topic of group-based MER, hence in this paper we focus
on the need of personalization strategies.

Su and Fung [13] proposed using AL (i.e., uncertainty
sampling) in order to achieve personalization – which is
the focus of this paper. The aim of AL is to minimize
the annotation cost by cleverly choosing unlabeled data
instances, such that machine learning algorithms perform
better with less training [14]. Sarasúa et al. [15] used it to
reduce the amount of training instances and achieve better
classification performance for MER. Uncertainty sampling
uses the posterior probability from a classification model to
assess the most difficult/uncertain unlabeled data instances
(e.g., consider an output probability of 0.5 for binary clas-
sification). 1 Su and Fung [13] used two sampling methods
to select training instances: (1) using the most informative
instances – with highest uncertainty, and (2) using the most
representative instances – with least uncertainty. Their re-
sults suggested that AL can reduce the annotation task up
to 80% without decreasing performance of classification.
However, the performance of AL as a personalization strat-
egy appears to be hindered by low quality annotations – a
problem known as the "noisy oracle" issue: low reliabil-
ity in annotations results in poor training instances, in turn
resulting in poor classification performance. In this direc-
tion, multi-oracle AL [17,20–23] has been proposed to ex-
ploit multiple annotators by estimating the importance of
both unlabeled instances and the expertise of each anno-
tator – ultimately improving label quality. More recently,
Chen et al. [24, 25] proposed model adaptation to achieve
personalization. Their approach relied on developing a

1 We refer the reader to [14, 16–19] for a comprehensive overview of
AL methods.

general MER regression model (namely, Gaussian Mixture
Models) and progressively tying the Gaussian components
to adapt the models based on the maximum a posteriori
(MAP) linear regression. Results evidence that only 10-20
personal annotations are necessary to obtain the same level
of accuracy as a baseline model (50 annotations). How-
ever, they found no statistically significant difference be-
tween the proposed tying methods. Overall, we find two
limitations in the MER personalization literature: (1) the
evaluation of different AL strategies and (2) the definition
of best algorithms for effective personalization.

3. METHODOLOGY

The main contribution of our work is to address open ques-
tions by proposing query strategies that involve collective
judgement for personalization and evaluating diverse algo-
rithms, later introduced in Section 3.3. We use a different
query strategy to build upon the work by Su and Fung [13],
and propose a novel method to account for the collective
judgement – differing from traditional instance selection
for AL. Our work is also motivated by the multi-oracle
AL paradigm [20–22] in order to exploit this judgement.
However, instead of picking an expert/confident annotator,
we select instances which are ambiguous to the crowd –
different to those ambiguous to the algorithms. We intro-
duce consensus entropy [26] to AL for MER with a three-
fold perspective: (1) analyzing the agreement achieved by
a committee of pre-trained models (machine consensus -
MC), (2) analyzing the agreement from a committee of
annotators (human consensus - HC), and (3) taking into
account both committees (hybrid consensus - MIX). Our
work differs from [25] since we obtain personalization by
sampling informative instances and re-training the algo-
rithms, instead of progressively adapting model parame-
ters. Our main assumption is that prior knowledge about
the uncertainty of an excerpt with respect to the collective
judgement (i.e., human consensus), results in the partic-
ular instances which could be indicative of classification
boundaries across individual listeners. Music excerpts on
which we disagree upon define our personal opinions and
should be taken into account for personalization. Secondly,
we assume that the confusion between perceived and in-
duced emotions is mainly static and will not vary over
time (see [27] for a study on intra-rater agreement), hence
personalization could lead to models that can predict both
types of emotion and work must be done to determine the
type of emotion [7, 8]. To the best of our knowledge, the
use of the collective judgement as a personalization strat-
egy has never been explored in MER so far. 2

3.1 Data

Despite the complexity and difficulty of obtaining music
emotion annotations, researchers in MER have made great
efforts to create open datasets. 3 To pre-train our classi-
fiers, we used the DEAM dataset [28]. The benchmark

2 https://github.com/juansgomez87/
consensus-entropy

3 Data from the study in [13] is not openly available.
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dataset for MER, DEAM was constructed across several
MediaEval contests (2013–2015), and contains 1802 mu-
sic excerpts and dynamic arousal and valence annotations
(introduced by Russell [29]). We discretized annotations
into four quadrants for classification, following [30]: Q1
(positive valence and arousal, A+V+), Q2 (positive arousal
and negative valence, A+V-), Q3 (negative valence and
arousal, A-V-), Q4 (negative arousal and positive valence,
A-V+). 4 To test personalization, we used the AMG1608
dataset [35]. This dataset was previously used for person-
alization purposes [24,25], and is composed of 1608 music
excerpts rated with static arousal-valence annotations from
665 listeners (22 annotators from the campus of the Na-
tional Taiwan University and 643 from Amazon Mechani-
cal Turk). From the pool of annotators, we use the subset of
46 annotators that rated more than 150 songs (from which
10 belong to the campus subset).

We used two feature sets depending on the classification
algorithm (see Section 3.3): (1) low-level, emotionally-
relevant features for classic machine learning algorithms,
and (2) mel-spectrograms for novel convolutional neural
network architectures. As to (1), the IS13 ComParE feature
set [36] has been widely used for sound, speech, and mu-
sic emotion recognition. We extracted 260 features (mean
and standard deviation of 65 low-level music descriptors
and their first order derivatives) from segments of 1 sec-
ond [28], with 50% overlap, and standardize across fea-
tures – using OpenSMILE [37]. In order to test our ap-
proach on novel deep learning architectures we extracted
mel-spectrograms, based on [38]: we downsampled au-
dio to 16kHz, performed a Short-Time Fourier Transform
(window size: 512 samples ⇠ 23ms; hop size: 256 ⇠
12ms), and extracted a mel-scale spectrogram with 128
mel-bands – using Librosa [39].

3.2 Consensus entropy

Consensus entropy is a combination of uncertainty sam-
pling and query-by-committee methods as follows [16,26]:
(1) a committee of classifiers predicts the output proba-
bilities of unlabeled data, (2) probabilities are averaged
across the committee of classifiers, (3) uncertainty is cal-
culated as Shannon’s entropy across classes for each in-
stance, (4) q instances with highest entropy are selected
to be annotated by the oracle, and (5) classifiers are re-
trained with the provided annotations. For example, full
disagreement from a committee of four classifiers results
when each one predicts a different quadrant with 100%
probability. This yields average probabilities per quadrant
pavg = {Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}
and high inter-class entropy/uncertainty of 1.386. We re-
fer to this approach as machine consensus (MC). Secondly,
studies have shown evidence of the impact of inter-rater
agreement on the performance of MER algorithms [10,12].
Hence, we propose human consensus (HC) as a variation
from classical consensus entropy: we calculate entropy on
the normalized annotation histogram per song. For exam-

4 We refer the reader to [10] for a concise explanation of music emo-
tion taxonomies. See also [31–34] for in-depth theory.

ple, given 6 annotators for song i, we obtain a relative fre-
quency fi = {Q1 : 1/6, Q2 : 2/6, Q3 : 3/6, Q4 : 0/6}.
Thirdly, we combine the strategies for a hybrid consensus
(MIX) by stacking the probabilities and relative frequen-
cies, and calculating the overall entropy.

The proposed method is summarized in Algorithm 1:
let L =

�
(xi, yi)

 m

i=1
represent the pre-training data

(DEAM) consisting of m labeled instances (1802 excerpts)
and U =

�
(xi)

 n

i=m+1
represent the "unlabeled" data for

personalization (AGM1608). Since
�
(yi)

 n

i=m+1
for U are

already present in the dataset, we query q excerpts and
fine-tune with their annotations. We consider xi an in-
put feature (low-level feature vector or mel-spectrogram),
and yi 2 C = {Q1, Q2, Q3, Q4} as the annotated quad-
rant. Finally, we split annotated data by each user uj =
{0 . . . 45} with more than 150 annotations: 85% for train-
ing and 15% for testing, with no overlapping music ex-
cerpts. We denote PL,Mk(yi|xi) as the conditional prob-
ability of y given x according to a classifier Mk trained
on L. Notice that PL(yi|xi) is the probability averaged
across all models Mk. We performed 10 iterations and
queried q = 10 instances per iteration. 5 Following Chen
et al. [25], we used random selection as a baseline.

Algorithm 1: Consensus entropy for MER.
input : Labeled data L, unlabeled data U
Pre-train each model Mk on L;
for each iteration it = {0 . . . 9} do

for each user uj do
Calculate PL,Mk(yi|xi) for each xi 2 U;
if MC then

Average PL(yi|xi) across frames and
Mk models;

Select q excerpts with highest entropy;
else if HC then

Calculate relative frequency fi per
music excerpt;

Select q excerpts with highest entropy;
else if MIX then

Calculate and stack PL(yi|xi) and fi;
Select q excerpts with highest entropy;

else
Select q random excerpts;

Annotate q instances by uj ;
for each model Mk do

for each (xi, yi) 2 q do
Re-train Mk on L [ (xi, yi);
Compute metrics on test data;
Update L L [ (xi, yi) and
U U \ (xi, yi);

end
end

end
end

5 Tests using q = 15 and q = 40 reduced the amount of available
users (i.e., each user annotated a different amount of excerpts). We chose
q = 10 to match the study in [25]: 46 users with over 150 annotations.
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Figure 1. Average results of weight-averaged F1-scores for each type of model, across 46 users and 5 classifiers (shaded
area corresponds to CI = 95%, n = 230). HC stands for Human Consensus, MC for machine consensus, MIX for hybrid
consensus and RAND for random selection.

3.3 Algorithms

Since the query strategy requires a committee of classifiers,
we pre-trained all the following models with the DEAM
dataset using 5-fold cross validation – each classifier is pre-
trained on general annotations while still resulting in di-
verse predictions, in order to analyze agreement amongst
classifiers. For each algorithm mk = {0 . . . 4}, we ob-
tained 5 classifiers for a total of 20 models per user. We
used four algorithms in this study – based on (1) com-
putational efficiency and low memory cost, and (2) well-
established and novel approaches in the state-of-the-art –
and introduce them as follows:

Gaussian Naive Bayes (GNB). These algorithms are
based on the "naive" assumption of independence between
pairs of features, given a class label [40]. Bayes’ theorem
relates the conditional probability of the output y and the
dependent feature vectors xi. The likelihood of the fea-
tures is assumed to be normal-distributed, hence the mod-
els are Gaussian. Priors are adjusted according to the data
and variance smoothing is set to 1e-9.

Extreme Gradient Boosting (XGB). This widely used
machine learning method is based on the idea of gradi-
ent tree boosting: an ensemble of weak learners (i.e., re-
gression trees) is optimized to minimize a given loss func-
tion [41]. In contrast to other gradient boosting algorithms,
XGB is well-established given its scalability and training
speed. We performed a minor change to allow re-fitting
the algorithm and set parameters empirically during pre-
training: the maximum depth of 5 for each decision tree.

Logistic Regression (SGD). We used a model that op-
timizes a log-loss function with L2 regularization to output

class probabilities – obtaining a Logistic Regression classi-
fier fitted using Stochastic Gradient Descent (SGD). SGD
is an optimization method to fit linear classifiers using con-
vex loss functions [42].

Short-chunk Convolutional Neural Network (CNN).
In the field of automatic audio tagging, Won et al. [38]
have recently proposed a 7-layer 2D convolutional neu-
ral network that processes chunks of 3.69s of audio and
(2⇥ 2) max-pooling layers to summarize the chunk into a
single dimension. A mixture of scheduled Adam [43] and
SGD are used as optimization methods, following [44]. We
pre-trained models for 200 epochs and re-trained for 100
epochs – best models were selected when the validation
loss improved.

4. RESULTS

Figure 1 shows the weighted-average F1-scores on the test
data averaged across 46 users, averaging across each algo-
rithm for a total of 3680 trained classifiers (46 users ⇥ 4
algorithms ⇥ 5 models per pre-training split ⇥ 4 consen-
sus entropy methods). We report weighted average scores
since datasets are class-imbalanced.

4.1 Algorithms and consensus entropy methods

Firstly, we use pairwise, one-sided t-tests (d.f. = 229, sta-
tistical significance p < 0.05) in order to evaluate differ-
ences among consensus entropy methods (i.e., HC, MC,
MIX, and RAND) for each particular model after 100 an-
notations (at least 150 annotations are available per user),
as evaluated by Chen et al. [25]. We do not perform other
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statistical tests (i.e., McNemar’s Test or Wilcoxon signed-
rank test), as proposed by Demšar [45], since each user has
annotated different songs (i.e., the training and testing data
is not the same between users).

Gaussian Naive Bayes (GNB). These classifiers ap-
pear to diminish their performance with more annotations
which is expected of naive bayesian models (i.e., limited
generalization to new data) – MIX appears to outperform
the random baseline by ⇠ 1 percent point. However, none
of the comparisons between methods is statistically signif-
icant (p > 0.147).

Extreme Gradient Boosting (XGB). These classifiers
display an expected behavior: random selection results in
limited variation throughout 100 annotations, while other
methods (MC, HC, and MIX) suffer a significant fall with
the initial re-training data and increasingly improve with
the amount of annotations. In this case, HC is significantly
better than MC (p = 0.0001) and than MIX (p = 0.0017),
but does not outperform RAND.

Logistic Regression (SGD). These classifiers exhibit
increasing performance with more data – the HC method
outperforms the random baseline by ⇠ 1 percent points.
Again, none of the pairwise comparisons show significant
differences across cross entropy methods (p > 0.125).

Short-chunk Convolutional Neural Network (CNN).
Classifiers exhibit a significant increase with initial re-
training data – the HC method again outperforms the ran-
dom baseline by ⇠ 2 percent points. Interestingly, these
classifiers display the best performance across all mod-
els with cases of high f1-scores (approximately 0.7-0.8 for
particular users – see Figure 2). HC is significantly better
than RAND (p = 0.00811) and than MIX (p = 0.044),
while MC is better than RAND (p = 0.0291). Similar to
results reported by Chen et al. [25], these classifiers appear
to improve after 20-30 annotations and plateau.

Figure 2. F1-scores of five CNN classifiers from user 410
using the HC consensus entropy method. Each point rep-
resents the F1-score for each classifier on the user’s test
data.

4.2 Campus subset

Given the impact of agreement on classification perfor-
mance, Chen et al. [25] split the users into two groups:

the general pool of 46 annotators and subset of 10 anno-
tators from campus (as mentioned in Section 3.1). We
perform the same analysis for this subset of annotators
(d.f. = 49, statistical significance p < 0.05). With re-
spect to the subset of campus annotators, the general ten-
dencies mentioned in Section 4.1 appear to hold, yet the
difference of performance between the proposed methods
and the random baseline appears to narrow. 6 For the XGB
model, HC significantly outperforms MIX (p = 0.0149).
For the CNN model, HC significantly outperforms RAND
(p = 0.0254) and MIX (p = 0.0152).

4.3 Effective personalization

Although the proposed methods marginally outperform the
random selection baseline in the general behavior across all
users, we observe diverse behaviors when analyzing each
user: (1) XGB and SGD classifiers exhibit less variation
across each algorithm than GNB and CNN – XGB and
SGD classifiers appear to be more stable with respect to
each re-training iteration, and (2) models do not necessar-
ily improve with more annotations – it is likely that the
annotations of a particular user are not producing person-
alization. 7 Thus, we tested evaluating each user’s algo-
rithms as seen in Figure 2 and fitted a linear regression
(using Ordinary Least Squares) to estimate if the average
metrics from the ensemble of classifiers indeed improved
as more personal annotations are presented. Namely, when
the slope of the lineal regressor is positive, we assume that
"effective" personalization has been achieved – as more
personal annotations are presented, the algorithm improves
performance on the test data. Figure 3 summarizes the re-
sults of the amount of personalized models following this
assumption: (1) GNB classifiers are rarely producing per-
sonalized models, (2) SGD classifiers appear to produce
the same number of personalized models regardless the
consensus entropy method (slightly more personalization
is achieved with HC), and (3) for both XGB and CNN clas-
sifiers all proposed consensus entropy methods appear to
produce more personalized models than RAND.

Figure 3. Number of users with effective personalization
per algorithm from a total of 46 users.

5. DISCUSSION AND CONCLUSIONS

5.1 Discussion

Our study is inspired by the work from Su and Fung [13],
in which AL was used to progressively re-train MER mod-

6 Refer to Figure 1 from supplementary material.
7 Refer to Figures 2-4 from supplementary material.
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els with informative and representative data instances to
produce such personalized models. We also are encour-
aged by studies from Bullard et al. [46] in which the tra-
ditional approach of AL is challenged in favor of "real-
istic human interaction": instead of providing the algo-
rithms an optimal query strategy [14], we attempt to put the
human-in-the-loop by grounding emotion concepts based
on community judgements and simple inter-rater agree-
ment. We aimed at using the collective judgement of the
pool of annotators as prior knowledge for AL – our main
assumption is that highly uncertain instances in the col-
lective judgement reflect individual boundaries of classi-
fication that should be used to personalize MER models.
Thus, we propose two consensus entropy methods for AL
based on the classical uncertainty sampling and query-by-
committee strategies: (1) human consensus (HC) that uses
the pool of annotators as the committee to obtain informa-
tive samples, and (2) hybrid consensus (MIX) that consid-
ers possible complementary advantages from HC and MC.

Regarding RQ1 - Can we exploit human agreement in
music emotion annotations as input to AL methodologies
to produce personalized models? Our findings suggest that
our proposed methods appear to improve personalization
with respect to a baseline that presents random instances
for re-training. Particularly, the proposed HC method out-
performs the methods presented by Su and Fung [13],
which rely on using uncertainty sampling to compare most
informative (highest entropy - MC) data instances for per-
sonalization for 8 users. Their study reports average F1-
scores of µ = 0.35,� = 0.30) after using AL. Our study
shows the following F1-scores from 46 users: CNN –
µ = 0.48,� = 0.12, XGB – µ = 0.39,� = 0.10, SGD
– µ = 0.457,� = 0.10, GNB – µ = 0.238,� = 0.08.
Additionally, the MIX method marginally outperforms the
random baseline, showing similar performance to the MC
method – the MIX method is likely querying similar in-
stances as the MC method for each iteration.

With respect to RQ2 - What is the impact of the choice
of classification algorithm on personalization of MER sys-
tems? We tested our method on four types of algorithms,
which display different behaviours: (1) Gaussian Naive
Bayes classifiers (GNB) appear not to generalize to new
data or work for personalization – Naive Bayes assumes
independence of predictors which is not likely the case for
overlapping emotionally-relevant features, (2) Logistic Re-
gression (SGD) appears to produce personalized models
but there is no significant difference across the consensus
entropy methods – the assumption of linearity between fea-
tures and annotations is not likely to capture more complex
relationships from features, (3) Extreme Gradient Boosting
classifiers (XGB) appear to produce the highest amount of
personalized models – however, results suggest that these
models require more annotations in order to eventually sur-
pass the performance metrics from the random selection
baseline, and (4) Short-chunk Convolutional Neural Net-
work (CNN) appears to produce the best classification per-
formance and the HC method appears to produce more per-
sonalized models – yet the "black box" nature of neural

networks might hinder the interpretability and explainabil-
ity of using these models.

In addition to the fact that our findings are limited by the
datasets and the methodologies used to build and annotate
them, we present three main limitations to be considered:

Inter-rater agreement. Previous studies [10,11,27,47]
have evaluated inter-rater agreement as defined by Krip-
pendorff’s coefficient ↵ [48]. However, it is not possible to
use this coefficient to assess agreement for the HC method
since the annotations are categorical. Only one coefficient
can be calculated for arousal or valence over the complete
dataset (or dataset subset). Nonetheless, the relative fre-
quency (HC) can be interpreted as an empirical probability
that is informative with respect to simple agreement.

Interpretability of the MC method. The lack of agree-
ment between the classifiers might be due to other factors
different than the difficulty of the "ground truth". In this
sense, acoustic properties and the impact of the features
on predictions might produce confounding factors for the
classifiers and will be considered as future work.

Stasis of the HC method. HC is mainly static as op-
posed to MC approach: the method is restricted by the
amount of annotated songs and number of users. Thus, the
songs that result from each query will be the same for all
users, as opposed to the MC approach. In the case of MC,
every time a model is re-trained the classification bound-
aries are adjusted along with the uncertainty of new partic-
ular instances. Although the underlying principles of HC
and MC are quite different, the expectation of complemen-
tary advantages over each other was not met.

5.2 Conclusions

To the extent of our knowledge, the proposed methodology
has not been used for the MER task or other MIR use cases,
since the classic aim of AL is to make the data collection
less burdensome (i.e., reduce the workload of the annota-
tion procedure). In the context of producing user-centric
MIR [49], we argue that using knowledge about the col-
lective consensus could be beneficial for other tasks with
low inter-rater agreement: music auto-tagging [50], music
similarity [11, 27], automatic chord estimation [51], and
beat tracking [52]. Indeed, current streaming services and
social media constantly produce high amounts of diverse
responses in tagging environments – which could be bene-
ficial to test our methodology on other tasks. For the partic-
ular field of MER, building a collective "ground truth" by
merely averaging ratings across annotators might be over-
simplifying what has recently been questioned in neuro-
science research on emotions by Barrett [53]:

"One instance of [an emotion] need not look
or feel like another, nor will it be caused by
the same neurons [in the brain]. Variation is
the norm. Your range of [an emotion] is not
necessarily the same as mine, although if we
were raised in similar circumstances, we will
likely have some overlap."

For once, we could simply agree to disagree.
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ABSTRACT

Automatic Music Transcription has seen significant
progress in recent years by training custom deep neural
networks on large datasets. However, these models have
required extensive domain-specific design of network ar-
chitectures, input/output representations, and complex de-
coding schemes. In this work, we show that equivalent
performance can be achieved using a generic encoder-
decoder Transformer with standard decoding methods. We
demonstrate that the model can learn to translate spectro-
gram inputs directly to MIDI-like output events for several
transcription tasks. This sequence-to-sequence approach
simplifies transcription by jointly modeling audio features
and language-like output dependencies, thus removing the
need for task-specific architectures. These results point to-
ward possibilities for creating new Music Information Re-
trieval models by focusing on dataset creation and labeling
rather than custom model design.

1. INTRODUCTION

Automatic Music Transcription (AMT) is one of the core
tasks of Music Information Retrieval (MIR). The objective
of AMT is to convert raw audio to a appropriate symbolic
representation. In this paper we consider the problem of
transcribing piano audio to a series of note events indicat-
ing precise onset/offset timings and velocities, as opposed
to a sheet music score that is aligned to a metrical grid.

Recent progress in piano transcription has been largely
driven by two factors: the construction and release of
datasets containing aligned piano audio and MIDI (most
notably MAPS [1] and MAESTRO [2]) and the use of deep
neural networks with architectures specifically designed
for piano transcription (e.g., the Onsets and Frames ar-
chitecture that models note onsets and note presence sepa-
rately [3]). While domain-specific models have lead to im-
provements on benchmark datasets, it is not clear if these
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approaches can translate to other domains and MIR tasks.
Simultaneously, Transformer models employing self-

attention [4] have demonstrated a surprising ability to
achieve state-of-the-art results in a variety of domains with
the same core architecture, by simply varying the input and
output representations [5–14].

In this paper, we demonstrate that a generic Trans-
former model can achieve state-of-the-art piano transcrip-
tion without any domain-specific adaptations. Using “off-
the-shelf” components (an essentially unmodified encoder-
decoder configuration from the T5 paper [6]) and a sim-
ple greedy decoding strategy, we train a model to encode
raw spectrogram frames and decode directly to a sequence
of note events inspired by messages in the original MIDI
protocol [15] (e.g., note on and velocity messages).
As such, we refer to the model’s output as “MIDI-like”
throughout the rest of this paper. We provide details of our
model’s vocabulary in Section 3.2.

Further, we demonstrate that this domain-agnostic ap-
proach enables us to train several variations on the tran-
scription task (e.g., transcribing only note onsets) by
changing only the training labels and without modifying
the inputs or model.

In summary, this work illustrates the value of using
generic sequence-to-sequence Transformers for piano tran-
scription, without domain-specific adaptations, and points
to the potential to expand a similar approach to a variety of
MIR tasks.

2. RELATED WORK

2.1 Piano Transcription

Much progress has been made in piano transcription using
deep neural network models trained on datasets of aligned
audio and MIDI. In 2012, Boulanger-Lewandowski et al.
[16] (building off the acoustic model of Nam et al. [17])
trained a recurrent neural network (RNN) transcription
model to output a binary piano roll. Böck and Schedl [18]
trained a similar RNN-based model for piano onsets only.
Hawthorne et al. [3] improved transcription accuracy by
having separate convolution-based model stacks for detect-
ing note onsets, note presence, and note velocities. Model
outputs were decoded into discrete notes using a hard prior
by not initiating a note unless the onset predictor gave
probability more than 0.5.
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Figure 1. Our model is a generic encoder-decoder Transformer architecture where each input position contains a sin-
gle spectrogram frame and each output position contains an event from our MIDI-like vocabulary. Outputs tokens are
autoregressively sampled from the decoder, at each step taking the token with maximum probability.

More recently, progress on piano transcription has
largely involved adding more domain-specific deep neu-
ral network components and modifying the decoding pro-
cess. For the most part, this additional complexity has
been geared toward the specific purpose of improving pi-
ano transcription accuracy.

Kong et al. [19] achieve higher transcription accu-
racy by using regression to predict precise continuous on-
set/offset times, using a similar network architecture to
Hawthorne et al. [3]. Kim & Bello [20] use an adversarial
loss on the transcription output to encourage a transcription
model to output more plausible piano rolls. Our sequence-
to-sequence approach explicitly models such inter-output
dependencies through the autoregressive decoder, which is
trained end-to-end with the encoder that extracts meaning-
ful audio features.

Kwon et al. [21] use a language model of sorts to model
per-pitch note state transitions instead of having separate
onset, frame, and offset stacks. However, the decoding
process is fairly complex, in particular the handling of
interactions between different pitches. Similarly, Kelz et
al. [22] decode using a hidden Markov model over note
states based on attack-decay-sustain-release (ADSR) en-
velopes.

In a very thorough domain-specific treatment, Elows-
son [23] constructs a hierarchical model that extracts fun-
damental frequency contours from spectrograms and uses
these contours to infer note onsets and offsets. While it can
be useful for many applications to have such intermediate
representations as in Engel et al. [24], in this work we treat
polyphonic transcription from audio to discrete notes as an
end-to-end problem. This has the advantage of conceptual
simplicity and our evaluation (Section 4.2) shows it is also
effective.

2.2 Transformers

Recently, a generic Transformer architecture [4] has
been used across multiple domains to solve sequence-to-
sequence problems, replacing task-specific architectures
that had previously been in use. Outside the field of nat-
ural language processing in which Transformers initially
emerged and are now widely used (e.g., GPT-3 by Brown
et al. [25] and T5 by Raffel et al. [6]), Transformers have

been used in computer vision for tasks such as object de-
tection [8], caption-based image generation [9], and pose
reconstruction [10], as well as audio-related tasks includ-
ing speech recognition [11, 12], speech synthesis [13], and
audio event classification [14].

Note that many of the above uses of Transformer take
advantage of a pretraining phase where the model is
trained on a large amount of unlabeled data using self-
supervision. While it is possible that such a pretraining
phase might also help with music transcription, in this
work we explore the simpler setting of training the Trans-
former architecture from scratch on labeled transcriptions
in an ordinary supervised fashion.

2.3 Sequence-to-Sequence Transcription

The idea of using Transformers for music transcription has
also been considered. Awiszus in 2019 [26] explored sev-
eral formulations of music transcription as a sequence-to-
sequence problem, using a variety of input and output rep-
resentations (including ones similar to our own) with both
LSTM [27] and Transformer models. However, the paper
was unable to demonstrate clear success, seemingly due to
using a framewise multi-F0 evaluation rather than the note-
based evaluation standard in piano transcription, using rel-
ative time shifts rather than absolute (see Section 3.2), and
training on the MAPS dataset which is much smaller than
the MAESTRO dataset we use. Earlier, Ullrich and van
der Wel [28] appear to be the first to have posed mu-
sic transcription as a sequence-to-sequence problem (using
LSTMs instead of Transformers), but their system could
handle only monophonic music.

3. MODEL

As mentioned above, our model is a generic encoder-
decoder Transformer architecture where each input posi-
tion contains a single spectrogram frame and each output
position contains an event from our MIDI-like vocabulary.
An overview of our model and our input and output setup
is shown in Figure 1.

Inputs are processed through a stack of encoder self-
attention layers resulting in a sequence of embeddings the
same length as the original input. A stack of decoder lay-
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ers then uses both causally masked self-attention over the
decoder output and cross-attention over the full output of
the encoder stack. Crucially, this allows the symbolic to-
ken output to be variable length, dependent only on the
number of tokens needed to describe the input audio.

3.1 Model Architecture

The model configuration is based on the “small” model
from T5 [6], with modifications as suggested by the T5.1.1
recipe 1 . Specifically, our model uses an embedding size
of dmodel = 512, a feed-forward output dimensionality
of d↵ = 1,024, a key/value dimensionality of dkv = 64,
6-headed attention, and 8 layers each in the encoder and
decoder.

Our model has a few minor changes from the standard
configuration. Most important is that in order to use con-
tinuous spectrogram inputs, we add a dense layer to project
each spectrogram input frame to the Transformer’s input
embedding space. We also use fixed absolute positional
embeddings rather than the logarithmically scaled relative
positional bucket embeddings used in T5, to ensure all po-
sitions can be attended to with equal resolution. Finally,
we use float32 activations for better training stability
because our model is small enough that we do not need
the memory efficiency of the less precise bfloat16 for-
mat [29] typically used in large T5 models.

The model is implemented using the T5X frame-
work 2 , which is built on Flax [30] and JAX [31].
We also use SeqIO 3 for data preprocessing and
evaluation. Code for our implementation will
be available at https://goo.gl/magenta/
seq2seq-piano-transcription-code.

While some recent research using Transformers has fa-
vored very large models, such as GPT-3 [25] with 175B
parameters, we found that a comparatively small model is
sufficient for these tasks. With the configuration described
above, our model has only 54M parameters, only roughly
twice that of Onsets and Frames [2], which has 28M pa-
rameters.

3.2 Inputs and Outputs

The model uses spectrogram frames as input, with one
frame per input position. To match the T5 setup, we ter-
minate input sequences with a learnable EOS (End of Se-
quence) embedding. The model output at each step is a
softmax distribution over a discrete vocabulary of events,
described below. This vocabulary is heavily inspired by the
messages originally defined in the MIDI specification [15].
Using events as the output representation instead of a piano
roll matrix has the advantage of being much more sparse
because outputs are needed only when an event occurs, in-
stead of needing to annotate every frame. The vocabulary
consists of the following token types:

1 https://github.com/google-research/
text-to-text-transfer-transformer/blob/master/
released_checkpoints.md#t511

2 https://goo.gle/t5x
3 http://github.com/google/seqio

Note [128 values] Indicates a note-on or note-off event for
one of the 128 MIDI pitches. We use the full MIDI
pitch range for flexibility, but for these experiments,
only the 88 pitches corresponding to piano keys are
actually used.

Velocity [128 values] Indicates a velocity change to be ap-
plied to all subsequent Note events (until the next
Velocity event). There are 128 velocity values in-
cluding zero, a special value which causes sub-
sequent Note events to be interpreted as note-off
events.

Time [6,000 values] Indicates the absolute time location
within the segment, quantized into 10 ms bins. This
time will apply to all subsequent Note events un-
til the next Time event. Time events must occur in
chronological order. We define the vocabulary with
times up to 60 seconds for flexibility, but because
time resets for each segment, in practice we use only
the first few hundred events of this type.

EOS [1 value] Indicates the end of the sequence.

Previous work that used such a MIDI-like event vocabu-
lary [32] used relative time shifts between events, indicat-
ing the amount of time elapsed since the last time shift.
However, in the sequence-to-sequence scenario a single
relative time shift error early in the output causes all subse-
quent output steps to be incorrect, and such errors accumu-
late as sequence length increases. To adjust for this drift,
the Transformer model would have to learn to perform a
cumulative sum over all previous time shifts in order to
determine the current position in time. We instead use ab-
solute time, where each time event indicates the amount of
time from the beginning of the segment, as illustrated in
Figure 1. This gives the model the easier task of determin-
ing each timestamp independently; we also examine this
choice empirically in Section 4.4 and find that using ab-
solute time shifts instead of relative shifts results in much
better performance.

We use a temporal resolution of 10 ms for our time
events as some experiments have found this displacement
to be approximately the limit of human perception [33]
(though others have reported smaller values e.g. 5 ms in
Handel [34]). We leave open the possibility that our re-
sults could be improved further with finer event resolution,
for example by predicting continuous times as in Kong et
al. [19].

Decoding model output during inference is done with
a simple greedy autoregressive algorithm. We choose the
maximum probability event at each step and feed that back
into the network as the predicted event for that step. We
continue this process until the model predicts an EOS to-
ken.

Using an event sequence as our training target instead
of piano roll matrices or other frame-based formats en-
ables significant flexibility. For example, we demonstrate
in Section 4.4 that the exact same model configuration with
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Figure 2. Section of a piano roll rendering of model event output on Chopin’s Berceuse Op. 57 in D-flat Major from the
MAESTRO validation set versus the ground truth. Black vertical lines represent segment boundaries during inference. True
positive (TP) frames are marked in blue, false negatives (FN) in green, and false positives (FP) in red. Note that the model
successfully predicts note-off events for notes where the note-on event happened in a different segment.

the same inputs can be trained to predict only onsets (us-
ing just the Note, Time, and EOS events) or onsets, off-
sets, and velocities (using the full vocabulary above). The
only change required is using a different set of tokens as
the training target. This is in contrast to previous work
where predicting a new feature required adding new output
heads (or entire stacks), designing losses for those outputs,
and modifying the (often non-differentiable) decoding al-
gorithm to combine all model outputs into the final desired
representation.

By using a sequence-to-sequence approach, our model
can directly output our desired representation by jointly
modeling audio features and language-like output depen-
dencies in a fully differentiable, end-to-end training set-
ting. Adding new output features or changing the task def-
inition is simply a matter of changing the tokens used to
describe the target output.

3.3 Sequence Length Considerations

Transformers can attend to all tokens in a sequence at ev-
ery layer, which is particularly suitable to a transcription
task that requires fine grained information about pitch and
timing for every event. However, this attention mecha-
nism comes at a space complexity of O(n2) with respect
to sequence length n. The practical consequence is that
most audio sequences used for transcription cannot fit in
memory. To get around this problem, we split the audio
sequence and its corresponding symbolic description into
smaller segments during training and inference.

During training, we use the following procedure for ev-
ery sequence in a batch:

1. Select a random audio segment from the full se-
quence for model input. The length of the selected
segment can vary from a single input frame to the
maximum input length, and the starting position is
selected from a uniform random distribution.

2. Select the symbolic segment for the training target
that corresponds to the selected audio segment. Be-

cause notes may start in one segment and end in an-
other, the model is trained to be able to predict note-
off events for cases where the note-on event was not
observed.

3. Compute a spectrogram for the selected audio and
map the symbolic sequence into our vocabulary (see
Section 3.2). Absolute time shifts within the sym-
bolic segment are calculated such that time 0 is the
beginning of the segment.

4. Provide the continuous spectrogram input and one-
hot-encoded MIDI-like events as a training example
for the Transformer architecture.

During inference, the following procedure is used:

1. Split the audio sequence into non-overlapping seg-
ments using the maximum input length when possi-
ble, and then compute spectrograms.

2. For each segment in turn, provide the spectrogram
as input to the Transformer model and decode by
greedily selecting the most likely token according to
the model output at each step until an EOS token is
predicted. Any tokens occurring after a time shift
beyond the length of the audio segment will be dis-
carded.

3. Concatenate the decoded events from all segments
into a single sequence. After concatenation, there
may still be note-off events with no corresponding
note-on; we remove these. If we encounter a note-on
event for a pitch that is already on, we end the note
and start a new one. At the end of the sequence, we
end any active notes that are missing note-off events.

The model is surprisingly capable at predicting note-on
or note-off events where the corresponding event is in a
different segment, as illustrated in Figure 2. This ability
is also empirically demonstrated by the model’s results on
the Onset, Offset, & Velocity F1 scores in Section 4.2.
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4. EXPERIMENTS

We trained our model with the Adafactor optimizer [35]
using a batch size of 256, a constant learning rate of 1e�3,
and dropout set to .1 for both sub-layer outputs and embed-
ded inputs. Batch size was selected to maximize training
throughput because other batch sizes we tried during initial
experimentation did not seem to make a difference in final
performance. The learning rate and dropout values were
set to the same values used by T5 for fine-tuning tasks.

Input spectrograms were calculated using the Tensor-
flow [36] tf.signal library. We used an audio sample rate
of 16,000 kHz, an FFT length of 2048 samples, and a hop
width of 128 samples. We scaled the output to 512 mel
bins (to match the model’s embedding size) and used the
log-scaled magnitude.

Input sequences were limited to 512 positions (511
spectrogram frames plus a learnable EOS embedding), and
outputs were limited to 1024 positions (1023 symbolic to-
kens plus a learnable EOS embedding). This corresponds
to a maximum segment length of 4.088 seconds. We used
512 input positions to match the sequence length of T5, but
future work could explore if other sequence lengths result
in better performance. 1024 output positions were used be-
cause we found that 512 output positions were not always
sufficient to symbolically describe the input audio.

We trained all models on 32 TPUv3 cores, resulting in
a per-core batch size of 8. We used this configuration for
training speed, but the model is small enough to train on
a single TPUv2 instance (8 cores). Based on validation
set results, overfitting did not seem to be a problem, so we
allowed training to progress for 400K steps, which took
about 2.5 days for our baseline models.

4.1 Datasets

To evaluate the performance of our model on the task of
piano transcription, we use the MAESTRO dataset [2],
which contains about 200 hours of virtuosic piano perfor-
mances captured with fine alignment between audio and
ground truth note annotations. For comparison against pre-
vious transcription work, we train on MAESTRO V1.0.0,
but for other studies we use MAESTRO V3.0.0 because
it contains an additional 92 performances containing 26
hours of data. MAESTRO V3.0.0 also contains sostenuto

and una corda pedal events, though our model (and evalu-
ation) does not make use of these. We also do not model
sustain pedal events directly as in Kong et al. [19], instead
extending note durations while the sustain pedal is pressed
similar to Hawthorne et al. [2].

4.2 Evaluation

In evaluating the performance of a piano transcription sys-
tem, we use the Note F1 score metric: the harmonic
mean of precision and recall in detecting individual notes.
This involves matching each predicted note with a unique
ground truth note based on onset time, pitch, and option-
ally offset time. Additionally, onset velocity can be used
to discard matches with drastically different velocities. We

primarily use an F1 score that takes into account onsets,
offsets, and velocities. We also include results for F1
scores that consider only onsets or onsets and offsets. We
defer to the mir_eval [37] library for a precise definition of
the (standard) transcription metrics we use.

Because piano is a percussive instrument, it is gener-
ally easier (and also more perceptually important) to accu-
rately identify note onsets compared to offsets [38]. We
use mir_eval’s default match tolerance of 50 ms for onsets
and the greater of 50 ms or 20% of the note’s duration for
offsets.

4.3 Comparison to Previous Work

We compare our sequence-to-sequence approach with the
reported scores from previous piano transcription papers
on V1.0.0 of the MAESTRO dataset in Table 1. Our
method is able to achieve competitive F1 scores compared
to the best existing approach while being conceptually
quite simple, using a generic architecture and decoding al-
gorithm and standard representations.

4.4 Ablation Study

We perform an ablation study on some of the components
of our model using V3.0.0 of the MAESTRO dataset in
Table 1. First, we verify the flexibility of this architecture
to describe the input audio using a different set of features.
We modify the symbolic data to describe only onsets by
using just the Note, Time, and EOS events. The model
trains successfully and achieves a high F1 score on this
modified onset-only task.

Next, we investigate different input representations. For
“STFT”, we remove the log mel scaling after FFT calcu-
lation. This results in an input frame size of 1025, which
is projected to the model embedding size of 512 by the
dense layer. For “raw samples”, we simply split the au-
dio samples into segments based on the hop width used for
the spectrograms (128 samples) and use those directly as
input, again projected to the embedding size by the dense
layer. Both of these configurations train successfully, but
do not perform as well as log mel input. We suspect this
is because the mel scaling produces useful features that the
model would otherwise have to use some of its capacity to
extract.

We also verify that absolute time shifts are a better fit
for this architecture by training a model with relative time
shifts. As expected, it does not perform as well. Fur-
ther, we noticed that the note-based evaluation metrics on
the validation set varied dramatically during training, with
sometimes as much as a 15 point difference in onset F1
score between adjacent validation steps. We hypothesize
this is because small changes in relative time shift predic-
tion are magnified when accumulated across a sequence to
determine the absolute times needed for the metrics cal-
culation; i.e., relative time shifts cause the resulting tran-
scriptions to drift out of alignment with the audio.

Finally, we investigate if a larger model size would im-
prove performance. We scaled up our model size based
on the “base” configuration from T5. Specifically, we
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Model Onset, Offset,
& Velocity F1

Onset
& Offset F1

Onset
F1

M
A

ES
TR

O
V

1.
0.

0

Transformer (ours) 82.18 83.46 95.95
Kong et al. 2020 [19] 80.92 82.47 96.72
Kwon et al. 2020 [21] – 79.36 94.67
Kim & Bello 2019 [20] 80.20 81.30 95.60
Hawthorne et al. 2019 [2] 77.54 80.50 95.32

M
A

ES
TR

O
V

3.
0.

0

Transformer 82.75 83.94 96.01
Onsets only vocabulary – – 96.13
STFT input 81.81 82.92 95.44
Raw samples input 74.79 77.26 92.35
Relative time shifts output 66.25 67.35 80.02
“Base” model size (100K steps) 81.41 82.78 95.60

Table 1. MAESTRO test set results. Comparisons against previous work are done using V1.0.0 and comparisons against
different model configurations are done using V3.0.0 because of its larger size. All Transformer models were trained to
400K steps except for the “Base” configuration which was trained to 100K steps.

modified the following hyperparameters: dmodel = 768,
d↵ = 2,048, 12 heads for attention, and 12 layers each
in the encoder and decoder. These changes resulted in a
model with 213M parameters, as opposed to our “small”
configuration which had only 54M. This model quickly
overfit the training dataset, with scores on the validation set
starting to decline after 100K steps, so we stopped training
at that point. Even with early stopping, this model does
not perform as well as our “small” configuration, clearly
demonstrating that even though piano transcription is a
fairly complicated task, it does not require a particularly
large Transformer.

5. CONCLUSION AND FUTURE WORK

We have shown that a generic Transformer architecture
trained to map spectrograms to MIDI-like output events
with no pretraining can achieve state-of-the-art perfor-
mance on automatic piano transcription. We see this as
an appeal to simplicity; we used standard formats and ar-
chitectures as much as possible and were able to achieve
results on par with models customized for piano transcrip-
tion. Possibly the main source of complexity in our setup is
the splitting of examples into segments; future work could
include the investigation of sparse attention mechanisms
to enable the transcription of an entire piece of music in a
single encoding and decoding pass. Also worth exploring
would be the use of distillation [39] or related techniques
to enable models like this to run in realtime on mobile de-
vices or the web.

Our results suggest that a generic sequence-to-sequence
framework with Transformers might also be beneficial for
other MIR tasks, such as beat tracking, fundamental fre-
quency estimation, chord estimation, etc. The field of Nat-
ural Language Processing has seen that a single large lan-
guage model, such as GPT-3 or T5, has been capable of
solving multiple tasks by leveraging the commonalities be-
tween tasks. We are excited by the possibility that similar
phenomena could be possible with MIR tasks, and we hope

that these results point toward possibilities for creating new
MIR models by focusing on dataset creation and labeling
rather than custom model design.
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ABSTRACT

We present the Neural Waveshaping Unit (NEWT): a

novel, lightweight, fully causal approach to neural audio

synthesis which operates directly in the waveform domain,

with an accompanying optimisation (FastNEWT) for ef-

ficient CPU inference. The NEWT uses time-distributed

multilayer perceptrons with periodic activations to implic-

itly learn nonlinear transfer functions that encode the char-

acteristics of a target timbre. Once trained, a NEWT can

produce complex timbral evolutions by simple affine trans-

formations of its input and output signals. We paired the

NEWT with a differentiable noise synthesiser and reverb

and found it capable of generating realistic musical instru-

ment performances with only 260k total model parameters,

conditioned on F0 and loudness features. We compared

our method to state-of-the-art benchmarks with a multi-

stimulus listening test and the Fréchet Audio Distance and

found it performed competitively across the tested tim-

bral domains. Our method significantly outperformed the

benchmarks in terms of generation speed, and achieved

real-time performance on a consumer CPU, both with and

without FastNEWT, suggesting it is a viable basis for fu-

ture creative sound design tools.

1. INTRODUCTION

Synthesisers are indispensable tools in modern music cre-

ation. Over the last six decades, their evolving sonic af-

fordances have defined uncountable musical aesthetics and

cultures, enabling composers, sound designers, and musi-

cians to interact with human auditory perception in previ-

ously impossible ways.

The recent proliferation of deep neural networks as

audio synthesisers is further expanding the capabilities

of these tools: realistic instrument performances can be

synthesised from simple, low dimensional control signals

[1–3]; the timbre of one instrument can be convincingly

transferred to another [1, 3–5]; instruments can be mor-

phed and interpolated along nonlinear manifolds [6,7]; and

sounds can be manipulated using high level descriptors of

perceptual characteristics [7–9]. Yet despite their impres-

sive abilities, these systems have not been widely adopted

in music creation workflows.

© Ben Hayes, Charalampos Saitis, George Fazekas. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Ben Hayes, Charalampos Saitis, George

Fazekas, “Neural Waveshaping Synthesis”, in Proc. of the 22nd Int. So-

ciety for Music Information Retrieval Conf., Online, 2021.

We argue that this is largely a pragmatic issue. Modern

music production centres around the digital audio worksta-

tion (DAW), with software instruments and signal proces-

sors represented as real-time plugins. These allow users to

dynamically manipulate and audition sounds, responsively

tweaking parameters as they listen or record. Neural audio

synthesisers do not currently integrate elegantly with this

environment, as they rely on deep neural networks with

millions of parameters, and are often incapable of func-

tioning in real-time on a CPU.

In this work we move towards integrating the benefits

of neural audio synthesis into creative workflows with a

novel, lightweight architecture built on the principles of

digital waveshaping synthesis [10]. Our model implicity

learns a bank of continuous differentiable waveshapers,

which are applied to an exciter signal. A control mod-

ule learns to generate time-varying timbres by dynamically

shifting and scaling the learnt waveshaper’s input and out-

put. As the waveshapers encode information about the tar-

get timbre, our model can synthesise convincing audio us-

ing an order of magnitude fewer parameters than the cur-

rent state-of-the-art methods.

This paper is laid out as follows. In section 2 we discuss

related work on neural audio synthesis and waveshaping.

Section 3 introduces our architecture, and we outline our

training methodology in section 4. In section 5 we present

and discuss evaluations of our model in comparison to the

current state of the art methods [1,3]. Finally, we conclude

with suggestions for future work in section 6. We provide

full source code 1 and encourage readers to listen to the

audio examples in the online supplement 2 .

2. RELATED WORK

2.1 Neural Audio Synthesis

Audio synthesis with deep neural networks has received

considerable attention in recent years. Autoregressive

models such as WaveNet [11] and SampleRNN [12] de-

fined a class of data-driven, general-purpose vocoder,

which was subsequently expanded on with further prob-

abilistic approaches, including flow-based models [13–15]

and generative adversarial networks [16–19]. These mod-

els allow realistic synthesis of speech, and applications to

musical audio [6,20,21] have yielded similarly impressive

results. A parallel stream of research has focused on con-

trollable musical audio synthesis [1–3, 7, 8, 22], in which

1 https://github.com/ben-hayes/
neural-waveshaping-synthesis

2 https://ben-hayes.github.io/projects/nws/

254



models are designed to provide control affordances that

may be of practical use. Such controls have included MIDI

scores [2, 22], semantic or acoustical descriptors of timbre

[7, 8], and F0/loudness signals [1, 3]. The representations

of timbre learnt by these models have also been observed

to show similarities to human timbre perception [23].

A recent category of model, [1, 3, 24] unified under the

conceptual umbrella of differentiable digital signal pro-

cessing (DDSP) [1], has enabled low-dimensional, inter-

pretable control through strong inductive biases to audio

synthesis. Whereas generalised neural vocoders must learn

from scratch to produce the features that typify audio sig-

nals, such as periodicity and harmonicity, DDSP methods

utilise signal processing components designed to produce

signals exhibiting such features. These components are ex-

pressed as differentiable operations directly in the compu-

tation graph, effectively constraining a model’s outputs to

a subspace defined by the processor’s capabilities.

DDSP methods fall into two groups: those where the

network generates control signals for a processor, and

those where the network is trained to be a signal proces-

sor itself. The DDSP autoencoder [1] falls into the first

category as it generates control signals for a spectral mod-

elling synthesiser [25]. The neural source-filter (NSF) ap-

proach [3,24,26] is in the second category. It learns a non-

linear filter that transforms a sinusoidal exciter to a target

signal, guided by a control embedding generated by a sep-

arate encoder. In other words: the control module “plays”

the filter network.

The NSF filter network transforms its input through am-

plitude distortion, as each activation function acts as a non-

linear waveshaper. A given layer’s ability to generate a

target spectrum is thus bounded by the distortion charac-

teristics of its activation function. For this reason, neu-

ral source-filter models are typically very deep: Wang et

al.’s simplified architecture [24] requires 50 dilated convo-

lutional layers, and Michelashvili & Wolf’s musical instru-

ment model [3] consists of 120 dilated convolutional layers

– 30 for each of its four serial generators.

Our method avoids the need for such depth by learning

continuous representations of detailed waveshaping func-

tions as small multilayer perceptrons. These functions

are optimised such that their amplitude distortion charac-

teristics allow them to produce spectral profiles appropri-

ate to the target timbre. This allows our model to accu-

rately transform an exciter signal considerably more effi-

ciently, whilst still exploiting the benefits of the network-

as-synthesiser approach.

2.2 Digital Waveshaping Synthesis

In waveshaping synthesis [10], timbres are generated using

the amplitude distortion properties of a nonlinear shaping

function f : R !→ R, which is memoryless and shift invari-

ant. Due to its nonlinearity, f is able to introduce new fre-

quency components to a signal [27]. When a pure sinusoid

cosωn is used as the input to f , only pure harmonics are

introduced to the signal. An exciter signal with multiple

frequency components, conversely, would result in inter-

modulation distortion, generating components at frequen-

cies aω1 ± bω2, ∀a, b ∈ Z+, for input frequencies ω1 and

ω2. This would result in inharmonic components if ω1 and

ω2 are not harmonically related.

The shaping function f is designed to produce a spe-

cific spectral profile when excited with cosωn. This is

achieved as a weighted sum of Chebyshev polynomials

of the first kind, which possess the property that the kth

polynomial Tk directly transforms a sinusoid to its kth har-

monic: Tk(cosωn) = cosωkn. With a function specified

in this way, we can define a simple discrete time waveshap-

ing synthesiser

x[n] = N [n]f(a[n] cosωn), (1)

where a[n] is the distortion index and N [n] is a normal-

ising coefficient. As the frequency components generated

by a nonlinear function vary with input amplitude, varying

the distortion index over time allows us to generate evolv-

ing timbres, whilst the normalising coefficient allows us to

decouple the frequency content and overall amplitude en-

velope of the signal.

3. NEURAL WAVESHAPING SYNTHESIS

Our model acts as a harmonic-plus-noise synthesiser [25].

This architecture separately generates periodic and aperi-

odic components and exploits an inductive bias towards

harmonic signals. Fig. 1 illustrates the overall architec-

ture of our model.

3.1 Control Encoder

We condition our model on framewise control signals ex-

tracted from the target audio with a hop size of 128. We

project these to a 128-dimensional control embedding z
using a causal gated recurrent unit (GRU) of hidden size

128 followed by a time distributed dense layer of the same

size. We leave the exploration of the performance of alter-

native sequence models to future work.

3.2 NEWT: Neural Waveshaping Unit

The shaping function f of a waveshaping synthesiser can

be fit to only a single instantaneous harmonic spectrum.

The spectral evolution afforded by the distortion index a[n]
is thus usually unrelated to the target timbre. This is a

limitation of the Chebyshev polynomial method of shap-

ing function design. Here, we propose to instead learn a

shaping function fθ parameterised by a multilayer percep-

tron (MLP). As demonstrated in recent work on implicit

neural representations [28, 29], MLPs with sinusoidal ac-

tivations dramatically outperform ReLU MLPs in learning

continuous representations of detailed functions with arbi-

trary support. We therefore use sinusoidal activations in

fθ, which enables useful shaping functions to be learnt by

very compact networks. Here, we use 64 parallel shaper

MLPs, each with 4 layers, with a hidden size of 8 neurons.

To enable our model to fully exploit the distortion char-

acteristics of fθ, we replace the distortion index a[n] and

normalising coefficient N [n] with affine transforms before

and after the shaping function. The parameters of these

transforms, denoted αa and βa for the distortion index
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Figure 1. The full architecture of our neural audio synthesiser. All linear layers and MLPs are time distributed. Convolution

is denoted ∗ and applied by multiplication in the frequency domain. Blocks with dashed outlines operate at the same coarse

time steps as the control signal, whilst those with solid outlines operate at audio rate.
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Figure 2. A block diagram depicting the structure of

the neural waveshaping unit (NEWT). Blocks with dashed

outlines operate at control signal time steps, whilst solid

blocks operate at audio rate.

and αN and βN for the normalising coefficient, are gener-

ated by a separate MLP (depth 4, width 128, ReLU activa-

tions with layer normalisation [30]) which takes z as input,

and then upsampled to audio rate. The output of a single

NEWT in response to exciter signal y[n] is thus given by:

x[n] = αNfθ(αay[n] + βa) + βN . (2)

In this way, the NEWT disentangles two tasks: it learns

a synthesiser parameterised by (αa,αN ,βa,βN ), and it

learns to “play” that synthesiser in response to a control

signal z. Fig. 2 illustrates the structure of the NEWT. In

practice, we use multiple such units in parallel. We can im-

plement this efficiently using grouped 1-dimensional con-

volutions with a kernel size of 1 — essentially a bank of

parallel time-distributed dense layers.

3.3 FastNEWT

The NEWT is an efficient approach to generating time-

varying timbres, but its reliance on grouped 1-dimensional

convolutions best suits it to GPU inference. Many use-

cases for our model do not guarantee the availability of a

GPU, and so efficient CPU inference is of crucial impor-

tance. For this reason, we propose an optimisation called

the FastNEWT: as each learnable shaping function simply

maps R !→ R, it can be replaced by a lookup table of

arbitrary resolution. Forward passes through fθ are then

simply replaced with the O(1) operation of reading values

from an array and calculating an interpolation.

To produce a FastNEWT, we sample fθ across a closed

interval. The sampling resolution and interval are tunable

parameters of this operation, and represent a trade-off be-

tween memory cost and reconstruction quality. Here, we

opt for a lookup table of 4096 samples over the interval

[−3, 3], using a naïve implementation with linear interpo-

lation. Like the rest of our model, this is implemented

using PyTorch operations, and so we treat this as an up-

per bound on the computational cost of the FastNEWT. In

practice, an implementation in a language with low level

memory access would confer performance improvements.

3.4 Harmonic Exciter

To reduce the resolution required of the shaping functions,

we produce our exciter with a harmonic oscillator bank

generating up to 101 harmonics, truncated at the Nyquist

frequency. The outputs of this oscillator bank are passed

through a time distributed linear layer, acting as a mixer

which provides each NEWT channel with a weighted mix-

ture of harmonics. Thus, the ith output channel of the ex-

citer module is given by:

yi[n] =
K
∑

k=1

A(kω)wik cos kωn+ bi, (3)

where the antialiasing mask A(kω) is 1 if −π < kω < π
and 0 otherwise.

3.5 Noise Synthesiser

In spectral modelling synthesis [25], audio signals are de-

composed into a harmonic portion and a residual portion.

The residual portion is typically modelled by filtered noise,

with filter coefficients varying over time according to the

spectrum of the residual. Here, we use an MLP (depth 4,

hidden size 128, ReLU activations with layer normalisa-

tion) to generate 256-tap FIR filter magnitude responses

conditioned on z. We apply a differentiable window-

design method like that used in the DDSP model [1] to

apply the filters to a white noise signal. First, we take the

inverse DFT of these magnitude responses, then shift them

to causal form, and apply a Hann window to the impulse
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response. We then apply the filters to a white noise signal

by multiplication in the frequency domain.

3.6 Learnable Reverb

To model room acoustics, we apply a differentiable convo-

lutional reverb to the signal. We use an impulse response

c[n] of length 2 seconds, initialised as follows:

c[n]

{

∼ N (0; 1e-6), if n > 1,

= 0, if n = 0.
(4)

c[n] is trainable for n ≥ 1, whilst the 0th value is fixed

at 0. The reverberated signal (c ∗ x)[n] is computed by

multiplication in the frequency domain, and the output of

the reverb is summed with the dry signal.

4. EXPERIMENTS

Our model can be trained directly through maximum like-

lihood estimation with minibatch gradient descent. Here

we detail the training procedure used in our experiments.

4.1 Loss

We trained our model using the multi-resolution STFT loss

from [18]. A single scale of the loss is defined as the ex-

pectation of the sum of two terms. The first is the spectral

convergence Lsc (Eqn. 5) and the second is log magnitude

distance Lm (Eqn. 6), defined as:

Lsc(x, x̂) =
‖|STFTm(x)|− |STFTm(x̂)|‖F

‖|STFTm(x)|‖F
(5)

and

Lm(x, x̂) =
1
m

‖log |STFTm(x)|− log |STFTm(x̂)|‖
1

(6)

respectively, where ‖·‖F is the Frobenius norm, ‖·‖
1

is

the L1 norm, and STFTm gives the short-time Fourier

transform with analysis window of length m for m ∈
{512, 1024, 2048}. We used the implementation of this

loss provided in the auraloss library [31].

4.2 Data

We collated monophonic audio files from three instruments

(violin, trumpet, & flute) from across the University of

Rochester Music Performance (URMP) dataset [32], and

for each instrument applied the following preprocessing.

We normalised amplitude across each instrument subset,

made all audio monophonic by retaining the left channel,

and resampled to 16kHz. We extracted F0 and confidence

signals using the full CREPE model [33] with a hop size

of 128 samples. We extracted A-weighted loudness using

the procedure laid out in [21] using a window of 1024 sam-

ples and a hop size of 128 samples. We divided audio and

control signals into 4 second segments, and discarded any

segment with a mean pitch confidence < 0.85. Finally,

control signals were standardised to zero mean and unit

variance. Each instrument subset was then split into 80%

training, 10% validation, and 10% test subsets.

Model Parameters

HTP 5.6M

DDSP-full 6M

DDSP-tiny 280k*

NWS 266k

* The paper reports 240k [1], but the official implementation
contains a model with 280k parameters.

Table 1. Trainable parameter counts of models under com-

parison.

4.3 Training

We trained our models with the Adam optimiser using an

initial learning rate of 1e-3. The learning rate was expo-

nentially decayed every 10k steps by a factor of 0.9. We

clipped gradients to a maximum norm of 2.0. All models

were trained for 120k iterations with a batch size of 8.

5. EVALUATION & DISCUSSON

To evaluate the performance of our model across different

timbres, we trained a neural waveshaping model for each

instrument subset. We denote these models NWS, specify-

ing the instrument where relevant. After training, we cre-

ated optimised models with FastNEWT, denoted NWS-FN,

and included these in our experiments also.

5.1 Benchmarks

We evaluated our models in comparison to two state of the

art methods: DDSP [1] and Hierarchical Timbre Painting

(referred to from here as HTP) [3]. We trained these on the

same data splits as our model, preprocessed in accordance

with each benchmark’s requirements.

Two DDSP architectures were used as benchmarks: the

“full” model, originally used to train a violin synthesiser,

and the “tiny” model described in the paper’s appendices.

Both were trained for 30k iterations as recommended in

the supplementary materials. We denote these DDSP-full

and DDSP-tiny, respectively. HTP comprises four distinct

Parallel WaveGAN [18] generators operating at increasing

timescales. We trained each for 120k iterations, as recom-

mended in the original paper. Table 1 lists the total train-

able parameter counts of all models under comparison.

5.2 Fréchet Audio Distance

The Fréchet Audio Distance (FAD) is a metric originally

designed for evaluating music enhancement algorithms

[34], which correlates well with perceptual ratings of audio

quality. It is computed by fitting multivariate Gaussians to

embeddings generated by a pretrained VGGish model [35].

This process is performed for both the set under evaluation,

yielding Ne(µe,Σe), and a set of “background” audio sam-

ples which represent desirable audio characteristics, yield-

ing Nb(µb,Σb). The FAD is then given by the Fréchet

distance between these distributions:

F (Nb,Ne) = ‖µb − µe‖2 + tr(Σb + Σe − 2
√
ΣbΣe). (7)
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Fréchet Audio Distance
Model Flute Trumpet Violin

Test Data 0.463 0.327 0.096

HTP 6.970 14.848 2.529

DDSP-full 3.091 1.391 1.062
DDSP-tiny 3.673 5.301 2.454

NWS 2.704 2.158 5.101

NWS-FN 2.717 2.163 5.091

Table 2. Fréchet Audio Distance scores for all models us-

ing background embeddings computed across each instru-

ment’s full dataset. Bold type indicates the best perfor-

mance in a column and italics the second best.

Thus, a lower FAD score indicates greater similarity to the

background samples in terms of the features captured by

the VGGish embedding. Here, we used the FAD to evalu-

ate the overall similarity of our model’s output to the tar-

get instrument. We computed our background embedding

distribution Nb from each instrument’s full dataset, whilst

the evaluation embedding distributions Ne were computed

using audio resynthesised from the corresponding test set.

FAD scores for our model, all benchmarks, and the test

datasets themselves are presented in Table 2.

In general, the closely matched scores of the NWS

and NWS-FN models indicate that, across instruments, the

FastNEWT optimisation has a minimal effect on this met-

ric of audio quality. On trumpet and flute, our models con-

sistently outperform HTP and DDSP-tiny, and also out-

perform DDSP-full on flute. On violin, conversely, both

DDSP models are the best performers, with HTP achiev-

ing a similar score to DDSP-tiny.

5.3 Listening Test

Our model and benchmarks can be considered as highly

specified audio codecs. We therefore applied a listening

test inspired by the MUSHRA (MUltiple Stimuli with Hid-

den Reference and Anchor) standard [36], which is used to

assess the perceptual quality of audio codecs. We used

the webMUSHRA framework [37], adapted to incorpo-

rate a headphone screening test [38]. For each instru-

ment, we selected two stimuli from the test set represent-

ing distinct register and articulation, giving six total tri-

als. In each trial, we used the original recording as the

reference and produced the anchor by applying a 1kHz

low pass filter. We recruited 19 participants from a pool

of audio researchers, musicians, and audio engineers. We

excluded the responses of one participant, who rated the

anchor above the reference in greater than 15% of trials.

Responses for each trial are plotted in Fig. 3. In gen-

eral, NWS and NWS-FN performed similarly across trials,

suggesting that FastNEWT has little, if any, impact on the

perceptual quality of the synthesised audio. Across flute

and trumpet trials our models were rated similarly to the

benchmarks. In the first violin trial, our models’ ratings

were similar to those of DDSP-tiny, whilst in the second

they were lowest overall. These ratings are concordant

with FAD scores: our model performs competitively on

Real-time Factor
GPU CPU

Model Mean 90th Pctl. Mean 90th Pctl.

HTP 0.105 0.106 2.203 2.252

DDSP-full 0.038 0.047 0.363 0.395

DDSP-tiny 0.032 0.039 0.215 0.223

NWS 0.004 0.004 0.194 0.208

NWS-FN 0.003 0.003 0.074 0.076

Table 3. Real-time time factor computed by synthesising

four seconds of audio in a single forward pass. Statistics

computed over 100 runs. Bold indicates the best perfor-

mance in a column and italics the second best.

trumpet and flute whilst struggling somewhat with violin.

To examine the influence of melodic stimuli on partic-

ipants’ ratings, we performed Wilcoxon’s signed-rank test

between scores given for each instrument’s two stimuli, for

each synthesis model. For example, scores given to DDSP-

full for stimulus Flute 1 were compared to scores given to

DDSP-full for Flute 2. Out of fifteen tests, significant dif-

ferences (p < .001) were observed in two: between trum-

pet stimuli for both DDSP-full and HTP. No other signifi-

cant effects were observed (α = 0.05).

To examine the effect of synthesis model, we performed

Friedman’s rank sum test on ratings from each trial. For

flute stimuli, no significant effects were found. Signifi-

cant effects were observed for both trumpet stimuli, al-

though Kendall’s W suggested only weak agreement be-

tween raters (Trumpet 1: Q = 27.45, p < 0.001,W =
0.38; Trumpet 2: Q = 14.18, p < 0.01,W = 0.20) . Both

violin stimuli also resulted in significant effects with mod-

erate agreement between raters (Violin 1: Q = 42.28, p <
0.001,W = 0.59; Violin 2: Q = 37.95, p < 0.001,W =
0.53). Post-hoc analysis was performed within each trial

using Wilcoxon’s signed-rank test with Bonferroni p-value

correction. Significant differences (corrected threshold

p < .005) were observed for Trumpet 1, Violin 1, and Vi-

olin 2. These are illustrated as brackets in Fig. 3.

5.4 Real-time Performance

We evaluated the real-time performance of our model in

two scenarios. In both cases we took measurements on

a GPU (Tesla P100-PCIe 16GB) and a CPU (Intel i5

1038NG7 2.0GHz) and used the real-time factor (RTF) as

a metric. The RTF is defined as

RTF :=
tp
ti
, (8)

where ti is the temporal duration of the input and tp is the

time taken to process that input and return an output. Real-

time performance thus requires RTF < 1. In all tests we

computed RTF statistics over 100 measurements.

The first scenario models applications where an output

is expected immediately after streaming an input. To test

this, we computed the RTF on four second inputs. We re-

port the mean and 90th percentile in Table 3. On the GPU,

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

258



Flute 1 Flute 2 Trumpet 1 Trumpet 2 Violin 1 Violin 2

0

25

50

75

100

S
co

re

Model

Anchor

DDSP−full

DDSP−tiny

HTP

NWS

NWS−FN

Reference

Figure 3. Boxplots of ratings given to each synthesis model during each trial in our listening test. Brackets indicate

significant (corrected p < .005) differences in pairwise Wilcoxon signed-rank tests with Bonferroni correction.
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Figure 4. A plot of the mean real-time factor against buffer

size across all benchmarks. Mean computed over 100 runs

per model per device per buffer size.

NWS and NWS-FN outperformed all benchmarks, includ-

ing DDSP-tiny. On the CPU, NWS still outperformed all

other models, albeit by a narrower margin. The benefit of

the FastNEWT optimisation was clearer on CPU: NWS-

FN had a mean RTF 2.9× lower than the best perform-

ing benchmark. On both platforms, HTP was significantly

slower, likely due to its much greater depth.

The second scenario assumes applications where im-

mediate response to input is expected, such as in a soft-

ware instrument. Here, samples are processed in blocks

to ensure that sufficient audio is delivered to the DAC in

time for playback. We computed the RTF for each buffer

size in B := {2n | n ∈ Z, 8 ≤ n < 16}. The means

of these runs are plotted in Fig. 4. Again, NWS and

NWS-FN outperformed all benchmarks on both CPU and

GPU, sitting comfortably below the real-time threshold of

1.0 at all tested buffer sizes. HTP did not achieve real-

time performance at any buffer size on the CPU, and only

did so for buffer sizes over 2048 on the GPU. DDSP-

full, similarly, was unable to achieve realtime performance

for buffer sizes of 2048 or lower on GPU or CPU, while

DDSP-tiny sat on the threshold at this buffer size. It should

be noted that a third-party, stripped down implementation

of the DDSP model was recently released, which is capa-

ble of real-time inference when the convolutional reverb

module is removed 3 .

6. CONCLUSION

In this paper, we presented the NEWT: a neural network

structure for audio synthesis based on the principles of

waveshaping [10]. We also present full source code, pre-

trained checkpoints, and an online supplement containing

audio examples. Our architecture is lightweight, causal,

and comfortably achieves real-time performance on both

GPU and CPU, with efficiency further improved by the

FastNEWT optimisation. It produces convincing audio di-

rectly in the waveform domain without the need for hier-

archical or adversarial training. Our model is also capable

of many-to-one timbre transfer by extracting F0 and loud-

ness control signals from the source audio. Examples of

this technique are provided in the online supplement.

In evaluation with a multi-stimulus listening test and

the Fréchet audio distance our model performed compet-

itively with state-of-the-art methods with over 20× more

parameters on trumpet and flute timbres, whilst perform-

ing similarly to a comparably sized DDSP benchmark on

violin timbres. Due to the use of a harmonic exciter in our

architecture and the scope of our experimentation, further

work is necessary to ascertain to what degree the NEWT

itself contributes to our model’s performance. Therefore,

in future work we will perform a full ablation study and a

quantitative analysis of the degree to which a trained model

makes use of the NEWT’s waveshaping capabilities. In the

meantime, the online supplement demonstrates through vi-

sualisations of learnt shaping functions, affine parameters

(αa,βa,αN ,βN ), and audio taken directly from the out-

put of the NEWT, that the NEWTs in our model do indeed

perform waveshaping on the exciter signal.

We suspect the lower scores on violin timbres were due

to the greater proportion of signal energy in higher har-

monics in these sounds. The NEWT may thus been un-

able to learn shapers capable of producing these harmon-

ics without introducing aliasing artefacts. Using sinusoidal

MLPs with greater capacity inside the NEWT may allow

more detailed shaping functions to be learnt, whilst retain-

ing efficient inference with FastNEWT. Future work will

investigate this and other differentiable antialiasing strate-

gies, including adaptive oversampling [39]. We will also

explore extending our model to multi-timbre synthesis.

3 https://github.com/acids-ircam/ddsp_pytorch
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ABSTRACT

The creation and curation of labeled datasets can be an
arduous, expensive, and time-consuming task. We intro-
duce a workflow paradigm for remote consensus-building
between expert annotators, while considerably reducing
the associated administrative overhead through automa-
tion. Most music annotation tasks rely heavily on human
interpretation and therefore defy the concept of an objec-
tive and indisputable ground truth. Thus, our paradigm in-
vites and documents inter-annotator controversy based on
a transparent set of analytical criteria, and aims at putting
forth the consensual solutions emerging from such deliber-
ations. The workflow that we suggest traces the entire gen-
esis of annotation data, including the relevant discussions
between annotators, reviewers, and curators. It adopts a
well-proven pattern from collaborative software develop-
ment, namely distributed version control, and allows for
the automation of repetitive maintenance tasks, such as
validity checks, message dispatch, or updates of meta-
and paradata. To demonstrate the workflow’s effective-
ness, we introduce one possible implementation through
GitHub Actions and showcase its success in creating ca-
dence, phrase, and harmony annotations for a corpus of 36
trio sonatas by Arcangelo Corelli. Both code and anno-
tated scores are freely available, and the implementation
can be readily used in and adapted for other MIR projects.

1. INTRODUCTION

Labeled datasets are an essential prerequisite for many
tasks in Music Information Retrieval (MIR) and Digital
Musicology, and those tasks are directly dependent on the
quality of the labels. Thus, great care needs to be taken
during data creation and curation processes in order to pro-
vide reliable data for algorithmic evaluation and other pur-
poses. However, the procedures underlying data creation
processes as well as how data quality is assessed and as-
sured are not always made explicit and well-documented,

© J. Hentschel, F. C. Moss, M. Neuwirth, and M.
Rohrmeier. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: J. Hentschel, F. C. Moss,
M. Neuwirth, and M. Rohrmeier, “A semi-automated workflow paradigm
for the distributed creation and curation of expert annotations”, in Proc.
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

a fact which consequently impedes post hoc quality control
and reproducibility.

The literature on annotation workflows is sparse and
widely dispersed, and the description of data, their meta-
data, and creation processes is commonly tailored to spe-
cific datasets and research questions. Generic procedures
that emphasize common aspects and steps in labeling
pipelines are rare. Fortunately, recent years have seen
an increasing number of publications directly addressing
these issues for MIR contexts, and researchers are more
and more actively describing and documenting the pro-
cedures that lead to the creation of datasets, along with
discussions of the challenges faced and proposed solu-
tions [1–6]. In particular, publications presenting dedi-
cated datasets [7–13] or workflows [14, 15] discuss these
aspects in more detail and present the solutions adopted
for the specific research purposes. Standardized solutions
for the wider community, however, do not yet exist, both
due to the diverse and specific requirements for different
data and to the relatively high workload and generally low
recognition associated with documentation. The ability
to rely on established workflows thus would liberate re-
searchers from this arduous resource- and time-consuming
responsibilities.

We propose a viable solution that addresses these is-
sues by introducing a novel workflow paradigm for the
distributed production of expert or crowd-sourced anno-
tations that is easy to adopt and adapt. It has the over-
arching aim to streamline the annotation procedure by re-
ducing the associated administrative overhead. Our work-
flow is designed to optimize the trade-off between work-
ing hours spent and data quality achieved, with the goal to
maximize trustworthiness and usability of the resulting an-
notation labels. We demonstrate its effectiveness through
an example implementation 1 by means of GitHub Actions
which we use to create cadence, phrase, and harmony an-
notations for a corpus of scores of 36 trio sonatas by Ar-
cangelo Corelli 2 .

Our proposal may serve as a starting point for a wider
discussion in the MIR community about how to optimize
annotation tasks on a larger scale according to a set of
agreed-upon criteria.

1 github.com/DCMLab/dcml_annotation_workflow
2 github.com/DCMLab/corelli
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2. SETTING

This paper addresses distributed settings in which mu-
sic experts generate symbolic research data by annotating
given music representations such as scores, recordings, or
timelines. In this section we describe (1) the different roles
of individuals involved, (2) some requirements for the an-
notations that are to be produced, and (3) common steps
in an annotation workflow. Finally, we (4) highlight some
concrete problems pertinent to these aspects, motivating
our novel workflow paradigm.

2.1 Roles

Individuals involved in the annotation of datasets for MIR
tasks can assume one or several of the following roles:
Annotators: experts who provide labels after having fa-
miliarized themselves with a set of annotation guidelines.
Reviewers: experts who proof-read the provided annota-
tions and provide feedback, criticism, or corrections.
Curators: individuals who are responsible for the ini-
tiation, planning, coordination, and/or financing of the
project and whose tasks might also involve the creation
and maintenance of annotation guidelines and standards
(e.g. through the use of ontologies, vocabularies, or syntax
specifications).
Annotators, reviewers, and curators all benefit from the
workflow we propose, since it aims to streamline their in-
teraction and to reduce their workload.

2.2 Labels

We use the words annotations and labels interchangeably
and in their widest sense, meaning that they could, for in-
stance, follow a pre-defined syntax, pertain to a closed vo-
cabulary, or represent score reductions, graphs, trees etc.
Our workflow paradigm is applicable in projects for which
the following general assumptions hold: (a) annotation la-
bels are encoded and stored as plain text in order to allow
for transparent version control; (b) each label thus pro-
vided uniquely refers to a specific segment in the music,
such as a range of bars, a set of events, or a time-span;
(c) each label corresponds to a precisely formalized en-
coding scheme, structured vocabulary, or other annotation
standard that can be algorithmically validated; (d) annota-
tors and reviewers share the goal to bring forth a final ver-
sion of labels that reconciles their particular musical exper-
tise with the analytical guidelines underlying the project;
(e) the creation and curation of annotated datasets is an
inherently open-ended process and one must be able to
potentially subject the data to future changes, in particu-
lar when the curators introduce changes in the annotation
guidelines or syntactic specifications; (f) access to the full
history of each label makes a dataset’s provenance trans-
parent and increases its trustworthiness.

2.3 Annotation process

Usually, it is the curators’ responsibility to clearly define
the annotation task(s), to assemble and organize the mu-
sic representations to be annotated (‘original data’), to set

up the project infrastructure, and to engage a pool of ex-
perts in the endeavor. Depending on the setting, annotators
and reviewers need to be familiarized with the tasks, pro-
cesses, tools, and specific guidelines, often supported by
tutorials, training videos, trial phases, or individual coach-
ing. The original data needs to be made available and as-
signed to (or self-assigned by) annotators, and annotation
data to reviewers. The latter assess the quality of the pro-
vided labels, e.g. on a case-by-case basis or by applying
specific sampling criteria. Finally, curators may check fur-
ther samples to ensure highest possible quality, and admit
the proof-read and validated labels to the final stage, which
might coincide with publication.

2.4 Problem statement

The problem we address with this publication is the opti-
mization of the portrayed annotation process in terms of
human resources and data quality. We consider this pro-
cess complete as soon as all envisaged annotations have
been created, validated, and verified at least once (for de-
tails, see Section 3). At any given moment, the latest val-
idated version of the dataset should be retrievable and the
full history of the data genesis, including the provenance
of every label, must be stored for maximum transparency.

Most music annotation tasks rely heavily on human
judgement and are thus to a large extent subject to inter-
pretation [5, 16–21]. MIR as well as other domains in
need of great amounts of subjective annotation data have
long since turned to crowd-sourcing as a means of leverag-
ing a massive inexpensive labor force, a paradigm that en-
tails a whole range of well-known problems with respect
to quality control, amongst others [22–25]. By valuating
quality over quantity, however, our approach favors solic-
iting fewer and appropriately remunerated experts. This
requires diligence and careful organization to ensure out-
comes that are effective regarding the tasks to be accom-
plished as well as economically feasible.

Annotation tasks moreover require appropriate techno-
logical infrastructure that allows annotators and reviewers
to debate their interpretations within the scope set forth
by the annotation guidelines, and to subsequently incor-
porate the consensual labels in the dataset. This process
of consensus-building between experts, proposed in [17],
needs to be recorded for future reference.

Finally, curating such an endeavor ‘manually’, i.e., by
exchanging commissions, files, and arguments (e.g. via
e-mail), creates a strong desire for a workflow paradigm
that easily automates repetitive maintenance tasks. These
laborious tasks include the dispatch of notification mes-
sages, data validation, and updates of metadata, paradata,
and data facets. Not only are these tasks time-consuming
for annotators, reviewers, and curators alike, they also bear
the danger of being oblivious of issues that require crucial
attention. Thus, a system must be put in place that prevents
important production steps from being forgotten.
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Figure 1. Basic branching scheme. The main branch of the repository exposes the latest version of the dataset that has been
approved by a maintainer, whereas contributors can commit only to child branches. Circles represent commits by humans,
red diamonds commits by bots, and red squares with a white letter represent triggered scripts.

3. A NOVEL ANNOTATION WORKFLOW
PARADIGM

The problems and characterizations of the annotation pro-
cess stated in the preceding section exhibit a large over-
lap with the domain of collaborative software engineer-
ing [26]. Both describe distributed settings in which a po-
tentially great number of contributors collaborate on creat-
ing a possibly large collection of texts: a codebase in the
case of software, a dataset of annotations in the present
case. Both scenarios can be regarded as open-ended tasks
since there is commonly no clearly defined final state; con-
tinuous development, possibly based on user feedback, is
the norm rather than the exception [27]. Quality control
plays a crucial role for the creation of both software and
annotations, and is often aided by guidelines, mutual re-
views, and automated tests. Moreover, keeping a version
history is required for compatibility in software and for re-
producibility in data evaluation. Consequently, adopting
best practices from distributed version control presents it-
self as a naturally viable solution. Throughout this section
we use terminology that has partly been coined and popu-
larized through the version control system Git [28,29], but
our proposed workflow paradigm can equally well be im-
plemented with similar systems such as Mercurial or Sub-
version.

3.1 Distributed version control

Our workflow paradigm builds on a well-proven pattern
from distributed version control, namely parallel branch-
ing [26, 30]. The patterns that we describe in this section
are generic in the sense that the involved concepts can be
understood as abstract classes which can manifest and be
implemented in many different ways.

The basic principle is shown in Figure 1 that displays
the version history of a data ‘repository’ along a timeline.
Each new version is created by a ‘commit’, that is, a set
of changes applied to the previous version by an ‘author’
and summarized in a ‘commit message’. In the sketch,
commits by human authors are shown as circles and those
made by bots as diamonds. Each of the two horizontal lev-
els represents a ‘branch’, of which, in principle, there can
be infinitely many in parallel. Every child branch branches
off directly or indirectly of the repository’s main branch,

or ‘trunk’, and the commits it contains can be merged back
into it anytime. We refer to individuals with the permis-
sion to merge, or ‘pull‘, changes into the main branch as
‘maintainers’.

All other human authors, or ‘contributors’, do not have
permission to merge into main and therefore need to is-
sue a ‘pull request’ that may or may not be accepted by
a maintainer based on their review of the commits on the
child branch. Maintainers therefore keep full control over
the trunk which exposes at all times the latest version of
the repository in which all commits have been made, or
approved by them. This is a design choice for a scenario
where one entity (person or institution) guarantees the in-
tegrity of the repository’s main branch (e.g., with respect to
a stipulated set of guidelines) while allowing for external
contributions in a controlled manner.

3.2 Data maintenance

The red elements in Figure 1 express automation. Specifi-
cally, squares represent scripts that are triggered by certain
events, and which may result in a bot pushing a commit.
For instance, the script Notify simply dispatches auto-
mated messages to the relevant persons to inform them
about a newly issued pull request, so that it does not go
unnoticed. The Update script is triggered upon push
to the main branch and uses a bot to commit its outputs.
In the case of an annotation workflow such updates most
typically comprise (a) metadata, e.g., amount, type, and
format of annotation labels, information on the annotated
pieces, free text descriptions; (b) paradata, e.g., annotator
identities, name and version of the employed annotation
software, review status, time stamp; or (c) data facets, e.g.,
extraction/separation of particular features for increased
accessibility, or summary statistics for individual pieces or
the entire dataset. For a concrete example, see Section 4.4.
Including an Update routine immensely facilitates the
project coordination—e.g. through an always up-to-date
dashboard or README file—and allows one to use the
dataset in its current state at any point in time.

3.3 Data validation

Figure 2 exemplifies the workflow paradigm for the com-
pletion of one (partial or comprehensive) set of annota-
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Figure 2. Example for a complete annotation cycle. In a parallel branch, an annotator pushes new annotations that don’t
pass the automatic validation (Test), corrects the errors, and issues a pull request. As soon as a reviewed version is pushed,
Compare adds files to aid the annotator with the process of going through the changes and deliberating with the reviewer.

tions, including data verification (see the follow subsec-
tion) and validation. Since we established in Section 2.2
that the annotation labels may be automatically validated,
we included the script Test which is triggered upon ev-
ery commit to any child branch (except if performed by a
bot). This way we ensure that syntactic and orthographic
errors in the annotations can be corrected right away and
we disallow merging into the main branch in cases where
the validity test did not pass. This way we ensure that in-
valid data cannot make its way into the main branch.

3.4 Data verification through expert consensus

As a consequence of the subjective nature of annotations,
data verification can not completely be delegated to al-
gorithmic evaluation. Conceptually, we substitute for the
concept of an objective and indisputable ground truth the
idea of consensual solutions based on transparent delib-
eration. The data verification procedure begins with the
annotator issuing a pull request (see Figure 2) for merging
a set of new annotations into the main branch, thus set-
ting off the Notify script (see Section 3.2). From here
on, every additional commit is included in the open pull
request and triggers (except if performed by a bot) an ad-
ditional third script, here called Compare. In the example,
the reviewer updates the proposed annotations, correcting
obvious errors and substituting diverging musical interpre-
tations. Pushing these changes causes (a) Test to validate
the reviewer’s changes, (b) Notify to inform the annota-
tor about the completed review, and (c) Compare to create
one or several files that may aid the annotator to retrace the
reviewer’s changes easily, for instance through a diff file,
a revision report, or a compilation of reviewer comments.
In case the annotator agrees with all changes, the new set
of annotations is considered to represent a consensus be-
tween the two experts. Otherwise, this consensus is to be
reached through transparent deliberation, i.e., a recorded
exchange of arguments (symbolized in Fig. 2 by the dis-
cussion table), at the end of which the annotator pushes
the consensual solution, whereupon the reviewer or anyone
with the relevant permissions may merge the thus verified
data, completing this subset. Consequently, every verified
label represents a consensus between at least two experts.

4. GITHUB ACTIONS IN ACTION: THE GENESIS
OF A NOVEL DATASET

To demonstrate our paradigm’s effectiveness we imple-
mented one possible instance 1 of the proposed workflow
paradigm and showcase its success in creating cadence,
phrase, and harmony annotations for a corpus of 36 trio
sonatas (opp. 1, 3, and 4) by Arcangelo Corelli. 2 The
implementation was created using the code hosting service
github.com because (a) it is frequently used in music
research projects for storing research data; (b) it is well–
known and chances are that users and new annotators are
already familiar with it; (c) it offers a free plan that in-
cludes server run time for automating tasks; and because
(d) of its easy-to-use automation capacities which include
predefined code patterns (called Actions) as well as cus-
tom scripts. Since the automation is defined in configura-
tion files contained in the repository, reusing our proposed
implementation can be easily achieved by simply starting
from the corresponding template repository. It makes use
of the Python library ms3 3 to perform tasks on the an-
notated scores, such as extracting and processing the con-
tained labels, and storing them as tabular TSV files.

4.1 Score annotation: harmony, phrases, and
cadences

To create the annotated dataset we commissioned trained
music theorists to enter the corresponding labels directly
into the provided digital scores, using the latest version of
the DCML harmonic annotation standard. 4 It has a prede-
fined syntax that can be automatically validated, and a set
of annotation guidelines 5 on the basis of which our con-
tractors were able to put forth consensual solutions. The
annotation task was performed using the free and open-
source notation software MuseScore because it is well-
known to many musicians and theorists and offers one
of the most convenient interfaces for digitally annotating
scores. Thus, the annotation labels are stored within the
original data and can be viewed by opening the MuseScore
files or the corresponding annotation tables in TSV format.

3 pypi.org/project/ms3/
4 github.com/DCMLab/standards/
5 dcmlab.github.io/standards/tutorial
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4.2 Validation: Automated syntax checks

Putting into practice what was introduced in Section 3, an-
notators create new annotations by committing changes
made in the MuseScore files to side branches of the cen-
tral repository on GitHub, called ‘origin’. Every time a set
of such commits is pushed to the origin, a virtual machine
is initialized on GitHub’s server infrastructure in order to
run the above-mentioned Test script. It is defined in the
configuration file check.yml and uses ms3 to parse the
newly annotated files and validate the syntactic correctness
of the contained labels. If the validation fails the annota-
tors will be informed instantly and see a list of all syntac-
tically wrong labels together with their exact positions in
the score.

4.3 Verification: Automated comparison files

As soon as the new labels have been validated, the an-
notator issues a pull request, causing GitHub to dispatch
notifications to reviewers and curators, and the data veri-
fication by a reviewer ensues, as described in Section 3.4.
The main problem that our workflow solves at this stage
is tracking changes to the proposed set of new annotations
individually and in conjunction with the respective justi-
fications. Reviewers are requested to combine modifica-
tions into individual commits such that the commit mes-
sages include a measure number and the reasoning behind
the changes. That way, the original annotators are able to
go through these commit messages one by one in order to
decide whether they consent to the change or not. In the
latter case, they object by engaging in a written exchange
of arguments with the respective reviewer. The pull request
functionality on code hosting sites such as GitHub ide-
ally supports the subsequent consensus-building process
by providing and storing practical and interactive sum-
maries of the comments and commits added in the pro-
cess as well as by notifying the involved parties about such
events.

Although GitHub lets users conveniently visualize the
changes made with every commit, a difficulty arises from
the fact that, in most cases, it is not sufficient to inspect
the source code excerpts from the modified MuseScore
files to appraise a changed label. Therefore, our automa-
tion script Compare adds or updates an additional Muse-
Score file upon every commit into an open pull request, in
which the modifications pertaining to the current verifica-
tion phase are highlighted with different colors. These files
immensely facilitate the discussions about the proposed so-
lutions and may also serve at a later point for documenta-
tion purposes or evaluations (see Section 4.5).

As soon as consensus is reached and the new annota-
tions have thus been verified, the corresponding branch is
merged into main and the pull request is archived, storing
and documenting the verification process for the future.

4.4 Maintaining metadata, paradata, and data facets

In our implementation, the Update script (see Section 3)
is called extract because it automatically commits in-

formation extracted from the source code of the modi-
fied MuseScore files upon every push to the origin’s main
branch. Further, meta- and paradata are obtained for and
copied from the changed MuseScore files and then in-
cluded in a tabular metadata file summarizing the dataset
as well as in the repository’s README file. Moreover,
annotation labels, notes, and other score elements are ex-
tracted and stored as individual tabular files. This mecha-
nism ensures that those facets of the dataset that users will
generally be most interested in stay updated and may be
loaded, transformed, and evaluated with greater ease, thus
maximizing the dataset’s accessibility and reusability.

4.5 Workflow evaluation

# changes count % # syntax errors count

0 5333 62.6 0 5333

1 2511 29.5 0 2466
1 45

2 574 6.7 0 534
1 40

3 89 1.0 0 72
1 15
2 2

4 14 0.2 0 12
1 1
3 1

5 3 0.0 0 1
1 1
3 1

Table 1. For 8542 verified labels in the Corelli dataset,
we report the label count for the number of changes that
they underwent, and how many of these changes addressed
syntactic errors rather than inter-expert disagreement. For
example, 3 labels were changed 5 times and throughout 6
versions, they saw 0, 1, and 3 syntactic errors respectively.

Our workflow implementation allows for multiple ways
of evaluating the annotation procedure, of which we will
showcase two examples. First, for every annotated Muse-
Score file in the Corelli dataset, we extracted all versions
from the Git history and tallied the labels and their po-
sitions from each. Tracking all occurring positions over
the file’s entire history allowed us to count the number of
changes that the label at each position was subjected to
and whether they were required due to syntactic errors or
otherwise. The results in Table 1 show that roughly 63 %
of labels were considered correct from the start and did
not change over the course of a file’s history, whereas only
1.2 % needed to be modified more than twice until a con-
sensus was reached. Note that this approach does not re-
veal whether changes were effected by annotators or re-
viewers. However, since after a full workflow cycle all
labels eventually represent consensual solutions between
at least two experts, we can deduce that our workflow is
highly efficient in putting forth validated and trustworthy
annotation data. The overall rate of labels that has been
syntactically wrong at one point is extremely low (1.2 %),
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Figure 3. This plot shows for 85 movements how many of the labels have been added, replaced, or left unchanged during
the most recent consensus-building phase, and how many have been removed that were previously included. Files showing
very few modifications might originate from later minor revisions of verified labels.

suggesting that the guidelines the annotators received were
comprehensible and easy to implement. Nonetheless, de-
tecting these kinds of errors automatically constitutes an
invaluable advantage, since syntactic validity is the mini-
mal requirement for usable annotations.

For our second evaluation we exploited the annotated
MuseScore files that were automatically generated during
every verification procedure. They show the difference be-
tween exactly two versions, namely between the one that
the reviewer started off with and the verified version that
represents a consensus between reviewer and annotator.
These files maintain the labels from the previous version
and show the differences through a color coding, namely
red for deleted labels and green for substituted or added
labels. This color coding is indepentend of who commit-
ted the modifications, since the most recent version always
represents the consensus.

Figure 3 shows an evaluation of the changes made to
the 8524 labels of 85 movements from the trio sonatas. We
interpreted co-occurences of a green and a red label at the
same position as replacements, which we show in blue and
subtract from the green and red bars. Labels that were re-
moved during the verification are shown in the negative
range so that the positive range reflects the status quo.

A closer analysis of the changed content of the labels
by substitution or replacement shows that these often en-
tail music-theoretically fine distinctions, such as whether a
chord should be interpreted as V7/IV or I7. Both have
the identical absolute surface realizations (e.g. a C7 triad
in the key of C major) but their relative, hierarchical in-
terpretations differ. Another example would be V(6) ver-
sus iii6, i.e. a dominant triad with a suspension of its
fifth or a minor triad on the third scale degree in first in-
version. Again, both chords are identical in terms of their
pitch-class content but differ with respect to their harmonic
function. A full and detailed analysis of these changes is
beyond the current scope and left for future research.

While one could have assumed that annotations of
harmony, phrases, and cadences is a relatively straight-
forward task for music theory experts, our evaluation re-
veals that in many cases considerable modifications are
necessary to arrive at an agreed-upon solution. This result

emphasizes the need for broader studies on inter-annotator
(dis-)agreement [3, 13, 20] and moreover corroborates the
weak status of ‘ground truth data’ for annotations with a
high degree of interpretability [5, 10–12, 14, 16–19].

5. CONCLUSIONS

In this contribution we proposed a semi-automated work-
flow paradigm for streamlining the creation of annotated
datasets by experts, and introduced, demonstrated, and
evaluated one possible implementation. It bridges a gap
between two by and large distinct skill sets: on the one
hand researchers with expertise in computational methods
and paradigms, and on the other hand expert music theo-
rists and musicologists who contribute their considerable
domain knowledge but may lack technical prowess.

Our proposal overcomes this ‘communicative barrier’
by providing a clearly defined workflow for the creation of
annotated data that requires on behalf of the domain ex-
perts only the comprehension of the branching model out-
lined above and the usage of graphical user interfaces for
label entry and revisions. Whereas our proposal greatly re-
duces the workload of annotators and reviewers, too, the
automated notifications and validations, as well as the ease
of communication and discussion, renders the curators its
main beneficiaries, who usually bear the responsibility for
a project’s coordination and success. As a proof of concept
we have provided with this publication a GitHub reposi-
tory with a new annotated dataset for which our workflow
implementation was used. Future discussions within the
MIR community may illuminate the repercussions of and
alternatives to using proprietary hosting services in terms
of cost, functional range, and data longevity/security.

Although our case study (building, providing, and eval-
uating corpora of annotated scores) is somewhat specific,
we believe that a wide range of research projects will bene-
fit from adopting or adapting it. We welcome alterations or
alternative proposals, trusting that an active and construc-
tive discussion around the topics laid out in this paper is
valuable for the consolidation of data creation and annota-
tion practices in the MIR community.
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ABSTRACT

The online estimation of rhythmic information, such as
beat positions, downbeat positions, and meter, is critical
for many real-time music applications. Musical rhythm
comprises complex hierarchical relationships across time,
rendering its analysis intrinsically challenging and at times
subjective. Furthermore, systems which attempt to esti-
mate rhythmic information in real-time must be causal and
must produce estimates quickly and efficiently. In this
work, we introduce an online system for joint beat, down-
beat, and meter tracking, which utilizes causal convolu-
tional and recurrent layers, followed by a pair of sequential
Monte Carlo particle filters applied during inference. The
proposed system does not need to be primed with a time
signature in order to perform downbeat tracking, and is in-
stead able to estimate meter and adjust the predictions over
time. Additionally, we propose an information gate strat-
egy to significantly decrease the computational cost of par-
ticle filtering during the inference step, making the system
much faster than previous sampling-based methods. Ex-
periments on the GTZAN dataset, which is unseen during
training, show that the system outperforms various online
beat and downbeat tracking systems and achieves compa-
rable performance to a baseline offline joint method.

1. INTRODUCTION

Rhythm plays an essential role in nearly all musical en-
deavors, including listening to, playing, learning, or com-
posing music. This is why the estimation of rhythmic in-
formation, such as beat positions, downbeat positions and
meter has always been an important subject of study in the
field of Music Information Retrieval (MIR). Depending on
the requirements and constraints imposed by the applica-
tion at hand, these estimation tasks can either be performed
in an offline or online fashion. Offline approaches are typ-
ically non-causal, meaning that they make predictions for
a given time using data or features associated with a future
time. These approaches are suitable for applications such

© M. Heydari, F. Cwitkowitz, and Z. Duan. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Heydari, F. Cwitkowitz, and Z. Duan, “BeatNet: CRNN
and particle filtering for online joint beat downbeat and meter tracking”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,

Online, 2021.

as music transcription, music search and indexing, and mu-
sicological analysis. Online approaches are causal, mean-
ing that they operate using only past and present features.
These are typically desirable for human-computer interac-
tion (HCI) systems, which must make immediate predic-
tions, like real-time music accompaniment systems.

Many offline methods have been proposed for beat
tracking [1–3]. Most of them are unsupervised and at-
tempt to utilize low-level features like onset strengths with
some inference model to estimate beat positions within a
music piece. However, with the growing success of deep
learning, supervised beat tracking methods have become
more prominent. Böck et al. [4] employed Recurrent Neu-
ral Networks (RNNs) to estimate beat positions; Various
other neural network structures have also been proposed
for onset detection and beat tracking [5, 6].

Some methods have also been proposed for online beat
tracking. However, many of them, e.g., [4, 7–10], feed a
sliding window of data into an offline model to estimate
beat positions within upcoming frames. The sliding win-
dow strategy has several major drawbacks, including the
discontinuity of beat predictions and the need for prim-
ing for predictions in the first window, which causes a de-
lay [11]. Some other approaches involve inferring beat
positions in real time using multi agent models [11–14],
which initialize a set of agents with various hypotheses that
try to validate their respective hypotheses based on obser-
vations across time.

The task of downbeat tracking is often considered to be
more difficult than beat tracking. This is because a deeper
understanding of rhythmic structure in music is required
to be able to differentiate between beats and downbeats.
Making matters worse, at the signal level, these two events
have very similar characteristics. For instance, downbeats
are not necessarily associated with stronger signal energy,
nor do they necessarily feature a distinct percussive pro-
file. Moreover, both beats and downbeats are likely to be
the intersection of melodic and harmonic changes. These
factors can make it challenging, and in some cases subjec-
tive, to distinguish between the two rhythmic events. For
instance, for a 4/4 music piece with kick drum events on
the first and third beats, it is hard to distinguish downbeats
and determine whether the time signature is 4/4 or 2/4.

There has been some previous work on offline down-
beat tracking, both as an isolated task and within a joint
beat and downbeat tracking framework. Durand et al. [15–
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Figure 1. Overview of the joint beat, downbeat, and meter tracking procedure using the proposed BeatNet model.

17] used some combinations of features and CNN struc-
tures to obtain downbeats. Giorgi et al. [18] proposed
tempo-invariant convolutional filters for downbeat track-
ing. Peeters and Papadopoulos [19] performed joint beat
and downbeat tracking by decoding hidden states using
the Viterbi algorithm. Böck et al. [20] and Krebs et
al. [21] employed an RNN structure for joint beat and
downbeat tracking and only downbeat tracking using beat
synchronous features, respectively. Furthermore, some
recent works investigate Convolutional Recurrent Neural
Network (CRNN) structures for beat and downbeat track-
ing. Fuentes et al. [22] showed that CRNN structures out-
perform RNNs in downbeat tracking when taking the input
observations over a tatum grid. Cheng et al. [23] found that
CRNN structures with larger receptive fields outperform
other downbeat tracking models. Böck and Davies. [24]
used a CNN and Temporal Convolutional Network (TCN)
structure to improve the performance of their offline beat
and downbeat tracking model, and also performed data
augmentation to expose the neural network to more tempi.

The task of online downbeat tracking has received con-
siderably less attention. Goto and Muranoka [13] intro-
duced an unsupervised model which leverages a measure
inference stage for detecting chord changes. In [25], the
same beat tracking neural network with forward algorithm
from [4, 20] is paired with [21] to estimate downbeats and
other rhythmic patterns by extracting percussive and har-
monic beat-synchronous features. It is important to note
that this method must be primed with a known time signa-
ture and all possible rhythmic pattern choices. Liang [26]
proposed an online downbeat tracking method which feeds
a sliding window of data to an offline model [17]. This
method is vulnerable to the sliding window strategy draw-
backs described above.

Particle filtering is advantageous for two main reasons
when it comes to online processing. The first reason is
that it does not require future data. Popular maximum a
posteriori (MAP) algorithms like the Viterbi algorithm and
maximizer of the posterior marginals (MPM) smoothing
algorithms, e.g. forward-backward, are not applicable to

online processing. The second reason is that, among the
filtering methods which are causal, particle filtering is a
general (non-parametric) approach which can be utilized
to decode any unknown distribution. However, most mu-
sic rhythmic analysis approaches that utilize particle fil-
tering, e.g., [27–30], are classical and do not incorporate
neural networks. Alternatively, in our previous work [31],
we utilized a particle filtering inference model to infer beat
positions using the activations produced by an RNN in an
online fashion, but that approach does not attempt to esti-
mate downbeats nor meter.

In this paper, we propose BeatNet, a novel online sys-
tem for joint beat, downbeat, and meter tracking. The sys-
tem produces beat and downbeat activations using a CNN
and RNN combination, and performs inference using two
particle filtering stages. The beat tracking stage outper-
forms state-of-the-art online beat tracking methods. The
other stage simultaneously infers downbeats and time sig-
nature and achieves comparable results to state-of-the-art
offline downbeat tracking models that require the time sig-
nature as input. In contrast, BeatNet actively monitors
tempo and time signature changes over time. Finally, we
introduce an information gate mechanism in the inference
module to speed up the inference significantly, making our
method suitable for many real-time applications.

2. METHOD

In this section, we describe BeatNet, our online system for
joint beat, downbeat, and meter tracking, illustrated in Fig-
ure 1. BeatNet consists of a causal neural network stage for
producing activations and a particle filtering stage for in-
ference. The neural network comprises convolutional, re-
current and fully connected layers as described in section
2.2 which compute beat and downbeat activations for each
frame of audio. The activations are fed to a two-stage par-
ticle filtering module to infer beat and downbeat positions
and to estimate meter. The code for the BeatNet model is
open-source 1 , along with video demos and further docu-

1 https://github.com/mjhydri/BeatNet
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mentation.

2.1 Feature Representation

The input of the network module is a sequence of filter-
bank magnitude responses, each of which corresponds to
one audio frame. Specifically, short-time Fourier trans-
form (STFT) with a Hann window of the length of 93 ms
and hop size of 46 ms is applied to the audio signal to
compute the log-amplitude magnitude spectrogram. Then
a logarithmically spaced filterbank ranging from 30 Hz to
17 kHz with 24 bands per octave is applied to yield a 136-d
filterbank response. The first-order temporal difference of
this response is also calculated and concatenated, resulting
in a 272-d filterbank response vector for each frame.

We also experimented with alternative feature represen-
tations, including the 329-d hand-crafted feature set from
[15], which comprises chroma features, onset strengths,
low-frequency spectral features, and melodic constant-Q
spectral features. The motivation for this feature set is to
aggregate the harmonic, percussive, bass, and melodic con-
tent of the music. However the 272-d filterbank response
feature set described above achieved notably better perfor-
mance than these hand-crafted features, and was thus cho-
sen for subsequent experiments.

2.2 Network Architecture

Following the common design of other similar works, we
employ a convolutional-recurrent neural network (CRNN)
architecture, illustrated in Figure 2, to process the input
features in order to obtain beat and downbeat activations.
Ideally, the convolution models relationships along the
frequency axis, and the unidirectional recurrence models
long-term relationships across time in a causal fashion.

The input features are fed into a 1D convolutional layer
with 2 filters of kernel size 10, followed by ReLU activa-
tion. The two filter responses are max pooled with ker-
nel size 2 along frequency and then concatenated into a
single feature embedding for each frame. Then, a fully-
connected layer with 150 neurons reduces the dimension-
ality of the embedding, and feeds it through two subse-
quent unidirectional Long Short-Term Memory (LSTM)
layers, each with a hidden size of 150. The embedding
is then fed through a final fully-connected layer and a soft-
max operation to obtain three activations which represent
beat, downbeat, and non-beat, respectively. Note that due
to the softmax function, the final activations for each class
always sum to one.

2.3 Particle Filtering Inference

In this section, we discuss the two-stage online Monte
Carlo particle filtering inference module, which gener-
ates the beat and downbeat predictions. Sequential Monte
Carlo particle filtering is a sampling-based model which it-
eratively estimates any unknown distribution p(x) by gath-
ering a large number of independent samples from an ar-
bitrary proposal distribution. The unknown distribution of

Figure 2. Proposed CRNN architecture for processing in-
put features and computing beat and downbeat activations.

interest in our case, up to the K-th frame, is the follow-
ing posterior p(x1:K |y1:K) of underlying beat or down-
beat positions x1:K conditioned on beat observations y1:K .
It can be inferred according to the key equations below.
For more detailed information, please refer to our previous
work [31].

p(x) = lim
N!1

NX

i=1

!(i)

PN
i=1 !

(i)
�
⇣
x� x(i)

⌘
, (1)

p
⇣
x(i)
1:K |y1:K

⌘
/

KY

k=1

p
⇣
yk|x(i)

k

⌘
p
⇣
x(i)
k |x(i)

k�1

⌘
, (2)

!(i)
k = p

⇣
yk|x(i)

k

⌘
!(i)
k�1, (3)

where !(i) is the importance weight of particle i, and �(·)
is the Dirac function. Eq. (1) describes the estimation of
p(x) using a large number of particles (N ! 1) and their
importance weights. Eq. (2) is a dynamic model which
updates the posterior of each frame k using the transition
(motion) and observation (correction) probabilities. Eq.
(3) describes a recursive process to update the importance
weights using the current observation and the importance
weights of the previous step.

2.3.1 State spaces, transition and observation models

We use a cascade of two sequential Monte Carlo particle
filters, one for beat tracking, and the other for downbeat
and meter tracking. The state space and transition model of
the beat estimator are similar to [32]. The beat state space
is a type of 2D bar pointer model and its transition for the
phase (horizontal) and the tempo (vertical) of the frame are
described in Eqs. (4) and (5), respectively. The phase of
frame k within a beat interval and the tempo at frame k
are respectively denoted by �b,k and �̇b,k. A constant �b

influences the intensity of potential jumps across the tempo
axis.

We propose a new beat observation model in Eq. (6),
where xb,k and yb,k are the beat state and beat observa-
tions at frame k. For non-beat states we allocate a small
likelihood as � = 0.03 instead of using the non-beat ac-
tivation output from the neural network. For beat frames,
since downbeats can also be considered beats, we assess
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the maximum of the beat and downbeat activations. If the
maximum exceeds a certain threshold, i.e., T = 0.4, then
it is set as the likelihood; Otherwise, � is used. When � is
used, we also bypass the costly re-sampling step in the beat
particle filtering module. Therefore, the threshold serves as
an information gate, through which the computational cost
is significantly reduced.

�b,k = (�b,k�1 + �̇b,k�1) mod (�max
b + 1), (4)

p(�̇b,k|�̇b,k�1) =

(
exp

⇣
��b

��� �̇b,k

�̇b,k�1

���
⌘

if �b,k = 0

(�̇b,k = �̇b,k�1) if �b,k > 0
,

(5)

p(yb,k|xb,k) =

8
<

:

max(bk, dk) if �b,k = 0 and
max(bk, dk) � T

� otherwise
,

(6)
The second particle filter detects downbeats and the

time signature jointly. The state space is similar to that
of beat tracking. However, here we introduce �̇d,k corre-
sponding to the meter, i.e., �̇d,k 2 2, 3, ..., �̇max

d , and �d,k

to describe the phase of the beat within the bar interval,
i.e. �d,k 2 0, 1, 2, ...,�max

d . Eqs. (7) and (8) describe
the phase and meter transition models. We only let me-
ter change at the states belonging to the downbeat area i.e.
�d,k = 0, and �d is a constant parameter that decides what
percent of the particles jump to other meters at the down-
beat states. Also, in Eq. (9) we define the observation
model used in the downbeat particle filter. The first states
within the bar (downbeat area) take the downbeat activa-
tion and the rest of them (beat states) take the beat acti-
vation. Note that as the second particle filter operates less
often, i.e., only when a beat is detected, no information
gate is needed here.

�d,k = (�d,k�1 + �̇d,k�1) mod (�max
d + 1), (7)

p(�̇d,k|�̇d,k�1) =

8
>>>><

>>>>:

�d if �d,k = 0 and
�̇d,k 6= �̇d,k�1

1� �d if �d,k = 0 and ,
�̇d,k = �̇d,k�1

(�̇d,k = �̇d,k�1) if �d,k > 0
(8)

p(yd,k|xd,k) =

⇢
dk if �d,k = 0
bk if �d,k > 0

, (9)

2.3.2 Inference process

Algorithm 1 describes the inference process in detail. Par-
ticles are initialized randomly for both inference modules
by sampling from a uniform distribution within their state
space. By proceeding to a new frame, particles within
the beat state space are transferred to the new positions
by sampling from the transition model, and new impor-
tance weights are then calculated and normalized. If the
activations of the frame satisfy the information gate con-
dition, the re-sampling process is invoked for all particles;
Otherwise, the re-sampling step is skipped as it is likely a
non-beat frame. Afterwards, if the median of the particles
is within the tolerance window Tw of a beat area and the

time of the current frame is longer enough than the last de-
tected beat considering the estimated tempo, the frame is
classified as a beat frame. A similar process follows for the
downbeat and meter inference module.

Algorithm 1 Joint Inference Procedure
beats, downbeats, meters = [], [], []
Sample (x(i)

b,0) ⇠ U(Sb), (x
(j)
d,0) ⇠ U(Sd)

Set w(i)
b,0 = 1

Nb
, w(j)

d,0 = 1
Nd

for k = 1 to K do
Sample (x(i)

b,k) ⇠ p(�(i)
b,k|�

(i)
b,k�1), p(�̇

(i)
b,k|�̇

(i)
b,k�1)

!̃(i)
b,k = !(i)

b,k�1 ⇥ p(yb,k|x(i)
b,k) 8i 2 Nb

!(i)
b,k =

!̃(i)
b,kP
!̃(i)

b,k

8i 2 Nb

if max(bk, dk) � T then
Resample x(i)

b,k according to !(i)
b,k

end if
if median(�(i)

b,k) < Tw and (k� � beats[�1]) >

0.4 median(�̇(i)
b,k) then

Append (beats, k�)
Sample (x(j)

d,k) ⇠ p(�(j)
d,k|�

(j)
d,k�1), p(�̇

(j)
d,k|�̇

(j)
d,k�1)

!̃(j)
d,k = !(j)

d,k�1 ⇥ p(yd,k|x(j)
d,k) 8j 2 Nd

!(j)
d,k =

!̃(j)
d,kP
!̃(j)

d,k

8j 2 Nd

Resample x(j)
d,k according to !(j)

d,k

if mode(�(j)
d,k) == 0 then

append (downbeats, k�)
append (meters, mode(�̇(j)

d,k))
end if

end if
end for

A visualization of the inference process is presented in
Figure 3. Each pair of plots demonstrates one step of the
inference procedure, where the top and the bottom plots
show the beat and downbeat tracking process, respectively.
In the first pair of plots, the beat particles are initialized
randomly. In the second pair, the first beat is detected and
the downbeat state particles are simultaneously initialized
randomly. In the third pair, beat tracking particles have
converged, but the downbeat particles have not yet con-
verged. Here the downbeat clutter is located in the low-
est row of the downbeat state space, which represents a
six-beat time signature. The next few plot pairs illustrate
convergence of both the beat and downbeat particles, pro-
ducing an estimate of the tempo and beat phase (top plots),
and the meter and bar phase (bottom plots).

3. EXPERIMENTS

3.1 Methodology

In order to analyze the performance of BeatNet, we com-
pare it to several publicly available online beat track-
ing methods, We additionally provide the online down-
beat tracking performance of BeatNet for each of the ex-
periments. Following standard evaluation practices, in
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Figure 3. Inference example, detailed in Section 2.3.2.

Dataset # Files Total Length

Ballroom [33, 34] 685 5 h 57 m
Beatles [2] 180 8 h 9 m
Carnatic [35] 176 16 h 38 m
GTZAN [36, 37] 999 8 h 20 m
Rock Corpus [38] 200 12 h 53 m

Table 1. Datasets used for training and testing.

this work, F-measure with a tolerance window of Tw =
±70ms is used as the evaluation metric for all experi-
ments.

We utilize all five datasets [2, 33–38] described in Ta-
ble 1 for training, validation, and testing, with different
splits and arrangements for various experiments. In the
first comparison, we evaluate BeatNet on the GTZAN
dataset, which covers 10 different music genres and was
unseen from training of all comparison methods. In order
to demonstrate the generalization ability of our approach,
we also experiment with two other comparison schema
where we respectively set aside the Ballroom and Rock
datasets during training and use them entirely for evalu-
ation. Note that all of the supervised comparison methods
included the Ballroom and Rock datasets in their training
set, so we only compare BeatNet with unsupervised meth-
ods in these cases.

3.2 Training Details

For training the beat and downbeat activation neural net-
work described in Section 2.2, all weights and biases
are initialized randomly, and the network is trained using
Adam optimizer with a learning rate of 5 ⇥ 10�4 and a
batch size of 200. Since the number of non-beat frames
within a music piece is typically much larger than the num-
ber of beat and downbeat frames, our objective function
is chosen to be weighted cross entropy loss of the beat,
downbeat, and non-beat, where the weights are inverse
proportional to the frequency of occurrence of each type of
frame. Batches comprise 8-second long excerpts randomly
sampled from each audio file available in the training set.
Given that some datasets (e.g., Beatles) contain full songs
and others (e.g., Ballroom) contain short excerpts of songs,
we sample from longer audio files more often during the
training Batch creation. Training proceeds until the perfor-
mance on the validation set has not increased over a span
of 20 epochs for a given experiment.

3.3 Results and Discussion

The evaluation results of the proposed BeatNet model and
comparison methods are presented in Table 2. All online
comparison methods only perform beat tracking, and all
except IBT [11] and Aubio [9] are supervised methods
using deep neural networks. We can see that the online
beat tracking portion of BeatNet outperforms all compari-
son methods. The Böck FF [6, 20] and Don’t Look Back
(DLB) models [31] achieve the next best performance.
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Method F-Measure F-Measure

Beats Downbeats

Comparison of Online Methods
GTZAN Dataset

Aubio [9] 57.09 —
BeatNet 75.44 46.49
Böck ACF [4] 64.63 —
Böck FF [6, 20] 74.18 —
DLB [31] 73.77 —
IBT [11] 68.99 —

Ballroom Dataset

Aubio [9] 56.73 —
BeatNet 77.41 47.45
IBT [11] 70.79 —

Rock Corpus Dataset

Aubio [9] 59.83 —
BeatNet 73.13 44.98
IBT [11] 68.55 —

Comparison of Offline Methods
GTZAN Dataset

BeatNet + DBN 80.64 54.07
Böck [20] 79.09 51.36

Table 2. Comparison of BeatNet with other beat and
downbeat tracking methods on various datasets.

Böck FF uses the forward algorithm to estimate beats in
a similar manner to the other online joint model described
earlier [25]. Aside from the different neural network struc-
tures, the beat tracking inference processes of the DLB
model [31] and BeatNet are largely the same. The main
difference is that the latter benefits from the information
gate, which decreases the computational time drastically.

Additionally, we report the performance comparison
with an offline joint beat and downbeat tracking model [20]
on the GTZAN dataset. In this case, we replaced the
particle filtering modules of BeatNet with the DBN used
in [20] to directly compare neural network architectures
in BeatNet and [20]. Same to [20], we also provided
the time signatures to the DBN. For [20], we utilized the
Madmom [39] library, which is the official implementa-
tion of the paper. Note that due to the existence of dif-
ferent GTZAN beat annotations, the reported offline re-
sults obtained by us differ from those of the original pa-
per [20]. However, since we used the same annotations
for all of the experiments, the offline comparison is valid.
As the table suggests, with the same DBN estimator, both
neural networks yield similar results for beat tracking.
However, for downbeat tracking, the BeatNet architecture
yields marginally better performance. These results are
interesting, since we are comparing a causal network to
a non-causal network which leverages bidirectional recur-
rence. However, our network is larger and contains more
parameters.

The comparison between BeatNet (second row)
and [20] (last row) is also interesting. BeatNet underper-
forms [20] by 3.65% on beat tracking and by 4.9% on

downbeat tracking. However, it is noted that BeatNet is
an online method and it does not require the time signature
input, while [20] is offline method and it requires the time
signature input.

One limitation of our model is that the performance of
the downbeat tracker depends on the beat tracker. This
means that if the beat tracker makes incorrect predictions,
errors will carry through to the downbeat tracker. This is
a common characteristic of cascade systems such as [25].
Another limitation is the high computation cost of sequen-
tial Monte Carlo particle filtering methods. This limitation
has been partially addressed in our previous work [31] by
using efficient models, e.g., [32] in the inference stage. The
information gate proposed in this paper further reduces the
computational cost.

On a typical windows machine with AMD Ryzen 9
3900X CPU and 3.80 GHz clock, the processing time for
the pre-processing stage and passing a frame through the
neural network is 0.12 ms and 0.01 ms, respectively. These
times are relatively insignificant, as the inference process
takes more time. The inference process takes 5.23 and
8.87 seconds using 1000 and 1750 particles, respectively,
to process a 30-sec long music excerpt. This is much faster
than the previous sampling-based model [31] which took
21.30 seconds using a 1000 particle setup. Larger numbers
of particles lead to longer processing times with a roughly
linear relationship. Hence, we reported these results using
1500 particles for the beat inference block and 250 for the
downbeat inference block (1750 particles in total) to keep
the process minimal.

4. CONCLUSION

We proposed BeatNet, a new online system for joint beat,
downbeat, and meter tracking. The system incorporates
a convolutional-recurrent neural network for generating
beat and downbeat activations in each audio frame, and
a two-stage particle filtering algorithm to estimate tempo,
beats, downbeats, and musical meter. An information gate
is added to the beat tracking particle filter to skip many
re-sampling steps hence reduces the computational cost
significantly. The system is compared to multiple on-
line and offline methods under various experimental condi-
tions, and it achieves superior performance for both online
beat and downbeat tracking.
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ABSTRACT

This paper describes an essential improvement of a state-
of-the-art automatic piano transcription (APT) system that
can transcribe a human-readable symbolic musical score
from a piano recording. Whereas estimation of the pitches
and onset times of musical notes has been improved dras-
tically thanks to the recent advances of deep learning, es-
timation of note values and voice labels, which is a cru-
cial component of the APT system, still remains a chal-
lenging task. A previous study has revealed that (i) the
pitches and onset times of notes are useful but the per-
formed note durations are less informative for estimating
the note values and that (ii) the note values and voices have
mutual dependency. We thus propose a bidirectional long
short-term memory network that jointly estimates note val-
ues and voice labels from note pitches and onset times
estimated in advance. To improve the robustness against
tempo errors, extra notes, and missing notes included in
the input data, we investigate data augmentation. The ex-
perimental results show the efficacy of multi-task learning
and data augmentation, and the proposed method achieved
better accuracies than existing methods.

1. INTRODUCTION

The ultimate goal of automatic piano transcription (APT)
is to convert a piano recording into a human-readable mu-
sical score that can be used for music analysis and perfor-
mance [1]. This is a challenging task because of the poly-
phonic nature of piano music; musical notes form weakly-
synchronous multiple streams called voices running in par-
allel. Much work on APT aims to estimate not a musical
score but a piano roll from a music signal, i.e., estimate the
quantized pitches and non-quantized onset times of musi-
cal notes [2–7]. Although noticeable research progress has
independently been made for multipitch detection [8–10]
and rhythm transcription [11, 12], estimation of note val-
ues and voice labels, which is crucial for score typesetting
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4.0). Attribution: Y. Hiramatsu, E. Nakamura, and K. Yoshii, “Joint
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Figure 1. Overview of proposed method that jointly esti-
mates note values and voice labels from transcribed pitches
and onset times.

with high readability [13], still remains a challenging task.
Note that the note value represents the duration of a note
on a symbolic musical score, and the voice label of a note
specifies one of the voices of the upper or lower staff (right-
or left-hand part) the note belongs to (Fig. 1).

Several attempts have been made for estimating voice
labels for piano scores having no voice labels [14–17].
Under an assumption that each voice has a strictly mono-
phonic structure and note values are already transcribed
with a certain degree of accuracy, voice labels can be esti-
mated accurately [18,19]. In practice, however, each voice
has a homophonic structure consisting of concurrent notes
(chords) and accurate estimation of note values is still an
open problem. To deal with such a realistic situation, a
state-of-the-art APT method uses a rule-based cost func-
tion with limited performance [20]. This calls for a princi-
pled statistical approach based on modern deep learning.

Note value estimation has relatively scarcely been stud-
ied [4, 21] and is still considered a challenging task [20].
Nakamura et al. [21] conducted a detailed statistical anal-
ysis and found that (i) the pitches and onset times of notes
are useful but the performed note durations are less infor-
mative for estimating the note values and that (ii) the note
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values and voices have mutual dependency. The second
conclusion derives from the fact that in a voice stream, the
offset time of a note usually matches the onset time of the
next note, or equivalently, short rests are rarely inserted
between notes [4]. This indicates that joint estimation of
note values and voice labels is an effective way of bringing
improvements on both tasks.

In this paper, we propose a deep neural network (DNN)
that estimates note values and voice labels jointly from a
transcribed sequence of pitches and onset times for audio-
to-score APT. Specifically, we train a bidirectional long
short-term memory (BiLSTM) network in multi-task learn-
ing. We also investigate data representation, network ar-
chitecture, post-processing, and data augmentation, which
are considered to have an impact on the estimation perfor-
mance. We report experimental evaluation conducted on
datasets of classical and popular music, to investigate the
efficacy of the joint estimation framework.

Our main contribution is to propose joint estimation of
note values and voice labels based on deep learning. Com-
bined with the state-of-the-art methods for multipitch de-
tection and rhythm transcription used in the latest piano
transcription system [20], we can achieve the state-of-the-
art performance of audio-to-score APT. Another contri-
bution is to propose new evaluation metrics for the poly-
phonic music transcription task, extending the one pro-
posed in [22] to deal with voice labels. The example tran-
scription results and the source code for the evaluation tool
are available on the accompanying webpage 1 .

2. RELATED WORK

This section reviews methods for audio-to-score piano tran-
scription, note value estimation, and voice separation.

2.1 Audio-to-Score Piano Transcription

Some piano transcription methods that can yield symbolic
piano scores have been proposed, and the methods consist-
ing of multi-stage processing [13, 20] achieved high accu-
racies. Cogliati et al. [13] proposed a transcription method
that performs rhythm quantization and voice estimation for
a piano performance MIDI file and generates a piano score.
This method uses metrical, stream, and harmonic struc-
tures from the MIDI sequence estimated by a probabilis-
tic model by Temperley [4]. Shibata et al. [20] proposed
a state-of-the-art transcription method that can generate a
piano score from audio signals with multi-stage process-
ing. The method first estimates from a piano recording
a performance MIDI sequence consisting of pitches, on-
set and offset times, and velocities using a convolutional
neural network (CNN). The onset times are then quantized
using a hidden Markov model (HMM). After note values
and voice labels are separately estimated, piano scores are
generated using MuseScore 3. In this study, we jointly es-
timate note values and voice labels, and aim to improve the
accuracies that were lower than those of pitches and onset
times in the method.

1 https://nvvest.github.io

There are also end-to-end approaches that directly es-
timate musical scores from audio signals. Carvalho et al.
[23] proposed a seq2seq model that estimates from an au-
dio signal a piano score represented in the Lilypond music
notation language. Román et al. [24] used a convolutional
recurrent neural network (CRNN) that estimates a musi-
cal score represented in the **kern format. The network is
trained with a connectionist temporal classification (CTC)
loss function. These end-to-end methods have been tested
only on very short or synthetic recordings, and there has
been no account in the literature describing how well they
perform in practice.

2.2 Note Value Estimation

Note value estimation is a difficult problem because note
values do not always correspond to the performed dura-
tions [21]. Temperley [4] proposed a rhythm quantization
method based on a probabilistic model. The method quan-
tizes onset times by estimating beat positions. After voice
labels are estimated, an offset time is set to the onset time
of the next note in the same voice. One of the problems
of the method is outputting no rests that are essential to
make scores easy to read. Nakamura et al. [21] proposed
a method based on Markov random fields. The method
consists of a context model that represents a distribution
of note values given pitches and onset times, and a perfor-
mance model that generates actual performance durations
from note values. It was shown that the performance model
had a small impact on the estimation performance [21].
Therefore, we estimate note values only from pitches and
onset times and do not use performed durations.

2.3 Voice Separation

Voice separation aims to divide musical notes into groups
of notes representing musical streams. Karydis et al. [15]
proposed a rule-based voice separation method for sym-
bolic piano scores. The method is based on vertical inte-
gration, which integrates notes with the same onset time
and the same duration, and horizontal integration, which
integrates notes close in time and pitch. While this method
can deal with homophonic voices, most other methods can
only estimate monophonic voices. McLeod et al. [18] pro-
posed a voice separation method for MIDI data using an
HMM, and achieved high accuracy. Valk et al. [19] pro-
posed a DNN-based voice separation method. The method
uses a deep feedforward neural network that classifies each
note represented by 33 handcrafted features into five classes.
In piano transcription, these existing voice separation meth-
ods are not appropriate because voices often contain chords
and durations are not estimated precisely. Explicit hand-
part and voice labeling (rather than clustering) are also nec-
essary for typesetting piano scores; for example, voice la-
bels are used for determining the directions of note stems.
Shibata et al. [20] proposed a cost-function-based voice
separation method. Although this method is applicable to
the situation of piano transcription, there is room for im-
provement in accuracy. We attempt to develop an improved
DNN-based method.
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Figure 2. Data representation of the input and the output
of the BiLSTM network.

3. PROPOSED METHOD

In this section, we propose BiLSTM networks that jointly
estimate note values and voice labels, post-processing meth-
ods that correct the estimated note values, and data aug-
mentation methods.

3.1 Problem Specification

Each note zn = (pn, on, dn, vn) in a musical score is rep-
resented by a pitch pn, an onset time on, a note value dn,
and a voice label vn. The pitch pn 2 {0, . . . , 127} is repre-
sented by a MIDI note number (60 = C4). The onset time
on � 0 and the note value dn 2 {0, . . . , 479} are repre-
sented by integers (one measure is divided into 48 units); a
zero note value is used for a grace note. Note that different
meters have different tatum units: for example, a quarter
note is represented as 12 in 4/4 time and 16 in 3/4 time.
The maximum number of voices in each hand part is set
to 4, following the convention for score notation used in
score editing software such as MuseScore3 and Finale; la-
bels vn = 1, 2, 3, 4 are used for the right-hand part and
vn = 5, 6, 7, 8 for the left-hand part. We represent a pi-
ano score as a sequence of notes Z = {zn}Nn=1, where
notes are arranged in the increasing order of onset times,
and notes with the same onset time are ordered according
to the pitches. Our goal is to estimate the note values and
voice labels {(dn, vn)}Nn=1 from a given set of pitches and
onset times {(pn, on)}Nn=1.

3.2 BiLSTM Network

We propose a BiLSTM network that estimates note values
and voice labels from pitches and onset times. We first
represent the onset time on as the interval from the pre-
vious onset in 2 {0, . . . , 767} and the metrical position
bn 2 {0, . . . , 47} calculated as follows:

in = on � on�1, bn = on mod 48. (1)

The input is then represented as X = {(pn, in, bn)}Nn=1

and the output is Y = {(dn, vn)}Nn=1 (Fig. 2).
The proposed network architecture is shown in Fig. 3(a).

Each musical note of input X is represented as a (128 ⇥
768⇥ 48)-dimensional one-hot vector. These one-hot vec-
tors are first transformed to 25-dimensional feature vectors
by a fully connected layer. The resulting vectors are then
transformed to 50-dimensional vectors (latent representa-
tions) through a BiLSTM layer. Note value probabilities
⇡n(X) = {⇡n(d;X)}479d=0 and voice label probabilities

�n(X) = {�n(v;X)}8v=1 are separately calculated at each
time step n after passing through fully connected layers
and softmax layers, where ⇡n(d;X) denotes the probabil-
ity that the n-th note has duration d and �n(v;X) denotes
the probability that the n-th note is in voice v.

We train the network by minimizing a cross-entropy
loss function given by

L = Ld + Lv, (2)

where

Ld = �
NX

n=1

log ⇡n(d
⇤
n;X), (3)

Lv = �
NX

n=1

log �n(v
⇤
n;X), (4)

where d⇤n and v⇤n are the correct note value and voice label,
respectively. In the inference step, note values and voice
labels are estimated from given pitches and onset times X
as follows:

d̂n = arg max
d

⇡n(d;X), (5)

v̂n = arg max
v

�n(v;X), (6)

where d̂n and v̂n indicate the estimated note value and
voice label, respectively.

3.3 Alternative Network Architectures

The network architecture in Fig. 3(a) is a simple joint net-
work that equally treats the note value and voice label prob-
abilities. We call this network SIM (simultaneous). We ex-
amine other network architectures shown in Fig. 3. As dis-
cussed in the Introduction, the voice structure has a strong
impact on determining note values. To reflect this depen-
dency structure, we propose the second network architec-
ture (VLF; voice label first). In this network (Fig. 3(b)),
voice labels are estimated first and note values are esti-
mated with the latent representations used to estimate voice
labels. For comparison, we also consider the third network
architecture (NVF; note value first) that has a reverse struc-
ture (Fig. 3(c)). The networks SIM, VLF, and NVF are
trained in a multi-task learning framework by minimizing
the loss function L in Eq. (2). To confirm the efficacy of
multi-task learning, we examine the fourth network archi-
tecture (IND; independent) that estimates note values and
voice labels independently (Fig. 3(d)). IND consists of two
BiLSTM networks and they are trained separately: by min-
imizing the loss functions Ld and Lv, respectively. In all
the network architectures, the first fully connected layer
outputs 25-dimensional vectors, and each BiLSTM layer
outputs a 50-dimensional hidden vector at each time step.

3.4 Post-Processing Methods

The note values and voice labels {(d̂n, v̂n)}Nn=1 estimated
by the network are sometimes inconsistent with the musi-
cal convention. As general rules, notes with the same onset
time and the same voice should have the same note values.
Also, the offset times of those notes should not be larger
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Figure 3. Proposed BiLSTM networks for estimating note values and voice labels. The four architectures are ex-
plained in Section 3.3.

than the next onset time in that voice. For two notes n and
m in the same voice, these constraints are represented as
follows:

on = om =) dn = dm, (7)
on < om =) dn  om � on. (8)

To impose the constraints, we consider three possible
post-processing methods to adjust the estimated note val-
ues {d̂n}Nn=1. Let {nk}Kk=1 index a set of notes with the
same onset time in the same voice. In the first method
(PP1), the note values {d̂nk}Kk=1 are all set to the interval
to the next onset time as in [13]. Note that in this method
note values are determined by the estimated voice labels
and the note value probabilities are not used. In the second
method (PP2), the note values are modified to their maxi-
mum value as follows:

d̂0nk
= max

l=1,...,K
d̂nl . (9)

If the adjusted note values d̂0nk
are longer than the interval

to the next onset time, they are set to this interval. In the
third method (PP3), we calculate the note value with the
maximum probability from the candidate note values that
satisfy the constraints as follows:

d̂0nk
= arg max

d: dd0

KY

l=1

⇡nl(d;X), (10)

where d0 indicates the interval to the next onset time.

3.5 Data Augmentation

In the situation under consideration, the pitches and on-
set times used as the input X are estimated in advance by
some pitch and rhythm transcription methods. As the re-
sult, the input contains tempo errors, extra notes, and miss-
ing notes. To make the networks robust to these errors, we
can apply data augmentation methods that add tempo er-
rors, extra notes, and missing notes to the original train-
ing data D. Since rhythm transcription methods often pro-
duce half-tempo and double-tempo errors [20], we create
a tempo-transformed dataset Dt by halving or doubling
the correct onset times and note values. Extra notes pro-
duced by multipitch detection methods often have a pitch
shifted by an octave from a correct note. We thus create
a dataset containing extra notes and missing notes Dem by
randomly deleting correct notes and adding notes whose

pitches differ from correct pitches by one octave. In addi-
tion, to increase the amount of the training data, we imple-
ment another data augmentation method. Assuming that
transposed piano scores are also musically valid, we train
the network using data obtained by transposing the original
data by an interval of � semitones (� = �12,�11, . . . , 12).

4. EVALUATION

We report experiments to evaluate the transcription accu-
racy of the proposed method.

4.1 Experimental Conditions

To evaluate the method in a practical condition, we in-
corporated it in an audio-to-score transcription system and
generated transcriptions for test piano recordings. We first
estimated pitches and quantized onset times by the state-
of-the-art methods for multipitch detection and rhythm tran-
scription used in the transcription system in [20]. For the
results (called quantized MIDI data) we estimated note val-
ues and voice labels with the proposed method. We fi-
nally used public score editing software MuseScore 3 for
score typesetting and generated transcriptions in the Mu-
sicXML format (Fig. 1). For comparison, we also gen-
erated transcriptions by existing methods [13, 20] using
the same quantized MIDI data and with the same proce-
dure for score typesetting. The CTD16 method [13] uses
the Melisma Analyzer [4] for estimating note values and
voice labels. The SNY21 method [20] is currently the best-
performing system and uses a statistical model for note
value estimation and a dynamic-programming method for
voice separation.

As test data, we used 30 recordings of classical piano
music in the MAPS-ENSTDkCl dataset [25] and 81 pi-
ano cover recordings of popular music used in [20]. The
ground-truth musical scores for these recordings were pre-
pared in the MusicXML format and used for assessing the
generated transcriptions. We used the musical scores of
80 classical music pieces and 763 popular music pieces
for training the BiLSTM networks; the same training data
were used in [20]. We applied the data augmentation in
Section 3.5 to these training samples.
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Figure 4. Voice structures represented by graphs.

4.2 Evaluation Metrics

We used the edit-distance-based error rates [22] for eval-
uating the quality of generated transcriptions. The error
rates are the pitch error rate Ep, the missing note rate Em,
the extra note rate Ee, the onset-time error rate Eon, and the
offset-time error rate Eo↵ . They are calculated after align-
ing an estimated score with a correct score. In particular,
we can use the offset-time error rate Eo↵ as a metric for
evaluating the accuracy of estimated note values. Since
these metrics do not evaluate the accuracy of estimated
voice labels, we consider the voice error rate Ev defined
as the proportion of notes with incorrect voice labels. The
overall error rate Eall is defined as the mean of these six
error rates.

The edit-distance-based metrics have a clear interpreta-
tion: they count how many notes or score elements should
be edited to obtain the correct score. This is an advantage
over other metrics for music transcription [26,27]. We call
the above defined metrics MUSTER (MUsic Score Tran-
scription Error Rates) and the evaluation tool is made avail-
able online 2 .

We also used an F-measure [17] for assessing the qual-
ity of estimated voice labels; this metric is conventionally
used in studies on voice separation. The original met-
ric [17] is formulated for monophonic voices and we here
extend it for homophonic voices. A voice structure can be
represented by a graph, where notes of consecutive chords
in a voice are connected by an edge (Fig. 4). The graph
can be represented by an adjacency matrix (aij), where
aij = 1 when the i-th note is in a chord and the j-th note is
in the next chord of the same voice, and otherwise aij = 0.
We use the notation (aij) for a correct score and (âij) for
an estimated score. The precision Pv, the recall Rv, and
the F-measure Fv are defined as follows:

Pv =

P
i<j aij âij/ŵiP
i<j âij/ŵi

, Rv =

P
i<j aij âij/wiP
i<j aij/wi

, (11)

Fv =
2PvRv

Pv +Rv
. (12)

Here,
P

i<j signifies a summation over all notes i and all
notes j that appear after i, and we have defined the weight
for each note i as

wi =
X

j>i

aij , ŵi =
X

j>i

âij (13)

in order to normalize the contribution of each chord no
matter how many notes it contains.

2 https://amtevaluation.github.io/

Method Eo↵ Ev Pv Rv Fv

SIM+DA 33.3 39.1 63.9 64.9 64.0
VLF+DA 32.2 39.0 65.2 65.7 65.1
NVF+DA 32.9 40.7 63.1 62.6 62.5
IND+DA 32.9 40.5 64.1 63.8 63.6
VLF 33.1 39.1 64.3 64.3 64.0

Table 1. Error rates (%) and accuracies (%) of estimated
note values and voice labels for the MAPS dataset. DA
indicates that each network is trained with augmented data.

Method Eo↵ Ev Pv Rv Fv

SIM+DA 17.9 12.2 87.1 87.3 87.1
VLF+DA 17.2 11.4 87.7 87.7 87.6
NVF+DA 18.1 12.4 87.4 87.2 87.2
IND+DA 18.7 12.5 86.8 86.4 86.5
VLF 17.5 11.4 87.5 87.8 87.6

Table 2. Error rates (%) and accuracies (%) of estimated
note values and voice labels for the J-pop dataset.

Method MAPS J-pop
VLF+DA 32.2 17.2
VLF+DA+PP1 28.0 15.3
VLF+DA+PP2 31.4 16.3
VLF+DA+PP3 32.2 16.8

Table 3. Error rates Eo↵ (%) of estimated note values with
different post-processing methods.

4.3 Experimental Results

We first compare the four network architectures (SIM, VLF,
NVF, and IND) with or without the application of data
augmentation (DA). The evaluation results are listed in Ta-
bles 1 and 2 for the MAPS dataset and the J-pop dataset, re-
spectively. Among the four architectures trained with data
augmentation, VLF achieved the best accuracy in both note
values and voice labels. The higher accuracy of VLF com-
pared to NVF indicates that it is better to estimate voice
labels first. A comparison between VLF and IND con-
firms the efficacy of multi-task learning. By comparing
the results for VLF with and without data augmentation,
we found a positive effect of data augmentation. Similar
results were obtained for the other network architectures.

We next compare the three post-processing methods (Ta-
ble 3). The first method (PP1) achieved the lowest error
rates. The second one (PP2) slightly reduced the offset
error rates for both datasets. Before and after the third
method (PP3), the error rates were almost the same. In
the first post-processing method, note values are calculated
from estimated voice labels and note value probabilities
estimated by the network are not used. Importantly, this
does not mean that note value estimation was useless in
the present method: estimating note values by the network
was effective for improving the voice estimation through
the multi-task learning, which in turn led to more accurate
note value estimations.

The first method also has a limitation that it cannot es-
timate rests. Rests are used to express articulations and
to make scores easier to read. An example of the tran-
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Method Test Ep Em Ee Eon Eo↵ Ev Eall Pv Rv Fv

Proposed (VLF+DA+PP1) MAPS 0.67 8.11 6.23 11.6 28.0 39.1 15.6 65.2 65.7 65.1
SNY21 [20] MAPS 0.67 8.11 6.23 11.5 28.3 44.6 16.6 62.4 59.4 60.6
CTD16 [13] MAPS 0.88 13.5 6.33 16.8 44.0 74.3 26.0 56.0 42.5 47.9
Proposed (VLF+DA+PP1) J-pop 0.61 4.03 7.29 2.67 15.3 11.4 6.89 87.6 87.7 87.6
SNY21 [20] J-pop 0.61 4.03 7.29 2.69 20.9 18.0 8.92 78.6 77.0 77.7
CTD16 [13] J-pop 0.82 12.8 7.21 8.48 55.7 65.8 25.1 51.3 38.8 44.0

Table 4. Error rates (%) and accuracies (%) of transcription. The CTD16 method could output results for 27 (72)
pieces in the MAPS (J-pop) dataset; the metrics are calculated from these pieces.ismir_2021_16_gt
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Figure 5. Example transcription results. The proposed
method improved the accuracy of note values.

scription results is shown in Fig. 5, where the proposed
method with the second post-processing method correctly
estimated rests. In the future, it is important to estimate
rests in order to improve the average accuracy of note val-
ues.

We finally compare the proposed method with existing
transcription methods [13, 20]. The full set of MUSTER
metrics and the voice F measure for the MAPS and J-pop
datasets are listed in Table 4. The present method achieved
the best accuracy for both datasets. The transcription ac-
curacies for the MAPS dataset were lower than those for
the J-pop dataset because the former has more complicated
voice structures and there were a small number of classical
music pieces in the training data.

To compare the performance of the voice estimation by
our method with a recent method focusing on voice sepa-
ration, we also evaluated the HMM-based voice separation
method (MS16) [18]. Since this method requires as input
pitches, onset times, and offset times, we used the note
values estimated by the network IND. The F-measures Fv

of the voice separation results by MS16 were 55.7% and
66.5% for the MAPS dataset and the J-pop dataset, respec-
tively. It is confirmed that the proposed method signifi-
cantly outperformed the MS16 method.

An example of the transcription results is shown in Fig.
6, for the proposed method and the SNY21 method. The
proposed method estimated voice labels close to the ground
truth, and made the piano score easier to read than the
one estimated by the SNY21 method. Other examples are
shown on the supplemental web page 3 .

3 https://nvvest.github.io
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Figure 6. Example transcription results. The proposed
method improved the accuracy of voice labels and im-
proved the readability.

5. CONCLUSION

This paper presented a neural method that jointly estimates
note values and voice labels from transcribed pitches and
onset times. Since note values and voices are interrelated,
we constructed a BiLSTM network in a multi-task learn-
ing framework. We demonstrated through experiments that
the proposed method achieved the state-of-the-art perfor-
mance of audio-to-score APT when combined with the lat-
est methods for multipitch detection and onset time quan-
tization.

The error rates of note values and voice labels are still
high compared to the other metrics. In future work, we
plan to further investigate the data representation and net-
work architecture to increase the consistency between es-
timated note values and voice labels. To correctly estimate
rests and improve the readability of transcribed scores, we
will develop a more sophisticated post-processing method
and study the effective use of performed durations.

Although we focused on the estimation of note values
and voices in this study, we found that the result is affected
by errors made by the onset time quantization method. It
is thus important to develop a method that integrates onset
time quantization. As the fully end-to-end approaches still
have difficulties in practical applications [23, 24], it is also
considered effective to unify the multiple stages in Fig. 1
one step after another.

6. ACKNOWLEDGEMENT

This work is supported in part by JST PRESTO No. JP-
MJPR20CB, JSPS KAKENHI Nos. 19H04137, 19K20340,
20K21813, and 21K12187, and ISHIZUE 2021 of Kyoto
University Research Development Program.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

283



7. REFERENCES

[1] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Auto-
matic music transcription: An overview,” IEEE Signal
Processing Magazine, vol. 36, no. 1, pp. 20–30, 2018.

[2] P. Desain and H. Honing, “The quantization of musi-
cal time: A connectionist approach,” Computer Music
Journal, vol. 13, no. 3, pp. 56–66, 1989.

[3] C. Raphael, “A hybrid graphical model for rhythmic
parsing,” Artificial Intelligence, vol. 137, pp. 217–238,
2002.

[4] D. Temperley, “A unified probabilistic model for poly-
phonic music analysis,” Journal of New Music Re-
search, vol. 38, no. 1, pp. 3–18, 2009.

[5] E. Vincent, N. Bertin, and R. Badeau, “Adaptive har-
monic spectral decomposition for multiple pitch esti-
mation,” IEEE TASLP, vol. 18, no. 3, pp. 528–537,
2010.

[6] E. Benetos and T. Weyde, “An efficient temporally-
constrained probabilistic model for multiple-
instrument music transcription,” in ISMIR, 2015,
pp. 701–707.

[7] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end
neural network for polyphonic piano music transcrip-
tion,” IEEE/ACM TASLP, vol. 24, no. 5, pp. 927–939,
2016.

[8] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon,
C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and
frames: Dual-objective piano transcription,” in ISMIR,
2018, pp. 50–57.

[9] Y.-T. Wu, B. Chen, and L. Su, “Polyphonic music
transcription with semantic segmentation,” in ICASSP,
2019, pp. 166–170.

[10] Q. Kong, B. Li, J. Chen, and Y. Wang, “GiantMIDI-
Piano: A large-scale MIDI dataset for classical piano
music,” arXiv preprint arXiv:2010.07061, 2020.

[11] E. Nakamura, K. Yoshii, and S. Sagayama, “Rhythm
transcription of polyphonic piano music based on
merged-output HMM for multiple voices,” IEEE/ACM
TASLP, vol. 25, no. 4, pp. 794–806, 2017.

[12] E. Nakamura and K. Yoshii, “Music transcription
based on Bayesian piece-specific score models cap-
turing repetitions,” arXiv preprint arXiv:1908.06969,
2019.

[13] A. Cogliati, D. Temperley, and Z. Duan, “Transcrib-
ing human piano performances into music notation.” in
ISMIR, 2016, pp. 758–764.

[14] J. Kilian and H. H. Hoos, “Voice separation-A local
optimization approach,” in ISMIR, 2002, pp. 39–46.

[15] I. Karydis, A. Nanopoulos, A. Papadopoulos, E. Cam-
bouropoulos, and Y. Manolopoulos, “Horizontal and
vertical integration/segregation in auditory streaming:
A voice separation algorithm for symbolic musical
data,” in Proc. of Sound and Music Computing Con-
ference, 2007, pp. 299–306.

[16] E. Cambouropoulos, “Voice and stream: Perceptual
and computational modeling of voice separation,” Mu-
sic Perception, vol. 26, no. 1, pp. 75–94, 2008.

[17] B. Duane and B. Pardo, “Streaming from MIDI us-
ing constraint satisfaction optimization and sequence
alignment.” in Proc. of International Computer Music
Conference, 2009.

[18] A. McLeod and M. Steedman, “HMM-based voice
separation of MIDI performance,” Journal of New Mu-
sic Research, vol. 45, no. 1, pp. 17–26, 2016.

[19] R. de Valk and T. Weyde, “Deep neural networks with
voice entry estimation heuristics for voice separation in
symbolic music representations,” in ISMIR, 2018.

[20] K. Shibata, E. Nakamura, and K. Yoshii, “Non-local
musical statistics as guides for audio-to-score piano
transcription,” Information Sciences, vol. 566, pp.
262–280, 2021.

[21] E. Nakamura, K. Yoshii, and S. Dixon, “Note value
recognition for piano transcription using Markov ran-
dom fields,” IEEE/ACM TASLP, vol. 25, no. 9, pp.
1846–1858, 2017.

[22] E. Nakamura, E. Benetos, K. Yoshii, and S. Dixon,
“Towards complete polyphonic music transcription:
Integrating multi-pitch detection and rhythm quantiza-
tion,” in ICASSP, 2018, pp. 101–105.

[23] R. G. C. Carvalho and P. Smaragdis, “Towards end-to-
end polyphonic music transcription: Transforming mu-
sic audio directly to a score,” in Proc. of IEEE Work-
shop on Applications of Signal Processing to Audio
and Acoustics, 2017, pp. 151–155.

[24] M. A. Román, A. Pertusa, and J. Calvo-Zaragoza, “A
holistic approach to polyphonic music transcription
with neural networks,” in ISMIR, 2019, pp. 731–737.

[25] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643–1654, 2009.

[26] A. Cogliati and Z. Duan, “A metric for music notation
transcription accuracy.” in ISMIR, 2017, pp. 407–413.

[27] A. McLeod and M. Steedman, “Evaluating automatic
polyphonic music transcription.” in ISMIR, 2018, pp.
42–49.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

284



LEARNING NOTE-TO-NOTE AFFINITY FOR VOICE SEGREGATION
AND MELODY LINE IDENTIFICATION OF SYMBOLIC MUSIC DATA

Yo-Wei Hsiao Li Su
Institute of Information Science, Academia Sinica, Taiwan
{willyhsiao, lisu}@iis.sinica.edu.tw

ABSTRACT

Voice segregation, melody line identification and other
tasks of identifying the horizontal elements of music have
been developed independently, although their purposes are
similar. In this paper, we propose a unified framework to
solve the voice segregation and melody line identification
tasks of symbolic music data. To achieve this, a neural
network model is trained to learn note-to-note affinity val-
ues directly from their contextual notes, in order to repre-
sent a music piece as a weighted undirected graph, with the
affinity values being the edge weights. Individual voices or
streams are then obtained with spectral clustering over the
learned graph. Conditioned on minimal prior knowledge,
the framework can achieve state-of-the-art performance on
both tasks, and further demonstrates strong advantages on
simulated real-world symbolic music data with missing
notes and asynchronous chord notes.

1. INTRODUCTION

Identifying the horizontal elements of music (e.g., melody,
accompaniment, voice, stream, and counterpoint) is crucial
for understanding musical data. As a mandatory step in
music transcription [1] and generation [2, 3], this problem
has been widely discussed; related tasks include melody
extraction [4] and multi-pitch streaming [5, 6] for audio
music data and voice segregation [7] and melody line iden-
tification [8] for symbolic music data. In this paper, we will
focus on the case of symbolic music data.

It should be noted that the afore-mentioned tasks are
rarely considered under a unified framework, but are
solved individually according to the music texture of the
input music. For example, voice segregation is only for
polyphony, the texture with multiple independent melody
lines; while melody line identification is only for ho-
mophony, the texture with one predominant melody line
plus an accompaniment. The input music piece with hy-
brid or unknown texture cannot be discussed under these
frameworks. Besides, most of these frameworks still heav-
ily rely on further information of the input (e.g., number of
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voices, whether each voice is monophonic, whether chord
notes are perfectly synchronized) and strictly follow some
predefined rules (e.g., avoiding voice crossing), and turn
out to be inflexible to real-world performance data with
missing notes or asynchronous chord notes.

In this paper, we propose a unified horizontal element
extraction framework which works with minimal con-
straints on musical textures and pre-defined rules. The
major idea is to let the model learn the configuration of
voice directly from the training data, and learn the note-
to-note affinity for arbitrary pairs of notes within a musical
segment from their shared contextual notes: the model out-
puts 1 if a pair of notes are in the same horizontal elements,
while 0 if they are not. Then, based on the learned affinity
values, a clustering algorithm is used to estimate the num-
ber of horizontal elements, and to partition the notes which
are linked with high affinity values into one element. Fi-
nally, these elements extracted from different musical seg-
ment can be merged without any perceptual or musical as-
sumptions by applying the minimal overlapping principle
proposed in this paper.

To verify our ideas, the same framework is applied on
multiple tasks with various conditions, including 1) the
polyphony voice segregation task with unknown number
of voices, missing notes and asynchronous chord notes for
simulating real-world performance, and 2) the melody line
identification task of homophonic music. The framework
achieves state-of-the-art performance on both tasks and
shows strong advantages on simulated real-world cases.
Furthermore, we demonstrate the potential of using the
graph constructed with the learned note-to-note affinity as
a tool in computational analysis of general music data.

2. RELATED WORK

2.1 Voices, streams, and their perceptual rules

A voice or a stream is a horizontal music structure which
is perceived as single sonority by humans. A voice is a se-
quence of monophonic and non-overlapped musical tones
in polyphony texture, such as the S, A, T, and B in a 4-part
chorale. On the other hand, a stream can be either a mono-
phonic voice or a multi-tone sonority fused by several mu-
sical lines, such as the predominant melody line and ac-
companiment in homophonic texture. A monophonic note
sequence may also contain multiple voices. The percep-
tion of voice or stream in music is highly subjective. The
voice analysis for the very same music piece might end up
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with diverse results [9]. With abuse of terminology, the
terms of voice, stream, and horizontal element are used in-
terchangeably in the paper.

A number of perceptual rules have been proposed for
voice segregation and melody identification tasks [10].
The pitch proximity and temporal continuity rules suggest
that the temporal and pitch distance between two neighbor-
ing notes in a voice should be minimized, and large leaps or
rests should be avoided [11]. The new stream rule suggests
that the number of streams in a music piece should be min-
imized. The voice collision rule states that common tones
shared between different voices should be avoided. The
voice crossing suggests that two voices do not cross each
other even when their pitch ranges overlap significantly.

2.2 Prior art

Voice segregation and melody line identification methods
can be categorized into three classes. First, the rule-based
methods, such as local optimization [12], contig map-
ping [13–16], graph-based method [17], complexity-based
method [18], and the voice integration and segregation al-
gorithm (VISA) [19] utilize heuristics or perceptual prin-
ciples as constraints for tracing voices. These methods
do not strictly designate the role of each stream (e.g., one
stream should be melody and the other should be accom-
paniment), and therefore can be applied to the data hav-
ing arbitrary configurations of streams without labels [20].
The major limitation of these methods is that they are less
flexible dealing with real-world performance data.

Second, the data-driven methods introduce either clas-
sifiers to predict the voice or stream labels of each note
from annotated data [7, 21–23], or regression models to
predict the ratings over all the mappings from notes to
voices for each chord [24, 25]. Representative examples
include the convolutional neural network (CNN) model
which predict the position of melody notes on a piano
roll [26], or a feedforward neural network to classify voice
indices from note-level features [27]. Different from the
rule-based methods, data-driven methods are based on su-
pervised learning. Therefore, the output dimension of the
model is usually restricted by the label classes in the train-
ing data. This issue can be solved with neural greedy
search such as [28], which implicitly indicated the impor-
tance of learning note-to-note affinity.

Besides the rule-based and data-driven approaches,
most of the methods are hybrid ones which incorporate
both perceptual rules and supervised learning in voice seg-
regation and melody line identification. For example, in
the hidden Markov model (HMM)-based voice segregation
method, the probability of note transition is defined ac-
cording to the perceptual principles, while the pitch score
and gap score in probability function can be tuned to fit
the training data [29]. In the classification-based methods,
hand-crafted input features which consider the perceptual
principles have been proposed in various ways [21,24,27].
Some of these features can be used only when the number
of voice, the metric positions and other note attributes of
the input music are known.

3. PROPOSED METHOD

We represent a symbolic music piece as a undirected
weighted graph G = (V, E). Each vertex vi 2 V repre-
sents a note in MIDI, and each weighted edge wij 2 E
corresponds to the affinity between two notes vi and vj .
We assume wij = 1 if vi and vj are in the same voice or
melodic line, while wij = 0 if they are situated in different
parts. The task of voice segregation is then equivalent to
the task of learning wij from the training data having the
binary-valued wij as the ground truth label.

Denote the affinity matrix of G as W , and |V| the ver-
tex count of G. Then, we have W 2 {0, 1}|V|⇥|V|, and
wij is the (i, j)th element of W . To learn W , we adopt a
CNN model which takes the information carried by a pair
of notes (vi, vj) as inputs, and outputs an affinity value
ŵij 2 [0, 1] which minimizes the binary cross-entropy
(BCE) between ŵij and wij . Once the predicted affin-
ity matrix Ŵ is obtained, the task of voice segregation
is simplified into a clustering problem. With the help of
spectral clustering algorithm, G is partitioned into multiple
subgraphs, each of which represents a voice.

3.1 Data representation

For simplicity, the vertex vi directly represents the con-
tent of the ith note: each note event vi := [pi, oi, di]T is a
3-dimensional vector composed of its pitch (in MIDI num-
ber), onset time, and duration (both in second); see Fig-
ures 1a and 1b. The order index i of each note is obtained
by sorting all the note events with the following rules: 1)
notes are sorted by its onset time in ascending order; 2)
if multiple notes have the same onset time, they are then
sorted by their pitch in ascending order; and 3) if multiple
notes happen to have identical onset time and pitch value,
they are sorted by their duration in descending order. The
adopted data representation of each vi, denoted as xi, is
simply constructed by vi and its neighbouring notes. More
specifically, xi is defined as

xi := [v̄i�M,i, v̄i�M+1,i, ..., v̄i+M�1,i, v̄i+M,i]
T
, (1)

and we have xi 2 R(2M+1)⇥3. It should be noted that
v̄j,i is the content of the jth note event with its onset time
expressed relative to the ith note, i.e. v̄j,i := [pj , oj �
oi, dj ]. This operation makes the onset time information in
each xi be centered at the same temporal position. For v̄j,i
with j  0 or j > |V|, the note sequence is zero-padded
(i.e., add virtual notes with its MIDI pitch, onset time and
duration being all zeros) such that the (M +1)th row of xi

is v̄i,i, as shown in Figure 1c.
The idea behind the above data representation is that it

simulates human behavior. When given tasks like voice
segregation, humans do not plainly judge the affinity of a
pair of notes merely by their own pitch and position, but
by the local musical context lying in the structure. The
hyperparameter M determines the context window, and we
set M = 60 notes in this paper.

In the setup of affinity learning, the training data is then
the pairs of the data representation given a binary label

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

286



(a) The score

(b) Note events (c) The matrix

Figure 1: An example of data representation for M = 2.

wij 2 {0, 1}. A training sample (xi, xj) is labeled as
wij = 1 if vi and vj are in the same voice, whereas (xi, xj)
is labeled as wij = 0 if they are not.

3.2 Model training

We employ a multi-layer deep 1-D CNN f(X) to classify
whether xi and xj are in the same musical stream. More
specifically, given Xij 2 R(2M+1)⇥6 the concatenation of
two matrices xi and xj , we have ŵij = f(Xij) so as to
minimize BCE(wij , ŵij). The architecture of the CNN
contains six 1D convolution layers, with the kernel size of
each layer being [32, 16, 16, 8, 8, 4], and the number of
each kernel being [32, 32, 64, 64, 128, 128]. The output
of the final convolution layer is flattened and mapped to an
output logit using a fully connected layer.

For a music piece with |V| notes, there are totally
|V|(|V| � 1)/2 pairs of notes that can be used for train-
ing. However, taking all the pairs for training is computa-
tionally intensive, and unnecessary from the perspective of
music perception. When people listen to music, it is im-
practical to have them distinguish whether a pair of notes
several bars apart belong to the same voice. Instead, listen-
ers tend to focus on a restricted time interval and identify a
voice from others according to the relationship among the
notes in the interval. Therefore, we choose all of the pairs
(xi, xj) with |i� j|  N for training, where the hyperpa-
rameter N represents the maximum distance of two notes.
In this paper, we set N = 30 notes according to our study.

3.3 Voice extraction with graph clustering

We employ spectral clustering [30, 31], one of the most
widely used graph-based clustering techniques, to separate
the voices or streams according to the learned affinity ma-
trix Ŵ 2 R|V|⇥|V| for the music data graph G. However, it
should be noted that the model f(Xij) outputs ŵij (i.e. the
estimated value between vi and vj) only for |i � j|  N ;
other ŵij are still unknown. Therefore, the following as-
signment processes are adopted to adjust the affinity ma-

trix:
ŵij := 1 if ŵij > 0.5

ŵij := ✏1 if ŵij  0.5

ŵij := ✏2 if ŵij is unknown
(2)

where := is the assignment operator. We assume ✏1 <

✏2 < 1 in order to represent the uncertainty of the affinity
for distant note pairs (i.e. with |i � j| > N ). Therefore,
in this paper we set ✏1 = 10�6 and ✏2 = 10�3. Our study
showed that these discretized values give stable eigende-
composition in the spectral clustering process and perform
better than directly using predicted values.

It should be noted that performing spectral clustering
over the whole music piece is unfeasible, as the eigen-
decomposition of a large affinity matrix tends to be highly
unstable, an unfavorable effect in spectral clustering. To
address this issue, we divide a musical piece into multiple
overlapping segments and perform spectral clustering for
each segment. Each of the segments contains S consecu-
tive note events and each pair of consecutive segments are
overlapped by O note events, where 0  O < S.

For Ŵi, which denotes the affinity matrix of the ith seg-
ment, the normalized graph Laplacian Li for spectral clus-
tering is represented as

Li = I �D
� 1

2 ŴiD
1
2 , (3)

where I is the identity matrix, and the degree matrix D

is a diagonal matrix, whose ith diagonal element dii :=P
j ŵij is the sum of the affinity measure between vj and

vi for all vj which are connected with vi. Given the Lapla-
cian L, a matrix Z = [z1, z2, ..., zk] 2 Rn⇥k is formed by
stacking the top-k largest eigenvectors zi of L, and the k

subsets is obtained by applying the k-means algorithm to
the rows of Z [31].

3.4 Estimating the number of clusters

The number of clusters, or the number of estimated voices
or streams, k, is a pre-determined parameter in the spec-
tral clustering process. For the melody line identification
task, k is simply 2. For the voice segregation task, we as-
sume that k is unknown and needs to be estimated. An
intuitive estimation is to set k as the maximal number of
synchronous note events occurring in a piece [13]. How-
ever, this method may not be suitable for voices or streams
having overlapped notes, such as human-performed MIDI
or homophonic music data.

To address the issue, the eigengap of Laplacian L is
employed to predict k of each segment. Let {�i}Ni=1 be the
eigenvalues of L sorted in descending order. According to
graph theories, the number of clusters k of the graph can be
estimated by the kth eigenvalue having the most significant
eigengap of L [32]. To implement this, we calculate the
top-10 largest eigenvalues of each Li, and find the index ki

satisfying that the difference between �ki and �ki+1 is the
largest one. To simplify our discussion, we assume that the
number of voices of the whole music piece is a constant,
meaning that each voice in a piece contributes at least one
note in any segment of the piece. The number of voices, k,
is therefore obtained by the mode of ki over all segments.
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3.5 Segment merging

After we apply spectral clustering to Ŵi, note events in
the ith segment are partitioned into k segregated voices (or
streams). Let Ci = {Sij}kj=1 denote the ith segment with
voice labeling, where Sij denotes the jth voice obtained
from the spectral clustering result of the ith segment. We
consider two methods to merge the segmented voices into
complete ones. The first method, called the pitch proxim-
ity method, is performed straightforwardly by sorting the
segmented voices Sij according to their average pitch for
each i, and connecting the segmented voices with the same
sorting index. Being stable and perceptually plausible, the
pitch proximity method however assumes the prior knowl-
edge of part-crossing rule (i.e. voices tend not to cross with
respect to pitch) [11], which is no longer valid in the situa-
tions such as voice crossing nearby the end of a segment.

The second method, coined as the minimal overlapping
method, is a newly proposed method which does not rely
on any perceptual rules. In a nutshell, this method attempts
to find a one-to-one mapping for voices from two adja-
cent segments (Ci, Ci+1) to attain a newly merged segment
C⇤ = {S⇤j}kj=1 such that

• a voice in the new segment S⇤j is merged from two
voices, Sim and S(i+1)n, 1  m,n  k, if and only
if they are overlapped (connectivity condition);

• each note in either Ci or Ci+1 should be in S⇤j for
some j and therefore in C⇤ (consistency condition);

• the total number of notes which belong to multi-
ple merged voices of {S⇤j}kj=1 should be minimized
(minimal redundancy condition).

These conditions are implemented with the following
procedures. First, we list all the possible merged voices
satisfying the connectivity condition, denoted as ⌃1 :=
{Sij [ S(i+1)l | Sij \ S(i+1)l 6= ?}. A merged segment
C⇤ with these merged voices is constructed by choosing k

elements from ⌃1. Denote all candidates of such k chosen
elements as

�⌃1

k

�
. Given a fixed-valued k and the consis-

tency condition, we narrow down the set of candidates to
⌃2 := {

�⌃1

k

�
| {
Sk

j=1 S⇤j} = Ci [ Ci+1}. To apply the
minimal redundancy condition, we begin with calculating
the number of notes existing in multiple voices (#NMV)
for an arbitrary merged segment C0

⇤, which is defined as

#NMV :=
kX

j=i+1

k�1X

i=1

|S 0
⇤i \ S 0

⇤j |, (4)

where S 0
⇤i,S 0

⇤j 2 C0
⇤. Then, we pick the segment C⇤ with

the smallest #NMV among all possible merged segments
in ⌃2 to be our final choice. Finally, because we require
that a note should be classified to one voice strictly in our
study, we remove notes existing in multiple voices from a
random voice to ensure C⇤ behaves like an ideal segment.

Once a larger segment is obtained, it works like a crys-
tal nucleus. It will continue growing its size by merging
with another adjacent segment when we feed them into the
algorithm. In the end, there would be only one merged sec-
tion left, which is then the final result. We set the size of

the segment to S = 40 notes. The overlap size is set to
O = 0 for the pitch proximity method, and O = 30 notes
for the minimal overlapping method.

4. DATASETS

Three major datasets are used to evaluate our method.
For voice segregation, we use the Bach Chorales Dataset
(BCD) collected from IMSLP.org, which originally con-
tains 364 four-voice chorales composed by Johann Sebas-
tian Bach. To test the robustness of the models, the dataset
is augmented with voice dropping, note dropping, and on-
set/offset shifting. As a result, the dataset includes the orig-
inal four-voice pieces, 2,184 two-voice pieces 1,456 three-
voice pieces, and 364 four-voice pieces with onset/offset
shifting, all of which are augmented with three different
note dropping rates (see the data augmentation process de-
scribed as below). For melody extraction, we use two
datasets, Mozart Piano Sonatas (MPS) [26] and Ameri-
cans Folks (AF) [8]. MPS consists of 38 movements from
Mozart’s piano sonatas, and their melody lines were anno-
tated by a professional pianist. AF is the subset of “Big
Dataset,” 1 and contains 1,262 folk songs in MIDI for-
mat. Every folk song contains a Soprano track, which is
picked as the melody line. For AF, we crop the piece so
that the melody line consistently exists among note events,
and merge all the other note events that do not belong to
the melody into a single accompaniment voice.

To further enhance the generalization ability of the
model, the following data augmentation techniques are ap-
plied for the training data:

1. Tempo scaling: the tempo of each piece is by 2i

times faster (or slower), where i is uniformly sam-
pled from the interval [�1, 1].

2. Key shifting: each piece is transposed by n

semitones, for n being uniformly sampled from
{�6,�5, ...5, 6}.

3. Note dropping: a piece has an equal chance for drop-
ping 0%, 5%, or 10% of its notes.

4. Voice dropping: the voices in a Bach 4-part chorales
are randomly dropped with rates p(c), c 2 {0, 1, 2},
where p(c) donates the probability of dropping c

voices. In our setting, we set p(0) = 0.6, p(1) =
0.3, and p(2) = 0.1. Note that for the melody line
identification task, voice dropping is not used be-
cause there are only two voices (i.e. melody and
accompaniment) in the training data and no more
voices can be further dropped.

5. Onset and offset shifting: the onset and offset time of
a note event are stretched or shrunk by (1+ r) times
of its duration, respectively; r is a sample from the
truncated normal distribution [33], whose PDF is set
to f(r;µ = 0,� = 0.15, a = �0.15, b = 0.15);
see [33] for detailed implementation.

1 https://www.reddit.com/r/datasets/comments/3akhxy/the_
largest_midi_collection_on_the_internet/
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Voices Original (4-voice) 2-voice 3-voice Onset-offset
Drop rate 0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10%
Skyline 95.76 88.63 82.23 98.87 96.32 93.71 97.45 92.25 87.62 26.26 26.82 27.49
VoSA 97.03 95.42 93.77 99.06 98.67 98.29 98.08 97.22 96.27 - - -
HMM 97.79 96.10 93.50 99.28 98.99 98.44 98.59 97.75 96.29 67.43 68.95 67.75
Ours (Min) 97.40 96.33 95.04 99.03 98.74 98.44 98.28 97.64 97.02 95.56 94.44 92.70
Ours (Pitch) 97.43 96.26 94.99 99.03 98.75 98.46 98.30 97.66 97.03 96.62 94.43 92.84

Table 1: Frame-level accuracy for voice segregation (in %) on BCD.

Data Model P R F1

MPS

Skyline 88.49 93.91 91.09
CNN 93.00 89.69 91.22
Ours (Min) 91.30 92.04 91.60
Ours (Pitch) 95.80 95.53 95.64

AF

Skyline 73.33 74.40 73.74
CNN 69.00 89.61 77.27
Ours (Min) 78.19 82.10 79.09
Ours (Pitch) 85.10 85.04 84.77

Table 2: Results (in %) for melody identification

Finally, to facilitate the experiment process, we assume
that one note belongs to only one voice. In the voice seg-
regation task, if there exist identical note events in differ-
ent voices, we assign it to one voice randomly and remove
others. As for the the same situation in the melody line
identification task, the note is assigned to the melody part.

5. EVALUATION AND DISCUSSION

The proposed neural networks are implemented with Ten-
sorflow 2.0. We adopt Adam optimization [34] and the
learning rate is set to 10�3. All experiments are run with
one NVIDIA GTX1060 GPU. The training time for every
1M pairs of notes is approximately one minute. Source
codes are available at our website 2 .

Four baseline methods are considered. For voice seg-
regation, we consider the skyline algorithm [26, 28], the
VoSA algorithm [13] (which is re-implemented by our-
selves), and the HMM-based voice segregation methods
[29]. For melody line identification, the skyline algorithm
and the state-of-the-art CNN-based melody extractor [26]
are considered. These methods are compared with our pro-
posed methods with two segment merging modes, which
are denoted by Pitch (the pitch proximity method) and Min
(the minimal overlapping method).

Several metrics are reported in this section. For the
performance of neural networks, the first evaluation met-
ric we consider is simply the pairwise accuracy, the ac-
curacy of the binary prediction (i.e. voice connection of
note pairs) of our 1D-CNN model. For voice segregation,
we use frame-level accuracy, the ratio of correctly pre-
dicted frames to the total frames, to present the results. For
melody line identification, the frame-level precision (P),
recall (R), and F1-score (F1) are used [26].

2 https://github.com/Wiilly07/musical-stream-segregation

5.1 Results

To evaluate the performance of our system, we performed
9-fold cross-validation on BCD under all the conditions
mentioned in Section 4. We split each fold on MIDI files
to ensure that all the note pairs from the same music piece
are in the same fold. All the augmentation methods were
also applied to the training data. The training and vali-
dation pairwise-accuracy of the 1D-CNN are 95.41% and
96.81%, respectively. Among all the validation data (in-
cluding augmented data), our system can correctly predict
the cluster number k over 99.8% (12865/12888) by eigen-
gap. The result of voice segregation is shown in Table
1. First, for zero note drop and zero onset/offset shift-
ing, HMM remains as the most superior method. How-
ever, the proposed methods prevails as the note dropping
rate increases; for example, Ours (Min) outperforms HMM
by 1.54 percentage points in 4-voice and 10% note drop-
ping rate. In addition, in the case of onset-offset shifting,
the proposed systems outperform all the others by at least
25 percentage points. These findings highlight the advan-
tage of the proposed model on high tolerance to noisy data.
Furthermore, the differences of performance between Ours
(Min) and Ours (Pitch) are very small (within 0.1% for
most of the cases), suggesting that the proposed method
can work without imposing perceptual rules.

Similarly, in the task of melody line identification,
we also performed 9-fold cross-validation on MPS and
AF dataset, respectively. Only the first three data aug-
mentation methods in Section 4 were applied in training.
The training and validation pairwise accuracy values are
98.28% and 93.96% for MPS, and 91.87% and 88.43%
for AF, respectively. From Table 2, we observe that our
method with minimal overlapping is on par with the CNN
baseline [26] on both MPS and AF. 3 When pitch proxim-
ity is applied, the proposed method outperforms others by
at least 4 percentage points in F1-score.

5.2 Discussion

To investigate the behaviors of our proposed framework,
we conduct voice segregation and melody line identifica-
tion for unseen types of data using the models we trained.
Figure 2 takes the first six bars of the first movement of
Beethoven’s Sonata No. 28 as an example. Figure 2b and
2c show the graphs constructed with the note-to-note affin-
ity inferred by the BCD and AF models, respectively. Both

3 The CNN-based model for evaluating MPS is directly provided from
[26]. We retrained a model using the source code to evaluate AF.
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(a) The sheet music

(b) The result of voice segregation by the model trained in BCD

(c) The result of melody extraction predicted by the model trained in AF

Figure 2: Results on the first 6 bars of Beethoven Sonata No. 28 Mov. 1. Dashed lines in the piano rolls represent the
edges with affinities ŵij > 0.5 of the learned graph. The links between distant notes are omitted for better visualization.

graphs exhibit the “interpretation” from the two models.
For the BCD model, notes tend to be linked in the hor-
izontal direction and long-distance links are enforced to
construct the voices. By contrast, the AF model prefers to
establish vertical links in lower pitches (e.g., accompani-
ment), while enforcing horizontal links in higher pitches
(e.g., melody). It is intriguing to see in Figure 2c that al-
though the note A5 in the third bar is linked with several
accompaniment notes, A5 is still classified as melody be-
cause of the even more abundant links to melody notes.

According to the directions of note stems, four voices
can be identified from Figure 2a. The eigengap of the
graph generated by the BCD model does give an estima-
tion of k = 4, which is consistent with such a common
interpretation. By comparing Figures 2a and 2b, most in-
terpretation of the BCD model are consistent with the score
sheet except some interesting exceptions. For example,
in the first bar, the BCD model assigns B3 and E40 of
the second voice (denoted as E4–B3–F#4–G#4–E40–A4)
to the third voice, while D#3, D\3, and C#3 in the third
voice (E3–D#3–D\3–C#3) are assigned to the fourth voice.
That means, the model treats the second voice as pseudo-
polyphony and manages to derive two valid voices from
it. An explanation of this phenomenon is that the BCD
model learns the principles of counterpoint and tends to
have more large leaps for lower voices. It can be found
that the notes in the fourth voice from the BCD model are
highly overlapped, although perceiving them as a voice is

indeed possible for human, if the duration information is
ignored. The characteristics of the training data may also
provide another explanation of this phenomenon; the den-
sity of notes in the fourth voice of this excerpt is sparser
than the density of bass notes in BCD. Therefore, the
model tends to build more links between the lowest note
E2 and its contextual notes, and merges all of them into
the same stream.

6. CONCLUSION

In this paper, we have presented a new, generalizable, and
straightforward framework to learn note-to-note affinity
for symbolic music data. The framework, taking only note
attributes as training features, can outperform several state-
of-the-art horizontal element extraction methods in various
musical textures and in real-world scenarios. The graph
representation induced from the framework can also serve
as a tool for in-depth music analysis on the relationship
among the notes if the label configuration describing the
training data of interest is given. The major limitation of
this work is that it has not considered the case of varying
number of voices (e.g., voices shrinking or expansion) in
the music data, which can however be well solved with
a modified segment merging process and more accurate
prediction on the eigengaps within segments. Adopting
more advanced neural networks and statistical methods to
achieve this goal is left as our future work.
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ABSTRACT

High variability of singing voice and insufficiency of note
event annotation present a huge bottleneck in singing
voice transcription (SVT). In this paper, we present VO-
CANO, an open-source VOCAl NOte transcription frame-
work built upon robust neural networks with multi-task
and semi-supervised learning. Based on a state-of-the-art
SVT method, we further consider virtual adversarial train-
ing (VAT), a semi-supervised learning (SSL) method for
SVT on both clean and accompanied singing voice data,
the latter being pre-processed using the singing voice sep-
aration (SVS) technique. The proposed framework outper-
forms the state of the arts on public benchmarks over a
wide variety of evaluation metrics. The effects of the types
of training models and the sizes of the unlabeled datasets
on the performance of SVT are also discussed.

1. INTRODUCTION

Singing voice transcription (SVT), the task to map singing
voice to common music notation of note events, is a criti-
cal step to drive novel applications in music retrieval, con-
tent creation, musicology, education, and human-computer
interaction [1]. Similar to many of the automatic music
transcription (AMT) tasks, the SVT task typically encom-
passes several sub-tasks of AMT, which are pitch detec-
tion, onset detection, offset detection, as well as sequence-
level modeling [2, 3]. In the literature of music infor-
mation retrieval (MIR), one of the most extensively in-
vestigated sub-tasks of SVT might be vocal melody ex-
traction, the task to transcribe the frame-level instanta-
neous pitch (i.e., fundamental frequency (F0)) contours of
singing voice in either monophonic (no accompaniment)
or polyphonic (mixed with accompaniment) audio signals.
Specifically, recent endeavours mostly focus on leverag-
ing deep learning techniques to transcribe the singing voice
which serves as a predominant melody in polyphonic mu-
sic [4–7]. Though achieving breakthrough performance,
vocal melody extraction is however not yet a complete so-

© Anonymous Authors. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Anonymous Authors, “VOCANO: A note transcription framework for
singing voice in polyphonic music”, in Proc. of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

lution of SVT, as it does not specify note-level events dis-
tinct from its outputs rendered in time frames.

The challenges of note-level SVT are multi-fold. Vo-
cal signals are highly variable in singing timbre, articula-
tion, intonation, discernible patterns such as vibrato, glis-
sando, note transitions and ornaments, and even lyrics.
These variables blurs the boundaries between notes and
notes, and make the note-level data annotation of singing
voice an extremely challenging job. It seems to be impossi-
ble to compile large-scale, accurate and consistent human-
annotated datasets, especially on note transition (e.g., onset
and offset) time. Such variability also challenges a model
to discriminate local time-frequency patterns. For exam-
ple, an offset event can be overlapped with another onset
event to a flexible overlapping ratio, making the transition
a non-Markovian process [8]. This issue is even worsen in
polyphonic music in which the note transitions in accom-
paniments are much denser than in the vocal melody.

In this paper, we propose a novel SVT framework to ad-
dress these issues. We notice that, as the annotated datasets
are limited, using advanced regularized neural networks
against overfitting, and semi-supervised learning (SSL) to
leverage massive amounts of unlabeled data emerge as an
efficient solution. Based on the hierarchical classification
approach of transcription [8], we utilize the PyramidNet
with ShakeDrop regularization to reduce overfitting [9],
and also incorporate it with virtual adversarial training
(VAT) [10] for SSL. These techniques have been found
useful in the fields of computer vision, while their potential
on MIR tasks has not been thoroughly discussed.

The major technical novelty and contribution of this pa-
per are as follows. First, to the best of our knowledge,
this paper represents one of the first implementations of
note-level SVT considering mixture audio inputs. Sec-
ond, the proposed SVT method outperforms state-of-the-
art methods. Also, the effect of SSL mechanism together
with the model choice on SVT performance are discussed.
Section 2 will give an overview and paper survey on the
SVT problem scenario that will be discussed in this paper.
Method and experiment results will be given in Section 3
and 4, respectively. Conclusion will be made in Section 5.

2. PROBLEM SCENARIOS AND BACKGROUND

The problem scenario of SVT is not consistently defined in
the literature. First, the transcription results can be in either
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frame-level (e.g., vocal melody extraction) or note-level.
Second, the input data can be either monophonic singing
or with accompaniment. Third, the target of transcription
can be either solo voice or multiple concurrent voices (e.g.,
choir). In this work, we consider SVT of a single voice
without or with instrument accompaniment, which will be
referred to as the monophonic or polyphonic SVT later on.
There are two approaches to deal with the case when the
accompaniment is present: 1) train a general SVT model
using the singing voice data mixed with accompaniment,
and 2) train a specialized SVT model using clean singing
voice data, and use singing voice separation (SVS) tools
to remove accompaniments of the input before inference.
In the second approach, monophonic and polyphonic SVT
can be regarded as the same task, based on the fact that
SVS is a relatively well developed technology. For sim-
plicity, we will focus on the second approach in this paper.
A pilot study comparing the two approaches will also be
reported in Section 4.3.

Previous note segmentation works on SVT usually em-
ploy state-space machines such as Bayesian models or hid-
den Markov models (HMM), which consistently detect on-
set and offset by characterizing the temporal dynamics
among the states (attack, sustain, and silence, etc.) of note
events [11–14]. Tony [13], a widely-used note transcrip-
tion software, is also based on this approach. In the deep
learning approach, the connectionnist temporal classifica-
tion (CTC) loss [15], self-attention mechanism [3] also
play similar roles in temporal decoding of note-level SVT.
However, it has been pointed out that the state space in
note transition can be ambiguous in several cases when
onset and offset events are overlapped or when note pitch
are repeated, and this issues can be solved by extending
the output dimension of the network to describe the differ-
ent classes of transition states [8]. Similar ideas such as
multi-state note models have also been discussed recently
in piano AMT tasks [16].

To our knowledge, a note-level SVT tool specifically for
the singing voice signals mixed with accompaniment has
rarely been implemented. It is not until 2020 that the task
of “Singing Transcription from Polyphonic Music” was
proposed in Music Information Retrieval Evaluation eX-
change (MIREX), while there was only one submission to
this campaign. 1 Related tasks include singing voice sepa-
ration (SVS) [6,17] and automatic transcription of multiple
concurrent singing voices such as a cappella [18,19], most
of which are restricted to frame-level transcription.

3. METHOD

The proposed SVT framework is shown in Figure 1. In the
training stage, data representations are extracted for each
frame, and are then fed into two neural network models,
one for pitch contour extraction and the other for note seg-
mentation. SSL is performed on the note segmentation net-
work. Note-level transcription results are obtained through

1 https://www.music-ir.org/mirex/wiki/2020:
Singing_Transcription_from_Polyphonic_Music_
Results

Figure 1. The proposed SVT framework. Dl, Dul, x, and
ŷ represent labeled dataset, unlabeled dataset, input sample
and predicted label, respectively.

a temporal decoding process over the frame-level outputs.

3.1 Data representation

All the input audio signals are sampled at 16 kHz. For all
the polyphonic data (e.g., singing plus accompaniment), an
SVS algorithm, Demucs [17], is employed to separate out
singing voice for use before the feature extraction stage.

Following the previous state-of-the-art method [8], the
input of the SVT network is a multi-channel feature con-
sisting in spectrum, generalized cepstrum and the general-
ized cepstrum of spectrum (GCoS) [20]. Such a combina-
tion has been shown effective in enhancing F0 components
while suppressing unwanted harmonic components [20].
All channels of feature are mapped into the log-frequency
scale with a filterbank containing 174 overlapped triangu-
lar filters allocated from 80 Hz to 1 kHz with 48 bins per
octave. To adapt to signal-level attributes in different res-
olution, three windows with different sizes are employed
to compute these data representations. As a result, the in-
put feature has 9 channels. For every time step at t, the
input x(t) contains the data representations at frame t and
also at its previous and future 9 frames, totaling 19 frames.
In other word, the shape of x(t) is: (number of channel,
height, width) := (9, 174, 19).

3.2 Note segmentation networks

We decompose the SVT process into two parts: frame-
level pitch extraction and note segmentation. For pitch
extraction, we directly use a vocal melody extraction net-
work, Patch-CNN [21], to obtain frame-level pitch con-
tours. Since the frame-level pitch extraction has been
a widely investigated technique (see discussion on vocal
melody extraction in Section 1), the proposed network
therefore focuses on note segmentation.

The note segment network can be regarded as an re-
implementation and extension of [8]. First, while the
model in [8] concatenates the 9 data representations as a
single-channel inputs, in this work we reshape them into
9 individual channels, as shown in Section 3.1. Second,
while [8] was based on the ResNet-18 network [22], we in-
stead consider the PyramidNet with ShakeDrop regulariza-
tion [23] to reduce overfitting. The PyramidNet improves
the performance by gradually increasing the numbers of
feature maps through the layers such as to effectively in-
crease the diversity of high-level attributes [9]. ShakeDrop
regularization further diversifies the feature maps by as-
signing different random weights in forward and backward
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stages at each residual layer [23]. In this work, we adopt
the PyramidNet-110 architecture, which has 28.49M pa-
rameters, a size larger than ResNet-18 by 2.5 times.

Following [8], the output of the note segmentation net-
work is optimized with multiple sub-tasks to capture the
complex dynamics of music note transition. For each time
step, the network outputs a 6-dimensional vector ŷ :=⇥
s, a, o, ō, f, f̄

⇤
, where s represents the silence state, a rep-

resents the activation (i.e. a note is on) state, o represents
the onset state, and f represents the offset state. ō and f̄
are the non-onset and non-offset states, respectively. The
output at time t is denoted as ŷ(t), in which the states are
denoted as s(t), a(t), and so on. Each state in ŷ represents
a probability value between zero and one, and we simply
set ō := 1� o, f̄ := 1� f , and s = 1� a. We also define
the transition state t := max(o, f) to describe the state that
either an onset of an offset occur. Defining the subspaces
ŷtri := [s, a, t], ŷact := [s, a], ŷon := [o, ō], ŷo↵ := [f, f̄ ],
then the total objective function for note segmentation is

LSEG(y, ŷ) := BCE(ytri, ŷtri) + BCE(yact, ŷact)

+ BCE(yon, ŷon) + BCE(yo↵ , ŷo↵), (1)

where y, ytri, yact, yon, and yo↵ are the ground truth, and
BCE is binary cross-entropy. In brief, the note segmen-
tation mechanism here is not merely to classify onset and
offset individually, but is a combination of four classifi-
cation sub-tasks over the subspaces in the output space
y: one sub-task of multi-class classification over transi-
tion, activation, and silence, and three sub-tasks of binary
classification (i.e. activation/silence, onset/non-onset, and
offset/non-offset). Such design facilitates the discrimina-
tion between possibly overlapped events, such as onset and
offset (when the offset of a note followed by the onset of
its next note) and smooth note transition.

3.3 Semi-supervised learning

The Virtual Adversarial Training (VAT) technique is used
for semi-supervised learning on both the labeled and un-
labeled training data. VAT can be regarded as an effective
data/ label augmentation technique without the needs of
prior domain knowledge. Let xl and xul be labeled and
unlabeled samples sampled from a labeled dataset Dl and
and unlabeled dataset Dul, respectively. Given a sample
x⇤ which is either xl or xul, the output distribution can be
represented as p(y|x, ✓), in which ✓ represents the param-
eters of the note segmentation model. In our case, VAT
aims at minimizing the below local distributional smooth-
ness (LDS) function for every x⇤:

LDS(x⇤, ✓) =BCE (p(y|x⇤, ✓), p(y|x⇤ + radv, ✓)) , (2)
radv := argmax

r;krk2<✏
BCE (p(y|x⇤, ✓), p(y|x⇤ + r)) .

Let Nl and Nul are the number of samples in Dl

and Dul, respectively, we have the total VAT loss being
LVAT := 1/(Nl + Nul)

P
x2Dl[Dul

LDS(x⇤, ✓). Com-
bined with the supervised loss function (Equation (1)), the
total loss function is represented as L := LSEG + �LVAT,

and we set � = 1 throughout this work. The note segmen-
tation network is implemented with PyTorch v1.5, and is
obtained after 20 epochs of training on an Nvidia TITAN
RTX GPU, using the AdamW optimizer with a learning
rate of 10�4. Typically, it takes around 8 hours to accom-
plish training a model.

3.4 Temporal decoding

Post-processing is needed to derive temporally consistent
onset/ offset/ activation timestamps from the 6-D distribu-
tion (i.e. ŷ(t)) outputted from the network. We call this
process temporal decoding. First, we employ a linear fil-
ter with impulse response as a 5-tap triangular window to
smooth each dimension in ŷ(t) in the time axis. Then, we
perform peak picking on ô(t) and x̂(t) with a threshold
at 0.5 to determine possible onset and offset positions, re-
spectively. At this stage, there are inevitable mismatches
between the predicted onset and offset positions. To en-
sure that every onset is followed by exactly one offset, ad-
ditional procedures are used: 1) if there are two onsets hav-
ing no offset between them, we insert an offset specified to
the time when s firstly surpasses a with that interval; 2)
similarly, if there are two offsets having no onset between
them, the inserted onset is specified to the time when a
firstly surpasses s in that interval; and 3) any predicted re-
sult violating rules 1) and 2) is removed and is not recog-
nized as an onset or an offset.

After having the onset-offset interval of every predicted
note, the pitch of every note is determined by the median
value of the pitch contour within that onset-offset interval.

4. EXPERIMENT

4.1 Data

To test the robustness of our model, a cross-dataset sce-
nario (i.e. the training and testing datasets are compiled
independently) is employed for the experiments. The
dataset used for supervised learning (denoted as Dl) is
the TONAS dataset, which contains 71 flamenco a cap-
pella sung melody, each of which has high-quality note-
level annotation [24]. We consider three datasets for semi-
supervised learning (denoted as Dul), which are MIR-
1K, 2 MedleyDB [25] and DALI [26]. MIR1K contains
1,000 excerpts of Chinese karaoke songs sung by amateur
singers. MedleyDB is a multi-track dataset, and we select
the tracks labeled as ‘female singer’ or ‘male singer’ (76
tracks in total) as our unlabeled training data. The DALI
dataset contains a large-scale polyphonic music (mostly
Western pop music). In this dataset We select 65 songs
from this dataset as unlabeled training data, and this subset
is denoted as DALI-train hereafter.

For evaluation, we consider three testing datasets (de-
noted as Dtest), which are ISMIR2014, DALI-test, and
Cmedia. ISMIR2014 [27] is a monophonic vocal singing
dataset containing singing data from 11 female adults, 13

2 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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male adults and 14 children. The DALI-test set, also se-
lected from DALI, contains 20 songs with automated an-
notation of notes. Finally, the Cmedia dataset [28] is used
in the MIREX campaign on polyphonic SVT (see footnote
1), and on the list we retrieve 99 pop songs (mostly Chi-
nese songs) with vocal annotation publicly available. The
list of the songs selected from DALI and Cmedia are pro-
vided on the project website (see Section 5).

4.2 Evaluation metrics

We use the metrics of note transcription in the mir_eval
library for evaluation [29]. In the evaluation rules, a pre-
dicted note is considered as correct (i.e., true positive) for
a ground truth note if it fulfills the three rules: 1) the dif-
ference in pitch number between the predicted note and the
ground truth note is less than a pitch tolerance value �p (in
cents), 2) the difference in onset time is less than an on-
set tolerance value �o (in seconds), and 3) the difference in
offset time is less than max(�o, �f⇥g), where �x is an off-
set tolerance ratio and g is the duration of the ground truth
note (in seconds). The F1-score is the harmonic mean of
the precision and recall values obtained from these criteria.

Therefore, the F1-score is parametrized by (�p, �o, �f),
and is denoted as F(�p,�o,�f) in this paper. This incorpo-
rates several conventional metrics of note-level transcrip-
tion. Setting �p = 50 cents, �o = 50ms and �f = 0.2, we
consider the following F1-scores (a tolerance value of 1
means that it is not consider in the evaluation):

• Onset-only F1-score: F(1,0.05,1)

• Offset-only F1-score: F(1,1,0.2)

• Onset-offset F1-score: F(1,0.05,0.2)

• Onset-pitch F1-score: F(50,0.05,1)

• Onset-offset-pitch F1-score: F(50,0.05,0.2)

For example, F(50,0.05,0.2) means that a note is consid-
ered as a true positive if its pitch deviates from the ground
truth pitch by less than 50 cents, its onset deviates from the
ground truth onset by less than 0.05s, and its offset devia-
tion is less than 0.2 times the duration of the ground truth
note. The F1-scores of only onset (or only offset) events
are the cases of �p = �f = 1 (or �p = �o = 1).

Besides the note-level F1-scores, we also propose a
high-level metric called the sequence-level Note Accuracy
(NAcc), which is based on matching the MIDI pitches of
predicted and ground truth note sequences rather than the
timestamps of onset/ offset. More specifically, NAcc is the
Levenshtein distance between the ground truth and the pre-
dicted MIDI sequences: NAcc := 1 � (D + I + S)/N ,
where D denotes the number of deletions, I is the number
of insertions, S is the number of substitutions, and N is the
length of the ground truth sequence. Unlike the F1-score,
NAcc can better reveal the performance on the entire pitch
sequence, rather than the performance on the time stamps
of note events. This evaluation is useful when accurate
time stamps of the output are not of primary importance
while the global information of pitch sequence is required.

4.3 Results

4.3.1 Effect of singing voice separation

First, as a pilot study, we compare the two SVT approaches
for polyphonic audio mentioned in Section 2: 1) a model
directly trained with polyphonic Dul, and 2) a model
trained with SVS-processed (i.e. monophonic) Dul, and
requiring SVS in the inference stage. Using MIR1K as
Dul and ISMIR2014 as Dtest, results show that the onset-
offset-pitch F1-score is 30.04% for the first model, while
the second model achieves 68.38%, a much better perfor-
mance. This is mainly due to the domain difference be-
tween Dl and Dul (the former is purely monophonic while
the latter is polyphonic). We therefore focus on the second
approach in evaluating the proposed SVT framework.

4.3.2 Comparison of models

Table 1 compares the performance metrics of two models
(ResNet-18 and PyramidNet) trained under a supervised
scheme (w/o VAT), and a semi-supervised schemes (w/i
VAT) with three different unlabeled datasets (Dul) having
different scales: MIR1K, MIR1K + MedleyDB, and also
MIR1K + MedleyDB + DALI-train.

A comparison of the two models is first made from the
left three columns of Table 1 (without VAT). ResNet-18
outperforms PyramidNet for onset F1-score, onset-pitch
F1-score and NAcc, while PyramidNet prevails on offset
detection and gives better onset-offset-pitch F1-scores on
the three datasets. In short, PyramidNet, with a larger size
of training parameters, performs better on strict note tran-
scription metric such as onset-offset-pitch F1-score.

4.3.3 Effects of semi-supervised learning

By comparing the results without VAT and the ones with
VAT, we observe two different trends for the two models.
For PyramidNet, using VAT improves the performance for
almost all Dtest and all the metrics. For example, with
MIR1K as Dul improves the onset-offset-pitch F1-score
of the three test datasets by 5.73, 0.08 and 3.01 percent-
age points, respectively. Since all the methods adopt the
same pitch extraction results, such improvement is fully
contributed by the improvement of note segmentation net-
work with semi-supervised learning.

For ResNet-18, however, using VAT only improves
the performance of offset-related metrics rather than all
metrics. This is possibly because VAT performs more
effectively on larger models with regularization mecha-
nism. Among the improvement of offset detection met-
rics, it is worth mentioning that the offset F1-score of
the ISMIR2014 dataset is improved by 3.83 percentage
points (from 74.68% to 78.51%) with the Dul being
MIR1K+Med+DALI. In summary, although VAT does not
improve the performance consistently over all types of
models on all performance metrics, it still exhibits a trend
to improve more challenging metrics such as offset.

4.3.4 Effects of the unlabeled dataset Dul

Table 1 also demonstrates that the size, quality, and diver-
sity of the unlabeled dataset (Dul) affect the performance
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w/o VAT w/i VAT
Dul – MIR-1K MIR-1K + MedleyDB MIR1K + Med + DALI
Dtest I D C I D C I D C I D C

PyramidNet + ShakeDrop
Onset-only 78.02 27.79 58.15 84.04 32.87 64.56 81.10 28.98 60.65 82.25 30.40 61.81
Offset-only 75.50 36.32 45.24 80.06 33.95 51.86 78.52 33.95 48.29 78.42 34.87 47.43
Onset-offset 62.92 11.16 25.95 68.60 11.95 33.65 67.06 10.85 29.97 67.12 11.13 29.65
On-off-pitch 62.65 2.69 22.36 68.38 2.76 28.28 66.73 2.65 25.37 66.92 2.68 25.05
Onset-pitch 75.32 5.26 45.57 80.58 5.99 48.33 78.26 5.35 45.95 78.72 5.50 47.28
NAcc 69.76 12.30 50.54 78.68 12.06 48.52 75.51 12.78 47.88 77.41 15.43 52.36

ResNet
Onset-only 82.01 30.05 60.12 79.39 26.70 55.87 78.85 26.71 55.80 78.38 26.68 55.68
Offset-only 74.68 35.38 45.31 76.76 33.23 44.18 76.11 33.32 46.94 78.51 33.29 46.47
Onset-offset 61.80 10.46 26.60 62.93 9.91 25.10 62.93 9.65 26.53 63.32 9.49 26.32
On-off-pitch 61.71 2.51 22.95 62.76 2.42 21.66 62.77 2.21 22.60 63.04 2.28 22.44
Onset-pitch 77.97 5.89 47.87 75.90 5.19 43.76 74.87 4.93 43.12 74.78 5.11 43.51
NAcc 80.08 16.06 56.24 73.29 4.11 43.08 74.20 11.17 48.28 78.16 10.79 48.38

Table 1. Evaluation results on three test datasets (I: ISMIR2014; D: DALI-test; C: Cmedia). The evaluation metrics are
(from top to bottom): onset F1, offset F1, onset-offset F1, onset-offset-pitch (on-off-pitch) F1, and pitch-onset F1. See
Section 4.2 for more details on the evaluation metrics. The best performances of each dataset are marked in bold. Upper:
PyramidNet with ShakeDrop. Lower: ResNet-18.

with VAT in a quite complicated way. First, it should be
noted that a larger-scale of unlabeled dataset (Dul) does not
always imply better performance, and this phenomenon
is also model-dependent. First, for PyramidNet, optimal
performances mostly occur when only MIR1K is taken
as Dul, and adding MedleyDB and DALI-train does not
guarantee better results. For ResNet, its can be observed
that a larger unlabeled dataset (MIR1K+Med+DALI) does
give better results, but this trend is more obvious only in
offset-related metrics. A possible reason is that the genres
of the three Dul are quite different. Both MedleyDB and
DALI-train contain a much wider ranges of singing styles,
usually with chorus singing, while MIR1K is less diverse
and can be better optimized when training in batch. Nev-
ertheless, using MIR1K+MedleyDB+DALI-train still out-
performs the case using MIR-1K+MedleyDB, and this in-
dicates that there is still room for improvement if incorpo-
rating more unlabeled data for semi-supervised learning.

Among the three testing datasets, DALI-test is obvi-
ously the most challenging and is hard to be improved
by VAT. This is because that the note event annotation
in DALI is obtained automatically from global alignment,
and is reported to be error prone [30]. Besides, the cho-
rus singing part, which is commonly seen in the DALI
dataset, may confound the result of monophonic pitch ex-
traction. This can be seen from the fact that the perfor-
mance greatly drops when considering pitch for DALI-
test set: its onset-offset-pitch F1-scores are always much
lower than its onset-offset F1-scores. These challenging
issues might still require solutions from supervised learn-
ing rather than the SSL approaches.

4.3.5 Sequence-level vs. note-level evaluation

It is worth noting that NAcc exhibits a trend different from
other metrics. A high onset-offset-pitch F1-score does not

Method P R F
[31] 30.4 31.5 30.8
[24] 43.0 37.3 39.8
[32] 39.7 44.0 41.5
[12] 40.9 43.6 42.1
[13] 51.0 53.4 52.0
[8] 62.5 56.9 59.4
ResNet w/o VAT 63.1 60.6 61.7
ResNet w/i VAT 67.7 58.8 62.8
PyramidNet w/o VAT 68.6 58.1 62.7
PyramidNet w/i VAT 72.2 65.3 68.4

Table 2. Performance comparison (in %) of various SVT
methods on the ISMIR2014 dataset (Dul = MIR1K).

imply a high NAcc. On DALI-test and Cmedia, we observe
that using larger scale of Dul does result in better NAcc
using PyramidNet. This can be explained by the high vari-
ability of annotation of onset/ offset time. With large-scale
and high-diversity data, SSL may not be effective in cap-
turing local event, but can improve the performance in the
global scale. Besides, given the fact that the onset/offset
annotations are not perfectly reliable, sequence-level met-
rics such NAcc is worth further investigation when the pur-
pose of SVT is to transcribe the music score rather than
replicating the music performance.

4.3.6 Comparison to the state of the arts

Table 2 compares the precision, recall, and F1-score of
the proposed method to previous work on the ISMIR2014
dataset, the only public dataset systematically evaluated on
note-level SVT (this why a comparison on polyphonic mu-
sic datasets is not made here). Results of previous work
are listed in the upper six rows, while the new results are
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(a) ‘afemale6.wav’ in the ISMIR2014 dataset

(b) ‘10.wav’ in the CMedia dataset (10-30 seconds)

Figure 2. Data representations and transcription results using the PyramidNet model. From top to bottom: data representa-
tion, transcription results without VAT (blue lines), and transcription results with VAT (green lines). Grey dashed lines are
frame-level pitch contours. Red lines are ground truth. Circle dots are onset events, and crosses are offset events.

in the lower four rows. The result of ResNet w/o VAT can
be regarded as an imporved version of [8], by re-arranging
the channels of the input data representations while fol-
lowing the same output dimensions and temporal decoding
processes. Such modification entails 2.3 percentage points
of improvement from [8]. Besides, using a model larger
than ResNet-18 (i.e. PyramidNet) further improves the re-
sulting F1-score by 1 percentage point. Finally, with the
assistance of SSL, the PyramidNet model with MIR1K for
VAT achieves 68.5% of F1-score, which outperforms the
best previous method [8] by 9.0 percentage points.

4.3.7 Illustration

Figure 2 shows the results of two challenging examples of
SVT. The first example is challenging because of the re-
peated notes (consecutive note with the same pitch), while
the main challenge of the second example is its wide pitch
range. Figure 2(a) shows that the it is hard to observe the
onset and offset events from the data representation. The
purely supervised model fails to capture most of the on-
set and offset events of repeated notes, and this issue can

be partly solved by utilizing VAT; see the repeated notes
captured at around 2 secs and 9 secs of the example. In
Figure 2(b), it can be shown that both models without and
with VAT fail to transcribe low-pitch notes and high-pitch
ornamentation (around 24 secs), partly due to the fact that
these events are less visible on the data representations.

5. CONCLUSION

We have validated the effectiveness of leveraging semi-
supervised learning on note segmentation in singing voice
transcription. State-of-the-art performance has been re-
ported on public benchmarks. The role of semi-supervised
learning is found depending on the model and the
size, quality and the diversity of the unlabeled training
data. These findings provide insights into future semi-
supervised MIR research. The source code is available at
the project page. 3 VOCANO is also available as part of
the automatic music transcription library Omnizart [33]. 4

3 https://github.com/B05901022/VOCANO
4 https://github.com/Music-and-Culture-Technology-Lab/omnizart

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

298



6. ACKNOWLEDGMENTS

This work was partially supported by MOST Taiwan under
the project Automatic Music Transcription Algorithms for
Interactive Music Systems (Grant No. 106-2218-E-001-
003-MY3).

7. REFERENCES

[1] M. Müller, E. Gómez, and Y.-H. Yang, “Computational
methods for melody and voice processing in music
recordings (dagstuhl seminar 19052),” in Dagstuhl Re-
ports, vol. 9, no. 1, 2019.

[2] E. Anders, “Modeling music: Studies of music tran-
scription, music perception and music production,”
Ph.D. dissertation, KTH Royal Institute of Technology,
2018.

[3] R. Nishikimi, E. Nakamura, S. Fukayama, M. Goto,
and K. Yoshii, “Automatic singing transcription based
on encoder-decoder recurrent neural networks with
a weakly-supervised attention mechanism,” in Proc.
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019, pp. 161–165.

[4] M.-T. Chen, B.-J. Li, and T.-S. Chi, “CNN based two-
stage multi-resolution end-to-end model for singing
melody extraction,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 1005–1009.

[5] F. Rigaud and M. Radenen, “Singing voice melody
transcription using deep neural networks,” in Proc.
International Society for Music Information Retrieval
Confence (ISMIR), 2016, pp. 737–743.

[6] T. Nakano, K. Yoshii, Y. Wu, R. Nishikimi, K. W. E.
Lin, and M. Goto, “Joint singing pitch estimation and
voice separation based on a neural harmonic structure
renderer,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA),
2019, pp. 160–164.

[7] S. Kum, J.-H. Lin, L. Su, and J. Nam, “Semi-
supervised learning using teacher-student models for
vocal melody extraction,” in Proc. International Soci-
ety for Music Information Retrieval Confence (ISMIR),
2020, pp. 93–100.

[8] Z.-S. Fu and L. Su, “Hierarchical classification net-
works for singing voice segmentation and transcrip-
tion,” in Proc. International Society for Music Informa-
tion Retrieval Confence (ISMIR), 2019, pp. 900–907.

[9] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual
networks,” in Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017, pp. 5927–
5935.

[10] T. Miyato, S. Maeda, M. Koyama, and S. Ishii, “Virtual
adversarial training: a regularization method for su-
pervised and semi-supervised learning,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 41, no. 8, pp. 1979–1993, 2018.

[11] R. Nishikimi, E. Nakamura, K. Itoyama, and K. Yoshii,
“Musical note estimation for F0 trajectories of singing
voices based on a Bayesian semi-beat-synchronous
HMM.” in Proc. International Society for Music In-
formation Retrieval Confence (ISMIR), 2016, pp. 461–
467.

[12] L. Yang, A. Maezawa, J. B. Smith, and E. Chew, “Prob-
abilistic transcription of sung melody using a pitch dy-
namic model,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2017, pp. 301–305.

[13] M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Sala-
mon, J. Dai, J. Bello, and S. Dixon, “Computer-aided
melody note transcription using the tony software: Ac-
curacy and efficiency,” in Proc. Sound and Music Com-
puting (SMC), 2015.

[14] R. Nishikimi, E. Nakamura, M. Goto, K. Itoyama,
and K. Yoshii, “Bayesian singing transcription based
on a hierarchical generative model of keys, musical
notes, and F0 trajectories,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing (TASLP),
vol. 28, pp. 1678–1691, 2020.

[15] M. A. Román, A. Pertusa, and J. Calvo-Zaragoza, “An
end-to-end framework for audio-to-score music tran-
scription on monophonic excerpts.” in Proc. Interna-
tional Society for Music Information Retrieval Con-
fence (ISMIR), 2018, pp. 34–41.

[16] T. Kwon, D. Jeong, and J. Nam, “Polyphonic pi-
ano transcription using autoregressive multi-state note
model,” in International Society for Music Information
Retrieval Conference (ISMIR). International Society
for Music Information Retrieval, 2020, pp. 454–461.

[17] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Mu-
sic source separation in the waveform domain,” arXiv
preprint arXiv:1911.13254, 2019.

[18] R. Schramm and E. Benetos, “Automatic transcription
of a cappella recordings from multiple singers,” in AES
International Conference on Semantic Audio. Audio
Engineering Society, 2017.

[19] H. Cuesta, B. McFee, and E. Gómez, “Multiple F0 es-
timation in vocal ensembles using convolutional neural
networks,” in International Society for Music Informa-
tion Retrieval Confence (ISMIR), 2020, pp. 302–309.

[20] Y.-T. Wu, B. Chen, and L. Su, “Automatic music
transcription leveraging generalized cepstral features
and deep learning,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 401–405.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

299



[21] L. Su, “Vocal melody extraction using patch-based
CNN,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 371–375.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

[23] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise,
“Shakedrop regularization for deep residual learning,”
IEEE Access, vol. 7, pp. 186 126–186 136, 2019.

[24] E. Gómez and J. Bonada, “Towards computer-assisted
flamenco transcription: An experimental comparison
of automatic transcription algorithms as applied to a
cappella singing,” Computer Music Journal, vol. 37,
no. 2, pp. 73–90, 2013.

[25] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch,
C. Cannam, and J. P. Bello, “MedleyDB: A multitrack
dataset for annotation-intensive mir research.” in Proc.
International Society for Music Information Retrieval
Confence (ISMIR), 2014, pp. 155–160.

[26] G. Meseguer-Brocal, A. Cohen-Hadria, and G. Peeters,
“DALI: a large dataset of synchronized audio, lyrics
and notes, automatically created using teacher-student
machine learning paradigm.” in Proc. International So-
ciety for Music Information Retrieval Confence (IS-
MIR), 2018, pp. 431–437.

[27] E. Molina, A. M. Barbancho-Perez, L. J. Tardón,
I. Barbancho-Perez et al., “Evaluation framework for
automatic singing transcription,” in Proc. International
Society for Music Information Retrieval Confence (IS-
MIR), 2014.

[28] J.-Y. Wang and J.-S. R. Jang, “On the preparation
and validation of a large-scale dataset of singing tran-
scription,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 276–280.

[29] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,
O. Nieto, D. Liang, D. P. Ellis, and C. C. Raffel,
“mir_eval: A transparent implementation of common
mir metrics,” in Proc. International Society for Mu-
sic Information Retrieval Confence (ISMIR), 2014, pp.
367–372.

[30] G. Meseguer-Brocal, R. M. Bittner, S. Durand, and
B. Brost, “Data cleansing with contrastive learning for
vocal note event annotations,” in Proc. International
Society for Music Information Retrieval Confence (IS-
MIR), 2020, pp. 255–262.

[31] M. P. Ryynänen and A. P. Klapuri, “Automatic tran-
scription of melody, bass line, and chords in poly-
phonic music,” Computer Music Journal, vol. 32, no. 3,
pp. 72–86, 2008.

[32] E. Molina, L. J. Tardón, A. M. Barbancho, and I. Bar-
bancho, “SiPTH: Singing transcription based on hys-
teresis defined on the pitch-time curve,” IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing (TASLP), vol. 23, no. 2, pp. 252–263, 2015.

[33] Y.-T. Wu, Y.-J. Luo, T.-P. Chen, I. Wei, J.-Y. Hsu, Y.-
C. Chuang, and L. Su, “Omnizart: A general tool-
box for automatic music transcription,” arXiv preprint
arXiv:2106.00497, 2021.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

300



  
 

DE-CENTERING THE WEST: EAST ASIAN PHILOSOPHIES 
AND THE ETHICS OF APPLYING ARTIFICIAL 

INTELLIGENCE TO MUSIC 

Rujing Huang Bob L. T. Sturm Andre Holzapfel 
Division of Speech, Mu-

sic and Hearing, KTH 
Royal Institute of Tech-

nology, Stockholm 

Division of Speech, Music and Hear-
ing, KTH Royal Institute of Technol-

ogy, Stockholm 

Division of Media Tech-
nology and Interaction De-
sign, KTH Royal Institute 
of Technology, Stockholm 

{rujing, bobs, holzap}@kth.se 
 

 
ABSTRACT 

Questions about the ethical dimensions of artificial intelli-
gence (AI) become more pressing as its applications mul-
tiply. While there is a growing literature calling attention 
to the ethics of AI in general, sector-specific and culturally 
sensitive approaches remain under-explored. We thus ini-
tiate an effort to establish a framework of ethical guide-
lines for music AI in the context of East Asia, a region 
whose rapid technological advances are playing a leading 
role in contemporary geopolitical competition. We draw a 
connection between technological ethics and non-Western 
philosophies such as Confucianism, Buddhism, Shintoism, 
and Daoism. We emphasize interrelations between AI and 
traditional cultural heritage and values. Drawing on the 
IEEE Principles of Ethically Aligned Design, we map its 
proposed ethical principles to East Asian contexts and their 
respective music ecosystem. In this process of establishing 
a culturally situated understanding of AI ethics, we see that 
the seemingly universal concepts of “human rights”, 
“well-being”, and potential “misuse” are ultimately fluid 
and need to be examined in specific cultural contexts.  

1. INTRODUCTION 

The field of Music Information Retrieval (MIR) involves 
developing artificial intelligence (AI) technologies for 
making music accessible, evinced by applications such as 
music recommendation, identification, analysis and gener-
ation. Such technologies augment or replace human efforts 
by their scalability. The impacts of these technologies on 
music practices and communities are important subjects of 
investigation as the MIR research field progresses. 

As analyzed in Clancy’s PhD thesis on music AI [1], 
music takes place in a complex network of “human and 
non-human (AI) ‘members organisms’ located in civic, in-
dustrial or academic domains, who can be considered as 
stakeholders of the global music community” – a network 
that Clancy refers to as the music ecosystem. One may be 
tempted to delineate this ecosystem in terms of the organ-

izations and individuals involved in the Western music in-
dustry on the one hand, and the “listener” on the other. But 
the shapes music industries take, and the ways people in-
teract with music change depending on the cultural context 
[2]. In all of these environments, various music AI appli-
cations can transform existing practices in anticipated and 
unanticipated ways. 

Some ethical implications of music AI have been out-
lined previously [3]. These implications either coincide or 
extend ethical considerations related to AI in general, as 
they have been increasingly discussed and documented 
throughout recent years in various ethical guidelines (e.g. 
[4]). As with the development of technology, however, 
most propositions for ethical guidelines are deeply en-
twined in value judgements of Western societies [5]. But 
what of the values of non-Western societies? This problem 
has been recognized [6], and has led to a discussion of how 
an intercultural information ethics (IIE) may arrive at eth-
ical guidelines that facilitate the development of diverse 
technologies that enable members of various societies to 
thrive through interacting with it. With a signifi-
cant  amount of research and development in music AI tak-
ing place in East Asia (e.g. [7-12]), we therefore advance 
the introduction of ideas such as IIE to MIR research. The 
diversity of cultural backgrounds of music AI stakeholders 
makes it timely to ask: how can ethical guidelines in MIR 
encompass this diversity [13]? 

We begin this endeavor with a short overview of exist-
ing ethical guidelines for AI. We then build a bridge to 
East Asian philosophies and their relation to technology in 
Section 3. Section 4 interprets central notions of recent eth-
ical guidelines through the lens of a few East Asian philo-
sophical traditions. Section 5 relates these interpretations 
to current developments in various fields of study, with the 
goal to indicate ways to implement intercultural perspec-
tives on ethics of music AI. 

While it is not possible to address most East Asian phil-
osophical traditions here, we focus on some schools of 
thought that are inspiring scholarly discussions around the 
topic of technological ethics. We juxtapose these existing 
discussions, develop them, and re-situate them in the con-
text of music AI. We hope this can serve as a starting point 
for future endeavors to examine the impacts of different 
philosophical traditions around the world on guiding 
thinking about the ethics of music AI. This paper, largely 
theoretical in nature, will complement an upcoming book 
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chapter by the authors that takes a more applied approach 
by bringing forth the voices of prominent music AI re-
searchers, developers, and practitioners across Asia, 
whose reflections over the nuances of practicing ethical 
music AI will further enrich the current discussion.  

2. A REVIEW 

Given recent advancements and controversies involving 
AI technology, the ethical implications of integrating such 
technology into public, private and commercial spheres 
have become issues of compelling interest to people, com-
panies, and governments [5].  This has led to the creation 
of research forums like the ACM Conference on Fairness, 
Accountability, and Transparency,1 crowd-sourced initia-
tives like the AI Incident Database,2 the formation of cor-
porate ethics committees, inquiries by government bod-
ies,3 and focus groups of professional global organizations.   

The IEEE Global Initiative on Ethics of Autonomous 
and Intelligent Systems4  consists of engineers from six 
continents, and has produced two editions of, “Ethically 
Aligned Design: A Vision for Prioritizing Human Well- 
being with Autonomous and Intelligent Systems” (EADv2) 
[4]. This document argues for the development of autono-
mous systems guided by five ethical principles: 
1. human rights: “Ensure [these technologies] do not in-

fringe on internationally recognized human rights”  
2. well-being: “Prioritize metrics of well-being in their 

design and use” 
3. accountability: “Ensure that their designers and oper-

ators are responsible and accountable” 
4. transparency: “Ensure they operate in a transparent 

manner” 
5. misuse: “Minimize the risks of their misuse”. 

EADv2 means designing with values that “put human 
advancement at the core of development of technical sys-
tems, in concert with the recognition that machines should 
serve humans and not the other way around ... to create 
intelligent technical systems that enhance and extend hu-
man well-being and freedom” [4]. These five principles 
align with several AI guidelines produced around the 
world [5], many coming from countries that are economi-
cally developed, and thus which could neglect meaningful 
local knowledge and jeopardize global fairness. 

When it comes to AI and music in particular, Clancy’s 
PhD dissertation [1] surveys the global commercial land-
scape of music generation with great attention paid to the 
intellectual property status of music generated by ma-
chines, and how this impacts the “music ecosystem” with 
respect to the “value gap” – the economic disparity be-
tween content owners and creators. Clancy proposes self-
regulation according to a marking system that identifies 
and rewards actions sustaining equitable uses of AI tech-
nology within the music ecosystem. In this way, consum-
ers might make informed choices in order to support mu-
sicians themselves. Clancy also suggests taking a closer 
look at non-Western approaches to technological ethics in 

 
1 https://facctconference.org  
2 http://incidentdatabase.ai 
3 https://bit.ly/3xgtVZP 
4 https://bit.ly/2QY1yPq 

order to de-center the conversation from Western philo-
sophical thought, which inspires our paper. 

3. NON-WESTERN APPROACHES TO 
TECHNOLOGICAL ETHICS 

Discussions of technological ethics have historically been 
driven by Western thought rooted in Plato and Aristotle. 
Recent work, however, has begun to pay attention to non-
Western influences on Western science and technology. 
Dusek [14] discusses in Philosophy of Technology the 
power and value of non-Western scientific knowledge sys-
tems and their contribution to the development of technol-
ogy. Hui [15], in putting into question the affirmation of 
technics5 and technologies as anthropologically universal, 
argues for the urgency of establishing a philosophy of tech-
nology that is “properly Chinese”. Among the growing lit-
erature that calls attention to the ethical dimensions of AI, 
few have situated this topic in non-Western contexts. 
Among them, Hagerty and Rubinov [16], Jobin et al. [5], 
and Clancy [1] stand out as writings that call for a multi-
cultural shift in addressing (music) AI and its ethics.   

To lay the groundwork for our discussions in Section 4 
and 5, we now review recent studies that draw a connection 
between technology (AI), ethics, and such East Asian phi-
losophies as Confucianism, Buddhism, Shintoism, and 
Daoism. Scholars have turned to Confucianism, a system 
of thought based on the ancient teachings of Confucius 
(551-479 B.C.E), as a source that may enrich the ethics of 
technology. Writing on “ethical pluralism”, Ess [6] juxta-
poses contemporary Western ethics with the ethical tradi-
tion of Confucian thought, focusing on their shared notions 
of “resonance” and “harmony” as a way of articulating 
“pluralistic structures of connection alongside irreducible 
differences”. Kirk et al. [17] contemplates Confucianism 
to help guide technology policy, and explores how the Chi-
nese government builds on Confucian notions of harmony, 
social hierarchy, and legitimacy to inform the nation’s ap-
proach to technological governance and ethics, as well as 
to build public acceptance towards them. The authors em-
phasize the “stickiness” of Confucian values in South Ko-
rean, Japanese, and Chinese societies, as the three nations 
continue to foreground hierarchy, family, and social order 
despite their divergence of political ideology. As another 
example, Wong and Wang [18] argue for a “multicultural 
turn” in approaches to technological ethics, developing 
what they call “Confucian ethics of technology”. In this 
work, scholars investigate such normative Confucian con-
cepts as “dao”,6 “harmony”, and “personhood” and their 
application to the philosophy and ethics of technology. 

Buddhism is another source for ethical reflection on 
technology. Throughout history, technology has played an 
important role in both Buddhist philosophy and religion. 
Rambelli [20] explores the presence of machines in the 
Japanese Buddhist tradition, e.g., robotic monks and 
priests. The Ethics of AI and Robotics: A Buddhist View-

5 Throughout the book, Hui uses the term “technics” to refer to the “gen-
eral category of all forms of making and practice”. 
6 One of the most fundamental yet most elusive notions in Daoist thought; 
Confucians use the term, often translated as “The Way”, to refer to the 
“organizing and governing principle of the universe” [19]. 
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point [21] is a significant attempt to bridge the ancient tra-
dition of Buddhism with technological ethics. Arguing for 
a Buddhism-inspired standard of ethical perfection, 
namely “machine enlightenment”, Hongladarom [21] pre-
sents ways in which Buddhism can contribute to the ethics 
of AI and robotics. The ethical ideal for AI promoted 
throughout the book grounds itself in two central Buddhist 
values: the realization that all things are interdependent, 
and the commitment to alleviate the suffering of all beings. 

When studying the technology-friendly nature of Japa-
nese society, scholars often turn to its religion Shintoism 
to understand the nation’s anthropomorphic view of tech-
nology.7 In Shinto beliefs, there is no categorical distinc-
tion between humans, animals, and inanimate objects, as 
the religion attributes spirits, or kami, to all forms of exist-
ences. Juxtaposing this “Shinto-infused techno-animism” 
with actor-network theory,8 Jensen and Blok [24] posit that 
Shinto cosmic views offer a vantage point for interpreting 
the contributions of non-humans to “collective life”, and 
for studying the entanglements of politics, ecology, sci-
ence, and cosmos in contemporary society.  

While some scholars hold that technologies are antithet-
ical to the concept of ziran9 promoted in Daoist thought 
[25], a philosophical tradition primarily associated with 
the texts of ancient thinkers such as Laozi and Zhuangzi, 
the pioneering work of Joseph Needham [27] uncovers the 
long history of Daoism engaging with technology. A re-
cent study of Nelson [28] reveals how ideas from Daoist 
texts have influenced early twentieth-century German 
thinkers (Buber and Heidegger) and their views on techno-
logical rationality and modernity. This further motivates 
critical engagement with technological ethics traversing 
geographical, cultural, and philosophical boundaries. 

In the broader context of East Asian societies, the 
preservation and continuation of cultural traditions lie at 
the heart of conversations surrounding AI and its applica-
tion. “The BSRC [Bio-Synergy Research Center] is bring-
ing traditional medicines and cutting-edge computer sci-
ence together”, writes an article [29] that introduces recent 
South Korean efforts to use AI and biotechnology to ex-
plore the therapeutic potentials of traditional medicines. 
Guo et al. [30] also study the application of AI in tradi-
tional Chinese medicine. In 2047 Apologue [31], a concep-
tual theater show, the producer creatively fuses AI and ro-
botics with Chinese folk arts to shed light on larger themes 
such as environmental crises. In Japan, while the Buddhist 
robot priest “Mindar” delivers sermons inside the 400-
year-old Kodaiji temple [32], others have used AI to help 
sustain near-extinct traditional crafts [33]. 

On the website of Aichi’s World Expo [34], one can lo-
cate such claims as “conservation should replace mass pro-
duction and consumption”. Indeed, in the race towards be-
coming world leaders in AI, the theme of bridging “cut-
ting-edge technologies” with ancient cultural heritages and 
traditions is popular in East Asian countries. Writing on 
Japan’s seamless assembly of science, technology, and 

 
7 Scholars, for instance, have written about robots as a kind of “third ex-
istence” that can coexist with humans as social agents [22]. 
8 According to Actor-network theory, human subjects and technological 
artifacts should be studied with the same method, and that no analytical 
distinction should be made between subjects and objects [23].  

culture, Šabanović explores the ways in which Japan legit-
imizes its adoption of new technologies through strategic 
association with traditional practices and cultural continu-
ity [34]. Technologies, in this case, are perceived as cul-
turally situated artifacts. Traditions, on the other hand, are 
continuously renegotiated and redefined to include emerg-
ing technological devices and practices. 

4. TOWARD AN ETHICALLY ALIGNED DESIGN 
FOR AI IN EAST ASIA  

We now examine a list of key ethical principles featured in 
EADv2, and investigate their meanings in East Asian con-
texts. It should be clarified that it is beyond the scope of 
this paper to address every principle that appears in major 
ethical guidelines. For instance, while we do not devote a 
section to the notion of “privacy,” there is a growing liter-
ature that addresses how “privacy” is viewed differently in 
East Asian societies [6, 16, 17, 35]. As “privacy” is not 
listed as a separate principle in EADv2, we consider it as 
an integral component of our discussion on “human 
rights”, “well-being”, and “awareness of misuse”, three 
principles listed in EADv2 that are powerful examples of 
cross-cultural pluralism and are the focus of this paper. 

When approaching inter-cultural comparisons of AI 
ethics, we ground our analysis in a number of theoretical 
texts and traditions. Ess [6] draws from Platonic and Aris-
totelian thought to elaborate on what he calls “interpretive 
pluralism”, where multiple interpretations of an idea can 
remain “irreducibly different” from each another and yet 
be connected by “way of their shared point of origin and 
reference”. Ess relates this form of pluralism to the Confu-
cian idea of “harmony”, where things can “resonate” in 
spite of fundamental differences.  

Our analysis is also guided by poststructuralist ideas of 
plurality when it comes to the reading of texts from multi-
ple viewpoints [36]. Our attempt to “de-center” the West 
in discussions of cross-cultural, technological ethics is in-
spired by the Derridean [37] gesture of multi-centering, 
that is, the recognition of multiple, simultaneous centers in 
the absence of one absolute center that renders the others 
unconditionally marginal. Finally, in suggesting the possi-
bility of an East Asia guideline for AI ethics, we juxtapose 
our pluralistic perspective with the emerging phenomenon 
of Asian studies in Asia and, particularly, the work of Chen 
[38] that seek to use Asia, rather than the West, as an “im-
aginary anchoring point” for critical inquiry. 

4.1 “Human Rights” 

The first principle in EADv2, “Human Rights”, is 
fundamental in every major guideline for AI ethics. While 
there is little debate that the design of ethical AI should  
not violate human rights, what the term signifies and how 
that shifts with cultural context are often neglected. An-
Na’im et al. [39] argue that much of our viewpoint towards 
human rights is biased by expectations native to our own 

9 A central concept in Daoist thought variously translated into “self-so”, 
“spontaneous”, or “natural” [26].  
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culture. Also central to engaging with contemporary no-
tions of human rights is the question of what it means to be 
human. Alford [40] draws on Confucian notions of person-
hood when reflecting on the state of human rights in China. 
Alford’s emphasis on the social conception of the persons 
presupposed in Confucianism echoes Wong [19], in which 
Confucian personhood is characterized as inherently rela-
tional, developmental, and virtue-based.  

Another question relevant to our consideration of hu-
man rights in AI ethics is whether such rights may be pos-
sessed by AI “agents”. Eastern philosophies often make 
little ontological distinction between humans and non-hu-
mans. AI ethicist Pak-Hang Wong comments [41] that 
based on the “role-based” ethics of Confucianism, one can 
attribute personhood to non-human beings as long as they 
“play ethically relevant roles and duties as humans”. This 
may explain why a clause in the Japanese Society for 
Artificial Intelligence (JSAI) Ethical Guidelines states that 
AI should abide by all policies described therein in order 
to “become a member or a quasi-member of society” [42].  

When it comes to emphasizing the rights of all life 
forms beyond the human race, a  connection can be drawn 
between East Asian philosophies and the emerging field of 
posthumanities. Braidotti [43] establishes posthuman eth-
ics as a way of rethinking subjectivity as a collective as-
semblage that encompasses “human and non-human ac-
tors, technological mediation, animals, plants, and the 
planet as a whole”. Pondering the concept of “digital per-
son”, Sjöberg [44] discusses the prospect of treating intel-
ligent agents as legally responsible entities. Bridging these 
intellectual traditions, an ethically aligned design for AI in 
the 21st century might move beyond a human-centric ap-
proach and consider the rights of all “beings”. Such a 
stance resonates with Indigenous-centered AI Design as 
proposed by Lewis [45], and is similarly advocated by Flo-
ridi [46] who calls for constructing information ethics as a 
“patient-oriented, ontocentric, and ecological macroeth-
ics” that is “as non-anthropocentric as possible”.  

4.2 “Well-Being” 

EADv2 [4] writes that AI systems should “prioritize met-
rics of well-being in their design and use”. Different 
cultures, however, can have different views over the ways 
in which technologies can best serve mankind and its well-
being. Confucianism-based cultures, for one, often do not 
draw a clear boundary between the self and the commu-
nity, the individual and the collective, and the private and 
the public [47]. These cultural characteristics have a pro-
found impact on what “well-being” signifies and how tech-
nologies may contribute to or compromise it. 

In contemporary China, a community’s collective wel-
fare is typically prioritized over an individual’s well-being, 
leading to Western criticisms of China’s abuse of human 
rights. Writing on “global AI ethics”, Hagerty and Rubi-
nov [16] note how in countries such as Singapore and 
China, AI-driven surveillance technologies do not gener-
ate much controversy among citizens as state surveillance 
seems to be an “acceptable exchange for security and sta-
bility”. Such prioritization of societal harmony, Hung [47] 
argues, implies a paternalistic style of governance that is 
common in East Asia, where those occupying positions of 

power are expected to guide their respective community as 
would parents for their children. According to Hung, it is 
for this reason that “collectively mediating technologies” 
implemented without full, collective consent are more ac-
cepted in Confucianism-based societies. 

Bringing an East Asian perspective into discussions of 
AI ethics also enriches the ways in which one can concep-
tualize the relations between human and technology, and 
how such relations contribute to human flourishing. Re-
flecting on a Confucian “ritual technicity”, Wang [48] 
brings forth the ritual dimensions of artifacts that transcend 
their sheer practicality and examines how in performing 
(rather than merely using) technologies, humans are able 
to moralize themselves with artifacts. This intimate 
techno-human relationship implied in Confucian theories 
of self-cultivation aligns with the “embodiment relations” 
proposed by Don Ihde [49], according to which humans 
similarly embody technologies. In the Confucian context, 
the embodied, ritualized technologies become integral to 
pursuits of growth, wellness, and harmony with the world. 

4.3 “Awareness of Misuse” 

EADv2 emphasizes the need to minimize the risks of po-
tential misuse of AI. While constructing a “Confucian Eth-
ics of Technology”, Wong [19] probes into the concept of 
“harmony”, which we argue is essential when 
implementing responsible AI. It should be noted that the 
word “harmony” has more than once appeared as a 
separate principle in major guidelines for ethical AI 
published recently in China [50, 51]. We juxtapose this 
concept of “harmony” with the Mepham Ethical Matrix 
proposed by O’Neil and Gunn [52], which requires that 
one consider the interests of a range of stakeholders with 
reference to specific moral principles when designing AI. 
Bringing in a Confucian perspective is helpful in that it 
specifies how one may “harmonize” these diverging 
interests while preserving their irreducible differences.  

Hongladarom [21] believes a Buddhist perspective can 
contribute to designing AI that can achieve both “ethical” 
and “technical” excellence. The author argues that when 
“harmonizing” the interests of diverse stakeholders, AI 
(and its manufacturer) must first consider the interest of 
others before their own, with the ultimate goal of relieving 
all beings of suffering. Here, any AI device that would 
cause suffering in “sentient beings” would be considered a 
case of misuse. This Buddhist vision of AI ethics is in line 
with Floridi’s definition of Information Ethics as an eco-
logical ethics that seeks to ensure the “existence and flour-
ishing of all entities and their global environment” with the 
goal of freeing them of “entropy”, a state “more 
fundamental than suffering” that refers to any form of 
“impoverishment of being” [46]. 

Just as the concept of “well-being” is culturally specific, 
the notion of “misuse” varies across contexts. As “cultural 
change” is described as a major threat to Japanese society, 
culturally trained robots are seen as a possible solution to 
this challenge and a way to conserve Japan’s assumed 
cultural continuity and homogeneity [34]. In this context, 
any AI system that “breaks” traditions and steers society 
away from its conservative social agenda may be viewed 
as a case of misuse.  
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5. MUSIC AI IN EAST ASIA: A SECTOR-
SPECIFIC, CULTURALLY SENSITIVE 

APPROACH   

Clancy [1] calls for a sector-specific (music ecosystem) 
application of AI ethics while encouraging researchers to 
consider contributions from non-Western traditions. We 
now attempt a sector-specific and culturally sensitive 
approach to thinking about ethical music AI in the context 
of East Asia, extending the principles analyzed in Section 
4 to the domain of music.  

5.1 “Human and Posthuman Rights” 

According to the report “Ethics Guidelines for Trustwor-
thy AI” (EGTAI), “AI systems need to be human-centric, 
resting on a commitment to their use in the service of hu-
manity and the common good” [53]. A majority of AI 
ethics discussions are guided by such a human-centric 
frame. In this section, we move beyond this 
anthropocentric perspective to consider the environmental 
impact of “musicking”10 [54] in the age of AI. We first 
expand the notion of “human rights” so that it includes the 
rights of the deceased. We then bridge our work with the 
burgeoning field of “ecomusicology” to reflect on an AI-
informed, political ecology of music [55].  

In the case of music AI, Supertone, a South Korea-
based music technology start-up, states in the “Ethical AI” 
section of their website that the firm “never monetize[s] 
any synthetic voice without the permission of the right 
holder” [56]. While the website does not further specify 
who may qualify as “right holders” across scenarios, we 
argue that we must think beyond the rights of living human 
beings. In the East Asian music industry, experiments are 
“reviving” deceased musicians: from the collaboration 
between virtual pop icon Teresa Teng with Taiwanese 
singer Jay Chou [57] to Big Hit Entertainment’s invest-
ment in Supertone to clone the voice of deceased South 
Korean superstars [58]. It is critical to reflect on the poten-
tial violation of “human” rights as well as the constant re-
negotiation of moral boundaries in such practices.   

Section 4.1 establishes that it is necessary to consider 
both “human” and “post-human” rights when discussing 
AI ethics. De-centering the human resonates with the field 
of “ecomusicology”, which Titon [59] defines as “the 
study of music, culture, sound and nature in a period of 
environmental crisis”. Early efforts to connect human and 
non-human sound worlds came from soundscape studies 
and acoustic ecology, founded by Schafer with the World 
Soundscape Project. In “The Music of the Environment” 
[60], Schafer advocates the “recovery of positive silence”, 
arguing for the “reduction” rather than the “production” of 
sound. Turning to classical Chinese philosophies, in 
Daodejing, the fundamental text of Daoism, Laozi [61] 
writes that “the great note sounds faint”, promoting the 
“quiet” and the “silent” in music. Here, similarly, less is 
more. Meanwhile, Mozi, the founder of the philosophical 
school of Mohism, strongly condemns wasteful produc-
tions and performances of music [61]. The connection to 

 
10 Christopher Small, in 1998, coined the term “musicking”, a verb that 
highlights music as a process (rather than an object) and that encompasses 
all musical activities from composing to performing to listening.  

AI systems that “fart out” billions of songs just because 
they can is clear. Devine [55], for instance, illustrates how 
the carbon footprint of the music industry did not decrease 
in the age of streaming. We argue that such “ecomusico-
logical” concerns become even more critical with the rapid 
advance of large, energy-consuming neural networks [62] 
and, in this context, AI-generated music.  

From the ancient philosophies of Laozi and Mozi to the 
modern scholarship of Schafer, these stances can inspire 
imagining what “posthuman rights” may consist of in the 
context of music AI. Writing against artificial creativity, 
Mersch [63] addresses his concerns over how AI art may 
result in an overly crowded sonic and visual space marked 
by “overproduction”, “excess”, and the “more-than”. We 
thus argue that it is the responsibility of music AI develop-
ers to consider how their products impact the health of our 
soundscape in the middle of environmental crises. Mean-
ingful attempts have been made by researchers using neu-
ral-network soundscapes to protect natural environments 
[64], or using AI to help one tune into island soundscapes 
to determine the level of seabird recovery [65]. 

5.2 Music and “Well-Being” 

EADv2 refers to the Aristotelian concept of eudaimonia, 
“a practice that defines human well-being as the highest 
virtue for a society” [4]. While EADv2 does not explicitly 
address music AI and its tie to human well-being, included 
is a subsection titled “Affective Computing” that discusses 
issues related to emotion-like control in both humans and 
AI systems with a cross-cultural perspective. Considering 
the role of music as a culturally dependent regulator of 
emotions, one could propose that any AI music system be 
considered as a form of “affective computing” and should 
follow the guidelines detailed in this subsection of EADv2. 

To help build an ethical application of AI to music, one 
that can foster well-being, it would be productive for AI 
developers to study and understand what makes a certain 
kind of music aesthetically pleasing and culturally appro-
priate in a particular musical ecosystem. In China, not all 
music is thought to carry the potential of contributing to 
“human flourishing”. “The Master [Confucius] said, ‘Find 
inspiration in the Odes, take your place through ritual, and 
achieve perfection with music’” [61]. This quote from the 
Analects of Confucius uncovers the essential place the trin-
ity of poetry, ritual, and (ceremonial) music occupies in the 
growth of Confucian personhood. For Confucius, ritual 
music is fundamental to the moralization of mind, while 
entertainment music only corrupts – a claim that would not 
be unfamiliar to Plato. Today, this ancient link between 
music, morality, and well-being has in many ways become 
Chinese government’s rationale for music censorship as a 
way of promoting art and only “moral art” [66]. 

Finally, we argue that the propensity of East Asian so-
cieties to align AI with agendas of traditional culture 
preservation provides an important insight on how one 
may ethically deploy AI technology in these communities 
to maximize societal “harmony”. Šabanović [34] records 
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how robots in Japan were used to preserve aizu bandaisan, 
a Japanese folk dance, when there are no longer human in-
heritors to carry them out. Similar revivalist programs can 
be initiated with the design of AI systems that work to re-
vitalize traditional repertoire. Such systems can potentially 
be used, for example, to help generate music for the hun-
dreds of poems in the ancient text of the Book of Odes, the 
musical component of which is lost. This is the subject of 
much revivalist effort, and will require vast human labor.  

5.3 Music, AI, and Cases of “Misuse” 

To prevent potential misuses of AI technology, Clancy [1] 
argues the owners and designers of AI should make ex-
plicit statements about the intended consequences of these 
technologies. Taking into consideration the Confucian no-
tion of “harmony” and the Buddhist concern for alleviating 
all sentient beings of suffering, AI researchers and design-
ers might consider applying the Mepham Ethical Matrix 
[52] in order to “harmonize” the interests of different ac-
tors and, eventually, achieve holistic decision making.  

According to Lamtharn (Hanoi) Hantrakul (a research 
scientist at TikTok/ByteDance in Shanghai, China), when 
designing Tone Transfer – a web app that uses Google’s 
machine learning AI to realize timbre conversion between 
different sound sources – he was met with the challenge of 
having to balance the interests of developers, target users, 
and – very importantly – those of local music practitioners 
as well as cultural insiders who might oppose having the 
unique timbre of their musical instruments taken out of 
context. In a private interview with us, Hantrakul describes 
the team’s decision to not include guqin, the ancient Chi-
nese zither, in the application so as not to misrepresent the 
music instrument in front of an audience with limited 
knowledge about its original sound [67]. Hantrakul con-
trasts Tone Transfer with Sounds of India, an AI-powered 
app that transforms sounds into specific Indian music in-
struments. Hantrakul explains how the developers of that 
app were more confident to use those instruments because 
they knew the app would be used by communities already 
familiar with the sounds, hence reducing risks of misrep-
resentation and cultural appropriation. 

What might other cases of misuse look like in the con-
text of music AI, when factoring in the intellectual tradi-
tions reviewed so far? Not unlike the thoughts of Schafer, 
the Daoist tradition is likely to oppose an overly crowded 
soundscape that leaves no room for silence, as “only by 
relying on what is not there, do we have use of the room” 
[61]. Developers of music AI systems should in this sense 
pay attention to aspects of data ethics such as data man-
agement and “recycling”, so as to avoid flooding our al-
ready overloaded info- and sound-scape with algorithmi-
cally-generated music.11 Similarly, the Mohist (that con-
demns wasteful music) and the Shinto tradition (that 
makes no categorical distinction between humans and their 
environments) will likely argue against AI systems that re-
quire too much computing power, embracing instead the 
idea of “green” music AI. 

As addressed, for much of today’s Japanese society, any 
AI system that may disrupt its conservative social agenda 

 
11 For instance, see Boomy (https://boomy.com).  

and cultural continuity would be viewed as a case of mis-
use. The same is true for music AI that may harm tradi-
tional art. It should be noted that creative experiments have 
been made by researchers to apply AI to the realm of tra-
ditional music, as in the case of “folk-rnn” [68], an AI sys-
tem showing surprising success in generating plausible 
transcriptions in traditional dance music styles of Ireland 
and Scandinavia. These experiments, however, bring forth 
another set of questions regarding data ethics [69, 70, 71]: 
can any AI developer freely use and exploit materials in 
the public domain, which includes most of traditional mu-
sic, that are not “protected” by copyright? In the cases that 
these materials are used in the training of a particular 
model, there should be much more conversation involving 
practitioners of such living musical traditions. 

6. CONCLUSION 

This paper contributes a discussion of several ethical di-
mensions of AI, and specifically AI applied to music, 
drawing in particular on non-Western philosophies such as 
Confucianism, Buddhism, Shintoism, and Daoism. In in-
vestigating such normative concepts in Confucian ethics as 
“personhood” and “harmony”, for instance, one may begin 
to reimagine the kind of relations humans may have with 
technologies (and thus enrich the existing framework es-
tablished by Ihde in the 90s [49]). In juxtaposing these 
philosophical traditions with the critical perspectives of 
“posthumanism” and “ecomusicology” without disregard-
ing their “irreducible differences”, we put into practice 
what Ess [6] advocates as “ethical pluralism”, while ex-
tending it to the less-visited domain of music AI. 

To answer Clancy’s calls [1] for a sector-specific and 
culturally sensitive application of AI ethics, we take a 
close look in Section 5 at three ethical principles proposed 
in the IEEE Principles of Eethically Aligned Design and 
investigate their significances when applied to the music 
ecosystems of East Asia. Throughout, we ask what fresh 
perspectives researchers and practitioners of music AI 
today might gain by thinking beyond the dominant West-
ern scientific knowledge systems that have been guiding 
our approaches to technological ethics. We begin such an 
experiment by turning to a number of influential East 
Asian philosophies. We recognize, however, that each of 
these philosophical traditions is extremely intricate and 
highly heterogenous within, and our discussions can only 
scratch the surface of this complex topic.   

To date, such trans-cultural explorations are absent 
from existing work discussing ethics and MIR research in 
general [3]. Since East Asia is playing a leading role in the 
development and application of such technology [1], the 
perspectives forwarded in this paper are important to con-
sider in order to draw culturally informed conclusions. 
This not only illuminates these issues for AI and music, 
but also applications of technology in general, and subtle 
differences in how established ethical principles can be 
(re)interpreted, e.g., “human rights”, “well-being”, and the 
potential “misuse” of AI technology. 
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ABSTRACT

This paper proposes a new benchmark task for generat-
ing musical passages in the audio domain by using the
drum loops from the FreeSound Loop Dataset, which are
publicly re-distributable. Moreover, we use a larger col-
lection of drum loops from Looperman to establish four
model-based objective metrics for evaluation, releasing
these metrics as a library for quantifying and facilitating
the progress of musical audio generation. Under this eval-
uation framework, we benchmark the performance of three
recent deep generative adversarial network (GAN) mod-
els we customize to generate loops, including StyleGAN,
StyleGAN2, and UNAGAN. We also report a subjective
evaluation of these models. Our evaluation shows that the
one based on StyleGAN2 performs the best in both objec-
tive and subjective metrics.

1. INTRODUCTION

Audio-domain music generation involves generating musi-
cal sounds either directly as audio waveforms or as time-
frequency representations such as the Mel spectrograms.
Besides modeling musical content in aspects such as pitch
and rhythm, it has the additional complexity of modeling
the spectral-temporal properties of musical sounds, com-
pared to its symbolic-domain music generation counter-
part. In recent years, deep learning models have been
proposed for audio-domain music generation, starting with
simpler tasks such as generating instrumental single notes
[1–4], a task also known as neural audio synthesis. Re-
searchers have also begun to address the more challenging
setting of generating sounds of longer duration [5–12]. For
example, Jukebox [11] aims to generate realistic minutes-
long singing voices conditioned on lyrics, genre, and
artists; and UNAGAN [9] aims to generate musical pas-
sages of finite yet arbitrary duration for singing voices, vi-
olin, and piano, in an unconditional fashion.

The focus of this paper is on the evaluation of audio-
domain music generation. We note that, for model training

© F. Author, S. Author, and T. Author. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Author, S. Author, and T. Author, “A Benchmarking
Initiative for Audio-domain Music Generation using the FreeSound Loop
Dataset”, in Proc. of the 22nd Int. Society for Music Information Re-

trieval Conf., Online, 2021.

Figure 1. The mel-spectrograms of some random drum
loops generated by the StyleGAN2 model [13] trained on
the looperman dataset, with the genre labels predicted by
the short-chunk CNN [14] classifier (see Section 4.1).

and evaluation, research on generating single notes quite
often adopts NSynth [1], a large public dataset consisting
of individual notes from different instruments. The use
of a common dataset for evaluation ensures the validity of
performance comparison between different models. Such
a standardized dataset for benchmarking, however, is not
available when it comes to generating longer musical pas-
sages, to our best knowledge. Oftentimes private in-house
datasets are employed in existing works; for example, both
UNAGAN [9] and Jukebox [11] employ audio recordings
scrapped from the Internet, which cannot be shared pub-
licly. The only exception is MAESTRO, a public dataset
with over 172 hours of solo piano performances, employed
by MelNet [8], UNAGAN [9], and MP3net [12]. However,
MAESTRO is piano-only so not diverse enough in timbre.

We see new opportunities to address this gap with the
recent release of the FreeSound Loop Dataset (FSLD) [15],
which contains 9,455 production-ready, public-domain
loops distributed under Creative Commons licenses. 1 We
therefore propose to use audio-domain loop generation, a
task seldom reported in the literature, to set a benchmark
for musical audio generation research.

We deem loops as an adequate target for audio gen-
eration for their following merits. First, loops are audio
excerpts, usually of short duration, that can be played in
seamless manner [15, 16]. Hence, the generated loops can
be played repeatedly. Second, loops are fundamental units

1 https://zenodo.org/record/3967852
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in the production of many contemporary dance music gen-
res. A loop can usually be associated with a single genre
or instrument label [15], and a certain “role” (e.g., percus-
sion, FX, melody, bass, chord, voice) [17]. Third, loops are
fairly diverse in their music content and timbre, as sound
design has been a central part in making loops.

A primary contribution of this paper is therefore the pro-
posal and implementation of using FSLD as a benchmark
for audio generation. In particular, we adapt three recent
deep generative adversarial network (GAN) [18] models
and train them on the drum-loop subset of FSLD, and re-
port thorough evaluation of their performance, both objec-
tively and subjectively. This includes UNAGAN [9] and
two state-of-the-art models for image generation, Style-
GAN [19] and StyleGAN2 [13].

Drum loop generation is interesting in its own right due
to its applications in automatic creation of loop-based mu-
sic [20]. As [21] indicates, drum beats represent one of the
most critical and fundamental elements that form the style
of EDM. Moreover, drum loops are already fairly diverse
in musical content, as demonstrated in Figure 1. Although
we only consider drum loops here for the sake of simplic-
ity, this benchmark can be easily extended to cover all the
loops from FSLD in the near future.

Our secondary contribution lies in the development
of standardized objective metrics for evaluating audio-
domain loop generation, which can be equally important
as having a standardized dataset. We collect a larger drum
loop dataset from an online library called looperman, 2

with roughly 9 times more drum loops than FSLD, and
use this looperman dataset to build four model-based met-
rics (e.g., inception score [22]) 3 to evaluate the acoustic
quality and diversity of the loops generated by the GAN
models. While this looperman dataset cannot be released
publicly due to copyright concerns, we release the metrics
and the trained GAN models for drum loop generation at
the following GitHub repo: https://github.com/
allenhung1025/LoopTest.

Moreover, we put some of the generated drum loops on
an accompanying demo website, 4 which we recommend
readers to visit and listen to. We also present the result
where we use the method of style-mixing of StyleGAN2 to
generate “interpolated” versions of loops.

Below, we review related work in Section 2, present
the datasets in Section 3, the proposed objective metrics
in Section 4, the benchmarked models in Section 5, and
the evaluation result in Section 6.

2. RELATED WORK

Existing work on audio-domain music generation can be
categorized in many ways. First, an unconditional audio
generation model takes as input a vector z 2 RNz of a fixed
number of random variables (or a sequence of such vec-
tors; see below) and generates an audio piece from scratch.

2 https://www.looperman.com/
3 We refer to them as model-based metrics because we need to build a

classifier or a clustering model to calculate the metrics; see Section 4.
4 https://loopgen.github.io/

When side information of the target audio to be generated
is available, we can feed such prior information as another
vector c 2 RNc and use it as an additional input to the gen-
erative model, making it a conditional generation model.
For example, GANSynth [2] uses the pitch of the target
audio as a condition. While we focus on unconditional
generation in our benchmarking experiments presented in
Section 6, it is straightforward to extend all the models pre-
sented in Section 5 to take additional conditions.

Second, some existing models can only generate fixed-
length output, while others can do variable-length gener-
ation. One approach to realize variable-length generation
is by using as input to the generative model a sequence of
latent vectors z1, z2, . . . , instead of just one latent vector z.
This is the approach taken by UNAGAN [9], Jukebox [11],
and VQCPC-GAN [23].

Third, existing models for generating single notes are
typically non-autoregressive models [2–4], i.e., the tar-
get is generated at one shot. When it comes to generating
longer phrases, autoregressive models, that generate the
target piece one frame or one time sample at a time in the
chronological order, might perform better [5, 11], as the
output of such models depends explicitly on the previous
frames (or samples) that have been generated.

Existing models have been trained and evaluated to gen-
erate different types of musical audio, including singing
voice [9–11], drum [3, 4, 24, 25], violin [9], and piano
[5, 8, 9, 12]. The only work addressing loop generation is
the very recent LoopNet model from Chandna et al. [26].
They also use loops from looperman but not anything from
FSLD or other public datasets, hence not constituting a
benchmark for audio generation.

For drum generation in particular, work has been done
in the symbolic domain to generate drum patterns [27–30]
and a drum track as part of a symbolic multi-track compo-
sition [31–33]. For example, DeepDrummer [29] employs
human-in-the-loop to produce drum patterns preferred by
a user. In the audio domain, DrumGAN [3] and the model
proposed by Ramires et al. [4] both work on only single
hits, i.e., one-shot drum sounds. They both use the Audio
Commons models [34] to extract high-level timbral fea-
tures to condition the generation process. DrumNet [35] is
a model that generates a sequence of (monophonic) kick
drum hits, not the sounds of an entire drum kit.

3. DATASETS

Two datasets are employed in this work. The first one is a
subset of drum loops from the public dataset FSLD [15],
which is used to train the generative models for bench-
marking. FSLD comes with detailed manual labeling of
the loops with tags such as instrumentation, rhythm, tone
and genre. As stated in the FSLD paper [15], FSLD is bal-
anced in terms of musical genre. By picking loops which
are tagged with the keywords “drum”, “drums” or “drum-
loop”, we are able to find 2,608 drum loops out of the 9,455
loops available in FSLD. We do not need to hold out any of
them as test data but use all these bars for training our gen-
erative models, since we focus on unconditional generation
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in this paper; i.e., each generative model will generate a set
of loops randomly for evaluation.

The second dataset is a larger, private collection of drum
loops we collect from looperman, a website hosting free
music loops. 5 We are able to collect in total 23,983 drum
loops, which is much more than the drum loops in FSLD.
We use the looperman dataset mainly for establishing the
model-based objective metrics for evaluation (see Section
4). For instance, we train an audio-based genre classifier
using looperman to set up the drum-loop version of the “in-
ception score” [22, 36] to measure how likely a machine-
generated loop sounds like a drum loop. Figure 2 shows
the number of tracks per genre tag in looperman, which
exhibits a typical long-tail distribution. We can see that
“Trap” is the most frequent genre, with 5,903 loops.

We use looperman instead of FSLD to set up such ob-
jective metrics, since a larger dataset increases the validity
and generalizability of the metrics. Moreover, although we
cannot re-distribute the loops from looperman according
to its terms, we can share checkpoints of the pre-trained
models for computing the proposed objective metrics.

3.1 Data Pre-processing

As we are interested in benchmarking the performance of
one-bar loop generation, we perform downbeat tracking
using the state-of-the-art recurrent neural network (RNN)
model available in the Madmom library [37, 38] to slice
every audio file into multiple one-bar loops. 6 After this
processing, we have in total 13,666 and 128,122 one-bar
samples from FSLD and looperman, respectively. We re-
fer to these two collections of one-bar drum loops as the
freesound and looperman datasets hereafter. We note that
all these one-bar samples are of four beats.

As shown in Figure 3, the one-bar samples in either
the freesound or looperman datasets have different tem-
pos and hence different lengths. To unify their length to
facilitate benchmarking, we use pyrubberband 7 to tempo-
rally stretch each of them to 2-second long, namely to have
120 BPM (beat-per-minute) as their tempo. We listened to
some of the stretched samples in both datasets and found
most sounded plausible with little perceptible artifacts. 8

All the loops are in 44,100 Hz sampling rate. We down-
mix the stereo ones into mono. After that, we follow the
setting of UNAGAN [9] to compute the Mel spectrograms
of these samples, with 1,024-point window size hann win-
dow and 275-point hop size for short-time Fourier Trans-
form (STFT), and 80 Mel channels.

5 As stated on https://www.looperman.com/help/terms,
“All samples and loops are free to use in commercial and non commercial
projects.” But, “You may NOT use or re-distribute any media from the
loops section of looperman.com as is either for free or commercially on
any other web site.” (Accessed August 1, 2021)

6 The downbeat tracker in Madmom is fairly accurate for percussive
audio such as the drum loops. For example, it reaches F1-score of 0.863
on the Ballroom dataset [39], according to [38].

7 https://pypi.org/project/pyrubberband/
8 This, however, may not be the case if the loops are not drum loops.

Some data filtering might be needed then, e.g., to remove those whose
tempo are much away from 120 BPM.

Figure 2. Genre distribution of the drum loops from loop-
erman; we display only the top 20 out of 66 genres.

Figure 3. Tempo distribution of the two sets of loops. Y
axis represents the percentage of all loops in the dataset.

4. EVALUATION METRICS

We consider four metrics in our benchmark, developing the
drum-loop version of them using the looperman dataset.

4.1 Inception Score (IS)

IS [22, 36] measures the quality of the generated data and
detects whether there is a mode collapse by using a pre-
trained domain-specific classifier. It is computed as the KL
divergence between the conditional probability p(y|x) and
marginal probability p(y),

IS = exp
�
Ex[KL(p(y|x)kp(y)]

�
, (1)

where x 2 X denotes a data example (e.g., a generated
loop), and y 2 Y is a pre-defined class. Specifically, the
calculation of IS involves building a classifier over the type
of data of interest, and it achieves high score (namely, the
higher the better) score when 1) each of the generated data
can be classified to any of the predefined classes with high
confidence, and 2) the generated data as a whole has close
to uniform distribution over the predefined classes.

We use looperman to establish such a classifier, using its
genre labels for training a 66-class classifier over the Mel
spectrograms of one-bar samples. Specifically, we split
the data by 100,000/10,000/18,111 as the training, valida-
tion, and test sets, and use the state-of-the-art music auto-
tagging model short-chunk CNN [14] 9 for model training.
The classifier achieves 0.748 accuracy on the test set.

4.2 Fréchet Audio Distance (FAD)

The idea of FAD, as proposed by Kilgour et al. [40], is to
measure the closeness of the data distribution of the real

9 github.com/minzwon/sota-music-tagging-models
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data versus that of the generated data, in a certain embed-
ding space. Specifically, they pre-train a VGGish-based
audio classifier on a large collection of YouTube videos for
classifying 300+ audio classes and sound events, and then
use the second last 128-dimension layer (i.e., prior to the fi-
nal classification layer) for this embedding space [40]. The
data distributions of real and generated data in this space
are modeled as a multi-variate normal distribution charac-
terized by (µr,⌃r) and (µg,⌃g) respectively. The FAD
score is then computed by the following equation,

FAD = kµr � µgk2 + tr(⌃r +⌃g � 2
p
⌃r⌃g) , (2)

and is the lower the better (down to zero). We use the
open source code and pre-trained classifier 10 to compute
the FAD, using the looperman data as the real data and the
output of a generative model as the generated data.

4.3 Diversity Measurement

Following [9], we measure diversity with the number of
statistically-different bins (NDB) and Jensen-Shannon di-
vergence (JSD) metrics proposed by Richardson et al. [41],
via the official open source code. 11 We firstly run K-
means clustering over normalized Mel spectrograms of 10
thousands one-bar samples randomly picked from looper-
man to get K = 100 clusters, and count the number of
samples per cluster, nk, for each k. Then, given a collec-
tion of loops randomly generated by a generative model,
we fit the loops into the clustering and also count the num-
ber of fitted samples per cluster, cnk. We can then mea-
sure the difference between the two distributions {nk} and
{cnk} by either the number of statistically-different bins
(among the K bins; the lower the better) and their JSD (the
lower the better; down to zero). Richardson et al. [41] rec-
ommend reporting the value of NDB divided by K, saying
that if the two samples do come from the same distribu-
tion, NDB/K should be equal to the significance level of
the statistical test, which we set to 0.05.

5. BENCHMARKED GENERATIVE MODELS

We develop and evaluate in total three recent deep gener-
ative models, all of which happen to be GAN-based [18].
The first model is StyleGAN2 [13], which represents the
state-of-the-art in image generation, included here intend-
ing to test its applicability for musical audio generation
(which has not been reported elsewhere, to our best knowl-
edge). The second model, StyleGAN [19], is a precur-
sor of StyleGAN2, tested on spoken digit generation be-
fore (akin to single note generation in music) [43] but not
on musical audio generation. Both StyleGAN and Style-
GAN2 generate only fixed-length output, which is fine here
since our samples have constant length. The last model,
UNAGAN [9], represents a state-of-the-art in musical au-
dio generation, capable of generating variable-length out-
put. For fair comparison, we only require UNAGAN to

10 github.com/google-research/google-research/
tree/master/frechet_audio_distance

11 github.com/eitanrich/gans-n-gmms

generate two-second samples as the other two. Schematic
plots of the three models can be found in Figure 4.

All these three models are trained to generate Mel spec-
trograms, with phase information missing. But, the Mel
spectrograms can later be converted into audio waveforms
by a separate neural vocoder, such as WaveNet [5], Wave-
Glow [44], DiffWave [45], or MelGAN [46]. We are in
favor of MelGAN for it is non-autoregressive and there-
fore fast in inference time, and for there is official open
source code that is easy to use. 12 We train MelGAN on
the looperman dataset and use it in all our experiments.

5.1 StyleGAN

StyleGAN and StyleGAN2 are both non-autoregressive
models for generating images. They take a constant ten-
sor of size 4 ⇥ 4 ⇥ 512 as input, and use a mapping net-
work f(·) consisting of eight linear layers to map a ran-
dom latent vector z to an intermediate lantent vector w,
which affects the generation process by means of adaptive
instance normalization (AdaIN) operations in every block
of the generator [19]. Each bock progressively upsamples
its input to a larger tensor, until reaching the target size of
1024⇥ 1024 by the end with in total eight such blocks.

The input tensor of StyleGAN and StyleGAN2 can be
interpreted as 512 4⇥4 tiny images. This tensor is learned
and then fixed during the inference stage while generating
new images, using different z each time. We modify it to
be a 5⇥20⇥512 tensor in our work, to generate a 80⇥320
Mel spectrogram through four upsampling blocks.

Our implementation of StyleGAN is based on an open
source code. 13 For model training, StyleGAN employs
the non-saturating loss with R1 regularization [47] and a
progressive-growing training strategy [42]. We use 0.9
mixing regularization ratio [42], and set the batch size to
32, 16, 8, 4 in the respective scale, from low to high res-
olution. In every scale, we train with 1.2M samples. We
deployed Adam optimization algorithm and set the learn-
ing rate to 1e–3. The total training time is 120 hr on an
NVIDIA GTX1080 GPU with 8GB memory.

5.2 StyleGAN2

StyleGAN2 [13] is an improved version of StyleGAN with
many structural changes, including replacing AdaIN by a
combination of “modulation” and “demodulation” layers,
processing the input tensor differently, adding the Gaus-
sian noise outside of the style blocks etc. The weights
in the 3 ⇥ 3 convolution layers are scaled with f(z) in
the Modulation block and normalized by L2 norm in the
DeModulation block. We refer readers to the original pa-
per [13] for details. Our implementation of StyleGAN2 is
based on another open source code, 14 with similar train-
ing strategies as the StyleGAN case, but two times larger
learning rate, no progressive growing, and a constant batch
size of 8 for 1M samples. The total training time is 100 hr
on a GTX1080.

12 github.com/descriptinc/melgan-neurips
13 github.com/rosinality/style-based-gan-pytorch
14 github.com/rosinality/stylegan2-pytorch
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Figure 4. Schematic plots of the adapted (a) StyleGAN [19], (b) StyleGAN2 [42], and (c) UNAGAN [9] in our benchmark.
Only a single latent vector z is used as the input for the fully convolutional models in (a) and (b), while a sequence of 20
latent vectors are used in model (c), which uses a stack of gate recurrent unit (GRU) layer and grouped convolution layer
in each of its ‘Gblocks’ [9, 10]. In (b), weighti and biasi are parameters of the 3⇥ 3 convolution layers to be learned.

5.3 UNAGAN

UNAGAN [9] is a non-autoregressive model originally
designed for generating variable-length singing voices in
an unconditional fashion. The authors also demonstrate
its effectiveness in learning to generate passages of vio-
lin, piano, and speech. What makes UNAGAN different
from existing models such as StyleGAN, WaveGAN [48],
DrumGAN [3], and GANSynth [2] is that UNGAN takes
a sequence of latent vectors z1, z2, . . . as input, instead of
just a single one. This sequence of latent vectors, together
with the recurrent units inside its ‘Gblocks’ [9,10] (see Fig-
ure 4(c)), facilitates UNAGAN to generate variable-length
audio with length proportional to the length of the input
latent sequence. UNAGAN adopts a hierarchical architec-
ture that generates Mel spectrograms in a coarse-to-fine
fashion similar to the progressive upsampling blocks in
StyleGAN and StyleGAN2. UNAGAN uses the BEGAN-
based adversarial loss [49], and an additional cycle consis-
tency loss [50] to stabilize training and for increasing di-
versity. Our implementation of UNAGAN is based on the
official open source code. 15 We fix the number of input
latent vectors to 20 and train the model with Adam, 1e–4
learning rate, and a batch size of 16 for 100k iterations,
amounting to 40 hr on a GTX1080.

6. EVALUATION

6.1 Objective Evaluation Result

Table 1 presents the objective evaluation result of mod-
els trained on the freesound dataset. Each model gener-
ates 2,000 random loops to compute the scores. We also
compute these metrics on the two real datasets and add

15 https://github.com/ciaua/unagan

the results to Table 1, to offer an oracle reference. We
see that the IS of StyleGAN2 is the closest to that of the
freesound dataset, followed by UNAGAN and then Style-
GAN. Student’s t-test shows that the performance edge of
StyleGAN2 over either UNAGAN or StyleGAN is statisti-
cally significant (p-value<0.01). This reveals the efficacy
of StyleGAN2 for generating fixed-length audio.

The scores in JS and NDB further support the superi-
ority of StyleGAN2, showing that its output is the most
diverse among the three.

The scores in FAD, however, shows that UNAGAN per-
forms better than StyelGAN2 here. The contrast between
IS and FAD suggests that UNAGAN learns to generate
samples whose embeddings have similar distribution as the
real data, but its output cannot be easily associated with a
genre class by the short-chunk CNN classifier. We also
see that StyleGAN has fairly high FAD, showing that its
generation hardly resemble the real data distribution.

Out of curiosity, we also train the models on the private,
yet larger, looperman dataset and redo the evaluation. Ta-
ble 2 shows that StyleGAN2 achieves even higher IS and
much lower NDB here. Furthermore, its FAD is now lower
than that of UNAGAN. Together with the result in JS and
NDB, we see from this table that StyleGAN2 is more ef-
fective in learning to cover the modes in a large dataset.
Figure 1 demonstrates the mel-spectrograms of some ran-
dom drum loops generated by this StyleGAN2 model.

6.2 Subjective Evaluation & Its Result

We run additionally an online listening test to evaluate the
models subjectively. Each subject is presented with the
a randomly-picked human-made loop from the freesound
dataset, and one randomly-generated loop by each of the
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IS " FAD # JS # NDB/K #
Looperman 11.9±3.21 0.11 0.01 0.01
Freesound 6.30±1.82 0.72 0.08 0.46
StyleGAN 1.31±1.95 13.78 0.43 0.94
StyleGAN2 5.24±1.84 7.91 0.09 0.59
UNAGAN 3.33±1.65 4.32 0.16 0.73

Table 1. Objective evaluation result for the three models
trained on the freesound dataset. We also display the IS of
the two sets of real data. (# / ": the lower/higher the better).

IS " FAD # JS # NDB/K #
StyleGAN 1.30±2.00 12.98 0.41 0.87
StyleGAN2 6.08±2.26 2.22 0.01 0.08
UNAGAN 3.83±1.72 3.36 0.29 0.89

Table 2. Objective evaluation result for the three models
trained on instead the private looperman dataset.

three models trained on freesound, with the ordering of
these four loops randomized. Then, the subject is asked
to rate each of these one-bar loops in terms of the follow-
ing metrics, the first three on a three-point scale, and the
last one on a five-point Likert scale:
• Drumness: whether the sample contains drum sounds

(‘no’/‘yes but vague’/‘yes and clear’);

• Loopness: whether the sample can be played repeatedly
in a seamless manner (‘no’/‘yes but not so good’/‘yes’);

• Audio quality: whether the sample is free of unpleasant
noises or artifacts (‘no’/‘no but not so bad’/‘yes’);

• Preference: how much you like it (1–5).
To evaluate loopness, we actually repeat each sample four
times in the audio recording presented to the subjects. And,
since the output of the models go through the MelGAN
vocoder to become waveforms, we compute the Mel spec-
trograms of the human-made loops and render them to au-
dio with the same vocoder for fair comparison.

140 anonymous subjects from Taiwan participated in
this test, 16 with in total six unique samples by each model
evaluated. Overall, the responses indicated an accept-
able level of reliability (Cronbach’s ↵ = 0.709). We see
from Figure 5 that the result of this subjective evaluation
is well aligned with that of the objective evaluation, with
StyleGAN2 performing the best and StyleGAN the worst,
demonstrating the effectiveness of the objective metrics to
some extent. Interestingly, we see no statistical difference
in the ratings of the StyleGAN2 loops and the (MelGAN-
vocoded) freesound loops in Drumness and Preference.

Finally, we correlate the scores of the objective met-
rics and subjective metrics for the 18 samples evaluated in
the listening test (i.e., six samples by each GAN model).
We found 0.25–0.37 correlation between IS and the four
subjective metrics, and 0.01–0.16 negative correlation be-
tween FAD and the subjective metrics. The strongest cor-
relation (0.37) is found between IS and Preference.

16 The subjects have no ideas about our models beforehand; they neither
know that one of the loops they hear is human-made.

Figure 5. Subjective evaluation result for the three models
trained on freesound. The performance difference between
any pair of models in any metric is statistically significant
(p-value< 0.001) under the Wilcoxon signed-rank test, ex-
cept for the pairs that are explicitly highlighted.

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed using loop generation as a
benchmarking task to provide a standardized evaluation of
audio-domain music generation models, taking advantage
of the public availability of the large collection of loops in
FSLD. Moreover, we developed customized metrics to ob-
jectively evaluate the performance of such generative mod-
els for the particular case of one-bar drum loops with 120
BPM. As references, we implemented and evaluated three
recent model architectures using the dataset, and discov-
ered that StyleGAN2 works quite well. The list of models
we have evaluated is short and by no means exhaustive.
We wish researchers can find this benchmark useful and
consider it as part of their evaluation of new models.

This work can be extended in many other directions.
First and foremost, we can extend the benchmark to cover
all the loops in FSLD (and looperman). The major com-
plexity here could be the challenge to build a model that
fits it all; we may need separate generative models and
vocoders for different types of loops.

Second, we are certainly interested in the case of gener-
ating loops that have different tempos, rather than a fixed
tempo at 120. This will require the generative models to be
capable of generating variable-length output, which seems
more realistic in musical audio applications.

We can also extend the benchmark to generate four-
bar loops (which are not simply repeating a one-bar loop
quadruple times), as there are actually a big collection of
6,656 four-bar drum loops in the looperman dataset. We
do not evaluate this in this paper, as the public freesound
dataset does not contain many such four-bar loops.

We also want to include more objective metrics in the
future, such as using the Audio Commons Audio Extractor
[34] to evaluate the “loopness” of the generated samples,
or using an automatic drum transcription model [51–53] to
assess the plausibility of the created percussive patterns.

Besides the benchmarking initiative, we are interested
in further improving audio-domain loop generation itself
and exploring new use cases, e.g., to have a conditional
generation model that gives users some control (in similar
veins to [3, 4, 26]), or to aim at generating novel loops by
means of a creative adversarial network (CAN) [30].
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ABSTRACT

While there are many music datasets with emotion la-
bels in the literature, they cannot be used for research on
symbolic-domain music analysis or generation, as there
are usually audio files only. In this paper, we present the
EMOPIA (pronounced ‘yee-mò-pi-uh’) dataset, a shared
multi-modal (audio and MIDI) database focusing on per-
ceived emotion in pop piano music, to facilitate research
on various tasks related to music emotion. The dataset con-
tains 1,087 music clips from 387 songs and clip-level emo-
tion labels annotated by four dedicated annotators. Since
the clips are not restricted to one clip per song, they can
also be used for song-level analysis. We present the pro-
cedure for building the dataset, covering the song list cu-
ration, clip selection, and emotion annotation processes.
Moreover, we prototype use cases on clip-level music emo-
tion classification and emotion-based symbolic music gen-
eration by training and evaluating corresponding models
using the dataset. The result demonstrates the potential
of EMOPIA for being used in future exploration on piano
emotion-related MIR tasks.

1. INTRODUCTION

The affective aspect of music has been a major subject of
research in the field of music information retrieval (MIR),
not only for music analysis and labeling [1–9], but also for
music generation or editing [10–14]. Accordingly, there
have been quite a few public music datasets with emo-
tion, as listed in Table 1. These datasets are different in
many ways, including the musical genres considered, data
modality and data size, and the way emotion is described.

With the growing interest in symbolic-domain music
analysis and generation in recent years of ISMIR [15–19],
it is desirable to have an emotion-labeled symbolic music

© H.T.Hung and J. Ching, and S.H Doh. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: H.T.Hung and J. Ching, and S.H Doh, “EMOPIA: A Multi-
modal Pop Piano Dataset for Emotion Recognition and Emotion-based
Music Generation”, in Proc. of the 22nd Int. Society for Music Informa-

tion Retrieval Conf., Online, 2021.

dataset to add emotion-related elements to such research.
However, among the datasets listed in Table 1, only two
provide MIDI data, and they are both small in size. More-
over, the majority of the audio-only datasets contain songs
of multiple genres, making it hard to apply automatic mu-
sic transcription algorithms, which currently work better
for piano-only music [20–23], to get MIDI-like data from
the audio recordings.

To address this need, we propose a new emotion-labeled
dataset comprising of three main nice properties:

• Single-instrument. We collect audio recordings of pi-
ano covers and creations from YouTube, with fair to high
audio and musical quality, and a diverse set of playing
styles and perceived emotions. Focusing on only pi-
ano music allows for the use of piano transcription algo-
rithms [20, 21], and facilitates disentanglement of musi-
cal composition from variations in timbre, arrangement,
and other confounds seen in multi-instrument music.

• Multi-modal. Both the audio and MIDI versions of the
music pieces can be found from the Internet (see Section
3.5 for details). The MIDI files are automatically tran-
scribed from the audio by a state-of-the-art model [21].

• Clip-level annotation. The audio files downloaded from
YouTube are full songs. As different parts of a song may
convey different emotions, the first four authors of the
paper manually and carefully pick emotion-consistent
short clips from each song and label the emotion of these
clips using a four-class taxonomy derived from the Rus-
sell’s valence-arousal model [32]. This leads to clip-
level emotion annotations for in total 1,087 clips from
387 songs (i.e., 2.78 clips per song on average), with the
number of clips per emotion class fairly balanced.
Given these properties, EMOPIA has versatile use cases

in MIR research. For music labeling, EMOPIA can be used
for clip-level music emotion recognition or music emotion
variation detection [2], in both the audio and symbolic do-
mains. For music generation, EMOPIA can be used for
emotion-conditioned piano music generation or style trans-
fer, to create emotion-controllable new compositions, or
variations of existing pieces, again in both domains.

We present details of the dataset and the way we com-
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Name Label type Genre (or data source) Size Modality

Jamendo Moods [24] adjectives multiple genres 18,486 Audio
DEAM [25] VA values (from FMA [26], Jamendo, MedleyDB [27]) 1,802 Audio
EMO-Soundscapes [28] VA values (from FMA) 1,213 Audio
CCMED-WCMED [29] VA values classical (both Western & Chinese) 800 Audio
emoMusic [30] VA values pop, rock, classical, electronic 744 Audio
EMusic [31] VA values experimental, 8 others 140 Audio
MOODetector [6] adjectives multiple genres (AllMusic) 193 Audio+MIDI
VGMIDI [10] valence video game 95 MIDI

EMOPIA (ours) Russell’s 4Q pop (piano covers) 1,078 Audio+MIDI

Table 1. Comparison of some existing public emotion-labeled music datasets and the proposed EMOPIA dataset.

pile it in Section 3, and report a computational analysis of
the dataset in Section 4. Moreover, to demonstrate the po-
tential of the new dataset, we use it to train and evaluate a
few clip-level emotion classification models using both au-
dio and MIDI data in Section 5, and emotion-conditioned
symbolic music generation models in Section 6. The lat-
ter involves the use of a recurrent neural network (RNN)
model proposed by Ferreira et al. [10], and our own mod-
ification of a Transformer-based model [33–35] that takes
emotion as a conditioning signal for generation.

We release the EMOPIA dataset at a Zenodo repo. 1

Source code implementing the generation and classifica-
tion models can be found on GitHub. 2 3 Examples of gen-
erated pieces can be found at a demo webpage. 4

2. RELATED WORK

Emotion Recognition in Symbolic Music. Symbolic
music representations describe music with the note, key,
tempo, structure, chords, instruments. To understand
the relationship between music and emotion, various re-
searchers have investigated machine learning approaches
with handcrafted features. Grekow et al. [36] extract in to-
tal 63 harmony, rhythmic, dynamic features from 83 clas-
sic music MIDI files. Lin et al. [37] compare audio, lyric,
and MIDI features for music emotion recognition, finding
that MIDI features lead to higher performance in valence
dimension. Panda et al. [6] also proposed multi-model ap-
proaches, combining audio and MIDI features for emotion
recognition using a small dataset of 193 songs.

Emotion-conditioned Symbolic Music Generation.
Only few work has started to address this task recently.
Ferreira et al. [10] compile a small dataset of video game
MIDI tracks with manual annotations of valence values,
named VGMIDI (cf. Table 1), and use it to train a long
short term memory network (LSTM) in tandem with a ge-
netic algorithm (GA) based elite selection mechanism to
generate positive or negative music. Makris et al. [12]
approach the same task by using designated chord pro-
gression sequence in a sequence-to-sequence architecture

1 https://zenodo.org/record/5090631
2 https://github.com/annahung31/EMOPIA
3 https://github.com/SeungHeonDoh/EMOPIA_cls
4 https://annahung31.github.io/EMOPIA/

trained with the VGMIDI dataset. Zhao et al. [38] use
LSTM to generate music with four different emotions.
Madhok et al. [13] use human facial expressions as the
condition to generate music. More recently, Tan & Her-
remans demonstrate that their FaderNets [16] can achieve
arousal-conditioned symbolic music style transfer with a
semi-supervised clustering method that learns the relation
between high-level features and low-level representation.
Their model modifies the emotion (specifically, only the
arousal) of a music piece, instead of generating new pieces
from scratch.

3. THE EMOPIA DATASET

3.1 Song Selection and Segmentation

EMOPIA is a collection of 387 piano solo performances
of popular music segmented manually into 1,087 clips for
emotion annotation. Two authors of the paper curated the
song list of the piano performances by scanning through
playlists on Spotify for its consistently high quality, then
downloading the recordings from YouTube. A song is in-
cluded when it is played by a professional conveying a
clear emotion, and the recording has not been heavily en-
gineered during post-production. The genres of songs in-
clude Japanese anime, Korean and Western pop song cov-
ers, movie soundtracks, and personal compositions.

In an effort to extend the usefulness of the dataset for fu-
ture research, at the best of our ability, the songs are inten-
tionally segmented (with the help of the Sonic Visualizer
[40]) only at cadential arrivals to make it an emotionally-

consistent clip and a valid musical phrase at the same time.
Accordingly, EMOPIA contains information for full songs,
extracted phrases, and emotion labels.

3.2 Emotion Annotation

Different emotion taxonomies have been adopted in the lit-
erature for emotion annotation, with no standard so far [2].
For EMOPIA, we consider a simple four-class taxonomy
corresponding to the four quadrants of the Russell’s fa-
mous Circumplex model of affect [32], which conceptual-
izes emotions in a two-dimensional space defined by va-
lence and arousal. The four classes are: HVHA (high
valence high arousal); HVLA (high valence low arousal);
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Figure 1. Illustration of different token-based representation for symbolic music: (a) MIDI-like [39], (b) REMI [34], and
(d) CP [35] plus emotion token. Sub-figure (c) is an intermediate representation of the CP one.

Quadrant # clips Avg. length (in sec / #tokens)

Q1 250 31.9 / 1,065
Q2 265 35.6 / 1,368
Q3 253 40.6 / 771
Q4 310 38.2 / 729

Table 2. The number of clips and their average length in
seconds, or in the number of REMI tokens, for each quad-
rant of the Russell’s model in the EMOPIA dataset.

LVHA (low valence high arousal); and LVLA (low valence
low arousal). We refer to this taxonomy as Russell’s 4Q.

As pointed out in the literature [2, 3, 41], various fac-
tors affect the perceived emotion of music, including cul-
tural background, musical training, gender, etc. Consensus
on the perception of emotion is challenging accordingly.
Therefore, the annotations were made only among the first
four authors, all coming from similar cultural backgrounds
and collaborating closely during the annotation campaign,
to ensure mutual standards for high or low valence/arousal.
As it is time-consuming and laborious to choose clips from
a song and label the emotion, each song was taken care of
by only one annotator. Yet, cross validation of the annota-
tions among the annotators was made several times during
the annotation campaign (which spans 2.5 months), to en-
sure all annotators work on the same standard.

Table 2 shows the number of clips and the average
length (in seconds) for each class. The clips amount to
approximately 11 hours’ worth of data.

3.3 Transcription

We transcribe the selected clips automatically with the
help of the high-resolution piano transcription model pro-
posed by Kong et al. [21], which is open source and rep-
resents the state-of-the-art for this task. We have manually
checked the transcription result for a random set of clips
and find the accuracy in note pitch, velocity, and duration
satisfactory. The transcription might be fragmented and
undesirable for cases such as when the audio recording
is engineered to have unnatural ambient effects; we drop
such songs from our collection. The model also transcribes
pedal information, which we include to EMOPIA but do
not use in our experiments.

3.4 Pre-processing and Encoding

For building machine learning models that deal with sym-
bolic data, we need a data representation that can be used
as input to the models. For example, MusicVAE [42]
adopts the event-based representation that encodes a sym-
bolic music piece as a sequence of “event tokens” such
as note-on and note-off, while MuseGAN [43] employs a
timestep-based, piano roll-like representation. Since there
is no standard on the symbolic representation thus far, we
adopt the following event-based ones in our experiments.
Specifically, we use MIDI-like and REMI in Section 5 and
CP in Section 6. See Figure 1 for illustrations.

• The MIDI-like representation [39] encodes information
regarding a MIDI note with a “note-on” token, a “note-
off”, and a “velocity” token. Moreover, the “time shift”
token is used to indicate the relative time gap (in ms)
between two tokens.

• REMI [34] considers a beat-based representation that
instead uses “bar” and “subbeat” tokens to represent the
time information. A “bar” token signifies the beginning
of a new bar, and “subbeat” points to one of the con-
stant number of subbeat divisions in a bar. Additionally,
REMI uses “tempo” tokens to control the pace of the mu-
sic, and replaces “note-off” with “note-duration”. Table
2 also shows the average number of REMI tokens for
clips in each emotion class.

• CP [35]. Both MIDI-like and REMI view events as in-
dividual tokens. In CP, tokens belonging to the same
family are grouped into a super token and placed on the
same timestep (see Figure 1(c)). CP considers by default
three families: metrical, note, and end-of-sequence. We
additionally consider the “emotion” tokens and make it a
new family, as depicted in Figure 1(d). The prepending

approach is motivated by CTRL [44], a state-of-the-art
controllable text generation model in natural language
processing (NLP) that uses global tokens to affect some
overall properties of a sequence.

3.5 Dataset Availability

In EMOPIA, each sample is accompanied with its cor-
responding metadata, segmentation annotations, emotion
annotation, and transcribed MIDI, which are all available
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Figure 2. Violin plots of the distribution in (a) note density, (b) length, and (c) velocity for clips from different classes.

Figure 3. Histogram of the keys (left / right: major / minor
keys) for clips from different emotion classes.

Label pair Different arousal Different valence
Q1 vs. Q4 Q2 vs. Q3 Q1 vs. Q2 Q3 vs. Q4

JS Div. 0.236 0.250 0.434 0.280

Table 3. Jensen-Shannon divergence between the key his-
tograms of a few emotion quadrant pairs.

in the Zenodo repository. Moreover, we have added the
MIDI data to the MusPy library [18] to facilitate its us-
age. Due to copyright issues, however, we can only share
audio through YouTube links instead of sharing the audio
files directl; the availability of the songs are subject to the
copyright licenses in different countries and whether the
owners will remove them.

4. DATASET ANALYSIS

The emotion that listeners perceive is determined by a wide
array of composed and performed features of music [45].
To observe the emotional correlate of the musical attributes
in EMOPIA, we extract various MIDI-based features and
examine the distributions over the four quadrants of emo-
tion. We present here the most discriminative features
among many choices we examined in our analysis.

Note Density, Length, and Velocity. The arousal of mu-
sic can be easily observed based on the frequency of note
occurrences and their strength [46]. We measure them
by note density, length and velocity. The note density
is defined as the number of notes per beat, and the note

length is defined as the average note length in beat unit.
The note velocity is obtained directly from MIDI. Figure 2
shows three violin plots of the three features. The general
trend shows that the high-arousal group (Q1, Q2) and low-
arousal group (Q3, Q4) are distinguished well in all three
plots. The results of note density and velocity are expected
considering the nature of arousal. However, it is quite in-
teresting that the note lengths are generally longer in the
low-arousal group (Q3, Q4). Between the same-arousal
quadrants, the differences are subtle. In note density, Q2
has more dynamics than Q1, whereas Q3 is not distinguish-
able from Q4. In note length, Q1 has slightly longer notes
than those of Q2, whereas Q3 is again not distinguishable
from Q4. In velocity, Q2 have louder notes than those of
Q1, and Q3 has slightly louder notes than Q4.

Key Distribution. The valence of music is often found to
be related to the major-minor tonality [7]. For simplic-
ity, we measure the tonality from the musical key. We
extract the key information using the Krumhansl-Kessler
algorithm [47] in the MIDI ToolBox [48]. Figure 3 shows
the key distributions on 12 major-minor pitch classes for
the four emotion quadrants. They assure that the major-
minor tonality is an important clue in distinguishing va-
lence. In the high valence group (Q1, Q4), the distribu-
tion is skewed to the left (major), while, in the low va-
lence group (Q2, Q3), the trend is the opposite. We also
measured the distance between the key distributions using
the Jensen-Shannon divergence, which has the property of
symmetry. Table 3 summarizes the pair-wise distances, in-
dicating that the valence difference group has a larger dif-
ference than the arousal difference group.

5. MUSIC EMOTION RECOGNITION

We report our baseline research on both symbolic- and
audio-domain emotion recognition using EMOPIA, which
defines the task as classifying a song into four categories.
The clips in EMOPIA are divided into train-validation-test
splits with the ratio of 7:2:1 in a stratified manner.

Symbolic-domain Classification. We evaluate two meth-
ods: one is based on hand-crafted features with a simple
classifier, and the other is on a deep neural network model.
For the former, we use the analysis features in the previous
section and a logistic regression classifier as a baseline.
Specifically, we use average values of note density, note
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Model 4Q A V

Logistic regression .581 .849 .651

LSTM-Attn [49]+MIDI-like [39] .684 .882 .833
LSTM-Attn [49]+REMI [34] .615 .890 .746

Table 4. Symbolic-domain classification performance.

Model 4Q A V

Logistic regression .523 .919 .558

Short-chunk ResNet [50] .677 .887 .704

Table 5. Audio-domain classification performance.

length, velocity, and represent the key as a one-hot vector.
For the latter, we use two different symbolic note represen-
tation methods introduced in Section 3.4, MIDI-like [39]
and REMI [34]. For the learning model, we use the combi-
nation of bidirectional LSTM and a self-attention module,
or LSTM-Attn for short, proposed originally for sentiment
classification in NLP [49]. The LSTM extracts temporal
information from the MIDI note events, while the self-
attention module calculates different weight vectors over
the LSTM hidden states with multi-head attentions. The
weighted hidden states are finally used for classification.

Audio-domain Classification. We evaluate two audio-
domain classification methods in a similar manner to the
symbolic-domain ones. In the first method, we use an
average of 20 dimensions of mel-frequency cepstral co-
efficient (MFCC) vectors and a logistic regression classi-
fier. In the second method, we use the short-chunk ResNet
following [50], which is composed of 7-layer CNNs with
residual connections. The output is summarized as a fixed
128-dimensional vector through max pooling, which is fol-
lowed by two fully connected layers with the ReLU ac-
tivation for classification. The input audio to the short-
chunk ResNet is 3-second excerpts represented as a log-
scaled mel-spectrogram with 128 bins with 1024-size FFT
(Hanning window), and 512 size hop at 22,050 Hz sam-
pling rate. We randomly sample three seconds of the audio
chunk as an input size to the classifier.

Evaluation. We calculate 4-way classification accuracy
over the four different emotion quadrants and 2-way clas-
sification accuracy over either arousal and valence. Tables
4 and 5 show the results in the symbolic and audio do-
mains, respectively. Except for arousal, we can see that the
deep learning approaches generally outperform the logistic
regression classifiers using hand-crafted features. In audio
domain arousal classification, MFCC vectors averaging the
entire song sequence showed better performance than the
deep learning approach with 3-second input. It seems that
wider input sequence has the strength in emotion recogni-
tion. In both domains, valence classification is a more dif-
ficult task compared to arousal classification. For valence
classification, MIDI-domain classifiers yield better result

than audio-domain classifiers (0.883 vs. 0.704). Among
the two token representations, MIDI-like seems to outper-
form REMI for valence classification.

6. EMOTION-CONDITIONED GENERATION

We build the Transformer and LSTM models for emotion-
conditioned symbolic music generation using EMPOIA.
For the former, we adopt the Compound Word Transformer
[35], the state-of-the-art in unconditioned symbolic music
generation. We employ the CP+emotion representation
presented in Section 3.4 as the data representation.

For the LSTM model, we consider the approach pro-
posed by Ferreira et al. [10], which represents the state-
of-the-art in emotion-conditioned music generation. Our
implementation follows that described in [10], with the fol-
lowing differences: 1) train on EMOPIA rather than VG-
MIDI; 2) use 512 neurons instead of 4,096 due to our lim-
ited computational resource; 3) use the same linear logis-
tic regression layer for classification but we classify four
classes instead of two.

As the size of EMOPIA might not be big enough, we
use additionally the AILabs1k7 dataset compiled by Hsiao
et al. [35] to pre-train the Transformer. AILabs1k7 con-
tains 1,748 samples and is also pop piano music, but it
does not contain emotion labels. Most of the clips in AIL-
abs1k7 are longer than EMOPIA, so to keep the consis-
tency of the input sequence length, the length of the token
sequence is set to be 1,024. We pre-train the Transformer
with 1e–4 learning rate on AILabs1k7, take the checkpoint
with negative log-likelihood loss 0.30, and then fine-tune it
on EMOPIA with 1e–5 learning rate. During pre-training,
the emotion token is always set to be “ignore,” while in
fine-tuning it is set to the emotion of that sample.

Evaluation. We use the following three sets of metrics.

• Surface-level objective metrics. We use the following
three metrics proposed by Dong et al. [43] to evaluate
whether the generated samples fit the training data: pitch
range (PR), number of unique pitch classes used (NPC),
and number of notes being played concurrently (POLY).
We use MusPy [18] to compute these metrics.

• Emotion-related objective metrics. Since both REMI
and CP adopt a beat-based representation of music, we
employ the LSTM-Attn+REMI emotion classifier (cf.
Section 5) here to quantify how well the generation re-
sult is influenced by the emotion condition. We first use
the generative model to generate 100 samples per class,
and use the assigned label as the target class of the sam-
ple. The trained classifier is then used to make predic-
tion on the generated samples. Similar to the classifica-
tion task, apart from 4Q classification, we also conduct
2-way classification of both Arousal and Valence aspect.

• Subjective metrics. As the classifiers are not 100% ac-
curate, we also resort to a user survey to evaluate the
emotion-controllability of the models. Specifically, we
deploy an online survey to collect responses to the mu-
sic generated by different models. A subject has to lis-
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Model Objective metrics Subjective metrics
PR NPC POLY 4Q A V Humanness Richness Overall

EMOPIA (i.e., real data) 51.0 8.48 5.90 — — — — — —

LSTM+GA [10] 59.1 9.27 3.39 .238 .500 .498 2.59±1.16 2.74±1.12 2.60±1.07
CP Transformer [35] 53.4 9.20 3.48 .418 .690 .583 2.61±1.03 2.81±1.03 2.78±1.03
CP Transformer w/ pre-training 49.6 8.54 4.40 .403 .643 .590 3.31±1.18 3.22±1.23 3.26±1.15

Table 6. Performance comparison of the evaluated models for emotion-conditioned symbolic music generation in surface-

level objective metrics (Pitch Range, Number of Pitch Classes used, and POLYphony; the closer to that of the real data the
better), emotion-related objective metrics (4Q classification, Arousal classification, Valence classification; the higher the
better), and subjective metrics (all in 1–5; the higher the better); bold font highlights the best result per metric.

(c) High arousal (d) Low arousal

(a) High valence (b) Low valence

Figure 4. The subjective emotional scores (in 1–5) for the
generative results when the target emotion is (a) high va-
lence, (b) low valence, (c) high arousal, (d) low arousal.

ten to 12 random-generated samples, one for each of
the three models and each of the four emotion classes,
and rate them on a five-point Likert scale with respect to
1) Valence: is the audio negative or positive; 2) Arousal:
is low or high in arousal; 3) Humanness: how well it
sounds like a piece played by human; 4) Richness: is the
content interesting; and, 5) Overall musical quality. In
total 25 subjects participated in the survey.

Table 6 tabulates some of the results. We see that the CP
Transformer with (‘w/’) pre-training performs the best in
most of the objective metrics and the three subjective met-
rics listed here. Nevertheless, the scores of the CP Trans-
former with pre-training in the three emotion-related ob-
jective metrics are much lower than that reported in Ta-
ble 4, suggesting that either the generated pieces are not
emotion-laden, or the generated pieces are too dissimilar
to the real pieces to the classifier.

Figure 4 shows the human assessment of the emotion-
controllability of the models. To our surprise, while the CP

Transformer with pre-training does not score high in the
emotion related objective metrics, the subjective test shows
that it can actually control the emotion of the generated
pieces to a certain extent, better than the two competing
models. In particular, the valence of the samples generated
by the Transformer with pre-training has a median rating of
4 when the goal is to generate positive-valence music (i.e.,
Figure 4(a)), while the scores of the other two models are
around 3. Moreover, the arousal of the samples generated
by the Transformer with pre-training has a median rating
of 4 when the goal is to generate high-arousal music (Fig-
ure 4(c)), which is higher than that of the non pre-trained
Transformer. This suggests that the LSTM-Attn classi-
fier employed for computing the emotion-related objective
metrics may not be reliable enough to predict the emotion
perceived by human, and that the Transformer with pre-
training is actually effective in controlling the emotion of
the music it generates to certain extent. But, the model
seems not good enough for the cases of generating low-
valence (i.e., negative) music, as shown in Figure 4(b).

7. CONCLUSION

In this paper, we have proposed a new public dataset
EMOPIA, a medium-scale emotion-labeled pop piano
dataset. It is a multi-modal dataset that contains both the
audio files and MIDI transcriptions of piano-only music,
along with clip-level emotion annotations in four classes.
We have also presented prototypes of models for clip-level
music emotion classification and emotion-based symbolic
music generation trained on this dataset, using a number
of state-of-the-art models in respective tasks. The result
shows that we are able to achieve high accuracy in both
four-quadrant and valence-wise emotion classification, and
that our Transformer-based model is capable of generating
music with a given target emotion to a certain degree.

In the future, in-depth importance analysis can be con-
ducted to figure out features that are important for emotion
classification, and to seek ways to incorporate those fea-
tures to the generation model. Many ideas can also be tried
to further improve the performance of emotion condition-
ing, e.g., the Transformer-GAN approach [51].

We share not only the dataset itself but the code cov-
ering all our implemented models in a GitHub repo. We
hope that researchers will find this contribution useful in
future emotion-related MIR tasks.
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ABSTRACT

This paper studies the problem of identifying piano sheet
music based on a cell phone image of all or part of a phys-
ical page. We re-examine current best practices for large-
scale sheet music retrieval through an economics perspec-
tive. In our analogy, the runtime search is like a consumer
shopping in a store. The items on the shelves correspond
to fingerprints, and purchasing an item corresponds to do-
ing a fingerprint lookup in the database. From this per-
spective, we show that previous approaches are extremely
inefficient marketplaces in which the consumer has very
few choices and adopts an irrational buying strategy. The
main contribution of this work is to propose a novel finger-
printing scheme called marketplace fingerprinting. This
approach redesigns the system to be an efficient market-
place in which the consumer has many options and adopts
a rational buying strategy that explicitly considers the cost
and expected utility of each item. We also show that de-
ciding which fingerprints to include in the database poses
a type of minimax problem in which the store and the con-
sumer have competing interests. On experiments using all
solo piano sheet music images in IMSLP as a searchable
database, we show that marketplace fingerprinting sub-
stantially outperforms previous approaches and achieves
a mean reciprocal rank of 0.905 with sub-second average
runtime.

1. INTRODUCTION

This paper tackles the problem of identifying piano sheet
music based on a cell phone picture of all or part of a phys-
ical page. This is the camera-based sheet music identifi-
cation task. Such a system could be used to conveniently
retrieve Youtube videos of relevant performances, compare
different scores for a particular passage of music, or – more
generally – explore representations of sheet music that are
useful for alignment and retrieval.

Previous work on retrieval tasks involving sheet music
fall into three groups. The first group of related works
study audio–sheet alignment and retrieval. The earliest
works used Optical Music Recognition (OMR) systems to

c� K. Ji, D. Yang, and T. Tsai. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: K. Ji, D. Yang, and T. Tsai, “Piano Sheet Music Identification
Using Marketplace Fingerprinting”, in Proc. of the 22nd Int. Society for

Music Information Retrieval Conf., Online, 2021.

convert sheet music to a symbolic format like MIDI, ex-
tracted chroma features from both MIDI and audio, and
then performed alignment or retrieval using dynamic time
warping (DTW). This approach has been used to synchro-
nize audio and sheet music [1–4] and perform audio–sheet
retrieval [5, 6]. More recent works have explored the use
of convolutional neural networks (CNNs) to project both
sheet music and audio into an embedding space where
similarity can be computed directly. This approach has
been applied to various forms of audio–sheet music align-
ment [7–11] and audio–sheet retrieval [7, 12, 13]. The sec-
ond group of related works study symbolic–sheet retrieval.
Several recent works studying MIDI-sheet retrieval have
used the bootleg score feature representation [14], which
encodes the positions of noteheads relative to staff lines.
This representation has been used for MIDI–sheet passage
retrieval [14, 15] and to find matches between the Lakh
MIDI dataset and IMSLP sheet music [16, 17]. Other ap-
proaches find matches with symbolic queries by perform-
ing OMR or object recognition on the sheet music, and
then doing an n-gram lookup [18,19], string matching [20],
or keyword spotting [21]. The third group of related works
— and the works that are most directly relevant to our
present study — explore sheet–sheet retrieval. Hajic et
al. [22] use OMR to convert sheet music to MIDI and then
use DTW on the pitch sequences. Waloschek et al. [23] use
a CNN to project entire measures into an embedding space
to align different sheet music editions of the same piece.
Yang and Tsai [24] propose a dynamic n-gram fingerprint
derived from bootleg score features to identify sheet music
based on cell phone images of physical pages.

This paper re-examines current practices for large-scale
sheet–sheet retrieval from an economics perspective. This
perspective makes clear what the weaknesses of current ap-
proaches are and suggests ways to improve them. We will
focus our analysis on the dynamic n-gram approach [24],
since it is the largest-scale study (using all solo piano sheet
music images in IMSLP) and achieves robust sub-second
retrieval (0.85 MRR). The dynamic n-gram approach has
three steps: (1) it extracts a sequence of bootleg score
features x1, x2, . . . , xL from the query image, (2) it con-
structs either a 1-gram (xi), 2-gram (xi, xi+1), 3-gram
(xi, xi+1, xi+2), or 4-gram (xi, xi+1, xi+2, xi+3) finger-
print at each offset i = 1, 2, . . . , L, where the size of the
n-gram at offset i is selected at runtime to ensure that the
number of fingerprint matches in the database is below a
certain threshold, and (3) the n-gram fingerprints are used
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Figure 1. Overview of the marketplace fingerprinting ap-
proach. The upper half describes the offline process of
constructing the database, and the lower half describes the
online process of performing a real-time search.

with an inverted file index to identify the database item
containing the most fingerprint matches.

Consider the following analogy. Imagine that the run-
time search is like a consumer shopping in a store. Ev-
ery offset i = 1, 2, . . . , L in the bootleg score sequence
is like an aisle in the store. The 1-gram, 2-gram, 3-gram,
and 4-gram fingerprints are like items on the shelves. In
the dynamic n-gram approach, the store has exactly four
items on every aisle, and the consumer always purchases
the most expensive item in each aisle that is below a max-
imum acceptable price. From an economics perspective,
this setup is horrible for the consumer, and the consumer’s
purchasing strategy is irrational.

The main contribution of this paper is to propose a novel
fingerprinting scheme called marketplace fingerprinting.
Marketplace fingerprinting is the result of redesigning the
system above using principles of economics to produce a
more efficient marketplace. One of the key principles in
this approach is that more options and choices are good
for the consumer. We generalize the notion of an n-gram
in order to produce a much larger set of n-gram types,
which corresponds to offering many more items in each
aisle. Furthermore, we adopt a much more rational pur-
chasing strategy in which the consumer explicitly consid-
ers the cost and the expected utility of each item, purchases
the items with the highest utility-to-cost ratio, and is al-
lowed to purchase multiple items in each aisle as long as
they stay under budget. We also show that the database
design problem (i.e. which n-gram fingerprints to include
in the database) presents a type of minimax problem in
which the store and the consumer have competing inter-
ests. On experiments involving all solo piano sheet music
images in IMSLP, we show that the marketplace finger-
printing method substantially improves retrieval accuracy
compared to the dynamic n-gram method. 1

2. SYSTEM DESCRIPTION

Figure 1 shows an overview of our proposed approach. We
will describe the system in three parts: computing the fin-

1 Code can be found at https://github.com/HMC-MIR/

ImprovedSheetID.

Figure 2. Description of the generalized n-gram finger-
print representation. The sheet music is first converted to
a bootleg score, each column of the bootleg score is rep-
resented as a 64-bit integer, and n-grams are constructed
from various groupings of integers.

gerprint representation (Section 2.1), creating the database
(Section 2.2), and searching the database (Section 2.3).
The bootleg score representation is adopted from previous
work, but the generalized n-gram, database construction,
and search mechanism are novel contributions.

2.1 Fingerprint Representation

Figure 2 shows how n-gram fingerprints are computed.
This process is described in the next two paragraphs.

The first step is to extract bootleg score features. The
bootleg score is a mid-level feature representation that en-
codes the positions of filled noteheads relative to staff
lines in piano sheet music [14]. The bootleg score it-
self is a 62 ⇥ N binary matrix, where 62 indicates the
total number of distinct staff line positions in both the
left and right hand staves and N indicates the number of
grouped note events in the sheet music (e.g. a chord con-
taining four notes played simultaneously would constitute
a single grouped note event). Note that this representation
throws away a significant amount of information such as
key signature, time signature, accidentals, note duration,
octave markings, clef changes, and non-filled noteheads.
Nonetheless, it has been successfully used in several appli-
cations involving sheet music, including sheet music iden-
tification [16, 24], sheet–MIDI retrieval [14, 15, 17], and
sheet–audio alignment [25,26]. We represent each column
(containing 62 bits) as a 64-bit integer, so that the bootleg
score is encoded as a sequence of integers x1, x2, . . . , xN .

The second step is to construct generalized n-grams.
The concept of n-grams comes from linguistics [27], where
the frequency of word sequences in a large corpus was
historically used for language modeling. Many previous
works have likewise used n-grams for language modeling
with music data (e.g. [28, 29]). Here, we use a general-
ization of n-grams that is specifically useful for indexing
and retrieval. When constructing generalized n-grams at
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offset i for a bootleg score sequence x1, x2, . . . , xN , we
consider any combination of n elements that satisfies two
conditions: (1) the leftmost element must be xi, and (2) the
elements must be selected from a fixed context window of
length C. For example, when C = 4 and we consider
up to 3-grams, there is one 1-gram {(xi)}, three 2-grams
{(xi, xi+1), (xi, xi+2), (xi, xi+3)}, and three 3-grams
{(xi, xi+1, xi+2), (xi, xi+1, xi+3), (xi, xi+2, xi+3)}, re-
sulting in a total of 7 generalized n-grams. In our exper-
iments, we consider up to 3-grams with C = 6, which
results in a total of T = 16 different generalized n-gram
types at each offset i. We will denote the generalized n-
grams at offset i as yi1, yi2, . . . , yiT .

2.2 Database Construction

If we had an infinite amount of RAM available, the
database construction problem would be trivial: we would
simply include all of the generalized n-grams in the
database. However, because the IMSLP dataset is large
and we have many different types of n-grams, the total
amount of memory required to store everything in the
database quickly becomes exorbitant. This forces us to
be strategic in choosing which n-grams to include in the
database and which to exclude.

The database is simply a reverse index in which the key
is the n-gram fingerprint and the value is a list of all in-
stances in the IMSLP dataset where the n-gram occurs.
This list consists of (PDF, offset) tuples that specify the
IMSLP PDF and bootleg score offset where the fingerprint
occurs. Note that the n-gram type and n-gram value must
both match in order to be included in the reverse index
(i.e. a (xi, xi+1) 2-gram and (xi, xi+2) 2-gram will never
collide).

We approach this problem from the perspective of a
store manager who has a limited amount of shelf space and
wants to fill the shelves with products that maximize some
utility function. There are two different types of resources
in this scenario. The first resource is shelf space, which in
our case corresponds to the amount of RAM available. In
our experiments, we work with a machine that has 128 GB
of RAM. The second resource of interest is the utility func-
tion. Our utility function is the expected number of match
points that will be added to the true matching PDF at run-
time. Consider a single n-gram fingerprint yij at offset i in
a query. If yij is not in the database or if the bootleg score
representation has errors (e.g. it fails to detect a notehead
in the sheet music), the true matching item in the database
will accumulate 0 match points. On the other hand, if yij is
included in the database and the bootleg score computation
is correct, the true matching item in the database will ac-
cumulate 1 match point. Therefore, the expected (added)
utility for including yij in the database is the probability
that its constituent bootleg score representation is correct.
We estimated this probability of correctness as a fixed con-
stant for each of the 16 generalized n-gram types based on
the training data, as shown in Figure 3. Unsurprisingly, the
1-gram has the highest probability of correctness, and the
3-grams had the lowest (4-grams were even lower). Using

Figure 3. Probability of correctness for various general-
ized n-gram types, as estimated on training data. Each bar
indicates the fraction of n-grams of that type in the train-
ing queries whose underlying bootleg score representation
matched the database.

this approach, the total utility of an n-gram fingerprint yij
is U(yij) = N(yij)Pcorrect(j), where N(yij) indicates
the total number of times the fingerprint occurs in the IM-
SLP data and where Pcorrect(j) indicates the probability
that the underlying bootleg score representation is correct
(as shown in Figure 3).

At this point, we could simply sort all of the unique n-
gram fingerprints by their utility (largest to smallest), and
then add them to the database in order until the memory is
used up. However, this ignores the fact that the store man-
ager (i.e. the database construction problem) and the con-
sumer (i.e. the runtime search problem) have competing
interests. Note that the utility function rewards fingerprints
that occur very frequently. 2 For example, the n-gram with
the highest utility is a 1-gram (i.e. single bootleg score col-
umn) with a single notehead present, which occurs more
than a million times in the database. This fingerprint of-
fers the store manager the highest return, but is an awful
proposition for the consumer. From the search perspective,
the primary constraining resource is runtime, not memory.
Given two different n-grams to choose from — one that
occurs 1 million times in the database and one that occurs
once in the database — the latter is far more desirable at
runtime: both offer the possibility of adding 1 match point
to the true matching item in the database, but one requires
processing 1 million matches and the other only requires
processing 1 match. Therefore, the database construction
problem is a type of minimax problem, in which the store
manager wants to offer the most frequently occurring fin-
gerprints but the consumer wants to purchase the least fre-
quently occurring fingerprints.

Based on these considerations, the database is con-
structed in the following way. All of the unique n-gram fin-
gerprints in IMSLP are sorted by their utility value U(yij)
from largest to smallest. We discard any fingerprints that
occur more than � = 10, 000 times in the database. This
value of � is set conservatively to ensure that all n-gram

2 Because there is a memory overhead for adding a new entry to the
reverse index, it is possible to fit more matches in memory by adding
frequently occurring fingerprints than by adding lots of rarely occurring
fingerprints.
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fingerprints that are actually selected at runtime on the
training data are included in the database. We then add
the remaining fingerprints to the database in order of util-
ity value until the memory has been used up.

At the end of the database construction step, we have
a reverse index that contains a subset of the generalized
n-grams found in the IMSLP data. This subset excludes
extremely common n-grams (that occur > � times) as well
as extremely rare n-grams (due to memory limits).

2.3 Search

In our analogy, the runtime search is akin to a consumer
shopping in the store. We first process the cell phone im-
age query to compute a sequence of bootleg score features
x̃1, . . . , x̃L, and then construct a set of T = 16 generalized
n-grams yi1, . . . , yiT at each offset i = 1, . . . , L. This set
of (approximately) TL candidate n-grams are the items on
the store shelves that the consumer can purchase. Each off-
set i corresponds to an aisle in the store, and each aisle con-
tains T items. 3 The consumer uses a strategy (described in
the next few paragraphs) to purchase selected candidate n-
grams from each aisle of the store. These selected n-grams
are then used to search the database. The consumer pur-
chasing strategy and the search mechanism are described
in the next three paragraphs.

The consumer adopts a disciplined greedy purchasing
strategy. They first decide on a budget for the whole store
(Btot), divide it by the number of aisles to determine a
budget per aisle (Baisle = Btot/L), and then purchase as
many items in each aisle as they can in order to maximize
utility while staying under their budget for the aisle. Any
unused funds from an aisle carry over to the next aisle.
During a search, the primary constrained resource is run-
time – we do not want a query to take too long to pro-
cess. The runtime is directly correlated with the number
of fingerprint matches in the database that are processed.
The total budget Btot is therefore specified in terms of the
maximum total number of matches we are willing to pro-
cess for each query. Btot is a hyperparameter that can be
selected to achieve a desired runtime. In our experiments,
we set Btot = 65000 in order to achieve ⇡ 1 second aver-
age runtime per query on the training set.

How should the consumer decide which items
(i.e. which n-grams) to purchase in each aisle? We as-
sume that the consumer is rational and wants to maxi-
mize their own utility. We define the utility as the ex-
pected number of match points added to the true matching
item in the database, which (as explained in Section 2.2
paragraph 3) is the probability that the underlying boot-
leg score representation is correct. We again approximate
this probability based on the n-gram type and the statistics
on the training data (as shown in Figure 3). The runtime
cost for each item is proportional to the number of fin-
gerprint matches in the database, since processing many
fingerprint matches will require more runtime. Putting
this all together, the consumer tries to maximize utility

3 The last few aisles may contain less than T items due to a lack of
context.

by adopting the following strategy: they purchase items
in each aisle in decreasing order of their utility-to-cost ra-
tio R(yij) = Pcorrect(j)/N(yij) until the budget for the
aisle (Btot/L plus any carryover from the previous aisle)
has been spent. Note that Pcorrect(j) can be determined
based only on the n-gram type and N(yij) can be deter-
mined quickly without needing to actually process the fin-
gerprint matches. This information allows the system to
dynamically adjust which n-grams to select in an informed
and rational manner.

The search is performed using the histogram of off-
sets method [30]. This method provides an efficient way
to search a large database in order to find a sequence of
matching fingerprints aligned in time. For each fingerprint
yij (i.e. the n-gram of type j at offset i in the query) that
is purchased by the consumer, the system processes the
list of fingerprint matches in the database from the reverse
index. Each fingerprint match is specified by two pieces
of information: the PDF and the offset k in the bootleg
score where the fingerprint occurs. Processing a finger-
print match (i.e. a (PDF, k) tuple) means adding the rela-
tive offset k � i to the PDF’s histogram. Note that a se-
quence of matching fingerprints aligned in time will result
in a histogram with a large spike at the true relative offset
(i.e. where the query occurs in the PDF). Therefore, we can
use the maximum bin count in each histogram as a match
score for the PDF. Because IMSLP often contains multi-
ple PDFs for a single piece, we calculate the piece match
score as the maximum score among its constituent PDFs.
Finally, we sort all pieces in the database by their piece
score. The resulting ranked list is the final output of the
system.

2.4 Comparison to Dynamic N-gram

It is instructive to compare the proposed marketplace fin-
gerprinting approach to the dynamic n-gram approach. We
will compare these two along the three axes described
above: the fingerprint representation, the database con-
struction, and the search mechanism.

Fingerprint representation. The dynamic n-gram
approach considers four types of standard n-grams at
each offset i: (xi), (xi, xi+1), (xi, xi+1, xi+2), and
(xi, xi+1, xi+2, xi+3). The marketplace fingerprinting ap-
proach generalizes the notion of an n-gram and offers a
much wider selection of n-gram types to the consumer.

Database construction. The dynamic n-gram approach
is to simply add all 1-grams to the database, then all 2-
grams, then all 3-grams, etc. until memory runs out. For
128 GB of RAM, this approach maxes out at 4-grams. This
results in a database that has complete representation of
four different types of n-grams. The marketplace finger-
printing approach, on the other hand, considers 16 differ-
ent types of n-grams and selects a subset of the most useful
fingerprints from each n-gram type in a principled way.

Search. In our analogy, the dynamic n-gram approach
corresponds to a store in which every aisle has four items,
and the consumer purchases exactly one item per aisle. The
consumer purchasing strategy is to set a fixed budget for
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each aisle and to purchase the most expensive item in each
aisle that is under the budget. The marketplace fingerprint-
ing approach corresponds to a store in which every aisle
has 16 (or more) items, and the consumer can purchase
multiple items per aisle. The consumer purchasing strat-
egy is to set a fixed total budget for the whole store, deter-
mine a budget per aisle to control their total spending, and
purchase the items in each aisle with highest utility-to-cost
ratio until the aisle budget has been spent. The key idea
behind the marketplace fingerprinting approach is that op-
tions and choices are good for the consumer. Once the con-
sumer has purchased a set of fingerprints, both approaches
use the histogram of offsets method to search the database.

3. EXPERIMENTAL SETUP

The experimental setup is identical to [24] for fair compar-
ison with the dynamic n-gram approach. We describe the
data and evaluation metrics below for completeness.

The queries in our system are cell phone images taken
of physical pages of piano sheet music. There are 10 cell
phone images of 200 different piano pieces across 25 dif-
ferent composers, resulting in a total of 2000 queries. The
pictures were taken with four different cell phone models.
The cell phone pictures are spread across the length of the
piece and are taken in a variety of different physical lo-
cations, lighting conditions (including both flash and no
flash), and levels of zoom (between 1 and 5 lines of sheet
music). The proposed marketplace fingerprinting system
and the baseline systems do not have any trainable param-
eters (only hyperparameters), so we use only 40 pieces for
training (400 queries) and the remaining 160 pieces for
testing (1600 queries).

The database consists of all solo piano sheet music in
IMSLP. In total, there are 31,384 PDFs, 29,310 pieces,
and 374,758 pages of sheet music. [24] provides a pre-
computed dataset of bootleg score features on all solo pi-
ano sheet music in IMSLP, and we use this dataset without
modification.

We evaluate system performance along two axes: re-
trieval accuracy and runtime. Because each query matches
exactly one unique piece in IMSLP (with multiple differ-
ent PDF versions), we use mean reciprocal rank (MRR) as
a measure of retrieval accuracy. MRR is computed as

MRR =
1

N

NX

i=1

1

Ri
(1)

where N indicates the number of queries and Ri indicates
the rank of the true matching piece. For the IMSLP pi-
ano dataset, Ri ranges between 1 and 29, 310. Note that
MRR ranges between 0 and 1, where 1 corresponds to per-
fect performance. We also measure the runtime required
to process each query and report the average and standard
deviation of the runtimes. All experiments were performed
on a 2.1 GHz Intel Xeon processor with 128 GB RAM.

System MRR Runtime
avg std

1-gram .709 21.5s 12.5s
2-gram .845 2.76s 1.11s
3-gram .808 1.99s .36s
4-gram .755 1.12s .25s
5-gram .688 1.07s .13s
dynamic n-gram .853 .98s .12s
marketplace .905 .95s .14s

Table 1. Comparison of system performance on the
camera-based piano sheet music identification task. The
middle column indicates the retrieval accuracy in terms of
mean reciprocal rank (MRR), and the rightmost column
indicates the average and standard deviation of runtimes.
The bottom row shows the performance of the proposed
marketplace fingerprinting system.

4. RESULTS

We compare the marketplace fingerprinting approach to six
other baseline systems. The first five baselines are fixed
n-grams with n = 1, 2, 3, 4, 5. These approaches use a
single fixed-size n-gram as the fingerprint representation.
For example, given a sequence of bootleg score features
x1, . . . , xL, the fixed 2-gram baseline would construct fin-
gerprints of the form (xi, xi+1). The fixed n-gram ap-
proach for large-scale retrieval was explored in [17]. The
sixth baseline is the dynamic n-gram method [24], which
represents the state-of-the-art in sheet music identifica-
tion. For a given sequence of query bootleg score features
x1, . . . , xL, the dynamic n-gram constructs one fingerprint
at each offset i of the form (xi, xi+1, . . . , xi+Li) where
0  Li  3. The size of the n-gram is selected dynam-
ically for each offset i in order to ensure that the number
of fingerprint matches in the database is below a specified
threshold.

Table 1 shows the retrieval accuracy and runtime for all
7 systems. We can see that the marketplace fingerprinting
system has the highest retrieval accuracy by a large mar-
gin (.905 vs .853). We can roughly interpret this gap as a
reduction in “errors” by about 1

3 compared to the dynamic
n-gram approach. Furthermore, this improvement in re-
trieval accuracy does not come at the expense of runtime:
the runtime budget (Btot) for the marketplace system was
selected to achieve < 1 second average runtime per query
on the training set. The improvement in retrieval accuracy
instead comes from utilizing the runtime more efficiently –
processing many more fingerprints with a higher utility-to-
cost ratio compared to the dynamic n-gram approach.

5. ANALYSIS

In this section we explore two questions of interest to gain
deeper intuition into the performance of the marketplace
fingerprinting system.

The first question of interest is, “What is the effect of the
runtime budget (Btot)?” This is a hyperparameter specify-
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Figure 4. Relationship between runtime budget (Btot) and
retrieval accuracy. The runtime budget is a hyperparameter
that specifies the maximum number of fingerprint matches
in the database that can be processed for a single query.

ing the total number of fingerprint matches in the database
that we are willing to process for each query. The total run-
time budget determines the budget for each aisle, which in
turn determines how many n-gram fingerprints will be pro-
cessed. By setting Btot appropriately, we can thus trade
off runtime for retrieval accuracy: if we’re willing to wait
longer to process a query, we can get higher quality results.

Figure 4 shows the retrieval accuracy of the marketplace
fingerprinting system across a range of runtime budget val-
ues. The retrieval accuracy improves dramatically as the
runtime budget increases from 1 to 500, but then reaches
a plateau and remains approximately constant for runtime
budget values greater than 1000. This plateau strongly sug-
gests that we have reached an upper bound on performance
through the use of redundancy in the fingerprint lookups.
Thus, we would not expect that adding more n-gram types
would improve results further. Any significant additional
improvements to retrieval accuracy would likely need to
come from a more accurate bootleg score (or alternative)
representation. Perhaps the most surprising finding in Fig-
ure 4 is how low the runtime budget is when it reaches
the plateau. With only a budget of 1000 matches – chosen
strategically, of course – it is possible to already achieve
a MRR of .908 with an average runtime of 0.71 seconds.
This is quite remarkable considering that the dynamic n-
gram model performs lookups on fingerprints with up to
10, 000 matches in the database, so that a single lookup
would likely use up the entire runtime budget.

The second questions of interest is, “What is the dis-
tribution of fingerprints in the database?” Figure 5 shows
the distribution of fingerprints in the databases for all seven
systems. 4 The fingerprints are sorted from most frequent
(left) to least frequent (right), and their frequency of occur-
rence in the IMSLP dataset is shown on the y-axis. Note
that both axes are shown on a log scale. The ideal distri-
bution for optimal hashing performance is a uniform (flat)

4 The curves for the fixed n-gram systems match those of Figure 3
in [24]. However, we have confirmed that the curve for the dynamic n-
gram system in Figure 3 of [24] is incorrect. The brown curve in Figure
5 above shows the corrected distribution.

Figure 5. Fingerprint distribution for different systems.
For each system, the set of unique fingerprints in the
database are sorted from most frequent (left) to least fre-
quent (right), and the y-axis indicates the frequency of oc-
currence. Note that both axes are on a log scale.

distribution, in which all fingerprints occur the same num-
ber of times. We can see that the marketplace fingerprint-
ing system has the flattest distribution, avoiding extremely
common fingerprints and minimizing extremely rare fin-
gerprints. By considering many more types of n-grams, it
is able to achieve a flatter distribution that is closer to the
ideal uniform distribution.

6. CONCLUSION

This paper proposes a way to identify sheet music using
a novel fingerprinting scheme called marketplace finger-
printing. Our approach considers the retrieval problem
through the lens of an economic marketplace in which a
consumer (the search) with a finite budget (runtime) pur-
chases items (fingerprints) in a store (the database). Build-
ing off of previous work that uses n-grams of bootleg score
features as fingerprints, we generalize the notion of n-
grams to greatly expand the number of different types of
fingerprints in order to give the consumer more options to
choose from. We show that choosing which fingerprints to
include in the database presents a type of minimax problem
in which the consumer (the runtime search problem) and
the store (the database design problem) have competing in-
terests. At runtime, the consumer (the search) is presented
with many different options (fingerprint types) to choose
from and tries to maximize utility by purchasing the items
(i.e. doing database lookups on fingerprints) that have max-
imum utility-to-cost ratio while staying under a fixed bud-
get (runtime). With experiments using all solo piano sheet
music images in IMSLP as a searchable database, we show
that the marketplace fingerprinting approach substantially
outperforms previous approaches.
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ABSTRACT

Recent advances of music source separation have achieved
high quality of vocal isolation from mix audio. This has
paved the way for various applications in the area of mu-
sic informational retrieval (MIR). In this paper, we pro-
pose a method to learn a cross-domain embedding space
between isolated vocal and mixed audio for vocal-centric
MIR tasks, leveraging a pre-trained music source sepa-
ration model. Learning the cross-domain embedding was
previously attempted with a triplet-based similarity model
where vocal and mixed audio are encoded by two differ-
ent convolutional neural networks. We improve the ap-
proach with a structure-preserving triplet loss that exploits
not only cross-domain similarity between vocal and mixed
audio but also intra-domain similarity within vocal tracks
or mix tracks. We learn vocal embedding using a large-
scaled dataset and evaluate it in singer identification and
query-by-singer tasks. In addition, we use the vocal em-
bedding for vocal-based music tagging and artist classi-
fication in transfer learning settings. We show that the
proposed model significantly improves the previous cross-
domain embedding model, particularly when the two em-
bedding spaces from isolated vocals and mixed audio are
concatenated.

1. INTRODUCTION

Vocal is the key component in popular music, as it is usu-
ally tied to the artist and melody of a song. Research re-
ports that vocal is the most salient part in music listening
experience of streaming service [1] and the most effective
factor in hit song prediction [2]. A number of MIR tasks
are also focused on the singing voice, for example, singer
identification [3], melody extraction [4], singing transcrip-
tion [5], and query-by-humming [6]. However, vocal sound
sources are usually available in mixed form with instru-
mental sounds in popular music and isolated vocal tracks
are scarcely available. This has been a barrier in singing
voice research.

© Keunhyoung Luke Kim, Jongpil Lee, Sangeun Kum, and
Juhan Nam. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Keunhyoung Luke Kim,
Jongpil Lee, Sangeun Kum, and Juhan Nam, “Learning a cross-domain
embedding space of vocal and mixed audio with a structure-preserving
triplet loss”, in Proc. of the 22nd Int. Society for Music Information Re-
trieval Conf., Online, 2021.

Recent advances of music source separation achieved
a significant level of competency [7]. Pre-trained source
separation models are freely available for practical appli-
cations [8]. This has opened up a great potential for various
down-streaming tasks. Among others, vocal source separa-
tion found immediate uses in many relevant tasks including
vocal melody extraction [9, 10], vocal tagging [11], singer
identification [12, 13], and automatic drum mixing [14].

In this paper, we apply the vocal source separation to
learn a cross-domain embedding space between isolated
vocal and mix audio. The goal of this research is learning
a discriminative vocal embedding space agnostic to mix-
ing with instrumental sounds. This idea of cross-domain
embedding space was first proposed in [15]. However, the
previous work secured the isolated vocal and mix audio
by a simple music mash-up, an artificial mix between two
heterogeneous datasets by musical matching (i.e., tempo,
beat, and key). This is not a realistic setting for obtain-
ing a practical vocal embedding space. Furthermore, they
considered only the correspondence between monophonic
vocal and mixed audio in training the model using metric
learning, missing vocal similarity within the same domain.

We improve the cross-domain embedding space in two
ways. First, we employ a structure-preserving triplet loss
that exploits not only cross-domain similarity between vo-
cal and mixed audio but also intra-domain similarity within
vocal tracks or mix tracks. Second, we conduct a large-
scale cross-domain vocal embedding learning by leverag-
ing a pre-trained vocal separation model to extract iso-
lated vocals with high-quality. We show that the proposed
method achieves significant improvements in singing iden-
tification, compared to the previous work. In addition, we
evaluate the cross-domain vocal embedding for vocal tag-
ging and artist classification in transfer learning settings
and show the generalization capability.

2. RELATED WORKS

2.1 Singer Identification in Polyphonic Music
The main challenge of singer identification in polyphonic
music is to extract voice features from music signals mixed
with instrumental sounds. The most straightforward way
to handle this issue is to separate the vocal sound sources
from mixed audio as a pre-processing step. Early ap-
proaches relied on vocal melody extraction (or predom-
inant pitch estimation) with a combination of voice re-
synthesis and voice detection algorithms to obtain en-
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hanced vocal sources [16–18]. They then extracted various
hand-engineered features such as mel-frequency cepstral
coefficient (MFCC), linear prediction mel-frequency cep-
stral coefficient (LPMCC) as input features for a classifier.

Recently, music source separation algorithms based on
deep learning have significantly advanced [7,19] and some
of them focused more on vocal source separation [20]. This
has provided a great chance to improve singer identifica-
tion by allowing to use high-quality isolated vocals [13] or
augmenting training data by remixing of vocals and ac-
companiment [12]. However, the scope of research was
limited to achieving high accuracy on a small size dataset
without scaling up to general vocal audio embedding.

2.2 Representation Learning
Representation learning allows unorganized input data to
be mapped into an structured space [21]. Previously, this
was done by a shallow network with hand-crafted features
[22], and more recently deep representation learning where
the deep neural networks directly learn the mapping from
the raw input data became a dominant methodology. Once
the representation space is structured, we can utilize it to
solve the related domain problems (or downstream tasks),
known as transfer learning [23].

Among many techniques for deep representation learn-
ing, metric learning with a triplet loss became popular
because of its flexibility in training the model with less
strict distance metrics [24]. This triplet loss based net-
work is trained with three sampled examples such that the
two examples are defined as similar, but not the rest one.
Then, the embedding network is trained to locate the two
similar examples to be closer than the dissimilar example
in the representation space. This similarity-based learning
can be easily extended to multi-modal data (e.g. image-to-
text [25–28], video-to-text [29], face-to-voice [30], video-
to-audio [31, 32]). In this case, two different embedding
networks are trained for each modality. For example, if
the case is to learn a cross-modal embedding of image
and audio [32], an image and an audio from the same cat-
egory are sampled, and an audio from the different cat-
egory are sampled. Then, the embedding feature of the
image and the embedding features of the audio are com-
pared. By optimizing the embedding features of the image
and audio from the same category to be placed closer than
the different one, we can build cross-modal embedding
space. This representation learning paradigm is close to
our study. However, cross-domain embedding learning is
different from the cross-modal embedding learning in that
the two embedding networks are from the same modality
(e.g., sketch-to-photo [33], sketch-to-3Dshape [34], street-
view-to-satellite-view [35], vocal-to-mixed [15]). Because
the inherent characteristics in each domain may largely dif-
fer, it is required to have separate networks for each do-
main.

2.3 Representation Learning in MIR
Representation learning in MIR has mainly been explored
in semantic level [36–38]. Diverse similarity supervisions

have been employed to train the triplet networks. Tag la-
bels are one representative similarity supervision by re-
garding the two examples similar if they belongs to the
same tag [39,40]. User’s preference data (similarity judge-
ment [36] or listening history [41]) is another similar-
ity supervision. Artist information has also been explored
[37, 42]. In this case, the two examples are treated as sim-
ilar if they are released from the same artist. The artist
based similarity may represent some of the vocal charac-
teristics of the artist. However, artists in some genres do
not contain vocal sounds, and vocal-focused representation
learning has not been extensively studied [43]. For mono-
phonic singing voice, vocal representation learning was at-
tempted using the DAMP dataset (amateur karaoke vocal
recordings) [44]. It was extended to joint embedding be-
tween mono and mixed audio by an artificial mash-up of
the karaoke recordings and instrumental tracks [15]. How-
ever, the outcomes are not directly applicable to commer-
cial popular music.

3. METHODS

We present three training models to learn a vocal embed-
ding space. Each model consists of multiple encoder net-
works for feature extraction from mixed audio or isolated
vocal. We first introduce the backbone network common to
all encoders and then describe the three training models.

3.1 Backbone Network
The backbone network for the encoders consists of 8 con-
volutional layers with 128 3-by-3 filters except the first
layer with 64 filters and the last layer with 256 filters. Each
convolutional layer is followed by a batch normalization,
ReLU, and a 2-by-2 max-pooling layer, while the pooling
layer for the last convolutional layer is a global average
pooling layer. The network takes mel-spectrogram with
128 mel bins from each audio clip after applying short-
time Fourier transform with 1,024 samples of Hann win-
dow and 512 samples of hop size. The input size of the
CNN encoder is 129 frames, which corresponds to a 3-
second-long segment at the sampling rate of 22,050 Hz.

3.2 Training Models
Figure 1 illustrates the training models based on metric
learning. The goal of metric learning is to learn an embed-
ding space where inputs from the same class are closer to
each other than those from different classes. In our setting,
we take either mixed audio or vocal as input, use the output
of global average pooling layer in the backbone network
as the embedding space, and determine if the embedded
inputs belong to the same class or not using artist labels
(i.e., singer labels). We build the models upon a triplet net-
work that consists of three encoder networks. They take an-
chor, positive (same class as the anchor) and negative (dif-
ferent class as the anchor) examples as input. The triplet
network is often extended to take multiple negative ex-
amples for more effective training. Following the previ-
ous works [15, 37], we used four negative examples. The
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Figure 1. Left: triplet network for metric learning with singer labels. Right: distances used for the loss function in the three
models. m and v represent embedding vectors from mixed audio and isolated vocal, respectively. The subscripts (a, p, n)
denote for anchor, positive, and negative samples, respectively.

encoders share the weights when they take the same do-
main of input (vocal or mixed audio). Therefore, we even-
tually obtain two encoder networks with different weights:
one for vocal and the other for mixed audio. In Figure 1,
they are denoted as fv(·) and fm(·), respectively. Given
the common ground, we present three models, differing in
the choice of input and the loss function. Each of them is
described in detail below.

3.2.1 MIXED
The MIXED model takes only mixed audio as input in
the triplet network and thus it uses fm(·) for feature ex-
traction. This is the baseline model that takes no advan-
tage from vocal source separation. The model was origi-
nally proposed as a general music representation learning
method using the cost-free artist labels in [37]. The dif-
ference in this model is that instrumental music (with no
vocals) is excluded in training the model. The triplet loss
is formally defined as follows. Let xi

a, xi
p and xi

nj denote
the anchor, the positive, and the j-th negative sample of
the i-th triplet, respectively, and mi

a = fm(xi
a) denote the

embedding vector of input sample xi
a. Following the pre-

vious works [15,37], we use the hinge rank loss defined as
below:

L(tripleti) =
X

j

[M + d(mi
a,m

i
p)� d(mi

a,m
i
nj)] (1)

where d(x, y) is given as a cosine distance:

d(x, y) = � x · y
||x||2 · ||y||2

(2)

and M is the margin, which was set to 0.4.

3.2.2 CROSS
The CROSS model was proposed to learn the cross-domain
embedding between monophonic and mixed music sig-
nals [15]. In the triplet network, the anchor takes vocal
through fv(·) and the positive and negative takes mixed
audio through fm(·). Therefore, both vocal and mixed au-
dio from the same class (anchor and positive) are expected
to be closed to each other in the embedding spaces. The
triplet loss is formally defined as follows. Let yia, yip and
yinj denote the vocal counterpart of mixed samples xi

a, xi
p

and xi
nj and via = fv(yia) denote the embedding vector for

vocal. The loss function is defined as follow:

Figure 2. Illustrated examples of cross-domain embedding
space when the structure-preserving triplet is not applied
(left) and applied (right).

L(tripleti) =
X

j

[M + d(via,m
i
p)� d(via,m

i
nj)] (3)

d(·) is the distance defined in Equation 2. Note that the
only difference from the MIXED model is the use of em-
bedding vector from vocal source v for anchor samples.

3.2.3 CROSS-SP
The CROSS model effectively learns the cross-domain em-
bedding between mixed audio and its vocal counterpart.
However, this does not necessarily learn similarity within
the same domain. That is, vocal examples from the same
artist or mixed audio examples from the same artist are not
enforced to be close to each other in the embedding space.
The left column in Figure 2 illustrates a possible distribu-
tion of vocal and mixed audio examples. While the pairs
of mi and vi are closely located by the loss function, the
relations among mi or among vi can be arbitrary.

This issue has been addressed in the context of cross-
modal representation learning where the inputs are image
and text [27], or image and audio [32]. They suggested to
add constraints to the triplet loss such that the similarity
within the same modality is also preserved. Furthermore,
they made the loss bi-directional (or symmetric) with re-
gards to two different modalities by having a dual loss
where the two triplets take exclusively different modali-
ties of inputs. This setting can be also applied to two dif-
ferent audio domains in our setting: vocal and mixed au-
dio. As a result, we expect that the embedding spaces pre-
serve the structure of similarity in both cross-domains and
intra-domain, as illustrated in the right column in Figure
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2. We call this model "CROSS-SP" where SP stands for
structure-preserving. The structure-preserving triplet loss
is defined as a weighted sum of four separate hinge rank
loss functions:

L(ti) =�1
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d(·) is the distance defined in Equation 2. Note that all
four possible combinations of distances between anchor
and positive/negative samples are present: vocal-mix, mix-
vocal, mix-mix and vocal-vocal. The first two terms are
the bi-directional cross-domain ranking loss [45, 46] and
the last two terms are structure-preserving loss [27]. �n is
a weight for each loss term. The MIXED model can be re-
garded as a special case where �3 = 1 and others are 0.
The CROSS model is also a special case where �1 = 1
and others are 0. In recent studies, the structure-preserving
loss terms tend to have a small weight [28] or can be mod-
ified to have weak impacts [32]. However, we used 1/4 for
all �n in the CROSS-SP model, because vocal and mixed
audio actually share the same modality and only have dif-
ferent content. An extensive grid search for various combi-
nations of �n is left to future research.

4. EXPERIMENTS AND RESULTS

4.1 Dataset and Training Details
We used a filtered version of Million Song Dataset (MSD)
[47] for the vocal embedding learning. It contains 4,389
singers with 10 to 20 vocal songs 1 . The audio tracks were
ensured to include vocal segments using a singing voice
detector [48]. For each singer, we used 3 songs for valida-
tion, 2 songs for test, and the remaining 5 to 15 songs for
training (the test songs were used only for internal evalu-
ation). For vocal source separation, we used the Spleeter
vocals/accompaniment separation model from Deezer [8].

To train the vocal embedding models, we used an SGD
optimizer with the initial learning rate of 0.01, decay rate
of 1e�6 and the Nesterov momentum. We empirically
chose to randomly generate 1200 batches of 25 triplets per
epoch. The training is stopped when there is no decrease of
validation loss for 20 epochs, and took about 100 epochs.

4.2 Task 1: Singer Identification
We first evaluate the cross-domain vocal embedding for
singer identification. The task predicts the correct singer of
the query audio among a list of candidate singer models.

1 We used artist labels in MSD and assumed that artists of songs that
contain vocal sounds correspond to “singers” in the experiment.

Figure 3. Test scenarios for the singer identification task.

4.2.1 Experiment Settings
We chose 300 singers who have 20 vocal songs from MSD,
which are unseen in the training phase. We built the singer
models by averaging the embedding vectors from vocal
segments of 15 training songs. A query was also computed
as an average of the embedding vectors from each of the
remaining 5 songs, resulting in a total of 1,500 queries.
Since we have two encoders to extract vocal embedding
vectors (fm() and fv()), singer models and queries can be
formed with a different combination. We investigated the
following four possibilities for evaluation:

• M: takes mixed audio with fm(·)
• V: takes isolated vocal with fv(·) but, in the MIXED

model, it takes isolated vocal with fm(·)
• [M+V]: takes both isolated vocal and mixed audio with
fm(·) and fv(·), and computes the sum of the two em-
bedding vectors

• [M,V]: takes both isolated vocal and mixed audio with
fm(·) and fv(·), and concatenates the two embedding
vectors

The entire test scenarios with the different combinations
of models and queries are illustrated in Figure 3. They in-
clude not only single-domain tests where the singer mod-
els and queries are formed from the same encoders (M�!M,
V�!V, [M+V]�![M+V], [M,V]�![M,V]) but also cross-
domain tests where the singer models and queries are
formed from different encoders (M�!V, V�!M). We used the
cosine distance between the models and queries to identify
the singer.

4.2.2 Results
Figures 4 shows the singer identification results given the
three training models in the 6 test scenarios. Each of the
bar graphs shows top-1 and top-5 accuracy. In general, the
CROSS-SP model significantly outperforms the CROSS
and MIXED models in most test scenarios. In the single-
domain querying tests (M�!M, V�!V), the CROSS model
shows notable improvement over the MIXED model, im-
plying that the encoder for mixed audio, fm(·), becomes
more discriminative when it is jointly trained with the en-
coder for isolated vocal, fv(·). This result is not commonly
observed in cross-modal embedding research. The differ-
ence is presumably attributed to the fact that we use the
same modality of audio data although the domains are
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Figure 4. Singer identification result. The filled bars in-
dicate top-1 accuracy while the blank bars indicate top-5
accuracy

Model Space R@5 R@10 Pr@5 Pr@10 mAP

MIXED

M 0.1014 0.1519 0.1217 0.0918 0.1176
V 0.0499 0.0757 0.0598 0.0454 0.0589

[M+V] 0.1015 0.1515 0.1218 0.0909 0.1200
[M,V] 0.1139 0.1689 0.1367 0.1013 0.0713

CROSS

M 0.1218 0.1874 0.1462 0.1124 0.1523
V 0.0971 0.1501 0.1165 0.0901 0.1178

[M+V] 0.1215 0.1893 0.1458 0.1136 0.1499
[M,V] 0.1375 0.2010 0.1650 0.1206 0.1672

X-SP

M 0.1617 0.2410 0.1940 0.1446 0.1979
V 0.1079 0.1689 0.1295 0.1013 0.1350

[M+V] 0.1625 0.2408 0.1950 0.1445 0.1974
[M,V] 0.1817 0.2651 0.2180 0.1591 0.2211

Table 1. Results from the query-by-singer task.

different. The single-domain querying tests are improved
further in the CROSS-SP model. This validates that the
structure-preserving triplet loss improves the arrangement
of similar items on both embedding spaces.

In the cross-domain querying tests (M�!V, V�!M), the
CROSS and CROSS-SP models show little difference.
This indicates that the CROSS-SP model maintains the
similarity between the cross-domains despite the addi-
tional loss terms. On the other hand, the MIXED model
shows poor performance. This is expected because the
model was not trained to handle isolated vocals and mixed
at the same time.

In the combination querying tests, we can observe an
interesting result that the concatenation of the two embed-
ding vectors consistently increases the accuracy in all mod-
els. This indicates that musical sounds other than isolated
vocals provide additional information to identify singers.
This make senses in that artists are often associated with
a particular style or genre of music. In the meantime, the
sum of the two embedding vectors did not help improving
the accuracy in all models.

4.3 Task 2: Query-by-Singer
A follow-up task using the vocal embeddings is to retrieve
songs with the singer information of a query song.

4.3.1 Experiment Settings
We used the same 300 singers from the singer identifica-
tion task above. For each singer, we chose 6 songs to in-
clude in the dataset to be retrieved and 4 songs as queries.

Figure 5. The model structure for the vocal tagging task
using transfer learning with the vocal embedding models.

This results in 1800 songs in the search space and 1200
queries. We represented all queries and retrieved songs as
an average of the vocal embedding vectors, and calculated
the similarity using the cosine distance.

We evaluated the models using Recall-at-k(R@k),
Precision-at-k(Pr@k) and mean average precision (mAP).
R@k represents how many songs among the relevant songs
are retrieved, which is songs from the same artist in this
case. It is the ratio of the number of relevant songs in
top-k similar songs over all relevant songs, in our case, 6.
Pr@k is a metric which shows how many items are rele-
vant among top-k similar songs. For both metrics, we used
5 and 10 for k. The last metric is mAP, which counts the
rank of every relevant song. We tested mixed only embed-
ding space (M), isolated vocal embedding space (V) and
concatenated space ([M,V]) for all three strategies. For
the MIXED strategy, the same mixed encoder is used for
processing isolated vocal too.

4.3.2 Results
Table 1 summarizes the results with the three metrics. The
general trend is similar to that in the singer identifica-
tion task; the vocal embedding space from mixed audio
(M) slightly outperforms that from isolated vocals (V) in
all three models, and the concatenated embedding space
([M,V]) improves the performance further. Among the
three models, CROSS-SP performs the best.

4.4 Task 3: Transfer Learning to Vocal Tagging
In this task, we evaluate the generalization capability of
the vocal embedding models trained in the previous sec-
tion for a downstream task. For this purpose, we used the
K-pop Vocal Tag (KVT) dataset designed for music auto-
tagging focusing on singing voice [11]. It consists of 6,787
vocal segments from K-pop music tracks. They are an-
notated with 42 semantic tags which describe various vo-
cal characteristics in the categories of pitch range, timbre,
playing techniques, and gender. A subset of the tag labels
are shown in Figure 5. Since the vocal tags are also associ-
ated with different styles and identities of singers, we hy-
pothesize that the pre-trained vocal embedding space will
be useful for the vocal tagging task and thus the transfer
learning is effective.
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Models Space AUC F1 Prec. Recall
Baseline - 0.7116 0.7198 0.6132 0.7661
MIX M 0.7338 0.7393 0.6495 0.8013
CROSS M 0.7336 0.7340 0.6459 0.8046
CROSS V 0.7406 0.7392 0.6511 0.8007
CROSS [M,V] 0.7449 0.7431 0.6531 0.8052
CROSS-SP M 0.7376 0.7383 0.6457 0.8054
CROSS-SP V 0.7401 0.7414 0.6575 0.7751
CROSS-SP [M,V] 0.7529 0.7469 0.6617 0.8186

Table 2. Result from the vocal tagging task using transfer
learning with the vocal embedding models.

4.4.1 Experiment Settings
Figure 5 depicts the transfer learning setting for vocal tag-
ging. We first extract embedding vectors using two pre-
trained encoders. The mixed audio encoder, fm(·), is ob-
tained from all three models (MIX, CROSS and CROSS-
SP) whereas the isolated vocal encoder, fv(·), is from the
CROSS and CROSS-SP models only. Either one or the
concatenation of the embedding vectors is used as an input
feature vector of a classifier that consists of two fully con-
nected layers (64 and 42 units) with the ReLU activation.
The output layer takes the sigmoid function for multi-label
classification. The classifier head is trained with the binary
cross-entropy loss between the sigmoid predictions and the
tag labels.

We compared the transfer learning settings with a sim-
ple CNN model trained with the KVT dataset from scratch
as a baseline. The baseline model is a modified version of
the CNN model in the original study of the KVT dataset
[11]. The main difference is that the input segment size
changes from 129 frames to 107 frames to match the base-
line model to the transfer learning settings.

4.4.2 Results
Table 2 summarizes the vocal tagging accuracy measured
with AUC, F1 score, precision and recall. Compared to
the baseline model, the training learning models show in-
creased performances in all metrics. This indicates that the
vocal embedding learned with MSD generalizes to K-pop
music vocals even though if the music genre and the tar-
get task are different. In terms of input audio domain, iso-
lated vocals is more effective than mixed audio as shown
in the CROSS model (M and V) and CROSS-SP models
(M and V). This is contrasted to the results in two previ-
ous tasks (singer identification and query-by-singer), pre-
sumably because the vocal tagging task requires detailed
information about timbre and singing techniques which is
mainly found in vocal sounds. The results also show that
the concatenated embedding vector ([M,V]) further im-
proves the tag predictions. In particular, the CROSS-SP
model achieves the best performance. This result confirms
that the structure-preserving triplet-loss helps generaliza-
tion in learning vocal embedding.

4.5 Task 4: Transfer Learning to Artist Classification

Lastly, we conduct artist classification using the artist20
dataset [49]. The transfer learning setting is identical to
the task 3 except that the last layer is the softmax unit with
20 outputs that correspond to 20 artists. Similar to [49],

Models Space Eval. Level Accuracy F1
GMM [49] Frame 0.590
GMM [50]* Frame 0.541
CRNN [51] Segment 0.527
CROSS-SP M Segment 0.596 0.550
CROSS-SP V Segment 0.500 0.496
CROSS-SP [M+V] Segment 0.638 0.587
CROSS-SP [M,V] Segment 0.638 0.576
SVM [50]* Song 0.687
CRNN [51] Song 0.653
i-Vector [52] Song 0.8545 0.8459
CROSS-SP M Song 0.772 0.753
CROSS-SP V Song 0.894 0.891
CROSS-SP [M+V] Song 0.815 0.804
CROSS-SP [M,V] Song 0.806 0.795

Table 3. Comparison of artist classification using the
artist20 dataset (* [50] used 18 artists.)

we report average performance from 6-fold cross valida-
tion. Table 3 compares the CROSS-SP model to the base-
line [49, 50] and recent works [51, 52]. All of them used
album-level train-test split, which tends to be more chal-
lenging than song-level train-test split [51]. For compari-
son, we evaluated the input in two duration levels; One is
segment-level (3 seconds) and the other is song-level. The
song-level prediction was obtained by averaging the soft-
max activations from segment-level inputs through each
song. The results show that the CROSS-SP model out-
performs all previous works. In segment-level evaluation,
the summed ([M+V]) and concatenated ([M,V]) embed-
ding spaces are better than individual embedding spaces.
In song-level evaluation, on the other hand, using only vo-
cal embedding space (V) is better. This contradictory result
can be explained by the consistency of identifiable infor-
mation in vocal embedding space, which can restrain nois-
ier information from background music.

5. CONCLUSIONS

We presented a method to learn cross-domain embedding
spaces between isolated vocals and mixed audio by lever-
aging the state-of-the-art music source separation algo-
rithm. We show that the structure-preserving triplet-loss
used in training the deep neural networks greatly improves
the generalization capability when the embedding vectors
are used for singer identification, query-by-singer and vo-
cal tagging. Also, we showed the concatenation of the two
vocal embedding vectors from isolated vocals and mixed
audio are more effective in the tasks. This indicates that
unique genres or styles of artists are reflected on their in-
strumental sounds and thus mixed audio is complementary
to vocal sounds. We expect to extend the use of cross-
domain vocal embedding to various music applications
such as singer-focused music recommendation, vocal-to-
music cross retrieval and other vocal-centric MIR tasks.
We demonstrate an example at this link as a potential use
case 2 .

2 We implemented a vocal-to-accompaniment matching system
using the cross-domain vocal embedding vector. The demo au-
dio examples are found at https://khlukekim.github.io/
crossdomainembedding/
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ABSTRACT

Deep neural network based methods have been success-
fully applied to music source separation. They typically
learn a mapping from a mixture spectrogram to a set of
source spectrograms, all with magnitudes only. This ap-
proach has several limitations: 1) its incorrect phase recon-
struction degrades the performance, 2) it limits the mag-
nitude of masks between 0 and 1 while we observe that
22% of time-frequency bins have ideal ratio mask values
of over 1 in a popular dataset, MUSDB18, 3) its poten-
tial on very deep architectures is under-explored. Our pro-
posed system is designed to overcome these. First, we
propose to estimate phases by estimating complex ideal
ratio masks (cIRMs) where we decouple the estimation
of cIRMs into magnitude and phase estimations. Sec-
ond, we extend the separation method to effectively al-
low the magnitude of the mask to be larger than 1. Fi-
nally, we propose a residual UNet architecture with up
to 143 layers. Our proposed system achieves a state-
of-the-art MSS result on the MUSDB18 dataset, espe-
cially, a SDR of 8.98 dB on vocals, outperforming the
previous best performance of 7.24 dB. The source code
is available at: https://github.com/bytedance/
music_source_separation.

1. INTRODUCTION

Music source separation (MSS) is a task to separate audio
mixtures into individual sources such as vocals, drums, ac-
companiment, etc. MSS is an important topic for music
information retrieval (MIR) since it can be used for several
downstream MIR tasks including melody extraction [1],
pitch estimation [2], music transcription [3], music remix-
ing [4], and so on. MSS also has several direct applications
such as Karaoke and music remixing.

MSS methods can be categorized into signal processing
based methods and neural network based methods. Several
methods have been proposed for source separation such as

© F. Author, S. Author, and T. Author. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Author, S. Author, and T. Author, “Decoupling Magni-
tude and Phase Estimation with Deep ResUNet for Music Source Sepa-
ration”, in Proc. of the 22nd Int. Society for Music Information Retrieval
Conf., Online, 2021.

non-negative matrix factorizations (NMFs) [5]. NMF de-
composes a spectrogram into dictionaries and activations,
and separated sources can be obtained by multiplying acti-
vations with different dictionaries. Sparse coding was used
in [6], where audio signals are transformed into sparse
representations for source separation. Independent com-
ponent analysis (ICA) was used in [7] by assuming that
source signals are statistically independent. Other unsu-
pervised source separation methods include modeling av-
erage harmonic structures in [8]. Recently, neural network
based methods became popular and have achieved state-
of-the-art results in the MSS task. Those models include
fully connected neural networks [9], recurrent neural net-
works [10,11], convolutional neural networks [12–18], and
time-domain separation models [19–22].

First, several previously introduced MSS systems per-
form in the time-frequency domain and have achieved the
state-of-the-art performance. However, many conventional
spectrogram-based systems do not estimate the phases of
separated sources [12–16] and it upper bounds perfor-
mance of MSS systems as we will show in this paper. Re-
cently, several works were proposed to estimate the phases
of clean sources. For example, PhaseNet [23] treats the
phase estimation as a phase classification problem, and
PHASEN [24] estimates the phase of clean sources us-
ing a separate neural network. Complex ideal ratio masks
(cIRM) [25–27] were also used for MSS. However, di-
rectly predicting the real and imaginary parts of cIRMs can
be difficult, because the real and imaginary parts are sen-
sitive to signal shifts in the time domain. In this paper, we
propose to decouple the magnitude and phase for estimat-
ing cIRMs, which increases the performance of the source
separation systems. We also elaborately design the magni-
tude estimation submodule to increase the upper bound of
MSS systems.

Second, several magnitude or complex mask-based
methods [18] usually limit the magnitude of masks to 1.
Based on our analysis, this limits the upper bound of the
performance of MSS systems. In this work, we observe
that 22% time-frequency bins in the cIRM have magni-
tudes larger than 1. To predict magnitudes with cIRMs
larger than 1, we propose to combine the predictions of
mask and spectrogram where the spectrogram term is a
residual component to complement the mask prediction
term. Therefore, we combine the advantage of mask and
linear spectrogram based methods. All of mask magni-
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tudes, and spectrograms and phases are learnt by a neural
network.

Third, we show that the previous UNets [12, 16, 16, 18]
with up to tens of layers have limited separation results in
MSS. We show that the depth of neural networks are im-
portant for the MSS task. In this work, we propose a deep
residual UNet with 143 layers. We propose using resid-
ual encoder blocks, residual intermediate layers, and resid-
ual decoder blocks to build the 143-layer residual UNet.
We show that deep architectures significantly increase the
MSS performance.

This paper is organized as follows. Section 2 introduces
previous neural network based source separation systems
and their limitations. Section 3 introduces our proposed
system including the estimation of cIRMs and deep resid-
ual UNet. Section 4 shows experimental results and Sec-
tion 5 concludes this work.

2. BACKGROUNDS

In this paper, we denote the time-domain signal of a mix-
ture and a clean source as x 2 RL and s 2 RL, respec-
tively, where L is the number of samples of the signal.
Their short-time Fourier transforms (STFTs) are denoted
as X 2 RT⇥F and S 2 RT⇥F , respectively. T and F cor-
respond to the number of frames and frequency bins. Next,
we describe several source separation methods.

2.1 Approach 1: Direct Magnitude Prediction

In direct prediction approaches, a MSS system directly
learns a mapping from |X| to |S|, i.e., ˆ|S| = f(|X|).
Here, f can be any function approximator, such as a neural
network of the fully connected, convolutional or recurrent
types.

Typically, a direct prediction method does not estimate
the phases of separated sources. Instead, the phases of mix-
ture is used to recover the STFT of separated sources:

Ŝ = |Ŝ|ej\X , (1)

where \X 2 [�⇡,⇡]T⇥F is the phase of X . Finally, we
apply an inverse STFT F�1 on Ŝ to obtain the separated
waveform ŝ = F�1(Ŝ).

2.2 Approach 2: Magnitude Mask

In magnitude mask-based approaches, in order to perform
source separation, a system predicts a mask, |M̂ | 2 RT⇥F

�0 ,
that is applied to the input spectrogram element-wisely.

ˆ|S| = |M̂ |� |X|, (2)

The values of M̂ can be continuous in the case of us-
ing ideal ratio masks (IRMs). The range of IRMs is often
bounded between [0, 1], assuming that the magnitudes of
individual sources are smaller than the magnitudes of mix-
ture. Furthermore, the magnitude is assumed to be either 0
or 1 in the case of ideal binary mask (IBM).

Similar to direct magnitude prediction, in magnitude
mask-based methods, the phase of original mixture is used
as an approximation of the phase of the separated sources.

!(#, %)

'(#, %)
((#, %)∠*

'(#, %)

!(#, %)

((#, %)

(a) (b)

∠*

Figure 1. Illustrations of a source signal s, a noise n,
and mixture x on a complex plain. (a) is an example
when |M(t, f)| smaller than 1 and (b) is an example when
|M(t, f)| larger than 1.

2.3 Approach 3: Complex Mask

Accurate phase estimation becomes critical as the perfor-
mance of the systems in Section 2.1 and 2.2 has improved.
Because of that, several works were proposed recently to
take the phase estimation into consideration in the model.
One ambitious approach is to directly predicting the com-
plex STFT, as an extension of the direct magnitude predic-
tion towards phase [27]. However, accurate prediction of
a complex STFT is challenging because the estimation of
real and imaginary parts of a complex STFT is more dif-
ficult than the estimation of the magnitude. As an alterna-
tive, many methods have been introduced to predict com-
plex masks of mixture STFT [25–27]. In PhaseNet [23]
and PHASEN [24], the authors proposed to predict the
phases of signals independently from the magnitudes.

2.4 Out-of-Phase and Masks

In this work, we adopt cIRM-based methods for source
separation due to their superior performance in phase es-
timation. A complex mask M 2 CT⇥F is calculated by:

M = S/X

=
Sr + iSi

Xr + iXi

=
SrXr + SiXi + i(SiXr � SrXi)

X2
r +X2

i

,

(3)

where Xr, Sr are real parts of X and S respectively, and
Xi, Si are imaginary parts of X and S respectively. The
perfect separation of S from X can be obtained by:

S = MX

= |M ||X|ej(\M+\X).
(4)

Equation (4) shows that the separation of S from X in-
cludes a magnitude scaling and a phase rotation opera-
tion. The magnitude of cIRM (|M |) controls how much the
magnitude of X should be scaled, and the angle of cIRM
(\M ) controls how much the angle of X should be rotated.

We now introduce an additive noise model, i.e., X =
S + N , which is illustrated in Fig. 1. Here, we focus
on each time-frequency bin of STFTs of source, noise,
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Table 1. The empirical upper bounds of MSS systems on MUSDB18. ‘acc.’ indicates accompaniment. On the top row,
numbers indicate the limit of the magnitude masks.

Mixture IBM IRM (1) IRM (inf) cIRM (1) cIRM (2) cIRM (5) cIRM (10) cIRM (inf)

vocals -5.69 10.59 10.04 10.42 19.84 31.02 41.04 47.62 54.50
acc. -5.68 16.10 15.31 15.97 26.54 37.62 47.33 53.51 60.63
bass -6.36 7.17 6.05 6.07 17.99 27.88 37.86 44.30 54.12

drums -4.30 8.75 8.03 8.61 19.10 30.38 39.91 46.45 56.08
other -4.92 8.20 7.28 7.37 18.97 28.91 39.08 45.64 56.00

Figure 2. cIRMs of vocals, accompaniment, bass, drums, other, and all sources, on the complex 2D plain. Unit circles are
drawn in red.

and mixture (S(t, f), N(t, f), and X(t, f), respectively).
Fig. 1 (a) shows an example where the magnitude of cIRM
|M(t, f)| is smaller than 1. This is modelled well in the ex-
isting methods where the ranges of complex mask is bound
to [0, 1]. However, as illustrated in Fig. 1 (b), |M(t, f)| can
be larger than 1. As in the figure, this may happen when
S(t, f) and N(t, f) are out of phase, since that makes the
magnitude of mixture to be smaller than that of (individual)
signal.

2.5 Empirical analysis of the effect of bounded
magnitude mask

In this section, we empirically investigate the upper bound
of the performance when the magnitude mask is bounded
to be < 1, the common assumption in many previous meth-
ods. We use signal-to-distortion ratio (SDR) [28] as an
evaluation metric, which is defined as follow:

SDR(s, ŝ) = 10log10

||s||2

||ŝ� s||2 . (5)

A higher SDR indicates better separation results, and vice
versa. Ideally, a perfect separation will lead to infinite
SDR. We evaluate the upper bound of systems on the vo-
cals, accompaniment, bass, drums and other instruments
from the MUSDB18 dataset [29].

The first column of Table 1 shows the SDRs of using
the mixture without separation as separated sources. The
second column (IBM) shows the upper bound of the perfor-
mance when IBMs are used. According to the third column
(IRM (1)), using IRMs whose magnitudes are bounded in
[0, 1] has slightly lower upper bounds compared to those
of IBM. IRM uses the phases of mixture but not the phases
of clean sources for separating sources so the upper bound
SDR is limited. Unbounded IRM (IRM (0, inf), the fourth
column) shows a small improvement over bounded IRM,
but not significantly.

Compared to IBM, IRM (1) and IRM (inf), the five
cIRM columns show that the upper bounds are signif-
icantly higher when correct phase information is used.
The upper bounds of cIRM (1) is higher than IRM (1)
by around 10 dB. The improvement within cIRMs is also
dramatic – only by increasing the limit from cIRM (1) to
cIRM (2), the upper bounds increase by more than 9.89 dB
for all the instruments. When magnitude mask is un-
bounded, the SDR of cIRM (inf) is infinite in theory. Con-
sidering the numerical stability when calculating SDRs, we
add a small ✏ to the denominator of (5). We observed the
SDRs of cIRM (inf) are higher than 50 dB for all the in-
struments.

2.6 Distribution of cIRMs

In this section, we visualize the distribution of cIRMs to
show that there are much space to improve previous MSS
systems. Fig. 2 shows the cIRMs of vocals, accompa-
niment, bass, drums, other and all sources. The horizon-
tal and vertical axes show the real and imaginary parts of
cIRMs calculated by (3), where each point in Fig. 2 cor-
responds to a M(t, f). The unit circle shown in Fig. 2
corresponds to masks with magnitude values equal to 1.
Fig 2 from left to right shows the cIRM distribution of
vocals, accompaniment, bass, drums, other instruments,
and all sources. It can be seen that there are many cIRMs
that having magnitudes larger than 1. The ratio of cIRMs
have magnitudes larger than 1 for vocals, accompaniment,
bass, drums and others are 20.3%, 34.5%, 6.1%, 26.9%
and 13.9% respectively. Along with the analysis in Sec-
tion 2.5, this observation motivates our work to extend the
bounded mask estimation methods to unbound mask esti-
mation methods.

Fig. 2 also shows that, the phases of cIRMs dis-
tribute evenly in all directions. However, spectrogram-
based methods assume that the phases of cIRMs are all 0.
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This observation further justifies to predict the phases in a
MSS system.

3. PROPOSED SYSTEM

In this section, we propose a MSS system that incorpo-
rates phase estimation that is based on the proposed decou-
pling of magnitude and phase (Section 3.1). Furthermore,
to overcome the limit of bounded magnitude mask as dis-
cussed in Section 2, we propose a modification to extend
the mask estimation method that allows the magnitude of
the resulting mask be larger than 1 (Section 3.2). Finally,
we propose a deep Residual UNet with 143 layers, which
is the first MSS architectures that is deeper than a hundred
layers (Section 3.3). All the proposed systems are trained
with a L1-loss that is computed on the waveform domain
as illustrated in Figure 3.

3.1 Decoupling Magnitude and Phase for cIRM
Estimation

Unlike previous works that directly predict real and imag-
inary parts of masks [18, 25], we propose to decouple the
magnitude and phase estimation for MSS so that we can
optimize their designs separately. We denote the com-
plex mask to estimate as M̂ 2 CT⇥F . As a part of the
solution, our system outputs a bounded magnitude mask
M̂mag 2 RT⇥F whose value is in [0, 1]. In practice, it is im-
plemented by applying sigmoid function. Our system also
outputs two more tensors, P̂r 2 RT⇥F and P̂i 2 RT⇥F .
Here, P̂r and P̂i are real and imaginary parts of M̂ , re-
spectively. Then, instead of calculating the angle \M̂ di-
rectly, we calculate its cosine value cos\M̂ and sine value
sin\M̂ using P̂r and P̂i as follows:

cos\M̂ = P̂r/

q
P̂r

2
+ P̂i

2

sin\M̂ = P̂i/

q
P̂r

2
+ P̂i

2
.

(6)

Then, we estimate the real and imaginary parts of cIRM
by:

M̂r = M̂magcos\M̂
M̂i = M̂magsin\M̂

(7)

The cIRM M̂ = M̂r + jM̂i is a complex tensor, and is
used to separate a target source from X by (4) which in-
volves a magnitude scaling and a phase rotation operation.
Finally, we apply an inverse STFT to obtain the separated
waveform.

3.2 Combination of Bounded Mask Estimation and
Direct Magnitude Prediction

In previous works we show that directly predicting the un-
bound linear magnitude |Ŝ| lead to the underperformance
of the source separation system. To overcome the limit
of the performance discussed in Section 2, we propose to
combine a bounded mask and direct magnitude prediction
to estimate the magnitude of cIRMs. The motivation is to

use direct magnitude prediction as residual components,
one that complements the bounded magnitude mask. This
is implemented as follow:

|Ŝ| = relu(M̂mag � |X|+ Q̂) (8)

where Q̂ 2 RT⇥F is the direct magnitude prediction. In
this way, we take the advantages of both of the methods.
The ReLU operation ensures that the predicted magnitude
is always larger than 0. The estimation of phase \M̂ by
using P̂r and P̂i are the same as the one in Section 3.1.
Then, the separated STFT can be obtained by:

Ŝ = |Ŝ|ej(\M̂+\X), (9)

where |Ŝ| is calculated by Eq. (8).
In total, the our proposed MSS system contains four

outputs: M̂mag, Q̂, P̂r and P̂i. All of those outputs share the
same backbone architecture and apply an individual linear
layer to obtain their outputs. We use sigmoid non-linearity
to predict M̂mag to ensure they have values between 0 and
1. Fig. 3 shows the structure of our proposed method.

3.3 Residual UNet

In this section, we introduce deep residual UNets with hun-
dreds of layers for MSS, which is at least 4 times deeper
than previous UNet models [12, 16, 18].

We first introduce a baseline UNet with 33 layers. The
33-layer UNet consists of 6 encoder and 6 decoder lay-
ers. Each encoder layer consists of two convolutional lay-
ers and a downsampling layer. Each decoder layer con-
sists of one transposed convolutional layer for upsampling
and two convolutional layers. Finally, three additional con-
volutional layers are added after decoder layers. In total,
there are 33 convolutional layers.

Next, we introduce a 143-layer residual UNet. In build-
ing a residual UNet with hundreds of layers, we use resid-
ual encoder blocks (REB) and residual decoder blocks
(RDB) to increase its depth. Fig. 3 shows the architecture
of our proposed residual UNet where we use 6 REBs and
6 RDBs. Each REB consists of 4 residual convolutional
blocks (RCB) as shown in Fig. 4 (a). Each RCB consists of
of two convolutional layers with kernel sizes 3⇥3 as shown
in Fig. 4 (c). A shortcut connection is added between the
input and the output of a RCB. A batch normalization [30]
and a leaky ReLU non-linearity [31] with a negative slope
of 0.01 is applied before convolutional layers following the
pre-act residual network configuration [32]. An 2 ⇥ 2 av-
erage pooling layer is applied after each REB to reduce the
feature map size. Each REB consists of 8 convolutional
layers.

The blocks in the decoder (RDBs) are symmetric to
those in the encoder (REB). Each RDB consists of a trans-
posed convolutional layer with a kernel size 3 ⇥ 3 and
stride 2 ⇥ 2 to upsample feature maps, followed by four
RCBs as shown in Fig. 4 (b). Each RDB consists of 9
convolutional layers, including 8 convolutional layers and
1 transposed convolutional layer. To further increase the
representation ability of the residual UNet, we introduce
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Figure 3. The proposed MSS system with residual blocks.
The details of REB, RDB, and RCB are illustrated in Fig-
ure 4.

REB, 32

REB, 64

REB, 128

REB, 256

REB, 384

REB, 384

RDB, 384

RDB, 384

RDB, 256

RDB, 128

RDB, 64

RDB, 32

ICB, 32

Conv2d, 8

BN, 1025

ICB, 384

ICB, 384

ICB, 384

ICB, 384
RCB

RCB

RCB

RCB

Avg pool, 2 x 2

REB

RCB

RCB

RCB

RCB

TransposeConv

RDB

BN

Leaky_relu

Conv

BN

Leaky_relu

Conv

Conv

Encoder

layers

Decoder

layers

Intermediate

layers

Loss

RCB

!

!

"

#$ %&%'! %'"

()

Eq. (9)∠#M

∠!

∠ ()
()
-̂

Eq. (7)

Eq. (10)

(a) (b)
(c)

Figure 4. (a) Residual encoder block (REB), (b) resid-
ual decoder block (RDB), (3) residual convolutional block
(RCB).

intermediate convolutional blocks (ICBs) between REBs
and RDBs as shown in Fig. 3. We use 4 ICBs, where each
ICB consists of 8 convolutional layers which has the same
architecture as the REB except the pooling layer.

After RDBs, an additional ICB with 8 layers and a fi-
nal convolutional layer with J output channels are applied.
For example, for a stereo separation task where only the
magnitude of masks |M̂ | is used as a baseline, J is set to
2. Similarly, if the decoupling of magnitude and phase are
predicted (as in Section 3.1), J is set to 6 (two channels
of |M̂ |, P̂r and P̂i). In our complete system in Section
3.2, where the combination of magnitude mask and direct
magnitude prediction is used, J is set to 8 (two channels of
|M̂ |, |Q̂|, P̂r and P̂i). In total, there are 143 convolutional
layers in our proposed residual UNet.

4. EXPERIMENTS

4.1 Dataset

We run an experiment to demonstrate the proposed method
on the MUSDB18 dataset [29]. The MUSDB18 dataset
includes separate vocals, accompaniment, bass, drums,
and other instruments. Its training/validation sets contain
100/50 full tracks, respectively. The training set is further
decomposed into 86 training songs and 14 songs for devel-
opment and evaluation. All songs are stereo with a sam-
pling rate of 44.1 kHz. We release the source code of our
work online. 1

4.2 Data Processing

We split audio recordings into 3-second segments. Since
the proposed system is convolutional layer-based UNet, it
does not require previous states to calculate current pre-
dictions, making our system to be fully parallelizable. For
data augmentation, we apply mix-audio data augmentation
that is used in [33] to augment vocals, accompaniment,
drums, and other instruments which randomly mix two 3-
second segments from a same source as a new 3-second
segment for training. The motivation is that, the addition
of two sources also belongs to that source. We do not ap-
ply mix-audio data augmentation to bass because bass are
usually monophonic in a song. Then, we create mixtures x
by summing segments after mix-audio augmentation from
different sources. We apply short-time Fourier transform
(STFT) on x with a Hann window size of 2048 and a hop
size of 441 samples, corresponding to the hop size time of
10 ms.

During training of all the proposed and baseline sys-
tems, we set batch size to 16 and apply Adam opti-
mizer [34]. The learning rate is set to 0.001, 0.0005,
0.0001, 0.0002, and 0.0005 for vocals, accompaniment,
bass, drums and other instruments. Different learning rates
are used because some sources such as drums are easier to
be overfitted. Those learning rates are tuned on the val-
idation set of the MUSDB18 dataset. Learning rates are
multiplied by a factor of 0.9 after every 15,000 steps. MSS
systems are trained for 300,000 steps.

1 Will be released after acceptance.
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Table 2. Comparison of SDRs of previous and our pro-
posed MSS systems.

vocals bass drums other acc.

Open-Unmix [14] 6.32 5.23 5.73 4.02 -
Wave-U-Net [22] 3.25 3.21 4.22 2.25 -

Demucs [21] 6.29 5.83 6.08 4.12 -
Conv-TasNet [19] 6.81 5.66 6.08 4.37 -

Spleeter [16] 6.86 5.51 6.71 4.55
D3Net [35] 7.24 5.25 7.01 4.53 13.52

ResUNetDecouple+ 8.98 6.04 6.62 5.29 16.63

Table 3. SDRs of the proposed systems (2nd – 7th rows)
in a comparison to the previous system, UNetPhase.

vocals bass drums other acc.

UNetPhase [25] 7.45 5.42 6.51 4.86 15.23

UNet 7.20 4.79 5.94 4.49 14.69
UNetDecouple 7.65 5.00 6.29 4.71 15.21

UNetDecouple+ 7.81 5.28 6.47 5.00 15.32

ResUNet 7.79 5.00 6.20 5.13 16.15
ResUNetDecouple 8.72 5.71 6.50 5.20 16.39

ResUNetDecouple+ 8.98 6.04 6.62 5.29 16.63

4.3 Result 1: Comparison with Previous Methods

We compare our proposed system with several systems in-
cluding previous time domain and frequency domain based
systems. Signal-to-Distortion Ratio (SDR) [28] is used as
evaluation metric. The museval toolbox [36] is used to cal-
culate MSS metrics.

Table 2 shows the SDRs of previous MSS systems as
well as those of our best performing system. The first
row shows the performance of Open-Unmix [14], which
consists of three bi-directional long short-term memory
layers achieves a vocals SDR of 6.32 dB. The second
row shows that the Wave-U-Net [22] system trained in
the time-domain achieve slightly lower SDRs than other
time-frequency domain systems. The third to to the eighth
rows show the results of Demucs [21], Conv-TasNet [19],
Spleeter [16], and D3Net [35]. Among the compared
methods, D3Net achieves the best vocals and drums SDRs
of 7.24 dB and 7.01 dB respectively. The Demucs achieves
the best bass SDR of 5.83 dB, and the Spleeter achieves the
best other SDR of 4.55 dB in previous works. As in the last
row of Table 2 , our proposed residual UNet with the de-
coupling and the combination of magnitude masks and di-
rect prediction significantly outperforms previous methods
in separating vocals, bass, other, and accompaniments.

4.4 Result 2: Ablation Study

In this section, we show the performances of our proposed
systems that partially incorporate our modification. We
also compare them with the system from [25], which we
call UNetPhase. We implement a UNetPhase with 33 lay-
ers.

In Table 3, UNet, UNetDecouple, and UNetDecouple+
are variants of a 33-layer UNet and ResUNet, ResUNet-

Decouple, ResUNetDecoup+ are variants of a 143-layer
residual UNet. UNet and ResUNet are models with magni-
tude masks only, i.e., phase is not considered in the model.
‘Decouple‘ indicates that the proposed decoupling of mag-
nitude and phase is applied. ‘+’ indicates the further im-
provement of combining the magnitude masks and direct
prediction as introduced in Section 3.2.

First, UNet, which only predicts the magnitude of
masks, performed slightly worse than UNetPhase. Here,
we observe the average improvement by predicting phase
is 0.57 dB.

Second, we can compare the trend within the row 2-4 or
the row 5-7. Both for UNet’s and ResUNet’s, decoupling
of the magnitude and phase improves the performance –
by 0.35 dB with UNet and 0.45 dB with ResUNet on aver-
age. The ‘+’ models shows further average improvements
of 0.2 dB and 0.196 dB with UNet and ResUNet, respec-
tively. This result indicates that combining bounded mask
estimation and direct magnitude prediction can improve
MSS.

Third, when the other conditions are fixed, ResUNet
always outperforms UNet for all source instruments. It
clearly demonstrates the effectiveness of a very deep ar-
chitecture in MSS. The average improvement of ResUNet
from UNet is 0.7 dB.

The results did not show a clear sign that the up-
per bound that we discussed in Section 2 is play-
ing a critical role in the current systems. For ex-
ample, for vocal/bass/drums/other/accompaniments, the
upper bounds of cIRM (1), i.e., UNetPhase, are
19.84/17.99/19.10/18.97/26.54 dB, all of which are more
than 10 dB higher than the performance of UNetPhase.
Compared to UNetPhase, UNetDecouple+, which is a case
of cIRM (inf), only slightly outperforms UNetPhase by
0.082 dB on average and did not perform better on bass
and drums.

5. CONCLUSION

In this paper, we investigated the music source separation
(MSS) task. We showed that previous MSS methods have
upper bound of the performance due to a strong assump-
tion on the magnitude of the masks. We also showed that
accurate phase estimation and unbound complex ideal ra-
tio masks (cIRMs) are important for MSS. Finally, we an-
alyzed the distribution of cRIMs for MSS and showed that
22% of cIRMs have magnitude larger than one. To over-
come the limits, We proposed to decouple the estimation
of magnitudes and phases. We also proposed to combine
bounded magnitude masks and direct prediction methods
for more flexible magnitude estimation. Finally, we pro-
posed a very deep MSS architecture, a residual UNet with
143 layers. In the experiment, we showed that our pro-
posed modifications improve the performance, achieving
an SDR of 8.98 dB for vocals in MUSDB18. In the future
work, we will explore a more effective approach to design
a MSS that solve the issues we analyzed better, especially,
the issue of the bounded magnitude masks.
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ABSTRACT

Artist similarity plays an important role in organizing,
understanding, and subsequently, facilitating discovery in
large collections of music. In this paper, we present a hy-
brid approach to computing similarity between artists us-
ing graph neural networks trained with triplet loss. The
novelty of using a graph neural network architecture is to
combine the topology of a graph of artist connections with
content features to embed artists into a vector space that
encodes similarity. To evaluate the proposed method, we
compile the new OLGA dataset, which contains artist simi-
larities from AllMusic, together with content features from
AcousticBrainz. With 17,673 artists, this is the largest aca-
demic artist similarity dataset that includes content-based
features to date. Moreover, we also showcase the scal-
ability of our approach by experimenting with a much
larger proprietary dataset. Results show the superior-
ity of the proposed approach over current state-of-the-art
methods for music similarity. Finally, we hope that the
OLGA dataset will facilitate research on data-driven mod-
els for artist similarity.

1. INTRODUCTION

Music similarity has sparked interest early in the Music
Information Retrieval community [1,2], and has since then
become a central concept for music discovery and recom-
mendation in commercial music streaming services.

There is however no consensual notion of ground-truth

for music similarity, as several viewpoints are relevant [2].
For instance, music similarity can be considered at several
levels of granularity; musical items of interest can be mu-
sical phrases, tracks, artists, genres, to name a few. Fur-
thermore, the perception of similarity between two mu-
sical items can focus either on (1) comparing descriptive

(or content-based) aspects, such as the melody, harmony,
timbre (in acoustic or symbolic form), or (2) relational

(sometimes called cultural) aspects, such as listening pat-
terns in user-item data, frequent co-occurrences of items in
playlists, web pages, et cetera.

© Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Filip Korzeniowski, Sergio Oramas,
and Fabien Gouyon, “Artist Similarity with Graph Neural Networks”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,

Online, 2021.

In this paper, we focus on artist-level similarity, and for-
mulate the problem as a retrieval task: given an artist, we
want to retrieve the most similar artists, where the ground-
truth for similarity is cultural. More specifically, artist sim-
ilarity is defined by music experts in some experiments,
and by the “wisdom of the crowd” in other experiments.

A variety of methods have been devised for computing
artist similarity, from the use of audio descriptors to mea-
sure similarity [3], to leveraging text sources by measuring
artist similarity as a document similarity task [4]. A signif-
icant effort has been dedicated to the study of graphs that
interconnect musical entities with semantic relations as a
proxy to compute artist similarity. For instance, in [5], user
profiles, music descriptions and audio features are com-
bined in a domain specific ontology to compute artist sim-
ilarity, whereas in [6], semantic graphs of artists are ex-
tracted from artist biographies.

Other approaches use deep neural networks to learn
artist embeddings from heterogeneous data sources and
then compute similarity in the resulting embedding
space [7]. More recently, metric learning approaches
trained with triplet loss have been applied to learn the em-
bedding space where similarity is computed [8–13].

In this work, we propose a novel artist similarity
model that combines graph approaches and embedding
approaches using graph neural networks. Our proposed
model, described in details in Sec. 2, uses content-based
features (audio descriptors, or musicological attributes)
together with explicit similarity relations between artists
made by human experts (or extracted from listener feed-
back). These relations are represented in a graph of artists;
the topology of this graph thus reflects the contextual as-
pects of artist similarity.

Our graph neural network is trained using triplet loss to
learn a function that embeds artists using content features
and graph connections. In this embedding space, similar
artists are close to each other, while dissimilar ones are
further apart.

To evaluate our approach (see Sec. 4), we compile a
new dataset from publicly available sources, with similar-
ity information and audio-based features for 17,673 artists,
which we describe in Sec. 3. In addition, we evaluate the
scalability of our method using a larger, proprietary dataset
with more than 136,731 artists.

2. MODELLING

The goal of an artist similarity model is to define a func-
tion s(a, b) that estimates the similarity of two artists—i.e.,
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yields a large number if artist a is considered similar to
artist b, and small number if not.

Many content-based methods for similarity estimation
have been developed in the last decades of MIR research.
The field has closely followed the state-of-the-art in ma-
chine learning research, with general improvements com-
ing from the latter translating well into improvements in
the former. Acknowledging this fact, we select our base-
lines based on the most recent developments: Siamese neu-
ral networks trained with variants of the triplet loss [9–13].
Building and training this type of models falls under the
umbrella of metric learning.

2.1 Metric Learning

The fundamental idea of metric learning is to learn a pro-
jection yv = f (xv) of the input features xv of an item v

into a new vector space; this vector space should be struc-
tured in a way such that the distances between points reflect
the task at hand. In our case, we want similar artists to be
close together in this space, and dissimilar artists far away.

There is an abundance of methods that embed items into
a vector space, many rooted in statistics, that have been
applied to music similarity [14]. In this paper, we use a
neural network for this purpose. The idea of using neural
networks to embed similar items close to each other in an
embedding space was pioneered by [15], with several im-
provements developed in the following decades. Most no-
tably, the contrastive learning objective—where two items
are compared to each other as a training signal—was re-
placed by the triplet loss [16, 17]. Here, we observe three
items simultaneously: the anchor item xa is compared to
a positive sample xp and a negative sample xn. With the
following loss formulation, the network is trained to pull
the positive close to the anchor, while pushing the negative
further away from it:

L (t) =
h
d (ya,yn)� d (ya,yp) +�

i+
,

where t denotes the triplet (ya,yp,yn), d (·) is a distance
function (usually Euclidean or cosine), � is the maximum
margin enforced by the loss, and [·]+ is the ramp function.

As mentioned before, state-of-the-art music similarity
models are almost exclusively based on learning deep neu-
ral networks using the triplet loss. We thus adopt this
method as our baseline model, which will serve as a com-
parison point to the graph neural network we propose in
the following sections.

2.2 Graph Neural Networks

A set of artists and their known similarity relations can
be seen as a graph, where the artists represent the nodes,
and the similarity relations their (undirected) connections.
Graph methods thus naturally lend themselves to model
the artist similarity problem [6]. A particular set of graph-
based models that has been gaining traction recently are
graph neural networks (GNNs), specifically convolutional

GNNs. Pioneered by [18], convolutional GNNs have be-
come increasingly popular for modelling different tasks

Fully Connected
Backend

Graph Convolutional
Frontend

Triplet LossInput Features

Figure 1: Overview of the graph neural network we
use in this paper. First, the input features xv are first
passed through a front-end of graph convolution layers (see
Sec. 2.2.2 for details); then, the output of the front-end is
passed through a traditional deep neural network back-end

to compute the final embeddings yv of artist nodes. Based
on these embeddings, we use the triplet loss to train the
network to project similar artists (positive, green) closer
to the anchor, and dissimilar ones (negative, red) further
away.

that can be interpreted as graphs. We refer the interested
reader to [19] for a comprehensive and historical overview
of GNNs. For brevity, we will focus on the one specific
model our work is based on—the GraphSAGE model in-
troduced by [20] and refined by [21]—and use the term
GNNs for convolutional GNNs.

2.2.1 Model Overview

The GNN we use in this paper comprises two parts: first,
a block of graph convolutions (GC) processes each node’s
features and combines them with the features of adjacent
nodes; then, another block of fully connected layers project
the resulting feature representation into the target embed-
ding space. See Fig. 1 for an overview.

We train the model using the triplet loss, in an iden-
tical setup as the baseline model. Viewing the proposed
GNN from this angle, the only difference of the GNN from
a standard embedding network is the additional Graph

Convolutional Frontend. In other words, if we remove
all graph convolutional layers, we arrive at our baseline
model, a fully connected Deep Neural Network (DNN).

2.2.2 Graph Convolutions

The graph convolution algorithm, as defined in [20, 21],
features two operations which are not found in classic neu-
ral networks: a neighborhood function N (·), which yields
the set of neighbors of a given node; and an aggregation

function, which computes a vector-valued aggregation of a
set of input vectors.

As a neighborhood function, most models use guided or
uniform sub-sampling of the graph structure [20–22]. This
limits the number of neighbors to be processed for each
node, and is often necessary to adhere to computational
limits. As aggregation functions, models commonly apply
pooling operators, LSTM networks, or (weighted) point-
wise averages [20].

In this work, we take a simple approach, and use point-
wise weighted averaging to aggregate neighbor representa-
tions, and select the strongest 25 connections as neighbors.
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Figure 2: Tracing the graph to find the necessary input
nodes for embedding the target node (orange). Each graph
convolution layer requires tracing one step in the graph.
Here, we show the trace for a stack of two such layers.
To compute the embedding of the target node in the last
layer, we need the representations from the previous layer
of itself and its neighbors (green). In turn, to compute these
representations, we need to expand the neighborhood by
one additional step in the preceding GC layer (blue). Thus,
the features of all colored nodes must be fed to the first
graph convolution layer.

If weights are not available, we use the simple average of
random 25 connections. This enables us to use a single
sparse dot-product with an adjacency matrix to select and
aggregate neighborhood embeddings. Note that this is not
the full adjacency matrix of the complete graph, as we se-
lect only the parts of the graph which are necessary for
computing embeddings for the nodes in a mini-batch.

Algorithm 1 describes the inner workings of the graph
convolution block of our model. Here, the matrix X 2
RD⇥V stores the D-dimensional features of all V nodes,
the symmetric sparse matrix A 2 RV⇥V defines the con-
nectivity of the graph, and N (v) is a neighborhood func-
tion which returns all connected nodes of a given node v

(here, all non-zero elements in the v
th row of A).

To compute the output of a graph convolution layer for
a node, we need to know its neighbors. Therefore, to com-
pute the embeddings for a mini-batch of nodes V , we need
to know which nodes are in their joint neighborhood. Thus,
before the actual processing, we first need to trace the
graph to find the node features necessary to compute the
embeddings of the nodes in the mini-batch. This is shown
in Fig. 2, and formalized in lines 1–4 of Alg. 1.

At the core of each graph convolution layer k 2
[1 . . .K] there are two non-linear projections, parameter-
ized by projection matrices Qk 2 RHQk

⇥D and Wk 2
RHWk

⇥(HQ+D), and a point-wise non-linear activation
function �, in our case, the Exponential Linear Unit func-
tion (ELU). Here, HQk and HWk are the output dimen-
sions of the respective projections. The last output, XK 2
RHWK

⇥V , holds the l2-normalized representations of each
node in the mini-batch in its columns. It is fed into the
following fully connected layers, which then compute the
output embedding yv of a node. Finally, these embeddings
are used to compute the triplet loss and back-propagate it
through the GNN.

Algorithm 1: GRAPH CONVOLUTION BLOCK

Input : Node input features X.
Sparse connectivity matrix A.
Nodes in mini-batch V ⇢ [1 . . . V ].

Output: Node output representation XK

. Trace back input nodes for each layer.
1 VK  V ;
2 for k = K � 1 . . . 0 do
3 Vk  

S
v2Vk+1

N (v) ;
4 end
. Select input features for first layer. We use M[r, c] to

denote selecting r rows and c columns from a matrix
M.

5 X0 = X [·,V0] ;
6 for k = 1 . . .K do
7 Ak = A [Vk�1,Vk] ;
8 Nk = � (Qk ·Xk�1) ·Ak ;

9 Xk  �

✓
Wk ·


Nk

Xk�1 [·,Vk]

�◆
;

. l2-normalize embeddings of each output node.

10 Xk  
h

xv
kxvk2

| v 2 Vk

i
;

11 end
12 return XK

3. DATASETS

Many published studies on the topic of artist similarity are
limited by data: datasets including artists, their similarity
relations, and their features comprise at most hundreds to a
few thousand artists. In addition, the quality of the ground
truth provided is often based on 3rd party APIs with ob-
scure similarity methods like the last.fm API, rather than
based on data curated by human experts.

For instance, in [6], two datasets are provided, one with
~2k artists and similarity based on last.fm relations, and
another with only 268 artists, but based on relations cu-
rated by human experts. In [4], a dataset of 1,677 artists
based on last.fm similarity relations is used for evaluation.
Also, the dataset used in the Audio Music Similarity and
Retrieval (AMS) MIREX task, which was manually cu-
rated, contains data about only 602 artists. Other works,
like [8], use tag data shared among tracks or artists as a
proxy for similarity estimation—which can be considered
as a weak signal of similarity—and use a small set of 879
human-labeled triplets for evaluation.

For all these issues regarding existing datasets, we com-
piled a new dataset, the OLGA Dataset, which we describe
in the following.

3.1 The OLGA Dataset

For the OLGA (“Oh, what a Large Graph of Artists”)
dataset, we bring together content-based low-level features
from AcousticBrainz [23], and similarity relations from
AllMusic. Assembling the data works as follows:

1. Select a common pool of artists based on the unique
artists in the Million Song Dataset [24].
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2. Map the available MusicBrainz IDs of the artists
to AllMusic IDs using mapping available from
MusicBrainz.

3. For each artist, obtain the list of “related” artists
from AllMusic; this data can be licensed and ac-
cessed on their website. Use only related artists
which can be mapped back to MusicBrainz.

4. Using MusicBrainz, select up to 25 tracks for each
artist using their API, and collect the low-level fea-
tures of the tracks from AcousticBrainz.

5. Compute the track feature centroid of each artist.

In total, the dataset comprises 17,673 artists connected
by 101,029 similarity relations. On average, each artist is
connected to 11.43 other artists. The quartiles are at 3, 7,
and 16 connections per artist. The lower 10% of artists
have only one connection, the top 10% have at least 27.

While the dataset size is still small compared to in-
dustrial catalog sizes, it is significantly bigger than other
datasets available for this task. Its size and available fea-
tures will allow us to apply more data-driven machine
learning methods to the problem of artist similarity. 1

For our experiments, we partition the artists following
an 80/10/10 split into 14,139 training, 1767 validation, and
1767 test artists.

3.2 Proprietary Dataset

We also use a larger proprietary dataset to demonstrate the
scalability of our approach. Here, explicit feedback from
listeners of a music streaming service is used to define
whether two artists are similar or not.

For artist features, we use the centroid of an artist’s
track features. These track features are musicological at-
tributes annotated by experts, and comprise hundreds of
content-based characteristics such as “amount of electric
guitar”, or “prevalence of groove”.

In total, this dataset consists of 136,731 artists con-
nected by 3,277,677 similarity relations. The number of
connections per artists is a top-heavy distribution with few
artists sharing most of the connections: the top 10% are
each connected to more than 134 others, while the bottom
10% to only one. The quartiles are at 2, 5, and 48 connec-
tions per artist.

We follow the same partition strategy as for the OLGA
dataset, which results in 109,383 training, 13,674 valida-
tion, and 13,674 test artists.

4. EXPERIMENTS

Our experiments aim to evaluate how well the embeddings
produced by our model capture artist similarity. To this
end, we set up a ranking scenario: given an artist, we col-
lect its K nearest neighbors sorted by ascending distance,
and evaluate the quality of this ranking. To quantify this,
we use normalized discounted cumulative gain [25] with

1 The procedure to assemble the dataset, including relevant metadata,
is available on https://gitlab.com/fdlm/olga/.

a high cut-off at K = 200 (“ndcg@200”). We prefer
this metric over others, because it was shown that at high
cut-off values, it provides better discriminative power, as
well as robustness to sparsity bias (and, to moderate de-
gree, popularity bias) [26]. Formally, given an artist a with
an ideal list of similar artists s (sorted by relevance), the
nDCGK of a predicted list of similar artists ŝ is defined
as:

nDCGK(a, ŝ, s) =

P
K

k=1 g(ŝk, a)d(k)P
K

k=1 g(sk, a)d(k)
,

where g(·, a), the gain, is 1 if an artist is indeed similar to
a, and 0 otherwise, and d(k) = log�1

2 (k+1) the discount-

ing factor, weights top rankings higher than the tail of the
list.

In the following, we first explain the models, their train-
ing details, the features, and the evaluation data used in our
experiments. Then, we show, compare and analyze the re-
sults.

4.1 Models

As explained in Sec. 2.2.1, a GNN with no graph convo-
lutional layers is identical to our baseline model (i.e. a
DNN trained using triplet loss). This allows us to fix-
ate hyper-parameters between baseline and the proposed
GNN, and isolate the effect of adding graph convolutions
to the model. For each dataset, we thus train and evaluate
four models with 0 to 3 graph convolutional layers.

The other hyper-parameters remain fixed: each lay-
ers in the graph convolutional front-end consists of 256
ELUs [27]; the back-end comprises two layers of 256
ELUs each, and one linear output layer with a 100 di-
mensions; we train the networks using the ADAM opti-
mizer [28] with a linear learning-rate warm-up [29] for
the first epoch, and following a cosine learning rate de-
cay [30] for the remaining 49 epochs (in contrast to [30],
we do not use warm-restarts); for selecting triplets, we ap-
ply distance-weighted sampling [31], and use a margin of
� = 0.2 in the loss; finally, as distance measure, we use
Euclidean distance between l2-normalized embeddings.

We are able to train the largest model with 3 graph con-
volutional layers within 2 hours on the proprietary dataset,
and under 5 minutes on OLGA, using a Tesla P100 GPU
and 8 CPU threads for data loading.

4.2 Features

We build artist-level features by averaging track-level fea-
tures of the artist’s tracks. Depending on the dataset, we
have different types of features at hand.

In the OLGA dataset, we have low-level audio features
as extracted by the Essentia library. 2 These features repre-
sent track-level statistics about the loudness, dynamics and
spectral shape of the signal, but they also include more ab-
stract descriptors of rhythm and tonal information, such as
bpm and the average pitch class profile. We select all nu-
meric features and pre-process them as follows: we apply

2 See https://essentia.upf.edu/streaming_extractor_music.html#
music-descriptors

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

353



element-wise standardization, discard features with miss-
ing values, and flatten all numbers into a single vector of
2613 elements.

In the proprietary dataset, we use numeric musicolog-
ical descriptors annotated by experts (for example, “the
nasality of the singing voice”). We apply the same pre-
processing for these, resulting in a total of 170 values.

Using two different types of content features gives us
the opportunity to evaluate the utility of our graph model
under different circumstances, or more precisely, features
of different quality and signal-to-noise ratio. The low-level
audio-based features available in the OLGA dataset are un-
doubtedly noisier and less specific than the high-level mu-
sical descriptors manually annotated by experts, which are
available in the proprietary dataset. Experimenting with
both permits us to gauge the effect of using the graph topol-
ogy for different data representations.

In addition, we also train models with random vectors

as features. For each artist, we uniformly sample a random
vector of the same dimension as the real features, and and
keep it constant throughout training and testing. This way,
we can differentiate between the performance of the real
features and the performance of using the graph topology
in the model: the results of a model with no graph con-
volutions is only due to the features, while the results of a
model with graph convolutions but random features is only
due to the usage of the graph topology.

4.3 Evaluation Data

As described in Section 3, we partition artists into a train-
ing, validation and test set. When evaluating on the vali-
dation or test sets, we only consider artists from these sets
as candidates and potential true positives. Specifically, let
Veval be the set of evaluation artists, we only compute em-
beddings for those, and retrieve nearest neighbors from this
set, and only consider ground truth similarity connections
within Veval.

This notion is more nuanced in the case of GNNs. Here,
we want to exploit the known artist graph topology (i.e.,
which artists are connected to each other) when comput-
ing the embeddings. To this end, we use all connections
between artists in Vtrain (the training set) and connections
between artists in Vtrain and Veval. This process is outlined
in Fig. 3.

Note that this does not leak information between train
and evaluation sets; the features of evaluation artists have
not been seen during training, and connections within the
evaluation set—these are the ones we want to predict—
remain hidden.

4.4 Results

Table 1 compares the baseline model with the proposed
GNN. We can see that the GNN easily out-performs the
DNN. It achieves an NDCG@200 of 0.55 vs. 0.24 on
the OLGA dataset, and 0.57 vs. 0.44 on the proprietary
dataset. The table also demonstrates that the graph topol-
ogy is more predictive of artist similarity than content-
based features: the GNN, using random features, achieves

Training artists

Evaluation artists

Training connections

Known evaluation connections

Evaluation Connections

Figure 3: Artist nodes and their connections used for train-
ing (green) and evaluation (orange). During training, only
green nodes and connections are used. When evaluating,
we extend the graph with the orange nodes, but only add
connections between validation and training artists. Con-
nections among evaluation artists (dotted orange) remain
hidden. We then compute the embeddings of all evaluation
artists, and evaluate based on the hidden evaluation con-
nections.

Dataset Features DNN GNN

OLGA Random 0.02 0.45
AcousticBrainz 0.24 0.55

Proprietary Random 0.00 0.52
Musicological 0.44 0.57

Table 1: NDCG@200 for the baseline (DNN) and the pro-
posed model with 3 graph convolution layers (GNN), using
features or random vectors as input. The GNN with real
features as input gives the best results. Most strikingly, the
GNN with random features—using only the known graph
topology—out-performs the baseline DNN with informa-
tive features.

better results than a DNN using informative features for
both datasets (0.45 vs. 0.24 on OLGA, and 0.52 vs 0.44 on
the proprietary dataset).

Additionally, the results indicate—perhaps to little
surprise—that low-level audio features in the OLGA
dataset are less informative than manually annotated high-
level features in the proprietary dataset. Although the pro-
prietary dataset poses a more difficult challenge due to
the much larger number of candidates (14k vs. 1.8k), the
DNN—which can only use the features—improves more
over the random baseline in the proprietary dataset (+0.44),
compared to the improvement (+0.22) on OLGA. These
are only indications; for a definitive analysis, we would
need to use the exact same features in both datasets.

Similarly, we could argue that the topology in the pro-
prietary dataset seems more coherent than in the OLGA
dataset. We can judge this by observing the performance
gain obtained by a GNN with random feature—which can
only leverage the graph topology to find similar artists—
compared to a completely random baseline (random fea-
tures without GC layers). In the proprietary dataset, this
performance gain is +0.52, while in the OLGA dataset,
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Figure 4: Results on the OLGA (top) and the proprietary
dataset (bottom) with different numbers of graph convolu-
tion layers, using either the given features (left) or random
vectors as features (right).

only +0.43. Again, while this is not a definitive analysis
(other factors may play a role), it indicates that the large
amounts of user feedback used to generate ground truth in
the proprietary dataset give stable and high-quality simi-
larity connections.

Figure 4 depicts the results for each model and feature
set depending on the number of graph convolutional lay-
ers used. (Recall that a GNN with 0 graph convolutions
corresponds to the baseline DNN.) In the OLGA dataset,
we see the scores increase with every added layer. This
effect is less pronounced in the proprietary dataset, where
adding graph convolutions does help significantly, but re-
sults plateau after the first graph convolutional layer. We
believe this is due to the quality and informativeness of the
features: the low-level features in the OLGA dataset pro-
vide less information about artist similarity than high-level
expertly annotated musicological attributes in the propri-
etary dataset. Therefore, exploiting contextual informa-
tion through graph convolutions results in more uplift in
the OLGA dataset than in the proprietary one.

Looking at the scores obtained using random features
(where the model depends solely on exploiting the graph
topology), we observe two remarkable results. First,
whereas one graph convolutional layer suffices to out-
perform the feature-based baseline in the OLGA dataset
(0.28 vs. 0.24), using only one GC layer does not produce
meaningful results (0.05) in the proprietary dataset. We

believe this is due to the different sizes of the respective
test sets: 14k in the proprietary dataset, while only 1.8k in
OLGA. Using only a very local context seems to be enough
to meaningfully organize the artists in a smaller dataset.

Second, most performance gains are obtained with two
GC layers, while adding the third GC layer pushes the re-
sults to a much lesser degree. Our explanation for this
effect is that most similar artists are connected through
at least one other, common artist. In other words, most
artists form similarity cliques with at least two other artists.
Within these cliques, in which every artist is connected to
all others, missing connections are easily retrieved by no
more than 2 graph convolutions.

In fact, in the OLGA dataset, ~71% of all cliques fulfill
this requirement. This means that, for any hidden similar-
ity link in the data, in 71% of cases, the true similar artist
is within 2 steps in the graph—which corresponds to using
two GC layers.

5. SUMMARY AND FUTURE WORK

In this paper, we described a hybrid approach to computing
artist similarity, which uses graph neural networks to com-
bine content-based features with explicit relations between
artists. To evaluate our approach, we assembled a novel
academic dataset with 17,673 artists, their features, and
their similarity relations. Additionally, we used a much
larger proprietary dataset to show the scalability of our
method. The results showed that leveraging known sim-
ilarity relations between artists can be more effective for
understanding their similarity than high-quality features,
and that combining both gives the best results.

Our work is a first step towards models that directly
use known relations between musical entities—like tracks,
artists, or even genres—or even across these modalities.
Multi-modal connections could also help predicting artist
similarity; we could add collaborations, or band member-
ship connections to the graph. Finally, it would be inter-
esting to analyze the effect of our approach on long-tail
recommendations and/or the cold-start problem.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet, “Music Similarity
Measures: What’s The Use?” in Proc. of the 3rd Inter-

national Conference on Music Information Retrieval

(ISMIR), Paris, France, Oct. 2002.

[2] D. P. W. Ellis, B. Whitman, A. Berenzweig, and
S. Lawrence, “The Quest for Ground Truth in Musical
Artist Similarity,” in Proc. of the International Sympo-

sium on Music Information Retrieval (ISMIR), Paris,
France, Oct. 2002.

[3] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and
G. Widmer, “On Rhythm and General Music Similar-
ity,” in Proc. of the 10th International Society for Mu-

sic Information Retrieval Conference (ISMIR), Kobe,
Japan, Oct. 2009.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

355



[4] M. Schedl, D. Hauger, and J. Urbano, “Harvesting
microblogs for contextual music similarity estimation:
A co-occurrence-based framework,” Multimedia Sys-

tems, vol. 20, no. 6, pp. 693–705, Nov. 2014.

[5] Ò. Celma and X. Serra, “FOAFing the music: Bridg-
ing the semantic gap in music recommendation,” Jour-

nal of Web Semantics, vol. 6, no. 4, pp. 250–256, Nov.
2008.

[6] S. Oramas, M. Sordo, L. Espinosa-Anke, and X. Serra,
“A Semantic-Based Approach for Artist Similarity,” in
Proc. of the 16th International Society for Music Infor-

mation Retrieval Conference (ISMIR), Málaga, Spain,
Oct. 2015.

[7] B. McFee and G. R. G. Lanckriet, “Heterogeneous Em-
bedding For Subjective Artist Similarity,” in Proc. of

the 10th International Society for Music Information

Retrieval Conference (ISMIR), Kobe, Japan, Oct. 2009.

[8] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam,
“Disentangled Multidimensional Metric Learning for
Music Similarity,” in IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, May 2020.

[9] G. Doras, F. Yesiler, J. Serrà, E. Gómez, and
G. Peeters, “Combining Musical Features for Cover
Detection,” in Proc. of the 21st International Society

for Music Information Retrieval Conference (ISMIR),
Montréal, Canada, Oct. 2020.

[10] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam,
“Metric Learning vs Classification for Disentangled
Music Representation Learning,” in Proc. of the 21st

International Society for Music Information Retrieval

Conference (ISMIR), Montréal, Canada, Aug. 2020.

[11] J. Park, J. Lee, J. Park, J.-W. Ha, and J. Nam, “Rep-
resentation Learning of Music Using Artist Labels,” in
Proc. of the 19th International Society for Music Infor-

mation Retrieval Conference (ISMIR), Paris, France,
Jun. 2018.

[12] F. Yesiler, J. Serrà, and E. Gómez, “Accurate and Scal-
able Version Identification Using Musically-Motivated
Embeddings,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, May 2020.

[13] M. Dorfer, A. Arzt, and G. Widmer, “Learning Audio-
Sheet Music Correspondences for Score Identification
and Offline Alignment,” in Proc. of the 18th Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), Suzhou, China, Jul. 2017.

[14] M. Slaney, K. Q. Weinberger, and W. White, “Learning
a Metric for Music Similarity,” in Proc. of the 9th Inter-

national Conference on Music Information Retrieval

(ISMIR), Philadelphia, USA, Sep. 2008.

[15] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and
R. Shah, “Signature verification using a "Siamese"
time delay neural network,” in Proc. of the 6th Inter-

national Conference on Neural Information Processing

Systems (NIPS), San Francisco, USA, Nov. 1993.

[16] E. Hoffer and N. Ailon, “Deep Metric Learning Using
Triplet Network,” in Similarity-Based Pattern Recogni-

tion (SIMBAD), A. Feragen, M. Pelillo, and M. Loog,
Eds., Copenhagen, Denmark, Oct. 2015.

[17] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu, “Learning Fine-
Grained Image Similarity with Deep Ranking,” in
IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Columbus, USA, Jun. 2014.

[18] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spec-
tral Networks and Locally Connected Networks on
Graphs,” in Proc. of the International Conference on

Learning Representations (ICLR), Banff, Canada, Apr.
2014.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu, “A Comprehensive Survey on Graph Neural Net-
works,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 32, no. 1, pp. 4–24, Jan. 2021.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Induc-
tive Representation Learning on Large Graphs,” in
Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS), Long
Beach, USA, Dec. 2017.

[21] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec, “Graph Convolutional
Neural Networks for Web-Scale Recommender Sys-
tems,” in Proc. of the 24th International Conference

on Knowledge Discovery & Data Mining (SIGKDD),
Jul. 2018.

[22] J. Oh, K. Cho, and J. Bruna, “Advancing Graph-
SAGE with A Data-Driven Node Sampling,” in Proc.

of the ICLR Workshop on Representation Learning on

Graphs and Manifolds, New Orleans, USA, May 2019.

[23] A. Porter, D. Bogdanov, R. Kaye, R. Tsukanov, and
X. Serrà, “AcousticBrainz: A Community Platform
for Gathering Music Information Obtained from Au-
dio,” in Proc. of the 16th Conference of the Inter-

national Society for Music Information Retrieval (IS-

MIR), Málaga, Spain, Oct. 2015.

[24] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and
P. Lamere, “The Million Song Dataset,” in Proc. of the

12th International Society for Music Information Re-

trieval Conference (ISMIR), A. Klapuri and C. Leider,
Eds., Miami, USA, Oct. 2011.

[25] K. Järvelin and J. Kekäläinen, “Cumulated gain-based
evaluation of IR techniques,” ACM Transactions on In-

formation Systems, vol. 20, no. 4, pp. 422–446, Oct.
2002.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

356



[26] D. Valcarce, A. Bellogín, J. Parapar, and P. Castells,
“On the robustness and discriminative power of infor-
mation retrieval metrics for top-N recommendation,” in
Proc. of the 12th ACM Conference on Recommender

Systems (RECSYS), Vancouver, Canada, Oct. 2018.

[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and Accurate Deep Network Learning by Exponen-
tial Linear Units (ELUs),” in Proc. of the International

Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, May 2016.

[28] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” in Proc. of the International

Conference on Learning Representations (ICLR), San
Diego, USA, May 2015.

[29] J. Ma and D. Yarats, “On the adequacy of untuned
warmup for adaptive optimization,” in Proc. of the 35th

Conference on Artificial Intelligence (AAAI), Virtual
conference, Feb. 2021.

[30] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradi-
ent Descent with Warm Restarts,” in Proc. of the In-

ternational Conference on Learning Representations

(ICLR), Toulon, France, May 2017.

[31] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähen-
bühl, “Sampling Matters in Deep Embedding Learn-
ing,” in Proc. of the International Conference on Com-

puter Vision (ICCV), Venice, Italy, Oct. 2017.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

357



  
 

“FINDING HOME”: UNDERSTANDING HOW MUSIC SUPPORTS 
LISTENERS’ MENTAL HEALTH THROUGH A CASE STUDY OF BTS 

Jin Ha Lee1, Arpita Bhattacharya2, Ria Antony3, Nicole Santero4, Anh Le5 
University of Washington1,3,5; University of California, Irvine2; University of Nevada, Las Vegas4 

jinhalee@uw.edu; arpitab@uci.edu; rantony@uw.edu;  
santeron@unlv.nevada.edu; anhle@uw.edu 

ABSTRACT 

The positive impact of music on people’s mental health 
and wellbeing has been well researched in music psychol-
ogy, but there is a dearth of research exploring the impli-
cations of these benefits for the design of commercial mu-
sic services (CMS). In this paper, we investigate how pop-
ular music can support the listener’s mental health through 
a case study of fans of the music group BTS, with a goal 
of understanding how they perceive and describe the way 
music is influencing their mental health. We aim to derive 
specific design implications for CMS to facilitate such 
support for fans’ mental health and wellbeing. Through an 
online survey of 1190 responses, we identify and discuss 
the patterns of seven different mood regulations along with 
major themes on fans’ lived experiences of how BTS’s 
music (1) provides comfort, (2) catalyzes self-growth, and 
(3) facilitates coping. We conclude the study with a dis-
cussion of four specific suggestions for CMS features in-
corporating (1) visual elements, (2) non-music media, (3) 
user-generated content for collective sense-making, and 
(4) metadata related to mood and lyrical content that can 
facilitate the mental health support provided by popular 
music. 

1. INTRODUCTION 

The positive physiological and psychological effects of 
music on health and wellbeing are well researched in the 
field of music psychology [1-4]. Music can positively im-
pact people’s mental health by supporting mood regulation 
[5-6], social relationships [7-8], and increasing positive 
emotions and self-esteem [9]. However, in the field of mu-
sic information retrieval (MIR), there is limited research 
exploring the connections between music and the mental 
health of the listener. While there is substantial research on 
music mood in the MIR field [10], the primary focus is on 
identifying the mood of the music with the goal of support-
ing better organization, browsing, or recommendation ra-
ther than influencing the emotions of the listeners to sup-
port their health and wellbeing (e.g., [11-16]). Researchers 
have only recently started to investigate more deeply into 
the impact of music on mental health in the MIR field, es-
pecially on how such insights inform the design of music 
services and systems (e.g., [9]). Multiple recent MIR user 
studies also point out the importance of the social aspect in 

listening to music [8, 17]. In particular, the complex con-
text of being a music fan involves online communities and 
social media, as well as the fan’s perceived relationship 
with the artists [18] which will inevitably influence the im-
pact of music on listeners’ mental health. Yet, there is a 
dearth of research exploring the holistic context of the lis-
tener, including external factors related to music such as 
the social relationship of listeners to artists and other fans. 

We aim to address this gap by investigating how popu-
lar music can support music listeners’ mental health and 
wellbeing through a case study of the ARMY fandom. The 
ARMY fandom supports BTS, a seven-person music 
group from South Korea, and is one of the biggest music 
fandoms in 2021 [18]. There are several reasons for focus-
ing on music fans as a user group in this study, and specif-
ically the fans of BTS. First, we wanted to explore the im-
pact of not only the music itself but also the context in 
which users engage with music on their mental health and 
wellbeing, including the context of music creation (e.g., 
information about the artist) and other social context (e.g., 
relationship with other fans). Of the possible fandoms to 
study, we chose the ARMY fandom due to (1) its size and 
diversity demonstrated by the recent census data of over 
400K responses from ARMYs [19], (2) fan’s active en-
gagement with each other demonstrated by the social me-
dia activities [20-21], and (3) prior literature indicating the 
music of BTS being specifically helpful in supporting their 
fan’s mental health as they relate to the messages in the 
songs [22-23].   

We conducted an empirical study employing an online 
survey to better understand the impact of BTS’s music on 
their fans’ mental health. We aimed to answer the follow-
ing research questions:  

RQ1: How is BTS’s music helping to support fans’ 
mental health and well-being? 

RQ2: What are the implications for designing commer-
cial music services to facilitate such support for fans’ men-
tal health and wellbeing? 

2. RELATED WORK 

2.1 Music and Mental Health 

A significant body of literature in the field of music psy-
chology examines different positive influences music can 
have on people’s mood, memory, learning, and identity as 
well as the use of music in various forms of therapy [24]. 
Regout conducted a literature review to understand why 
music has a positive influence on mental wellbeing and 
how music could be properly used in therapy, and showed 
that music can have an effect on people’s emotion, 
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memory, and the experience of pleasure [24]. For instance, 
Knight and Rickard [25] suggested that music can lessen 
anxiety by measuring physiological signals such as heart-
beat, cortisol level, blood glucose, etc. Thayer et al. [26] 
also identified listening to music as one of the most suc-
cessful strategies for changing a bad mood, raising energy 
and reduce tension. Using music in therapy helps reduce 
cortisol levels which can help decrease the perception of 
anxiety and depression [28-29]. Nilsson [27] conducted a 
systematic review on 42 randomized controlled trials of 
the effects of music interventions and found that music in-
tervention can reduce pain and anxiety in patients. Woelfer 
and Lee [7] found that young people experiencing home-
lessness used music for mood regulation and coping as it 
allowed them to “calm down or relieve tension”, “help get 
through difficult times”, or “relieve boredom”. They also 
discussed how participants listened to songs for a cathartic 
experience and for reducing the sense of isolation. 

Several studies specifically researched how emotion in 
music plays a role in mood regulation, “a process of satis-
fying personal mood-related needs by musical activities” 
[5]. To better understand and measure the emotional func-
tions of music, Saarikallio and Erkkilä [5] presented a 
model of mood regulation which provides a useful frame-
work for studying how this regulatory process can be ap-
plied in various contexts of music listeners. In this model, 
seven types of regulatory strategies are used for different 
changes in mood: entertainment, revival, strong sensation, 
diversion, discharge, mental work, and solace [5]. We used 
this model to inform a part of our codebook under the cat-
egory of “Mood regulation”, and the mapping can be seen 
in the Findings section. 

Some studies looked into the influence of popular music 
in particular. For instance, Kresovich [30] investigated 
how college students’ exposure to pop songs referencing 
mental health difficulties affect them. The study found that 
participants’ increased perceived personal connection with 
the songs and parasocial relationships with their perform-
ing artists were associated with increased mental health 
empathy [30]. A few researchers examined how BTS’s 
music influences people’s mental health. Blady [22] ana-
lyzed the discography of BTS, identifying multiple themes 
that support mental health by challenging stereotypes and 
social norms destructive to youth, encouraging self-love 
and empathy and showing the value of perseverance, vul-
nerability, and compassion. Rubin [23], in her qualitative 
study of 47 participants, studied how Strong Experiences 
with Music (SEMs) experienced by ARMYs contributed 
to personal growth, resulting in perspective changes and 
the ARMYs’ use of music for different purposes like im-
proving mood, soothing, and motivating themselves. 

2.2 Support for Mental Health in Fandoms 

While some have previously believed members of fandom 
communities are more prone to wellbeing issues, recent re-
search has shown no significant difference between fans 
and non-fans in terms of their psychological distress and 
wellbeing [31]. Furthermore, some research highlighted 
the positive impact of fandoms on mental health. For in-
stance, fans have reported that being a part of such com-
munities has helped them find a sense of purpose and 

meaning in life [32]. Previous analyses on sports fans have 
shown that identification with sports teams have resulted 
in fans developing greater self-esteem and feeling less 
lonely [33] and many of these fans have noted that they 
identify strongly with their teams [34]. Though the posi-
tive benefits of fan comradery are widely accepted in 
sports, the value of fans’ social and emotional experience 
is often stigmatized and diminished for fans of boy bands, 
particularly female fans [18, 20-21].  

A sense of belonging has been strongly associated with 
the in-group identification among different fan communi-
ties [35]. In a study examining whether this type of social 
connection uniquely mediates the relationship between 
fandom identification and wellbeing, Reysen et al. [36] 
noted that some fandoms provide additional aid for its 
members in the form of social support, advice, and re-
sources for coping, and showed how these social connec-
tions can result in adequate wellbeing of both stigmatized 
and non-stigmatized fan groups. All fans have the potential 
to benefit from social connection as these communities, re-
gardless of their particular interests, are similar with re-
spect to such psychological processes [36]. Laffan [32] re-
ports similar findings regarding K-pop fans showing in-
creased happiness, self-esteem, and social connectedness. 

With the rise of social media and fandoms growing in a 
digital environment, there is an opportunity for more re-
search on how the wellbeing of fans are impacted online. 
There are both positive and negative aspects of social me-
dia, and research has shown that the effect of fandom ac-
tivities and mental health can be different depending on the 
user characteristics, such as gender [37], warranting more 
research on different types of user groups. McInroy [38] 
studied how online fan communities serve as a source of 
social support for sexual and gender minority youth and 
found that participation in these communities can support 
the sense of connection, empowerment, and temporary es-
cape from stress, decrease isolation, and offer opportuni-
ties for mentorship. Our study will contribute to gaining 
additional insights on how being part of music fandoms 
affects fans’ mental health. 

3. STUDY DESIGN AND METHOD 

We conducted an online survey asking 38 questions about 
fans’ engagement with BTS’s musical and non-musical 
content, BTS-related activities, overall experience in the 
fandom and their mental health. We asked six questions 
about how they became fans and seven demographic ques-
tions. The survey was released in early February 2021 and 
was open for two weeks. Participants were recruited 
through a prominent research account in the fandom, re-
sulting in 10,300 engagements on Twitter. The study was 
approved by the institutional review board at the Univer-
sity of Washington. We obtained a total of 1,190 re-
sponses. The demographic information of participants is 
summarized in Table 1.  
 

Age Mean = 26, Min =13, Max = 71, StdDev = 
10.02 

Race Asian = 567, White = 317, Hispanic = 210, 
Black = 43, Native Hawaiian/Pacific Islander = 
7, American Indian/Alaska Native = 3,  
Described in own words = 106 
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Gender Female = 1105, Non-binary = 29, Male = 15, 
Described in own words = 26 

Country 
of Resi-
dence (20 
or more) 

USA = 268, Philippines = 155, India = 123,  
Indonesia = 54, Malaysia = 47, Mexico = 45, 
South Africa = 38, UK = 32, Germany = 29, 
Canada = 26 

Table 1. Demographic summary of survey respondents. 

The scope of the survey was broader, but in this paper 
we focus on reporting the findings related to the research 
questions stated above. This primarily includes the analy-
sis of responses to the open-ended question asking, “Can 
you describe how BTS’s music is helping to support your 
mental health and wellbeing?” along with other demo-
graphic information about the participants. 

The free-text responses were coded using a combination 
of inductive and deductive approaches [39]. To create the 
draft codebook, the research team distributed a portion of 
the responses to each member (approximately  200 re-
sponses per person) to review. Using a Mural board (a col-
laborative online tool), each team member captured and 
recorded emerging ideas and themes on virtual sticky notes 
as they reviewed their assigned responses. Afterwards, the 
team collectively engaged in a sorting activity to catego-
rize the main themes which resulted in the initial codebook 
[40]. The codebook has three main categories of codes (1) 
Mood regulation, (2) Appeal, and (3) Outcome. The codes 
related to Mood regulation were well-aligned with the reg-
ulatory strategies from Saarikallio and Erkkilä [5], and the 
descriptions shown in Table 2 are adopted from their 
model. The rest of the thematic codes were derived induc-
tively from the data.  

Using this initial codebook, we had four coders code the 
open-ended survey responses. The codebook was refined 
through an iterative process. After coding part of the data, 
the team met to discuss any issues that emerged during the 
coding process. A series of discussions led to a few 
changes - Motivation was subsumed under Coping, and 
Social Justice and Open Discussion were merged into Dif-
ficult Topics as the coded results showed conceptual over-
lapping. Some definitions were rewritten for clarification. 
After the codebook was finalized, all four coders reviewed 
and revised their initial coding using the codebook.  

Each survey response was coded by two independent 
coders, to allow for checking the intercoder reliability. Us-
ing a formula in a spreadsheet, all the discrepancies in the 
coded results were highlighted. We followed a consensus 
model [41] where two coders reviewed and discussed all 
the discrepancies in code application, aiming to reach a 
consensus. When a consensus could not be reached, a third 
researcher acted as a tie-breaker. 

4. FINDINGS 

Table 2 shows how frequently each code was applied when 
coding responses to the question asking how BTS’s music 
supports listeners’ mental health and wellbeing. In the fol-
lowing sections, we discuss the major themes that emerged 
from analyzing these coded responses, summarizing the 
connections among the appeal of the music and how the 
music changed the listeners’ moods resulting in specific 
mental health related outcomes. 

 Code Description Freq 

M
ood R

egulation 

Comfort Feeling understood, comforted, and re-
assured 

505 

Uplift  Lifting up spirit and keeping a positive 
mood  

356 

Release  Being able to express the feelings and 
release the negative emotions  

201 

Reflect Music promotes imagery, insights, in-
trospection 

153 

Relax Feeling revived, relaxed, and energized 112 
Distract Forgetting about current negative mood 

and challenging situations 
63 

Excite Intense feeling of arousal, thrills 14 

A
ppeal 

Lyrics 
(Message) 

Resonating with the message of the lyr-
ics and/or concept of the song  

544 

Diversity A wide variety of music  107 
Authentic-
ity 

Feeling that the artists realistically pre-
sent themselves 

78 

Difficult 
Topics  

Ability to discuss difficult topics like 
social injustice, mental health, chal-
lenges of youth, existential crisis, etc.  

60 

Sound 
(Melody) 

Comments on liking how the song 
sounds and/or the melody of the song 

49 

O
utcom

e 

Coping  Listeners being able to deal with chal-
lenges, music helping to “ground” 
them, helping them to get by every day  

492 

Connect-
ion 

Feeling connections to the artists, mu-
sic, and other fans; comments on shared 
thoughts and experiences 

293 

Accept-
ance 

Feeling accepted by others/themselves 
in terms of their identity and experience 

197 

Self-
growth  

Learning something about oneself or 
the world; being inspired to take on 
tasks leading to self-improvement  

146 

Empower-
ment 

Feeling strength, courage, and confi-
dence 

54 

Table 2. Frequency of codes. 

4.1 Feeling Comforted, Understood, and Not Alone 

Finding comfort through BTS’s music was the most fre-
quently mentioned way of regulating mood. Participants 
mentioned “feeling safe” and “understood” during situa-
tions that were challenging, frustrating or unfulfilling. 
When discussing comfort, participants often imagined the 
songs giving them a hug (e.g., “The lyrics are like a warm 
hug” (P475), “a pat on the back” (P91), or holding their 
hands (e.g., “I feel like they hold my hand and say " hey it's 
okay we can get through this together " rather than " oh 
your [sic] are sad here's a sad song.” (P313)).  

Their songs just made me feel safe. 2! 3! hugs me and holds my 
hand to hope for better days with me […] The first time I listen 
to mono, I looked for a pen and wrote a poem - I haven't written 
a poem in 2 years. Their songs make me feel alive. Their music 
is always here to tell me that I'm not alone. Their voices soothes 
[sic] my worries. (P55) 

Many participants noted that the position the artists take 
when they convey a positive message does make a differ-
ence in how relatable they are, especially when partici-
pants can see the artists are “also experiencing such emo-
tions and pains” (P750). Thus, this feeling of comfort was 
strengthened through the authenticity of the artists and 
their message. P764 explains how BTS’s music does not 
try to “sugarcoat” the situation or give unrealistic hope. 
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I think it’s especially important to note that while they give hope 
through this, it’s not baseless hope or toxic positivity […] they 
don’t give false hope that things will magically get better - in-
stead the boys say that while things probably won’t change, to-
morrow is still a new day to start over with. This realistic view 
can be found in many of BTS’ songs and it’s this that really 
supports my mental health […]” (P764) 

This sense of being understood and comforted led to 
many participants feeling intimately connected to the 
songs, artists, and others:  

It feels like I just shared my deepest fears with someone and that 
person's telling me that it's okay, that they understand me, that 
they got through it and therefore so can I. (P673) 

These imagined connections can be powerful, espe-
cially when used as mechanisms for processing difficult 
situations, releasing negative emotions, and grounding 
oneself to overcome those situations. P47 shares:  

[...] listening to the songs makes me feel like if I and they keep a 
very nice secret together and understand each other completely. 
As if they were my dear and closest friends who understand the 
bad things that happen in my life and always have the perfect 
words to tell me [...] One month ago, my brother passed away 
due covid-19. You can imagine how I felt. The moment I received 
the news he was being incinerated, the same exact minute, the 
preview for the winter package 2021 was released. With the im-
ages of them lighting matches, I felt as if they were honouring 
my brother's memory. I felt so supported and shocked at the 
same time. It was incredible. (P47) 

4.2 Self-growth through Understanding and Accept-
ing Oneself 

Many participants reported feeling cathartic after listening 
to BTS’s music, commenting on how it helped them un-
derstand and articulate their own emotions. Participants 
who were considering suicide or had attempted suicide in 
the past said BTS’s song Magic Shop supported them when 
they “found” it. 

I was in a dark place and they were and still are my light. i was 
about to commit suicide, but then i came across their song magic 
shop and never looked back. their lyrics is my therapy and my 
healing. At the end of a bad day, i can always look for them. Their 
songs are so comforting and it’s like they know exactly what to 
say to you. i’m not someone that show my emotions or feelings 
easily but when i’m listening to their music, it feels like i can let 
it all out. finding bts wasn’t finding just a boy band. it was find-
ing a home, they are like a warm hug, a hot chocolate on a winter 
day, the sun after rain. (P111) 

BTS' music is very therapeutic for me. Their sound and lyrics 
speak right to my heart and have awoken feelings that were 
long asleep. (P874) 

Numerous similar responses suggest that listeners per-
haps compartmentalize and hide from their feelings lead-
ing to “feeling numb” or being unable to verbalize their 
emotions, and the music serves as a catalyst to unlock 
those feelings. Participants shared how they found the re-
lease of such thoughts and feelings helpful for their mental 
health, often accompanied by crying. P608 shared:  

I am the kind of person who generally doesn't cry unless I am 
really angry. Thus, I am not able to express well when I am sad 
or hopeless and keep my feelings bottled up inside me. But when 
I listened to Zero o'clock, it was the first time that I cried just 

because I was sad. At that point of time I realised how important 
was BTS for my life. After I actually cried and let out my feelings, 
I feel a lot better now. (P608) 

Participants also stated how the messages in the songs 
help them think about and discuss difficult issues they have 
sometimes been avoiding or with social stigma.  

Their music has the power to invite me to reflect about subjects 
that I often avoid, like fears of failure, imperfectness, hopeless-
ness, and loss. But those are things that I need to face to learn 
about myself. Listening to their music feels like learning the 
journey of life together with them...sometimes painful, some-
times playful, another time full of anger, and there are joys and 
comfort too, but never alone. (P779) 

[...] Their overall message of normalizing mental and the con-
versation of mental health in society is so important for me. I 
have OCD, Anxiety, and Depression, and BTS talking about men-
tal health, writing about it, sharing their personal experiences 
with mental health issues helped create an environment free of 
judgment and doubts. (P260) 

This kind of reflection also led to opportunities for in-
trospection, self-acceptance, and self-growth. Participants 
shared how listening to certain songs led them to challenge 
their way of thinking, change their behavior, or take con-
crete actions to better their mental health:  

When I was afraid to go to counselling, yoongi’s interlude 
shadow motivated me because if he can share his fears with mil-
lions, I can share it with at least one person. (P559) 

Their music can make me feel emotions i didn't even know they 
existed...when i listen to their songs i feel like a [sic] learn some-
thing new about myself, them, the world, society etc. Through 
their music I've learnt to love and appreciate myself and others 
and they make me feel safe, comfortable like when i listen to 
them i feel like I'm home. (P561) 
 

P912 noted this change to positive moods sometimes led 
to a long-term impact beyond when they were actively lis-
tening to music. 

I didn't noticed [sic] it first but after becoming army, I have be-
come cheerful and confident (even though I'm [sic] typical in-
trovert). Now it's very hard to upset me for so long I quickly get 
over it because of their music. (P912)  

4.3 Intentional Coping through Various Music 

The diversity of BTS’s music emerged as an appeal. Par-
ticipants talked about accessing specific songs when they 
wanted to attain a certain mood such as energy for work, 
relaxing after a tough day, or calming anxiety. 

On my daily life, BTS music gives me comfort and companionship. 
I curate my BTS music/MV playlists depending on my mood or 
activities, for example I choose cheerful and/or energetic songs 
to make boring chores more palatable, comforting and beautiful 
songs when I'm feeling anxious or unsettled, soft and chill songs 
to help me focus when I'm reading or working. (P328) 

In addition to feeling comforted or cathartic which was 
common for participants, the music also helped them 
sometimes forget about their troubles or worries. 

Putting on my earphones and listening to BTS helps me escape, 
disconnect from my real life, stop hearing the screams and neg-
ative words around me. Also the lyrics of songs like Paradise and 
00 o clock give me peace with myself, reduce my anxiety and self 
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blaming. I have a special playlist I use when I need to sleep with-
out hearing my parents arguing or cry one [sic] in my room [...] 
(P21) 

However, most participants did not simply dwell in es-
capism; listening to specific songs could also help them 
feel more focused, empowered, and persistent, helping 
them deal with real-life challenges. P886 explains: 

The messages in the music keep me positively motivated to not 
give up day to day. My husband died of cancer in December 2019 
after two years of treatments. […] Certain songs like Not Today 
kept me focused on pushing through during my husband's 
treatment and Spring Day is still my song for grief. Even Life 
Goes On has made me feel seen and understood. I stay focused 
on my personal value and persistence and on forgiving myself 
for failures through the music […] (P886) 

Participants also talked about having a rush of positive 
feelings from certain songs and they specifically sought 
them out when they needed a “serotonin boost” (P679).  
Some expressed their feelings by singing and dancing 
along or studying and memorizing the lyrics. Through 
making strategic choices of music from the diverse discog-
raphy of BTS and having go-to songs for achieving differ-
ent moods, fans were able to better cope with difficult sit-
uations and have something to look forward to and enjoy. 
Some expressed how essential listening to BTS has be-
come in their daily lives, such as P561:   

[...] i don't think that i will ever stop listening to them because 
their music has helped me get through a lot so i can't just stop 
they're a part of my lifestyle at this point...there isn't even a day 
without listening to AT LEAST one song of theirs...i can't live 
without music and above all without BTS music. (P561) 

5. DISCUSSION 

5.1 Connection of Listeners and Songs through Sup-
port from Textual and Visual Elements 

Many participants personified BTS’s songs and lyrics as a 
“friend” or “companion”, often experiencing physical sen-
sations of comfort while listening to the songs. These im-
agined connections provided real comfort to the partici-
pants and helped them develop emotional resilience for 
self-coping. Visualizing a place or person of comfort 
through associated imagery and externalizing thoughts that 
have been repressed by relating to lyrics are therapeutic 
strategies which participants learned and experienced 
through these songs, akin to tapping into positive imagina-
tion for recovering from trauma [42]. 

Researchers have found that situations that are more dif-
ficult to tackle than one has emotional, social, and physical 
resources for, can lead to avoidant coping mechanisms 
such as denial or escapism [43]. BTS’s lyrical message 
helped participants find comfort and cope by balancing es-
capism, distraction, and/or the permission to feel the real-
ity of their experience. For a few fans, BTS’s music helped 
them escape or forget their difficult reality momentarily 
which they could not control (e.g., the pandemic or abusive 
household). For others, it helped them connect with reality, 
and provided space for articulating and normalizing nega-
tive experiences, feelings of loss, and emotions that are a 
part of one’s lived experience but are hidden, stigmatized, 
and/or feared in the society. The therapeutic value of such 

lyrics occurs when repressed emotions and thoughts which 
are otherwise alienated and hated upon by the individual 
and society are now heard, acknowledged, and given a 
healthy outlet (e.g., crying, writing, or singing). This re-
duces the conflict within self and helps participants accept 
and welcome a range of emotions (e.g., [44]). BTS’s lyri-
cism addressing diverse life circumstances acknowledges 
two kinds of hope (1) pursuing an ideal dream and (2) re-
ducing the conflict in accepting the authentic, imperfect 
reality of change. The two types of hope helped partici-
pants to relate to and cope with the reality of mundane and 
negative experiences.  

Developing routine coping practices such as reading, 
writing, or journaling about the lyrics demonstrated reflec-
tion and self-growth. Participants relied on subtitles in 
some music videos and fan-translated lyrics to learn the 
message of the song. The importance of visual musical ex-
periences has also been noted in [45] as they discuss the 
dominance of YouTube videos containing music/lyrics. 

Design implication: Providing visual cues for songs 
can enhance the user experience by providing different 
metaphors for personification and connections. Real-time 
translation of lyrics can support coping by reducing the 
burden of navigating multiple tools. Additionally, lyric 
videos allow listeners to not only process the text more ef-
fectively, but also visualize it as they hear the songs again. 

5.2 Connections with Artists beyond Music 

Most participants experienced connections with artists be-
yond music through the artists’ live conversations with 
fans, personal stories, struggles, behind the scenes stories 
of the song/album, art, and imagery. These participants 
valued the authenticity of the artists in various types of 
work, explaining how easy it was to relate to them on a 
personal level.  

These connections with the fandom often break the 
boundaries of how the artists portray themselves in the 
public eye and their private lives. As fans perceived BTS’s 
music, performance, and actions to be congruent with their 
real-life personalities, they felt a deeper connection with 
the authenticity of the artists and their message. Often, fans 
cited being better versions of themselves like BTS thus, 
not only idolizing the artists but also taking actions in the 
real world inspired by the artists.  

Design implication: There is value in integrating music 
services with streaming of other media and stories to sup-
port fans in making and sustaining these connections and 
fostering open discussions on lifestyles and issues relevant 
to their real life. A good example is the Weverse app which 
integrates the performance video, vlogs and other non-mu-
sic video content, magazine articles, etc. This helps to col-
lectively provide a better picture of the artist, allows fans 
to feel closer to and further relate to the artist, and reduces 
the burden of switching between multiple platforms. 

5.3 Connections with Other Fans through Discussion 
of Music 

Some participants spoke about feeling an abstract connec-
tion with “others out there” who might be listening and re-
lating to the same music. This reduced their sense of 
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loneliness. Some discussed songs and lyrics with other 
ARMYs and bonded with them, even learning to share 
openly (e.g., “It helped me open up to the friends I met 
through their music and ultimately helped me to go get 
professional help.”(P171)).  

As interpretation of art is abstract and variable, fandoms 
are known to theorize and make meaning of music videos 
and songs together, especially in the context of transmedia 
storytelling [18, 20]. Online platforms such as “songmean-
ings.com” is an example of such fan engagement. There is 
also appeal in the comments left for songs on platforms 
like Soundcloud which show comments with the 
timestamp of the song, potentially providing an oppor-
tunity for ‘singing along’ in comments, externalizing emo-
tions felt, and/or reflecting on the music or lyrics while lis-
tening in real time [46]. Live streaming and live chats on 
music streaming platforms also allow for the experience of 
real time connections [47]. User interactions are often ob-
served in the comments section for live BTS performances 
on YouTube. Stronger connections between social media 
and CMS may be beneficial with more social features in 
music streaming services such as a post discussing lyrics, 
theories, or reflections connected to the art and message 
[48]. As communities centered around music continue to 
cross boundaries of language and culture, it is important to 
celebrate such diversity on CMS by supporting translation 
and interpretation of lyrics in different cultural contexts. 

Design implication: Fans often curate social media 
posts to add lyrics and streaming links, sometimes going 
above and beyond to edit video clips and/or add lyrical 
translations of parts of the song they want to share or dis-
cuss. Adding a feature in streaming services which allows 
users to take snippets of the song, add a translation or their 
own interpretation of the lyrics, and share and discuss them 
in-context, would make such experiences more accessible 
to those without sophisticated video editing skills. 

5.4 Playlists and Metadata Supporting Different Mood 
Regulations 

In our data, we saw that BTS’s music helped participants 
both maintain and achieve diverse emotional states such as 
positive moods, relaxation, release of negative moods, and 
comfort. Digital mental health interventions can be a sys-
tem-driven “push” wherein the system recognizes appro-
priate time to intervene (just-in-time adaptive interven-
tions (e.g., [49])) or a user-driven “pull” wherein the par-
ticipant actively seeks out the intervention and personal-
izes it to their own context [50]. In the context of music 
and mental health, we draw parallels to these actions as 
recommendations of songs that were pushed to partici-
pants allowed them to discover helpful songs serendipi-
tously. Some participants also spoke about actively search-
ing or browsing helpful songs and curating playlists for 
when they wanted to be in a certain mental state.  

Explaining a serendipitous discovery, many partici-
pants talked about finding the right song at the moment 
when they needed it. As discussed above, in some cases, 
the song and its message led to the participant realizing 
how they were feeling, leading to catharsis of intense emo-
tions they were bottling up inside such as grief or loss dur-
ing the COVID-19 pandemic [51]. The songs and lyrics 

provided an external voice for their thoughts. Additionally, 
coping with repeated lyrics of the song as a “mantra” can 
help reduce intrusive thoughts and calm anxiety [52].  

BTS’s diverse discography was cited by many partici-
pants as an aspect that helped them relate to every mood 
that they experienced. Catharsis without comfort can be 
difficult to process alone if an individual is unable to get 
out of their negative state of mind. Therefore, supporting 
diversity in general when recommending music to facili-
tate mood regulation (e.g., mixing up comforting songs 
with songs that may talk about potentially triggering emo-
tions and experiences such as suicide) may be important.  

Design implication: This strong association of mood 
with music implies that CMS should expand their taxon-
omy to include mood and lyrics for recommendations. 
Platforms should recommend broader mood-based 
playlists that support a range of emotions using metadata 
from the lyrical content of the song and the community’s 
responses instead of just basing playlists on the current 
mood of the listener or the dominant mood of the songs. 
The outcome or change in mood that fans experience 
should also be considered and tagged. 

6. CONCLUSION AND FUTURE WORK 

Our study shows how BTS’s music supports fans’ mental 
health and wellbeing through a variety of mood regula-
tions, allowing them to cope, reflect, and grow by listening 
to their music, and even fundamentally impacting their be-
havior or outlook in some cases.  

Studying one particular fandom from an emic approach 
allows us to gain a deeper understanding of the context and 
culture of the community and the discography of the artist 
to better understand the user data, resulting in rich discus-
sion. However, such a study design also has limitations. 
First, the study focuses specifically on the fans of BTS and 
thus the findings and design implications are more relevant 
to popular music with lyrics. Future research with fans of 
artists with vastly different kinds of music will help expand 
our knowledge on how music can support the listeners’ 
mental health. Second, despite the large number of re-
spondents, the sample does not represent the whole fan-
dom given its size and global nature, especially due to the 
fact that the survey was administered in English. Further 
research is needed to better understand fans in different 
languages and cultural contexts. An investigation of male-
dominated music fandoms could also offer additional in-
sights. In our future work, we plan to explore the impact 
of individual songs on listeners to understand whether the 
impact can be long-lasting, resulting in more substantial 
changes to listener’s behavior or outlook. 

While the findings discussed in this paper are specific 
to BTS’s music, the ways in which fans interact with, look 
up to, and imagine and feel connections with the songs and 
artists are not unique to just BTS or K-pop. Numerous 
Western artists such as Halsey, Lady Gaga, Coldplay, 
Demi Lovato, and Logic, to name a few, openly discuss 
and make songs about mental health issues, and their fans 
use music to manage and discuss their own mental health. 
The design implications derived from our findings can also 
support fans of other artists and in general, help people use 
music for supporting their mental wellbeing.  
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ABSTRACT 

Do people from different cultural backgrounds perceive 

the mood in music the same way? How closely do human 

ratings across different cultures approximate automatic 

mood detection algorithms that are often trained on cor-

pora of predominantly Western popular music? Analyzing 

166 participants’ responses from Brazil, South Korea, and 

the US, we examined the similarity between the ratings of 

nine categories of perceived moods in music and estimated 

their alignment with four popular mood detection algo-

rithms. We created a dataset of 360 recent pop songs drawn 

from major music charts of the countries and constructed 

semantically identical mood descriptors across English, 

Korean, and Portuguese languages. Multiple participants 

from the three countries rated their familiarity, preference, 

and perceived moods for a given song. Ratings were highly 

similar within and across cultures for basic mood attributes 

such as sad, cheerful, and energetic. However, we found 

significant cross-cultural differences for more complex 

characteristics such as dreamy and love. To our surprise, 

the results of mood detection algorithms were uniformly 

correlated across human ratings from all three countries 

and did not show a detectable bias towards any particular 

culture. Our study thus suggests that the mood detection 

algorithms can be considered as an objective measure at 

least within the popular music context. 

1. INTRODUCTION 

Music can express a range of emotions, from melancholy 

and sadness to love and joy. Since music has the powerful 

ability to reflect and modify one’s emotional state [1], re-

searchers have explored how people perceive emotion in 

music from diverse angles [2]. However, while the univer-

sality and variability of musical properties across cultures 

have been reported in many aspects [3,4], cross-cultural 

congruence of perceived moods in music has yet to reach 

a clear agreement [5]. In this paper, we present an empiri-

cal analysis of cross-cultural experiments that character-

izes agreements and discrepancies on perceived moods in 

music by comparing between three cultures and also be-

tween human judgments and four algorithmic estimates. 

1.1 Background 

Many cognitive models have been proposed to account for 

emotional experience, and these can also be applied to ac-

count for the case of music. Basic emotion theory relies on 

discrete categories of emotions, whereas a competing ex-

planation relies on dimensional models to argue that all af-

fective states arise from a few independent affective di-

mensions [6]. In the context of music, previous studies 

have suggested that basic emotions such as happiness, sad-

ness, and anger can be universally recognized in music by 

demonstrating that listeners can correctly deduce an in-

tended emotion from unfamiliar musical traditions [7,8]. 

Nevertheless, critics have argued that the application of 

basic emotion theory to music is too simplistic and it fails 

to capture the full emotional richness expressed through 

music (see Eerola & Vuoskoski for a review [2]). Conse-

quently, other scholars have proposed music-specific emo-

tion models, including nine [9] or thirteen [10] dimensions. 

Many researchers used such high-dimensional models 

and provided extensive empirical support. Yet, since such 

studies were based mainly on homogeneous Western par-

ticipants (e.g., college students at a large research univer-

sity [11]), it still remains unclear how these mood dimen-

sions can be applied cross-culturally. Although significant 

cross-cultural differences were recently reported in multi-

national comparisons (e.g., [12,13]) or through non-US 

contexts (e.g., [14,15]), these studies are also limited in 

testing within a single musical style or a single population, 

respectively. 

There is also a prevalent issue in the choice of lexical 

semantics when comparing between languages. That is, 

the subtle differences in the nuance of the mood terms 

translated into other languages can result in the varied in-

terpretation of the meanings. Recent research has shown 

that the semantic alignment of emotion terms is highly var-

iable across languages [16,17]. Thus, the cross-cultural 

differences observed in the aforementioned studies could 

have partly been driven by varied interpretations of word 

meanings rather than by the perception of music itself. 

 © H. Lee, F. Höger, M. Schönwiesner, M. Park, and N. 
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In the domain of music information retrieval (MIR), 

multiple automatic mood detection algorithms have been 

introduced within the last decade. These algorithms at-

tempt to predict a listener’s perception of high-level mood 

attributes in songs such as danceability and emotional va-
lence. Such technology has shown to have diverse applica-

tions, including music recommendation [18], hit song pre-

diction [19,20], and investigation of musical trends over 

time [21], all of which rely on quantifying large corpora of 

music. However, the generalizability of these tools is con-

cerning because these mood detection algorithms are often 

trained on databases predominantly consisting of English-

language songs judged by Western annotators (e.g., Bill-

board HOT100 [22] and Million Song Dataset [23]). It 

therefore raises important questions on how robustly these 

measures would perform on non-Western songs and reflect 

the perception of non-Western listeners. 

1.2 Research Question 

The challenges and opportunities in studying cross-cul-

tural applicability of perceived moods in music lead us to 

introduce three research questions that guide the remainder 

of this paper: 

 

 RQ1. Do people with different cultural backgrounds 

perceive mood in music differently? 

 RQ2. Is there a more robust agreement within and 

across cultures for certain moods compared to others? 

 RQ3. How well do mood detection algorithms in MIR 

approximate human judgments, and is there a cultural 

bias in the algorithms? 

 
We address the first two questions with a cross-cultural 

comparison between Brazilian, South Korean, and Ameri-

can raters, examining how they perceive nine types of 

moods in music. We chose these populations since they are 

geographically and culturally distant and speak different 

languages. Moreover, as recent evidence has shown that 

shared music interests around the world generate unique 

clusters in the West, Asia, and Latin America [1,24], we 

wanted to include one country from each cultural region in 

our study. 

Many studies of musical emotions rely on film music 

excerpts or hand-picked musical stimuli that have been 

shown to evoke certain emotions [2]. In our design, we 

built a novel dataset of pop songs, randomly drawn from 

major music charts in those three countries, in order to test 

in a setting that is closer to real-world experience (see sec-

tion 2.1). To begin, we used visual stimuli to validate 

whether the translated mood terms convey the exact in-

tended meanings in the three languages (see section 3.3). 

We then ran identical online experiments in each country, 

asking participants to rate songs from all three cultures ac-

cording to preference, familiarity, and nine semantic lexi-

cal mood descriptors (see section 2.3). We compared the 

similarity of mood ratings both within and across countries 

 
1 Billboard Chart: https://www.billboard.com 
2 Crowley Broadcast Analysis: https://charts.crowley.com.br 
3 Top40 Charts: https://www.top40-charts.com 

and identified a set of mood attributes that were more 

highly agreed upon than others. 

To address RQ3, we used Spotify’s API to retrieve four 

high-level mood features (danceability, energy, valence, 

and acousticness) and assessed how well these algorithms 

approximate human raters. Next, we examined whether 

there is a Western bias in the algorithms by testing if MIR 

values align better with raters from the US. 

2. MATERIALS 

2.1 Song Selection 

We established a novel and balanced dataset of 360 pop 

songs originating from Brazil, S. Korea, and the US. We 

retrieved the major music charts for songs that made the 

charts between 2010 and 2019 (US: Billboard HOT 1001, 

Brazil: Crowley Broadcast Analysis2 and Top-40 Charts3, 

Korea: Gaon Music Chart4). 

We ran search queries for all unique songs using 

Spotify’s Web API, retrieving a maximum of 50 results. 

For every search, a fuzzy string match ratio between 0 and 

1 was computed based on the Levenshtein distance be-

tween the query and result strings, normalized by the max-

imum possible distance. We selected the entry that had the 

highest value and excluded songs with no results above a 

ratio of 0.7. We also manually inspected a subsample of 

100 songs to validate the accuracy of the matching process 

(98% in Brazilian and US songs; 97% in Korean songs). 

Songs with the word live or remix in the title or without 

preview audio (to use as stimuli in the experiment) were 

also excluded. 

The list was further reduced by retaining only the songs 

that were performed by artists matching the nationality of 

the chart (e.g., songs by Korean artists in the Korean charts) 

to balance the musical styles from the three countries. A 

song’s origin was determined according to the Interna-

tional Standard Recording Code (ISRC), which begins 

with two alphabet letters that correspond to the standard 

ISO-2 country code to indicate the place of registration, 

and we manually inspected the final set. 

We randomly sampled 12 songs per year in each coun-

try’s list while controlling for duplicate artists. The final 

dataset consisted of 360 songs, that is, 120 songs from each 

country with songs distributed evenly across the 10-year 

window (the full list of songs and the experimental data 

are available at https://osf.io/3uw9d/). 

2.2 MIR Mood Features 

High-level audio features for all songs were retrieved us-

ing Spotify’s Web API (see their reference manual for de-

tailed descriptions of all available acoustic features5). Alt-

hough other MIR libraries such as Essentia [25] also offer 

a similar set of features, it has been shown that audio codec 

and level of audio compression can influence the extrac-

tion outcome [26]. In fact, comparing Spotify’s feature 

danceability with the same feature extracted using Essen-

4 Gaon Chart: http://www.gaonchart.co.kr 
5 Spotify Web API: https://developer.spotify.com/documentation/web-
api 
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tia with low-quality preview audio resulted in small corre-

lation (r = .28). Due to this limitation, we decided to only 

include Spotify’s features in this study. Unfortunately, 

Spotify’s algorithm is not open-source and we leave open 

the task of validating and comparing between different 

MIR algorithms to future researchers. 

2.3 Selection of Mood Attributes  

We used the nine-factor Geneva Emotion Music Scale 

(GEMS) [9] and the 13 emotion dimensions proposed by 

Cowen and colleagues [10] as a reference and chose the 

seven co-occurring dimensions in the two models as our 

target mood dimensions for investigation. These seven 

mood attributes were: energetic/pump-up, relaxing/calm, 
dreamy, in love, joyful/cheerful, anxious/tense, and sad/de-
pressing. In addition, we added two extra mood attributes 

(danceable and electronic) that are directly comparable 

with the mood features retrieved through Spotify,6 giving 

rise to nine mood attributes in total. 

3. EXPERIMENT 

3.1 Participants 

We created independent participant pools in Brazil, S. Ko-

rea, and the US. The US participants were recruited from 

Amazon Mechanical Turk (MTurk) and had to pass a se-

ries of pre-screening tasks to qualify for the pool. The pre-

screening tasks were: a LexTale task [27] to check for Eng-

lish fluency, a headphone screening task [28] to ensure 

they follow the instructions when asked to wear head-

phones, and an attention check item to screen for fraudu-

lent behavior. 

Since MTurk is not very popular in Brazil and is una-

vailable in S. Korea, participants from these countries were 

recruited independently by hiring research assistants in the 

local area. We required all participants to be native speak-

ers and to reside in their respective countries. 

We advertised identical experiments to all three partic-

ipant pools with the content of the experiment having been 

translated into their respective languages (section 3.3 de-

scribes how we chose the most appropriate words in Ko-

rean and Portuguese for the nine mood attributes). In to-

tal, 166 participants participated in the study and 11,500 

ratings were collected across the 360 songs (see Table 1). 

 

 Brazil S. Korea US 

Participants (N)  58 (21 F) 54 (27 F) 54 (21 F) 
Ratings per mood 3,865 3,859 3,776 
Average ratings per 
participant 

66.6 
(SD=33.1) 

71.5 
(SD=33.1) 

69.9 
(SD=33.1) 

Average ratings per 
song 

10.7 
(SD=2.74) 

10.7 
(SD=2.31) 

10.5 
(SD=3.02) 

Table 1. Collected ratings across 360 songs among the 

three countries. “F” denotes female participants. 

 
6 Spotify’s feature acousticness was paired with human judgment on elec-
tronic due to ambiguities in translations. Similarly, while valence from 
Spotify arises from a dimensional emotion model, it was paired with hu-
man judgment on sad as the closest matching discrete term. 

3.2 Experiment Procedure 

The stimuli set of 360 songs were divided into 12 blocks, 

with each block containing 10 songs from each country, 

evenly distributed across the years. This allowed partici-

pants to perform a varied number of blocks while always 

being presented with a counter-balanced set of stimuli 

across song origins and years. 

After providing their informed consent, participants 

were randomly assigned to one of the 12 blocks, with each 

block containing 30 songs (see Figure 1). In each trial, they 

heard a 20 seconds snippet of a song randomly drawn from 

the block. They were then asked to identify the gender of 

the singer (“male”, “female”, or “don’t know”), their fa-

miliarity of the song (4 choices ranging from “never heard 

of it” to “I know it very well”), preference (5-point scale 

from “dislike a lot” to “like a lot”), and their perception of 

nine moods presented in a random order (4-point scale 

from “not at all …” to “very …”)7. Full questionnaire text 

is available in supplementary S2. 

 

 
Figure 1. Experimental setup. 

 

The experiment took around 40 minutes to complete 

and participants were compensated at an hourly rate of $9. 

Each participant could participate up to four times, with 

our system ensuring that they were never assigned to the 

same block more than once. The number of participants, 

gender ratio, and the average number of ratings per partic-

ipant were well balanced across the three countries (see 

Table 1). All experiments were conducted using PsyNet 
[29], an automated recruitment framework for online ex-

periments. Ethical approval was obtained by the Max 

Planck Society. 

3.3 Validation of Mood Terms 

Since the nine mood attributes were based in English, we 

had to translate those descriptors into Korean and Portu-

guese. However, word meanings can vary across cultures 

and this variability can lead to unintended biases [30]. 

Thus, to ensure that the intended meanings are interpreted 

in the same way across cultures with different languages, 

we validated the word meanings in a different modality 

(i.e., perception of images). 

First, we preselected 17 Korean words and 20 Portu-

guese words that potentially align with the English refer-

ence words that we selected from the literature [9,10]. Sec-

ond, we searched an online stock footage library8 with the 

7 We also collected ratings on the most suitable color to the song. How-
ever, this is not discussed as it is beyond the scope of this paper. 
8 https://www.shutterstock.com 
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target mood terms and compiled a set of images (2 images 

per target mood term). We then recruited participants (38, 

31, and 20 from the US, Brazil, and S. Korea, respectively) 

from the same participant pool recruited for the main ex-

periment. We asked the participants to rate the relevance 

of a word to a displayed image on a 4-point scale. Finally, 

to find the best matching combinations of words across the 

languages, we computed Pearson correlations across the 

image items for all possible pairs of every mood dimension. 

We then selected the triplet word combinations with the 

highest overall correlations (see supplementary S1 for all 

word comparisons). 

Figure 2B illustrates an example of how we found the 

best matching translations for mood dreamy. Using dic-

tionary definitions for the word “dreamy” in Portuguese 

(“sonhador”) and Korean (“몽환적인”) yielded a mean cor-

relation of r = 0.73, whereas the expression “like in a 

dream” in Korean (“꿈꾸는 듯한”) and Portuguese (“como 

um sonho”) resulted in considerably higher semantic 

alignment (r = 0.88). Thus, the latter combination was a 

more appropriate translation, and we used these words as 

the guiding passage in the main experiment for the mood 

dimension dreamy. The final combination of words chosen 

for the nine moods ranged in correlations between 0.88 and 

0.98. 

 

 
Figure 2. Matching mood semantics across English, Por-

tuguese, and Korean with error bars representing 95% CI. 

(A) Correlations between word combinations across lan-

guages. (B) An example of best-matching triplet word 

combinations for dreamy. 

4. RESULTS 

4.1 Familiarity & Preference 

Familiarity ratings provided by the three countries showed 

that the raters were most familiar with songs from their 

own country (see Figure 3A; all ps < .001 with Tukey’s 

HSD), ensuring that our recruited participants and the 

songs in the dataset were adequate representative samples. 

While Brazilians and Koreans hardly knew each other’s 

music (with a mean close to 1 = “never heard of it”), they 

were relatively familiar with American songs, reflecting 

the global presence of American pop songs. By contrast, 

raters from the US knew very little about both Korean and 

Brazilian songs. 

Koreans and Americans also preferred their local mu-

sic over foreign music (see Figure 3B; ps < .05 with 

Tukey’s HSD), but the difference was small. Moreover, 

Brazilians did not prefer their local music over American 

music. This demonstrates that, while the raters may have 

been most familiar with their local music, they do not par-

ticularly prefer local pop songs over foreign ones. 

However, when computing the correlations between 

familiarity and preference at individual participant level, 

there were strong correlations among all countries (Brazil: 

r = .67, Korea: r = .66, US: r = .49, all ps < .001; see Figure 

3C). These results are consistent with numerous studies 

that have observed a strong relationship between a lis-

tener’s familiarity and preference in music [31]. 
 

 
Figure 3. (A) Familiarity and (B) preference of songs 

among the three countries shown with box and whisker 

plot separated by song’s origin. The underlined texts rep-

resent music that is local to the rater. (C) Scatter plot with 

general linear model fitting showing the relationship be-

tween familiarity and preference at the participant level. 

4.2 Within Country Agreement 

How are the ratings for the nine moods agreed upon among 

the raters within each country (RQ1)? Does agreement 

converge more for some moods than others (RQ2)?  

To answer these questions, we examined rater agree-

ment within each country by computing the intraclass cor-

relation (ICC) using two-way random effects with the ab-

solute agreement and multiple raters model [32]. Among 

the total of 12 blocks that divided the 360 song items, each 

block consisted on average 9.5 (SD = 2.62) unique raters 

from the same country who completed the same block. The 

ICC was computed for (i) each block separately and aver-

aged across the 12 blocks for every mood variable (here-

after denoted as ICCmean) and (ii) the perceived gender of 
the singer (used as baseline measure). As an alternative 

statistical measure, we also used split-half correlation to 

estimate the reliability. This showed nearly identical val-

ues and patterns to the ICC (for details, see supplementary 

S3). 
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4.2.1 Agreement on Moods 

All three countries showed high within-country agreement 

for moods such as energy, danceable, electronic, sad, 

cheerful, and love (all ICCmean > .64; see Figure 4A), some 

of which were almost comparable to the baseline measure 

- singer’s gender (ICCmean = .94). Certain mood variables 

had a stronger agreement in some countries than in others. 

For instance, Koreans had a lower agreement for calm (.49) 

compared to the other two countries (> .70).  
There was a strong agreement about dreamy among the 

Americans (.73) but not within Koreans (.38) and Brazili-

ans (.52). The agreement about tense was generally weak-

est across all three countries (US: .57, S. Korea: .37; Bra-

zil: .38). Across all mood variables, ratings were more con-

sistent among the raters in Brazil (M = .73, SD = .16) and 

the US (M = .74, SD = .10) than in S. Korea (M = .63, SD 

= .17). 

4.2.2 Agreement on Local vs. Foreign Music 

We also examined the raters’ agreement for their local mu-

sic versus foreign music by separating songs according to 

their origin and averaging across the mood variables (see 

Figure 4B). Koreans (orange bars) generally showed only 

a moderate amount of agreement for Brazilian and Ameri-

can music, but a substantially higher agreement for their 

local music (F(2,321) = 20.7, p < .001, ges = .114). Mean-

while, Brazilians and Americans did not particularly con-

verge more for their local music over foreign music. 

We found that Korean music received strong agree-

ments from all three countries, with no observable group 

differences (F(2, 321) = 0.53, p > .05, ges = .003). Com-

parably, Brazilian music and American music received the 

highest agreement from their local raters but with no sig-

nificant differences (Tukey’s HSD with adjusted ps > .05). 

The observed pattern is interesting, as one might expect 

that the intended emotional cues are most easily recog-

nized within the same culture and therefore better con-

verge on their agreement. Previous works have supported 

this [12,13], contrary to the results we observed. Moreover, 

while Korean songs were unfamiliar to Brazilians and 

Americans, they showed high convergence, suggesting 

that there may be distinct or cliché acoustic properties in 

Korean music that are easily recognized and agreed upon 

across different cultures. 

4.3 Between Country Agreement 

We next investigated how the mood perception in different 

dimensions aligns between the countries (i.e., BR vs. US, 

US vs. KR, KR vs. BR) by aggregating rater responses in 

each country across the song items. When computing cor-

relations between the rater groups, the correlation is atten-

uated due to the measurement errors in each group. Thus, 

we corrected for this attenuation [33] by accounting for the 

internal reliability, which we estimate by the mean ICC 

values we computed in section 4.2. All correlation hereaf-

ter is reported using this corrected version, but the raw cor-

relation is also reported in supplementary S3. In addition, 

confidence intervals were obtained by sampling 1,000 

bootstrapped values with replacement. 

When comparing the alignments between countries, we 

found that four variables, danceable, energy, electronic, 
and sad, are very strongly correlated among all the be-

tween-country pairs (all rs > .93; see Figure 4C). These 

four variables were also features that are directly compa-

rable with Spotify’s mood detection algorithms. In contrast, 

considerably lower correlations were observed between 

Brazilians and Koreans for love (r = .63) and dreamy (r 

= .41). Interestingly, these two countries exhibited much 

stronger correlations when paired with the US raters (all rs 

> .83). The ratings were highly similar between Brazilian 

and American raters for tense, but showed considerably 

weaker agreement between the Brazilian vs. Korean and 

American vs. Korean pairs, possibly due to the shortage of 

excerpts in our stimuli set manifesting this description.  

Together, these results suggest that more basic mood 

attributes may be perceived similarly across the cultures, 

while more complex attributes may be perceived differ-

ently depending on the listener’s cultural background. 

4.4 Human vs. MIR 

How well does MIR approximate human judgment? 

Is there a cultural bias in the algorithm? To examine these 

Figure 4. (A) Agreement across the moods within each country. The grey bars represent the baseline measure. (B) Agree-

ment by song origin. Underlined labels in the x-axis representing local music to the rater. (C) Between country pairwise 

comparison using Pearson correlation corrected for attenuation. All error bars represent 95% CI. 
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set of questions (RQ3), we computed the correlation be-

tween all human raters (regardless of nationality) with 

MIR estimations. We found that on average those correla-

tions range between 0.49 and 0.63 across the variables en-
ergy, danceable, sad, and electronic (see Figure 5A; all ps 

< .001). These values were substantially lower than the 

mean correlations observed between the human raters for 

the same four features (all rs > .93).  

Although the alignment of perceived mood ratings with 

Spotify’s features is not weak, such a clear congruence 

across different cultures suggests that mood detection al-

gorithms can be improved further to better capture these 

high-level perceptions that are cross-culturally consistent. 

4.4.1 Is there a Cultural Bias? 

Next, we investigated whether MIR is biased to a particu-

lar cultural group. Figure 5B shows the average correla-

tions between human ratings and MIR values across indi-

vidual song-rate pairs in each country. We found no sig-

nificant differences between any of the country-country 

pairs using bootstrapping (ps > .20) and also by using a 

method [34] for significance testing between correlations 

(ps > .18). Thus, we conclude that there is no clearly ob-

servable bias in MIR in favoring a certain culture, contrary 

to our initial prediction that it may align better with the US 

raters. 

 

 
Figure 5. (A) Correlations among people are presented in 

light orange while correlations between people and MIR 

are in dark orange. The grey bar represents the baseline 

measure. (B) Correlations between MIR and raters from 

three countries. Error bars represent 1SD and all correla-

tions are corrected for the attenuation. 

 

4.4.2 Song Familiarity and MIR 

Considering that our participants had a wide range of de-

grees of familiarity with songs, we also tested whether 

prior experience with a song influenced the alignment with 

MIR. We divided the songs into familiar and unfamiliar 

categories and found that all four MIR features were more 

strongly correlated with unfamiliar songs than familiar 

songs:  danceable (Mdiff = 0.13, p = .16), electronic (Mdiff = 

0.16, p = .02), energy (Mdiff = 0.27, p < .001), and sad (Mdiff 

= 0.10, p = .38), with p-values corrected using Bonferroni 

correction. This result is consistent with the idea that the 

listener’s personal relationships to music may result in 

higher variability in mood perception (e.g., due to autobi-

ographical memories [35]), which may have been reflected 

as reduced correlations with the objective algorithms. 

5. DISCUSSION 

We compared participant ratings from Brazil, South Korea, 

and the US and examined within and between-country dif-

ferences in listeners’ perception of nine mood attributes in 

music. We also assessed the robustness and generalizabil-

ity of automatic mood detection algorithms in MIR by 

comparing it with human raters from those three countries. 

Our findings reveal that relatively simple mood attrib-

utes such as danceable, energy, sad, cheerful, and elec-
tronic are highly agreed upon among the listeners both 

within and across cultures. This result suggests that pop 

songs may have intrinsically similar acoustic properties 

that are reliably recognized regardless of the listener’s cul-

tural background, even when they are unfamiliar with the 

musical style [7,8]. Some of these properties are low-level 

features (e.g., tempo, loudness) that can also be picked up 

by a mood detection algorithm as we found the algorithms 

to be quite good at approximating human judgments. 

Nonetheless, the substantial gap between the correlations 

among humans and correlations of human vs. MIR reveals 

the current limitation of algorithms failing to capture the 

full extent of human perception. This implies that people’s 

mood perception in music may not be explained solely by 

the acoustic properties. However, recent advances in mood 

classification incorporating mid-level features [36] (e.g., 

melodiousness) and multi-modalities [37,38] (e.g., fusing 

audio and lyrics) show promising paths for improvement. 

Our results also show that complex mood attributes may 

not have concretely shared musical characteristics and are 

thus perceived relatively differently depending on the lis-

tener’s cultural background [12-15]. For instance, the rat-

ings for mood dreamy converged well only among the 

Americans but not within and between the Korean and 

Brazilian raters. The mood love was strongly agreed upon 

within all three countries, but there was little agreement 

between Koreans and Brazilians. These cross-cultural dif-

ferences are striking considering both South Korea and 

Brazil are highly globalized and thus largely exposed to 

the mainstream media. We would expect significantly 

larger cross-cultural variation in small-scale societies 

[39,40] and future research can look to incorporate more 

diverse musical styles and participant groups. 

Automatic mood detection algorithms in MIR are gen-

erally trained on English songs, with the ratings obtained 

from Western annotators. Given this circumstance, we pre-

dicted that the algorithm would be culturally biased and 

align better with the US raters. However, counter to our 

intuition, we found no cultural bias in the algorithms. All 

four mood features in our comparison (danceable, energy, 
sad, and electronic) aligned similarly well with raters from 

the three countries. Given these outcomes, we conclude 

that current mood detection algorithms are good objective 

proxies for human judgments and are not culturally biased, 

at least within the popular music context in industrialized 

societies. 
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6. DATA AVAILABILITY 

Raw participant ratings, musical stimuli used in the exper-

iment, and additional statistical results are available at 

https://osf.io/3uw9d/  
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ABSTRACT 

This paper presents a critique of the ubiquity of boilerplate 
quantizations in MIR research relative to the paucity of en-
gagement with their methodological implications. The 
wide-ranging consequences of reflexivity on the future of 
scholarly inquiry combined with the near-universal con-
temporary recognition of the need to broaden the scope of 
MIR research invite and merit critical attention. To that 
end, focusing primarily on twelve-tone equal-tempered 
pitch and dyadic rhythm models, we explore the practical, 
cultural, perceptual, historical, and epistemological conse-
quences of these pervasive quantizations. We analyze sev-
eral case studies of meaningful and successful past re-
search that balanced practicality with methodological va-
lidity in order to posit several best practices for both future 
intercultural studies and research centered on more nar-
rowly constructed corpora. We conclude with a discussion 
of the dangers of solutionism on the one hand and the self-
fulfilling prophecies of status quoism on the other as well 
as an emphasis on the need for intellectual honesty in met-
atheoretical discourse.  

1. INTRODUCTION

Fostering cultural diversity in MIR research is not merely 
a question of “adapting” existing methodologies devel-
oped on the basis of certain a priori assumptions to reper-
toires or tasks that perhaps challenge said assumptions. In 
particular, it should also entail critical reflection on the 
benefits and drawbacks of those assumptions in studies of 
all repertoires, even (if not especially) those on the basis of 
which such assumptions were made in the first place. 
Twelve-tone equal-tempered quantizations of pitch and 
dyadic quantizations of rhythm represent arguably the 
most ubiquitous such assumptions in contemporary MIR 
research, and yet despite their prevalence their founda-
tional role underlying many diverse methodological ap-
proaches all too often passes unannounced. This paper 
therefore presents an analysis not of any musical infor-
mation in particular but rather of the apparatuses we use to 
retrieve it from musics in the hopes of fostering productive 
future methodological conversations. 

Quantization may be defined as the organization of di-
mensional information into discrete sets of values (other-
wise known as categorization in perception science), and 
it is cognitively essential for creating music. That being 
said, the centrality of the process of quantization to music 

does not justify the perpetuation of reliance on any “de-
fault” quantizations. Indeed, certain quantizations are 
ubiquitous, all-too-often unstated a priori assumptions un-
derlying a substantial majority of MIR methodologies. Are 
they compromises? Almost invariably yes they are. Do 
they represent pragmatic choices? Quite possibly they do, 
depending on the context. But pragmatic compromises or 
otherwise, the foundational position of these quantizations 
endows them with consequences that merit consideration 
in the context of any methodological decision-making and 
especially if meaningful progress is to be made in expand-
ing the purview of MIR and its applications.  

This paper is structured as follows: after this introduc-
tion providing the rationale for a reconsideration of quan-
tization in MIR, its consequences practical, cultural, per-
ceptual, historical, and epistemological are each explored 
in turn with an emphasis on pitch and rhythm in the second 
section. The third section provides illustrative case studies 
that demonstrate strategies for balancing pragmatism with 
methodological validity and posits best practices for both 
intercultural and intracultural research. The fourth and fi-
nal section argues for the necessity of avoiding both solu-
tionism on the one hand and status quoism on the other and 
emphasizes the importance of intellectual honesty in met-
atheoretical discourse. 

2. CONSEQUENCES OF QUANTIZATION

2.1 Practical Consequences 

The most obvious practical consequence of the ubiquity of 
certain quantizations in MIR is the widespread availability 
of platforms built around them and the corresponding no-
ticeable absence of alternatives. In and of itself this is un-
surprising and not necessarily a drawback; and yet, it can 
bring about the existence of unfortunate self-fulfilling 
prophecies. Consider the case of the justifiably popular Py-
thon audio analysis package librosa [1], in which one may 
specify the number of notes per octave but the assumption 
that they are equally spaced is not so easily changed. As 
maintainer Brian McFee put it with respect to pitch on the 
Music Information Retrievers Slack in July 2020, equal 
temperament “is a compromise, but one I’m willing to live 
with for the time being; extending to support just intona-
tion in a fully consistent way would be a huge undertaking, 
much bigger than just adding notation support.” We are in-
clined to agree with McFee in his assessment that imple-
menting meaningful support for tuning systems other than 
equal temperaments would be a very nontrivial task. At the 
same time, however, such tasks tend to be welcomed by 
MIR researchers as motivation for innovation. Why, then, 
does this remain unaddressed?  
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Imagine a hypothetical MIR researcher who desires to 
do work on musics in non-equal-tempered pitch systems. 
Methodological convenience is seldom acknowledged as a 
motivating factor in the planning and implementation of 
research plans and yet psychologically it has an effect on 
what individuals decide to do and not to do. The existence 
vs. nonexistence of tools structured so tightly around cer-
tain pitch quantizations, in turn, has implications for such 
convenience or lack thereof. Adding the need to produce a 
novel notation and/or data format on top of the already ma-
jor task of encoding a new corpus in a machine-readable 
format as prerequisites for exploring avenues for actual in-
formation retrieval can make the scale of a prospective 
project quickly balloon in size and therefore be discourag-
ing to its actual execution. And even for projects that do 
make it to completion, there remain the potential for obsta-
cles in the peer-review process. Excessive specialization 
brings about the possibility for manuscripts to be reviewed 
by homogeneous niches whose shared assumptions may 
prevent work from being disseminated to the broader com-
munity and from being built upon by subsequent endeav-
ors, and such dynamics of review admit no simple fixes. 

Beyond non-symbolic tools such as librosa, it addition-
ally bears mentioning that symbolic tools have also em-
braced the compromise of equal-tempered quantization of 
pitch at just about every level of their functionality. To 
name just a few, Humdrum [2] and music21[3] are equally 
“not fully compatible” [4] with musics which do not con-
sist of twelve pitches logarithmically equally spaced over 
2:1 octaves in terms of pitch structure. These tools are all 
of course excellent in countless use cases and this is not by 
any means to suggest they be abandoned. Rather, this 
acknowledgement of their shared assumption with respect 
to the modeling of pitch leads to a fuller and more useful 
understanding of their limitations in considering what one 
might choose in terms of platform for a study if this exact 
assumption is not desired to be made for any given re-
search plan. In particular, the pitch quantizations inherent 
in the notation encodings upon which such symbolic tools 
rely could be taken to motivate non-symbolic approaches 
in cases where one’s target musics are not served as well 
by these encodings’ inherent assumptions. 

2.2 Cultural Consequences 

Anthropologists, ethnomusicologists, linguists and other 
scholars distinguish between emic and etic understandings 
of culturally-specific phenomenon, which can be approxi-
mately understood as insider and outsider perspectives [5]. 
Quantizations in MIR are overwhelmingly based on etic 
views of culturally-specific musical phenomenon which 
harm the ecological validity of methodologies. Twelve-
tone equal-tempered pitch quantization is regrettable in 
this regard because of the number of musical cultures in 
the world that use or have used more or fewer than twelve 
notes per octave (e.g. Indian rāga, Turkish makam, or In-
donesian Gamelan musics), twelve non-equally-spaced 
notes per octave (e.g. much of the history of Western mu-
sics, as discussed further in subsection 2.4) or non-octave 
based pitch structures (e.g. tritave-based works by Wendy 
Carlos et al.). Tools that are ill-suited to handle the musical 

realities of these and similar culturally-specific phenome-
non lead either to their exclusion from consideration or 
(and arguably worse) facilitate their inclusion but in ways 
that do them a disservice. 

Dyadic rhythm quantization has similarly negative con-
sequences, especially in light of the differing approaches 
to meaning and teleology across musical cultures. Micro-
timings pose a practical challenge in any case but depend-
ing on the culture in question, such minute expressive dis-
crepancies from most quantizations could serves as the pri-
mary determinants of culturally-specific meaning. And 
with respect to teleology, cyclic vs. linear conceptions of 
rhythm and time ought to factor in to how and why we de-
cide to treat rhythm in both symbolic and signal pro-
cessing-based approaches (e.g. because structural repeti-
tions might rely on subtle changes near the beginnings or 
ends of units of repetition part and parcel with large-scale 
formal processes). Yet by and large these implications are 
either swept under the rug or taken to mean that work will 
instead focus elsewhere. 

At the beginning of this paper we alluded to the fact that 
fostering cultural diversity in MIR is not merely a matter 
of “adapting” existing methodologies to a broader variety 
of musics. The cultural consequences of quantization high-
light this fact in that it would be quite simple if not trivial 
to apply say a twelve-tone chroma feature to Turkish 
makam or a dyadic rhythm quantization to Burundi Whis-
pered Inanga but any results so obtained could be mean-
ingless to practitioners of those musical cultures. It is not 
enough, furthermore, to involve emic perspectives in a re-
search plan if its computational approaches do not also 
take them into account. Consideration of not only the pri-
mary audiences of MIR research but also all of the stake-
holders in its endeavors leads to the realization that the 
deeper issues of cultural diversity thus lie in methodology 
as well as in repertoire.  

2.3 Perceptual Consequences 

Many if not all MIR methodologies attempt to relate to hu-
mans’ perceptions of musics in some way in order to yield 
results relevant to the experiences of listeners. And yet, the 
quantizations of pitch and rhythm that underlie many of 
these methodologies exhibit to a nontrivial extent an arbi-
trariness divorced from perceptual realities. In the domain 
of pitch, for instance, the number of notes in the twelve-
tone equal-tempered scale from 16 Hz to 16 kHz is only 
120 whereas the number of perceptible pitch steps in the 
same range is approximately 1400 [6]. If a methodology 
sought to explore perceptual quantization among individ-
uals with absolute pitch and socialized in musical cultures 
featuring twelve notes per octave, the decision to limit its 
pitch quantization accordingly would follow naturally. 
Most methodologies, however, do not intend to ask and at-
tempt to answer such questions and yet the employ this 
quantization of pitch all the same.  

With respect to rhythm quantization, even SOTA or 
near-SOTA results similarly bring caveats in terms of their 
perceptual implications. Automatic transcription does not 
claim to be a representation of listeners’ experiences of the 
music in question, and yet its use in analyzing performed 
divergences from symbolic rhythmic notation attests to a 
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modeling of performers’ conscious or subconscious deci-
sion-making in some sense. Automatic transcriptions of 
performances by the legendary Canadian musician Glenn 
Gould, for instance, produce rational approximations of 
his keyboard ornamentation necessary to fit into the pre-
vailing dyadic rhythmic grid [7]. Such results are valid in 
the sense that they more or less closely match the raw in-
teronset interval (IOI) data up to the capability of the algo-
rithms in question. Still, from a perceptual perspective, the 
idea that either listeners or performers are themselves 
quantizing the dizzying diversity of IOIs present into some 
similarly messy rational dyadic mental representation is 
rather unfortunate. 

This is not to say that MIR models that do not claim to 
be perceptual models should be rejected on perceptual 
grounds. On the contrary, such models should be consid-
ered in terms of their claims and their intentions. At the 
same time, however, recognition of the perceptual conse-
quences of quantization in the modeling of musics could 
easily lead to more reflexivity in scholarly discourse, the 
absence of which seems to reflect an unspoken consensus. 
Consensus is one straightforward means of making tangi-
ble progress on solving difficult problems but when it is 
merely implicit and unspoken it is less likely to serve as a 
solid foundation for such progress. The perceptual impli-
cations of quantizations in MIR therefore would do well to 
figure more in scholarly discourse both for the sake of in-
creasing methodological validity and also to promote en-
gagement with the state of the art in the cognitive sci-
ences—aims which have indeed been documented for as 
long as ISMIR has existed [8]. 

2.4 Historical Consequences 

If we narrow our scope temporarily to studies of Western 
European classical musics, we find that common quantiza-
tions of pitch and rhythm have striking consequences with 
respect to historical ecological validity. Revisionist histo-
ries of tuning do not change the historical reality that 
twelve-tone equal temperament is a relatively recent phe-
nomenon in practice. In terms of repertoire, one example 
par excellence is J. S. Bach’s The Well-Tempered Clavier 
(WTC), a collection of keyboard works whose very title 
explicitly testifies to the composer’s intention to explore 
all 24 unequal major and minor keys which were usable 
compared to meantone and yet had different affective pro-
files due to minor but nontrivial intervallic size differ-
ences. Any information retrieved from a symbolic repre-
sentation of the WTC imposing the enharmonic equiva-
lence and logarithmically equal note spacing of twelve-
tone equal temperament on its pitch content would there-
fore do a disservice to the historical circumstance sur-
rounding the creation of the work and divorce results ob-
tained from its meaning at the time of its creation. 

If we look more recently in music history, there do exist 
plenty of corpora for which a twelve-tone equal-tempered 
pitch model is quite appropriate. Composers working since 
the advent of twelve-tone equal-tempered tuning who rely 
on this pitch logic in the structure of their musics are a nat-
ural fit for this particular quantization, as are the genera-
tions of popular musicians who inherited this structure 
more or less wholesale. In a similar vein to what Cella [9] 

has observed in the case of contemporary classical music, 
one possible explanation for the application of this quanti-
zation to musics earlier than for which it is best-suited may 
lie in the ‘follow the money’ reality of many MIR projects. 
That is, given that the largest audiences today are served 
by tools centered around the quantization of pitch most 
common in modern popular musics, one would not be sur-
prised for there to be less investment in tools which would 
best handle earlier pitch quantizations. If dynamics of pitch 
quantization were fully considered before planning and ex-
ecuting research on historical repertoires, we might study 
some understudied repertoires more and overstudied rep-
ertoires less. 

Rhythm quantization, in turn, is analogously problem-
atic from the perspective of impacting historical ecological 
validity. The case of French Baroque notes inégales may 
serve as a representative example. In this case the wide-
spread divergence of performance practice from symbolic 
representations of the music leads to situations where MIR 
studies based on symbolic data can make valid claims 
about the symbolic data that are nonetheless not reflective 
of the music as performed by historically-informed practi-
tioners and would therefore not align with non-symbolic 
studies of the same music. Moreover, rhythm quantization 
in cases of performance practice poses a much less daunt-
ing (though still nontrivial) challenge for well-intentioned 
researchers than pitch. Whether or not something is chal-
lenging is seldom the sole determining factor in the pro-
cesses of methodological development, and yet the relative 
ease of addressing notes inégales suggests that the broader 
trend at play here is a minimization of concern for histori-
cal realities in the implementation of such studies rather 
than practicality.  

2.5 Epistemological Consequences 

At once the most concerning and least-addressed draw-
back of the omnipresence of certain quantizations in MIR 
is their tendency to foster confirmation bias. If our hypoth-
eses are to withstand critical scrutiny, they must be not 
only falsifiable but also tested in such a way that the results 
are not preordained by our methodological decision-mak-
ing. A useful lesson can be drawn from the example of 
studies of cognitive and academic benefits of music train-
ing in children, where a recent meta-analysis suggests that 
confirmation bias might well have influenced the validity 
of nearly four decades of results [10]. The lesson to learn 
from these experimental studies is that when research is 
designed with the expectation to find a certain result, it 
should not be surprising nor necessarily meaningful to pro-
duce that result.  

For example, the use of twelve-tone equal-tempered 
chroma features in signal-based analysis can quite possibly 
produce statistically significant results with respect to 
those bins. This does not, however, necessarily tell us an-
ything meaningful about the underlying signal because 
such bins are merely rounding the chroma information ac-
tually present to the nearest 100 cents. The same principle 
applies to dyadic rhythm quantization of IOI information, 
where the results obtained can be elegant and convincing 
with respect to this quantization but again do not neces-
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sarily reveal a deeper truth about the signal in question de-
pending on the nature of its unquantized IOIs. Multidimen-
sional attempts to quantize timbre, in turn, have had suc-
cess in synthesis applications [11] that should not however 
be interpreted as a guarantee that the same approaches will 
lead to ecologically valid results in analysis. 

Another epistemological drawback of such quantiza-
tions is their tendency to foster selection bias. As discussed 
earlier in the context of practical consequences, when 
mainstream tools exist that are suited for certain musics 
and not others, it should not come as a surprise that a sig-
nificant number of researchers tend to apply those tools to 
those musics at the expense of others. Given the present 
recognition of the need to counter sampling bias in MIR 
research, all factors that contribute to it accordingly de-
serve acknowledgment and discussion. Methodologically 
careful intercultural studies as well as intracultural re-
search have been performed and continue to be performed 
by members of the MIR community, and this is not to ne-
glect their contributions (which will be addressed in the 
following section). Rather, to understand the role of these 
quantizations in contributing to selection bias is to admit 
that despite their ubiquity, they are far from “neutral” po-
sitions one might assume them to be. 

3. CASE STUDIES AND BEST PRACTICES 

If the preceding critiques of boilerplate quantizations have 
perhaps presented a morose picture of the state of contem-
porary MIR, the following case studies and recommended 
best practices should serve as a more optimistic change of 
pace. There are undoubtedly other case studies we have 
omitted that would serve just as well as examples and other 
best practices we do not recommend here. This section is 
therefore best understood as an attempt to highlight direc-
tions for future work to complement the aforementioned 
discussions of the consequences of “default” quantiza-
tions.  

3.1 Case Studies 

Although it is rather uncommon, theoretical work does ex-
ist that has explored pitch with an eye toward information 
retrieval through continuous rather than quantized per-
spectives. Callender [12] has investigated continuous har-
monic spaces using a Fourier-based approach to symbolic 
data that enables the application of “harmonic intuitions to 
all possible chords of pitches and pitch classes in all pos-
sible tuning systems.” Wakefield [13] has examined the 
mathematical and computational implications of “joint 
time-chroma distributions” that could be used to produce 
unquantized chroma features on the signal-processing 
side. Neither of these theoretical contributions has been the 
subject of much follow-up work which is regrettable con-
sidering that they suggest possibilities for methodologies 
approaching the extraction of pitch information without 
assuming any particular quantization of pitch in advance. 
At the same time, that continuous alternatives to the re-
ceived wisdom of certain quantizations have largely 
passed unnoticed in MIR is to an extent to be expected 
since those most committed to working with specific sets 

of discrete values are not incentivized to explore options 
beyond them. 

Approaches to quantization starting either from a con-
tinuous perspective or closer to it also merit mention here. 
Moelants, Cornelis, and Leman [14] implemented a meth-
odology in which “pitch is first analyzed on a continuous 
scale” and “peak analysis is then applied on these data to 
extract the actual scale used.” Among the advantages of 
this approach are the fact that it is applicable to many sig-
nal-based MIR methods and that it is easily generalizable 
across repertoires. Six and Cornelis [15] used a granular 
“resolution of 1200 cents” to cover more than the pitches 
of twelve-tone equal temperament in order to “form musi-
cologically meaningful representations” of non-Western 
musical traditions. In both of these cases the methodology 
was planned and implemented with maximal ecological 
validity as one desired outcome. Whether starting with 
continuous data or relying on a granular quantization for 
the sake of more meaningful analysis, both of these exam-
ples demonstrate that it is not only possible but quite doa-
ble to make such decisions in one’s own research agenda 
when the musical situations at hand call for it. 

Two differing approaches to working with histogram 
bins can serve as worthwhile examples of quantizations 
not starting from continuous perspectives but still center-
ing culturally-specific knowledge in their computational 
implementations. Panteli [16] in a comparative study of 
Cypriot pitch patterns increased their histogram resolution 
by a factor of three compared to the octave partitions spec-
ified in Byzantine and Turkish theoretical sources “for bet-
ter precisions and tuning robustness” while remaining tied 
to the traditions’ emic perspectives. Bozkurt [17] found in 
the analysis of traditional makam music in Turkey per-
formed by a living master that the histogram matched nei-
ther twelve-tone equal temperament nor the official stand-
ard tuning system of the music as codified in print sources 
and accordingly designed a tuning application based on 
such recordings rather than any frequency presets. Work-
ing within some discrete universe to start but modifying it 
to suit the investments of multiple stakeholders can bal-
ance tensions inherent in intercultural work. 

One research project that serves as the umbrella for 
many approaches to quantization worthy of emulation is 
“CompMusic: Computational Models for the discovery of 
the world's music” [18] coordinated by Serra. Recognizing 
the drawbacks of the hegemony of Western-centered par-
adigms in MIR, this project not only includes members 
from each of the cultures being studied but also targets 
practitioners of these specific traditions in its development 
of interactive systems. Another example of an organiza-
tional umbrella fostering potential departures from com-
mon quantization norms was the Music Encoding Initia-
tive (MEI) and their MEI Incubator [19], which gave prac-
titioners a “common space to ‘grow’ their customizations 
and share them with other members of the community.” 
Both of these case studies are also helpful reminders of the 
fact that much of the work needing to be done to overcome 
limitations of certain quantizations lies in the domain of 
encoding and formatting corpora for processing. 

Lastly, two more recent examples involving the study 
of Indian art music (IAM) are further demonstrative of 
other possibilities for sensibly handling quantization in a 

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

377



  
 
way most germane to the repertoire in question. The meth-
odology of Ranjani et al. [20] involved “non-uniform 
quantization intervals…selected from pitch and time 
scales prevalent in IAM [and] accommodating pitch and 
inter-note-interval variations on [a] pitch-time grid,” ac-
counting for the repertoire in the methodology rather than 
the other way around. Viraraghavan et al. [21], in turn, pro-
posed a transcription methodology involving a Viterbi al-
gorithm that outperformed uniform quantization (which 
would be the default in MIR of Western musics) in terms 
of adherence to rāga. The commonalities between these 
two contributions accordingly exceed their corpus and 
their aims in that both made conscious methodological de-
cisions that decentered assumptions made in the study of 
Western musics in accordance with the questions they 
sought to ask and answer.  

3.2 Best Practices 

There are several potential best practices to be drawn from 
the brief survey of case studies presented above. Chiefly 
among these is the recognition of the continuous reality of 
pitch as a prerequisite for an implementation of its quanti-
zation. Our position is not that MIR researchers believe as 
Vincenzo Galilei did that pitch is discrete nor that all quan-
tizations are unconscious reflexes but rather that intention-
ality is key in these methodological underpinnings. Con-
tinuous models used to obtain discrete ones (as in [14]) are 
applicable to any musics and increased granularity (as in 
[15]) need not be limited to non-Western repertoires. Dis-
crete models informed by the theoretical and performance 
output of practitioners within the cultures in question [16-
17] can foster increased usability of results beyond schol-
arly applications. Especially for the study of expressive in-
tonation, experimental and microtonal musics, and signal-
processing based on performance rather than symbolic 
analysis, these approaches with or without the orientation 
of explicitly continuous thinking at all stages of execution 
[12-13] are likely to increase ecological validity and offer 
pathways into understudied repertoires. 

The institutional case studies [18-19], in turn, highlight 
the utility of large-scale cooperation as well as the poten-
tial impact of targeted strategic planning. By aiming big 
and serving both as a proof of concept and a timely contri-
bution to the cutting-edge, CompMusic demonstrates the 
potential for reverse-engineering research structure from 
concrete culturally-specific goals. And though more open-
ended than CompMusic and focusing on symbolic rather 
than signal representations, the MEI Incubator’s acknowl-
edgement of the importance of explicitly carving space for 
digging into underexplored territory while minimizing du-
plication of labor can be taken as another replicable best 
practice. The deliberate emphasis of both of these initia-
tives on maximal dissemination of their output reinforces 
the importance of democratization of knowledge for em-
powering practitioners who may not yet realize they have 
options beyond those they might consider by default. 

Finally, the case studies involving IAM [20-21] suggest 
that repertoire driving methodology and not the converse 
is a successful means for optimizing the ecological validity 
of research. Another best practice they suggest is the in-
corporation of emic knowledge of diverse musical cultures 

in the research process. One need not be a practitioner of 
any particular musical repertoire in order to be able to ac-
cess pertinent ethnomusicological research on it. On the 
contrary, the majority of such scholarship is written by ex-
perts who understand that they have firsthand experience 
with a given repertoire or culture but their audience does 
not. MIR as a whole has been generally good about inter-
facing [22] with the cognitive sciences, the library sci-
ences, and the computational disciplines pertinent to what 
it does but has a spottier track record historically with re-
spect to engaging with relevant ethnomusicology beyond 
studies of recordings and transcriptions [23]. In our opin-
ion, remedying this would represent an additional best 
practice for future work.  

4. RECOMMENDATIONS 

4.1 Against Solutionism 

Our first recommendation is for MIR to avoid the solution-
ist impulse it might feel in response to critiques of certain 
quantizations. Indeed, attempting to quickly address per-
ceived drawbacks of methodologies without fully probing 
the nature of the issues at hand “is likely to have unex-
pected consequences that could eventually cause more 
damage than the problems they seek to address” [24]. We 
have deliberately refrained from positing any alleged pan-
acea to the prevalence of these quantizations firstly be-
cause none exist but more importantly because that would 
be antithetical to our broader aim of fostering a conversa-
tion involving as many stakeholders with differing per-
spectives as possible. If we are to make meaningful struc-
tural (i. e. rather than cosmetic) progress as a discipline 
with respect to diversity and inclusion, we need to be hav-
ing substantive conversations about what we seek to 
change and why we seek to change it before we dive into 
well-intentioned attempts to implement such changes. 

4.2 Against Status Quoism 

Our second recommendation is for MIR to reject the iner-
tia that has enable these quantizations to remain so central 
and unchallenged to its methodologies for so long. Ques-
tioning received wisdom is necessary and crucial to the 
long-term success of any research enterprise, and the ubiq-
uity and utility of any quantization should not exempt it 
from critique. In many ways status quoism is the dual of 
solutionism, and to reject one while embracing the other 
would be hypocritical to say the least. Practically and in-
stitutionally speaking, we recognize that status quoism is a 
stance rewarded by the mechanisms of publication, recog-
nition, career advancement, etc. in MIR and adjacent dis-
ciplines. It therefore merits conscious effort our on part as 
researchers to actively and explicitly posit the need for 
change while simultaneously acknowledging that changes 
must be thoughtfully and meticulously planned before they 
are implemented if they are to last. 

4.3 Intellectual Honesty in Metatheoretical Discourse  

Our third and final recommendation is for increased intel-
lectual honesty in metatheoretical discourse. It is easy to 
perceive critiques of methodologies one uses or has used 

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

378



  
 
as critiques of one’s entire research agenda and this can 
only have negative consequences. By displacing positive 
emotional investment in one’s research into negative re-
sponses to methodological criticism, productive conversa-
tions often are extinguished before they can begin and 
shouting into the void on all sides can be encouraged. We 
therefore call above all for dialogue, open-mindedness, 
and lucidity in terms of understanding the potential for a 
meaningful research agenda to be built on assumptions that 
one may not have previously questioned and for improve-
ments to be made possible by exploring those assumptions. 
Reflection and even more importantly self-reflection are 
crucial to the present and future of inquiry, and quantiza-
tion just as much as anything else ought to be the subject 
of such consideration.  
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ABSTRACT

We propose a unified model for three inter-related tasks:
1) to separate individual sound sources from a mixed mu-
sic audio, 2) to transcribe each sound source to MIDI
notes, and 3) to synthesize new pieces based on the tim-
bre of separated sources. The model is inspired by the
fact that when humans listen to music, our minds can
not only separate the sounds of different instruments, but
also at the same time perceive high-level representations
such as score and timbre. To mirror such capability com-
putationally, we designed a pitch-timbre disentanglement
module based on a popular encoder-decoder neural archi-
tecture for source separation. The key inductive biases
are vector-quantization for pitch representation and pitch-
transformation invariant for timbre representation. In ad-
dition, we adopted a query-by-example method to achieve
zero-shot learning, i.e., the model is capable of doing
source separation, transcription, and synthesis for unseen

instruments. The current design focuses on audio mix-
tures of two monophonic instruments. Experimental re-
sults show that our model outperforms existing multi-task
baselines, and the transcribed score serves as a powerful
auxiliary for separation tasks.

1. INTRODUCTION

Music source separation (MSS) is a core problem in music
information retrieval (MIR), which aims to separate indi-
vidual sound sources, either instrumental or vocal, from
a mixed music audio. A good separation benefits various
of downstream tasks of music understanding and genera-
tion [1,2] since many music-processing algorithms call for
“clean” sound sources.

With the development of deep neural networks, we see
significant performance improvements in MSS. The cur-
rent mainstream methodology is to train on pre-defined
music sources and then infer a mask on the spectrogram (or
other data representations) of the mixed audio. More re-
cently, we see several new efforts in MSS research, includ-

© Liwei Lin, Qiuqiang Kong, Junyan Jiang and Gus Xia.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Liwei Lin, Qiuqiang Kong, Junyan
Jiang and Gus Xia, “A unified model for zero-shot music source separa-
tion, transcription and synthesis”, in Proc. of the 22nd Int. Society for

Music Information Retrieval Conf., Online, 2021.

ing query-based method [3–6] for unseen (not pre-defined)
sources, semantic-based separation that incorporates aux-
iliary information such as score or video [7–13], and multi-
task settings [14].

This study conceptually combines the aforementioned
new ideas but follows a very different methodology — in-
stead of directly applying masks, we regard MSS an audio

pitch-timbre disentanglement and reconstruction problem.
Such strategy is inspired by the fact that when humans lis-
ten to music, our minds not only separate the sounds into
different sources but also perceive high-level pitch and tim-
bre representations that generalize well during both music
understanding and creation. For example, humans can eas-
ily identify the same timbre in other pieces or identify the
same piece played by other instruments. People can even
mimic the learned timbre using human voice and sing (i.e.,
to synthesize via voice) the learned pitch sequence.

To mirror such capability computationally, we propose
a zero-shot multi-task model jointly performing MSS, au-
tomatic music transcription (AMT), and synthesis. The
model comprises four components: 1) a query-by-example
(QBE) network, 2) a pitch-timbre disentanglement mod-
ule, 3) a transcriptor, and 4) an audio encoder-decoder net-
work. First, the QBE network summarizes the clean query
example audio (which contains only one instrument) into
a low-dimensional query vector, conditioned on which the
audio encoder extracts the latent representation of an indi-
vidual sound source. Second, the model disentangles the
latent representation into pitch and timbre vectors while
transcribing the score using the transcriptor. Finally, the
audio decoder takes in both the disentangled pitch and tim-
bre representations, generating a separated sound source.
When the model further equips the timbre representation
with a pitch-transformation invariance loss, the decoder
becomes a synthesizer, capable of generating new sounds
based on an existing timbre vector and new scores.

The current model focuses on audio mixtures of two
monophonic instruments and performs in a frame-by-
frame fashion. Also, it only transcribes pitch and duration
information. We leave polyphonic and vocal scenarios as
well as a more complete transcription for future work. In
sum, our contributions are:

• Zero-shot multi-task modeling: To the best of our
knowledge, it is the first model that jointly performs
separation, transcription, and synthesis. It works
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for both previously seen and unseen sources using
a query-based method.

• Well-suited inductive bias: The neural struc-
ture is analogous to the “hardware” of the model,
which alone is inadequate to achieve good disen-
tanglement. We designed two extra inductive bi-
ases: vector-quantization for pitch representation
and pitch-transformation invariant for timbre repre-
sentation, which serves as a critical part of the “soft-
ware” of the model.

• None-mask-based MSS: Our methodology regards
MSS an audio pitch-timbre disentanglement and re-
creation problem, unifying music understanding and
generation in a representation learning framework.

2. RELATED WORK

Most effective music source separation (MSS) methods are
based on well-designed neural networks, such as U-Net
[15] and MMDenseLSTM [16]. Here, we review three new
trends of MSS related of our work: 1) multi-task learning,
2) zero-shot for unseen sources, and 3) taking advantage of
auxiliary semantic information.

2.1 Multi-task Separation and Transcription

Several recent studies [14, 17, 18] conduct multi-task sep-
aration and transcription by learning a joint representation
for both tasks. These works demonstrated that a multi-task
setting benefits one or both of the two tasks due to the bet-
ter generalized capability of the learned joint representa-
tion. Our model is a multi-task and can further disentangle
pitch and timbre representation for sound synthesis.

2.2 Query-based Separation

Few-shot and zero-shot learning are becoming popular in
MIR. For the MSS task, It is meaningful to separate un-
seen rather than pre-defined sources since it is unrealis-
tic to collect training data that covers all the sources with
considerable amounts. Query-by-example (QBE) network
is one of solutions for zero-shot learning and recent re-
searches [3, 4, 6, 19–22] show its nice performance. In this
study, we adopt a QBE as in [3].

2.3 Semantic-based Separation

Many researches demonstrate that semantic information is
a useful auxiliary for MSS. For example, Gover et al. [10]
designs a score-informed wave-U-Net to separate choral
music; Jeon et al. [23] performs the lyrics-informed sepa-
ration; Meseguer-Brocal et al. [11] develops a phoneme-
informed C-U-Net [24]; Zhao et al. [12] takes advan-
tage of visual information to separate homogeneous instru-
ments. But these methods cannot separate sources with-
out additional semantic groundtruths during inference. Our
study can also be regarded as score-informed MSS, but our
model does not call for ground truth score during the infer-
ence time.

3. METHODOLOGY

In this section, we describe our proposed 1) multi-task and
QBE model for source separation; 2) pitch-timbre disen-
tanglement module; 3) pitch-translation invariance loss.

3.1 Multi-task Separation and Transcription

Different from previous works that tackle the music sep-
aration and music transcription problems separately, we
learn a joint representation for both of them. Previous
works [14, 17] have shown that the representation learnt
by a joint separation and transcription task can generalize
better than the representation learnt by single-task models.

We denote the waveform of two single-source audio
segments from different sources as sc 2 RL and si 2 RL,
respectively. We denote their mixture as:

x = sc + si. (1)

Our aim is to separate sc from x. We denote the spec-
trogram of x and sc as X 2 RT⇥F and Sc 2 RT⇥F ,
respectively.

We first formalize the general MSS model using an
encoder-decoder neural architecture. For instance, UNet
[15] is an encoder-decoder architecture which is widely
used in MSS. By ignoring the skip connections of UNet,
the output of the encoder (the bottleneck of U-Net) can be
used as a joint representation for separation and transcrip-
tion. Different from previous MSS methods that estimate a
single-target mask on the mixture spectrogram, we design
the separation model to directly output spectrograms. In
this way, the model can not only separate a source from
a mixture, but can also synthesize new audio recordings
from joint representations.

For the source separation system, we denote the encoder
and decoder as follows:

h = Encoder(X), (2)
bSc = Decoderc(h), (3)

where h is the learned joint representation and Decoderc is
the decoder for the target source c. The joint representation
h is used as input to the a transcription model:

byc = Transcriptorc(h), (4)

where byc 2 [0, 1]T⇥N are probabilities of the predicted
MIDI roll. Typically, we set N = 89 including 88 notes
on a piano and a silence state.

When designing neural networks, to remain the tran-
scription resolution, we do not apply temporal pooling op-
eration in the encoder, decoder and transcriptor. So that the
temporal resolution of h is consistent with that of X . We
describe the details of the encoder, decoder, and transcrip-
tor in Section 4.2.

3.2 Query-by-example Separation and Transcription

As described in Equation (3) and (4), we need to build
J decoders to separate J target sources. With the num-
ber of target sources increases, the parameters number will
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Figure 1. The baseline models and the proposed model. In the left figure, the large orange and gray box indicate a QBE
transcription-only and QBE separation-only model respectively. The whole figure indicates a QBE multi-task model.

also increase. More importantly, the model trained for pre-
defined sources can not adapt to unseen sources. To tackle
these problems, we design a QBE module in our model.
The advantage of using QBE is that we can separate unseen
target sources. That is, we achieve a zero-shot separation.

Similar to the QueryNet [3], we design a QueryNet
module as shown in Figure 1(a). The QueryNet module
extracts the embedding vector qc 2 RM of an input spec-
trogram Sq

c 2 RT⇥F , where M is the dimension of the
embedding vector:

qc = QueryNet(Sq
c). (5)

Audio recordings from the same source will be learnt
to have similar embedding vectors. We propose a con-
trastive loss to encourage embedding vectors from the
same sources to be close, and embedding vectors from dif-
ferent sources to be far:

Lquery =
1

C
{
���qc � q

0

c

���
2
+

CX

j 6=c

max(m�
��qc � qj

��
2
, 0)},

(6)
where m > 0 is a margin and q

0

c and qc are from the same
source c, and qc and qj are from different sources. We set
M to 6 and m to 0.125 in our experiments.

We input the embedding vector qc as a condition to each
layer of the encoder using Feature-wise Linear Modulation
(FiLM) [25] layers. Then the encoder outputs a represen-
tation hc 2 RT⇥D. The embedding vector qc controls
what source to separate or transcribe. There are only one
encoder, one decoder, and one transcriptor to separate any
sources:

hc = Encoder(X, qc), (7)

bSc = Decoder(hc), (8)

byc = Transcriptor(hc). (9)

3.3 Pitch-timbre Disentanglement Module

Previous MSS works do not disentangle pitch and timbre
for separation. That is, those MSS methods implement

separation systems without estimating pitches. In this sec-
tion, we propose a pitch-timbre disentanglement module
based on the query-based encoder-decoder architecture de-
scribed in previous sections to learn interpretable represen-
tations for MSS. Such interpretable representations enable
the model to achieve score-informed separation based on
predicted scores.

As shown in Figure 1(b), the proposed pitch-timbre dis-
entanglement module consists of a PitchExtractor and a
TimbreFilter module. The output of PitchExtractor pc only
contains pitch information of sc, and the output of Tim-
breFitler is expected to only contain timbre information
of sc. The PitchExtractor is modeled by an embedding
layer V = {e1, e2, ..., eN}, where N is the number of
vectors, which equals to the number of pitches 89 in our
experiment. To explain, en 2 V (en 2 RK) denotes
the quantized pitch vector for the n-th MIDI note. Then,
we calculate the disentangled pitch representation for ŷ as
pc = [p(1)

c ;p(2)
c ; ...;p(T )

c ], where p(t)
c 2 RK :

p(t)
c =

NX

n

ŷ(t,n)c · en, (10)

where ŷ(t,n)c is the output of the transcriptor containing pre-
dicted presence probability of the n-th MIDI note or the
silence state at time t, and K is the dimension of the dis-
entangled pitch representation. During synthesis, we can
replace ŷc with one-hot encodings of new scores as input
to Equation (10) to obtain pitch representation pc for syn-
thesizing audio recordings.

TimbreFilter is used to filter timbre information tic 2
RT⇥D from hc:

tic = TimbreFilter(hc). (11)

Here, TimbreFilter is modeled by a convolutional neural
network. Then, we can synthesize ŝc using disentangled
pitch pc and timbre tic. Inspired by the FiLM [25], we
first split pc into p�

c and p�
c , where pc = [p�

c p
�
c ]. Then,

we entangle pc and tic together to produce bSc:

zc = p�
c � tic + p�

c , (12)
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bSc = Decoder(zc), (13)

and the separation loss is:

Lseparation =
���Sc � bSc

���
1
. (14)

Different from previous MSS works, we apply a separation
loss and a transcription loss to train the proposed model.
The transcription loss is:

Ltranscription = Cross_entropy(yc, byc). (15)

Here, yc 2 [0, 1]T⇥N is the groundtruth of scores. The
aggregated loss function is:

L = Lquery + Ltranscription + Lseparation. (16)

The aggregated loss L drives the proposed model to be a
multi-task score-informed model rather than a synthesizer
due to the lack of inductive biases for further timbre disen-
tanglement.

3.4 Pitch-translation Invariance Loss

We propose a pitch-translation invariance loss to further
improve the timbre disentanglement performance. Based
on the pitch-translation invariance, we assume that when
the audio pitches with the corresponding MIDI is shifted
within a certain interval, the timbre is unchanged.

We shift the pitch of sc to generate an augmented audio
s

0

c. The augmented audio s
0

c has the same timbre as sc.
According to Equation (1), we have a new mixture audio
x

0
:

x
0
= s

0

c + si. (17)

We denote the X
0

and S
0

c as the spectrograms of x
0

and
s

0

c respectively. We extract the disentangled timbre vector
of sc, and denote it as ti

0

c. Because s
0

c is pitch shifted sc,
so that the timbre ti

0

c should be consistent with that of tic.
Therefore,the reconstructed spectrogram by the timbre ti

0

c

and the pitch pc should be consistent with Sc:

bz
0

c = p�
c � ti

0

c + p�
c , (18)

bS
00

c = Decoder(z
0

c), (19)

LPTI =

����Sc � bS
00

c

����
1

. (20)

where S
00

c is the reconstructed spectrogram. We denote
LPTI as a pitch-translation invariance loss. With LPTI, our
proposed model is capable of learning the disentanglement
of pitch and timbre. A byproduct of the disentanglement
system is that, the decoder of our system becomes a syn-

thesizer, which can be used to synthesize audio recordings
using timbre and pitches as input. When we change byc to
arbitrary scores, our model can synthesis a new piece of
music with the timbre of Sc.

In total, the objective function we exploit to train the
proposed model with further disentanglement includes a
QueryNet loss, a transcription loss, and a pitch-translation
invariance loss:

L
0
= Lquery + Ltranscription + LPTI. (21)

Figure 2. Duration of each instrument in the dataset.

4. EXPERIMENTS

4.1 Dataset and Pre-processing

We utilize the University of Rochester Multimodal Mu-
sic Performance (URMP) dataset [26] as the experimental
dataset. The URMP dataset is a multi-instrument audio-
visual dataset covering 44 classical chamber music pieces
remixed from 115 single-source tracks of 13 different
monophonic instruments. The dataset provides note an-
notations for each single track. As shown in Figure 2, we
divide these instruments into two groups (8 seen and 5 un-
seen instruments) and tracks into two sub-sets (55 tracks of
8 seen instruments for training and 32 songs by remixing
60 tracks of 13 instruments for test). Note that we calculate
the duration of repeated tracks of different songs in the test
set and do not exclude silence segments of all the tracks.

We resample all the tracks with a sample rate of 16KHz
and extract them into Short-time Fourier transform (STFT)
spectrograms with a window size of 1024 and 10ms over-
lap (nFFT = 2048). During training, we randomly remix
2 arbitrary clips of different instruments to generate a mix-
ture. All the training data are augmented using pitch shift-
ing (±4 semitones) mentioned in Section 3.4.

4.2 Model Architecture

We design our models based on U-Net, the current promi-
nent model in MSS. Figure 1(b) and 3 elaborates details of
the proposed multi-task score-informed model (MSI) de-
scribed in Section 3.3 and model with further disentangle-
ment (MSI-DIS) illustrated in Section 3.4.

4.2.1 The Architecture of the MSI and MSI-DIS Model

The combination of the encoder and decoder is a general
U-Net without temporal pooling. The QueryNet comprises
2 CNN blocks, each of which consists of 2 convolution
layers and a 2⇥ 2 max pooling module. A fully-connected
layer and a tanh activation layer are applied to the last fea-
ture maps. We then average output vectors over the tem-
poral axis to get a 6-dimensional query embedding vector
qc. The architecture of the transcriptor is similar to the
QueryNet but without temporal pooling. Each blue block
in TimbreFilter depicted in Figure 3 is a 2-dimension con-
volutional layer, the shape of the tensor output by which is
as same as that of the input tensor. Each deep blue block in
PitchExtractor is a 1-dimension 1⇥ 1 convolutional layer.
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Figure 3. The model architecture with detailed hyper-parameter configuration.

Separation (SDR) Transcription (Precision)
Model MSS-only Multi-task MSI(ours) MSI-DIS(ours) AMT-only Multi-task MSI(ours) MSI-DIS(ours)
Seen 4.69± 0.31 3.32± 0.186.33 ± 0.17 5.04± 0.16 0.72 ± 0.010.72 ± 0.04 0.71± 0.01 0.72 ± 0.01

Unseen6.20 ± 0.264.63± 0.34 5.53± 0.15 3.99± 0.22 0.61 ± 0.01 0.58± 0.02 0.61 ± 0.01 0.59± 0.01

Overall 5.07± 0.22 3.65± 0.226.13 ± 0.15 4.77± 0.14 0.69 ± 0.010.69 ± 0.030.69 ± 0.01 0.68± 0.00

Table 1. The separation and transcription performance of all models..

Figure 4. Instrument-wise performance of models. The last 5 instruments are unseen in the training set.

Typically, the bottleneck of U-Net is regarded as hc. How-
ever, when constructing disentangled timbre representa-
tions, we regard the set of concatenate residual tensors as
hc to avoid non-disentangled representations leaking into
the decoder.

Note that the kernel size of each 2-dimension convolu-
tional layer is 3 ⇥ 3 and each 2-dimension convolutional
layer (excepting TimbreFilter) is followed by a ReLU acti-
vation layer and a Batch Normalization layer.

4.2.2 Baseline Design

As shown in Figure 1(a), besides the proposed models il-
lustrated above, we also report the performance of 3 ex-
tra baseline models in our experimental results. The QBE
transcription-only baseline model (AMT-only) is com-
posed of the queryNet, encoder, and transcriptor; the QBE
separation-only baseline model (MSS-only) is a general U-
Net; the QBE multi-task baseline model is composed of
a U-Net and a transcriptor. All the hyper-parameters of
components in these models are consistent with those of
corresponding components in our models.

4.3 Training and Evaluation

All the models are trained with a mini-batch of 12 audio
pairs for 200 epochs. All the models are evaluated with
source-to-distortion (SDR) computed by mir_eval pakage
[27] for separation and precision computed by sklearn
package [28] for transcription. During training, each au-
dio pair comprises 2 single-track audio clips of different
instruments to generate a mixture, 2 correspondings aug-
mented samples for pitch-transformation invariance loss,
and 3 single-track audio clips that exclude silence seg-
ments for contrastive loss. During inference, each test
pair comprises a 4-second audio mixture and query sam-
ple. During synthesis, we employ Griffin Lim Algorithm
(GLA) [29] as the phase vocoder using torchaudio library.
Since we do not divide a validation set to chose the best-
performance model among all the training epochs, we re-
port Micro-average results with a 95% confidence interval
(CI) of models at the last 10 epochs. All the experimental
results are reproducible via our realeased source code 1 .

1 https://github.com/kikyo-16/a-unified-model-for-zero-shot-musical-
source-separation-transcription-and-synthesis
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(a) MSI (synthesis) (b) MSI-DIS (synthesis) (c) MSI (separation) (d) MSI-DIS (separation)

Figure 5. Spectrograms of audios synthesized and separated by the MSI and MSI-DIS model respectively. Models are
expected to separate a viola source from the mixture of clarinet and viola. During synthesis, the two models are given the
same new scores and are expected to synthesis new pieces with these scores and the separated viola timbre.

5. RESULTS

Experimental results shown in Table 1 demonstrate that
the proposed MSI model outperforms baselines on sep-
aration without sacrificing performance on transcription.
The instrument-wise performance on unseen instruments
depicted in Figure 4 demonstrates that the proposed mod-
els are capable of performing zero-shot transcription and
separation. We also release synthesized audio demos on-
line 2 . These demos demonstrate the success of the pro-
posed inductive biases for disentanglement.

5.1 Multi-task Baseline vs Single-task Baselines

As shown in Table 1, the multi-task baseline performs
worse than the separation-only baseline, suggesting that
the joint representation requires extra inductive biases to
learn better generalization, i.e. deep clustering in Cer-
berus [14]. Our disentanglement strategy provides such
inductive biases.

5.2 MSI model vs Baselines

With the auxiliary of the proposed pitch-timbre disen-
tanglement module, compared with the multi-task base-
line, the performance of MSI on separation becomes bet-
ter. This indicates that the disentanglement module im-
prove the generalization capability of the joint represen-
tation, leading to better separation results. Meanwhile,
MSI outperforms the MSS-only baseline on separation by
1.06 points. This demonstrates that inaccurate scores tran-
scribed by the model itself sever as a powerful auxiliary for
separation.

5.3 MSI Model vs MSI-DIS Model

As depicted in Figure 5(a) and 5(b), it is interesting that
despite the same ‘’hardware” (neural network design) of
the two models, the MSI model fails to synthesis but the
MSI-DIS model achieves. It exactly demonstrates that the
designed ‘’soft-ware” (the pitch translation loss) takes ef-
fect on the success of the disentanglement. As for sepa-
ration performance shown in Table 1, the MSI-DIS model

2 https://kikyo-16.github.io/demo-page-of-a-unified-model-for-
separation-transcriptiion-synthesis

falls behind the MSI model. The observation that better
synthesis quality does not implies better separation perfor-
mance suggests a trade-off between disentanglement and
reconstruction. It indicates that extra (well-suited) induc-
tive biases are required to further improve pitch and timbre
disentanglement at the same time reduce the loss of infor-
mation necessary for reconstruction.

Comparing the performance on seen with unseen instru-
ments shown in Table 1, we find that the separation quality
of the MSI-DIS model is more sensitive to the accuracy of
transcription results than that of the MSI model. This is
because the MSI-DIS model synthesizes instead of sepa-
rating sources, for which the separation performance of it
relies more on the accuracy of transcription results and the
capability of the decoder than the MSI model does. How-
ever, when comparing separated spectrograms shown in
Figure 5(c) and 5(d), we find that the MSI model some-
times separates multiple pitches at the same time while
the MSI-DIS model yields monophonic results that sound
more “clean”. We release more synthesized and separated
audio demos online.

6. CONCLUSION AND FUTURE WORKS

We contributed a unified model for zero-shot music
source separation, transcription, and synthesis via pitch
and timbre disentanglement. The main novelty lies in
the disentanglement-and-reconstruction methodology for
source separation, which naturally empowers the model
with transcription and synthesis capabilities. In addition,
we designed well-suited inductive bias including pitch vec-
tor quantization and pitch-translation invariant timbre loss
to achieve better disentanglement. Lastly, we successfully
integrate the model with a query-based networks, so that
all three tasks can be achieved in a zero-shot fashion for un-
seen sound sources. Experiments demonstrated the zero-
shot capability of the model and the powerful auxiliary of
disentangled pitch information to separation. Results of
synthesized audio pieces further exhibit that the disentan-
gled factors are well generalized. In the future, we plan
to extent the proposed framework for multi-instrument and
vocal scenarios as well as high-fidelity synthesis.
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ABSTRACT

This paper proposes a deep convolutional neural network
for performing note-level instrument assignment. Given a
polyphonic multi-instrumental music signal along with its
ground truth or predicted notes, the objective is to assign
an instrumental source for each note. This problem is ad-
dressed as a pitch-informed classification task where each
note is analysed individually. We also propose to utilise
several kernel shapes in the convolutional layers in order
to facilitate learning of timbre-discriminative feature maps.
Experiments on the MusicNet dataset using 7 instrument
classes show that our approach is able to achieve an aver-
age F-score of 0.904 when the original multi-pitch annota-
tions are used as the pitch information for the system, and
that it also excels if the note information is provided using
third-party multi-pitch estimation algorithms. We also in-
clude ablation studies investigating the effects of the use of
multiple kernel shapes and comparing different input rep-
resentations for the audio and the note-related information.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of
creating any form of notation for a music signal and is
currently one of the most challenging and discussed topics
in the Music Information Retrieval (MIR) community [1].
Most AMT systems are designed to transcribe a single
monophonic or a single polyphonic source into a musi-
cal score (or piano-roll). In this case, the main sub-task
involved in the process is Multi-Pitch Estimation (MPE),
where predictions regarding the pitch and time localisa-
tion of the musical notes are carried out. However, when
analysing polyphonic multi-instrumental recordings, not
only each note should have its pitch and duration prop-
erly estimated, but the information regarding the timbre
of sounds should also be correctly processed [2]. It is
mandatory to have a way of recognising the instrument that
played each note.

In this paper, we propose a pitch-informed instrument
assignment approach, where the main objective is to asso-

© C. Lordelo, E. Benetos, S. Dixon, and S. Ahlbäck. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: C. Lordelo, E. Benetos, S. Dixon, and S.
Ahlbäck, “Pitch-informed instrument assignment using a deep convolu-
tional network with multiple kernel shapes”, in Proc. of the 22nd Int.

Society for Music Information Retrieval Conf., Online, 2021.

ciate each note event of a music signal to one instrument
class. In contrast to other state-of-the-art instrument recog-
nition approaches, which are usually addressed on a frame-
level [3, 4] or clip-level [5, 6] basis, our approach analyses
each note event individually. Therefore, it is possible to
say that we perform a note-level instrument recognition.

Previous work has shown that the use of pitch informa-
tion can help frame-level instrument recognition [3]. In-
spired by this, we propose a framework that uses an auxil-
iary input based on note-event pitch information. Our sys-
tem is trained using the note annotations provided in the
MusicNet [7] dataset. However, our main motivation is to
create a modular framework that can be combined with any
MPE algorithm in order to obtain multi-instrumental pitch
predictions, which allows for transcribing music in staff
notation, corresponding to the perception of pitch events.
Therefore, we also show that our approach can obtain good
performance when the note information is predicted by
state-of-the-art MPE algorithms such as [8, 9].

Furthermore, the utilisation of multiple kernel shapes
in the filters of a Convolutional Neural Network (CNN)
has been proven to be an efficient strategy of applying do-
main knowledge in several MIR tasks [10–12]. In partic-
ular, [12] applied this strategy with a dense connectivity
pattern of skip-connections in order to learn even more ef-
ficient feature maps and reduce the number of trainable pa-
rameters for the task of source separation. In our work,
we build our CNN adapting the architecture in [12] for
the classification (instrument assignment) task and verified
that it can also improve its performance. In summary, the
main contributions of this paper are as follows:

• Pitch-informed instrument assignment: Proposal of
a Deep Neural Network (DNN) that associates each
note from a music signal to its instrumental source.

• Modular Framework: Approach works with any
MPE method. We evaluate the performance when
using ground-truth note labels as well as 2 state-of-
the-art MPE algorithms [8, 9].

• Multiple Kernel Shapes: Proposal of a CNN ar-
chitecture for instrument assignment that uses mul-
tiple kernel shapes for the convolutions, facilitat-
ing learning representations for different instruments
and note sound states. We show that their use im-
proves instrument assignment performance.
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Set Piano Violin Viola Cello Horn Bassoon Clarinet Harps. Bass Oboe Flute Total

Train 628549 197229 88446 89356 10770 13874 22873 4914 3006 8624 8310 1075951

58.4% 18.3% 8.2% 8.3% 1.0% 1.2% 2.1% 0.5% 0.3% 0.8% 0.8% 100%

Test 5049 3238 842 1753 557 873 1277 0 0 0 0 13589

37.2% 23.8% 6.2% 12.9% 4.1% 6.4% 9.4% 0 0 0 0 100%

Table 1. Statistics of the note labels provided by MusicNet across train and test sets.

2. RELATED WORK

The instrument recognition task is usually formulated as a
multi-label classification task that can be addressed either
on a frame-level [3, 4, 13], where the purpose is to obtain
the instrument activations across time, or on a clip-level
basis [5, 6, 14], where the purpose is to estimate the in-
struments that are present in an audio clip. However, our
objective in this work is to approach the instrument recog-
nition task note by note, assigning an instrument class to
each. Such a task requires note-event annotations and,
in the literature, it is also known as instrument assign-

ment [15] or multi-pitch streaming [2].
Just few works have explored this particular task. For

instance, Duan et al. [2] approached it using a constrained
clustering of frame-level pitch estimates obtained from an
MPE algorithm via the minimisation of timbre inconsis-
tency within each cluster. They tested different timbre
features for both music and speech signals. In [16], a
similar method was proposed, where the authors applied
Probabilistic Latent Component Analysis (PLCA) to de-
compose the audio signal into multi-pitch estimates and
to extract source-specific features. Then, clustering was
performed under the constraint of cognitive grouping of
continuous pitch contours and segregation of simultaneous
pitches into different source streams using Hidden Markov
Random Fields. Both of those works, however, assume
that each source is monophonic, i.e., each instrument could
only play a single note at a time.

An alternative approach iss to model the temporal evo-
lution of musical tones [15]. This method is based around
the use of multiple spectral templates per pitch and instru-
ment source that correspond to sound states. The authors
used hidden Markov model-based temporal constraints to
control the order of the templates and streamed the pitches
via shift-invariant PLCA. In a more recent work, Tanaka
et al. [17] also approached the task via clustering, but ap-
plied on a joint input representation combined of the spec-
trogram and the pitchgram, which was obtained using an
MPE algorithm. In their proposal, each bin of the joint in-
put was encoded onto a spherical latent space taking into
account timbral characteristics and the piano-rolls of each
instrument were later estimated via masking of the pitch-
gram based on the results of a deep spherical clustering
technique applied on the latent space.

Recent multitask deep-learning based works have suc-
cessfully proposed multi-instrumental AMT methods that
are able to directly estimate pitches and associate them
to their instrumental source jointly [4, 18, 19]. In [18],

a multitask deep learning network jointly estimated out-
puts for various tasks including multiple-pitch, melody, vo-
cal and bass line estimation. The Harmonic Constant-Q
Transform (HCQT) of the audio signal was used as input
and the data used for training was semi-automatically la-
belled by remixing a diverse set of multitrack audio data
from the MedleyDB [20] dataset. In [4] a DNN was used
to jointly predict the pitch and instrument for each audio
frame. They used the Constant-Q Transform (CQT) as in-
put to their system and trained using a large amount of au-
dio signals synthesised from MIDI piano-rolls. Manilow
et al. [19], on the other hand, were able to jointly tran-
scribe and separate an audio signal into up to 4 instrumen-
tal sources — piano, guitar, bass and strings. However,
their system was trained with only synthesised signals.

Our approach is closely related to that of Hung and
Yang [3], where a frame-level instrument recogniser is pro-
posed using the CQT spectrogram of the music signal al-
lied with the pitch information of the note events. We also
use the pitch annotations to guide the instrument classifier,
but our work differs from [3] in the fact that we perform a
classification for each note event individually, while Hung
and Yang use the whole piano-roll at once to guide frame-
level instrument recognition. While Hung and Yang are
able to obtain the instrument activations leveraging from
the pitch information, they cannot stream the note events
into their corresponding instruments.

3. PROPOSED METHOD

In our method, we use the same definition of note events
as in the MIREX MPE task 1 . Each note N is considered
an event with a constant pitch f0, an onset time Ton and
an offset time To↵ . Therefore, if a music signal has a to-
tal of M notes, any note Ni, with i 2 {1, · · · ,M}, can
be uniquely defined by the tuple (f i

0, T
i
on, T

i
o↵). In our ex-

periments, we use two ways of obtaining this note infor-
mation. The first using ground-truth pitch labels provided
by the employed dataset (MusicNet) [7] and the second us-
ing pitch estimates predicted by state-of-the-art MPE algo-
rithms [8, 9]. We consider the f0 granularity to follow the
semitone scale, ranging from A0 to G]7 (MIDI #21�104).

In our framework polyphony is allowed, so, most of the
time more than a single note will be active, but our objec-
tive is to analyse each note of the audio signal separately
in order to be able to assign an instrument class to it. This
is done by using two inputs to the model: the main in-

1 https://www.music-ir.org/mirex/
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Figure 1. Overview of the proposed framework for instru-
ment assignment. See Section 3 for the detailed explana-
tion of the variables in the figure.

put X(f, t), with f representing frequency and t represent-
ing time, is a time-frequency representation of a segment
of the audio signal around the value of Ton, and an aux-
iliary input X 0(f, t), which carries information regarding
f0, Ton and To↵ . The two inputs are concatenated into a
two-channel input X(f, t, c), where c 2 {1, 2} represents
the channel dimension, that is fed to the model. In Figure
1 an overview of the proposed framework is shown.

3.1 Main Audio Input

The main input is a time-frequency representation
X(f, t) 2 RF⇥T of a small clip of the music signal, where
F is the number of frequency bins and T is the number of
time frames. The clip is generated by first setting a maxi-
mum duration Tmax for the note. We tested values of Tmax

ranging from 400ms to 1 s (see Section 7 for details) and
400ms obtained the best results, so we kept this value in
all of the other experiments. If any note Ni has a duration
Di greater than Tmax, i.e., Di = To↵ � Ton > Tmax, only
its initial time span of Tmax seconds is considered.

Next, for every note Ni, Xi(f, t) is constructed by pick-
ing a segment of duration T = Tmax + � from the original
music signal starting from T

i
on��, where � is a small inter-

val to take into account deviations between the true onset
value and the value we use. The inclusion of the extra win-
dow of � from the music signal also helps the convolutional
layers since it brings some context of the signal before the
note onset value. We set � = 30 ms after initial tests.
Lastly, if the note duration Di is less than Tmax, we set the
values of X(f, t > Di) to zero, where Di = T

i
o↵ � T

i
on.

3.2 Auxiliary Note-Related Input

The auxiliary input X 0(f, t) 2 RF⇥T is a harmonic comb
representation using the pitch value f0 as the first har-
monic 2 , such that,

X
0(f, t) =

(
1, if f = hf0 and Ton  t  To↵

0, otherwise
,

(1)
where h = {1, 2, 3, · · · , H} with H being the total num-
ber of harmonics in the representation. We tested multiple
values for H (see Section 6). In practice, we use a toler-
ance of half a semitone for each harmonic value when con-

2 We use the definition that f0 corresponds to the first harmonic.

Figure 2. A pair of inputs using 256 mel-frequency spec-
trogram. In the left is depicted X(f, t), where three pitches
are simultaneously activated (MIDI # 58, 62 and 74) and in
the right X 0(f, t), where the note with pitch # 74, is mod-
elled using an harmonic comb of H = 5. In this example,
Di=600ms and Tmax=1 s.

structing X
0(f, t) as a mel-spectrogram. Therefore, even

though this representation starts as binary, the final mel-
spectrogram is not binary due to the mel-filtering proce-
dure. Moreover, it is important to note that we also set the
values of X 0 before Ton and after To↵ to zero. In Figure 2
we show an example of a pair of inputs for our framework.

3.3 Output

The note-level instrument assignment task is tackled as a
multi-class single-label classification task. Given X, our
objective is to classify it as belonging to one of C instru-
ment classes. We use a deep neural network that receives
X as input and outputs a C-dimensional vector ŷ. A soft-
max activation function is applied in the final layer of the
network to ensure the values of ŷ represent probabilities
that sum up to 1. The model is trained using the cross-
entropy loss. At inference time, the class corresponding to
the dimension with the highest value in ŷ is predicted. See
Section 4 for details regarding the network architecture.

In the cases where two or more instruments are playing
the same pitch simultaneously, the small differences be-
tween the notes’ onset and offset values can generate dif-
ferent inputs X. Thus, it would still allow the instrument
assignment task to be properly executed as a single label
classification scenario. However, when the pitch, onset and
offset values of notes from different instruments exactly
match, our system will consider them as a single note and
only a single instrument will be estimated. This case rarely
happens in real-world scenarios for many musical styles.
For instance, in MusicNet only 0.9% of the notes had the
same pitch, onset, and offset values. For our experiments,
we have considered notes in MusicNet that were performed
by a single instrument, and discarded the notes that were
concurrently produced (in terms of the same pitch, onset,
and offset times) by multiple instruments. As a proof of
concept, we believe that this is not a severe limitation for
our framework and we leave multi-labelled approaches as
future work.

4. ARCHITECTURE

When processing music spectrograms by CNNs, the strat-
egy of combining vertical and horizontal kernel shapes in
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Figure 3. Proposed network architecture. FC represents a Fully Connected layer with LeakyRelu activation function.

Main Input Aux Input Piano Violin Viola Cello Horn Bassoon Clarinet Mean

CQT

— 0.960 0.732 0.116 0.725 0.512 0.296 0.681 0.575

H = 1 0.994 0.934 0.763 0.955 0.783 0.888 0.950 0.895

H = 2 0.993 0.939 0.771 0.960 0.785 0.858 0.929 0.891

H = 3 0.992 0.946 0.772 0.957 0.754 0.884 0.952 0.894

H = 4 0.993 0.938 0.766 0.958 0.784 0.869 0.950 0.894

H = 5 0.993 0.939 0.767 0.952 0.769 0.874 0.949 0.892

Mel
STFT

— 0.967 0.742 0.222 0.730 0.607 0.306 0.690 0.609

H = 1 0.996 0.939 0.759 0.958 0.780 0.867 0.958 0.895

H = 2 0.994 0.945 0.779 0.956 0.809 0.864 0.946 0.899

H = 3 0.997 0.944 0.775 0.958 0.8104 0.879 0.967 0.904

H = 4 0.996 0.935 0.747 0.945 0.839 0.891 0.960 0.902

H = 5 0.996 0.947 0.783 0.954 0.801 0.876 0.954 0.902

Table 2. Evaluation of instrument assignment task when using CQT or Mel spectrograms as input representation for the
network as well as a comparison between models trained with no auxiliary input and models trained with different number
of harmonics in the auxiliary input. This experiment was performed using Tmax = 400ms

the model architecture can facilitate learning of timbre-
discriminative feature maps [10–12]. In our work,
we propose a CNN adapted from the 3W-MDenseNet
[12]. This architecture was originally proposed for
harmonic-percussive source separation and consists of an
encoder-decoder model that estimates spectrograms for
two sources. Thus, the outputs of the 3W-MDenseNet
have the same shape as the mixture spectrogram that is
used as input. In this CNN architecture, three MDenseNets
[21] run in parallel in separated branches, each with a
unique kernel shape (vertical, square and horizontal). The
MDenseNets are only combined at the final layer, i.e., after
both the encoding and decoding procedure are performed.
In our work, we adopt a similar methodology by taking
only the encoder layers from [12] and adding fully con-
nected layers at the end in order to perform classification
rather than separation. Also, we propose modifications
to the original encoder layers: instead of combining the
branches using a concatenation layer only at the final stage,
we concatenate their feature maps at the end of each down-
sampling stage. By doing so, we allow each branch to have
access to feature maps computed using all different choices
of kernel shapes from a previous stage.

Figure 3 shows a summary of the architecture we adopt
in our work. It consists of a stack of 4 multi-branch con-
volutional stages and 2 fully connected layers. In Figure
4 the internal structure of the multi-branch convolutional
stage is shown. Internally, each multi-branch convolu-
tional stage contains 3 separate branches whose convolu-

tions have unique kernel shapes. We use a branch with
horizontal (1⇥9), a branch with square (3⇥3), and a branch
with vertical (9⇥1) convolutions. In each path, a Densely
connected convolutional Network (DenseNet) [22] with
growth rate k = 25 and number of layers L = 4 is used.
In short, a DenseNet is a stack of L k-channel convolu-
tional layers — each with its own activation function —
with a dense pattern of skip connections, where each layer
receives the concatenation of all previous layers’ outputs
as input. We used the LeakyRelu function as the activa-
tion function for all layers. The reader is referred to [22]
for the detailed internal structure of a DenseNet. After the
DenseNet, a (2 ⇥ 2) max pooling layer is applied in order
to reduce the feature maps’ dimensions and increase the re-
ceptive field at each branch. Afterwards, the three branches
are concatenated and the batch is normalised. The final
feature maps are used as input for the next multi-branch
convolutional stage. Since we need to concatenate feature
maps that were originated by multiple kernel shapes we
use padding on the convolution and on the max pooling
to ensure the feature maps maintain the same dimensions
across branches. The number of trainable parameters is
approximately 1.1 million.

5. DATASET

We used the MusicNet dataset [7] in our experiments. Mu-
sicNet is the largest publicly available dataset with non-
synthesised data that is strongly labelled for the task of
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Figure 4. Internal structure of a multi-branch conv. stage.
Each DenseNet has a growth rate k = 25 and L = 4 lay-
ers. BN represents a Batch Normalisation layer. We use
LeakyRelu as activation function after each conv. layer.

instrument recognition. This means that we know the ex-
act frames where the instruments are active in the signal,
which permits the training of supervised models to per-
form instrument recognition at the frame-level, note-level,
and clip-level. The dataset contains 330 freely-licensed
classical music recordings by 10 composers, written for
11 instruments, along with over 1 million annotated labels
indicating the precise time and pitch of each note in the
recordings and the instrument that plays each note.

The instrument taxonomy of MusicNet is: piano, vi-
olin, viola, cello, french horn, bassoon, clarinet, harpsi-
chord, bass, oboe and flute. However, the last 4 instru-
ments (harpsichord, bass, oboe and flute) do not appear in
the original test set provided by the authors. Therefore,
in all our experiments we ignored all the labels related to
those instruments and we performed a 7-class instrument
classification using the following classes: piano, violin, vi-
ola, cello, french horn, bassoon and clarinet. Table 1 shows
the statistics of the note labels provided by MusicNet. The
dataset is heavily biased towards piano and violin given
their usual presence in Western classical music recordings.

6. EXPERIMENTAL SETUP

In all experiments we used the original train/test split pro-
vided by MusicNet with the original sampling frequency
of 44100 Hz. For experiments that involved the compu-
tation of Short Time Fourier Transform (STFT) we used
Blackman-Harris windows of 4096 samples to compute
the Discrete Fourier Transform (DFT). The hop size was
always set to 10ms in every experiment.

From the training set we picked 5% of the notes of each
class and created a validation set. We trained the mod-
els using the Adam optimiser with an initial learning rate
of 0.001 and reduced it by a factor of 0.2 if the cross-
entropy loss stopped improving for 2 consecutive epochs
on the validation set. If no improvement happened after 10
epochs, the training was stopped early. The experiments
were performed using the Tensorflow/Keras Python pack-
age.

The classification performance was evaluated by com-
puting the note-level F-score (Fs), which is directly related

to the precision (P ), recall (R) according to:

P =
TP

TP + FP
, R =

TP

TP + FN
, Fs =

2PR

P +R
(2)

where TP is the number of true positives, FP the false
positives and FN the false negatives.

For the cases when the instrument assignment is done
on top of MPE algorithms, we provide 2 groups of metrics
that are generated following the MIREX evaluation proto-
col for the music transcription task. In the first group, an
estimated note is assumed correct if its onset time is within
50ms of a reference note and its pitch is within quarter
tone of the corresponding reference note. The offset val-
ues are ignored. In the second group, on top of those re-
quirements, the offsets are also taken into consideration.
An estimate note is only considered correct if it also has an
offset value within 50ms or within 20% of the reference
note’s duration around the original note’s offset, wherever
is largest. After all notes are verified, the F-score is com-
puted note-wise across time and the average value is pro-
vided here. This evaluation method was computed using
the mir_eval.transcription 3 toolbox.

7. RESULTS

7.1 Effects of the Kernel Shapes

First we analysed the effects of the inclusion of multiple
kernel shapes in the architecture of the CNN. The top part
of Table 3 compares 3 versions of the model: one that
uses only square filters in a single branch; a version using
the branched structure, but with (3 ⇥ 3) kernels in each;
and another model with the proposed multi-branch struc-
ture with horizontal, square, and vertical kernels. For the
single-branched case we increased the growth factor of the
DenseNets to 57 channels in order to keep the number of
trainable parameters of the network close to the original.

Analysing the results we see that the addition of new
kernel shapes improved the average F-score across all
classes. Regarding each instrument class, we can say that
for string instruments (piano, violin, viola and cello) there
is a gain in performance, while for non-string instruments
(horn, bassoon, clarinet) the performance either drops or
remains with a negligible gain if compared to the models
that used only square filters. This suggests that the inclu-
sion of vertical kernel shapes helped the model in learning
the percussive characteristics of the timbre of string musi-
cal instruments.

7.2 Evaluation of the Input Size

We also tested different values for the input size. More
specifically, we compared multiple values for Tmax, which
is the maximum valid window of analysis for a note event.
The results are shown in the lower part of Table 3. We can
see that the shortest input size of 400 ms obtained the best
results. We believe that it is due to the fact that the aver-
age duration of a note event in the test set of MusicNet is

3 https://craffel.github.io/mir_eval/
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Kernel / Tmax Piano Violin Viola Cello Horn Bassoon Clarinet Mean
(3⇥3) 0.994 0.936 0.757 0.954 0.826 0.864 0.954 0.898

3⇥(3⇥3) 0.995 0.939 0.764 0.945 0.819 0.896 0.965 0.903

Multiple 0.997 0.944 0.775 0.958 0.810 0.879 0.967 0.904

400 ms 0.997 0.944 0.775 0.958 0.810 0.879 0.967 0.904

600 ms 0.996 0.942 0.771 0.954 0.826 0.881 0.959 0.904

800 ms 0.996 0.944 0.772 0.957 0.814 0.868 0.965 0.902

1 s 0.997 0.931 0.740 0.954 0.742 0.871 0.948 0.883

Table 3. Instrument assignment performance based on the
kernel shapes used in network (first three rows) and based
on the value used for the maximum valid note duration
Tmax. The metric shown is the F-score achieved by each
class and the average value across all instruments.

260 ms and the 90th percentile is 0.464ms. So, the value
of 400ms is already enough to represent the vast major-
ity of the notes. Moreover, when the analysed note event
is longer than 400ms, the 400ms initial window contains
most of the important features for the model.

7.3 Auxiliary Input and Types of Representations

To test the importance of the auxiliary input and how its
modification would affect the performance of the model,
we also tested a version of the model using only the main
mel spectrogram input and versions using different num-
bers of harmonics H in the auxiliary input (from H = 1
to H = 5). We also tested two types of input representa-
tion for the model, the Constant-Q Transform (CQT) and
the mel-frequency spectrogram. The CQT was computed
using 12 bins per octave and a total of 115 bins starting
from G]0 (MIDI #20). The mel-frequency spectrogram
was computed by a linear transformation of an STFT onto
a mel-scaled frequency axis, using 256 mel-bins. The re-
sults are provided in Table 2.

Analysing the results, it is possible to say that the auxil-
iary input is extremely necessary for the framework. With-
out it, the average F-score only reaches 60.9%, while with
it the performance improves up to 90.4%. Apart from pi-
ano, all other classes have a large decrease in performance
when we exclude the auxiliary input from X. We be-
lieve that the results for the piano class continue to be high
not only because of the MusicNet bias towards piano, but
also because some recordings of the test set are solo pi-
ano recordings, which facilitates the classification of piano
notes when analysing the main input signal due to the ab-
sence of other classes. Regarding the number of harmonics
used in the auxiliary input, we can see that, in general, the
CQT works best with few harmonics, while the Mel-STFT
prefers higher values. A possible explanation for this is
the fact that it is harder to represent odd harmonics on the
CQT using a log-frequency resolution of 12 bins per oc-
tave. However, more experiments are needed in order to
better investigate this assumption.

7.4 Streaming of Multi-Pitch Estimations

Once we verified that our model obtains impressive perfor-
mance when the original ground-truth labels are used, we
tested the classifier in a more realistic environment, where

no note-event labels are readily available. We estimated
frame-level pitch values using two third-party MPE algo-
rithms [8, 9]. For the algorithm in [8] we obtained an im-
plementation from the original authors while an implemen-
tation of [9] is available via the project Omnizart 4 . We ran
both algorithms on the music recordings to obtain the note
events in order to construct the input to the classifier.

It is important to observe that errors in the MPE estima-
tion will be carried over to the instrument assignment task.
If a note is wrongly estimated, no ground-truth class for
the instrument assignment exists, so it is hard to evaluate
the results in the same way we did for the other experi-
ments. So, in this experiment we used the transcription
metrics that we explained in the last paragraph of Section
6. The results appear in Table 4. Given the limitations of
each MPE method we used, we can see that our approach
can successfully generate multi-instrument transcriptions.

Instr. Onset Onset + Offset

GT [8] [9] GT [8] [9]
MPE-only 1 0.633 0.480 1 0.423 0.200

piano 0.942 0.745 0.451 0.942 0.497 0.196

violin 0.997 0.529 0.499 0.997 0.381 0.225

viola 0.775 0.366 0.308 0.775 0.227 0.116

cello 0.954 0.596 0.570 0.954 0.507 0.258

horn 0.804 0.460 0.429 0.804 0.232 0.166

bass. 0.874 0.473 0.373 0.874 0.193 0.130

clar. 0.967 0.616 0.456 0.967 0.344 0.165

Table 4. Transcription results when using Ground-Truth
(GT) labels and when using two different MPE methods.
In the row "MPE-only" no instrument assignment is done,
we evaluate the multi-pitch estimates using the reference
ground-truth notes ignoring the instrument annotations.

8. CONCLUSIONS

In this work we presented a convolutional neural network
for note-level instrument assignment. We approach this
problem as a classification task and proposed a framework
that uses the pitch information of the note-events to guide
the classification. Our approach can also successfully clas-
sify notes provided by a MPE algorithm, which permits
generating multi-instrument transcriptions. Our method
also shows the benefits of including different kernel shapes
in the convolutional layers.

As future work we plan to investigate more deeply the
interaction of our method with MPE algorithms as well as
how the final estimations can be improved by including a
clip-level analysis. The adoption of multi-label classifica-
tion approaches is also planned.
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ABSTRACT

Transformers have drawn attention in the MIR field
for their remarkable performance shown in natural lan-
guage processing and computer vision. However, prior
works in the audio processing domain mostly use Trans-
former as a temporal feature aggregator that acts similar to
RNNs. In this paper, we propose SpecTNT, a Transformer-
based architecture to model both spectral and temporal se-
quences of an input time-frequency representation. Specif-
ically, we introduce a novel variant of the Transformer-in-
Transformer (TNT) architecture. In each SpecTNT block,
a spectral Transformer extracts frequency-related features
into the frequency class token (FCT) for each frame. Later,
the FCTs are linearly projected and added to the tempo-
ral embeddings (TEs), which aggregate useful information
from the FCTs. Then, a temporal Transformer processes
the TEs to exchange information across the time axis.
By stacking the SpecTNT blocks, we build the SpecTNT
model to learn the representation for music signals. In ex-
periments, SpecTNT demonstrates state-of-the-art perfor-
mance in music tagging and vocal melody extraction, and
shows competitive performance for chord recognition. The
effectiveness of SpecTNT and other design choices are fur-
ther examined through ablation studies.

1. INTRODUCTION

Deep learning models have been actively used in recent
music information retrieval (MIR) research. Although the
spirit of deep learning is end-to-end learning, however, var-
ious assumptions are made during making design choices
of deep learning models.

Regarding assumptions on spectrograms, the most pop-
ular form of music audio representation in deep learning,
the time-axis is often considered to be the axis of sequence
while the frequency-axis is the axis of feature. For ex-
ample, in [1, 2], recurrent layers were applied to model a
spectrogram as a sequence of spectra. In [3], convolutional
layers were used to aggregate features over time after the

© W.-T. Lu, J.-C. Wang, M. Won, K. Choi, and X. Song. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: W.-T. Lu, J.-C. Wang, M. Won, K. Choi, and
X. Song, “SpecTNT: a Time-Frequency Transformer for Music Audio”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

first convolutional layer models multiple frames of spec-
tra as feature. On the other hand, in [4], two-dimensional
convolutional layers were used, equating the frequency-
and time-axes. There are also hybrid approaches, such as
convolutional recurrent neural networks (CRNN) [5] and
convolutional Transformer [6], in which recurrent layers
or Transformer are applied along the time axis.

In spectrograms, it is well known that there are mean-
ingful spectral patterns. Different music components exist
in different frequency ranges, and there is a very strong
spectral correlation called harmonics. Since a normal
convolutional layer can model local patterns only, sev-
eral approaches have been proposed to model harmonics
along the frequency axis. Harmonic Constant-Q Transform
(HCQT) is a novel multi-channel time-frequency represen-
tation that was proposed to overcome the limitation by im-
proving the input representation of audio [7]. Harmonic
CNNs (convolutional neural networks) [8] are designed
to model the harmonic pattern by modifying the convolu-
tional filters. However, these solutions only model some of
the spectral patterns, reminding the need for a more gen-
eral solution with higher flexibility.

Transformers have successfully demonstrated their abil-
ity to model the sequential data with long-term (inter-) de-
pendency and invariance. This is achieved by multiple as-
pects of Transformers. First, the key-query mechanism
enables modeling the relationship of every combination
of the instances. Second, positional encoding helps the
model to take the order of instances into account. Through
stacked attention layers, the input sequence is transformed
into a sequence of representations that are based on the
inter-dependency of the input. The prior works in audio
analysis are mostly based on a similar, naive approach
where Transformer is used as a temporal feature aggrega-
tor that acts similar to RNNs (recurrent neural networks),
with few exceptions such as [9].

Recently, Transformer in Transformer (TNT), a variant
of Transformer that arranges two Transformers in a hi-
erarchical manner, was proposed [10] for image recogni-
tion. In TNT, an inner (lower-level) Transformer is applied
to extract the local pixel-level embeddings, and then the
pixel-level embeddings are projected to the patch-level em-
bedding space which is later handled by an outer (higher-
level) Transformer to summarize a global representation.
One can simply apply TNT for audio by treating a song
as an image, which is comprised of a sequence of frames
(patches) while the frequency bins within frames are con-
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sidered as pixels. However, from our pilot study, we find
this approach results in unstable training and only achieves
similar performance compared to using the original Trans-
former. This is possibly because the amount of training
data is insufficient or the interpretation of frequency se-
quences is different from that of pixel sequences. There-
fore, non-trivial modifications from the original idea of
TNT should be made.

In this paper, we propose SpecTNT, a time-frequency
transformer that models spectrograms as a sequence along
both time- and frequency-axes. Similar to TNT, SpecTNT
uses two Transformers hierarchically. However, the tem-
poral local embeddings extracted from the inner Trans-
former are not directly sent to the outer Transformer. In-
stead, a special token called frequency class token (FCT)
is appended to aggregate the important spectral features
of each frame. The FCT is then projected to the global
(temporal) embedding space to enable the information ex-
change across the time axis. This design allows the impor-
tant local information is passed to the outer Transformer
through FCT while reducing the dimensionality of the data
flow compared to the original TNT. As a result, it helps
SpecTNTs to perform well on audio-related tasks even
with smaller datasets.

Our contributions can be summarized as follows: (1)
to the best of our knowledge, our work is the first attempt
to leverage TNT-based architecture to learn the representa-
tions for audio; (2) we propose SpecTNT, a novel modifi-
cation of TNT to better fit the music data for MIR tasks; (3)
we conduct extensive experiments to demonstrate the ca-
pability of SpecTNT in various MIR tasks – vocal melody
extraction, music auto-tagging, and chord recognition.

2. RELATED WORK

In this section, we review the literature in music tagging,
vocal melody extraction, and chord recognition – three
well-defined MIR tasks adopted in the experiments to eval-
uate SpecTNT. Due to space limitation, we focus on the re-
cent trends since the adoption of deep learning approaches.

Music tagging is a multi-label classification task that
annotates a music audio clip with various types of la-
bels such as genres (rock, jazz), instruments (vocal, guitar,
drums), and mood (happy, sad) [11]. Since a CNN-based
approach has been first introduced [3], various advanced
architectures have been used including a two-dimensional
CNN [4], a sample-level CNN [12], and a two-dimensional
ResNet [13]. Due to the open nature of the tag set, among
MIR tasks, music tagging is relatively a vague task – The
exact mechanism of annotating tags is not fully known.
This aspect suits well for the fundamental motivation of
deep learning, which is, to reduce inductive bias and let
the data speak [14].

The goal of vocal melody extraction is to estimate the
F0 frequency of the (dominant) vocal track in given mix-
tures. Various deep learning methods have been adopted:
a fully-connected neural network with Hidden Markov
Model [15], a bidirectional long short-term memory net-
work [1], a CNN [7], encoder-decoder networks [16, 17]

Figure 1. The block diagram of the whole SpecTNT. The
details of positional encoding and SpecTNT module are
illustrated in Figure 2 and 3, respectively.

and a CRNN [18]. Recently, a frequency-temporal atten-
tion module was introduced in [19] to learn the relevant
regions for predictions. Some special representations are
proposed including HCQT [7], a combination of frequency
and periodicity [20], and source-separated tracks [21, 22].

Chord recognition is a MIR task to “produce a time-
varying symbolic representation of the signal in terms of
chord labels” [23]. Compared to music tagging, we clearly
understand how chords of music signals can be decided –
They are based on the combination of the present musical
notes. Therefore, models have been designed to take ad-
vantage of note representations such as constant-Q trans-
form (CQT) or chromagram. The early deep learning-
based chord recognition models are based on a RNN [24]
and a CNN [25]. Later, a CRNN has been used in [23] to
combine the merits of RNNs and CNNs. More recently,
(bi-directional) Transformer was used, achieving state-of-
the-art performance [26, 27].

3. METHODS

As illustrated in Figure 1, the proposed SpecTNT architec-
ture consists of a convolutional module, positional encod-
ing, SpecTNT module, and output module.

The input time-frequency representation is first pro-
cessed with a stack of convolutional layers for local feature
aggregation. Then, the positional information is added to
the data. In the SpecTNT module, the intermediate rep-
resentation is fed into a stack of SpecTNT blocks. Lastly,
the output module projects the final embedding into the de-
sired dimension for different tasks. We detail each module
in the following subsections.

3.1 Convolutional module

The purpose of this convolutional module is to employ
different strategies for generating intermediate representa-
tions with pooling or striding convolution techniques de-
pending on the nature of the task. Let the input time-
frequency representation be S 2 RT⇥F⇥K where T is
the number of time-steps, F is the number of frequency
bins, and K is the number of channels. S is first passed
into a stack of convolutional layers. We utilize the residual
unit proposed in [28] to be the basic building block of the
convolutional module. The representation after the con-
volutional module is denoted as S0

= [S0
1, S

0
2, ..., S

0
T̂
] 2

RT̂⇥F̂⇥K̂ , where F̂ , T̂ , and K̂ are the numbers of fre-
quency bins, time-steps, and channels, respectively.
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Figure 2. An illustration of the application of Fre-
quency class token (FCT) and frequency positional encod-
ing (FPE). F refers to the number of frequency bins of the
input time-frequency representation.

3.2 Frequency Class Token

As depicted in Figure 2, Frequency class token (FCT) is an
embedding vector initialized with all zeros to serve as the
placeholder and defined as ct = 01⇥K̂ . Let S0

t 2 RF̂⇥K̂

denote the input data at each time-step t. The input data
and FCT are concatenated as following:

S00
t = Concat[ct, S

0
t]. (1)

Here, the role of FCT ct is similar to the classification to-
ken [29]. It is expected to extract spectral features from
each frequency bin of the t-th frame during the spectral
self-attention in the later stages.

3.3 Positional encoding

In the original Transformer paper, a sinusoidal positional
encoding was added to the input sequence to make the fol-
lowing layers aware of the order of input elements [30].
From a similar motivation, we adopt a learnable positional
embedding to encode the sequence order of frequency bins.

We encode the positional information of frequencies by
adding the frequency positional embedding (FPE) to the
data S00. FPE is a learnable matrix E� 2 R(F̂+1)⇥K̂ . The
addition process is done at each time-step t:

Ŝt = S00
t � E�, (2)

where � is the element-wise addition, and the resulting
FCTs are denoted by Ĉ = [ĉ1, ĉ2, ..., ĉT̂ ]. Then, the re-
sulting representation Ŝt is able to carry information about
pitch and timbre to the following attention layers. For ex-
ample, a pitch in the signal can lead to high energy at a spe-
cific frequency bin, and the positional embedding makes
FCT aware of the position of that frequency

3.4 Transformer in Transformer (TNT)

Inspired by the architecture in [10], we design a SpecTNT
block to handle audio data, as depicted in Figure 3. The
SpecTNT block holds two data flows: spectral embedding
(SE) and temporal embedding (TE). The two data flows
are respectively processed with two Transformer encoders,

Figure 3. The block diagram of a SpecTNT block. Tensors
and modules are illustrated with non-rounded and rounded
rectangles, respectively. We specify the non-batch shape
of tensors for clarity, and explain (a) – (d) in the main text.

namely temporal Transformer and spectral Transformer.
Because the SpecTNT block is repeated multiple times in
the SpecTNT module, we introduce a notation l to specify
the layer index for both SE and TE.

In the following sections, we explain each component
of a SpecTNT block (Section 3.4.1 through Section 3.4.3)
and the entire procedure (Section 3.4.4).

3.4.1 Temporal Embedding

In the proposed model, we introduce the temporal embed-
ding (TE) to distribute the information of FCTs across the
time axis. We can write the TE at layer l as:

El
= [el1, e

l
2, ..., e

l
T̂
], (3)

where elt 2 R1⇥D is a TE vector at time t and D is the
number of features. In practice, TE is a learnable matrix
and is initialized randomly as E0 2 RT̂⇥D prior to enter-
ing the first SpecTNT block.

There are two bridges between the spectral and tempo-
ral data flows. We use FCTs, the first frequency bin of
SEs, for this communication. First, TE sends information
to FCTs by passing elt to a linear projection layer. Then,
the projected D-dimensional vectors are added to FCTs
(Figure 3-(a)). Second, after spectral transformer encoder
(Figure 3-(c)), FCTs (purple arrays) are projected back to
K-dimension (Figure 3-(d)). Note that TE also has a skip-
connection (Figure 3-(b)).

3.4.2 Spectral Embedding

The output from the positional encoding, Ŝ , will serve as
an input SE for the first SpecTNT block and is denoted as
Ŝ0. As mentioned above, SE includes FCTs, which help
aggregate useful spectral information from the local. As a
general notation, we write the data flow of SE as:

Ŝl
=

h
[ĉl1, Ŝ

l
1], [ĉ

l
2, Ŝ

l
2], ..., [ĉ

l
T̂
, Ŝl

T̂
]

i
, (4)

where l = 0, 1, ..., L, and clt and Ŝl
t are respectively the

FCTs of l-th layer and spectral data at time-step t. Then,
SE can interact with the TE through FCTs, so the local
spectral features can be processed in a temporal and global
manner.
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3.4.3 Transformer Encoder

A Transformer encoder is composed of three components:
multi-head self-attention (MHSA), feed-forward network
(FFN), and layer normalization (LN).

Self-attention (SA) [30] plays the pivotal role in a
Transformer encoder. It takes three inputs: Q 2 RT⇥dq ,
K 2 RT⇥dk and V 2 RT⇥dv which represent the queries,
keys, and values, respectively. T is the number of time-
steps, and dq , dk and dv indicate the dimension of features
for Q, K, and V , respectively. The output is the weighted
sum over the values based on the dot product similarity
between queries and keys at the corresponding time-step.

The MHSA module [30] is an extension of SA. It splits
the three inputs Q, K and V along their feature dimension
into h number of “heads” and performs multiple SA’s, each
on a head, in parallel. The outputs of heads are then con-
catenated and linearly projected into the final output. The
FFN module has two linear layers with a GELU activa-
tion function in the middle. We also adopt the pre-norm
residual units [31] to stabilize the training.

With the three components, the Transformer encoder
(either spectral or temporal) is built and denoted by

Xl = Enc(Xl�1), (5)

where the operations within it can be written as

X 0
l�1 = Xl�1 +MHSA(LN(Xl�1)),

Xl = X 0
l�1 + FFN(LN(X 0

l�1)).
(6)

3.4.4 Stacking SpecTNT Blocks

We stack three SpecTNT blocks for the SpecTNT module.
The module starts with inputting the initial SE, Ŝ0, and the
initial TE, E0, to the first SpecTNT block.

For a SpecTNT block, there are four steps. First, each
FCT vector in Ŝl�1 is updated by adding the linear projec-
tion of the associated TE vector (Figure 3-(a)):

c̃l�1
t = ĉl�1

t � Linear(el�1
t ), (7)

where Linear(·) is a shared linear layer. Second, the SE
S̃l�1 (with the updated FCTs [c̃l�1

t ]
T̂
t=1 at the first row) is

passed through the spectral Transformer (Figure 3-(c)):

Ŝl
= SpecEnc(S̃l�1

). (8)

Third, each FCT vector in Ŝl is linearly projected and
added back to the corresponding TE vector (Figure 3-(d)):

ẽl�1
t = el�1

t � Linear(ĉlt). (9)

Finally, we propose to encode only the updated TE (i.e.,
Ẽl�1

= [ẽl�1
t ]

T̂
t=1), instead of TE + SE, with the temporal

Transformer:

El
= TempEnc(Ẽl�1

). (10)

This operation builds up the relationship along the time
axis and is the key role that leads to better model and data
efficiency. We consider the temporal Transformer only
needs to see the information of the frequency bins which
are attended by the FCT and such design largely reduces
the size of the model and also improves the performance
on smaller datasets in preliminary experiments.

Task (pf , pt) (k, d) (hk, hd) od
Music tagging (1, 4) (96, 96) (4, 8) 50
Vocal melody extraction (4, 1) (128, 128) (8, 8) (T , 481)
Chord recognition (1, 1) (64, 256) (4, 8) (T , 25)

Table 1. Settings of SpecTNT for different tasks, where pf
and pt represent the pooling ratio we apply along the fre-
quency and time axis in the convolutional module, k and d
are the feature dimension, hk and hd denotes the number
of heads for the spectral and temporal transformer encoder
respectively, and finally, od represents the output dimen-
sion, T indicates frame-wise predictions.

3.5 Output Module

The output TE of the 3rd SpecTNT block, E3, can be used
towards the final output. For frame-wise prediction tasks
such as vocal melody extraction and chord recognition, we
feed each TE vector e3t into a shared fully-connected layer
with sigmoid or softmax function for final output. For
song-level prediction tasks such as music tagging, we ini-
tialize a temporal class token ✏l (l = 0) concatenated at the
front of El:

Êl
= [✏l, el1, e

l
2, ..., e

l
T̂
], (11)

Note that ✏l does not have an associated FCT in SE, but is
for aggregating TE vectors along the time axis. Finally, we
feed ✏3 to a fully-connected layer, followed by a sigmoid
layer, to get the probability output.

4. EXPERIMENTS

In this section, we evaluate SpecTNT on various types of
MIR tasks to demonstrate its effectiveness and versatility.
We choose three MIR tasks – music tagging, vocal melody
extraction, and chord recognition.

4.1 Implementation

SpecTNT is implemented using Pytorch [32]. Due to the
difference in dataset sizes and the natures of tasks, we use
different hyper-parameters for the tasks as shown in Ta-
ble 1. All models include dropout with a rate of 0.15 in the
Transformers of the TNT modules. We use AdamW [33]
as the learning optimizer. The initial learning rates are set
to 10

�3 for vocal melody extraction, 5 ⇥ 10
�4 for mu-

sic tagging and chord recognition, and a weight decay of
5⇥ 10

�3 is set for all the tasks.
For the input representation of music tagging, we re-

sample the audio at the 22,050 Hz and use an input
length of 4.54 second. Log-magnitude mel-spectrograms
are computed with 128 mel filter banks, 1024 samples of
Hann window, and a hop size of 512 samples. For vocal
melody extraction, input waveforms are re-sampled at the
16,000 Hz sample rate. We take 3-second segments input
and their log-magnitude spectrograms are computed with
2048 samples of Hann window and a hop size of 320 sam-
ples. For chord recognition, we try two types of input rep-
resentation. The first input type is 24-dimensional chroma
features with a frame rate of 46 ms [34]. Out of the whole
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track, we use 400 frames as an input. The second input
type is CQT, which is computed from a 18.2 second audio
at the 22,050 Hz sample rate. The CQT includes six oc-
taves starting from C1 (32.70 Hz) with 24 bins per octave,
and is based on a hop size of 2048.

4.2 Ablations Study

To validate the design choices we make, we consider three
various models by progressively removing the components
of SpecTNT as follows.

A1: Remove the operation of (a) in Figure 1 (i.e., Eq.
7) and initialize the FCTs as learnable vectors.

A2: Neglect the FCTs but use the full spectral embed-
dings for operations (a) and (c) in Figure 1 (i.e., Eq. 7
and Eq. 9). The resulting model can be seen as using the
original TNT block [10].

A3: Remove the data flow of spectral embedding, so
the model is reduced to the original Transformer [30] for
aggregating the input sequence in a traditional way.

In the following evaluations of different tasks, we will
include the results of the three variants for comparison.

4.3 Music Auto-tagging

Datasets Million song dataset (MSD) [35] consists
of one million audio previews and a subset of it has
crowd-sourced music tags. Typically, a subset with
the 50 most frequent tags are used with randomly split
train/validation/test sets [4]. However, these tags are noisy
and the random split without considering artist overlaps
may cause unintended information leakage. Therefore, we
take advantage of manually cleaned 50 tags from a previ-
ous work [36] and split the dataset based on artist names
so that there is no overlapped artists among the train-
ing/validation/test sets. As a result, we use 233,147 tracks,
of which 70%, 15%, and 15% are allocated for training,
validation, and test sets, respectively. During training, we
apply random data augmentation to the input waveform
following the pipeline introduced in [37].

Baseline Models Two baselines methods are compared.
The first is CNNSA [6], which employs a convolutional
front-end and a transformer encoder to aggregate the tem-
poral feature. The second baseline [13] uses 7-layer short-
chunk CNN with residual connection, followed by a fully-
connect layer for final output. This model has shown state-
of-the-art performance in music auto-tagging. We utilize
the original implementation of [13] to train the baseline
under the same configuration as our proposed model.

Evaluation Metrics Area Under Precision Recall Curve
(PR-AUC) and Area Under Receiver Operating Character-
istic curve (ROC-AUC) are used.

Results The results of music auto-tagging are summa-
rized in Table 2. SpecTNT outperforms prior state-of-
the-art models in both metrics. In the ablation study, A1
performs the worst, while A2 and A3 show similar re-
sults to SpecTNT. This can be explained from the perspec-
tive of data distribution: the top 50 tags of MSD dataset

Method ROC-AUC PR-AUC
Short-chunk CNN + Res 91.55 37.08
CNNSA 91.57 37.09
SpecTNT 92.08 38.62
A1 91.92 37.85
A2 92.07 38.59
A3 92.06 38.46

Table 2. Results (in %) for automatic music tagging.

are mostly related to genre and style, both of which need
enough temporal information to characterize. In A1, the
process of updating FCTs with TEs is removed and this
may interfere the temporal information flow being shared
with the spectral data and cause the performance drop.
By looking into the precision scores of individual tags
where SpecTNT outperforms A3, we observe that instru-
mental tags such as “piano” and “guitar” can benefit from
SpecTNT, because they may require more spectral infor-
mation to model well. This shows the benefit of adding
the spectral transformer. Also, the smaller performance
difference among SpecTNT, A2, and A3 indicates that the
size of MSD dataset might be enough to support architec-
tures with less prior knowledge. That is, A2 and A3 are
able to sufficiently learn from MSD the useful information
without further utilizing FCTs to interact with the temporal
embeddings.

4.4 Vocal Melody Extraction

Datasets We use two datasets to train the models: MIR1K
[38], which includes 1000 Chinese karaoke clips, and
a 48-song subset of MedleyDB [39] that includes vocal
tracks. Since the training sets are relative small, we adopt a
pipeline with four steps of augmentation techniques. There
is a chance for each step to be applied to a training sam-
ple: i) pitch-shifting by up to ±2 semitones (with 100%
chance), ii) replacing the original background track with a
randomly selected, different background track (with 50%
chance), iii) changing the gain of the vocal within [�4, 2]
dB (with 100 % chance), and iv) completely removing the
background track (with 10% chance).

We choose three test sets for evaluation: ADC2004,
MIREX05, and MedleyDB. For ADC2004 and MIREX05,
we only use the samples that have melody sung by hu-
man voice. This results in 12 samples from ADC2004
and 9 samples from MIREX05. For MedleyDB, we only
use the songs that have singing voice included in their
“MELODY2” annotations, yielding 12 songs. The ground-
truth pitches are obtained from the MELODY2 annotations
within the intervals marked as “female singer” or “male
singer.” These 12 songs are not included in training.

Baseline Models We compare our model with two base-
line models. The first baseline is the joint detection and
classification model (JDC) [18] based on CRNN. We use
the most representative architecture, called “Main” in [18].
The second baseline is the frequency-temporal attention
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Dataset ADC2004 MIREX05 MedelyDB
Method OA RPA VR OA RPA VR OA RPA VR
JDC 71.2 68.1 73.1 86.0 80.7 85.8 77.0 64.8 73.9
FTANet 71.2 69.3 72.9 89.9 86.5 91.2 79.4 66.0 72.0
SpecTNT 85.3 85.0 88.3 91.7 90.4 95.2 78.4 77.9 87.4
A1 84.8 84.2 89.1 90.2 88.3 94.1 77.9 75.0 85.4
A2 84.9 84.5 88.3 89.7 87.7 93.1 79.3 75.6 84.0
A3 84.5 83.7 87.2 88.9 87.2 92.0 74.5 72.7 83.1

Table 3. Results (in %) for vocal melody extraction.

network (FTANet) [19], which is a CNN-based model
that employs attention mechanism along the frequency and
time axis. We re-implemented JDC and FTANet using Py-
torch and used the suggested hyper-parameters in [18, 19].
Both models are trained under the same configuration (e.g.,
data split and augmentation process) as our model.

Evaluation Metrics Overall Accuracy (OA), Raw Pitch
Accuracy (RPA), and Voice Recall (VR) are adopted for
evaluation. We use mir_eval library [40] to compute the
performance values with a tolerance range of 50 cents.

Results Table 3 shows the results for vocal melody extrac-
tion. SpecTNT outperforms the baselines by a large mar-
gin in terms of RPA and VR. To the best of our knowledge,
this is the first attempt to apply Transformers to this task
and the results demonstrate its superiority over the CNN
and CRNN counterparts. It is worth noting that FTANet is
trained with an input representation specifically designed
for pitch detection [20], but our model works well with
spectrogram input. In addition, A3 shows the largest per-
formance drop, and this demonstrates the usefulness of
spectral Transformer when training on smaller data.

4.5 Chord Recognition

Datasets We use the Billboard dataset to evaluate
SpecTNT for the chord recognition task. The dataset con-
tains 890 pieces selected from the Billboard chart slots
[34]. Following [27], duplicates pieces are first removed
to leave 739 unique pieces in total. The official release of
the dataset only comes with 24-D chroma vectors, which
might be insufficient to fully demonstrate the effectiveness
of SpecTNT. Therefore, we manually collected the audio
files based on the provided meta-data. Due to the poten-
tial version mismatch between our audio files and that for
official chord annotations, we applied dynamic time warp-
ing (DTW) [41] to validate each song. Specifically, we
first replicated the chroma features of the official release
using Sonic Annotator [42] on our audio files, and then
calculated the alignment cost between the two versions of
chromagrams for each song using DTW. We selected 462
songs with the lowest alignment costs. The songs with
ID’s smaller than 1000 are used for training and the re-
maining for testing. To augment the training data (chroma
and audio), we shifted the pitches by up to ±6 semitones.
For evaluation, we adopt the “maj/min” label set with 25
classes, where 24 are major and minor triads across the 12

Method Chroma CQT
CR2 78.92 73.38
BTC 77.98 73.92
HT 82.68 -
SpecTNT 80.47 75.62
A1 80.10 74.83
A2 78.76 74.44
A3 77.69 74.99

Table 4. Results (in %) for chord recognition task

semitones plus an additional “no chord” class.

Baseline Models We compare to three baseline models:
i) CR2 model from [23], which is a CRNN-based model,
ii) a bi-directional Transformer (BTC) [26], and iii) Har-
mony Transformer (HT) [27]. BTC and HT are known to
be the current state-of-the-art models for chord recogni-
tion. For CR2 and BTC, we use the official implementa-
tions with the suggested default settings for both chroma-
gram and CQT inputs. For HT, we report the chromagram-
based results in [27], since the train/test data split and data
augmentation are very similar to us. We did not conduct
experiments using HT with CQT input because non-trivial
modifications are required for the model.

Evaluation Metrics The Weighted Chord Symbol Recall
(WCSR) score is reported as evaluation metric. WCSR is
the percentage of correctly identified frames and can be
computed by tc

ta
⇥ 100(%), where tc is the duration of the

correctly predicted segments, and ta is the total duration of
the test segments.

Results Table 4 shows the results for chord recognition.
For “Chroma” case, the full Billboard dataset is used. For
“CQT” case, the 462 songs with audio are used. From the
results, SpecTNT can outperform all the baselines except
HT (with chromagram input). However, HT may benefit
from joint training with an additional segmentation loss,
so the comparison could be unfair. Compared to BTC and
CR2, SpecTNT achieves better performance for both types
of input. For the ablation study, since we used less data
for CQT input, A2, which is the largest model, may suffer
from over-fitting and thus performs the worst.

5. CONCLUSION

We proposed SpecTNT, a novel Transformer architecture
that models spectrograms along both the time and fre-
quency axes. The introduction of FCT enables effective
communication between the spectral embeddings and tem-
poral embeddings, maximizing the benefit of Transformer
encoder for flexible, local, and global modeling. In ex-
periments, SpecTNT has demonstrated state-of-the-art per-
formance in music tagging and vocal melody extraction
and shown competitive performance in chord recognition.
For future work, we plan to apply SpecTNT to other MIR
tasks, such as beat tracking and structure segmentation.
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ABSTRACT

AugmentedNet is a new convolutional recurrent neural
network for predicting Roman numeral labels. The net-
work architecture is characterized by a separate convolu-
tional block for bass and chromagram inputs. This layout
is further enhanced by using synthetic training examples
for data augmentation, and a greater number of tonal tasks
to solve simultaneously via multitask learning. This pa-
per reports the improved performance achieved by combin-
ing these ideas. The additional tonal tasks strengthen the
shared representation learned through multitask learning.
The synthetic examples, in turn, complement key transpo-
sition, which is often the only technique used for data aug-
mentation in similar problems related to tonal music. The
name ‘AugmentedNet’ speaks to the increased number of
both training examples and tonal tasks. We report on tests
across six relevant and publicly available datasets: ABC,
BPS, HaydnSun, TAVERN, When-in-Rome, and WTC. In
our tests, our model outperforms recent methods of func-
tional harmony, such as other convolutional neural net-
works and Transformer-based models. Finally, we show
a new method for reconstructing the full Roman numeral
label, based on common Roman numeral classes, which
leads to better results compared to previous methods.

1. INTRODUCTION

Automatic Chord Recognition (ACR) has been extensively
explored in the field of Music Information Retrieval (MIR).
ACR systems typically seek to predict the root and qual-
ity of the chords throughout a piece of music via either an
audio or a symbolic representation. A more specific type
of chordal analysis, particularly relevant for Western clas-
sical music, is functional harmony. The main difference
between ACR and functional harmony is that the latter re-
quires other adjacent tasks to be solved simultaneously,
notably including the detection and identification of key
changes (modulations [1, 2] and tonicizations [3]).

The analytical process of functional harmony is often
described through Roman numeral annotations. This an-

© N. Nápoles López, M. Gotham, and I. Fujinaga. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: N. Nápoles López, M. Gotham, and I. Fujinaga,
“AugmentedNet: A Roman Numeral Analysis Network with Synthetic
Training Examples and Additional Tonal Tasks”, in Proc. of the 22nd Int.
Society for Music Information Retrieval Conf., Online, 2021.

notation system is particularly popular in Western music
theory for the analysis of ‘common-practice’ tonal mu-
sic. Roman numeral annotations encode a great deal of
information about tonality, in a compact syntax. For in-
stance, an annotation like C:viio6/V encodes the local key
(C-major), quality of the chord (diminished triad), chord
inversion (first), and any existing tonicization (G-major).

This ‘modular’ nature of Roman numeral annotations
has been beneficial to MIR research. In recent years, func-
tional harmony has been approached by dividing the main
task in several sub-tasks. Thus, as a machine learning
problem, functional harmony can be expressed as the task
of correctly predicting sufficient sub-tasks to reconstruct
the full Roman numeral label. Furthermore, recent work
in the standardization and conversion of Roman numeral
analyses has provided MIR researchers with a larger meta-
corpus of annotations for training new models [4, 5]. Yet,
despite these developments and the growing interest in the
field, the performance of functional harmony models for
predicting Roman numeral labels remains relatively low.

In this paper, we propose a new neural network
architecture that improves the prediction of functional
harmony and its relevant features. Besides the archi-
tecture itself, our model benefits from increased data
augmentation (beyond key transpositions), and an ad-
ditional set of output tasks that enhance the effects of
multitask learning demonstrated by other researchers [6].
To facilitate the work of other researchers, we release
all of our preprocessed datasets, data splits, experi-
ment logs, and the full source code of our network in
https://github.com/napulen/AugmentedNet.

2. RELATED WORK

For a summary of general ACR strategies, see Pauwels et
al. [7]. Here we focus on prior work in the specific area of
automatic functional harmonic analysis.

The first computational works on Roman numeral anal-
ysis were by Winograd [8] and Maxwell [9]. Later, the in-
dependent contributions by Temperley, Sleator, and Sapp
led to the first end-to-end automatic Roman numeral anal-
ysis system: a program named Melisma [10–12]. Notable
subsequent studies include Raphael and Stoddard [13],
Illescas et al. [14], and Magalhães and de Haas [15], who
proposed Hidden Markov Models (HMMs), dynamic pro-
gramming, and grammar-based approaches, respectively.

More recently, deep neural networks have become the
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preferred tool for approaching this problem. Chen and
Su [6] were the first to introduce ‘multitask learning’
(MTL) [16] to the problem as a suitable way for the neu-
ral network to share representations between related tonal
tasks. Chen and Su’s model consists of a bidirectional
LSTM [17] followed by task-specific dense layers, which
implement the MTL configuration. In this work, the au-
thors also introduced the ‘Beethoven Piano Sonata Func-
tional Harmony’ dataset for evaluating such models. The
MTL layout outperformed single-task configurations, and
it has continued to be the best-performing approach in sub-
sequent deep learning studies. Recently, the same authors
have adopted Transformer-based networks to deal with
functional harmony and ACR [18,19]. The work with these
networks has explored the capability of attention mecha-
nisms to improve the performance of ACR, paying special
consideration to chord segmentation and its evaluation.

Micchi et al. [20], in turn, proposed a convolutional
recurrent neural network (CRNN). The recurrent compo-
nent consists of a bidirectional GRU [21] connected to
task-specific dense layers, similar to those of Chen and
Su [6]. In their experiments, a DenseNet-like [22] con-
volutional component outperformed other configurations
(e.g., dilated convolutions or a GRU with pooling). Micchi
et al. also demonstrated the positive effect of using pitch
spelling in the inputs and outputs. This confers at least two
advantages: it provides a more informative output (e.g., not
only the correct key, but the correct spelling between two
enharmonic keys), and it increases the theoretical number
of transpositions available for data augmentation.

Here, we propose improvements along the line of
CRNNs. Due to our focus on extended data augmentation
and tonal tasks, we named our network AugmentedNet.

3. AUGMENTEDNET

The AugmentedNet is a similar network in size and design
to the one by Micchi et al. [20]. It is characterized by a
different layout of the convolutional layers, a new repre-
sentation of pitch spelling, and a separation of the bass and
chroma inputs into independent convolutional blocks.

3.1 Inputs

Reference note per timestep. The input to the net-
work consists of a sequence of timesteps, which are sam-
pled from the score at symbolically regular note dura-
tion values. In this study, we use the thirty-second
note (‘demisemiquaver’) as this atomic value (i.e., eight
timesteps per quarter note in the score), in order to match
the most fine-grained frame sampling seen in previous
work. The length of the sequence is set by a fixed number
of timesteps. Following Micchi et al., we set that number
at 640 frames (or 80 quarter notes) per sequence example.

Bass and spelled chroma features. The representation
of each timestep is conceptually the same as in Micchi et
al. [20], a vector containing a spelled bass note and spelled
chroma features. However, the length of our vectors is dif-
ferent. In the Micchi et al. representation, each timestep

has 70 features: 35 for the bass and 35 for the chroma fea-
tures. We consolidate this information in 38 features: 19
for the bass, and 19 for the chroma features. The reduction
in number of features is due to an alternative encoding of
pitch spelling, which we explain below.

Encoding the pitch spelling. We split the representa-
tion of a pitch spelling into two components: the pitch class
(0–12) and the generic note letter (A–G). Each spelled
pitch thus leads to a two-hot encoded vector with 19 fea-
tures (1 of 12 pitch classes, and 1 of 7 note names). This
reduces the number of parameters in the network without
any observable compromise in performance. Furthermore,
the spelled bass and chroma inputs are connected to the
network separately, in their own convolutional blocks. The
input to each block is a tensor of pitch spelling sequences.

3.2 Convolutional block

Using the feature maps of previous layers as an input to a
convolutional layer has proven beneficial, for instance, by
strengthening feature propagation and reducing the num-
ber of parameters [22]. Moreover, DenseNet-like archi-
tectures have shown to work well for the specific task of
functional harmony [20].

We follow similar methods, reusing the feature maps
computed for a given timestep in subsequent convolutions.
Figure 1 provides a schematic diagram of our network,
with the convolutional block on the top left area of the
figure. In our preliminary experiments, we noticed that
different tonal tasks have different time dependencies. For
example, losing information about a specific timestep of-
ten leads to poor performance in predicting the inversion,
whereas losing long-term context hinders the performance
in key estimation. Our architecture implicitly prioritizes
short-term dependencies in the initial convolutional layers,
by having more filters and covering less timesteps. Going
further, the convolutions provide more context about future
timesteps, but output less filters. These increments (in win-
dow size) and decrements (in number of filters) are done in
powers of 2. Using six convolutional layers in each block
(as shown in Figure 1), the first layer convolves a win-
dow of a single timestep (a thirty-second note), whereas
the sixth layer utilizes a window of 32 timesteps (a whole
note). The output shape of each block is the original length
of the sequence, with 82 features per timestep.

3.3 Dense and recurrent layers

Two time-distributed dense layers are applied to the con-
catenated outputs of the convolutional blocks. The dense
layers help to reduce the number of features before the
GRU layers. These have 64 and 32 neurons, respectively.

Two bidirectional GRU [21] layers are applied after the
second dense layer. Both GRU layers return outputs at ev-
ery timestep. Throughout the entire network, the dimen-
sionality of the timesteps axis remains constant. That is,
our input and output sequences have the same length, and
the model predicts one Roman numeral label per timestep.
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Figure 1. AugmentedNet. The bass and chroma inputs are processed through independent convolutional blocks and then
concatenated. Both convolutional blocks are identical and expanded on the top of the figure. A convolutional block has six
1D convolutional layers. Each layer doubles the length of the convolution window and halves the number of output filters.
On the right, the MTL layout with eleven tasks. Each task indicates the number of output classes in parentheses.

3.4 Multitask learning

The output of the network follows an MTL approach with
hard parameter sharing, similar to the one by Chen and
Su [6]. For each of the output tasks, a time-distributed
dense layer is attached to the second GRU and used to pre-
dict its corresponding task. In the past, MIR researchers
have reconstructed Roman numeral annotations using six
tasks: the (local) key, the primary and secondary de-
grees, the chord quality, the chord inversion, and the chord
root [6, 20]. In our network, these six ‘conventional’ tasks
are learned as well, plus five new additional ones. All
eleven tasks and their number of output classes are shown
on the right side of Figure 1.

All the conventional tasks, except for the key, have
the same number of output classes described by Mic-
chi et al. [20]. The key includes four additional classes:
{F[,G], d[, e]}. These were included because our dataset,
larger than previous ones, revealed modulations reaching
G] major. Thus, the number of allowed key signatures was
extended by one sharp and one flat, in both modes.

3.4.1 Five additional new tasks

It is argued that MTL may improve the performance of a
model by preferring representations that are useful to re-
lated tasks, acting as an implicit form of data augmenta-
tion and regularization method [16]. Roman numeral la-
bels can be divided into different parts, of which the six
conventional tasks are known examples. Motivated by the
prospective improvement of our network, we included five
new additional tasks, which have relevance to harmonic
analysis. One of these tasks, CommonRNs, was used to
design an alternative method to reconstruct the full Ro-
man numeral label. The remaining four are included to
strengthen the shared MTL layers. We hypothesize that
these additional tasks (e.g. pitch class sets) improve the
accuracy of the model because of the MTL layout, even if
they are not explicitly used to predict the Roman numeral.

CommonRNs: during data exploration, we found that,

1–15 16–30 31–45 46–60 61–75
I V/V Ger viio7/v V+
V7 v N viio7/iii viio/vi
V V7/ii viio7/vi IV/V III+
i III V/ii I+ V/iii
IV iiø7 viiø7 I7 ii/V
ii iii V9 viio/IV I/[VI
vi iio viio/ii V/III viio7/IV
iv viio/V V/iv V7/iii V7/v
viio7 V7/vi Cad/V viio/iv i7
viio VII iv7 iio7 iii7
V7/V viio7/ii viio7/iv VI7 Fr
V7/IV I/V IV7 I/III V/IV
viio7/V V7/iv V7/III V7/VI vii
VI V/vi viiø7/V [VII V/v
ii7 vi7 It [VI II

Table 1. CommonRNs. The 75 most-common Roman nu-
meral classes found across the training set. Note that the
inversion has been omitted and learned as a separate task.

when inversions were removed and synonyms (e.g., [II6
and N6) were standardized, a set of 75 Roman numeral
classes spanned ~98% of all the annotations across the
training set (see Table 1). This was a motivation to pre-
dict these classes directly as an additional task. The cor-
rect prediction of this new task is equivalent to predicting
the primary and secondary degrees, chord root, and chord
quality simultaneously. As an additional experiment (see
Section 4.3), we tested an alternative new method to recon-
struct the Roman numeral labels, using the key, inversion,
and CommonRNs tasks. We refer to this method as RNalt.

Harmonic Rhythm: a binary classification task that in-
dicates whether a Roman numeral annotation starts at a
given timestep. It may be relevant for chord segmentation.

Bass: a multiclass classification task that indicates the
bass note in the Roman numeral label. This task has 35
output classes representing a pitch spelling, as in the chord
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root task [20]. It is an alternative chord inversion task.
Tonicization: a multiclass classification task that indi-

cates a tonicized key implied by the Roman numeral label
(if any). The output classes are 34 keys, as in the key task,
and it is an alternative way to learn the secondary degrees.

Pitch Class Sets: a multiclass classification task that
indicates the set of pitch classes implied by the Roman nu-
meral chord. The number of classes (93) results from com-
puting all pitch class sets in all diatonic triad and seventh
chords, plus all augmented sixth chords in all keys. This
task is related to the chord quality, primary degree, and to
non-chord tones [23].

3.5 Data augmentation

3.5.1 Transposition

As in most automatic tonal music analysis research, we
transpose each piece to different keys as a form of data aug-
mentation. Particularly, we transpose to all the keys that
lie within a range of key signatures, in both modes. When
we transpose a piece, we verify that all the modulations
within the piece fall in the target range of key signatures.
This process of transposition and data augmentation was
introduced and described by Micchi et al. [20]. In our data
exploration, we found G] major to be the furthest key to
the center of the line-of-fifths [24] in the training set. Thus,
we transposed each piece across the keys with 8-flats and
8-sharps in their key signatures.

3.5.2 Synthetic data

In addition to transposition, we implemented a variation of
a previous data-augmentation technique by Nápoles López
and Fujinaga [25]. Starting with the Roman numeral anal-
yses of our dataset, we synthesized ‘new’ training exam-
ples by realizing the chords implied by each Roman nu-
meral annotation. The synthesis was done using the mu-
sic21 Python library [26], which converts RomanText [4]
files into scores of block chord realizations.

We found the default block chord texture of the syn-
thetic examples to be only slightly beneficial for the model,
possibly because it did not capture the complex texture of
real keyboard music, for example. In order to account for
this difference, we artificially ‘texturized’ the generated
training examples, departing from the default block chords.
The texturization was done by applying three note patterns
recursively (see Figure 2). These patterns were designed
intuitively, pursuing certain goals in the resulting texture.

Bass-split (measure 1): a pattern where the original
chord duration is divided by half, playing the bass in the
first half, and the remaining notes in the second. The goal
is to occasionally separate the bass from all other notes.

Alberti bass (measure 2): a 4-note melodic pattern with
a pitch contour of low-high-middle-high. The goal is to
occasionally play chords using a monophonic texture.

Syncopation (measure 3): a pattern where the highest
note is played first, followed by the rest of the notes, played
in syncopation. The goal is to occasionally shift the onset
of the bass from the onset of the Roman numeral label.

Figure 2. An example of texturization. The block chord
texture (b) was synthesized using music21 [26] from an in-
put RomanText file [4]. The texturized output (c) was gen-
erated by recursively applying note patterns to the block
chord scores. The three musical patterns of bass-split, Al-
berti bass, and syncopation are indicated in measures 1–3,
respectively. The original music score (a) is shown for ref-
erence: mm. 1–4 of Beethoven’s Piano Sonata Op.2 No.1.

Mixture (measure 4): we applied the three patterns ran-
domly and recursively. For example, the mixture in mea-
sure 4 displays a bass-split pattern over the whole-note
chord, followed by a syncopation pattern applied over the
three upper notes, in the second half of the measure.

As part of the randomization, some chords were left un-
altered (e.g., the anacrusis of Figure 2), and the patterns
were applied across different duration values. To constrain
the depth of the recursion, we applied these patterns only
to the slices of the score that contained 3–4 simultane-
ous notes. This process resulted in the generation of ‘new
pieces’ that showed improvements in the learning process
of the model, further than the block chord synthetic scores.

4. EXPERIMENTS

4.1 Datasets

We ran experiments using six datasets: Annotated
Beethoven Corpus (ABC) [27], Beethoven Piano Sonatas
(BPS) [6], Haydn “Sun” Quartets (HaydnSun) [28], Theme
and Variation Encodings with Roman Numerals (TAV-
ERN) [29], When-in-Rome 1 (WiR) [4, 5], and the Well-
Tempered Clavier (WTC) [4]. Table 2 shows a summary
of all datasets. The summary indicates the number of files
in each split and the number of sequences (each of 640
frames) that were collected from that split.

For all datasets, the same procedure was followed re-
garding data splits. Training, validation, and test splits
were produced randomly (except in BPS, where they were
provided by Chen and Su [6]). Preliminary experiments
were conducted in the training set, using the validation set

1 Note that, in practice, WiR is also a meta-collection and standardiza-
tion effort, where several of these datasets (e.g., TAVERN) have been con-
verted into a common representation. Here, we list the academic sources
of the datasets. For the annotation files, please refer to the relevant litera-
ture [4, 5] as well as the accompanying source code of this paper.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

407



Files (Seqs)
Dataset Training Validation Test
ABC [27] 50 (448) 10 (97) 10 (99)
BPS [6] 18 (155) 7 (75) 7 (82)
HaydnSun [28] 16 (91) 4 (19) 4 (19)
TAVERN [29] 38 (404) 8 (68) 8 (64)
WiR [4, 5] 107 (301) 21 (61) 21 (51)
WTC [4] 12 (25) 6 (13) 6 (14)
Total 241 (1424) 56 (333) 56 (329)

Table 2. The functional harmony datasets used in our ex-
periments. The splits were generated randomly (except for
BPS). For each split, the number of files and the number of
sequences (in parentheses) are indicated.

to assess the performance, adjust the hyperparameters, and
inform the design of the network architecture. The best-
performing version of our model was run once in the test
set, this time including the validation portion as part of the
training. The results obtained for all the rows labeled Full
dataset in Table 4 report the results obtained on the corre-
sponding test split.

Data augmentation. For every training example, we
synthesized and texturized an additional file, using only
the Roman numeral annotations (and ignoring the original
score). The original and texturized training examples were
transposed to different keys for further data augmentation.
Both forms of data augmentation were applied to the train-
ing set of a particular experiment, leaving the validation
and test sets intact, in order to prevent any data leakage.

4.2 Training procedure

Epochs. We set a fixed number of 100 epochs in all ex-
periments. We found that the use of early stopping was
unreliable to determine the end of the training process. In-
stead, we saved the weights after each epoch. At the end,
we selected the weights that maximized the mean accuracy
across the six conventional tasks.

Other hyper-parameters. Each of the layers in the
network is accompanied by batch normalization [30] be-
fore the activation function. In the recurrent layers, we
apply the batch normalization after the activation function.
All convolutional and dense layers use the rectified linear
unit (ReLU) as their activation function. However, the two
GRU layers use a hyperbolic tangent. In all of our exper-
iments, we used 16 sequences per batch and the rmsprop
optimizer [31], with a learning rate of 10�3.

Computing time. The network was trained on a per-
sonal laptop 2 with a Linux operating system, Tensorflow
v2.4.1 [32], and GPU acceleration. With these hardware
and software conditions, the training times are approxi-
mately 30 minutes (BPS only), 40 minutes (BPS+WTC),
and 250 minutes (Full dataset). The number of trainable
parameters in the network is close to 90,000. This number
already includes all the parameters introduced by the addi-

2 Intel i7 10750h, Nvidia RTX 2070, 32 GB DDR4.

Model Key Deg. Qual. Inv. Root RN

AugN6 82.7 64.4 76.6 77.4 82.5 43.3
AugN6+ 83.0 65.1 77.5 78.6 83.0 44.6
AugN11 81.3 64.2 77.2 76.1 82.9 43.1
AugN11+ 83.7 66.0 77.6 77.2 83.2 45.0

Table 3. Average accuracy (in %) of four configurations
of our model, where {6, 11} indicate the number of MTL
tasks and ‘+’ indicates the use of synthetic training data.

tional output tasks. Therefore, the model is similar in size
to recent approaches [19, 20].

4.3 Results

AugmentedNet configurations. Table 3 summarizes the
performance of different AugmentedNet configurations.
For example, with or without the additional tasks, and
with or without synthetic data. The configurations were
trained on each of the six datasets individually, for a to-
tal of 24 experiments. The accuracy reported is the aver-
age accuracy obtained by each model configuration across
all six datasets. Based on the reported accuracy values,
the AugmentedNet11+ (with additional tasks and synthetic
training examples) is the best-performing configuration.
Thus, in subsequent experiments, we compare this config-
uration against the current state-of-the-art models.

In the past, functional harmony models have been eval-
uated using the Beethoven Piano Sonatas (BPS) dataset [6,
18, 20]. The most recent model [19] has also been evalu-
ated using the Well-Tempered Clavier (WTC) dataset [4].
We provide direct comparisons in these two datasets, in so
far as that is possible, replicating the experimental condi-
tions of the previous models. In addition, we also report
the results of our model across the remaining datasets.

Beethoven Piano Sonatas. The last rows of Table 4
show the results on the BPS dataset. Single lines in the
table delimit experiments that are directly comparable. For
example, the upper rows of BPS compare the results of
Micchi et al. [20] using all of their available training data
and our model using the larger dataset available to us now.

Well-Tempered Clavier. Above the BPS rows, in Ta-
ble 4, we show the evaluation on the WTC dataset. The
CS21 model presented the results over 4-fold cross valida-
tion [19]. We replicate this study for direct comparison. 3

In these rows, we report the average accuracy across the
four folds, as well as the standard deviation.

The results show that our model outperforms both the
recent convolutional methods [20] and Transformer-based
ones [19] in the reconstruction of the full Roman numeral
labels. For ABC, HaydnSun, TAVERN, and WiR, we show
the generalization of our model when using all the training
data available on the corresponding test set. Finally, we
show the overall performance of our model in a composite
test set that includes all six datasets (first row of Table 4).

3 But we used our test split for the Full dataset experiment in WTC.
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Test set Training set Model Key Degree Quality Invers. Root ComRN RNconv RNalt

Full test set Full dataset AugN 82.9 67.0 79.7 78.8 83.0 65.6 46.4 51.5

WiR Full dataset AugN 81.8 69.2 85.9 90.3 90.3 70.2 56.4 62.4

HaydnSun Full dataset AugN 81.2 62.9 80.2 82.7 86.5 60.4 48.6 52.1

ABC Full dataset AugN 83.6 65.6 78.0 76.9 78.9 62.6 44.5 48.4

TAVERN Full dataset AugN 88.7 60.0 77.4 78.8 81.5 66.3 42.6 52.9

WTC Full dataset AugN 77.2 69.7 75.0 74.4 82.7 61.7 46.2 47.9
WTCcrossval BPS+WTC AugN 85.1(4.0) 62.9(5.5) 69.1(1.9) 70.1(3.7) 79.2(1.8) 59.9(3.4) 42.9(4.2) 46.9(4.7)
WTCcrossval BPS+WTC CS21 56.3(2.5) - - - - - 26.0(1.7) -

BPS Full dataset AugN 85.0 73.4 79.0 73.4 84.4 68.3 45.4 49.3
BPS All data Mi20 82.9 68.3 76.6 72.0 - - 42.8 -
BPS BPS+WTC AugN 82.9 70.9 80.7 72.0 85.3 67.6 44.1 47.5
BPS BPS+WTC CS21 79.0 - - - - - 41.7 -
BPS BPS AugN 83.0 71.2 80.3 71.1 84.1 68.5 44.0 47.4
BPS BPS Mi20 80.6 66.5 76.3 68.1 - - 39.1 -
BPS BPS CS19 78.4 65.1 74.6 62.1 - - - -
BPS BPS CS18 66.7 51.8 60.6 59.1 - - 25.7 -

Table 4. Accuracy of five functional harmony models: Chen and Su (2018, 2019, and 2021), Micchi et al. (2020), and
AugmentedNet11+. In the WTC test set, the comparison against CS21 replicated the 4-fold cross validation [19]. In this
case, the standard deviation is indicated in parentheses. For all other rows, the results report the performance on the held
test set. The values in the RNalt column indicate the performance using an alternative method for reconstructing the full
Roman numeral, as explained in Section 3.4.1.

The RNconv and RNalt methods. As discussed in Sec-
tion 3.4.1, it is possible to use the 75 most-common Roman
numeral classes as an alternative task to the chord root,
chord quality, and primary and secondary degree tasks.
Thus, an alternative resolution of the Roman numeral label
(RNalt) is presented in the last column of the Augmented-
Net results. This accuracy corresponds to the reconstruc-
tion of the full Roman numeral using the key, chord in-
version, and CommonRNs. We found that this, in fact,
leads to better results compared to the conventional method
(RNconv), which reconstructs the full Roman numeral la-
bels using the six conventional tasks. Table 4 shows the
accuracy values for both methods. For completeness, we
also show the accuracy of the CommonRNs output task.
For this task, note that the maximum achievable accuracy
is ~98%, because any class that is not present in the set of
75 CommonRNs will be misclassified.

In summary, the Full dataset rows show the best results
achieved by our model for each dataset. In all cases, the re-
sults of our model are higher than existing methods in the
final reconstruction of the Roman numeral label. Addition-
ally, the best results in the reconstruction are achieved via
the RNalt method, instead of the conventional one (RNconv).

5. CONCLUSION

We present advances in the use of CRNNs to predict Ro-
man numeral labels. In Beethoven Piano Sonatas (BPS)
and the Well-Tempered Clavier (WTC) datasets, our net-

work outperforms existing models in the prediction of the
conventional tonal tasks and the reconstruction of the full
Roman numeral labels. Furthermore, we demonstrate that
the use of an additional task, CommonRNs, is helpful
to achieve better results in the final reconstruction step,
compared to the conventional method used in previous re-
search. Although we present these general improvements
in accuracy, we have not yet assessed the chord segmen-
tation of our model, leaving that for future work. Further-
more, we consider that several ideas presented here may
be useful in future automatic tonal music analysis research,
notably: (1) the use of additional tonal tasks in functional
harmony and, (2) the use of texturized synthetic training
examples. Although five additional tasks were presented,
there are more potential tasks that can be examined, such
as triad vs. seventh classification, tonal function (T, D, and
SD), or cadence detection. Our method for synthesizing
‘new’ training examples applied three note patterns to tex-
turize block chords. We developed this method based on
observation and music theory domain-knowledge. A more
sophisticated approach could offer better texturization out-
puts. We consider this to have the most potential impact
on functional harmony research, because the data is still
scarce and expensive to annotate. Although current models
have yet to reach the expectations of MIR researchers and
musicologists alike, we hope that this goal is not too far.
Through the use of new techniques, deep learning models
may soon achieve unprecedented results in complex music
analytical processes, such as Roman numeral analysis.
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ABSTRACT

Sequence to Sequence (Seq2Seq) approaches have shown
good performances in automatic music generation. We
introduce MINGUS, a Transformer-based Seq2Seq archi-
tecture for modelling and generating monophonic jazz
melodic lines. MINGUS relies on two dedicated embed-
ding models (respectively for pitch and duration) and ex-
ploits in prediction features such as chords (current and
following), bass line, position inside the measure. The
obtained results are comparable with the state of the art
of music generation with neural models, with particularly
good performances on jazz music.

1. INTRODUCTION

Natural Language Processing (NLP) techniques are
achieving remarkable results when applied to MIR
tasks [1]. Music can indeed be interpreted as a language,
and automatic music generation has been a showcase for
the NLP technologies in MIR. Among these techniques,
Transformer models [2] have succeeded in complex tasks
related to language understanding, overcoming the perfor-
mances of more established architecture such as Recurrent
Neural Networks (RNN) when huge amounts of data are
available [3, 4].

In this paper, we introduce MINGUS 1 (Melodic Im-
provisation Neural Generator Using Seq2seq), a trans-
former architecture for modelling and generating mono-
phonic jazz melodic lines. MINGUS handles pitch and du-
ration as separate features, using two distinct transformer
models. In addition, it exploits the whole available infor-
mation by conditioning on other musical features, such
as harmonic structure and rhythmic properties. An im-
plementation of MINGUS is available in open-source at
https://git.io/mingus.

The remaining of this paper is structured as follows. Af-
ter pointing to some related work in Section 2, we will
describe MINGUS in Section 3. Section 4 reports about

1 Named in honour of Charles Mingus (1922 – 1979), American jazz
composer, double bassist and pianist.

© V. Madaghiele, P. Lisena, and R. Troncy. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: V. Madaghiele, P. Lisena, and R. Troncy, “MINGUS:
Melodic Improvisation Neural Generator Using Seq2Seq”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

an evaluation experiment, whose results are discussed in
Section 5. In Section 6, we carried on a qualitative eval-
uation with a user survey. Finally, conclusions and future
work are outlined in Section 7.

2. STATE OF THE ART

Data representation Musical data can be represented
symbolically with different levels of abstraction and pre-
cision, involving features such as pitch and duration of the
notes, relative position in the bar, harmonic structure, in-
tensity (velocity), timbre. Different approaches have been
experimented with in literature for duration representation,
among which time-step encoding 2 [5–8], note duration
encoding [5, 9, 10] and note beat position encoding [5, 11].
The duration information can be also modelled as a se-
quence and independently learned [9, 12].

Model architecture Multiple different models have
been used for jazz music generation, among those Hidden
Markov Models [13], melodic grammar learning [14] and
genetic algorithms [15] have achieved notable results. In
this paper, we have focused on deep learning approaches
to this task. The simplest approach for monophonic music
generation with neural networks is jointly learning the de-
pendencies between features. This has been implemented
in different architecture, such as RNNs [6], Generative Ad-
versarial Networks (GAN) [5], combinations of GAN and
RNN [16] or Transformer models [17].

An alternative strategy is to train separately to learn spe-
cific features of the data, then conditioning them on the
other features. In [18] and [19], two LSTM models are
trained separately on pitch and duration of the notes in
the melodies. LSTM are also used in [9], in which dif-
ferent conditioning combinations – inter-conditioning be-
tween pitch and duration, chord, next chord and relative
position in the bar – are compared. In BebopNet [12],
a unique embedding representation of pitch and duration
feeds a unique Transformer module. SeqAttn [6] obtained
good performances using a modified conditioned LSTM
attention unit.

Transformer-based architecture can be used for over-
coming the problem of vanishing gradient of RNNs [20].
In polyphonic music generation, training transformer mod-
els on massive amounts of data produced impressive re-

2 Sampling over time and using using a sustain character (s) for pitch
continuation.
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sults, as in OpenAI’s MuseNet [3] and Magenta’s Music
transformer [4].

Evaluation Methods Evaluating the performance of a
generative task is an open problem, with several metrics
and methods proposed. Classical machine-learning met-
rics – loss and accuracy – are applied in evaluating music
generation from a sequence-modelling point of view, mea-
suring the capability of predicting the most probable class
(e.g. pitch) given the sequence of all the previous ones. It
could be argued that the purpose of generation tasks goes
beyond the completely accurate prediction of the next to-
ken and so these metrics can capture only partially the
quality of music generation systems. Nevertheless, they
are useful to make a comparison among models.

Common metrics for generative NLP task evaluation
can be used also for music generation, such as perplex-
ity [21] and BLEU [22]. The latter in particular has been
applied to music generation as a measure of similarity be-
tween two corpora of music [9]. A comprehensive eval-
uation of NLP metrics for music generation is performed
in [23].

Other metrics have been proposed for measuring how
realistic a generated melody is by comparing it with the
training corpus in musical terms. In [5], the authors pro-
pose a collection of metrics, which includes counting pitch
repetitions, rhythmic variations and measuring harmonic
consistency. Similar features are involved in MGEval 3 ,
which computes the degree of similarity (KL-divergence)
between two corpora of MIDI files by extracting the dis-
tribution of each metric on a reference corpus from the
original data and on a corpus of generated musical se-
quences [24]. More metrics are proposed in [17], focus-
ing on the structural coherence of the generated musical
phrases. Other common metrics are purely music-related,
such as harmonic coherence [5, 12], the measurement of
the percentage of chord and scale tones among the gener-
ated notes. Finally, focus groups and user surveys have
been extensively used for qualitative evaluation [7, 8].

3. APPROACH

In this section, we will describe in detail MINGUS, focus-
ing on the strategy for data representation and its architec-
ture.

3.1 Data representation

The required input formats are MusicXML or abc notation.
We require that the chords – when available – are explic-
itly expressed by their signature in the right place in the
measure 4 .

Each melodic line is represented as sequences of the
following features – with the range of possible values re-
ported in square brackets:

3 The MGEval toolbox – which we use in this work – is available in its
original implementation at https://git.io/mgeval

4 Future work includes the possibility of automatically inferring the
chords from the played notes.

1. Pitch (P): pitch of each note, as MIDI pitch num-
ber (from 0 to 127). Rests are represented with the
additional character R [0-128]

2. Duration (D): duration of each note [0-12]

3. Chord (C): current chord in the starting beat of the
note [0-128 x 4]

4. Next Chord (NC): next chord in the progression
[0-128 x 4]

5. Bass (B): current bass in the beat the note starts on
[0-128]

6. Beat (BE): number of beat in the measure the note
starts on [0-3]

7. Offset (O): offset of the note from the start of the
measure [0-95]

An example of input format for note sequences can be
seen in Figure 1. The duration value D is extracted by sam-
pling each measure into 96 equally sized parts and assign-
ing to each note the closest duration from a dictionary of
possible duration values chosen in advance; for example,
the "quarter note" value is assigned to notes whose dura-
tion is closer to dmeasure/96 ⇤ 24, where dmeasure is the
duration of the measure in seconds. In this specific case,
the choice to divide a measure into 96 equal parts allows
for representation precision up to 8th note triplets and dot-
ted 16th notes. By using a greater number of samples it
would be possible to represent more precisely many differ-
ent duration values. This method of time division ensures
flexibility to different music styles which could require the
use of more complex time divisions such as quituplets or
septuplets. Chords (C and NC) are always represented by
their four fundamental notes in MIDI encoding, as already
seen in [9,12]; chords with more than four notes have been
cropped, the V II degree has been added to chords with
less than four notes.

Given that language models are normally trained on
batches of phrases with a maximum fixed length, we in-
cluded a melody segmentation strategy for dividing tracks
into meaningful musical phrases. For this purpose, we con-
sider a melodic phrase to end when a long rest – longer than
a threshold r, equivalent to a quarter note triplet – is en-
countered or when the maximum sequence length l = 35
is reached. The thresholds for the long rest duration and
the sequence length have been chosen experimentally. It
has been found that a different choice of maximum dura-
tion, if not extreme, do not have much influence on the
result, while the sequence length has a greater effect on the
result. Another observation is that the long rests at the end
of each segment must be included in the sequence, other-
wise the model will not learn to include them. Segments
shorter than 35 tokens are padded with specific "pad" to-
kens.
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Figure 1: MINGUS model architecture and data representation. The example melodic sequence is extracted from Charlie
Parker’s improvisation on Billie’s Bounce, Weimar Jazz DB

3.2 Model Architecture

MINGUS is structured as two parallel transformer models
with the same structure, respectively predicting pitch and
duration, composed by the sole encoder module with a for-
ward mask and a pad mask. This structure was chosen be-
cause it allows capturing the rhythmic variation with great
precision, by allowing the model to learn different embed-
ding and weights for pitch and duration prediction. The
architecture used in this experiment is shown in Figure 1.
The structure is the same for pitch and duration models,
the only difference is the output of the prediction, which
can be either from the pitch or the duration dictionary.

Batched data is encoded with feature-specific embed-
ding layers. Pitch-related data (melody pitch, chord
pitches, next-chord pitches and bass) are encoded with a
pitch embedding layer while duration, offset and beat have
their own embedding dictionary. After embedding, chord
pitches are grouped in a linear layer which is then com-
bined with the other embedded features and fed into a four-
layer, four-heads self-attention module.

The model was conditioned on all the features men-
tioned in Section 3.1. We performed an ablation study in
order to understand the contribution of each feature, choos-
ing the combination maximising the accuracy score. In
particular, the optimal combination for the pitch model in-
cluded features D, C, B, BE, and O, while for the duration
model B, BE, and O. However, it should be noticed that the
feature combination that maximises accuracy might not be
the one that generates the most convincing music samples.
More results about this ablation study are included in the
repository.

4. EXPERIMENT

MINGUS was trained on two different datasets to evalu-
ate its adaptability to different styles of music and com-
pare it with other models. The Weimar Jazz Database
(WjazzDB) [25] is a collection of annotated transcriptions
of jazz solos, composed of 456 improvisations on famous
jazz standards. It is a very diverse set of improvisations
played on multiple instruments, including multiple jazz
styles with different degrees of complexity. The dataset is
complete with chords and bass information. The Nottigh-
man Database (NottinghamDB) is a collection of 1034
folk songs 5 . The harmony of the music in this dataset is
less complex with respect to the Weimar Jazz DB, never-
theless its smaller dimensions could be useful to show how
the size of the dataset influences the generation results.

Each dataset was split into three subsets for training
(70%), validation (10%) and testing (20%). The 35-token
sequences were grouped into batches of 20 melodies for
training and 10 melodies for validation and testing.

The network is trained for next-token prediction task
using sequential information. Both pitch and duration are
trained using cross-entropy loss function and Stochastic
Gradient Descent optimiser. More details on the training
parameters are available in the repository.

Music generation is done by sampling the trained net-
work given an input note sequence of variable length. The
input melody is split into pitch and duration sequences and
each sequence is given as input to the respective trained
model. The output of the model consists of the proba-
bilities for each token in the dictionary to be the next to-
ken. The most probable token is selected and added to the

5 https://github.com/jukedeck/
nottingham-dataset
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original sequence, which is then given back as input to the
model, together with other required features for condition-
ing – features 3–7 in Section 3.1. This process is repeated
as many times as the number of notes to be generated,
which of course must be the same for pitch and duration.
After generating the new sequences of pitch and duration
separately, they are combined and exported to MIDI.

5. RESULTS

This section reports the performance of MINGUS and
compares it to SeqAttn [6] and BebopNet [12]. These two
models have been chosen because they represent different
state-of-the-art architecture for music generation. Bebop-
Net is based on transformer and SeqAttn is a bi-directional
LSTM model conditioned on chords, with different fea-
tures and duration representation. To obtain comparable
results MINGUS 6 , BebopNet and SeqAttn have been re-
trained on the two datasets 7 , and evaluated on the same
metrics.

The perplexity and accuracy of SeqAttn have been com-
puted using the functions available in the authors’ imple-
mentation. However, the prediction of the sustain token
(s) is considered accurate even if the note that is being
sustained is not correct; similarly, (s) is considered as a
distinct token in the computation of the perplexity. Instead,
in MINGUS and BebopNet duration is represented with a
separate dictionary and this allows to have note-specific
perplexity and accuracy.

5.1 Perplexity

The perplexity scores of the three models computed on the
test set are collected in Table 1. For MINGUS, it is re-
ported for pitch and duration models, while for BebopNet
and SeqAttn it is computed on the summed entropy of pitch
and duration.

Perplexity MINGUS BebopNet SeqAttn
Dataset pitch duration
WjazzDB 11.01 4.14 44.70 3.71
NottinghamDB 11.03 1.88 13.46 1.40

Table 1: Test perplexity scores for MINGUS, BebopNet
and SeqAttn. Values in italic are reported from the original
paper

The perplexity can give a general idea of the degree of
the uncertainty of the model when predicting the next to-
ken, it is however not a good indicator of music generation
quality. The perplexity of all models changes according to
the dataset. The greatest perplexities have been obtained

6 In the best configuration obtained from the ablation study
7 WjazzDB has been converted from the original csv format into mu-

sical formats compatible with the studied implementations, namely into
musicXML – for BebopNet and MINGUS – and MIDI – for SeqAttn. 28
songs have been removed from the original dataset due to incompatibil-
ity with BebopNet, which was not recognising chords outside its internal
dictionary; all models have been trained on this reduced version. The csv
has been selected as starting format because it is the only one including
all mentioned information (notes, chords, bass line).

for all models on the WjazzDB, despite the fact that Not-
tingham DB has fewer data, proving that the complexity
of the music is an important factor for language modelling
tasks.

5.2 Accuracy

The accuracy measures how many times the model predic-
tion for the next note is correct. This metric could be useful
to have an overall representation of the model performance
but it does not guarantee a realistic music generation. The
accuracy values of MINGUS and SeqAttn on all datasets
are reported in Table 2. The implementation of BebopNet
is not providing the computation of accuracy on a test set,
therefore its scores are not shown in the table.

Accuracy [%] MINGUS SeqAttn
Dataset pitch duration
WjazzDB 16.32 32.34 74.43
NottinghamDB 35.82 76.62 90.26

Table 2: Test accuracy comparison between MINGUS and
SeqAttn. Values in italics are reported from the original
paper

It is difficult to compare the accuracy results because of
the different note representations and the division of pitch
and duration models in MINGUS. The model achieves a
higher accuracy on the duration prediction and a lower ac-
curacy in pitch predictions; this could be due to the dif-
ferent size of vocabulary, but it could also be related to
the difference between the two tasks, with an higher diffi-
culty for pitch prediction. When comparing MINGUS and
SeqAttn it should be considered that a percentage of the
accuracy of SeqAttn is due to the prediction of common
sustain tokens.

5.3 MGEval

MGEval is a collection of metrics specifically proposed for
evaluation of generative music tasks [24]. For MINGUS
and BebopNet, we computed MGEval metrics comparing
15 reference tunes randomly selected from the original
dataset – used as reference corpus – and a set of 15 tunes,
generated from the same input by each model. SeqAttn
generates music from internally selected songs from the
dataset seen during training, instead of accepting a track in
input for triggering the generation; for this reason, MGEval
metrics for SeqAttn are comparing the whole output of the
model and the whole studied corpus (reference corpus).

Table 3 collects the results obtained on MINGUS, Be-
bopNet and SeqAttn trained on WjazzDB. MGEval metrics
yield very diverse results and do not reveal a clear overall
winner. While the LSTM-based model (SeqAttn) has bet-
ter scores on avg IOI and comparable results on pitch range
and total used pitches, transformer-based ones (MINGUS
and BebopNet) largely over-perform it in total pitch class
histogram and note length histogram. MINGUS stands out
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MGEval MINGUS BebopNet SeqAttn
Measure KL div overlap area KL div overlap area KL div overlap area
total used pitch 0.172 0.7959 0.007 0.539 0.068 0.735
total used note 0.071 0.678 0.046 0.794 0.169 0.239
avg IOI 0.054 0.625 0.219 0.842 0.049 0.719
avg pitch shift 0.041 0.821 0.160 0.424 - -
note length histogram 0.283 0.507 0.054 0.821 0.241 0.468
total pitch class histogram 0.088 0.864 0.137 0.786 0.405 0.658
note length transition matrix 0.149 0.695 0.210 0.850 0.261 0.388
pitch class transition matrix 0.038 0.836 0.118 0.737 0.183 0.744
pitch range 0.037 0.844 0.093 0.571 0.062 0.702

Table 3: MGEval comparison between MINGUS, BebopNet and SeqAttn on WjazzDB

in pitch class transition matrix and total pitch class his-
togram, whose results are largely better than the other two
models. We interpret this result with a better modelling ca-
pability for transitions between notes, maybe due to MIN-
GUS’ flexible duration vocabulary. On the other hand,
SeqAttn performs much better on NottinghamDB 8 . This
suggests the duration representation employed in SeqAttn
does a better job in generalising on the music style of Not-
tinghamDB, while on WjazzDB the additional information
provided in MINGUS and BebopNet improve generation
quality.

5.4 Harmonic coherence

The harmonic coherence measures how many notes of each
solo are coherent to the related harmonic context. It is de-
fined here as the percentage of generated notes that are
tones belonging to the current chord, or to the scale as-
sociated with it. These metrics have been calculated on
the generated tracks and on the entire original dataset. The
results are reported in Table 4.

Harmonic coherence [%] Chord Scale
Original 49.17 72.16
MINGUS 51.81 77.49
BebopNet 40.66 64.55
SeqAttn 35.92 60.26

Table 4: Harmonic coherence on WjazzDB

These results confirm that MINGUS generated
melodies tend to have greater harmonic coherence than
other models, with BebopNet obtaining slightly worse
performance and SeqAttn being less good on this metric.
We may conclude that the conditional LSTM module
proposed in SeqAttn is less able to capture the complex
relationship between chords and melody with respect to
Transformer-based architectures. Another reason may be
identified in the presence of additional features such as
duration and offset – in both MINGUS and BebopNet
– which are beneficial for the harmonic coherence.

8 Results provided in the repository.

However, MINGUS generations are more harmonically
coherent than the original dataset. We can claim here the
model has been able to capture the general connection
between melody and harmony, even if in jazz we can often
find more complex harmonic relationships, for which there
is space for improvement.

6. QUALITATIVE EVALUATION

6.1 Blind quiz

In order to evaluate our system from a user point of view,
we performed a survey (blind quiz) involving listeners with
different musical backgrounds and education levels. All
the melodies have been exported into audio tracks and
completed with a shuffle drum beat and chords for har-
monic and rhythmic context.

Users were asked to rate a set of 15 short melodies (with
an average duration of 20 seconds) with a score from 1
to 5 based on how much they liked it. The set was com-
posed of 5 original melodies from the Weimar Jazz DB,
5 generated by MINGUS and 5 generated by BebopNet 9 .
Users were unaware of which melodies were original and
which ones were generated. The web app used for the quiz
is available at https://mingus.tools.eurecom.
fr/. Figure 2 reports the obtained scores, detailed for 3
categories of users: music lover (8 participants), music stu-
dent (9), professional musician (11).

As expected, listeners are capable of identifying the
original musical phrases with different degrees of con-
fidence, proportional to their level of musical expertise.
Overall the evaluation pointed out that MINGUS genera-
tions tend to be preferred by the users with respect to Be-
bopNet generations, probably due to the greater harmonic
coherence which makes the melodies more pleasing to the
ear. There is still a clear difference between machine learn-
ing generated samples and original ones, especially when
evaluated by high-skilled musicians. It should also be
pointed out that this kind of evaluation takes into account
very short, selected music segments: the difference be-
tween machine-generated and original samples may prob-
ably be more evident on long tracks.

9 The chosen melodies are available in the repository.
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Figure 2: User evaluation summary

6.2 Musical insight on the generations

Taking a look at the generated tracks in musical terms
could be useful to identify areas of improvement. In this
section, we propose a musical analysis of a phrase gener-
ated by MINGUS in comparison with an original phrase.
The two phrases are shown in Figure 3 10 .

(a) Original improvised phrase

(b) MINGUS generated phrase

Figure 3: Comparison of original and generated musical
phrases on Blues for Blanche by Art Pepper, Weimar Jazz
DB. Chord tones in the melody are highlighted in red.

Pitch and duration The figure highlights in red the
notes that are part of the underlying chords. In the original
improvisation, the red notes are more frequent and have a
longer duration. The last note of this phrase is indeed a
note of the chord, a typical choice by jazz improvisers be-
cause it creates a feeling of tension release. On the other
hand, in the phrase generated by MINGUS less importance
is given to chord tones. We can observe that notes in phrase
3a present more homogeneous and repetitive duration pat-
terns, while in phrase 3b note durations – although not far
from each other – do not follow any specific pattern.

Patterns It is possible to spot some patterns in the con-
struction of the phrases, highlighted in the figure by red
lines. In the original one, we can see two clear upward

10 The two phrases have been chosen because they allow showing re-
current patterns in MINGUS generation, although they do not correspond
to the same bars in the standard

and downward motions as the phrase progresses. Although
MINGUS seems to have grasped a general idea of such be-
haviour, the note movement in the generated phrase is not
very clear. Other interesting segments are highlighted in
blue. In the first blue segment of phrase 3a, the melody
is out of tune, but this is justified by chromatic downward
motion in the melody. In the second blue segment, the im-
proviser performed a C7 arpeggio to end the phrase. An
interesting similar behaviour appears in the blue segment
of phrase 3b, where also MINGUS performs an arpeggio
at the end of the phrase. Unfortunately in this case it is a
C#m7 arpeggio, which is out of tune in the key of Ab7,
so the result is not quite as pleasing.

Overall, MINGUS has learned to generate musical
phrases separated by longer rests with approximate upward
and downward motion and approximate harmonic coher-
ence. Nevertheless, the generated phrases still lack a strong
internal structure and the typical call-and-response inter-
phrase behaviour of jazz solo phrases, with few connec-
tions from one generated phrase to the other.

7. CONCLUSIONS

MINGUS uses a transformer architecture to generate mu-
sic by separately predicting pitch and duration. The model
was experimented on popular datasets and evaluated at dif-
ferent levels using a broad range of metrics, revealing com-
parable performances with respect to the state of the art.
The experiment proved the capability of transformers to
model and generate realistic melodic lines in the style of
a jazz improvisation, with harmonically better results than
LSTM. The MINGUS architecture proved to be particu-
larly good at obtaining harmonically coherent melodies.

The choice of metrics has a crucial impact on the eval-
uation of generation models, making it necessary to use
many metrics at different levels of abstraction to obtain a
reliable quality estimation.

During the experiments, the conditioning features have
shown to learn different hidden representations of the data,
which brings to different models. These learned models
should not necessarily be ranked on a better-worse scale,
but can be considered as alternative sounding. In future
work, we intend to further measure the impact of the dif-
ferent features, with the goal of enabling an aware use for
generating specific styles and exploring conditioning on
other features provided by WjazzDB, such as instrument,
jazz style and rhythm feel. In addition, we want to explore
techniques for expressive generation as in [26,27] and gen-
eration at phrase or lick level as in [11].

Even though MINGUS has been designed and trained
specifically for music modelling and generation, we intend
to improve and adapt it for other MIR tasks such as score
music classification, bass line generation, automatic har-
monisation, assisted composition, automatic music inter-
pretation, conditional regression of musical features. Fur-
ther research must be carried on for improving music gen-
eration systems to achieve long-term phrase-level coher-
ence and to be applied in live conditions, including inter-
acting with musicians for educational and artistic purposes.
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ABSTRACT

The growing interest for Human-centered Music Infor-

mation Retrieval (MIR) motivates the development of
perceptually-grounded evaluation metrics. Despite re-
markable progress of lyrics-to-audio alignment systems
in recent years, one thing which remains unresolved is
whether the metrics employed to assess their performance
are perceptually grounded. Even if a tolerance window
for errors was fixed at 0.3s for the Music Information Re-

trieval Evaluation eXchange (MIREX) challenge, no ex-
periment was conducted to confer psychological validity
to this threshold. Following an interdisciplinary approach,
fueled by psychology and musicology insights, we con-
sider the lyrics-to-audio alignment evaluation from a user-
centered perspective. In this paper, we call into question
the perceptual robustness of the most commonly used met-
ric to evaluate this task. We investigate the perception of
audio and lyrics synchrony through two realistic experi-
mental settings inspired from karaoke, and discuss impli-
cations for evaluation metrics. The most striking features
of these results are the asymmetrical perceptual thresholds
of synchrony perception between lyrics and audio, as well
as the influence of rhythmic factors on them.

1. INTRODUCTION

Nowadays, the machine learning community is raising the
question of how to design explainable [1] and human-
grounded algorithms [2]. Especially in the field of MIR,
user studies and evaluation metrics plays a pivotal role in
this shift towards Human-centered MIR. Subjective listen-
ing tests [3–5] and ethnomusicological studies [6] previ-
ously demonstrated the feasibility of including tasks in the
real setting context of user experience. Regarding metrics,
we are witnessing the transition from exclusively system-
centered evaluation to user-aware evaluation. In the ref-
erence toolkit mir_eval, the lack of Human-centered met-
rics was justified by the complexity and cost required to
develop robust subjective evaluation methods [7]. How-

© N. Lizé Masclef, A. Vaglio, and M. Moussallam. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: N. Lizé Masclef, A. Vaglio, and M. Mous-
sallam, “User-centered evaluation of lyrics-to-audio alignment”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

ever there are a few limitations of system-based evalua-
tion, such as their inability to capture the inherently sub-
jective experience of MIR and the absence of necessary
correlation between system-centered evaluation and users’
perceptions [8]. One could, and indeed should, ask what
is the meaning of the effectiveness of an algorithm with-
out the presence of an embodied experience of human per-
ception? In epistemic terms, how is the distance to the
ground truth translated into an error measurement with-
out the mediation of an individual? Since the advent in
2005 of the system-centered evaluation approach by the
MIREX, there were several attempts at creating percep-
tually grounded metrics, notably among the field of music
transcription [9–11], source separation [12] and audio sim-
ilarity [8].

One application at the frontier of music perception and
human machine interaction is karaoke. Currently, the ma-
jority of alignments used by karaoke systems are fully
manually achieved, or partially corrected by human an-
notators. Obtaining manual annotations of lyrics-to-audio
alignment is costly and time-consuming. To obtain such
annotations automatically, one could turn to automatic
lyrics to audio alignment system. Such system takes as
input lyrics text and outputs timed position of their appear-
ance in the audio signal, at the word, line, or paragraph
level. Several recent automatic lyrics-to-audio alignment
systems have achieved high performance taking inspiration
from automatic speech recognition [13–15] and using large
public singing voice annotation dataset like DALI [16].
Among the metrics developed for the MIREX challenge
to evaluate lyrics-to-audio alignment, the most commonly
used is the Percentage of correct onsets (PCO) ⇢k⌧ , illus-
trated in [17], using a tolerance window for the perception
of lyrics-to-audio alignment errors defined by a threshold
⌧ [17].

⇢k⌧ =
1

Nk

X

word i

1|t̂i�ti|<⌧ ⇥ 100 (1)

where Nk is the number of words in the track k, ti the
ground truth start of the word timestamp of the lyrics unit
and t̂i the predicted timestamp. It suggests that listeners
tolerate errors falling within this window, and still perceive
as synchronous lyrics and audio whose onsets are sepa-
rated by this offset. A tolerance window for errors was
fixed at 0.3s for the MIREX, albeit no psychology experi-
ment was conducted to confer validity to this threshold.
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Additionally, while spectacular progress has been made
in the past years, the gap between state-of-the-art systems,
as measured in the MIREX competition, has narrowed,
with many systems achieving close to perfect PCO scores
on the test sets. Therefore, it might now be important to
make room for qualitative rather than quantitative metrics.
In this work, we are interested in challenging the PCO met-
ric from a user-centric perspective, focusing on how hu-
mans perceive asynchrony to derive stricter metrics for the
task. To this aim, we expose the design of two percep-
tual experiments in Section 3 and their respective results in
Section 4. We then propose a PCO adaptation in Section 5
and conclude in Section 6.

2. RELATED WORKS

Singing karaoke engages coordination of articulatory
movements, music and language processing systems, as
well as crossmodal integration of audio and visual stim-
uli. It is thus a rich context of perception involving
complex stimuli. As a consequence, we briefly consider
the research on all the domains outlined above to illus-
trate paradigms and hypotheses relevant to lyrics-to-audio
alignment perception. When presented with a pair of au-
diovisual stimuli, individuals reported an asymmetric per-
ception of asynchrony, with audio lagging preferred over
visual lagging [18, 19]. This asymmetry has been corre-
lated with faster transmission of the visual signal over the
audio signal [18] or with the auditory dominance in tem-
poral processing [20]. The latter hypothesis asserts that,
when emitting a judgment of synchrony, audio would pro-
vide individuals a more accurate sensory information in the
case of dynamic event such as music, and also a more sta-
ble internal representation of periodicity, contrary to the
visual modality [20]. The listening experience is a contin-
uous production of rhythmic expectancies [21]. In the case
of sensorimotor synchronisation experiment, one effect in-
duced by rhythmic expectancies is the anticipation of the
stimuli in a sequence, also called Negative Mean Asyn-
chrony (NMA). First reported by Dunlap [22], it states
that the reaction to an audio stimuli tends to precede rather
than follow the stimuli. Repp [23] discovered that indi-
viduals anticipate audio events up to 100ms ahead of time.
Klemmer [24] revealed that the anticipation effect varies
with the tempo of the rhythmic stimuli, usually measured
in terms of InterOnset Interval (IOI) duration. He found
that the reaction time of individuals when attempting to
stay in phase with an isochronous stimulus, is a function
of the IOI between stimuli. The reaction time was greater
for shorter IOI, suggesting that individuals have less sen-
sibility in slow tempo. These observations were further
formalized as a function of local and global rhythmic con-
text by McAuley [25]. Besides global rhythmic factors,
the listening experience is punctuated by local variations.
Metric events are periodic peaks of attention organized into
nested hierarchies that coordinate attention to events on
various time-scales, allowing for grouping and accentua-
tion of notes [26]. Musical stresses are the cues to in-
fer a general rhythmic pattern [26]. Among the signif-

icant factors of stress reported were the duration of syl-
lables [26], loudness [27], alignment with beats [21] and
sequence boundaries [21, 28].

Given previous studies, our theoretical hypothesis is
based on two points. Firstly, we expect individuals to tol-
erate more audio lagging than lyrics lagging. Secondly, we
expect perception of lyrics-to-audio synchrony to rely both
on global and local rhythmic context.

3. METHOD

To investigate the perception of lyrics-to-audio alignment,
we designed two psychological experiments inspired from
the main application of this task, karaoke. We chose
karaoke as it is a popular practice where the participants’
rhythmical precision is important, requiring attention to the
displayed lyrics as much as to the audio. The first experi-
ment is designed to test the influence of global parameters
on human perception of audio/displayed lyrics synchrony
and to investigate its symmetrical properties. The second
experiment intends to explore local factors influences. To
run both experiments we developed a karaoke application
prototype, whose displayed textual lyrics were intention-
ally misaligned with the background audio according to
various, controlled conditions, thereby creating an audio-
visual offset. The stimuli were presented to individuals
who then annotated their perceived quality of alignment in
different error scenarios. A snippet of this interface is dis-
played in Figure 1.

Both experiments were run online, through a web inter-
face that was designed to be correctly displayed on both
computer and phone screens, for a total duration of two
weeks each, between January and April 2021. The first
experiment was conducted only with Deezer employees
while the second experiment was public and hence involv-
ing a larger and more diverse set of participants. Before
engaging in karaoke, participants are asked to fill out a
questionnaire allowing us to determine their level of mu-
sical expertise and familiarity with the practice of karaoke.
We collect, with their consent, a range information of
their age, declared gender and native language. We do
not have control on their external environment when per-
forming karaoke (external noise) or any other factor which
might disturb the readability of the karaoke (low light, un-
corrected vision problem). Nevertheless, the instructions
of the experiment encourage the participants to use head-
phones and favor a quiet environment.

In both experiments the dependent variable measured is
the perceived synchrony and the amount of offset between
lyrics and audio is a within subjects factor. In order to
prevent from order effect, the values of audiovisual offset
are presented in random order. These two experiments are
akin to the Simultaneity Judgment task (SJ) widely used
in the literature for studying the synchrony perception of
audiovisual stimuli [18, 19].
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Figure 1. Questionnaire used to evaluate lyrics-to-audio
alignment.

3.1 Dataset

Since the measured effects should be valid irrespective of
the song, we allow participants to choose their song for
karaoke within a set of 80 songs from various genre (pop,
rock, rap and metal) and language (English, French, Ger-
man). We selected popular songs in the DALI dataset [16]
with alignment done at word level. The first criterion for
the choice of songs was their popularity, so that we can ex-
pect a large proportion of participants to be knowledgeable
of their lyrics and melody. Other important point guiding
our choice was the correct lyrics-to-audio alignment and
the absence of syntactical problems. We manually con-
trolled the alignment quality of this subset by visualizing
their lyrics in the karaoke prototype and eliminated poorly
aligned songs from our selection. To avoid a learning ef-
fect of the song, each song can be selected once for a trial
and can only be listened to twice during a trial. Moreover,
the order of the songs in the selection menu for karaoke is
randomized for each trial.

3.2 Influence of global factors

3.2.1 Experiment design

In this experiment, each participant is asked to choose 14
songs from the dataset from which karaoke excerpts are
presented. Each audio extract lasts 35 seconds and con-
sists of a sequence of words within lyrical lines, high-
lighting each word subsequently according to their aligned
onset times. A lyrics-to-audio alignment error is gener-
ated for each user-song pair randomly from a set of posi-
tive and negative offsets between the audio and the lyrics
displayed on screen. The offset is fixed for the whole se-
quence, which means all words in the stimulus are shifted
by the same amount. At the end of each trial, participants
are asked to report whether they perceive an asynchrony
between lyrics and audio with a ternary response ("lyrics
ahead", "lyrics lagging", "synchronous"). This experiment
has a repeated measure design, with lyrics-to-audio syn-

chrony perception as a dependent variable, and the lyrics-
to-audio error offset as the independent variable having
14 modalities. It aims to measure an overall threshold of
lyrics-to-audio synchrony perception and to study the in-
fluence of global rhythmic factors on this threshold, such
as the tempo and word rate. If our theoretical hypothesis
is confirmed, we expect to observe a greater proportion of
"synchronous" responses for lyrics ahead than lyrics lag-
ging, as well as a modulation of the perceptual threshold
with the global rhythmic context (tempo, word rate).

3.2.2 Choice of offsets

In order to precisely define a threshold, we use a wide
range of 14 offsets from �1s to 1s with negative offsets
corresponding to lyrics ahead and reversely positive offsets
mean lyrics lagging behind audio. We intentionally keep
this number as small as possible, since this value is equal
to the number of annotated songs required for each partic-
ipant. Meanwhile, we wish to highlight effects around the
commonly used threshold of 0.3s and �0.3s. Thus we use
smaller steps around these values. We also included larger
offsets (1s, 0.75s) as control values, to test that individ-
uals systematically report those as asynchronous. In the
same spirit, we expect the offset value 0 to trigger "syn-
chronous" answers. The full experimental protocol was
carefully tested beforehand with user testing sessions on
six people. Based on these test results, we evaluated that
completing the annotation required approximately 12 min-
utes per participant. Overall, the experiment involved 53
participants who completed the task.

3.3 Influence of local factors

In this second experiment, we make some changes in the
karaoke interface. This time, we require each participant
to choose one song from the dataset from which 10 audio
excerpts are presented with different audiovisual offsets.
Each sample is composed of three lyrical lines from the
given song. The experience can be repeated multiple times
with additional songs if desired. Each song takes around
3 to 5 minutes to annotate. Whilst in the first experiment
the alignment errors were located on all the words of the
sentence, in the second experiment, the position of the er-
ror may be located on the first, the last word of the sen-
tence, or close to a beat. These choices are driven by some
of the significant factors of stress described in Section 2
namely alignment with beats [21] and sequence bound-
aries [21,28]. We decided to discount the influence of long
syllables [26] and loudness [27] for this study. In fact, long
syllables and loud words are found to be overlapping re-
spectively with the last word of the sentence and words
closed to beats. The perceived synchrony is reported as a
binary response ("yes", "no") with confidence on a 5-point
Likert scale. This experiment intends to quantify the inter-
action of the error location in the sentence and the offset
on the perceived alignment. It has a factorial design with
the lyrics-to-audio offset and the position of the error as
within subject factors. If our theoretical hypothesis is con-
firmed, we expect to observe a modulation of the percep-
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tual threshold with the location of the error in the sequence.
Proximity of a word to a beat is defined as at a dis-

tance less than a sixteenth note from the beat, computed
as ˇ “) = 15/ Beats Per Minute (BPM). The tempo esti-
mation relies on Anssi Klapuri’s algorithm, which showed
80% accuracy with constant tempo during the International
Society for Music Information Retrieval (ISMIR) 2004
tempo induction challenge [29]. Starting from the baseline
threshold of synchrony perception established in the pre-
vious experiment, the second experiment focuses only on
lyrics lagging with 3 offsets (0.25, 0.5, 0.75) and a control
sample with no offset. We chose only positive offsets be-
cause of practical constraints. Indeed, applying a negative
offset at the word level can (and does frequently) result in
overlapping with previous words, at least for beat-aligned
and end words. Filtering out cases of overlapping words
resulted in an important selection bias toward very slow
songs. To avoid that, we could apply linearly decreasing
offsets to precedent words until no overlap remains, as a
naive way to "catch-up" with the true annotation. Such be-
haviour is consistent with what is observed in errors made
by lyrics-to-audio alignment systems, multiple errors on
consecutive words being recurrent. The concern was that
we would not control which first offsetted word the partici-
pant would be confronted with. We decided to not consider
negative offsets in this experiment but the problem of over-
lapping words for positive offset remains. However, after
applying linearly decreasing offsets to consecutive words
until no overlap occurs, the first offsetted word to which
each participant is confronted remains the word of inter-
est. Ultimately, we collected 2458 annotations from 193
participants.

4. RESULTS

As we intend to compute an overall threshold of synchrony
perception, we perform the analysis at the level of the ag-
gregated results, considering all annotations from all users.
We removed all the trials from participants who did not an-
swer correctly to our control levels i.e. "non synchronous”
at 1s and “synchronous” at 0s. This represented precisely
11% of answers for the first experiment. We conducted a
similar cleaning phase for users of the second experiment
using the control offset of 0 and removed 8% of answers.

4.1 Asymmetry of Lyrics-to-Audio Alignment
Perception

Using the data collected in the first experiment, we com-
pute an aggregated proportion of respondents who indicate
that lyrics and audio are "synchronous", and display it as a
function of the lyrics offset in Figure 2. We see that syn-
chrony perception is typically asymmetric, positive offsets
being more easily detected than negative ones. This was
expected as it resonates with previous findings [18, 19].
Beyond aggregated data, we also looked at individual re-
sponses and found that the thresholds were indeed asym-
metric for 72% of individuals.

To give perspective, we plot the window function that

Figure 2. Aggregated results of synchronous judgment as
a function of the lyrics/audio offset.

correspond to the PCO metric scoring as used in MIREX,
with an absolute threshold value of 0.3s. We also fit a func-
tion akin to a scaled skew normal distribution function to
the data points. Among several attempts with asymmetri-
cal continuous functions, this was the best fit we obtained,
although it does not respect the maximality at 0. Param-
eters of the fitted function are a skewness factor of 1.12,
a location of �0.22 and a scale of 0.29, a multiplicative
factor is also applied in order to have a value of 1. at the
maximum. Using this function we can derive new percep-
tive thresholds for synchrony using a simple rule of 50%
of respondents being able to detect the offset. For lyrics
ahead and lyrics lagging we respectively identify the off-
sets �0.33s and 0.22s. Given the amount of noise in the
data, we can reduce these to �0.3s and 0.2s and exam-
ine if the differences of perception are significant for these
values. Indeed, pairwise tests revealed a significant dif-
ference of proportions of response "synchronous" on the
levels �0.3 and 0.3s (�2(1) = 4.26, p = .038), while pro-
portions on the levels �0.3s and 0.2 are not statistically
different (�2(1) = 0.04, p = .08).

4.2 Sensitivity to global rhythmic context

In order to assess whether there is an influence of the global
rhythmic context on lyrics-to-audio alignment perception,
we compared the distribution of "synchronous" responses
at each offset for two rhythmic factors: tempo and Words
Per Second (WPS). We split our dataset of songs into two
classes of tempo, defined as the upper and lower quartiles
of the distribution of tempo, respectively fast (�138BPM)
and slow (93BPM). Although it is correlated with tempo,
we also consider the average WPS rate of songs as a mean-
ingful global factors. Again, we look at the first and last
quartiles as Low (1.16WPS) and respectively High WPS
(�1.2WPS) classes. Figures 3 and 4 show the aggregated
reported synchrony profiles for the negative offsets for the
derived tempo and WPS classes. On both metrics, we ob-
served no threshold discrepancy between the two classes
for positive offsets.
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Figure 3. Proportion of response "synchronous" by tempo
class.

To highlight the differences between classes, we fit
a relatively simple sigmoid function to the data points.
Among several candidates, a Gauss error function seemed
most appropriate. Fitted functions are also displayed on
Figures 3 and 4 and emphasize the different synchrony
slopes. As before, we particularly consider the offset value
intersecting with an average of 50% of "synchronous" re-
sponses as an indicator of participants’ sensitivity to tem-
poral asynchronies. Interestingly, the 50% threshold for
the perception of synchrony is located at a larger off-
set (�0.36) for slow tempo than in fast tempo (�0.31).
These results show that individuals report more frequently
lyrics ahead as synchronous with slow tempo than with fast
tempo. The lower sensitivity to lyrics-to-audio alignment
errors in slow tempo is consistent with the results of [24].
Significance of these results are tested. The proportions
of "synchronous" response at the offset �0.3s show signif-
icant difference between songs with high and low tempo
(�2(1) = 5.44, and p < .02).

Analogously, we found out that subjects are more toler-
ant to lyrics ahead (audio lagging) in high word rate than
in low word rate. The 50% threshold for the perception of
synchrony is indeed located at a larger offset for high word
rate (�0.39) than in low word rate (�0.28) (Figure 4).
These results show that subjects are more tolerant to lyrics
ahead (audio lagging) in high word rate than in low word
rate. We again tested the significance of these results. The
proportions of "synchronous" response at the offset �0.3s
are significantly different between songs with high and low
WPS (�2(1) = 16.86, and p < .00004).

4.3 Interaction between offset and word position

We designed the second experiment to distinguish percep-
tion of asynchrony as a function of the words position in
the sentence. As explained in Section 3.3, we are only able
to test for positive offsets. As insights from the previous
experiment, we can assume that user sensibility is less af-
fected by global factors for positive offsets. As a result,
we expected it to be challenging for local factors too. For

Figure 4. Proportion of response "synchronous" by WPS
class.

this reason, we aimed at collecting a much larger set of
annotation, with a reduced set of tested offsets.

Figure 5 presents an overview of the results. There is
a fairly large amount of noise in the collected data points,
and few clear differences between synchrony perceptions
for the three classes of word positions. The noise is partic-
ularly clear from the displayed level of confidence of par-
ticipants who were unable to detect the asynchrony even
for large values of the offset, but still were quite con-
fident about their choice (average around 3.8). Regard-
ing the location of the alignment error within the sen-
tence, Cochran’s Q test did not indicate a notable differ-
ence among the proportions of synchrony responses re-
ported for the three error positions, �2(2) = 5.77, p = .056.

The only visible effect seems to be for words aligned
on beats, for which the confidence in the "asynchronous"
answer at the 0.25 level is markedly higher than for the
end class. More precisely, a Wilcoxon signed-rank test re-
vealed that lyrics-to-audio alignment comparing error lo-
cated on the beat with those on the last word did elicit a
statistically significant change in the reported confidence
of perception of error in individuals at the 0.25 level (Z
= 2.756, p < 0.006). Indeed, mean confidence rating was
4.1 for error on the beat and 3.5 for error on the last word
of the sentence. Such phenomenon is not observed for the
synchronous case.

5. DISCUSSION

5.1 General discussion

Building on psychological theory and previous studies,
we had hypothesized that a perceptual evaluation of
lyrics/audio alignment quality would be asymmetrical and
depend on both global and local factors. Using a first ex-
periment we did find strong evidence for asymmetry and,
to some extent for global factors influence. Despite a much
larger experimental setup which involved hundreds of par-
ticipants, we were not able to exhibit a clear influence of
the local factors we tested. This negative result could mean
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Figure 5. Plot of the reported answer (synchronous is
"yes", asynchronous is "no") and confidence score (5 level
Likert scale) in the perception of synchrony, by location of
alignment error within the sentence.

that the local factors considered, i.e. the word position
in the lyrical line are not the relevant ones. It is possi-
ble that words grammatical or semantic functions are more
subject to human attention in a karaoke context. Indeed,
the only significant phenomenon that we observed was on
words located on beats, for which the asynchrony percep-
tion was more acute. Future work should investigate the
relationship between rhythmic position and lyrical func-
tion of words and test new hypothesis of perceptual differ-
ences. Finally, although we did our best to build a realistic
yet controlled experimental setup, we acknowledge that as
a psychological experiment mostly conducted online, we
can not completely rule out the possibility that the mea-
surement noise was too high to allow us to detect signals
on local factors.

There are arguably other factors that could influence
this perception, notably at the human level. Indeed, fa-
miliarity with the song (e.g. previous knowledge of the
lyrics and/or the music), but also participants’ facility with
the languages, level of musical expertise and even karaoke
practice could be important variables to consider. In the
conducted experiment, we collected such information from
participants. Although we did observe some interesting
phenomenon, for the sake of clarity, we chose not to
present additional results on these variables here and leave
it to a follow-up study.

5.2 Implication for evaluation metrics

Here we would like to present a practical use of our results,
as a perceptually motivated evaluation metric for lyrics to
audio alignment tasks. Overall, we propose a generaliza-
tion of the PCO metric in the following form:

 k =
1

Nk

X

word i

f(t̂i � ti)⇥ 100 (2)

PCO Asym-PCO Perc-PCO

Gupta [13] 94.47 (1.52) 93.66 (1.59) 89.94 (1.71)
Vaglio [15] 91.85 (1.95) 90.82 (2.04) 86.79 (2.13)
Stoller [14] 87.02 (2.97) 85.23 (3.07) 79.93 (2.90)

Table 1. Averaged metrics over the Jamendo dataset songs.
Standard errors are given in parenthesis.

where the function f can be seen as penalty weighting of
the annotation offset and other notations are common with
Equation 1. We then evaluated 3 state-of-the-art automatic
lyrics-to-audio alignment models [14, 15, 30], on the 20
songs of the Jamendo dataset [14]. We have compared
using the regular PCO (f = 1[�0.3,0.3]), a slightly mod-
ified version still using a square window but taking into
account the asymmetrical perception (f = 1[�0.3,0.2]) and
a Perceptual-PCO function that is the one fit from the data
collected in our first experiment and depicted in Figure 2.
This function can be seen as a smooth relaxation of the
square window, taking into account the perceptive asym-
metry of the error slopes.

Results are compiled in Table 1. Interestingly, there
appears to be little difference between using the standard
PCO window and a slightly shifted one. However, scores
for the perceptual-PCO are much lower. This is despite
the window support being larger (i.e. errors of more than
0.3s are not completely nullified). In our opinion, this
new metric is better suited to capture the relative impor-
tance of alignment errors and weights them according to
human perception. It can also help for comparing between
alignment methods that achieve near perfect scores with
the standard PCO. It is worth noticing that although we
demonstrated it on the PCO, a similar weighting could be
applied to other alignment metrics. A step further would
be to parameterize the window function f on global song
factors such as tempo and WPS. This would arguably re-
quire additional experiments with a larger, more diverse set
of songs.

6. CONCLUSION

In this work, we challenged the objective evaluation of
lyrics-to-audio alignment using hypothesis from psycho-
logical theory. We postulated three effects: asymmetry,
influence of songs features and influence of words local
positions. We were able to demonstrate the first two ef-
fects using a large scale online experiment, disguising the
synchrony annotation task as a Karaoke experience. This
framework proved less efficient for the third effect, despite
our efforts to collect up to several thousands annotation
points. We nonetheless proposed a readily usable weight-
ing function to allow finer comparison between state-of-
the-art alignment methods. Future work will investigate
more diverse sets of factors, both on musical attributes and
user features.
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ABSTRACT

While synthesizers have become commonplace in music
production, many users find it difficult to control the pa-
rameters of a synthesizer to create the intended sound. In
order to assist the user, the sound matching task aims to es-
timate synthesis parameters that produce a sound closest to
the query sound. Recently, neural networks have been em-
ployed for this task. These neural networks are trained on
paired data of synthesis parameters and the corresponding
output sound, optimizing a loss of synthesis parameters.
However, synthesis parameters are only indirectly corre-
lated with the audio output. Another problem is that query
made by the user usually consists of real-world sounds, dif-
ferent from the synthesizer output used during training. In
this paper, we propose a novel approach to the problem
of synthesizer sound matching by implementing a basic
subtractive synthesizer using differentiable DSP modules.
This synthesizer has interpretable controls and is similar to
those used in music production. We can then train an esti-
mator network by directly optimizing the spectral similar-
ity of the synthesized output. Furthermore, we can train the
network on real-world sounds whose ground-truth synthe-
sis parameters are unavailable. We pre-train the network
with parameter loss and fine-tune the model with spectral
loss using real-world sounds. We show that the proposed
method finds better matches compared to baseline models.

1. INTRODUCTION

Synthesizers have become an essential tool in modern mu-
sic production, owing to their ability to produce a wide
array of sounds. The user can directly interact with the
parameters of the audio synthesis algorithm to discover in-
teresting sounds. Despite the prevalence of synthesizers in
modern music production, most music producers still find
it difficult to control the parameters of a synthesizer. The
relationships between a synthesis parameter and the per-
ceptual qualities of the output sound is unclear, and com-
plex synthesis algorithms create unexpected outputs. As
such, producers often rely on presets, parameter settings
crafted by sound designers. By using presets, producers
can easily incorporate appealing sounds. However, finding

© N. Masuda and D. Saito. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
N. Masuda and D. Saito, “Synthesizer Sound Matching with Differen-
tiable DSP”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

an appropriate preset can be difficult, and the sonic palette
of the synthesizer is limited by the availability of presets.

Thus, there is great need for user assistance in the sound
design process using a synthesizer. One way of assist-
ing the user is automatic programming of the synthesizer
to imitate a certain sound. We will refer to this task as
sound matching. Given a query sound that the user wants
to imitate, parameters for a certain synthesizer that pro-
duces the best match possible with the synthesizer is esti-
mated. Recently, neural networks have been employed for
the sound matching task [1–3]. They are trained to predict
the ground-truth synthesis parameter from the synthesized
sound, minimizing the error of estimated parameters.

However, the parameter loss maybe a suboptimal loss
for optimization. In fact, the model that performs the best
in terms of parameter loss does not always return the best
match in terms of spectral features [3]. Since we are inter-
ested only in the audio match quality, it is better to opti-
mize the network using a loss directly related to the audio.
Unfortunately, conventional synthesizers do not allow for
backpropagation of the gradients, leaving this problem un-
addressed in previous works.

Another problem is that the models in previous works
can only be trained on sounds created by the synthesizer
(we will refer to them as in-domain sounds), as the best
matching parameters for sounds not created by the synthe-
sizer (out-of-domain) are unknown. In a sound matching
application, the system should expect queries consisting
of sounds not created by the same synthesizer, originating
from acoustic instruments or different synthesizers. Thus,
there is a gap in the domain between training and inference,
which has been unaddressed by previous works.

In this paper, we address the two problems mentioned
above by implementing a synthesizer with interpretable
controls using differentiable DSP [4] modules. In our
method, the estimator network is optimized in an end-to-
end framework including the synthesizer. This allows us to
utilize not only parameter loss but also spectral loss, which
is more directly related to the audio output of the system.
Also, since the ground-truth parameter values are unnec-
essary when optimizing for spectral loss, the model can
be trained using out-of-domain sounds that better repre-
sent queries in real-life applications. The proposed model
is pre-trained using parameter loss on in-domain data and
fine-tuned with spectral loss on out-of-domain data. We
show the effectiveness of our method in matching out-of-
domain sounds through quantitative measures and subjec-
tive evaluations.
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Figure 1. NN-based synthesizer sound matching. (a) A
synthesizer renders audio according to synthesis parame-
ters. (b) An estimator network is trained to estimate the
parameters from the sound, optimizing the parameter loss.

2. RELATED WORKS

2.1 Synthesizer Sound Matching

Synthesizer sound matching is a task that aims to estimate
the parameters of a synthesizer to produce a sound similar
to the query sound. This supposes an application where
the user has a sound that is similar to the desired sound,
and queries the system for a parameter setting that pro-
duces a similar sound. The user can then adjust the sound
further using the synthesizer. This is akin to the query-
by-example approach in sound retrieval, where a sound
that best matches the query sound is retrieved from the
database [5]. In fact, sound matching has been realized by
retrieval of presets from a database [6]. However, a large
database of presets that sufficiently cover the capabilities
of a synthesizer is not available for most synthesizers, as
the distribution of presets is limited and often not free.

One of the earliest work in sound matching used genetic
algorithm (GA) to match a target spectrum frame [7]. Sub-
sequent works using GA challenged more complex tasks,
using conventional synthesizer software to match the entire
sound [8]. GA-based sound matching directly optimizes
for the similarity of the query sound and the match sound
in terms of audio features such as spectral distance. How-
ever, GA-based sound matching can take anywhere from
10 minutes to several hours to match a single sound, since
fitness of each individual can only be evaluated by render-
ing audio. For example, a single run with population size
of 200 for 200 generations would require 40,000 renders
of the synthesizer.

Recently, supervised machine learning methods such as
multiple linear regression [9] and neural networks (NNs)
[1–3] have been used for sound matching. These meth-
ods view sound matching as a regression problem, where
the synthesis parameters are estimated from audio features.
This is illustrated in Figure 1. While NNs allow for fast
estimation of synthesis parameters during inference, they
optimize the parameter loss and not the actual match qual-
ity of the synthesized audio. This is because gradients can
not be propagated through the conventional synthesizer.

To circumvent the same problem in the case of black-box
audio effects, stochastic gradient approximation methods
were applied [10]. However, the gradients obtained for the
audio effect are only approximate.

It is also important to consider the actual applications
of sound matching. It is expected that users will want to
match sounds that were not originally made by the synthe-
sizer. For example, use of vocal imitation as a query for
sound matching has been proposed [6]. Perhaps a user will
want to imitate acoustic instrument sounds using a synthe-
sizer. While such sounds cannot be matched perfectly, syn-
thesizers can imitate some of their qualities, leading to the
discovery of unique sounds. Thus, out-of-domain sounds
should be the focus of sound matching. For conventional
neural network models trained on pairs of synthesis pa-
rameters and the corresponding audio output, such out-of-
domain sounds are unseen during training.

2.2 Neural Audio Synthesis

Recently, neural networks have garnered attention as a new
way to synthesize musical sounds. Since a typical neural
network has millions of model parameters with no inter-
pretability, it is impossible to directly interact with the pa-
rameters of a neural audio synthesizer as one would with
the synthesis parameters of a conventional synthesizer. As
such, neural networks must offer another way to control the
synthesis. This is achieved through either model condition-
ing or learning a latent representation of musical sounds.

SING is a neural audio synthesizer that can be condi-
tioned by the pitch, velocity, and instrument labels [11].
Embeddings for the instrument can be learned to adjust the
timbre more flexibly [12]. Alternatively, an autoencoder
can be used to learn the latent representation of musical
sounds. A standard autoencoder with feedforward layers
was used to reconstruct spectral frames [13]. A WaveNet
autoencoder can be used to model raw audio of musical
sounds [14]. Autoencoder models encode the audio into
a compact representation and decode it to reconstruct the
audio. By modifying this representation, the output sound
can be controlled.

Compared to conventional synthesizers, neural audio
synthesizers can potentially create more realistic sounds
and offer a novel way to control musical sounds. However,
they do not provide full control to the user over the synthe-
sis process, and their use in practical music production has
been limited so far.

2.3 Differentiable DSP

While neural audio synthesizers aim to generate raw au-
dio using only neural networks, differentiable digital signal
processing (DDSP) aims to integrate conventional signal
processing elements with deep learning [4]. The parame-
ters of a differentiable audio synthesis model are estimated
by a neural network in an end-to-end manner. In the orig-
inal DDSP paper, a differentiable version of an additive
synthesis model called the harmonics-plus-noise model is
used to generate audio. This is a variant of the sinusoids-
plus-noise model [15]. While the harmonics-plus-noise
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model can be considered as a synthesizer, it is much more
complicated than conventional synthesizers, as the ampli-
tude of each harmonic and the full frequency response of
the filter must be specified. The harmonics-plus-noise syn-
thesizer allows for accurate reconstruction of real instru-
ment sounds, but the synthesis parameters are far too many
to allow for direct interaction.

The idea of DDSP has inspired a handful of works. Ad-
versarial loss was used with a hierarchical generator net-
work to improve the quality of the output [16]. Pitch de-
tection of musical signals was accomplished by using dif-
ferentiable DSP in a self-supervised framework [17]. New
differentiable DSP modules have been proposed as well.
An infinite impulse response (IIR) filter was implemented
using differentiable DSP and its parameters were trained
to emulate a guitar pedal [18]. Similarly, differentiable bi-
quad filters were used for parametric equalizer matching,
where optimizing spectral loss was shown to be superior
to parameter loss [19]. Our work expands this idea to the
synthesizer sound matching problem.

Parallels can be drawn between differentiable DSP and
differentiable rendering. Differentiable rendering aims to
integrate rendering of 3D objects into a deep learning
framework [20]. 3D attributes of an object were estimated
from a 2D image in an end-to-end framework [21]. This
network was first trained by a 3D attribute prediction loss
using ground-truth labels, and a projection loss using a ren-
derer was introduced afterwards. This is similar to our
training procedure, in which the network is pre-trained by
synthesis parameter estimation loss, and spectral loss using
the differentiable synthesizer is introduced afterwards.

3. PROPOSED METHOD

3.1 Overview

A diagram of the proposed method is shown in Figure 2.
Melspectrogram frames calculated from the audio are fed
into a neural network to estimate the synthesis parameters
frame-by-frame. The in-domain dataset consists of syn-
thesis parameters and the synthesized sound. This is gen-
erated by random sampling of synthesis parameters. For
in-domain sounds, the parameter estimation loss is calcu-
lated between the estimated and the ground-truth synthesis
parameters, in a similar manner to conventional NN-based
synthesizer sound matching. Finally, a differentiable syn-
thesizer is used to render the audio from the synthesis pa-
rameters. This allows for end-to-end training using spec-
tral loss, for both in-domain and out-of-domain sounds. By
using out-of-domain sounds for training, it is expected that
our proposed method will be better able to generalize to
actual queries consisting of real-world sounds.

3.2 Differentiable Synthesizer

An additive-subtractive synthesizer that approximates a
classical subtractive synthesizer using additive synthesis
was implemented in PyTorch. This design is inspired by
popular additive-subtractive synthesizer software such as
Harmor by Image-Line or Razor by Native Instruments.

This synthesizer features two oscillators with varying pitch
and amplitude. The waveform of each oscillator can be
interpolated between a sawtooth wave and a square wave.
Each oscillator is implemented in an additive way, meaning
that sine oscillators with different frequencies are added up
to create a waveform with richer harmonic. More specifi-
cally, sawtooth waveform and square waveform with fun-
damental frequency f can be decomposed into sine waves
as follows:

xsawtooth(t) =
2

⇡

1X

k=1

sin(k · 2⇡ft)
k

, (1)

xsquare(t) =
4

⇡

1X

k=1

sin{(2k � 1)2⇡ft}
2k � 1

. (2)

The output of two oscillators are mixed and fed into a res-
onant low-pass filter. This filter can alter the timbre by at-
tenuating the harmonics above the cutoff frequency and ac-
centuating the harmonics around the cutoff frequency ac-
cording to its resonance parameter. While previous works
has proposed a differentiable implementation of a resonant
IIR filter [18], IIR inherently involves recurrent computa-
tion which is computationally expensive. Thus, we approx-
imate a resonant filter by applying the frequency response
of the filter as a multiplier to the amplitudes of the har-
monics. Ultimately, the parameters of this synthesizer are
as follows: amplitude, frequency and saw/square wave mix
of each oscillator and the cutoff frequency and resonance
of the filter.

The parameters of the synthesizer can change over time
to create movement in a sound. Conventional synthesiz-
ers use envelope generators and low-frequency oscillators
(LFOs) to control the modulation of some important syn-
thesis parameters. In our experiments, the amplitudes of
each oscillator and the cutoff frequency of the filter were
estimated frame-by-frame, and other parameters were set
to a single value which was estimated from the last output
of the GRU.

Our method aims to assist the user in controlling a prac-
tical synthesizer, so we implemented a differentiable syn-
thesizer with familiar controls such as cutoff frequency.
While this synthesizer has fewer parameters compared to
the harmonics-plus-noise model in the original DDSP, we
find that parameter estimation is more difficult for this syn-
thesizer than the harmonics-plus-noise model. We suppose
that this is due to the indirectness of the relationship be-
tween the synthesis parameters and the output spectrum.
A single synthesis parameter in the harmonics-plus-noise
model roughly corresponds to a single spectrogram time-
frequency component of the output, especially when it is
conditioned by the fundamental frequency. On the other
hand, a synthesis parameter in the proposed synthesizer
model can affect many components, and its effects are de-
pendent on each other. Furthermore, our synthesizer is
intentionally limited in terms of the sounds it can create.
The estimator must utilize the synthesizer to roughly imi-
tate features of the target sound, which imposes a unique
challenge.
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Figure 2. The architecture of the proposed model. Two different losses can be calculated in this framework: the param-
eter loss and the spectral loss. Parameter loss can be calculated only for in-domain data, whose ground-truth synthesis
parameters are available.

3.3 Training

The estimator network can be trained using both the pa-
rameter loss and the spectral loss. The parameter loss is
defined as the L1 loss between the estimated parameter and
the ground-truth synthesis parameter. The spectral loss is
a multi-scale spectrogram loss [4], which is defined as the
sum of L1 loss of spectrograms and log-spectrograms in
multiple resolutions. In the experiments, we use FFT sizes
of (64, 128, 256, 512, 1024, 2048). Frames were over-
lapped at 75% with the next frame.

During preliminary experiments, we found that training
the model with only spectral loss was ineffective. We sup-
pose that this is due to the indirectness of the relationship
between the synthesis parameters and the output spectrum.
We found that pre-training the model by parameter loss
and fine-tuning the model using spectral loss was the most
effective. More specifically, our training procedure can be
split into three steps. First, the network is trained by pa-
rameter loss on the in-domain dataset. Next, spectral loss
is gradually introduced and eventually replaces the param-
eter loss completely. Finally, the model is trained using the
out-of-domain dataset.

This final step can be considered as a form of domain
adaptation. Specifically, unsupervised domain adaptation
aims to transfer the knowledge of labeled source domain
to a target domain with no labels [22]. While ground-
truth parameter values are unavailable for the out-of-
domain sounds, we can transfer the knowledge of models
trained using in-domain sounds to out-of-domain sounds
by switching to the spectral loss.

4. EXPERIMENT SETUP

4.1 Training Procedure

The proposed method aims to improve the quality of sound
matching by use of spectral loss and adaptation to out-of-
domain data. To examine the effect of each, the perfor-
mance of models trained using three different training pro-
cedures are compared.

• Parameter-loss only model (hereinafter, denoted as
P-loss). This model is trained using only parameter
loss for 400 epochs. This is in line with conventional
NN-based sound matching methods and serves as
the baseline of our experiment.

• In-domain spectral loss model (Synth). This model
is pre-trained using parameter loss for 50 epochs.
For the next 150 epochs, a spectral loss is gradu-
ally introduced by increasing the weighting of the
spectral loss linearly and decreasing that of the pa-
rameter loss. Finally, the model is trained for 200
epochs using only the spectral loss on the in-domain
dataset.

• Out-of-domain spectral loss model (Real). This
model is trained in the same way as the Synth model
for the first 200 epochs. Then, the model is trained
for 200 epochs using the spectral loss on the out-of-
domain dataset.

The learning rate is decreased with an exponential de-
cay rate of 0.99 every epoch (16000 iterations). To match
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the scale of the parameter loss and spectral loss, the L1 pa-
rameter loss is multiplied by a factor of 10 during training.
The network was trained with a batch size of 64.

4.2 Estimator Network

The estimator network is trained to predict the synthesis
parameter at each time step from the melspectrogram of
input audio. Melspectrogram frames with 128 bands were
extracted from the input waveform with an FFT size of
1024 samples and a hop size of 256 samples. Each frame is
fed into 3 layers of 1D convolution with batch normaliza-
tion to obtain a high-level representation of spectral fea-
tures. Then, the output is fed into a gated recurrent unit
(GRU) layer. Finally, the output of GRU is fed into a lin-
ear layer. Since all synthesis parameters are normalized
to be within (0, 1), sigmoid nonlinearity is applied to the
network output.

4.3 Dataset

4.3.1 In-domain

The in-domain dataset is generated by randomly sampling
synthesis parameter settings and rendering them with the
same synthesizer used in the model. The value of a static
parameter is uniformly randomized. The temporal evo-
lution of a dynamic parameter is modelled by an attack-
decay-sustain-release (ADSR) envelope generator used in
most conventional synthesizers. The parameters of this en-
velope generator are attack time, decay time, sustain level,
release time and the peak/floor levels. These envelope pa-
rameters are uniformly randomized for each dynamic pa-
rameter. Gaussian noise is added to the output of this en-
velope generator to model the fluctuation present in real-
world sounds. The note-off point triggering the release
stage of the envelope is at 3 seconds, and the audio was
recorded for 4 seconds. Parameter settings that resulted
in silence were removed from the dataset. 20,000 sound-
parameter pairs were generated, and partitioned into an 80-
10-10 train-validation-test split.

4.3.2 Out-of-domain

For the out-of-domain sounds, the NSynth dataset [14] was
used. This dataset includes acoustic and synthetic musi-
cal sounds from sample libraries. They were played with
MIDI notes in various pitch lasting 3 seconds and recorded
for 4 seconds at sampling rate of 16kHz. 20,000 sounds
were randomly selected from the full dataset and parti-
tioned into an 80-10-10 train-validation-test split.

5. RESULTS

We perform objective and subjective evaluation of the
sound matching results and discuss our findings. Audio
examples and source code are available on the accompa-
nying webpage 1 .

1 https://hyakuchiki.github.io/DiffSynthISMIR/

In-domain Out-of-domain
Models Param LSD Multi LSD Multi
P-loss 0.065 16.14 4.72 19.60 8.84
Synth 0.083 14.38 3.37 19.13 5.79
Real 0.177 15.35 3.87 17.27 3.90

Table 1. Objective measures of sound matching (Param:
L1 parameter loss, LSD: log-spectral distortion, Multi:
multi-scale spectrogram loss). Smaller values indicate bet-
ter performance.
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Figure 3. Spectral loss on out-of-domain sounds during
training. The gray lines at 50th epoch and 200th epoch
indicate the change in the weighting of the loss.

5.1 Quantitative Results

As a quantitative measure of the quality of sound match,
we use log-spectral distortion (LSD) and the multi-scale
spectral loss (Multi). We also calculate the L1 parameter
loss (Param) for in-domain sounds. The results are shown
in Table 1. The P-loss model achieved the best perfor-
mance in terms of parameter loss, but performed poorly
compared to other models in terms of spectral measures.
This suggests that parameter loss is an inadequate crite-
rion for match quality. The Synth model performed the
best for matching the spectra of in-domain sounds, but the
Real model was superior for out-of-domain data. This re-
sult shows that the fine-tuning was effective in transferring
the knowledge learned from in-domain sounds to out-of-
domain sounds. Since the out-of-domain data better repre-
sents query sounds in real-life applications, the Real model
is the most promising for sound matching.

To examine the effects of the training procedures, we
monitored the LSD for the out-of-domain validation set
during training. This is shown in Figure 3. We can see that
introducing the spectral loss from the 50th epoch caused
a gradual decrease in LSD for the models Synth and Real.
After the 200th epoch, the Real model was trained using
out-of-domain data. From the sharp drop in LSD after this
point, we can see the effectiveness of using out-of-domain
sounds. The P-loss model was ineffective in improving
spectral loss beyond a certain point.

5.2 Subjective Evaluation

For subjective evaluation of the match quality, paired com-
parison was conducted with reference stimuli via a crowd
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Figure 4. Results of subjective evaluation of the match
quality. The three models were compared in a round-robin
manner. Error bars denote 95% confidence intervals.

sourcing system. In total, 25 listeners from various back-
grounds answered 18 questions. In each question of the
test, listeners were exposed to the original target sound and
the matches created by two models. The listeners answered
which match sounded more similar to the target sound. The
order in which the two matches were presented was ran-
domized. The target sounds were randomly chosen from
the test set of the out-of-domain data, as they better rep-
resent queries in real-life applications of sound matching
than in-domain sounds.

Results of the preference test is shown in Figure 4.
First, the P-loss model was compared with the Real model.
The audio outputs of the Real model was preferred more
frequently than the P-loss model, indicating that the pro-
posed method of using spectral loss and using out-of-
domain sounds during training was effective in producing
perceptually better matches, compared to the conventional
method of optimizing only parameter loss. Second, the
models P-loss and Synth were compared. The Synth model
performed better than the P-loss model, indicating that the
use of spectral loss was effective in producing perceptu-
ally better matches. Finally, the models Real and Synth
were compared. The Real model performed better than the
Synth model. This highlights the importance of fine-tuning
the estimator model with data that more closely resembles
the query.

We show examples of sound matching in Figure 5. We
can note that while all models perform comparably well on
most in-domain sounds, the P-loss model tended to fail in
reproducing features such as pitch and spectral envelope
of the the out-of-domain sounds. The first out-of-domain
sound in Figure 5 is a brass sound with rich harmonics, but
only the Real model successfully produced timbre resem-
bling a brass sound. For the second out-of-domain sound,
the P-loss and Synth models failed to estimate the pitch,
resulting in a sound with lower pitch.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a novel method of synthesizer sound match-
ing by implementing the synthesizer using differentiable
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Figure 5. Examples of sound matching results. The three
models were used to match the same target sounds taken
from the in-domain and out-of-domain test set. We display
the spectrogram (frequency is log-scaled, 0-8000Hz) of the
audio output.

DSP. The proposed method is able to directly optimize
spectral loss in an end-to-end manner. Furthermore, the
model is able to utilize real-world sounds during training.
By pre-training the model with parameter loss on the syn-
thetic data and fine-tuning on real-world sounds with spec-
tral loss, we showed that the proposed method can provide
perceptually better matches to real-world sounds compared
to baseline models.

While dynamic parameters were estimated frame-by-
frame in our experiments, typical synthesizers use ADSR
and LFO modules to model the dynamics of parameters.
Such modules are required for intuitive control of the dy-
namics and playing notes with different length, but the use
of such modules has been left unaddressed by our work.
One solution is to estimate the envelope parameters from
the frame-wise synthesis parameters [23]. Another solu-
tion is to implement such modules in a differentiable man-
ner and use them during training. Preliminary experiments
using differentiable envelope modules yielded promising
results, although the match is less accurate for real-world
sounds due to the simplification of the dynamics.

Another direction is to experiment with different syn-
thesis techniques and audio effects. Preliminary experi-
ments on using spectral loss to estimate the parameters of
an FM synthesizer was shown to be less successful. This
may be due to the fact that FM synthesis creates many in-
harmonic partials resulting in a complex spectrum. Re-
cent research suggests that deep audio embeddings may
be a better distance metric than multi-scale spectral loss
for complex synthesizer sounds [24]. Such alternative cri-
teria for the match quality is worth considering not only
for improving the estimation quality, but also for providing
unique matches that capture a certain feature of the query.
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ABSTRACT

The harmonic analysis of a musical composition is a fun-
damental step towards understanding its structure. Central
to this analysis is the labeling of segments of a piece with
chord symbols and local key information. In this work, we
propose a modular system for performing such a harmonic
analysis, incorporating spelled pitches (i.e., not treating en-
harmonically equivalent pitches as identical) and using a
very large vocabulary of 1540 chords (each with a root,
type, and inversion) and 70 keys (with a tonic and mode),
leading to a full harmonic characterization similar to Ro-
man numeral analysis. Our system’s modular design al-
lows each of its components to model an aspect of har-
mony at an appropriate level of granularity, and also aids
in both flexibility and interpretability. We show that our
system improves upon a state-of-the-art model for the task,
both on a previously available corpus consisting mostly of
pieces from the Classical and Romantic eras of Western
music, as well as on a much larger corpus spanning a wider
range from the 16th through the 20th centuries.

1. INTRODUCTION

The analysis of the harmonic content of a musical compo-
sition or performance is fundamental to the field of MIR.
It can take many forms, depending on the input format and
desired output representation and specificity, but typically
involves two basic steps: the segmentation of a musical
input, and the labeling of each segment with a harmonic
symbol from some vocabulary. The vocabulary is typically
either a key or a chord symbol, but more recent work has
begun to investigate a joint approach, identifying both.

A musical key can be defined by its tonic pitch and a
mode. In this work, like most previous work, we only
consider major and minor mode, but many others exist in
practice (see [1] for a recent discussion). Most work on
key detection, be it from audio [2–4] or some symbolic
format [5–8], only classifies each piece as having a single
key (i.e., its global key), disregarding any modulation to
different local keys that might occur. One reason for this

© A. McLeod and M. Rohrmeier. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: A. McLeod and M. Rohrmeier, “A Modular System for the
Harmonic Analysis of Musical Scores using a large vocabulary”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

is simply the lack of labelled datasets with specific local
key information, and the expertise required to produce (and
evaluate) such annotations. More recently, however, some
systems have addressed the problem of local key changes,
incorporating a segmentation step into the key detection
pipeline [9,10], or producing a continuous distribution over
local keys throughout the duration of a piece [11].

Chord detection (also called chord transcription) and
chord sequence prediction are very widely researched tasks
in MIR, though the vocabulary used can vary dramatically.
At its most basic, each chord in a vocabulary has a root
pitch and a chord type (major triad, minor triad, etc.).
Much existing work only has a limited chord vocabulary
of size 24 (12 semitone pitch classes and either major or
minor triads) [12, 13], often due again to the difficulty of
creating datasets with more specific chord types (and the
difficulty of inducing spelled pitches from MIDI or audio
input). More recently, some work has included common
additional triad types, such as diminished and augmented
triads [14], as well as various 7th chords, and further exten-
sions, like suspended or 9th chords [15, 16]. Additionally,
each chord can have an inversion—describing which of its
pitches is its bass note—the inclusion of which is also be-
coming more common [17].

In this work, we take as input a musical score, and la-
bel each segment with both a key and a chord symbol, in-
cluding a very large vocabulary of 12 different chord types
and inversions for each. As in standard Roman Numeral
Analysis (RNA; [18]), this allows each chord’s root pitch
to be interpreted relative to the corresponding key’s tonic
pitch (including any local key modulations). In fact, our
system’s output is nearly equivalent to a full RNA, lacking
only altered chordal tones such as suspensions, and pedal
tones, which we intend to include in future work. We also
use spelled pitches (where an A] is a different pitch from a
B[), which is still uncommon in existing work.

A few prior models have been proposed for the joint la-
belling of keys (including modulation) and chords. Sta-
tistical models have been used for the purpose [19–21],
though they use an enharmonic MIDI pitch representa-
tion (where A] and B[ are equivalent), a small vocabulary
of chord types, and no inversions. Structurally, however,
these models have somewhat inspired the design of our
system (though they use Markov models instead of neu-
ral networks), explicitly modelling chord and key changes
in a sequential fashion. More recently, deep learning mod-
els have also been proposed which use a large vocabulary
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of chord types as well as inversions. In [22], a transformer
model is used, though it takes a piano-roll representation
as input, and therefore uses the more reduced MIDI pitch
representation rather than spelled pitch. This model is ex-
tended in [23] using the same input format, but now us-
ing spelled pitch output, though still using a reduced set
of pitch classes compared to ours. Finally, in [24], a con-
volutional network is proposed for the task. This model
uses the same pitch representation as ours, and roughly the
same chord vocabulary, so we use it for comparison.

These existing deep learning models consider sequen-
tial information either at the frame level (an eighth or 16th
note) [22, 24], or by grouping frames together into larger
blocks [23]. Our modular design is such that each compo-
nent models one specific aspect of the full harmonic analy-
sis task at the appropriate level, receiving only input that is
relevant to that aspect, and at the appropriate step length.
For example, the component which models chord progres-
sions sees only chord symbols as input, once per chord,
while the component that performs the chord segmenta-
tion sees individual notes as input. Our hypothesis is that
this design allows each component to better capture the
patterns relevant to the task at hand.

The modular design also gives a practical, benefit over
the single-model end-to-end design that is common in ex-
isting work. Its output is highly interpretable, which has
helped significantly in its development (we note a few spe-
cific instances of this in the paper). In particular, it enabled
the following development process: (1) locate mislabeled
segments in its output; (2) examine the outputs of each
component for that segment, comparing them to our intu-
ition about the analysis (this is easy because each compo-
nent corresponds to a well-defined aspect of the analysis);
and (3) integrate additional features into the corresponding
component, depending on our analysis.

2. PROPOSED MODEL

2.1 Vocabulary

We use a large vocabulary of chords and keys as they ap-
pear in scores, taking on a full characterization as used in
music theory [18]. Chord roots may be any pitch A–G,
double-flat to double-sharp (35 total), and we include 12
chord types: major, minor, augmented (each as a triad, or
with a major or a minor 7th), and diminished (as a triad, or
with a minor or diminished 7th). Each chord can be in any
inversion (3 for triads, 4 for tetrads), for a total of 1540 pos-
sible chords. Keys may be major or minor with the same
pitch range, for a total of 70 possible keys. Our model does
not output applied chords (e.g., secondary dominants like
V/V) directly. Rather, we treat them as brief, potentially
recursively embedded, key changes as in [25].

2.2 Overview

Our system is composed of 6 modules, each with a well-
defined input and output (see Figure 1). The system’s input
is a sequence of notes N ordered temporally by onset posi-
tion, where notes with equal onset position are ordered by

Figure 1. Overview of our fully integrated system. Each
component depends on the component directly below it,
and additional dependencies are indicated by arrows.

increasing pitch. The ith note in this sequence is denoted
by ni, and a note’s onset position is denoted by on(ni).
Specific implementation details (e.g., the precise encoding
of each note) are explained in Section 2.3.

The Chord Transition Model (CTM) takes this sequence
N and predicts whether each note is the first (temporally)
of a new chord. We denote cti as the ith output of the
CTM. Of these outputs, the first (ct0) is set to 1, and any
cti where on(ni) = on(ni�1) are set to 0. Thus, chord
transitions correspond with vertical slices in the musical
score.

The Chord Classification Model (CCM) takes a sub-
sequence of notes from N , and outputs a distribution over
all 1540 possible absolute chord symbols for it. We denote
the sub-sequence from the ith to the jth note as ni...j .

The Chord Sequence Model (CSM) takes a sequence of
relative chord symbols (whose roots are represented as an
interval above the tonic, not as an absolute pitch class),
and outputs a distribution over the next relative chord in
the sequence. We denote the ithe relative chord symbol
in this sequence as c_reli. At inference time, it’s output
always assumes that the key will not change on the next
chord, and is unused in the case of a key change.

The Key Transition Model (KTM) takes as input a se-
quence of relative chord symbols starting from the begin-
ning of the piece (c_rel0...i, i > 1, denoting the first i+ 1
relative chord symbols), and predicts whether chord c_reli
is in a different key than c_reli�1. At inference time,
c_reli is initially represented relative to the key tonic of
c_reli�1. Then, in the case of a key change, the hidden
state of the KTM (if there is one) is reverted to its previous
state, and given c_reli in the new key.

The Key Sequence Model (KSM) takes as input the same
sequence of relative chord symbols as the KTM (c_rel0...i,
i > 1), and outputs a probability distribution over a new
key for c_reli, including both the mode (major or minor)
and a tonic pitch class (represented as an interval over the
previous key’s tonic pitch class). It’s output is only used
when there is a key change and ignored otherwise. Simi-
larly to the KTM, at inference time, c_reli is initially rep-
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resented relative to the key tonic of c_reli�1. Then, after
the key change, the hidden state of the KSM (if there is
one) is reverted to its previous state, and given the updated
c_reli in the new key.

Finally, the Initial Chord Model (ICM) outputs a prior
probability distribution over the first relative chord of a
piece c_rel0 given a mode, and is used in combination
with the first absolute chord symbol to generate a distri-
bution over possible first absolute keys for the annotation.
For example, the ICM may determine that the c_rel0 in
major mode has a 0.4 probability of being a I chord. It is
used as a replacement for the CSM for the first chord.

2.3 Implementation

Due to the modular design of our system, the precise im-
plementation of each model (including the representations
used therein) is very flexible. For example, although the
CTM is well-defined to take as input a sequence of notes
in a particular order, the precise way in which each note
is represented is left as an implementation detail, and can
easily be changed without affecting the other models. Such
details, as well as the design of each model individually,
are described in this section.

As input to the CTM, each note ni is represented as the
concatenation of one-hot vectors (or scalars) encoding cer-
tain musical features of each note: the note’s pitch class
A–G, double-flat to double-sharp (one-hot of length 35);
the note’s octave 0–11, where C4 is in octave 6 to allow
for negative octaves (one-hot of length 12); the note’s nor-
malized MIDI pitch height (0–1), where C-1 (MIDI note 0)
= 0 and G9 (MIDI note 127) = 1 (scalar); the metrical lev-
els of the note’s onset and offset positions (downbeat, beat,
sub-beat, or other; two one-hots of length 4); the duration
of the note, where a whole note has duration 1 (scalar);
and the duration from the note’s onset to that of the previ-
ous note and that of the following note, again measured in
whole notes (two scalars).

Our CTM is a neural network composed of a single
feed-forward layer followed by a Bi-LSTM (each using
ReLU activation). At each step, the LSTM’s outputs are
concatenated together and fed into two additional feed-
forward layers (the first with ReLU activation and the last
with sigmoid activation to produce a probability value).

As input to the CCM, each note vector is embedded into
its musical context in two ways. First, we append to this
sub-sequence the vectors of the two notes on each side of
this sub-sequence (or vectors of zeros if this goes beyond
the range of the piece). Second, we append to each note
vector more musical features related to the note’s context:
onset and offset position relative to the chord window on a
linear scale where the beginning of the chord is at position
0 and the end of the chord is at position 1 (2 scalars); du-
ration as a proportion of the chord’s duration (scalar); rel-
ative normalized pitch, where instead of C-1 being 0 and
G9 being 1, the minimum pitch of a note in the window is
0 and the maximum pitch is 1 (scalar); and relative octave,
where the octave of the lowest note in the window is sub-
tracted from each note’s octave before embedding (one-hot

of length 12). The relative pitch and octave are examples of
where our system’s interpretability helped in its design: we
noticed that the CCM was struggling to output the correct
inversions when a passage doesn’t contain any notes in a
low octave (it had learned to depend on bass notes for this),
and therefore added the relative features, which helped in
that regard.

Its output is a distribution over all 1540 absolute chord
symbols. It would be possible to treat each aspect of a
chord symbol (root, type, and inversion) as a separate fea-
ture of each chord, and have the CCM output one dis-
tribution over each, as has been done in previous work
(e.g., [24, 26]). However, while this approach makes sense
in terms of reducing the size of a model, it doesn’t make
sense conceptually: there may be a situation in which the
model sees a C in the bass, and thinks the chord is either
a C major triad in root position or an A minor 7th chord
in 1st inversion. In cases such as this, it is important that
every feature of a chord is considered holistically as a unit,
rather than potentially classifying the chord as a C minor
7th chord in 1st inversion.

Our CCM is a neural network composed of a single
feed-forward layer followed by a Bi-LSTM (each using a
ReLU activation). The outputs from the last LSTM state
in each direction are concatenated together and fed into a
single feed-forward layer with softmax activation.

The CSM, KTM, and KSM all take the same input,
where each relative chord is encoded as a vector of con-
catenated musical features: the root pitch class and bass
note pitch class, each represented as the interval above
the key tonic on the line of fifths (-14–14; two one-hots
of length 29); the chord type (one-hot of length 12); the
inversion (one-hot of length 4); the metrical levels of the
chord’s onset and offset positions (same as for the note en-
coding; two one-hots of length 4); the duration of the chord
in whole notes (scalar); and a flag indicating the current
key’s mode (1 for major; 0 for minor). At every chord at
which there is a key change, we also append a key change
vector, which encodes the following: the tonic of the new
key, represented as the interval above the previous key’s
tonic on the line of fifths (-14–14; one-hot of length 29);
the mode (major or minor; one-hot of length 2); and a flag
indicating that this is a key change (binary 1). For each
chord at which the key does not change, this key change
vector is filled with all 0s.

The CSM’s output is a distribution over chord symbols
consisting of a root (-14–14 on the line of fifths from the
key tonic), chord type, and inversion (1276 chords in to-
tal). Some of these chords may correspond with a valid
absolute chord symbol (e.g., one with relative root -14 in
the key of B[[). These are simply ignored. Likewise, some
valid chords are not covered by the CSM’s range (e.g.,
a B] chord in the key of B[[, which is exceedingly un-
likely [27]). The prior for these chords is 0. Similarly, the
KSM’s output is a distribution over key symbols consist-
ing of a tonic (-14–14 on the line of fifths from the previ-
ous key tonic) and a mode (58 keys in total). Invalid (e.g.,
14 fifths below B[[ major) and uncovered (e.g., 20 fifths
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above B[[ major) key changes are treated in the same way.
Each of these models has a single feed-forward layer,

followed by an LSTM whose last output is sent through
another feed-forward layer (all with ReLU activations). A
final feed-forward layer is then used, with softmax activa-
tion in the CSM and KSM, and sigmoid in the KTM.

Since there can be many reasonable choices for the next
chord in a sequence, we noticed when inspecting the sys-
tem’s outputs that the CSM’s distribution was more flat
than desired. Therefore, we compare two additional ver-
sions of it: an inversion invariant CSM-I, which outputs a
distribution over relative roots and chord types (348 chords
in total), in which case probabilities are shared between
different inversions of the same chord; and a triad-reduced
CSM-T, which is includes the CSM-I’s inversion invari-
ance, and further shares weights between chords built upon
the same triad (e.g., a V7, Vmaj7, and V all share outputs).

The ICM is a much simpler model than the rest, and we
simply count the proportion of each chord—grouped by
chord type, inversion, and relative root—as the first chord
of a piece in our training data. We then apply additive
smoothing to this estimate, adding 1

1540 (where 1540 is the
number of chords in our vocabulary) to each count.

2.4 Inference

Given the interactions between the modules of our system,
the inference procedure required to use it to label a score is
not trivial. However, since each component can be treated
as a black box, once such a process is defined, we can flex-
ibly use different modules interchangeably. This section
gives an overview of the inference process, which, at its
core, is the process of finding the most probable labeling
of the musical score according to our system. We explore
the search space iteratively using beam search decoding.

First, we run the CTM on the full input sequence N ,
generating cti for each note ni. Next, we find all valid
chord windows for the piece. For a chord window from
ni...j to be valid, six conditions must be satisfied: (1) cti �
ctmin, where ctmin is a minimum threshold for a chord
change; (2) ctj+1 � ctmin (unless j = |N |�1); (3) ctk 
ctmax for all i < k  j (ctmax is a maximum threshold for
allowing a note to not be a chord change); (4) the duration
of the resulting chord window (i.e., on(nj+1) � on(ni))
must be less than a maximum value C_durmax; (5) a valid
chord window exists which ends at ni�1 (unless i = 0);
and (6) a valid chord window exists which begins at nj+1

(unless j = |N | � 1). (1)–(3) together ensure that the
CTM is not ignored; (4) ensures that the resulting chord
labeling is well-formed (extremely long passages with no
chord changes are quite rare); and (5) and (6) ensure that
each chord window can be part of a complete labeling of
the musical score.

Having found all possible chord windows, the search
process involves finding the most probable complete and
labeled path through the score. A complete path C is a
sequence of consecutive chord windows c0...|C|�1, where
cm = nim...jm (i0 = 0, j|C|�1 = |N | � 1, and 8m, im =
jm�1 + 1). A labeled path is a complete path where each

chord window cm therein is labeled by assigning it a chord
(Ch(cm)) and a key (K(cm)), with the constraint that no
chords are repeated (i.e., 8m,Ch(cm) 6= Ch(cm+1)).

One exception to the above constraints is the merge

rule, which allows the CCM to override the CTM’s ctmin

threshold in some cases. It is legal for two consecutive
chord windows cm and cm+1 to be merged if: (1) the re-
sulting chord window’s duration (on(njm+1+1)�on(nim))
is still less than C_durmax; and (2) Ch(cm) = Ch(cm+1)
(which only occurs if the CCM assigns each a high prob-
ability). The merge step can be repeated as many times as
possible as long as the two constraints are still met. This
rule is another example of the interpretability of our system
helping in its development: we noticed that the CTM was
over-segmenting the input, and the thresholds were diffi-
cult to tune. However, the CCM’s outputs were relatively
accurate. Thus, we created the merge rule, which allows
us to tune the CTM thresholds to over-transition, letting
the more accurate CCM merge windows later.

Given a complete labeled path through a score, its prob-
ability is the product of the probabilities of each chord win-
dow cm, where an individual chord window’s probability is
calculated as a product of its CTM probability Pct(cm), its
CCM probability Pcc(cm), its KTM probability Pkt(cm),
and its sequence probability Pseq(cm), as shown in Eqn. 1.
The exponent |cm| is used so that each path’s probability
is a product of an equal number of probabilities, no mat-
ter the number of chord windows (without this exponent, a
path with fewer, longer windows would be preferred).

P (cm) = Pct(cm)
�
Pcc(cm)Pkt(cm)Pseq(cm)

�|cm| (1)

A window’s CTM probability is calculated as in Eqn. 2
(ctjm+1 is ignored if m = |C|� 1).

Pct(cm) = ctimctjm+1

jmY

k=im+1

(1� ctk) (2)

A window’s CCM probability is the CCM prior for the
range nim...jm for the assigned chord Ch(cm). A win-
dow’s KTM probability is likewise taken directly from the
KTM: it is either the KTM’s output at that window (if
K(cm) 6= K(cm�1)), or one minus the KTM’s output (in
all other cases). The first KTM probability (Pkt(c0)) is al-
ways 1, since the key will never change on the first chord.

A window’s sequence probability (the probability of a
chord and key given the previous) is taken from the ICM
(Pic(cm)) for m = 0, the KSM (Pks(cm)) if there is a key
change, or the CSM (Pcs(cm)) otherwise, as shown in Eqn.
3. Initially, the system predicted far too many key changes,
and inspecting its output, made the cause clear: since the
KSM outputs a distribution over 70 keys, while the ICM
and CSM output distributions over more than 1000 chords,
the KSM’s outputs will naturally be greater. Thus, we in-
troduced a parameter ↵, ensuring that the values output by
each model lie in a similar range.

Pseq(cm) =

8
><

>:

Pic(cm) if m = 0

Pks(cm)↵ if K(cm) 6= K(cm�1)

Pcs(cm) otherwise
(3)

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

438



3. EXPERIMENTS

3.1 Setup

We use two different corpora: (1) an internal corpus of har-
monic annotations, including the publicly available Mozart
[28] and ABC [29] corpora, and additional pieces which
are private, but pending future release; and (2) functional-
harmony (F-H) [24], consisting of a combination of prior
existing corpora: TAVERN [30], BPS-FH [22], and Ro-
man Text [31]. The internal corpus contains a much
wider range of composers: 742 pieces from the 16th
to the 20th centuries, with J.S. Bach, Couperin, Grieg,
Beethoven, Schütz, Mozart, Corelli, Chopin, Kozeluh,
Monteverdi, Mendelssohn, and Schubert all having more
than 20 pieces, and 99 by other composers. F-H is smaller:
201 pieces in total, with 119 by Beethoven, 29 by Schubert,
24 by J.S. Bach, and 19 by other composers. We treat the
two corpora separately, and in each, randomly take 80%
for training, and 10% each for testing and validation.

For evaluation, we use a type of Chord Symbol Recall
(CSR) [32]: for each piece, the proportion of time dur-
ing which the estimated label matches the ground truth la-
bel. Given our large vocabulary, we apply CSR at vari-
ous levels of specificity, similar to [24] 1 . We report CSR
with regards to the chord root, chord root+type, chord
root+type+inversion (the full chord), key (ignoring the
chord), and full (including chord and key). We intend to
investigate more advanced metrics (e.g., where some label
substitutions are penalized less than others) in future work.

All components of our system were trained with Adam

[33] and a learning rate of 0.001. A scheduler cut the learn-
ing rate in half when the validation loss didn’t improve for
10 epochs, and training was stopped when the validation
loss failed to improve for 20 epochs. When training the
CCM, we transposed each input and target by -7–7 fifths
(a similar data augmentation technique was used by [24]).

For this study, we did not perform a large grid search
over deep model structures (e.g., more feed-forward lay-
ers). Rather, we grid searched over layer sizes of 64, 128,
and 256 for each of the feed-forward and LSTM layers of
each model. The system-wide inference parameters were
set using a grid search on the validation set of each corpus,
resulting in ctmax and ctmin of 0.3 and 0.4 for the F-H cor-
pus, and 0.35 and 0.55 for the internal corpus; C_durmax

of 10 for both corpora (this parameter has little effect); and
↵ of 30 for the F-H corpus and 50 for internal corpus. ↵ has
by far the largest effect of any parameter, where low values
result in much more frequent key changes. We leave an in-
vestigation of the performance of each module for future
work, concentrating here on overall performance.

3.2 Results

We compare versions of our system using the standard
CSM, the inversion invariant CSM-I, and the triad-reduced
CSM-T. As a baseline, we use the pre-trained model of
[24], computing new results on our internal corpus, and

1 In the metrics reported in [24], applied roots are not considered key
changes as they are here, but instead included in the “Degree” metric.

Model Root +Type +Inv. Key Full

In
te

rn
al

[24] 57.0 47.7 37.6 64.9 29.0
CSM 76.6 68.8 62.1 66.9 44.7
CSM-I 76.5 68.7 62.0 69.0 46.3
CSM-T 77.6 70.0 62.8 70.2 46.9

F-
H

[24] 2 — — — — 42.8
CSM 73.3 65.4 55.6 60.8 40.5
CSM-I 75.0 66.8 56.9 67.0 44.6
CSM-T 75.4 67.8 58.1 69.4 45.9

Table 1. The results of our system compared to the model
of [24] on our internal corpus of annotations (top), and the
functional-harmony meta-corpus used in [24] (bottom).

using the full CSR from [24] for the F-H corpus (the
component-wise metrics are calculated differently). The
results can be found in Table 1. Here, we can see that our
modular system outperforms the baseline on both the in-
ternal corpus and, more notably, on the F-H corpus.

There seems to be a systematic difference between the
annotations of the two corpora, given the relatively poor
performance of the pre-trained baseline [24] on the internal
corpus. We would expect this to be due to the wider range
of styles, but while this does appear to play some role, the
baseline actually performs worse (22.9 overall) on a subset
of the internal corpus’ test set including only Beethoven
pieces. We plan to more thoroughly investigate differences
between the annotations of the two corpora in future work.

Interestingly, the baseline performs relatively well on
key detection (even on our internal corpus), which points
to one downside of our modular approach: the key depends
on outputs from the other components, adding noise to the
process, which isn’t a factor for the end-to-end baseline.

For our system, we see that the three versions per-
form similarly on the internal corpus, but the two invariant
CSMs outperform the standard one—significantly on the
F-H corpus. Interestingly, this difference mainly shows
in a more accurate key labelling, rather than chord. In-
specting the results, we see that the standard CSM usually
assigns a low probability to the more rare chords like mi-
nor 7th chords or inverted chords. This makes the model
prefer key changes in these cases, which avoid using the
CSM’s output distribution. The CSM-I and CSM-T avoid
this problem due to their invariances. In future work, we
intend to investigate alternate reductions where, for exam-
ple, dominant 7th chords (which are quite common) are not
reduced to major in the CSM-T.

Figure 3 shows the CSM-I’s chord classification perfor-
mance on the internal corpus as a confusion matrix. It per-
forms best on major triads, minor triads, and dominant 7th
chords, which comprise 44%, 22%, and 18% of the cor-
pus, respectively. For the less common chord types, when
the root is correct, the system often misclassifies the chord

2 The values in [24] are calculated slightly differently: applied chords
are included in Root (rather than Key here), and Type and Inversion refer
to only those features of a chord (in [24]), rather than in combination with
those to their left. “Full” is comparable.
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Figure 2. The CSM-I system’s output (below) for bars 3–5 of Grieg’s Notturno, Op. 54, No. 4, given the annotations
(above). Green indicates a correct label, red is incorrect, and blue is partially correct. Inversions are indicated by the
figured bass after each colon.

Figure 3. A confusion matrix of the CSM-I system’s chord
classifications on the internal corpus. “Incorrect Inv.” in-
dicates the proportion of otherwise correct labels with an
incorrect inversion.

type as the corresponding triad (e.g., MM7 chords are clas-
sified as major triads). In the rightmost column, we see that
if the system gets the correct root and type, the inversion is
usually correct, with the largest proportion of errors occur-
ring for diminished and half-diminished 7th chords.

Figure 4 shows CSR split by mode and chord type,
where it performs slightly better in minor keys, particu-
larly for minor triads and diminished triads and 7th chords.
Overall, it achieves 44.6 CSR in minor keys but only 40.9
in major. Chord inversions also have a large effect on per-
formance, with our system classifying 71.5% of root posi-
tion chords correctly, but only 54.4%, 38.3%, and 40.5% of
1st, 2nd, and 3rd inversion chords correctly, respectively.
This makes sense, because root position chords make up
38% of the corpus, while 1st, 2nd, and 3rd inversion chords
comprise 25.4%, 8.8%, and 3.7% respectively.

An example output of the CSM-I is shown in Figure 2,
for bars 3–5 of Grieg’s Notturno, Op. 54, No. 4. The anno-
tations (in C major) are shown above the staff, and outputs
are below it. The outputs are correct in bar 3, finding the
applied dominant V2/IV as a key change to F. In bar 4,

Figure 4. The CSM-I system’s full CSR (including key
and chord) per mode and chord type on the internal corpus.

it incorrectly classifies the augmented A[ triad (a [VI, un-
common prior to the late Romantic era) as a C major triad,
ignoring the A[. It over-segments bar 5, finding an inverted
A minor triad (ignoring the F]) followed by an F] dimin-
ished triad (since it has missed the C from the downbeat),
and modulates to G major (essentially, it has classified this
chord as a ]viio/V, which is possible, but incorrect here).

4. CONCLUSION

We have presented a modular system for the harmonic
analysis of musical scores. We showed how the system’s
modularity, in addition to the theoretical benefit of mod-
elling each aspect at the appropriate level, makes its output
interpretable, describing where this property helped in its
design. All code and models are available online. 3

In future work, we will leverage the system’s modular-
ity further. We intend to apply the system to MIDI and au-
dio input, in which case we would only need to retrain the
CTM and CCM with new data, while the other components
can remain the same, or be supplemented with additional
training data from the MIDI and audio files. We also in-
tend to design a human-in-the-loop annotation tool using
this system, where expert annotators can first get the sys-
tem’s output, change some labels as they see fit, and then
re-run the search process, constraining the system to a path
that includes the manually corrected labels. This process
could be faster than the current fully manual approach to
harmonic annotation.

3 http://github.com/apmcleod/harmonic-inference
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ABSTRACT

Deep learning approaches to automatic chord recogni-
tion of symbolic music have improved the state of the art,
but they still face a common problem: how to deal with
a vast chord vocabulary. The naive approach of writing
one output class for each possible chord is hindered by the
combinatorial explosion of the output size (⇠10 million
classes). We can reduce this complexity by several orders
of magnitude by treating each label (e.g. key or chord qual-
ity) independently. However, this has been shown to lead
to incoherent output labels. To solve this issue we intro-
duce a modified Neural Autoregressive Distribution Esti-
mation (NADE) as the last layer of a Convolutional Recur-
rent Neural Network. The NADE layer ensures that labels
related to the same chord are dependently predicted, and
therefore, enforce coherence. The experiments showcase
the advantage of the new model both in chord symbol pre-
diction and functional harmonic analysis compared to the
model that does not include NADE as well as state-of-the-
art models.

1. INTRODUCTION

Harmony, together with counterpoint and form, is tradi-
tionally considered to be one of the three main parts of mu-
sical composition in Western classical tradition [1]. This
tradition is based on what is known as the tonal system,
that is, a “theoretical formulation of certain psychological
or physiological constraints upon the perception of sounds
and their combination" [2][p.206]. Their musical effect
can be summarised in a few rules that are followed by most
Western music (and also some non-Western music) [3].

Nevertheless, harmonic interpretation of music is com-
plex due to its ambiguity. The same audio content can
acquire different perceptual significance depending on its
context: As a simple example, the chord symbols A] major
and B[ major are acoustically indistinguishable but used in
different contexts, hence the different spelling. Therefore,
it is necessary to study the chord not as single entities but as
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Figure 1: The proposed model, frog, analyses an input
score in symbolic format and outputs the functional har-
monic analysis through autoregressive predictions of its el-
ementary components at each time step.

a progression. This is usually done with the help of the Ro-
man numeral notation (RN), which describes every chord
in relation to the local key. RNs provide insights into har-
mony theory by exposing its invariances and symmetries.
They highlight the function of each chord inside the pro-
gression and, for this reason, Automatic Chord Recogni-
tion (ACR) with RNs is also known as functional harmonic
analysis.

The problem of harmony has a long academic history,
but remains central to modeling and understanding most
music, including modern pop; indeed, harmony is one of
the main categories in which submissions to the 2020 AI
Song Contest were judged. [4]. Therefore, it is natural that
computational analysis of harmony has attracted so much
attention in the MIR community.

Previous work. There is a relatively vast body of work
on ACR from audio signals (see [5] for a literature review
on the topic). All these methods address chord symbol
recognition instead of functional harmonic analysis. From
the very first article published on the subject, the idea that
has dominated the field is to interpret the audio signal using
chroma features [6]. This amounts to identifying and an-
notating the pitch content of the audio signal at each given
time frame. Given how close the resulting audio represen-
tation resembles a symbolic music score, it is a bit puzzling
to see how little attention symbolic ACR has received.

There are only a few works, to our knowledge, that ex-
plicitly perform ACR on symbolic scores. Kröger et al. [7]
collect a few early approaches, and a more recent one is
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presented in [8]. However the interest on the topic has
increased in more recent years, probably driven also by
the growing attention to symbolic music for music gen-
eration [4, 9–13]. Symbolic music makes a perfect entry
point for the harder task of functional harmonic analysis
because, with respect to audio data, it offers a much more
direct representation of the musical content. There are two
popular MIR approaches to functional harmonic analysis:
One uses generative grammars [14, 15], the other a deep
learning based data-driven approach that can learn rules
more flexibly [16–19].

Known issues in ACR. One difficult issue that prevents
naive rule-based approaches from being successful is the
identification of non-chord tones: Music often contains
notes that are not part of the core harmony and designing
a system that knows when to ignore these anomalies is a
complex task to define algorithmically [20]. Specifically
for the task of functional harmonic analysis, there is also
the problem of automatic key recognition, a subject that
is well known in the community [21–24] but still largely
unsolved, partly due to ambiguities in its definition [24].

Finally, an important issue is that the number of pos-
sible output classes is very large. Even considering only
the most common chords, the possibilities easily exceed
100,000. This is because there is a combinatorial explo-
sion due to the presence of several elementary labels asso-
ciated with each possible chord. In the case of functional
harmonic analysis, these labels are key, tonicisation, de-
gree, quality, and inversion. For chord symbol prediction,
instead, they are root, quality, and inversion. To reduce the
dimensionality of the output space, it has been proposed
to predict each label independently [16–18]. However, this
approach often leads to incoherent output labels. For ex-
ample, for a harmony that can be interpreted as either A mi-
nor or C major, a system without coherence could equally
well output A major or C minor.

Our proposal. We propose a chord recognition al-
gorithm (CRA) —which we nickname frog after the
sound they make in Italian, cra-cra— that analyses chords
through separate but coherent predictions of their elemen-
tary labels (see Fig. 1). This is achieved through the ad-
dition of a Neural Autoregressive Distribution Estimator
(NADE) [25–27] to a CRNN architecture. At each time
step, we provide the NADE with a fixed ordering of the
chord’s elementary labels from which it sequentially sam-
ples, conditioning each sampling probability on the out-
come of the previous labels. We release the code open-
source and make it available at [28].

We evaluate the output of frog against two state-of-the-
art models on a large dataset of functional harmonic anal-
yses, containing over 300 scores that span over two cen-
turies, from Monteverdi to Brahms. Due to the similarity
in data representation, mentioned above, we believe our
system to be extensible to the audio domain [17, 19].

2. DATA REPRESENTATION AND CORPUS

In RN notation, each chord is defined by its relation with
the tonic of the local key. The basic components of RNs

Figure 2: Example RN analysis of the Prelude in C from
JS Bach’s Well-Tempered Clavier, book first.

are key, degree of the scale on which the chord is built
(expressed in Roman numerals), quality of the chord (i.e.,
the type of triad plus any possible extension), and inver-
sion (i.e., which of the notes is the lowest). For example,
from the RN analysis in Fig.2 we see the annotation V65
at the third measure. In the key of C (see first measure),
this corresponds to a G (fifth degree of the scale) dominant
seventh chord in first inversion (numerals 65). 1

Sometimes, chords are borrowed from other keys for a
very short period of time and introduce some colouring in
the harmonic progression. For example a D7 chord con-
tains an F]. Whenever we find such a chord in the key of C
resolving to a G chord we identify it as a dominant chord
borrowed from the neighbouring key of G and encode it
as V7/V. Those borrowed chords are known as tonicised
chords, and the tonicisation defines the relation between
the local key and the temporary tonic [24]. The boundaries
of this relation are sometimes blurry. As Kostka and Payne
put it, "The line between modulation and tonicization is not
clearly defined in tonal music, nor is it meant to be" [30].

The tonicisation completes the set of elementary labels
that we use to describe a chord in the RN notation.

RN encoding. The simplest data encoding for RN re-
quires 24 keys, 7 degrees, 7 tonicisations, and 4 inver-
sions per each quality of chord. In our analyses we use
10 chord qualities: 4 triads (major, minor, diminished,
and augmented), 5 sevenths (major, dominant, minor, half-
diminished, and diminished), and augmented sixth.

When predicting all these labels at once, their sizes mul-
tiply to make a total of 47k possible output classes. If one
wants to add pitch spelling, support for alterations both in
degree and in tonicisation, and a direct prediction of the
root, the total number of combinations climbs up to 22
millions [18]. Also, while the ten qualities cover most
of the cases in classical music, making up for 99.98% of
the dataset we consider, they don’t even come close to de-
scribing the wealth of extensions and colourings that are
commonly used in jazz music [33]. In short, it is not desir-
able to deal directly with such a combinatorially explosive
situation. Making individual predictions for each of the el-
ementary labels that form the chord and then combining
them together, instead, results in a summation of their out-
put sizes, rather than a multiplication, making the problem
tractable again.

Chord symbols. From the RN notation it is possible
to derive chord symbols. Those are defined only by root,
quality, and inversion. For example, a V65 in C major in

1 The details of RN notation are complex and out of the scope of this
paper. See [29] for an introduction to the syntax.
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Dataset Composer Content Crotchets Annotations
Roman Text [29] C Monteverdi 48 Madrigals 15,040 5,828

JS Bach 24 Preludes 3,168 2,107
[31] FJ Haydn 24 String Quartets Movements 9,113 4,815

Various 156 Romantic Songs 22,254 11,851
Various 4 Additional Compositions 2,649 1,165

BPS-FH [17] Lv Beethoven 32 Sonata Movements 23,554 8,615
TAVERN [32] WA Mozart 10 theme and variations 7,833 3,887

Lv Beethoven 17 theme and variations 12,840 6,836
Total 315 scores 96,450 45,104

Table 1: The datasets included in our training / validation data. TAVERN has two alternative annotations: We have only
included the anonymous annotator A.

RN notation would be written in chord symbols, follow-
ing the same encoding as mir_eval [34, 35], as G:7/3. All
information about local key and tonicisation is lost.

Datasets. In recent years, several datasets of RN anno-
tations have been published. Up to our knowledge, they
have all been collected and converted to the “rntxt" data
format [29] inside the GitHub repository in [36]. We re-
port the size and content of the corpora we used in Ta-
ble 1. 2 We provide the dataset parsing code, including
fixes on known issues, in [28].

3. NADE FOR HARMONIC ANALYSIS

Given a musical context, that is, the portion of score be-
tween t0 and t1, let us focus on the prediction of a sin-
gle chord at time t 2 [t0, t1]. As we have seen, a chord
can be separated in several labels. This means that we
can represent the output class of the chord as a variable
in a multi-dimensional space. If those dimensions were
all independent, one could project the distribution on each
axis and independently estimate each projection of the dis-
tribution. This is the case, for example, of a rectangular
uniform distribution in a 2D space, which can be writ-
ten as a product of two independent uniform distributions:
p(x, y) = px(x)py(y). But if the distribution is more com-
plex this is no longer true. What one can always do without
loss of generality is to determine an ordering of the dimen-
sions and estimate their value sequentially, conditioning

each dimension given the result of all the preceding ones.

This approach is at the heart of the Neural Autoregressive
Distribution Estimator, or NADE [25–27].

Introduction to the NADE. The NADE is composed
of two parts: a visible layer –which is made of as many
neurons as there are dimensions in the distribution that we
want to encode– and a hidden layer. At each step, the con-
tent of the hidden layer is used to determine the value of
the next neuron of the visible layer. The output sampled
from the newly-updated neuron is then reinjected into the
hidden layer to inform the decision on the next step. The
equations are the following [27]:

p(xd|x<d) = sigmoid(V d · hd + bd), (1)
hd = sigmoid(W<d · x<d + c), (2)

where xd is the output at dimension d, x<d is the vector
of all the outputs before d, V and W are respectively the

2 Due to the restrictive licence under which it is released, we decided
not to include the ABC dataset [37] into our training data.

tensor of hidden-to-visible and visible-to-hidden weights,
b is the vector of biases in the visible layer and c in the
hidden layer. Eqs. 1 and 2 are to be applied iteratively for
all neurons in the visible layer.

Application of NADE to chords. NADE has been ap-
plied to music generation [10, 38], with the visible layer
representing a frame of the piano roll. In the case of har-
monic analysis, the visible layer represents instead a chord
annotation. We separate the annotation along six dimen-
sions (see Sec. 2) and organise them in the following order:
key, tonicisation, degree, quality, inversion, and root. 3 Ev-
ery element in this list is conditioned on all the elements
that appear before it.

This situation is slightly different from the one in the
original NADE formulation since the output is no longer
a collection of binary units, but of categorical units with
a variable number of classes. The same mechanism of
NADE still works, but we have to make a few modifica-
tions to it: First, a softmax layer is applied instead of a
sigmoid to Eq. 1. Then, to adapt to this change in the out-
put size, the weight tensors V d, which was understood to
be unidimensional and of size nh in the original work, is
instead two-dimensional and of size (nd, nh). Similarly,
the shape of W<d is (nh,

P
i<d ni) instead of (nh, d�1).

It is worth emphasising that, in this case, the NADE
is used to autoregressively model the distribution of the
output on the different dimensions of the chord and at a

specific instant of time t.
The final frog model. So far, we only explained how to

introduce correlation in the outputs but not how to derive
those outputs from the inputs. Inspired by [38], we do so
with the help of the biases, that we define as

b = sigmoid(✓v · f(x) + �v), (3)
c = sigmoid(✓h · f(x) + �h).

Here ✓ and � are the weights and biases of a dense layer
connecting an arbitrary function of the inputs f with the
NADE biases.

The function f that we choose is a CRNN since it
has already been proven to work well in this domain

3 The ordering of the output labels has been suggested by music theory,
and namely by the fact that the degree of the Roman numeral directly
depends on the key. For example, the same chord of G major could have
degree I in the key of G or IV in D. Keys are a much broader structure
than single chords and they change more slowly, therefore we decided to
prioritise them in order to avoid an excessive amount of modulations in
the output. Similarly, the degree depends on the tonicisation, since this
latter expresses the temporary key from which the music borrows.
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Figure 3: Schematic representation of the model structure.

[16, 18]. In particular, we follow Micchi et al. [18] and
use DenseNet [39] for the convolutional part and a bi-
directional GRU [40] for the recurrent part, which takes
care of modelling the autoregressive part of the calcula-
tions in the time domain. A fully connected layer is intro-
duced as a bottleneck in between the GRU and the NADE.
We represent the final model, frog, in Fig. 3.

The hyper-parameters of frog have been selected with
the help of hyperopt [41]. In particular, the DenseNet is
made of three blocks: The first block has three convolu-
tional layers, each made of 10 filters of size 7; the other
two blocks are identical, each with 2 layers made of 4 fil-
ters of size 3. The GRU has 178 hidden neurons and is
trained with a dropout of 0.2, while the bottleneck layer
is made of 64 neurons. Finally, the hidden layer of the
NADE is made of 350 neurons. The training is done with
an ADAM optimiser with a learning rate of 0.003.

4. EXPERIMENTAL SETUP

We train our models on the task of functional harmonic
analysis on symbolic scores. The input is a symbolic file
(such as MusicXML, MIDI and **kern) and the output
is an aligned harmonic analysis. We tested frog against
two state-of-the-art models: the original CRNN architec-
ture [18] that we used as a basis for our model and the
improved Harmony Transformer model (HT*) [17, 19].
Our proposed model, frog, has in total 389k trainable
weights, while the HT* has 750k and the original CRNN
architecture only 83k. The size difference between frog
and CRNN is partially due to frog including NADE (93k
weights), as well as the increase of the GRU’s size to 251k
weights for frog. A CRNN model with the same GRU
hyper-parameters as frog, only marginally improved the
outcome compared to the original CRNN model, so the
former was disregarded.

All the trainings use early stopping and typically re-
quire less than 20 epochs. The entire training of frog lasts
for a little more than 2 hours on a recent laptop (no GPU
needed). The loss function is the sum of all the categori-
cal cross entropies applied separately to each output. Each
individual collection in the dataset is split 80/20 between
training and validation data.

4.1 Data encoding

Pitch. For CRNN and frog, we have implemented two dif-
ferent representations of the input data: “pitch class+bass"
and “pitch spelling+bass". Pitch class+bass contains 24 el-
ements, 12 indicating all the active pitch classes (multi-hot
encoded) and 12 indicating the lowest active pitch class
—the bass (one-hot encoded). If pitch class+bass is used,
the output labels root and key are also encoded using only
pitch classes, therefore having respectively size 12 and 24
(the keys can be major or minor).

Pitch spelling+bass, instead, contains 35 elements, that
is, the seven notes times five alterations (double flats, flats,
diatonic, sharps, double sharps). When pitch spelling+bass
is used, the output label root has shape 35 and keys 36 —
this is obtained keeping the 18 keys between C[ and A] in
the circle of fifths 4 in two modes, major and minor.

Meter. We tested whether or not the addition of metri-
cal information has a positive impact on the outcome. In
models that are trained with metrical information (tagged
with “w/ meter” label in Section 5), the input includes two
additional vectors. The first one-dimensional vector is 1
whenever a new measure begins and 0 otherwise, the sec-
ond one-dimensional vector is 1 at the onset of a new beat
and 0 otherwise.

Time. The input data is quantised in time frames of
the length of a demisemiquaver (1/32nd note). Due to the
presence of pooling layers in the convolutional part, the
output resolution is reduced and corresponds to the quaver
(1/8th note).

4.2 Comparison with HT* inputs and outputs

HT* has a slightly different approach. In the original pa-
per, the authors present two separate HT* models. In both
cases, the input is encoded in MIDI numbers following a
piano roll representation and additionally contains infor-
mation of the tonal centroids [42].

The first model is trained for functional harmonic anal-
ysis and has two outputs: the key (24 categories = 12 pitch
classes ⇥ 2 modes) and the RN annotations (5,040 cate-
gories = 9 tonicisations ⇥ 14 degrees ⇥ 10 qualities ⇥ 4
inversions). We use these RN predictions to derive the root
of the chord and therefore its chord symbol representation.

The other model is trained only for chord symbol recog-
nition and has a single output with 25 possible categories:
major and minor triads (possibly with extensions) for all
the 12 pitch classes and a last category for all remaining
chords. We decided not to include the latter model in our
experiments because the output vocabulary is too small to
be fairly compared with the other models. Such a variant
would be comparable to the models we train only in case
it contained the same roots, qualities, and inversions as the
others, for a total of 480 output classes. Moreover, such
chord symbol-oriented HT* can not produce predictions
for functional harmonic analysis because of the absence of
key, tonicisation, and degree.

4 We do not keep all keys from F[[ to B]] because most of those keys
are never used in practice and also because they would require triple flats
and sharps to encode all the diatonic pitches.
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Figure 4: The score of all tested models on selected metrics. The models in shades of red (the first three) are our contri-
butions, the blue ones (last two) are from the state-of-the-art. From left to right: the first three metrics report the ratio of
frames with correct predictions to the total number of frames for the written tasks. The remaining seven report the results
derived from the specific mir_eval tasks.

5. RESULTS

Evaluating the quality of a functional harmonic analysis is
an extremely challenging task. First, there could be dif-
ferent analysis of the same music that are equally accept-
able [18,32] — this is a complex issue that might require a
complete rethinking of our training strategies and we do
not address it in this paper. Second, not all errors are
equally important: one could argue that correctly identi-
fying the inversion is less important than the root or the
quality of the chord. To address this second issue, we re-
port the scores on several metrics and let the readers decide
which one is the most important for their task.

5.1 Analysing the metrics

Remarkably, frog shows better results when compared to
the previous state-of-the-art models (CRNN w/o meter and
HT*) in almost every metric considered (see Fig. 4). No-
tice that, to provide a better comparison with the HT*
model, we report the results of the pitch class + bass input
data representation (see Sec. 4).

Accuracy on Roman numerals. The most complete
metric that we show is the accuracy on RNs. (see Fig. 4,
first two metrics from the left). We present two versions:
in the first (“RN w/o key"), the prediction is considered
correct if and only if tonicisation, degree, quality, and in-
version are all correct — this corresponds to the direct RN
output of the HT* model (see Sec. 4). For this task, frog re-
ports a 52.1% accuracy against the 47.6% that we obtained
for HT* and 44.9% for CRNN (w/o meter, understood
from now on). The new XL-CRNN achieves 47.1%. 5

The second case ("RN w/ key") requires also a correct
prediction of the key. Here, frog still gives a correct pre-
diction in 50.1% of cases against 41.9% that we obtained
for HT* and 40.8% for CRNN (43.1% on XL-CRNN). The

5 The HT* results we report show a significantly higher accuracy than
the 41.7% reported in [19]. We assume that this is due to the larger size
of the dataset we train all three models on.

absolute margin of improvement of frog on the best com-
peting state-of-the-art algorithms goes from 4.5% on RN
w/o key to 8.2% on the more complex task of RN w/ key.

The case of the diminished sevenths. Diminished
seventh are a special chord in music theory because they
divide the octave in 4 equal intervals. Therefore, these
highly symmetrical chords are often used during modula-
tions. This makes them very easy preys to problems of
misclassification due to the lack of coherence. In addition,
they are sporadic chords, making up 4.3% of our dataset,
which makes correct predictions both difficult and impor-
tant. The accuracy with frog makes a big leap from 39.1%
of the HT* model and 42.4% of CRNN to 53.3%, show-
ing a better than average result on these chords (See Fig.4,
metric “d7").

The scores on mir_eval metrics. We then report a se-
lection of the metrics included in the package mir_eval

[35] (see Fig. 4, last seven metrics to the right).
The first conclusion we can draw from these results is

that the HT*, which chooses its output among a large vo-
cabulary of more than 5000 output classes, has the low-
est accuracy of all systems. The more powerful variant
of the ACR-oriented version of HT* that we mentioned in
Sec. 4 would however probably obtain higher scores than
this general-purpose HT* on these metrics.

The second conclusion is that all models perform al-
most equally on segmentation. The segmentation is re-
ported as the minimum of the score on over-segmentation
and under-segmentation and for all models the minimum
score is given by the over-segmentation. This could be due
either to an intrinsic limitation that is common to all ar-
chitectures and that needs yet to be discovered; it could
be also due to the fact that human annotators might prefer
a more synthetic analysis: for example, some notes could
be interpreted as passing tones by humans and considered
instead as structural part of the chord by the algorithm.

The root coherence. As we saw in Sec. 2, it is possi-
ble to derive the root of a chord from its key, tonicisation,
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and degree. The CRNN and frog models predict an addi-
tional redundant output, the root, with the assumption that
it helps the systems learn faster. Comparing the root de-
rived from the RN with the one directly estimated by the
model we can obtain a measure of the internal coherence
of the output labels. CRNN has a root coherence of 78.9%,
compared to frog which has a root coherence of 99.0%.

Adding metrical information. We notice that the in-
troduction of metrical information (cf. Section 4) has a
positive but quite small impact on the results in all metrics.

5.2 Analysing the confusion matrix

In Fig. 5 we report the confusion matrix for the key ob-
tained with frog when trained with pitch spelling. The
keys are arranged according to the circle of fifths (F-C-G-
D...) with the major keys preceding the minor keys, i.e.,
the top-left quadrant shows the major/major correlation
while the bottom-right the minor/minor correlation. The
values reported are the occurrences of each pair ground-
truth/prediction and are presented in a logarithmic scale to
enhance the different scales in prediction errors.
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Figure 5: Confusion matrix for frog on label key.

The mir_eval key metric that we reported in Fig. 4 as-
signs 1 point to all keys that are correctly predicted, 0.5
points to dominant/sub-dominant predictions (G/F instead
of C), 0.3 to relative (a instead of C or vice versa), and
0.2 to parallel (c instead of C or vice versa). Those cases
are the ones reported on the five diagonals super-imposed
to the plot: The main diagonal, in solid line, shows the
correctly predicted keys. Dominant predictions are imme-
diately to its right and sub-dominant to its left. Dashed
lines show the relative predictions, while dotted lines show
the parallel predictions. Some rows and columns of the
confusion matrix are empty: These are the keys that are
supported by the model but never used in the test dataset.

5.3 Using a key oracle

In a separate but related experiment, we have allowed frog
to access a key oracle. We did that by reading the key from
the test data and setting it as the first output of the visible

layer of the NADE. Then, we sampled the remaining labels
autoregressively in the given order, as usual.

We measured the impact of this key oracle on the re-
sults. Without a dedicated retraining, a multi-output model
with no coherence between the different labels, such as the
HT* or the CRNN, would report unvaried accuracies for
all elementary labels except key. This entails that the accu-
racy for the RN w/ key prediction be equivalent to the one
for RN w/o key. However, this is not what happens with
frog: The degree accuracy goes from 72.6% to 80.3% and
the tonicisation from 91.4% to 94.0%. 6 As a result, the
accuracy on RN w/ key jumps to 60.3%, much higher than
the 52.1% we would expect in absence of coherence.

6. CONCLUSIONS AND PERSPECTIVES

We report an advancement in the field of automatic chord
recognition and especially functional harmonic analysis
for symbolic music. The improvements are mostly due
to the use of a modified version of the NADE algorithm,
which allows us to separate the complex and large vocab-
ulary of all possible output classes into a set of elementary
labels (such as key, degree, and quality of the chords) while
retaining strong coherence between them. This effectively
reduces the size of the output classes by several orders of
magnitude and at the same time offers better results, as we
showed in Sec. 5.

A consequence of the reduction in complexity of the
output labels is the increased flexibility that this model
gives to the users, as changes to the chord labels do not
dramatically alter the size of the model nor the complex-
ity of the task. For example, one could easily introduce
a larger amount of chord colourings, which makes frog a
better candidate for analysing music such as jazz.

A lot still remains to explore on the details of this ap-
proach. We kept the six output labels that had already been
presented in previous articles [16–18], where they had
been used in absence of the coherence-enforcing NADE
layer. Now, we expect to be able to improve the quality of
the output even further by tweaking these six labels. For
example, one could study the key by separating tonic and
mode (major / minor); and the degrees could be separated
on two axis: the position on the scale and the alteration.

Concerning the input representation, there are at least
three strains of research that caught our interest: relative
music representation [43, 44], use of Tonnetz for better
convolutions in pitch spaces [45], and better representa-
tions for the metrical strength [46].

Another aspect to test is the introduction of Orderless-
NADE [26]. The OrderlessNADE effectively trains one
separate model for all the possible orderings and then aver-
ages the results obtained. This approach could improve the
quality of the model both directly (because it demonstrates
to be intrinsically superior to our ordered model) and in-
directly (because it allows us to find a better ordering than
the one we proposed).

6 The remaining three labels —inversion, quality, and root— are not
impacted, which is consistent with the fact that they are independent from
the key from a music theory point of view.
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ABSTRACT

This work proposes modeling the beat percept as a 2d prob-
ability distribution and its inference from musical stimulus
as a new MIR task. We present a methodology for col-
lecting a 2d beat distribution of period and phase from free
beat-tapping data from multiple participants. The method-
ology allows capturing beat-tapping variability both within
(e.g.: mid-track beat change) and between annotators (e.g.:
participants tap at different phases). The data analysis
methodology was tested with simulated beat tracks as-
sessing robustness to tapping variability, mid-tapping beat
change and disagreement between annotators. It was also
tested on experimental tapping data where the entropy of
the estimated beat distributions correlated with tapping dif-
ficulty reported by the participants. For the MIR task, we
propose using optimal transport as an evaluation criterion
for models that estimate the beat distribution from musi-
cal stimuli. This criterion provides better scores to beat
estimations closer in phase or period to distributions ob-
tained from data. Finally, we present baseline models for
the task of estimating the beat distribution. The method-
ology is presented with aims to enhance the exploration of
ambiguity in the beat percept. For example, it exposes if
beat uncertainty is related to a pulse that is hard to produce
or conflicting interpretations of the beat.

1. INTRODUCTION

The beat is a cognitive percept fundamental for the human
musical experience. It is often conceived as an isochronous
pattern expressed by tapping with a hand or foot. Men-
tally, the location and duration of musical events are de-
fined with respect to it. It is also subjective as different
listeners may select different tapping speeds or locations
when producing the beat [1–3]. Also, how easily the beat
percept is perceived – its pulse clarity – may vary accord-
ing to the musical stimulus [4].

© M. Miguel and D. Fernández Slezak. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Miguel and D. Fernández Slezak, “Modeling beat un-
certainty as a 2D distribution of period and phase: a MIR task proposal”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

The uncertainty on whether there is a perceived beat and
which is finally perceived is also part of the music expe-
rience. For example, pulse clarity has been related with
higher valence [5] and arousal [6]. Pulse clarity has also
been shown to correlate with the degree and variability
of movement [7, 8]. Overall, uncertainty on the musical
structure is considered relevant for the analysis of emo-
tion in music. Theories on the mechanisms through which
music produces affective responses point towards unful-
filled expectations. We listen to music and predict how
it will develop. If such predictions are defied, an affec-
tive response emerges [9–11]. Predictions on the musical
structure include how its events organize in time, which is
arranged based on the periodicity of the beat. On top of
the beat, other hierarchical structures are conceived, such
as the downbeat and the meter. These, in turn, organize
the length and location of repetitions and sections of a
song [12, 13]. With this in mind, both the frequency and
the location of the beat are of relevance.

Moreover, the certainty of our predictions is important
as well. It is considered that prediction error is what causes
affective response [14]. If no structure is predicted with
high probability, no outcome is considered a prediction er-
ror [15]. In order to build models to analyze expectations
with respect to the timing of musical events, we need to
model which beat percepts emerge in listeners, if there are
conflicting interpretations, and what is the certainty about
them.

Ambiguity in the interpretation of the beat has been an-
alyzed experimentally only by looking into how listeners
select different tapping speeds. [16] analyzed subjective
tempo on various musical stimuli, concluding that, on top
of the music’s base tempo, its structure and accents can
also influence the selected tapping tempo. [1] observed that
listeners may have different strategies to select a tapping
speed. Some can comfortably tap at the fastest consistent
pulse of the music, while others had a tendency towards a
slower subdivided pulse.

From a Music Information Retrieval perspective, the
tempo estimation task aims to estimate the most likely
tapping speeds. For example, in the MIREX tempo esti-
mation challenge, algorithms must provide the two most
salient tempos together with their saliency [17] (for a re-
view see [18–20]). Another related MIR task is beat track-
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ing. The task aims to estimate, from a musical surface,
the time points where a listener would tap. Several beat
tracking models have been introduced, many within the
beat tracking task in MIREX (for a review, see [21, 22]).
These models find the best beat track, but rarely produce
information on other possible interpretations.

Considering these limitations where only tempo is ana-
lyzed or only one possible beat is estimated, this work pro-
poses modeling the beat as a 2D probability distribution of
tempo and phase. The probability modeling allows captur-
ing both tempo and location of the beat, whether more than
one interpretation is likely, and overall beat certainty. Fur-
thermore, we propose to construct the inference of the beat
distribution as a MIR task. This constitutes an extension
of the tempo estimation task, as it yields more informa-
tion about the possible interpretations of the beat and their
saliences. The extended information is relevant to under-
stand which metrical interpretations are likely for a listener
and how certain she might be, which is deemed important
for the analysis of affect in music. We present the pipeline
to construct this task, including how to obtain these dis-
tributions from the listener’s tapping data and a proposal
evaluation metric for models estimating the distributions
from musical stimuli.

In the next sections, we present the formalisms of the
proposed task. First, we define the 2d distribution and
present the algorithm for obtaining it from tapping data.
Next, we assert that the definition and the algorithm cap-
ture relevant beat situations from simulated tapping data.
The algorithm is also applied on experimental tapping data
where participants were required to tap to a self-selected
beat on rhythms of varying complexity. We describe the
experiment and show how different beat uncertainty sce-
narios are present from the data and that a more spread
distribution correlates with reported tapping difficulty. Fi-
nally, we present an evaluation metric for MIR models pro-
ducing these distributions from musical stimuli. We also
provide 3 baseline models and their scores on the experi-
mental dataset.

2. BEAT AS A 2D DISTRIBUTION

We propose modeling the beat percept as a 2d probability
distribution of period (or tempo) � and phase ⇢. Such dis-
tribution allows illustrating the beat variability commonly
expressed in beat-tapping data. We consider � to be in
some time unit in a bounded range reasonable for beat per-
ception. A proposed range is 250 ms (240 bpm) to 1800
ms (33 bpm) [1]. We consider ⇢ 2 [0, 1] as a relative loca-
tion within the period. The methodology estimates a dis-
cretized probability distribution p(�, ⇢|stimulus) from the
beat-tapping data of multiple participants while listening
to the stimulus. For example, in the simulated data (section
2.1.1), we discretize the support every 25 ms for the period
� and 0.05 for the phase ⇢. Examples of the 2d distribution
for different rhythmic stimuli are presented in Figure 1.

Let us consider the tapping data as a set of tap times se-
ries {tji}, with j indicating the participant (j = 1, . . . , J),
and i indicating the tap index (i = 1, . . . , Nj), where J is

Figure 1: Example beat distributions from experimental
tapping data for various rhythmic stimuli. The distribu-
tions depict different beat perception situations, such as
high and low variability (top left and right, respectively),
one period with multiple phases (bottom left) or one main
phase but multiple periods (bottom right).

the number of participants and Nj the number of taps by
participant j. Our aim is to calculate the evidence for each
beat bin present in the data. The process is illustrated in
Figure 2. First, taps are split into segments {sj,ki }Sj,k

i=1 of
similar inter-tap intervals (Figure 2a). From each segment,
a tactus, with inter-beat interval (IBI) � and phase relative
to the beginning of the stimuli ⇢, is estimated with a linear
regression. The period and phase are obtained using only
the tapping data, without requiring a true beat level or a ref-
erence beat sequence. Next, the segment is assigned to a
bin in the beat distribution (Figure 2b). To quantify the ev-
idence provided by a segment, the stimulus is segmented
into time frames which are assigned to overlapping seg-
ments (Figure 2a). The final distribution histogram is gen-
erated by adding the frame counts assigned to each beat
bin by each segment and then normalizing (Figure 2c).

Taps are segmented by iterating them in order. The first
two tap times constitute the first segment. Then, the seg-
ment is extended by inspecting if the distance between the
last tap in the segment and the following tap time (�⇤)
is similar to the average inter-tap interval of the segment
( ¯�sj,k) within a threshold �th. The criterion is expressed
in equation 1. If the equation holds, the segment is ex-
tended with the new tap time. Otherwise, a new segment
is initiated with the next two tap times. �th is defined as
0.175 based on the Continuity metric used as evaluation in
the beat tracking task [23].

|�⇤ � ¯�sj,k|
¯�sj,k

 �th (1)

With each tap segment {sj,ki } defined, we estimate
which beat is being produced during the segment. To do
so, we perform a linear regression with parameters ↵ and
� minimizing the mean squared difference between sj,kx

and (↵ + � ⇥ (x � 1)) (with x = 1, . . . , Sj,k
i ). The

beat selected for the segment corresponds to the beat bin
of the discretized distribution containing (� = �, ⇢ =
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(a) Segmented participants taps. (b) Segments assigned to tac-
tus beats (with assigned frame
count).

(c) Final beat distribution for
the section stimulus.

Figure 2: Illustration of the process to obtain a beat distribution from tapping data. (a) presents tapping data from 5
participants (one per row) on a section of a stimulus. Participants taps are clustered in segments {sj,ki } of similar inter-
tap intervals. From each segment, a tactus (⇢, �) is obtained with a linear regression. The stimulus is divided into time
frames, which are assigned to the overlapping tapping segment (if any). (b) the tactus of each segment is mapped onto the
distribution support. Segments contribute to their tactus bins according to the number of frames assigned to the segment
(in parenthesis). (c) shows the distribution generated from the process.

(↵ mod �)/�). The estimated values correspond to the
inter-tap interval and location with respect to the beginning
of the rhythm. The segmentation process allows having
more tapping information to inform the parameter estima-
tion in spite of tapping variability.

Finally, the duration of the stimulus is split into time-
frames. Each time-frame is assigned the beat bin of the
segment that overlaps with it. If no segment overlaps with
the frame, the frame is ignored. The beat distribution
p(�, ⇢|stimulus) is defined as the normalized histogram of
frame counts for each beat. Figure 1 presents examples of
this procedure applied to data from a tapping experiment
(the experiment and the adaptations to the procedure are
described in section 2.1.2).

2.1 Evaluation

2.1.1 Simulated data

We evaluated the methodology by producing simulated tap
time series from a selected beat and then calculating the
beat distribution with the procedure presented in the previ-
ous section. First, we asserted that distributions obtained
were robust to tapping variability. Second, considering a
listener may change the beat they are tapping, we exam-
ined whether the probability of two different beats is pro-
portional to the time each beat is produced. Third, con-
sidering data from various listeners, we assessed that the
probability of two beats is proportional to the number of
listeners tapping to it. For the experiments we used beat
bins with period � 2 [250ms, 1800ms] with 25ms incre-
ments, and phase ⇢ 2 [0, 1] with steps of 0.05.

For the first evaluation, we created simulated beat-
tapping series with tapping variability and evaluated
whether the beat distribution obtained had most of the
probability mass in the expected beat. To produce each

simulated tapping series, a beat was defined by first ran-
domly selecting a beat bin and then drawing a specific
period � and phase ⇢ values within the bin. With the se-
lected period and phase, tap times were generated starting
at ⇢ ⇥ � and then adding � time for each successive tap
until reaching 30 seconds. Tapping variability was con-
trolled with parameter � and was incorporated into the tap
series by adding Gaussian noise N(0, � ⇥ �) to each tap
time. We tested 20 tapping variability magnitudes, with
� 2 [0, 0.08]. Tapping variability has been reported to
range from 2% to 4%, depending on inter-beat interval
duration and musical training of the listener [24, 25]. It
may be as high as 5% for very slow tempos (below 60
bpm) [26]. We selected 100 random beats and used each
to produce 20 tapping series, one for each value of �.

Figure 3 presents the average probability for the orig-
inal beat bin at each �. Since the variability in the tap-
ping times might yield a different beat bin, we evaluated
whether the probability mass was captured by neighboring
phase and period bins. We see the probability of the origi-
nally selected beat bin decays with tapping variability, but
up to 5% it is mostly captured by the immediate neighbor-
ing phase bin. The probability of the original bin together
with the neighboring period bins is practically the same as
the original bin, meaning that probability mass is rarely
transferred to a different tempo.

The methodology is expected to work in free-tapping
situations where the listener may stop and even change the
beat she is tapping during the musical excerpt. The seg-
mentation and framing procedure is used to capture these
changes. We evaluate whether this behavior is captured by
simulating tapping series where the beat is changed mid-
tapping. Each series is generated by selecting two random
period and phase values as before, selecting the propor-
tion of time the tapping series will produce each period
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Figure 3: Evaluation on whether a beat distribution ob-
tained from simulated tapping data assigns the probabil-
ity to the original beat bin, with respect to tapping vari-
ability (�). Most probability mass is given to the original
bin, although it decays with variability. Up to 5% variabil-
ity, most of the probability is assigned to either the origi-
nal bin or its neighboring phase bins. Little probability is
transferred to nearby period. Values are presented as mean
probability for 100 simulations per sigma value, along with
the 90% confidence interval.

Figure 4: Probability of the first and second selected beats
with respect to the proportion of time (left) or series (right)
each beat is produced. Probability for both beats are shown
to be linearly related to the amount of time or series ex-
pressing this beat. Values are presented as mean probabil-
ity for 50 simulations per proportion value, together with
90% confidence intervals.

and phase, and then generating the tapping for the first and
second beat for the defined proportion of the time. From
these tapping series, the beat distribution is obtained and
the probability assigned to the two selected beat bins is ob-
served. Here, tapping series are generated with 3% tapping
variability and are also 30 seconds long.

Similarly, the methodology is designed to capture the
proportion in which different beats are selected by a set
of listeners. In the last simulation, we produced a set of
tapping series where a proportion was generated based on
one beat and the rest on a second one. For each simulation,
the beat distribution is obtained by counting the number
of frames assigned to each beat bin from the complete set
of tapping series. Then, the probability of each beat, with
respect to the number of simulated participants producing
that beat, is observed. Tapping series were also generated
with 3% tapping variability and 30-second duration.

In Figure 4 we present the results of the simulations.
In both cases, the probability of the first selected beat de-
cays linearly with the proportion of time or series the beat
is produced. Equally, as the proportion of time or series
expresses the second beat, its probability increases.

2.1.2 Experimental data

Finally, the proposed methodology was used to obtain 2d
beat distributions from free-tapping data. In Figure 1 we
present examples of the beat distribution for four stimuli.
Data was collected on an on-site experiment where par-
ticipants were asked to tap on a sensing surface to a self-
selected beat while listening to rhythmic stimuli of varying
rhythmic complexity [27]. The experiment was designed
to capture subjective beat. Participants were instructed to
tap to any self-selected beat and were allowed to stop or
change their tapping throughout the stimulus. After each
trial, participants rated how difficult the tapping task was
with values between 1 (easy) and 5 (hard). Stimuli con-
sisted of repeating rhythms produced using identical click
sounds. A total of 33 rhythmic passages were presented to
each participant. To use rhythms with validated complex-
ity, 11 of the rhythms were taken from [3] and 7 from [28].
5 were isochronous beats at 150, 200, 250, 500, 800 ms
inter-beat intervals. 10 new patterns were created from
four beat patterns (in contrast with 8 from [3] and [28])
to have participants familiarize with the task. 7 of these
were always presented at the beginning of the experiment.
All other stimuli presentations were randomized. With the
exception of the isochronous stimuli, pattern-based stim-
uli were presented varying the notated inter-beat interval
between 450 and 550 ms. IBIs were pseudo-randomized
avoiding using the same one in two consecutive trials.
Each stimulus consisted of repeating the rhythmic pattern
to last a minimum of 24 seconds (and up to 31 seconds).
From 35 total participants, 30 remained after filtering par-
ticipants that were deemed to not understand the concept
of beat. They were selected as participants who replicated
the stimulus instead of defining a beat in more than three
trials. 6 participants were female, and 24 are male. The
overall average age was 28.27 (sd = 7.94) and overall mean
musical training was 5.43 years (sd = 4.62).

From the data collected, we gathered a training subset
to be used in the exploration performed in this work. 15
participants were selected to uniformly represent the range
of training years. The rhythmic stimuli subset contains all
the isochronous excerpts, 5 from [3], 3 from [28] and 4
from the newly proposed rhythms. Rhythms subsets were
selected to uniformly represent the reported tapping diffi-
culty range. In the experimental data, tap times are normal-
ized to the inter-beat interval used during the experiment.
This allows comparing presentations of the same stimulus
at different IBIs. For the analysis in Figure 1, the beat
distribution was obtained with period � 2 [0.1, 4.5] with
increments of 0.01. The figure shows how inferred beats
concentrate on specific areas of the distribution. For exam-
ple, we can observe that the tapping period is most often
the stimulus’ inter-beat interval and only in some rhythms
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double-period tapping is also present. The distributions
also show that the tapping phase is commonly near 0 (or 1),
indicating synchrony with the stimulus’ beat. This is not
always the case, as in the lower left subfigure, anti-phase
tapping (phase nearby 0.5) is more prevalent, indicating
that participants considered this beat more likely than the
one originally defined in the stimulus.

We also assessed whether the spread of the probability
mass was related to the tapping difficulty reported by the
participants. We estimated tapping difficulty from the dis-
tribution by calculating its entropy. Reported tapping dif-
ficulty for each stimulus was obtained as the mean of the
per-participant z-standardized difficulty scores. Spearman
rank’s correlation was calculated on the training subset, ig-
noring the isochronous stimuli as they were not intended
to express rhythmic complexity. The correlation yielded
r = 0.88 and p < 0.001.

3. EVALUATION METRIC

We propose estimating the probability of different beats
being perceived as the pulse of a musical stimulus as a new
MIR task. An empirical discrete beat distribution (consid-
ered as period and phase) is obtained from tapping data
produced by listeners. A model for this task would be
required to produce estimates of the probability of each
beat from the musical stimulus. To evaluate the model,
both distributions must be compared. We propose using
the Earth Mover’s distance (or Wasserstein distance) for
this comparison [29]. This distance evaluates how much
probability mass must be moved in order to convert one
distribution into the other. It considers two distributions
with probability mass nearby to be less distant than if their
mass is further apart. In contrast to the more commonly
used Kullback-Leiber divergence, the Earth Mover’s dis-
tance does not require both distributions to have non-zero
mass on the entire support. It also takes into account the
topology of the support as it allows defining a distance be-
tween the bins. We consider the distance between beat
bins (�i, ⇢i) and (�j , ⇢j) in the distribution’s support as the
Manhattan distance between the bins. We propose adding
a multiplier M� to the distance between periods to penalize
the difference in the period more than in the phase. Here,
we use M� = 5. We also modify the distance calculation to
allow a phase value close to 1 to be also close to 0, given
the circularity of the phase [2, 30]. We present the used
topology in equation 2.

d((�i, ⇢i), (�j , ⇢j)) =|�j � �i|⇥M�+ (2)
min(|⇢j � ⇢i|, 1� |⇢j � ⇢i|)

To test the proposed distance we generated pairs of dis-
tributions from increasingly distanced phase bins. Figure
5 presents the mean Earth Mover’s distance and Kullback-
Leiber divergence calculations for 20 simulations at each
possible phase distance. We observe that the proposed dis-
tance increases linearly with the distance in phase between
the distributions and then decreases when the distance in

Figure 5: Distance metrics for two distributions only
shifted in phase. The Earth Mover’s distance is propor-
tional to the shift in phase and responds to the circularity
of phase. When the shift is greater than 0.5, the distance
decreases.

phase is reduced by the corresponding circularity. Con-
trastingly, the Kullback-Leiber divergence fails to capture
the proximity of the distributions.

3.1 Baseline models

We now present three reference models to provide an
overview of the expected distance values for the task, as
well as exemplify a first approach. The models are de-
signed to take as an input a series of onset times, equivalent
to the stimuli used in the experiment. The models are also
expected to provide a discretized beat distribution, consid-
ering the support described in section 2.1.2. We describe
the models and present their scores on the training subset.

The first reference model is the uniform distribution on
any beat, i.e.: p(�, ⇢|stimulus) / 1. Although a uniform
distribution might not have the largest distance to the target
distribution, we will use its distance to express the scores
of the models with respect to it. In case the estimated distri-
bution is more distant than a uniform distribution, the score
will be higher than 1. The second reference model is fixed
on phase 0 and only provides non-zero probability for peri-
ods �1..4 = {0.5, 1, 2, 4}. The model, named Phase Zero,
is expressed in equation 3. The probability Di provided to
each period was calibrated by fitting a Gamma distribution
to the distribution of tempos selected by the participants in
the isochronous stimuli of the training subset.

p( �, ⇢ | stimulus) /
(
Di if � = �i and ⇢ = 0

0 otherwise
(3)

The third reference model, named Beat, assigns proba-
bility proportional to a beat fitness score multiplied with a
prior distribution on the period. The fitness score projects
the given period and phase throughout the length of the
stimulus and evaluates whether the projected beat times
coincide with musical onsets. Coincidence is measured
as the density of a Gaussian window centered on the ex-
pected beat time with variance �w = 0.1⇥� [31]. To avoid
favoring faster or slower tempos, the number of correctly
predicted beat times is multiplied by the number of cor-
rectly predicted onset times [22]. The model is described
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Distance Rel. Dist.
Model

Beat 6.740872 0.398315
Phase Zero 7.307728 0.460842
Uniform 17.895050 1.000000

Table 1: Evaluation scores on training subset for reference
and baseline models. Distance is the mean Earth Mover’s
distance of each estimated to each empirical beat distribu-
tion. Relative Distance is the mean distance, relative to the
distance of the uniform distribution, per stimulus. Lower
values mean a closer estimation to the target distribution.

in equation 4. The prior for the period is given by the same
Gamma described above. The distribution provided by this
model is later filtered by turning to zero all beat bins where
probability is below the 95th percentile, as only the most
salient beats are expressed by a listener’s tapping.

p( �, ⇢ | stimulus) / score(�, ⇢, stimulus)⇥ prior(�) (4)

score(�, ⇢, s) =
[
P

j maxb W ((�b � pj)/(0.1�))]2

|p|⇥ |�|

with �b the onset times and pj the projected beat series.

In Table 1 we present the average Earth Mover’s dis-
tance for each model’s beat distribution to the tapping data.
The table also presents the mean relative distance when
compared with the uniform model for each stimulus. In
this evaluation, the isochronous stimuli are excluded from
the evaluation since they were used to calibrate the period
prior. The table shows how assigning most of the distri-
bution to phase zero reduces the relative distance from the
uniform distribution by half. The Beat model adds a 6%
improvement. In Figure 6 we present a sample of esti-
mated and empirical beat distributions from the training
dataset for the Beat model. We present the two closest and
two most distant estimations in the dataset.

4. DISCUSSION

We propose a new MIR task consisting of estimating the
probability distribution of which beats are perceived by lis-
teners for a musical stimulus. For this task, the beat is
modeled as a 2d distribution of period and phase. The pro-
posal includes a methodology for obtaining the distribution
from tapping data of listeners and an evaluation metric for
comparing estimated and empirical distributions.

The entire pipeline behavior was assessed on simulated
tapping data. It was also tested on experimental data from
listeners tapping to a self-selected beat while exposed to
rhythms of different complexity. We also propose a set of
reference models that estimate the beat distribution from
the stimulus.

Modeling the beat considering period and phase extends
previous analyses of beat ambiguity that mainly focused on
tempo. The phase adds another dimension, as some beat

Figure 6: Sample of the two best (top rows) and two
worst (bottom rows) beat distribution estimations by the
beat model (left column).

ambiguity comes from where to tap, instead of at which
speed. The modeling also allows a more detailed analy-
sis of the concept of pulse clarity. For example, low pulse
clarity may be due to multiple competing beat interpreta-
tions or to a single beat that is hard to follow. In the 2d
distribution, the first scenario would be portrayed as mul-
tiple separated bins with equal probability and the second
one as having all probability mass concentrated, but with
no clear mode. Furthermore, the pipeline can be applied to
tapping data from single or multiple listeners, exhibiting
individual beat ambiguity or group disagreement.

This proposal can be further developed into modeling
the distribution of beat series. In the beat tracking task,
models are required to produce one beat track and there-
fore cannot capture situations where annotators disagree
because more than one beat is reasonable. Another limita-
tion to this approach is that it does not allow modeling non-
isochronous beats. This would require a richer description
of the beat which may not be as simple to visualize.

Finally, the focus on both dimensions of the beat, period
and phase, is required for models of the meter. The added
focus on uncertainty can be carried onto meter, yielding
uncertainty on the whole rhythmic interpretation. This, in
turn, can be used for the analysis of expectation in music
as a mechanism driving affective responses. Most recent
theories on this mechanism assign a key role to prediction
error, which takes into account the certainty with which
predictions of future events are made [11, 14]. Estimat-
ing the certainty of different beat estimations constitutes
an initial step in this direction.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

457



5. REFERENCES

[1] P. A. Martens, “The Ambiguous Tactus: Tempo,
Subdivision Benefit, And Three Listener Strategies,”
Music Perception, vol. 28, no. 5, pp. 433–448, 06
2011. [Online]. Available: https://doi.org/10.1525/mp.
2011.28.5.433

[2] E. W. Large, J. A. Herrera, and M. J. Velasco, “Neural
networks for beat perception in musical rhythm,”
Frontiers in Systems Neuroscience, vol. 9, p. 159,
2015. [Online]. Available: https://www.frontiersin.org/
article/10.3389/fnsys.2015.00159

[3] W. T. Fitch and A. J. Rosenfeld, “Perception
and Production of Syncopated Rhythms,” Music
Perception, vol. 25, no. 1, pp. 43–58, 09 2007.
[Online]. Available: https://doi.org/10.1525/mp.2007.
25.1.43

[4] O. Lartillot, P. Toiviainen, and T. Eerola, “A matlab
toolbox for music information retrieval,” in Data Anal-
ysis, Machine Learning and Applications, C. Preisach,
H. Burkhardt, L. Schmidt-Thieme, and R. Decker, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 261–268.

[5] W. Trost, S. Frühholz, T. Cochrane, Y. Cojan,
and P. Vuilleumier, “Temporal dynamics of musical
emotions examined through intersubject synchrony
of brain activity,” Social Cognitive and Affective
Neuroscience, vol. 10, no. 12, pp. 1705–1721, 05
2015. [Online]. Available: https://doi.org/10.1093/
scan/nsv060

[6] G. Luck, P. Toiviainen, J. Erkkilä, O. Lartillot,
K. Riikkilä, A. Mäkelä, K. Pyhäluoto, H. Raine,
L. Varkila, and J. Värri, “Modelling the relationships
between emotional responses to, and musical content
of, music therapy improvisations,” Psychology of
Music, vol. 36, no. 1, pp. 25–45, 2008. [Online].
Available: https://doi.org/10.1177/0305735607079714

[7] V. E. Gonzalez-Sanchez, A. Zelechowska, and A. R.
Jensenius, “Correspondences between music and
involuntary human micromotion during standstill,”
Frontiers in Psychology, vol. 9, p. 1382, 2018. [On-
line]. Available: https://www.frontiersin.org/article/10.
3389/fpsyg.2018.01382

[8] B. Burger, M. R. Thompson, G. Luck, S. Saarikallio,
and P. Toiviainen, “Music Moves Us: Beat-Related
Musical Features Influence Regularity of Music-
Induced Movement,” no. July, 2012, pp. 183–187.
[Online]. Available: http://icmpc-escom2012.web.
auth.gr/sites/default/files/papers/183_Proc.pdf

[9] L. B. Meyer, Emotion and meaning in music. Chicago
University Press, 1956.

[10] D. B. Huron, Sweet anticipation: Music and the psy-
chology of expectation. MIT press, 2006.

[11] P. Vuust and M. A. G. Witek, “Rhythmic complexity
and predictive coding: a novel approach to modeling
rhythm and meter perception in music,” Frontiers
in Psychology, vol. 5, p. 1111, 2014. [Online].
Available: https://www.frontiersin.org/article/10.3389/
fpsyg.2014.01111

[12] D. Temperley, “Computational models of music cogni-
tion,” The psychology of music, pp. 327–368, 2012.

[13] C. Palmer and C. L. Krumhansl, “Mental representa-
tions for musical meter.” Journal of Experimental Psy-
chology: Human Perception and Performance, vol. 16,
no. 4, p. 728, 1990.

[14] R. J. Zatorre, “Why do we love music?” in Cerebrum:
the Dana forum on brain science, vol. 2018. Dana
Foundation, 2018.

[15] P. Vuust, M. J. Dietz, M. Witek, and M. L. Kringelbach,
“Now you hear it: a predictive coding model for
understanding rhythmic incongruity,” Annals of the
New York Academy of Sciences, vol. 1423, no. 1, pp.
19–29, 2018. [Online]. Available: https://nyaspubs.
onlinelibrary.wiley.com/doi/abs/10.1111/nyas.13622

[16] D. Moelants and M. McKinney, “Tempo perception
and musical content: What makes a piece fast, slow or
temporally ambiguous?” in Proceedings of the 8th In-
ternational Conference on Music Perception and Cog-
nition, 2004, pp. 558–562.

[17] M. McKinney and D. Moelants, “Deviations from
the resonance theory of tempo induction,” in Con-
ference on Interdisciplinary Musicology, R. Parncutt,
A. Kessler, and F. Zimmer, Eds. Department of Mu-
sicology, University of Graz, 2004, pp. 124–125.

[18] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzane-
takis, C. Uhle, and P. Cano, “An experimental compari-
son of audio tempo induction algorithms,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 14, no. 5, pp. 1832–1844, 2006.

[19] H. Schreiber, F. Zalkow, and M. Müller, “Modeling
and estimating local tempo: A case study on chopin’s
mazurkas,” in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR),
Montreal, Quebec, Canada, 2020.

[20] S. Böck, F. Krebs, and G. Widmer, “Accurate tempo
estimation based on recurrent neural networks and res-
onating comb filters.” in ISMIR, 2015, pp. 625–631.

[21] S. Böck, F. Krebs, and G. Widmer, “Joint beat and
downbeat tracking with recurrent neural networks.” in
ISMIR, 2016, pp. 255–261.

[22] M. A. Miguel, M. Sigman, and D. Fernandez Slezak,
“From beat tracking to beat expectation: Cognitive-
based beat tracking for capturing pulse clarity through
time,” PLOS ONE, vol. 15, no. 11, pp. 1–22, 11 2020.
[Online]. Available: https://doi.org/10.1371/journal.
pone.0242207

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

458



[23] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the
meter of acoustic musical signals,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14,
no. 1, pp. 342–355, 2006.

[24] S. Fujii, M. Hirashima, K. Kudo, T. Ohtsuki, Y. Naka-
mura, and S. Oda, “Synchronization error of drum kit
playing with a metronome at different tempi by pro-
fessional drummers,” Music Perception: An Interdisci-
plinary Journal, vol. 28, no. 5, pp. 491–503, 2011.

[25] B. H. Repp and Y.-H. Su, “Sensorimotor synchroniza-
tion: a review of recent research (2006–2012),” Psy-
chonomic bulletin & review, vol. 20, no. 3, pp. 403–
452, 2013.

[26] B. H. Repp and R. Doggett, “Tapping to a very slow
beat: a comparison of musicians and nonmusicians,”
Music Perception, vol. 24, no. 4, pp. 367–376, 2007.

[27] M. A. Miguel, P. Riera, and D. Fernández Slezak, “A
simple and cheap setup for timing tapping responses
synchronized to auditory stimuli,” Behavior Research
Methods (in press), 2021. [Online]. Available: https:
//doi.org/10.3758/s13428-021-01653-y

[28] D.-J. Povel and P. Essens, “Perception of temporal pat-
terns,” Music Perception: An Interdisciplinary Journal,
vol. 2, no. 4, pp. 411–440, 1985.

[29] G. Peyré and M. Cuturi, “Computational optimal trans-
port,” 2020.

[30] N. I. Fisher, Statistical Analysis of Circular Data.
Cambridge University Press, 1993.

[31] A. T. Cemgil, B. Kappen, P. Desain, and H. Hon-
ing, “On tempo tracking: Tempogram representation
and kalman filtering,” Journal of New Music Research,
vol. 29, no. 4, pp. 259–273, 2000.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

459



A CASE STUDY OF DEEP ENCULTURATION AND SENSORIMOTOR
SYNCHRONIZATION TO REAL MUSIC

Olof Misgeld1,2 Torbjörn Gulz1,2 Andre Holzapfel2
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ABSTRACT

Synchronization of movement to music is a behavioural
capacity that separates humans from most other species.
Whereas such movements have been studied using a wide
range of methods, only few studies have investigated syn-
chronisation to real music stimuli in a cross-culturally
comparative setting. The present study employs beat track-
ing evaluation metrics and accent histograms to analyze
the differences in the ways participants from two cultural
groups synchronize their tapping with either familiar or un-
familiar music stimuli. Instead of choosing two apparently
remote cultural groups, we selected two groups of musi-
cians that share cultural backgrounds, but that differ re-
garding the music style they specialize in. The employed
method to record tapping responses in audio format facili-
tates a fine-grained analysis of metrical accents that emerge
from the responses. The identified differences between
groups are related to the metrical structures inherent to the
two musical styles, such as non-isochronicity of the beat,
and differences between the groups document the influence
of the deep enculturation of participants to their style of ex-
pertise. Besides these findings, our study sheds light on a
conceptual weakness of a common beat tracking evaluation
metric, when applied to human tapping instead of machine
generated beat estimations.

1. INTRODUCTION

Feeling the beat is universal to music experience and pro-
duction, and rhythmical patterns are determinant for mu-
sical genres across the globe. Enculturation concerns
the influence of the surrounding cultural environment on
the development of individuals’ perception, cognition and
behavior. Sensorimotor synchronization (SMS) regulates
how humans synchronize their behavior to time ordered
stimuli in various sensory modalities [1]. The encultura-
tion in musical contexts has been explored in auditory SMS
studies on the perception and reproduction of rhythms in

© O. Misgeld, T. Gulz, A. Holzapfel and J. Miniotaitė . Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: O. Misgeld, T. Gulz, A. Holzapfel and J.
Miniotaitė , “A case study of deep enculturation and sensorimotor syn-
chronization to real music”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

different cultural contexts [2]. However, most SMS stud-
ies have used generated stimuli, and only a small number
of studies – including cross-cultural studies – have had hu-
mans tapping along with real music [3]. In general, re-
search on enculturation challenges the dominance of West-
ern music in music perception and cognition research [4,5].

Previous studies in rhythm perception have been based
on subjects with highly different cultural and ethnic back-
grounds [2–9]. The present study compares musicians
within a similar cultural group: music students at the same
higher music education institution, with specialization in
either one of the two genres. Hence, the present study
adds to previous research on the role of deep enculturation
in rhythm perception by examining sensorimotor synchro-
nization of musicians in two different musical genres.

We ask whether deep enculturation as practitioners
leads to higher agreement in sensorimotor synchronization
to music stimuli among the group of musicians practicing
the particular style. Furthermore, we explore how emerg-
ing differences between groups of musicians are tied to
genre-specific musical parameters. To this end, we record
subjects from two groups of musicians tapping the beat to
music examples from two genres. Our analysis employs
a combination of computational measures and qualitative
analysis in order to shed light on genre-specific interpre-
tations of musical meter. We apply beat tracking evalua-
tion metrics in order to estimate the degree of agreement
between the tapping responses in the two groups of musi-
cians. In addition to the computational agreement estimate,
recording the tapping in audio format enables us to capture
both the time instances of responses and their dynamic em-
phasis. Based on this information, we explore the relation
between tapping responses and metrical structure based on
histograms of the recorded tapping responses.

The genres included in this study are jazz music and
Scandinavian traditional folk music, both known for their
intricate rhythmical structures. The choice of these two
genres was further motivated by the fact that they are both
taught at the Royal College of Music in Stockholm. This
results in an environment to recruit participants who share
a common cultural background, but differ mainly in terms
of the musical style in which they have particular expertise.

In Scandinavian folk music, some triple meter dance
music forms include styles with non-isochronous, asym-
metric beat patterns [10, 11]. Although these patterns are
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well-documented in contemporary Nordic folk music and
dance practice, behavioral responses to this music have not
yet been approached in the context of SMS studies. In
jazz, on the one hand, a large part of the repertoire con-
sists of music with a definite relation to the beat, which is
controlled by quarter notes played in the bass and the ride
cymbal [12]. On the other hand, in some jazz music the
main beat is not connected to a specific instrument. Identi-
fying the beat and subdivisions can therefore be challeng-
ing for a listener. Based on these genre characteristics we
expect varying agreements between the the two groups of
musicians in three aspects: the dynamic emphasis of the
beats in a measure, concerning non-isochronous asymmet-
ric beat patterns in Scandinavian folk music, and on the
main metrical level in jazz music.

The remainder of the paper is structured as follows: in
Section 2 we refer to relevant research on sensorimotor
synchronization, enculturation, mutual agreement metrics,
and rhythm and meter perception within the two genres.
Section 3 describes the experimental setup and methods for
data collection and analysis, including the process of cor-
recting the mutual agreement metrics for a detected tempo
bias caused by human tapping motor noise. In Section 4
we present the results of our analysis, which are further
discussed in Section 5.

2. BACKGROUND-RELATED WORK

2.1 Sensorimotor synchronization and tapping studies

One of the most common experimental setups to explore
SMS is by means of tapping studies, where the main goal
is to examine subjects’ ability to coordinate hand or finger
movement to rhythm-stimuli. These stimuli usually con-
sist of relatively simple rhythms synthesized using click
sounds, and subjects are instructed to synchronize with
the stimuli as accurately as possible. As summarized by
[1,13], synchronisation is characterized by a negative asyn-
chrony with a variability of the standard deviation of the
asynchronies (SDasy) depending on the intervals in stim-
uli and tapping responses.

In discourse about music the concepts of time and tim-
ing are used in many ways, frequently with a judgemen-
tal connotation. One way to quantitatively examine tim-
ing is to perform tapping experiments, and there has been
relatively much research performed that indicates higher
tapping accuracy for professional musicians than for non-
musicians. For instance, magnetic resonance experiments
showed how professional pianists had a faster and differ-
ent learning process in complicated tapping attempts [14].
For pianists, however, tapping can be regarded as similar
to everyday practice at the instrument. It has been shown
by [15] that being in their proper environment with their in-
struments helps musicians to perform with a significantly
lower synchronization error when playing the drum set
than in previous tapping experiments.

Whereas the vast majority of tapping studies has been
conducted with simple rhythmic stimuli, tapping data
obtained when using musical stimuli can provide addi-

tional information. Palmer and Krumhansl describe how
more experienced listeners/practitioners use subdivisions
to identify meter and beats with more confidence [16].
London et al. [17] move a step further and question the tra-
ditional Western way of identifying beats based on melodic
and rhythmic accents and argue that the rhythmic orga-
nization in certain music styles can be based on contra-
metricity: a significant portion of note onsets tend to be
non-congruent with the metrical framework. Here, they
base their arguments on research on drum ensembles in
Mali [18] and Turkish modal art music [19]. Hence, tap-
ping studies with real music stimuli may provide valuable
information when the informants are musicians with in-
depth knowledge of music structure.

2.2 Enculturation and meter perception

Cross-cultural studies have provided evidence for the ef-
fects of enculturation on various aspects of music per-
ception and cognition, and several studies have compared
the perception of rhythmical and metrical categories be-
tween distant cultural groups [4, 5]. Experimental stud-
ies [3, 6, 7, 20] indicate that, for rhythm perception, famil-
iarity is a more important factor than complexity based
on integer ratios. The perception of rhythm is known to
be primed from the metrical context [21], and practition-
ers of non-Western musical cultures have been shown to
accurately represent the complex asynchronous rhythmic
patterns common in their respective genre [2]. Studies
have explored rhythm perception and enculturation at early
ages [22], and [9] have reported effects from passive, short-
term exposure on children’s perception of non-isochronous
meter. Drawing on these findings, recent works have pre-
sented a probabilistic model simulating enculturation in
meter perception, with predictive coding inferred from pre-
vious rhythmic exposure [23].

2.3 Scandinavian traditional folk music

Polska, springlek, pols and springar are Swedish and Nor-
wegian triple meter music and dance forms that in regional
sub-forms include asymmetric beat [10, 11]. In addition
to the asymmetry on the beat level, sub-beat rhythm pat-
terns are often non-isochronous and un-even [24], so that
asymmetric beat lengths cannot be attributed from sim-
ply adding equal shorter pulse units [25, 26]. Rather, it
has been suggested that beat asymmetry should be under-
stood as uneven subdivisions of an isochronous common
slow pulse at measure level, and in relation to the period-
icity of dance movements [25]. Furthermore, variations in
asymmetric beat lengths occur within performances, cor-
responding with distinct melodic rhythm gestalt patterns
[27]. The close connection with dance is reflected in how
musicians dynamically articulate beat cycles [27]. As a
consequence, understanding the metrical structure requires
some familiarity with these specific musical forms. As this
music is often performed solo, on violin or fiddle, with
plenty of ornamentation and complex bowing patterns, re-
searchers [28] have pointed to the challenge of finding
sound events that precisely correspond to the experienced
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musical beat. The Norwegian folk musician and researcher
Groven reported tapping on a morse transmitter for mea-
suring uneven beat ratios in springar/polska music already
in the 1930-ties [29], more recent studies have applied tap-
ping [30], sound graph analysis [11, 24, 30], and motion
capture [31, 32] for analyzing asymmetric beat patterns in
Scandinavian folk music. However, at this point we are not
aware of tapping studies comparing musicians from differ-
ent genres encountering these music forms.

2.4 Jazz music

Jazz music developed rapidly during the 20th century and
now consists of many different sub-genres from early jazz,
such as Dixieland and swing, to modern jazz such as modal
jazz and free jazz [33]. Common to the different special-
izations is that they all contain several complex parts in
terms of melody, harmony, and rhythms. The rhythmic
complexity becomes particularly evident in the more mod-
ern jazz, where nontraditional meters and intricate percus-
sive subdivisions are used [12]. The complexity includes
different overlay techniques like the placement of 2- or 4-
cycle patterns over 3/4 meter and 3/4 or 3/2 patterns over
4/4 meter. The musicians have to agree on where the –
sometimes hard to discern – beat is while playing. Addi-
tional difficulty for an inexperienced listener to perceive
the beat may emerge when the beat is not directly marked
by any instrument. Studies in cognitive neuroscience ex-
plored the pre-attentive brain response to various musical
parameter changes and reported high measures for jazz
musicians compared to classical and rock/pop musicians
[34]. Other studies suggest listening, but above all, per-
forming music in specific genres generates a clearer meter
perception [7]. Many jazz tunes are also performed in a
high tempo (up to 400 BPM), which also challenges the
musician’s technique and the listener’s beat perception.

2.5 Mutual agreement

Most of the evaluation in SMS experiments is based on
statistical analysis of the asynchronies between participant
responses and stimulus onsets (see Section 1 in [1] for an
overview). Such an analysis would require the compilation
of a reference beat for the music stimuli, which is a prob-
lematic procedure since not all beats coincide with note
onsets. In the absence of a reference annotation, previous
work [35] has suggested to employ beat tracking evalua-
tion metrics to estimate the mutual agreement between beat
estimates obtained from beat tracking algorithms. This ap-
proach has been used to analyze the agreement between
human beat tapping sequences in the context of exploring
music collections [36]. Among various employed metrics,
information gain [37] was found to produce reliable esti-
mates for such mutual agreement.

3. METHOD

3.1 Apparatus

Music stimuli were presented through studio-monitoring
headphones (Beyerdynamic DT 700 PRO headset). The

experimental setup applied first by [38] was used to record
participant tapping. It consists of a sensor made from soft
material, with a microphone attached to the surface of the
sensor. A Focusrite 6i6 USB sound card was used to si-
multaneously record the microphone output and a split of
the headphone signal in two channels of a stereo wav file.

3.2 Stimuli

20 stimuli of jazz and 20 stimuli of Scandinavian folk mu-
sic were chosen by the first and second author, who are
performers and teachers within each of these genres, and
affiliated to the same higher music education institution as
the participants 1 . In addition, two practice stimuli were
selected for each style. Each excerpt is about 42 seconds
long. The measure onsets were manually annotated by the
two first authors for later analysis. The tempi – based on
these annotations – were between 109 to 155 beats per
minute (BPM) (M=135, SD=12) for folk music and 55 and
294 BPM (M=183, SD=66) for jazz, respectively. Whereas
the tempo means are similar, the Scandinavian folk exam-
ples, all related to dance, have a much smaller range of
tempi. The Jazz stimuli in this study are mainly recorded
between 1960-2000, originating in American post-bebop
or a Nordic jazz tradition. The ensembles are mostly piano
trios or quartets with one horn player.

3.3 Participants

The participants for the experiment were advanced stu-
dents of either jazz or folk music programs at the Royal
College of Music in Stockholm. In total 8 jazz musicians
and 9 folk musicians participated in the study. Participants
were between 20 and 29 years old (mean = 23.5 years), 6
male and 11 female.

Before participating in the experiment, each participant
filled out a questionnaire with questions about their edu-
cation, their experience with different musical genres, and
their dancing experience. All participants lived in Stock-
holm and spoke Swedish. Many participants had a back-
ground in playing other genres beyond the focus of their
study program. However, no jazz musicians stated that
they play folk music, and only one folk musician stated
that they have experience playing jazz music. The par-
ticipants had had regular practice on a musical instrument
or singing between 4 and 18 years (mean = 10.6 years).
All folk musicians answered that they danced on occasion
and had dancing as part of their study curriculum. On the
other hand, only three jazz musicians danced occasionally
whereas the other five jazz musicians responded that they
never dance.

3.4 Procedure

The experiment started with the participant signing a con-
sent form and then receiving verbal instructions on using
the equipment. They were then instructed to tap the beat
to the music excerpts they were going to listen to, and they

1 Music stimuli, tapping data and complementary results histograms
are provided here: https://bit.ly/3uJ7EC7.
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were asked to emphasize the beat that they considered the
first in each measure. Before presenting the musical stim-
uli, an isochronous clicking track with IOI of 0.5s was
played, and the participant was asked to tap in synchrony
to the sound. This served the purpose to adjust playback
volume, and to check the amplitude of the sensor output.
After that, music stimuli were presented in two blocks, one
for each music genre. Each block started with the two prac-
tice stimuli, followed by the 20 stimuli in randomized or-
der. Further, the order of the blocks was divided so that
half of the participants from each group started with the
jazz stimuli, and the other half started with the folk music
stimuli. The whole experiment took about 50 minutes, in-
cluding a concluding discussion in which participants had
the opportunity to ask questions about the project.

3.5 Data analysis

The recorded responses were analyzed using a simple
thresholding as proposed by [38], resulting in a list of time
instances for tap locations for each response. We con-
ducted three types of quantitative analyses using the re-
sponses and the obtained tap annotations:

1) Mutual agreement: Information Gain (IG) (see Sec-
tion 2.5) was calculated between all tapping annotations of
each group for a particular stimulus. The IG takes on val-
ues between 0 and 5.3, with low numbers indicating low
agreement. Preliminary experiments indicated low IG val-
ues for human tapping responses as compared to values re-
ported for accurate beat trackers, with a decrease of IG val-
ues for increasing tempi. To investigate this trend, the au-
thors recorded their own tapping responses to isochronous
clicks at four IOI rates between 60 and 180 bpm. From
these sequences, a similar linear decrease was observed for
IG with increasing tempo, as displayed in Figure 1. The
slope (-0.0048) and intercept (3.232) of this trend were de-
termined using linear regression. Using the information
of the annotated tempi of the stimuli, the IG values for
comparisons between the participants’ responses were cor-
rected using these regression values. It is worth pointing
out that such a problem of a beat tracking metric has not
been observed so far, and it is caused by the overall stan-
dard deviation of human tapping [1], a phenomenon absent
from beat tracking algorithms.

2) Inter-tap intervals (ITI): Using the tap annotations,
histograms of ITI were calculated for each group and stim-
ulus. These were then analyzed in relation to the annotated
tempo to investigate if certain metrical levels tend to be
preferred depending on group and musical style.

3) Accent histograms: Whereas the previous two anal-
yses use the tap annotations as input, the histogram analy-
sis uses the recorded responses in which emphases of the
first beat of a bar are reflected. Each response is differen-
tiated over time and half-wave rectified to avoid eventual
cancellation of positive and negative values. Each response
is then normalized to have a maximum magnitude of one to
compensate for varying tapping intensities between partic-
ipants. All recordings have been annotated with the bar
positions, and using this information the normalized re-

Figure 1. Linear decrease in Information Gain computed
from the authors’ tapping to isochronous clicks at four dif-
ferent IOI rates.

sponses are divided into bar length segments. To create
histograms of equal length independent from tempo, each
such bar length segment is divided into 60 equal-duration
bins, and the values of the normalized response between
the bin boundaries are added. For a whole song, these
bar-length histograms are added for each individual partic-
ipant, and the mean histogram across all participants of a
group for each song is computed. These histograms will be
analyzed regarding the relation between the strongest, and
the second strongest peak, which will provide an estimate
for the average emphasis of a downbeat position. Further-
more, the positions of the peaks will facilitate an analysis
of the perceived position of the downbeat, and the degree
of non-isochronous tapping (especially for Scandinavian
folk music).

The two first authors individually annotated all files
with aspects that make these files potentially difficult to tap
to. These annotations will provide further background for
the contextualization of the above-listed three quantitative
analysis methods.

4. RESULTS

Our analysis resulted in tempo corrected information gain
scores, ITI histograms and accent histograms for each
group and music stimulus. The mean tempo corrected in-
formation gain scores for each stimulus within each group
of musicians were analyzed using n-way ANOVA tests to
determine if the averages in the dataset differed with re-
spect to the type of musician and genre. The music genre
of the stimuli had an impact on the agreement of the mu-
sicians as a whole (F(Genre) = 34.62, p<0.001), with an
interaction effect between genres and groups of musicians
(F(Musician*Genre) = 7,62, p = 0.007). The average score
for each combination of musician and music genre in Fig-
ure 2 reveals that jazz musicians agreed more on how to tap
the beat to jazz music than how to tap the beat to folk mu-
sic. At the same time, there was no significant difference
between the genres for the folk musicians. The ANOVA
indicated no difference between the overall performance
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Figure 2. Mean tempo corrected information gain between
groups of jazz (N=8) and folk (N=9) musicians tapping to
jazz (N=20) and Scandinavian folk (N=20) music stimuli.
95% confidence intervals in brackets.

Figure 3. Tapping to jazz. ITI (left) and accent (right)
histograms for the two groups of musicians with two ex-
amples of stimuli in slow (JZ8, 55 BPM) and fast (JZ6,
206 BPM) tempo. The dashed vertical lines in the accent
histograms show isochronous beat positions.

of the two groups of musicians (F(Musician) = 0.64, p =
0.426).

The ITI and accent histograms facilitate a more detailed
and complementary analysis of differences between the
groups of musicians’ tapping behavior in the different ex-
amples. These differences relate to the preferred metrical
level in jazz, to tapping with non-isochronous beat in folk
music, and to the accentuation of metrical periodicity in
folk music.

The ITI histograms displayed in Figure 3 exemplify jazz
stimuli where the two groups tapped at different metri-
cal levels. All jazz music stimuli were in duple meters,
with four beats per measure, and with an annotated tempo
between 55 and 294 BPM. In all jazz stimuli with tempi
>200 BPM, a portion of the folk musicians’ tapping was
at half the tempo compared to the majority of jazz mu-
sicians’. The accent histograms for some of these show

Figure 4. Tapping to Scandinavian folk music. ITI (left)
and accent (right) histograms for the two groups of mu-
sicians with two examples of stimuli with asymmetric
beat: polska with short-long-medium (SF12, 146 BPM),
and long-medium-short (SF20, 130 BPM) beat patterns.
The dashed vertical lines in the accent histograms show
isochronous beat positions.

peaks on beat 2 and 4 for folk musicians, indicating that
the half-tempo tapping was partly phase-shifted so that
folk musicians tapped only on beat two and four of the
four beats tapped by jazz musicians (JZ6 in Figure 3). In
the two slowest jazz examples, with annotated tempi of 55
and 60 BPM, the group of folk musicians partly tapped at
the triple tempo. In contrast, the group of jazz musicians
stayed at the annotated tempo level or in one song partly
tapped in double tempo, as exemplified by JZ8 in Figure 3.

Figure 4 illustrates two folk music stimuli where folk
musicians tapped along with the asymmetric beat. The
ITI histogram for folk musicians tapping to stimuli SF12
displays a peak around 300ms corresponding to a shorter
beat, and the related accent histogram displays a short-
long-medium pattern, including some variability in the tap-
ping of the second beat. This variability could be ex-
plained by the polska-beat itself - varying between more or
less acute asymmetry. However, listening to the recorded
tapping responses for these tunes revealed that, among
folk musicians, some were tapping an isochronous beat
and others an asymmetric beat. For the second stimuli
(SF20) depicted in Figure 4, the histograms illustrate that
folk musicians tap consistent with a long-medium-short
asymmetric beat pattern. For jazz musicians tapping to
folk music stimuli with an asymmetric beat, no consis-
tent non-isochronous tapping was found from these his-
tograms. Instead, it appears that jazz musicians were tap-
ping isochronously but with a low agreement between the
musicians.

For most folk music stimuli, with folk musicians tap-
ping, the triple meter was distinguishable in the accent his-
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tograms, with a stronger signal on the first beat. The sec-
ond beat then appeared weaker, and the third beat was a lit-
tle bit stronger than the second, as exemplified with stimuli
SF12 in Figure 4. No consistent metrical accentuation was
found for jazz musicians tapping to folk, and for tapping to
jazz, the first beat of four was accentuated only with a few
of the stimuli.

Additionally, some observations were made during the
experiments. All of the participants in the experiment
marked metrical structures in addition to the tapping on
the cushion. For instance, participants nodded their heads,
tapped with their other hand on a surface next to them,
or snapped their fingers. Most of the folk musicians were
surprised when they were asked to tap the beat with their
hands and to tap all the beats in the measure. One folk
musician said, “It is more important to keep the beat with
the feet, at least for us. We are used to stomping the beat
on one and three”. Almost all of the folk musicians were
tapping with their feet in addition to tapping fingers on the
cushion. When hearing examples from the genre that the
participants were not used to, all participants at first re-
acted to signal that they experienced discomfort. They ei-
ther made a facial expression signaling surprise, or they
laughed, signaling that they found the task difficult. Most
of the participants stated afterward that they were not used
to listening to the genre that they were less familiar with.

Two of the jazz musicians pointed out that it was harder
to distinguish a clear beat pattern with folk music, since
many folk music examples had only one instrument play-
ing, while the jazz music examples had multiple instru-
ments playing.

5. DISCUSSION

Cross-cultural studies shed light on universals and
specifics in music cognition and perception [5]. This study
adds to previous findings on the role of enculturation in
the context of music meter perception by comparing ad-
vanced musicians trained in different genres but with other-
wise similar cultural backgrounds. Our analysis of differ-
ences between groups combined computational measure-
ments with analysis by genre-experts. A mutual agreement
estimate (see Section 2.5) indicated significantly higher
agreement among jazz musicians when tapping to jazz mu-
sic than when tapping to Scandinavian folk music. Further
analysis of tapping patterns and the dynamic emphasis of
beats, using ITI and accent histograms, provided more in-
sights into group-specific interpretations of meter and beat.
For jazz musicians tapping to jazz, we found a more con-
sistent alignment to the extreme tempi, compared to folk
musicians who were more likely to tap at half-tempo (for
faster tempi) or sub-divide (for slower tempi). For exam-
ple, marking the triple-subdivision - the “swing” - at a slow
tempo (see Figure 3) is mainly encountered among folk
musicians. Furthermore, part of the non-jazz experts’ tap-
ping was phase-shifted, marking only beat 2 and 4.

The folk music examples were all ternary meter, includ-
ing non-isochronous, asymmetric styles of polska. In addi-
tion to this metric particularity, these tunes were performed

solo on bowed instruments with only occasional accompa-
niment of foot-tapping. These properties pose challenges
for inexperienced listeners: the lack of clear transients at
beat positions, more limited spectral spread of information,
and, in general, that dance movements and foot-tapping
are complementary to how rhythms relate to meter in these
styles [10, 32] (audible foot-tapping on beat 1 and 3 was
detected by the authors only in four of the 20 stimuli).
Consequently, folk musicians tapped along with asymmet-
ric beat patterns while jazz musicians, expecting beats to
be isochronous, failed in finding consistent beat patterns,
which resulted in a low agreement between the jazz musi-
cians. Furthermore, the dynamic emphasis of beats in folk
musicians’ tapping to folk music were consistent with de-
scriptions of metric beat articulations [27].

We found a dependency between the mutual agreement
metric and tempo in our material. We conducted an ad-
ditional experiment, tapping to generated clicks at differ-
ent IOIs, which confirmed this dependency and provided a
correction factor for our results. Hence, the standard de-
viation of human tapping (SDasy) introduces a bias in the
computational metric, which so far had been employed for
automatic beat tracking evaluation mainly. Further studies
should investigate the robustness of beat tracking metrics
in presence of motor noise typical for human production.

Our study used a selection of commercial and archive
music recordings, which included genre-specific differ-
ences in conventions, settings and instruments. For in-
stance, all jazz examples featured ensemble playing while
folk music examples were all played solo on violin or hard-
ingfela. Although studies could benefit from more neu-
trally designed stimuli, these differences reflect standard
practice in these genres and thus reflect real-world situa-
tions that these musicians are likely to face.

6. CONCLUSION

This study employed mutual agreement metrics, ITI and
accent histograms to analyse the sensorimotor synchro-
nization of two groups of musicians when tapping to mu-
sic from familiar and unfamiliar genres. We found group-
and genre-specific behaviours for tapping with the main
metrical level, tapping with asymmetric beat and the ac-
centuation of beat cycles. The musicians shared the same
cultural background but were specialist in either jazz or
Scandinavian folk music, and our findings show a coher-
ence with genre-specific meter conventions as a result of
deep genre expertise. In addition, we identified a tempo
bias in the mutual agreement metric caused by human mo-
tor noise, which motivates future studies of the validity of
beat tracking metrics when applied to human tapping.
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ABSTRACT

Score-based generative models and diffusion probabilis-
tic models have been successful at generating high-quality
samples in a variety of continuous domains. However, due
to their Langevin-inspired sampling mechanisms, their ap-
plication to discrete symbolic music data has been lim-
ited. In this work, we present a technique for training
diffusion models on symbolic music data by parameteriz-
ing the discrete domain in the continuous latent space of
a pre-trained variational autoencoder. Our method is non-
autoregressive and learns to generate sequences of latent
embeddings through the reverse process and offers parallel
generation with a constant number of iterative refinement
steps. We show strong unconditional generation and post-
hoc conditional infilling results compared to autoregressive
language models operating over the same continuous em-
beddings.

1. INTRODUCTION

Denoising diffusion probabilistic models (DDPMs) [1, 2]
are a promising new class of generative models that can
synthesize comparably high-quality samples by learning
to invert a diffusion process from data to Gaussian noise.
Unlike many existing deep generative models, DDPMs
sample through an iterative refinement process inspired by
Langevin dynamics [3], which enables post-hoc condition-
ing of models trained unconditionally [4–7] for creative ap-
plications.

Despite these exciting advances, DDPMs have not yet
been applied to symbolic music generation because their it-
erative refinement sampling process is confined to continu-
ous domains such as images [2] and audio [8,9]. Similarly,
DDPMs cannot take advantage of the recent advances in
modeling long-term structure [10–12] that use a two-stage
process of modeling discrete tokens extracted by a separate
low-level autoencoder.

In this paper, we demonstrate that it is possible to over-
come these limitations by training DDPMs on the contin-
uous latents of a low-level variational autoencoder (VAE)

? Work completed during an internship at Google Brain.

© G. Mittal, J. Engel, C. Hawthorne, and I. Simon. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: G. Mittal, J. Engel, C. Hawthorne, and I.
Simon, “Symbolic Music Generation with Diffusion Models”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

to generate long-form discrete symbolic music. Our key
findings include:

• High-quality unconditional sampling of discrete
melodice sequences (1024 tokens) with DDPMs
through iterative refinement of lower-level VAE la-
tents.

• DDPMs outperforming strong autoregressive base-
lines (TransformerMDN) in hierarchical modeling
of continuous latents, partly due to a lack of teacher
forcing and exposure bias during training.

• Post-hoc conditional infilling of melodic sequences
for creative applications.

2. BACKGROUND

2.1 Denoising Diffusion Probabilistic Models

DDPMs [1, 2] are a class of generative models that define
latents x1, ..., xN of the same dimensionality as the data
x0 ⇠ q(x0). Diffusion models are comprised of a for-
ward process and a reverse process. The forward pro-
cess starts from the data x0 and iteratively adds Gaussian
noise according to a fixed noise schedule for N diffusion
steps:

q(xt|xt�1) = N (xt;

p
1� �txt�1,�tI) (1)

q(x1:N |x0) =

NY

t=1

q(xt|xt�1) (2)

where �1,�2, ...,�N is a noise schedule that converts the
data distribution x0 into latent xN . The choice of noise
schedule has been shown to have important effects on sam-
pling efficiency and quality [2, 8].

The reverse process is defined by a Markov chain pa-
rameterized by ✓ that iteratively refines latent point xN ⇠
N (0, I) into data point x0. The learned transition proba-
bilities are defined as,

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),�✓(xt, t)) (3)

p✓(x0:N ) = p(xN )

NY

t=1

p✓(xt�1|xt) (4)

where the objective is to gradually denoise samples at each
reverse diffusion step t. In practice, �✓ is set to an un-
trained time-dependent constant based on the noise sched-
ule, and [2] found �✓(xt, t) = �t =

1�↵̄t�1

1�↵̄t
�t to have

reasonable practical results, where ↵t = 1 � �t, and
↵̄t =

Q
t

i=1
↵i.
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Figure 1. A diagram of our proposed framework. We use the pre-trained 2-bar melody MusicVAE [13] to embed discrete
musical phrases (64 bars, 1024 tokens) into a sequence of continuous latent codes (32 latents, 512 dimensions each).
These embeddings are used to train a diffusion model that iteratively adds noise such that after N diffusion steps the input
embeddings are distributed N (0, I). To sample from this model, we initialize Gaussian noise and use the reverse process to
iteratively refine the noise samples into a sequence of embeddings from the data distribution. These generated embeddings
are fed through the MusicVAE decoder to produce the final MIDI sequence.

The training objective is to maximize the log likelihood
of p✓(x0) =

R
p✓(x0, ..., xN )dx1:N , but the intractabil-

ity of this marginalization leads to the following evidence
lower bound (ELBO):

E [log p✓(x0)] � Eq


log

p✓(x0:N )

q(x1:N |x0)

�

= Eq

2

4log p(xN ) +

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

3

5
(5)

Additionally, [2] observed that the forward process can
be computed for any step t such that q(xt|x0) =

N (xt;
p
↵̄tx0, (1 � ↵̄t)I), which can be viewed as a

stochastic encoder. To simplify the above variational
bound, [2] propose training on pairs of (xt, x0) to learn
to parameterize this process with a simple squared L2 loss.
The following objective is simpler to train, resembles de-
noising score matching [5, 14] and was found to yield
higher-quality samples:

L(✓) = Ex0,✏,t

h��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2
i

(6)

where t is sampled uniformly between 1 and N , ✏ ⇠
N (0, I), and ✏✓ is the learned diffusion model. [8] found
that instead of conditioning on a discrete diffusion step
t, it was beneficial to sample a continuous noise levelp
↵̄ ⇠ U(p↵̄t�1,

p
↵̄t) where t ⇠ U({1, ..., N}) and

↵̄0 = 1.
We refer readers to Algorithms 2 and 3 based on [8]

in our supplementary material 1 for the full training and
sampling procedure.

1 Supplementary material including additional implementation de-
tails, audio, and tables is available at https://goo.gl/magenta/
symbolic-music-diffusion-examples

2.2 Variational Autoencoders

Variational autoencoders [15] are generative models that
define p(y, z) = p(y|z)p(z) where z is a learned latent
code for data point y. Additionally, the latent code is con-
strained such that z is distributed according to prior p(z)
where the prior is usually an isotropic Gaussian. The VAE
is comprised of an encoder q�(z|y) which models the ap-
proximate posterior p(z|y) and a decoder p✓(y|z) which
models the conditional distribution of data y given latent
code z.

The training objective is to maximize the log likelihood
of p✓(x) =

R
p✓(y|z)p(z)dz, but this marginalization is in-

tractable, and we use the following variational bound max-
imized with q�(z|y) as the approximate posterior:

E [log p✓(y|z)]�KL(q�(z|y)||p(z))  log p(y) (7)

The flexible implementation of variational autoencoders
allows them to learn representations over a wide variety
of domains. Of particular interest to us are sequential
autoencoders [13, 16] which use long short-term memory
cells [17] to model temporal context in sequential data dis-
tributions.

In practice, there is a trade-off between the quality of
reconstructions and the distance between the approximate
posterior q�(z|y) and the Gaussian prior p(z). This makes
sampling more difficult for VAEs with better reconstruc-
tions due to latent “holes" in the approximate posterior and
is one of the primary shortcomings of these models.

3. MODEL

A diagram and description of our multi-stage diffusion
model is shown in Figure 1. We refer readers to the sup-
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plement for full implementation details.

3.1 Architecture

Our model learns to generate discrete sequences of notes
(known as MIDI) by first training a VAE with parameters
� on the sequences and then training a diffusion model
to capture the temporal relationships among the k VAE
latents. Sequence VAEs such as MusicVAE are difficult
to train on long sequences [13], which we overcome by
pairing the short 2-bar MusicVAE model with a diffusion
model capable of modeling dependencies between k = 32

latents, thus modeling 64 bars in total.
MusicVAE embeddings: Each musical phrase is a

sequence of one-hot vectors with 16 quantized steps per
measure and the vocabulary contains 90 possible tokens (1
note on + 1 note off + 88 pitches). We then parameter-
ize each 2-bar phrase using the pre-trained 2-bar melody
MusicVAE [13] and generate a sequence of continuous
latent embeddings z1, ..., zk to parameterize an entire se-
quence. The MusicVAE model employs bidirectional re-
current neural networks as an encoder and autoregressive
decoding as shown in Figure 4 in the supplement. As
we use the pretrained model from the original work, full
model details can be found in [13]. After encoding each
2-measure phrase into a latent z embedding, we perform
linear feature scaling such that the domain of each em-
bedding is [�1, 1]. This ensures consistently scaled inputs
starting from the isotropic Gaussian latent xN for the dif-
fusion model.

Transformer diffusion model: Our network
✏✓(xt,

p
↵̄) : Rk⇥42 ⇥ R ! Rk⇥42 is a transformer [18]

where k = 32 is the length of each sequence of 42-
dimensional preprocessed latent embeddings. The
unperturbed data distribution used to train the diffusion
model is x0 = [z1, ..., zk]. The network contains an initial
fully-connected layer that projects the embeddings into
a 128-dimensional space, followed by L = 6 encoder
layers each with H = 8 self-attention heads and a
residual fully-connected layer. All self-attention and
fully-connected layers use layer normalization [19]. The
output of the encoder is fed to K = 2 noise-conditioned
residual fully-connected layers which generate the reverse
process output. Each fully-connected layer contains 2048
neurons. We use a 128-dimensional sinusoidal positional
encoding similar to [18] where j is the position index of a
latent input embedding:

! =

h
10

�4⇥0
63 j, ..., 10

�4⇥63
63 j

i
ej = [sin(!), cos(!)] (8)

This positional encoding e1, e2, ..., ek is added to inputs
xt before being fed through the transformer encoder layers
allowing the model to capture the temporal context of the
continuous inputs.

Noise schedule and conditioning: As described in
both the original diffusion model framework [2] and in [8],
we use an additional sinusoidal encoding to condition the
diffusion model on a continuous noise level during training
and sampling. This noise encoding is identical to the posi-
tional encoding described above but with the frequency of

each sinusoid scaled by 5000 to account for the updated
domain. We use feature-wise linear modulation [20] to
generate � (scale) and ⇠ (shift) parameters given a noise
encoding and apply the transformation ��+⇠ to the output
� of each layer normalization block in each residual layer,
allowing for effective conditioning of the diffusion model.
Our model uses a linear noise schedule with N = 1000

steps and �1 = 10
�6 and �N = 0.01.

3.2 Unconditional Generation

In the unconditional generation task, the goal is to pro-
duce samples that exhibit long-term structure. Because of
our multi-stage approach, this works even in the scenario
where the KL divergence between the marginal posterior
q�(z) and the Gaussian prior is quite large because the dif-
fusion model accurately captures the structure of the la-
tent space therefore improving the sample quality. Addi-
tionally, we extend the underlying VAE to samples longer
than what it was trained to model by using the diffusion
model to predict sequences of latent embeddings and at-
tempt to generate unconditional samples with coherent pat-
terns across a large number of measures.

3.3 Infilling

One of the benefits of using a sampling process that iter-
atively refines noise into data samples is that the trajec-
tory of the reverse process can be steered and arbitrarily
conditioned without the need for retraining the diffusion
model. In creative domains, this post-hoc conditioning is
especially useful for artists without the computational re-
sources to modify or re-train deep models for new tasks.
We demonstrate the power of diffusion modeling applied
to music with conditional infilling of latent embeddings us-
ing an unconditionally trained diffusion model.

The infilling procedure extends the sampling procedure
described in Algorithm 3 by incorporating information
from a partially occluded sample s. At each step of sam-
pling, we diffuse the fixed regions of s with the forward
process q(st|s) = N (st;

p
↵̄ts, (1� ↵̄t)I) and use a mask

m to add the diffused fixed regions to the updated sample
xt�1. The final output x0 will be a version of s with the
occluded regions inpainted by the reverse process.

We refer readers to Algorithm 1 for the modified sam-
pling procedure that allows for post-hoc conditional infill-
ing.

Algorithm 1 Infilling
Input: mask m, sample s, N steps, �1, ...,�N

xN ⇠ N (0, I)

for t = N, ..., 1 do
✏1, ✏2 ⇠ N (0, I) if t > 1, else ✏1 = ✏2 = 0

y =
p
↵̄ts+

p
1� ↵̄t✏1 if t > 1, else s

xt�1 =
1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt,

p
↵̄t)

⌘
+ �t✏2

xt�1 = xt�1 � (1�m) + y �m

end for
return x0
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4. METHODS

4.1 Data

We use the Lakh MIDI Dataset (LMD) [21] for all experi-
ments. The dataset contains over 170,000 MIDI files with
99% of those files used for training and the remaining used
for validation. We extracted 988,893 64-bar monophonic
sequences for training and 11,295 for validation from the
provided MIDI files. Each sequence was encoded into 32
continuous latent embeddings using MusicVAE. We set the
softmax temperature for MusicVAE to 0.001 for decoding
generated embeddings in all experiments. A diagram of
the MusicVAE architecture used is shown in the supple-
mentary material.

4.2 Autoregressive Baseline

We compare our model to an autoregressive transformer
with a mixture density output layer [22] and train on the
same dataset as the diffusion model. To ensure a fair
comparison, we use the same architecture as our diffusion
model with L = 6, H = 8, and K = 2 with 2048 neu-
rons for each fully-connected layer. The mixture density
layer outputs a mixture of 100 Gaussians to ensure suffi-
cient mode coverage. In total, our baseline model has 38M
trainable parameters. While the model is the same as the
diffusion model (25.58M trainable parameters) up until the
output layer, the autoregressive model has more parameters
due to the much larger output layer. We refer to this model
as TransformerMDN.

4.3 Training

All models were trained using Adam [23] with default pa-
rameters. We trained our diffusion model for 500K steps
on a single NVIDIA Tesla V100 GPU for 6.5 hours using
a learning rate of 10�3 annealed with a decay rate of 0.98
every 4000 steps and batch size 64. Unlike the diffusion
model, which is non-autoregressive, we train Transformer-
MDN with teacher forcing. We use a batch size of 128,
learning rate 3⇥10

�4, and train for 250K steps on a single
NVIDIA Tesla V100 GPU for 6.5 hours.

We used the open-source implementation of MusicVAE
written in TensorFlow [24] and the publicly available 2-bar
melody checkpoints trained on LMD. We trained our dif-
fusion and baseline models 2 with JAX [25] and Flax [26].

4.4 Framewise Self-similarity Metric

To evaluate the statistical similarity between our model’s
qualitative output and the original training sequences, we
present a metric that captures local self-similarity patterns
across generated melodic sequences. Inspired by the sta-
tistical similarity evaluation described in [27], we evaluate
our models with a modified framewise Overlapping Area
(OA) metric.

We use a sliding 4-measure window with 2-measure
hop size to capture local pitch and duration statistics across

2 Our implementation is available at https://github.com/
magenta/symbolic-music-diffusion

the piece. Within each 4-measure frame, we compute the
mean and variance of both pitch, which captures melodic
similarity, and duration, which captures rhythmic similar-
ity. These statistics specify a Gaussian PDF for pitch and
duration for each frame (pP (k), pD(k)). We compute the
Overlapping Area (OA) [27] of adjacent frames (k, k + 1)
where each frame’s statistics are modeled as N (µ1,�

2
1
)

and N (µ2,�
2
2
), respectively:

OA(k, k+1) = 1� erf

✓
c� µ1p
2�2

1

◆
+erf

✓
c� µ2p
2�2

2

◆
(9)

for both pitch (OAP ) and duration (OAD), where erf is
the Gauss error function and c is the point of intersection
between Gaussian PDFs with µ1 < µ2. For a set of MIDI
samples, we infer the Consistency and Variance from the
mean (µOA) and variance (�2

OA
) respectively of OA ag-

gregated over all adjacent frames. We then use these ag-
gregate values to compute the normalized relative similar-
ity of pitch and duration consistency and variance to the
training set (GT):

Consistency = max(0, 1� |µOA � µGT |
µGT

)

V ariance = max(0, 1� |�2

OA
� �

2

GT
|

�
2

GT

)

(10)

We clip Consistency and Variance such that samples with
µOA or �2

OA
with greater than 100% percent error from the

ground truth are considered to have zero relative similarity.

4.5 Latent Space Evaluation

We evaluate the similarity of latent embeddings generated
by each of our models using the Fréchet distance (FD) [28]
and Maximum Mean Discrepancy (MMD) [29] with a
polynomial kernel, which are popular evaluation metrics in
the generative modeling literature. These metrics measure
the distance between the models’ continuous output distri-
butions and the original data distribution in latent space.
It is important to note that this metric does not measure
long-term temporal consistency or quality of produced se-
quences and only measures the quality of the intermediate
continuous representation before the final sequence is gen-
erated using the MusicVAE decoder.

5. RESULTS

5.1 Unconditional Generation

To evaluate unconditional sample quality, we compare
batches of 1000 samples (32 latents each) generated by
our proposed diffusion model with random draws from the
training and test sets. We compare against a set of baseline
generators including TransformerMDN, the independent
N (0, I) MusicVAE prior, and spherical interpolation [30]
between two MusicVAE embeddings at the start and end
of an example from the test set.

As seen in Table 1, the diffusion model quantitatively
produces samples most similar to the training data accord-
ing to the relative framewise overlapping area metrics for
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Figure 2. Example piano rolls of infilling experiments. For each example (A, B) the first and last 256 melody tokens are
held constant, and the interior 512 tokens are filled in by the model (dashed red box). Even qualitatively, it is visually
apparent that the diffusion model (second row) produces notes with a consistency and variance similar to the original data
(first row), while the latent interpolation (third row) is too repetitive, and sampling independently from the prior (last row)
produces outputs with too much variety and lack of local coherence.

Setting Unconditional Infilling
Quantity Pitch Duration Pitch Duration
Metric C Var C Var C Var C Var
Train Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Test Data 1.00 0.96 1.00 0.91 1.00 0.96 1.00 0.91
Diffusion 0.99 0.90 0.96 0.92 0.97 0.87 0.97 0.80
Autoregression 0.93 0.68 0.93 0.76 - - - -
Interpolation 0.85 0.23 0.91 0.34 0.94 0.78 0.96 0.80
N (0, I) Prior 0.84 0.19 0.90 0.67 0.89 0.19 0.94 0.54

Table 1. Framewise self-similarity of consistency (C) and
variance (Var), as defined in Equation 10, for note pitch
and duration. For both unconditional sampling and infill-
ing tasks, the diffusion model produces samples most sim-
ilar to the real data. For diffusion samples, we use N =

1000 sampling steps with �1 = 10
�6 and �N = 0.01. For

the TransformerMDN baseline we sample with a tempera-
ture of 1.0, meaning we sampled directly from the logits of
mixture density layer. Absolute values of overlap area can
be found in Table 2 in our supplementary material.

note pitch and duration. The diffusion model outperforms
TransformerMDN, which is challenged by modelling the
relatively high-dimensional continuous latents autoregres-
sively, even with a mixture of Gaussians output. The au-
toregressive models are also trained with teacher forcing
that results in exposure bias, leading to divergence from the
data distribution during sampling. This is reflected in the
lower pitch and duration consistency and higher variance

in the absolute overlapping area numbers seen in Supple-
mental Table 2. Additionally, the diffusion model is able
to capture the joint dependencies of the sequences better
because it learns to model all latents simultaneously as op-
posed to autoregressively. Note that the Gaussian prior also
suffers from low consistency and high variance, due to lack
of temporal dependencies, while the interpolated samples
conversely suffer from low variance and too much consis-
tency due to high repetition.

Table 3 in our supplement presents latent space evalu-
ations of our generated samples. The TransformerMDN
outperformed all other models, likely due to the Gaus-
sian mixture prior on its output layer whereas the diffusion
model must learn the output distribution from scratch. Fur-
thermore, the latent space metrics are limited by assump-
tions about the latent manifold distribution and are unable
to fully capture the detail of the entire space, further high-
lighting the necessity of our quantitative framewise self-
similarity metrics and qualitative evaluations.

Figure 3 helps us to further understand the iterative re-
finement process by showing the improvement in sample
quality as a function of iterative refinement time for both
latent space and framewise self-similarity metrics. Inter-
estingly, latent metrics improve steadily, while consistency
similarity starts fairly high, and variance similarity only
emerges at the end of refinement. We refer the reader to
the supplementary material for extended visual and audio
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Figure 3. Sample quality improvement during iterative re-
finement. Latent space and framewise metrics evaluated
at different stages of unconditional sampling. The metrics
improve as the iterative refinement process progresses. We
plot the means and standard deviations for 1000 samples.

samples of the generated sequences from each model 3 .

5.2 Infilling

To probe the diffusion model’s ability to perform post-hoc
conditional generation, we remove the middle 32 measures
(16 embeddings) and generate new embeddings following
Algorithm 1 by conditioning on the first and last 8 em-
beddings. As in the unconditional setting, we compare to
interpolation and independent samples from the prior.

Figure 2 visualizes the task by plotting the resulting
note sequences for two different examples. Even qual-
itatively, it is visually apparent that the diffusion model
produces notes with a consistency and variance similar to
the original data. Latent interpolation is very consistent
but unrealistically repetitive, and sampling independently
from the prior produces a sequence with extremely large
variance that is inconsistent in both pitch and duration.

The quantitative evaluations in Table 1 back up these
observations. Similar to the unconditional generation task,
the diffusion model outperforms the baselines in both con-
sistency and variance similarity. We do not include the au-

3 https://goo.gl/magenta/symbolic-music-
diffusion-examples

toregressive baseline because it is unable to condition on
the final 8 embeddings.

6. RELATED WORK

Multi-stage learning: Several models have achieved long-
term structure by first modeling some intermediate repre-
sentation and then using that to guide the final generative
process. Wave2Midi2Wave [31] uses a transformer to gen-
erate MIDI-like symbolic data and then a WaveNet [32] to
synthesize that symbolic data into audio. Jukebox [11] and
DALL-E [12] use similar approaches for text-conditioned
generative music audio and image models. There has
also been work investigating the extension of a single-
measure VAE to multiple measures by using an autore-
gressive LSTM with a mixture density output layer [33],
similar to TransformerMDN.

Iterative refinement: [34] use an orderless NADE with
blocked Gibbs sampling to iteratively rewrite musical har-
monies based on surrounding context. [35] use a gradient-
based sampler combined with a restricted Boltzmann ma-
chine to generate polyphonic piano music. Similarly, [36]
investigated the use of a score-based generative model [5]
to generate Bach chorales with annealed Langevin dynam-
ics. A key distinction between our method and prior work
is the use of a VAE to parameterize the discrete space of
musical notes for improved generation with a DDPM while
previous methods have performed iterative refinement in
the discrete space directly.

Conditional sampling from unconditional models:
We build on top of the breadth of material that investigate
steering generation in the latent space of an uncondition-
ally trained generative model [37–40]. Most similar to our
work is [4,37,41] which train an additional model on top of
a pre-trained variational autoencoder to steer generation in
the latent space of that autoencoder. Our approach builds
on top of this by not only improving sampling and gen-
eration of the underlying autoencoder but also extending
generation to sequences much longer than those used to
train the VAE. We also use a diffusion model to refine gen-
eration and provide conditional infilling while the works
mentioned primarily used conditional GANs and VAEs to
extend the underlying autoencoder for a single latent em-
bedding as opposed to a sequence of latent embeddings.

7. CONCLUSION

We have proposed and demonstrated a multi-stage gener-
ative model comprised of a low-level variational autoen-
coder with continuous latents modeled by a higher-level
diffusion model. This approach enables using diffusion
models on discrete data, and as priors for modeling long-
term structure in multi-stage systems. We demonstrate that
this model is useful for symbolic music generation, both
in unconditional generation and conditional infilling. Fu-
ture work will include extending this approach to other dis-
crete data such as text, and exploring a greater array of
approaches for post-hoc conditioning in creative applica-
tions.
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ABSTRACT

Most videogame reinforcement learning (RL) research
only deals with the video component of games, even
though humans typically play while experiencing both au-
dio and video. In this paper, we aim to bridge this gap in re-
search, and present two main contributions. First, we pro-
vide methods for extracting, processing, visualizing, and
hearing gameplay audio alongside video. Then, we show
that in Sonic The Hedgehog, agents provided with both au-
dio and video can outperform agents with access to only
video by 6.6% on a joint training task, and 20.4% on a
zero-shot transfer task. We conclude that game audio in-
forms useful decision making, and that audio features are
more easily transferable to unseen test levels than video
features.

1. INTRODUCTION

Although classification and decision making are well stud-
ied areas of machine learning (ML), most research and
practical application of these areas has involved the use
of video or text based data, as opposed to audio. Of the
audio research that exists, only an even smaller subset has
analyzed environmental audio or music as a method of pro-
viding feedback.

This gap in research needs to be addressed since envi-
ronmental and feedback-related audio is critical to achiev-
ing human performance on a number of tasks, especially
when visual or textual clues are not sufficient. Self driving
cars cannot achieve full automation without being able to
react and respond to emergency vehicle sirens in the dis-
tance, or nearby car horns. Emergency responders listen
for fire alarms and calls for help to locate the emergency
when arriving at a scene. The clicking feedback produced
by a mouse, keyboard, or button, confirms to the user that
the hardware or software has received the input. [1].

In this work, we use Sonic The Hedgehog games for the
SEGA Genesis as an environment to understand how RL
agents can incorporate both audio and video observations,
to make decisions with immediate consequence, feedback,

© F. Nadeem. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: F. Nadeem,
“Learning from Musical Feedback with Sonic the Hedgehog”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

and long term goal. 1

2. BACKGROUND

2.1 Sonic The Hedgehog

Sonic The Hedgehog is a 2D side scrolling platforming
game. The main idea of the game is to navigate Sonic
through vertical loops, over bottomless pits, off of springs,
while collecting rings. A central game mechanic is that
Sonic can build great speed if his movement is not inter-
rupted by stopping or bumping into obstacles, and this can
then be used to launch him into the air off of ramps, or
through an array of enemies. Each game consists of in-
dividually themed Zones, and each Zone has 1 to 3 Acts.
Going forward, we will refer to each Act as a level.

Rings are placed in groups of 3 or more along the levels.
They give points, and act like a shield. If Sonic is hit by an
enemy or hazard without any rings, he loses a life. But if
Sonic has at least 1 ring, then hitting an enemy or hazard
knocks Sonic backwards and he forfeits up to 20 of his
rings, without losing a life.

Many levels contain sections which are underwater.
Sonic can survive approximately 30 seconds underwater
until he needs to find an air bubble or jump out of the wa-
ter to avoid drowning.

2.2 Related Work

Gotta Learn Fast [2] is a transfer learning benchmark with
Gym Retro [3] on the Sonic games for the SEGA Gene-
sis. It shows that pretraining on 47 train levels before fine
tuning on 11 test levels achieves the best test result when
compared to several other models. They do not perform
any audio-related experiments.

Kim et al. [4] modify the Atari Learning Environment
[5] to support audio queries, and demonstrate that latent
audio/video features increase performance on H.E.R.O and
Amidar on the Atari 2600, and transfer knowledge to ac-
celerate learning in a door puzzle game.

Kaplan et al. [6] show that the additional modality of
natural language suggestions can be used to improve per-
formance on the Atari 2600 games. Ngiam et al. [7] present
a series of tasks for multimodal learning and demon-
strate cross modality feature learning, where better fea-
tures for one modality (e.g., video) can be learned if mul-

1 Link to Github repository with code and gameplay video examples
provided here https://github.com/faraazn/meng
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tiple modalities (e.g., audio and video) are present at fea-
ture learning time. Poria et al. [8] show that a multimodal
system fusing audio, visual, and textual clues outperforms
previous state of the art systems by 20% on a YouTube
sentiment dataset.

Henkel et al. [9] show that RL can be useful in the
music domain by applying it to the score following task.
Various works have used neural network approaches to
acoustic scene classification [10–12] and sound event de-
tection [13–15], achieving state of the art results.

3. RELEVANT MUSIC THEORY

3.1 Western Associations in Music

In Western music theory and culture, there are clear asso-
ciations of consonance, dissonance, and rhythmic patterns
with certain emotions. The major mode is slightly more
consonant, and therefore associated with "happy, merry,
graceful, and playful", while the minor mode is slightly
more dissonant, and associated with "sad, dreamy, and sen-
timental". Firm rhythms are perceived as "vigorous and
dignified", while flowing rhythms are "happy, graceful,
dreamy, and tender". Combining these ideas, complex dis-
sonant harmonies are "exciting, agitating, vigorous, and in-
clined towards sadness", and simple consonant harmonies
are "happy, graceful, serene, and lyrical" [16].

Studies have shown that these associations can largely
be attributed to cultural conditioning, rather than univer-
sal human behavior. Residents of a village in the Amazon
rainforest with no exposure to Western music showed no
preference between consonant and dissonant sounds [17].
We can trace back Western preference for consonance at
least to the early 18th century, when the name "diabolus
in musica", or "the Devil in music" was attributed to the
augmented fourth, the most dissonant interval [18].

3.2 Application to Videogame Sound Effects

Videogame music and sound effects are designed to lever-
age our implicit biases as a means of meeting expectation
and lowering the barrier to entry for learning a new game.
We can better understand this by applying it to the Sonic
games.

It is good for Sonic to collect rings, since they give some
protection before losing a life, award more points, and col-
lecting enough of them result in an extra life. In line with
our understanding of Western preference for simple con-
sonance, the ring sound is a major triad, implying a sense
of positive value for the act of acquiring a ring. It is com-
prised of the notes E5, G5, and C6, which form specifically
a first inversion C major triad (Figure 1).

When Sonic loses rings after being hit by an enemy or
hazard, this is bad because he is prone to losing a life with
an additional hit. In line with our understanding of West-
ern music theory, the corresponding sound is aggressively
dissonant, implying a sense of negative value for the act of
losing rings. This sound is created by rapidly alternating
notes A6 and G6, which form a major second interval.

Figure 1. Drowning Theme and Ring Sound. Top: the
drowning theme consists of dissonant jumps between oc-
tave intervals. Bottom: the three consonant notes of the
ring acquiring sound.

When Sonic has spent too much time underwater with-
out air, and is close to drowning, the drowning theme be-
gins to play. It alternates between octave intervals on C,
and a minor second interval jump to octave intervals on C#
(Figure 1). The jumps lie on a dissonant interval, and the
music gets increasingly loud and fast as Sonic gets closer
to drowning, giving a strong sense of impending doom.

In general, consonance bias is an effective tool for con-
veying positive or negative value of player actions or set-
ting emotional expectation with audio, without needing to
spoon-feed explicit instructions or visual cues.

4. EXPERIMENTAL SETUP

4.1 Reinforcement Learning

Reinforcement learning [19, 20] is an increasingly popular
field of machine learning research. It is a semi supervised
approach to teaching an agent complex sequential decision
making in an environment with potentially sparsely labeled
data or delayed reward.

More concretely, we define an agent that operates under
a policy ⇡ with parameters ✓, and produces actions given
an observation, ⇡✓ : o ! A. At time t, the agent takes
an action a 2 A while in state s 2 S, transitions to state
s0 ⇠ T (s, a, s0), and receives observation o0 ⇠ O(o0, s0)
and reward r = R(s, a) 2 R.

In the Sonic games, we can imagine a scenario where
Sonic is being approached by an enemy. The game state s
tells us the magnitude and direction of the enemy’s veloc-
ity. An observation o of this state might be a single frame
of video which tells us the enemy is close to Sonic. When
the player takes an action a to control Sonic, performing a
spin attack may lead to a transition (s, a, s0) to a new state
s0 where the enemy is defeated. This would result in a new
visual observation o0 of the defeated enemy, and a reward
r of 100 points.

The goal of an RL agent is to maximize the total ex-
pected reward. To optimize our agent parameters ✓ and
achieve the best performance, we use Proximal Policy Op-
timization (PPO) [21]. PPO is a policy gradient algorithm
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that achieves state of the art results on a number of RL
benchmarks. It builds on former advancements in policy
gradient research [22–24], while also aiming to be fast and
easy to implement. The details of its implementation are
outside of the scope of this work; we used an open source
implementation [25].

4.2 Task Outlines

To quantify the effect of audio on videogame RL, we set
up two different tasks.

1. Joint PPO Training. We train a single agent on 47
of the 58 levels, which we call the training levels.
The agent trains for 30 million time steps, and we
self-evaluate the agent on the training levels every 5
million steps.

2. Zero-shot Transfer. We take the jointly trained agent
from the previous experiment and evaluate it on the
11 test set levels, without any fine tuning. If the
agent learned general techniques for level progres-
sion in task 1, it should be able to perform better
than a random agent, or one following a simple pol-
icy. For each test level, there is at least one training
level from the same Zone.

4.3 Open AI Gym Retro

We used the Open AI Gym Retro framework to set up the
two experiments outlined above. Its API allows us to inter-
face with games by inputting player actions, and receiving
the updated game state, observations, and reward in return.
There are thousands of games available to use with Gym
Retro, including the original Sonic series for the SEGA
Genesis.

However, the Gym Retro (version 0.8.0) package
does not readily expose an API for interacting with the
videogame emulator’s audio. To aid others facing this is-
sue, we have open sourced our codebase, in which we were
able to expose the audio features for training our RL mod-
els, and create various tools for visualization and playback.
This includes tools for both online and offline playback,
audio visualization, and neural network feature heat map-
ping for a given runthrough of a level.

4.4 Environment Setup

For all of our experiments, we use mostly the same base
environment setup as described by Nichol et al. [2]. This
includes usage of save states, episode boundaries, stochas-
tic frame skips, action space reduction, and reward func-
tion. At a high level, this setup overrides the in-game point
system to instead reward Sonic for making new progress to
the right of the screen, and reduces the number of / speed
with which buttons can be pressed, among other things.
Due to computational constraints, we set the horizon of
experience generation to 512 instead of 8192, number of
workers per level to 3 instead of 4, and total train steps to
30 million instead of 400 million. The convolutional neu-
ral network (CNN) architecture we use to process audio
and video observations is given by Figure 2.

Figure 2. CNN architecture for the observation encoder.
The input observation in this example is a grayscale frame
of video, and the same structure is used to encode audio.

4.5 Agent Variants

We create 5 different agent variants to be able to differen-
tiate the effects of incorporating audio.

Agent 1: conceptually the same as the one used in the
Gotta Learn Fast [2] benchmark, albeit with fewer train-
able parameters and shorter training time due to computa-
tional constraints.

Agent 2: we convert video inputs to grayscale and in-
troduce a random start of 16-45 random actions (about 1-3
seconds) which we expect will result in improvements to
generalization.

Agent 3: takes an additional video frame from the pre-
vious time step as input, and therefore also has double the
model size as Agent 2. We hypothesize that Agent 3 may
be able to learn temporal features, and therefore achieve
better results than Agent 2.

Agent 4: only keeps the current grayscale video frame,
but adds audio features. We construct these audio features
by concatenating the past 16 frames, without frame skip-
ping. Since the Gym Retro sample rate is 44100 Hz, this
means we get 735 samples of audio per frame and 47040
samples per observation (about 1 second long). We process
the 1D sequence of samples into a 2D mel spectrogram
with 256 mels, window size 256, and hop length 128, for
a resulting size of 367 by 256 pixels. We construct a new
encoder for this audio with the same CNN architecture as
video, so the overall model size is comparable to Agent 3.

Agent 5: the same as Agent 4 except we create a 2D
mel spectrogram with 256 mels, window size 1024, and
hop length 512, for a resulting size of 92 by 256 pixels.
This spectrogram is 4 times smaller, so the overall model
size is comparable to Agents 1 and 2.

To normalize the spectrogram values, we first convert
from the power to decibel scale, setting the max decibel
range to 80, and then dividing by 80 to put the range of
values between 0 and 1. Separate CNNs are used to process
the video and audio observations, each with hidden size
256, and concatenated together into a final hidden state size
512.

4.6 Baselines

4.6.1 "Hold Right" Baseline

By definition of the reward function defined for us [2],
Sonic accumulates reward as he makes net progress to-
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Agent Video
Frames

Rand.
Start RGB Audio Num

Params
1 1 no yes no 14m
2 1 yes no no 14m
3 2 yes no no 28m
4 1 yes no yes 31m
5 1 yes no yes 18m

Table 1. Agent Variants.

wards the right. We can therefore define a simple yet ef-
fective policy that requires no machine learning: always
make Sonic move right. We evaluate this policy and set it
as a lower bound for the performance we expect our trained
agent to achieve.

4.6.2 Human Baseline

There is an existing human baseline for the Sonic Genesis
games. In this baseline, 4 test subjects practiced on the 47
Sonic training levels for 2 hours, before playing each of the
11 test levels over the course of an hour.

5. RESULTS

5.1 Overview

Table 2 shows us the most important result of this work,
which is that audio+video agents outperform video-only
agents on the joint training task, and achieve higher scores
on the zero-shot transfer task. Agent 5, which is provided
with the current frame of video and past 1 second of audio,
outperforms Agent 3, which is provided with the current
and previous frames of video, no audio, and 55% larger
model size, by 6.6% on the joint task, and 20.4% on the
zero-shot task. This result supports our hypothesis that
Sonic game audio informs sequential decision making, and
extracted audio features are more easily transferable to un-
seen test levels than video features.

The "Final Avg" section contains the primary scores
used to evaluate overall agent performance. Final refers
to the fact that these scores were computed by evaluating
the final saved checkpoints of each agent, rather than aver-
aging over the entire training run.

We add a "Best Ckpts" table, which aggregates the
top per-level mean scores across all corresponding agent
checkpoints. We saved checkpoints every 5 million train
steps. The goal of adding this table is to demonstrate each
agent’s best effort for each level.

Scores for each agent are presented as the mean ± the
first standard deviation taken along the individual level av-

erages. The gameplay figures are overlayed with Score
CAM heat maps [26, 27], and important parts of these fig-
ures are annotated with circles or arrows. Each agent was
trained and evaluated with three different random seeds.

5.2 Video Agent Analysis

Agent 1 is only able to outperform the "hold right" policy
by a small margin. We found that over the course of train-

Agent Joint
Final Avg

Zero-Shot
Final Avg

1 1344.6± 206.4 435.6± 130.0
2 1479.5± 911.3 578.5± 409.7
3 1905.0± 286.9 678.5± 238.3
4 1893.7± 225.3 817.3± 320.2
5 2031.1± 501.9 936.6± 220.8

Agent Joint
Best Ckpts

Zero-Shot
Best Ckpts

1 1780.2± 1708.5 755.1± 1028.1
2 2998.6± 2010.63 1526.8± 1257.4
3 3013.0± 2186.2 1686.9± 1155.1
4 3041.4± 2227.9 1779.2± 1403.1
5 2901.5± 2011.1 1756.9± 1298.3

Baseline Joint
Final Avg

Zero-Shot
Final Avg

Hold Right 1099.1± 1092.8 321.9± 277.5
Human [2] – 7438.2
N. et al. [2] 5083.6 ⇠ 1000

Table 2. Performance summary of all 5 agent variants and
3 baselines over both tasks. Note that N. et al. trained with
significantly more computational power.

ing, it tended to overfit to specific levels every few million
train steps.

Agent 2 uses grayscaling instead of RGB, and adds a
random start between 1 and 3 seconds to the Agent 1 setup.
Adding the random start makes it much more difficult for
Agent 2 to try to memorize a high reward path through
each level. This substantially improves scores on the joint
and zero-shot tasks, because increased starting state diver-
sity forces Agent 2 to learn more general features for level
progression. If the agent learns that jumping over spikes
is good in one level (Figure 3), the the lower layers of the
CNN that were used to recognize the spikes will help to
transfer that knowledge to other levels.

Agent 3 builds upon Agent 2 by doubling the hidden
layer size to 512 and increasing the number of video frame
observations from 1 to 2. By including the video frame
from the previous time step, Agent 3 now has the ability to
learn temporal meta-variables, such as relative velocity of
objects on screen. Agent 3 does actually learn to use this
information to determine, for example, when Sonic does
not have enough momentum to go up a steep ramp, and
must backtrack in order to build the momentum needed to
try again (Figure 4). It improves over the Agent 2 joint
train and zero-shot scores by 29% and 17%, and also pro-
vides lower variance results.

5.3 Audio+Video Agent Analysis

Agents 4 and 5 replace the second video frame with a spec-
trogram representing the last 1 second of in-game audio.
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Figure 3. Agent 2 detects various objects during training.
Top: the agent jumps on a spring to launch Sonic over the
pit. Bottom: the agent recognizes that Sonic needs to jump
over the spikes.

Figure 4. Agent 3 uses temporal information to judge its
progression up the ramp. Top: the agent decides it does
not have enough momentum, and begins to backtrack to
the left. Bottom: the Score CAM weighting shows the
agent understands that the screen shifting upwards means
that Sonic has enough momentum to make it up the ramp.

5.3.1 Relative Receptive Field Comparison

Agent 4 constructs a spectrogram with window size 256
and hop length 128, while Agent 5 uses window size 1024
and hop length 512. This leads to spectrogram sizes 368 by
256 pixels and 92 by 256 pixels, respectively. Both convey
the same amount of information, but result in audio CNNs
with different numbers of trainable parameters (Agent 4
has about 14 million more than Agent 5) and different rel-
ative receptive field sizes (Agent 4 has a 4 times smaller
relative receptive field). In other words, Agent 4 learns a
larger number of smaller audio details, and Agent 5 learns
a smaller number of larger ones.

In general, we found that Agent 5 was better able to
learn high level audio features. Agent 4 was more prone
to noise and overfitting because it could only recognize
smaller parts of overall sound effects.

5.3.2 Important Audio Features

Rings are small, keep rotating, and turn into even smaller
stars when grabbed by Sonic, so the act of acquiring them
is not recognized by the agent’s visual CNN component.
The corresponding sound is easy to see in a spectrogram,
so it is readily learned by the audio CNN component. The
same is true for when Sonic loses his rings.

An agent will respond to the ring acquiring sound by
increasing its likelihood of taking the "move right" action,
since rings are generally located along paths that lead to
forward progress in the level. Figure 5 shows an exam-
ple of Agent 5 doing this on a zero-shot run of Hill Top
Zone Act 2. Ironically, losing rings also produces the ef-
fect of increased "move right" likelihood, despite having a
dissonant sound and negative connotation for humans, be-
cause Sonic is granted temporary invincibility after losing
his rings. The agent uses this as an opportunity to get past
the danger that was originally in the way.

Visual indicators that Sonic is about to drown are small
see-through bubbles with numbers that count down and do
not appear every frame. These cues are easily missed by
the visual CNN, and video-only agents do not act on them.
However, our audio+video agents learn to pick up on the
drowning theme and quickly locate an oxygen-restoring
air bubble or exit the water entirely to avoid losing a life
(Figure 6).

Before Sonic gets to the drowning stage, there are pings
that play every 5 seconds Sonic is underwater. In some
levels where prolonged underwater travel is not always re-
quired, such as Angel Island Zone Act 2, Agent 5 exits the
water after hearing the first one of these pings.

Surprisingly, a significant number of sounds highlighted
by the Score CAM algorithm come from the background
musical score, which is not supposed to be feedback-
related. We hypothesize that these learned features are
mainly an artifact of the audio CNN incorrectly attributing
accumulated reward to the part of the score that happened
to be playing at the time. Typically these features do not
seem to have a significant effect on agent actions, but they
can be coincidentally reinforced when the same parts of
the music repeat.
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Figure 5. In Hill Top Zone Act 2, during a zero-shot run,
Agent 5 looks at ring sound as motivation to move right.
Note that the left column shows spectrogram heat maps
from the last second of audio. Top: the agent acquires rings
while holding right and continues to run up a steep cliff.
Bottom: the agent continues to run into the rock blocking
its path until the ring sound is freed from its memory.

Figure 6. Agent 5 avoids drowning. Top: the agent hears
the beginning of the drowning theme. Bottom: the agent
navigates Sonic to the bubble stream on the left, and waits
for a bubble to appear. The model highlights Sonic as
he breathes in the air bubble, confirming the danger has
passed.

5.3.3 Unimportant Audio Features

There are a few sound effects that we expected to be more
important for our training tasks. We thought that the jump
sound effect would be an important temporal indicator of
Sonic’s jump trajectory, i.e. determining if he is rising or
falling. We also expected the sound effect produced by
defeating a enemy to be important for learning to defeat
enemies before getting hit and losing a life.

We conclude that these features were not learned be-
cause in Sonic 2 and Sonic 3&K, a side character follows
Sonic around and produces many of the same sound ef-
fects while autonomously interacting with his local envi-
ronment. This means that the jump sound or defeating a
enemy sound is often not attributed to Sonic, and therefore
loses its predictive power.

Our agents also did not learn to differentiate between
consonant and dissonant sounds, or along any other axis
of Western classical music theory explained earlier. This
was expected, since the sounds in the Sonic games are
not plentiful or diverse enough to be able to learn beyond
simple classification. These theories should play a greater
role if/when a large unsupervised audio model is trained on
massive amounts of Western audio data and fine tuned on
videogame RL tasks, similar to how BERT [28] and GPT-
3 [29] have transformed the field of NLP.

5.3.4 Learned Video Features

None of this detailed audio analysis is to say that our audio
agents have weaker visual components. In fact, Agent 5 is
capable of navigating multiple multi-step visual challenges
with what appears to be limited overfitting. This suggests
that the audio component can be purely supplemental to
the video component, although as mentioned previously,
the agent may confuse itself in compounding ways when it
chooses to assign reward responsibility to the wrong com-
ponent.

6. CONCLUSION

The diverse nature of our learned audio features supports
some of our original hypotheses, namely that environmen-
tal audio can reinforce existing visual ideas, and call at-
tention to cues that are missed by the visual component,
or simply non visual. We can expect that the supplemen-
tary role of our learned audio features, combined with their
natural transfer ability, would extend beyond our work on
Sonic The Hedgehog.

As video games become increasingly realistic, we ex-
pect that agents with the ability to process both audio and
video will be the ones to achieve state of the art results on
RL benchmarks. For future work, it would be interesting
to see how audio features transfer across different games
(say, Sonic and Mario), and how state of the art Atari mod-
els such as Agent 57 [30] might perform when given access
to audio and games with richer audio/video components.

Overall, we hope that this work provides an insight-
ful application to multi-modal videogame reinforcement
learning, and motivates further such research in this field.
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ABSTRACT

Generative Adversarial Networks (GANs) have achieved
excellent audio synthesis quality in the last years. How-
ever, making them operable with semantically meaningful
controls remains an open challenge. An obvious approach
is to control the GAN by conditioning it on metadata con-
tained in audio datasets. Unfortunately, audio datasets of-
ten lack the desired annotations, especially in the musical
domain. A way to circumvent this lack of annotations is
to generate them, for example, with an automatic audio-
tagging system. The output probabilities of such systems
(so-called "soft labels") carry rich information about the
characteristics of the respective audios and can be used to
distill the knowledge from a teacher model into a student
model. In this work, we perform knowledge distillation
from a large audio tagging system into an adversarial au-
dio synthesizer that we call DarkGAN. Results show that
DarkGAN can synthesize musical audio with acceptable
quality and exhibits moderate attribute control even with
out-of-distribution input conditioning. We release the code
and provide audio examples on the accompanying website.

1. INTRODUCTION

Generative Adversarial Networks (GANs) [1] have
achieved impressive results in image and audio synthe-
sis [2–6]. However, it is still an open challenge to learn
comprehensible features that capture semantically mean-
ingful properties of the data. In the graphical domain, se-
mantic control is achieved with GANs using semantic lay-
outs [4] or high-level attributes learned through unsuper-
vised methods [2]. Other works achieve disentanglement
through regularization terms [7] or explore the latent space
for human-interpretable factors of variation [8, 9]. The
great success of these approaches is partly enabled by the
availability of large-scale image datasets containing rich
semantic annotations [10–12]. However, the context is dif-
ferent in the audio domain, where datasets are scarce and
often limited in size and availability of annotations.

© J. Nistal, S. Lattner, and G. Richard. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: J. Nistal, S. Lattner, and G. Richard, “DarkGAN: Exploit-
ing Knowledge Distillation for Comprehensible Audio Synthesis with
GANs”, in Proc. of the 22nd Int. Society for Music Information Retrieval
Conf., Online, 2021.

Therefore, in this work, we test if limited annotations
in audio datasets can be circumvented by taking a Knowl-
edge Distillation (KD) approach. To that end, we utilize
the soft labels generated by a pre-trained audio-tagging
system for conditioning a GAN in an audio generation
task. More precisely, we train the GAN on a subset of the
NSynth dataset [13], which contains a wide range of instru-
ments from acoustic, electronic, and synthetic sources. For
that dataset we generate soft labels with a publicly avail-
able audio-tagging model [14], pre-trained with attributes
of the AudioSet ontology [15]. This ontology contains a
structured collection of sound events from many different
sources and descriptions of around 600 attributes obtained
from YouTube videos (e.g., "singing bowl", "sonar", "car",
"siren", or "bird").

The soft labels indicate how much of the different char-
acteristics are contained in a specific sound (e.g., a synthe-
sizer sound may have some similarity with a singing bowl
or a sonar pulse). We hope that the generative model can
distill such characteristics (e.g., the "essence" of a singing
bowl sound) and is then able to emphasize them in the
generation. The slight similarities to specific categories
in data that can be distilled using soft labels were coined
"Dark Knowledge" in [16]. Therefore, we call the pro-
posed model DarkGAN.

This paper introduces a generic audio cross-task KD
framework for transferring semantically meaningful fea-
tures into a neural audio synthesizer. We implement this
framework in DarkGAN, an adversarial audio synthesizer
for comprehensible and controllable audio synthesis. We
perform an experimental evaluation on the quality of the
generated material and the semantic consistency of the
learned attribute controls. Numerous audio examples are
provided in the accompanying web page, 1 and the code is
released for reproducibility. 2

In what follows, we first mention relevant state-of-the-
art works in neural audio synthesis and KD (see Sec. 2).
In Sec. 3, some background on dark knowledge and KD
is given, and its application to controllable neural audio
synthesis is motivated. Next, we describe the experimental
framework of DarkGAN (see Sec. 4). In Sec. 5 we provide
a discussion of the results, and conclude in Sec. 6.

1 https://an-1673.github.io/DarkGAN.io/
2 https://github.com/SonyCSLParis/DarkGAN
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2. PREVIOUS WORK

In this section we review some of the most important works
on neural audio synthesis and knowledge distillation, pay-
ing particular attention to those works tackling tasks simi-
lar to ours.

2.1 Neural Audio Synthesis
Many works have applied deep generative methods to ad-
dress general audio synthesis. These can be categorised
into exact, approximate, and implicit density estimation
methods. In the first category, autoregressive models of
raw audio are state-of-the-art in different audio synthesis
tasks [13, 17, 18]. Popular approximate density estimation
methods are based on Variational Auto-Encoders (VAE)
[19]. One of the main advantages of VAEs compared to
other approaches is the control they offer over the genera-
tive process by manipulating a latent space learned directly
from the audio data [20]. Even though latent spaces tend to
self-organize according to high-level dependencies in the
data, these are still difficult to interpret. Therefore, some
works try to impose musically meaningful priors over the
structure of these spaces [21–23], or enforce an informa-
tion bottle-neck by restricting such latent codes to dis-
crete representations to capture fundamental and meaning-
ful features [24, 25].

Generative Adversarial Networks (GANs) [1] belong to
the implicit density estimation methods. Applications of
GANs to audio synthesis have mainly focused on speech
tasks [26–32]. The first application to synthesis of musical
audio was WaveGAN [33]. Although it did not match au-
toregressive baselines such as WaveNet [17] in terms of
audio quality, it could generate piano and drum sounds
quickly and in an entirely unconditional way. Recent
improvements in the stabilization and training of GANs
[34–36] enabled GANSynth [5] to outperform WaveNet
baselines on the task of audio synthesis of musical notes
using sparse, pitch conditioning labels. Follow-up works
building on GANSynth applied similar architectures to
conditional drum sound synthesis using different meta-
data [6, 37]. DrumGAN [6] synthesizes a variety of drum
sounds based on high-level input features describing tim-
bre (e.g., boominess, roughness, sharpness). A few other
works have used GANs in a variety of audio tasks like
Mel-spectrogram inversion [31], audio domain adaptation
[38, 39] or audio enhancement [40].

2.2 Knowledge Distillation

High-performing models are often built upon classifier en-
sembles that aggregate their predictions to improve the
overall accuracy. Despite having excellent performance,
these models tend to be large and slow, impeding their use
in memory-limited and real-time environments. Different
methods exist for optimizing memory consumption and re-
ducing the size of large models or ensembles, e.g., prun-
ing, transfer learning, or quantization. Model compression
allows to transfer the function learned by a teacher en-
semble or a single large discriminative model into a com-
pact, faster student model exhibiting comparable perfor-
mance [41]. Instead of training the student model directly

on a hand-labeled categorical dataset, this method employs
a pre-trained teacher model to re-label the dataset and then
train the compact neural network on this teacher-labeled
dataset, using the raw predictions as the target. This train-
ing framework was shown to yield efficient models which
perform better than if they had been trained on the hand-
labeled dataset in a variety of discriminative tasks [41–43].
Model compression was further extended and formalized
into the general Knowledge Distillation (KD) framework
[16].

KD has been extensively applied in various fields and
with other ends than model compression [44–46]. An in-
teresting line of research that is closely related to ours pro-
poses cross-task KD from image captioning and classifi-
cation systems into an image synthesis generative neural-
network [46, 47]. In audio, KD was extensively used on
Automatic Speech Recognition (ASR) tasks in order to ex-
ploit large unlabelled datasets [43], distill the knowledge
from deep Recurrent Neural Networks (RNN) [48] or, in-
versely, to improve the performance of deep RNN mod-
els by distilling knowledge from simple models as a reg-
ularization technique [49]. Works related to ours use KD
as a means to adapt a model to a different audio domain
task [50] or even data modality (by distilling knowledge
from a video classifier) [51], where labeled datasets are
scarce, and large models would easily overfit. Some works
employ KD to fuse knowledge from different audio repre-
sentations into a single compact model [52].

3. BACKGROUND
This section provides a brief introduction to dark knowl-
edge and explains the general knowledge distillation
framework.

3.1 Dark Knowledge

In the seminal work on Knowledge Distillation (KD) [16],
the authors demonstrate that the improved performance
of smaller models is due to the implicit information ex-
istent in the teacher’s output probabilities (i.e., soft labels).
As opposed to hard labels, soft labels contain probability
values for all of the output classes. The relative proba-
bility values that a specific data instance takes for each
class contain information about how the teacher general-
ized the discriminative task. This hidden information ex-
istent in the relative probability values was termed dark
knowledge [53]. An interesting observation on dark knowl-
edge is that in KD, the student model can learn to correctly
classify categories even if the training set does not contain
examples thereof [16]. In DarkGAN, we test if this prin-
ciple can be transferred to audio generation. Many of the
AudioSet attributes are not directly linked with the actual
training data (e.g., the attributes "reverberation", "meow",
or "drum" have little or no relationship to the tonal instru-
ment sounds of the NSynth dataset). However, we hope
that the implicit dark knowledge existent in the teacher-
labeled data can help DarkGAN learn a coherent feature
control over such attributes.
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3.2 Knowledge Distillation

Multi-label classifiers typically produce a probability dis-
tribution over a set of classes by using a sigmoid output
layer that converts the so-called logit (the NN output be-
fore the activation function), zi, computed for the ith class
into a probability qi as

qi =
1

1 + e
� zi

T

, (1)

where T is a temperature that is typically set to 1. In KD,
knowledge is transferred to the distilled model by training
it on the teacher-labeled data, using a higher temperature.
By that, the distribution gets "compressed," emphasizing
lower probability values. The same (higher) temperature is
used while training the distilled model, but the temperature
is set back to 1 after training. As for cost function, the
binary cross-entropy is used as

Hs(q) = � 1

N

NX

i=1

pi log (qi) + (1� pi) log (1� qi), (2)

where N = 128 is the number of attributes, pi are the soft-
labels predicted by the teacher, and qi is the probability
predicted by the student model for the ith class.

4. EXPERIMENTS

In this section, details are given about the conducted ex-
periments. We describe the AudioSet ontology, the teacher
and student architectures, the metrics employed for evalu-
ation, and the baselines used for comparison.

4.1 Dataset

We employ a subset from NSynth [13] for our experiments.
NSynth contains approximately 300k single-note audios
played by more than 1k different instruments from 10 dif-
ferent families. Each sample’s onset occurs at time 0. The
dataset contains various labels (e.g., pitch, velocity, instru-
ment type), but we only use (i.e., condition the model on)
pitch information in this work. Each sample is four sec-
onds long, with a 16kHz sample rate. For computational
simplicity, we use only the first second of each sample.
Also, we only consider samples with a MIDI pitch range
from 44 to 70 (103.83 - 466.16 Hz), resulting in a sub-
set of approximately 90k sounds equally distributed across
the pitch classes. For the evaluation, we perform a 90/10%
split of the data.

Previous works on adversarial audio synthesis [5, 54]
demonstrated that the Magnitude and Instantaneous Fre-
quency of the STFT works well as a representation for har-
monic sounds. We use an FFT size of 2048 bins and an
overlap of 75%.

4.2 The AudioSet Ontology

AudioSet [15] is a large-scale dataset containing audio
data and an ontology of sound events that seek to describe
real-world sounds. It was created to set a benchmark in

the development of automatic audio event recognition sys-
tems, similar to those in computer-vision, such as Ima-
geNet [10]. The dataset consists of a structured vocabu-
lary of 632 audio event classes and a collection of approx-
imately 2M human-labeled 10-second sound clips drawn
from YouTube videos. The ontology is specified as a hi-
erarchy of categories with a maximum depth of 6 levels,
covering a wide range of human and animal sounds, musi-
cal genres and instruments, and environmental sounds. We
encourage the reader to visit the corresponding website for
a complete description of the ontology. 3

In this work, we do not employ all of the AudioSet at-
tributes, as many of them refer to properties that are too
vague for musical sounds or describe broader time-scale
aspects of the sound (e.g., music, chatter, sound effect). In-
stead, we rank the attributes based on the geometric mean
of their 90th percentile (calculated on the predicted class
probabilities for each attribute across the dataset), and the
teacher’s reported accuracy as

q
p
i
90th

⇥ acci. Then, we
take the first 128 attributes according to this ranking.

4.3 Models

In the following, we introduce the teacher model and Dark-
GAN’s architecture.

4.3.1 Pre-trained AudioSet Classifier

In this work, we distill the knowledge from a pre-trained
audio-tagging neural network (PANN) trained on raw au-
dio recordings from the AudioSet collection [14]. PANNs
were originally proposed for transferring knowledge to
other audio pattern recognition tasks. However, we use
them to transfer the knowledge to a generative model and
steer the generation process through a comprehensible vo-
cabulary of attributes.

We employ the CNN-14 model from the PANNs [14].
CNN-14 is built upon a stack of 6 convolution-based blocks
containing 2 CNN layers with a kernel size of 3x3. Batch
Normalization is applied after every convolutional layer,
and a ReLU non-linearity is used as the activation function.
After each convolutional block, they apply an average-
pooling layer of size 2x2 for down-sampling. Global pool-
ing is applied after the last convolutional layer to summa-
rize the feature maps into a fixed-length vector. An extra
fully-connected layer is added to extract embedding fea-
tures before the output Sigmoid activation function. For
more details on the architecture, please refer to [14].

4.3.2 DarkGAN

The proposed GAN architecture, illustrated in Fig. 1, fol-
lows the architecture of DrumGAN [6]. The input to
G is a concatenation of 128 teacher-labeled AudioSet at-
tributes ↵ 2 [0, 1]128 (see Sec. 4.2), a one-hot vector
p 2 {0, 1}26 containing the pitch class, and a random
vector z ⇠ N32(0, 1). The resulting vector is placed as
a column in the middle of a 4D tensor with 128 + 32 + 26
convolutional maps. Then, it is fed through a stack of con-
volutional and box up-sampling blocks to generate the out-

3 research.google.com/audioset/ontology/
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Figure 1. Proposed architecture for DarkGAN [6]

put signal x = G✓(z, p,↵). The number of feature maps
decreases from low to high resolution as {256, 128, 128,
128, 128, 64}. The discriminator D mirrors G’s configu-
ration and estimates the Wasserstein distance Wd between
the real and generated distributions [35], and predicts the
AudioSet features accompanying the input audio in the
case of a real batch, or those used for conditioning in the
case of generated audio. In order to promote the usage of
the conditioning information by G, we add to the objec-
tive function an auxiliary binary cross-entropy loss term
for the distillation task and a categorical cross-entropy for
the pitch classification task [55].

4.4 Evaluation
The task of synthesizing perceptually realistic audio is hard
to formalize. In conditional models, as is the case in
this work, an additional challenge is to assess whether the
model is soundly responsive to the conditional input. In
order to evaluate these properties of our model, a diverse
set of objective metrics are computed. We compute these
metrics for DarkGAN when trained under different tem-
perature values in the distillation process (see Sec. 2.2), as
well as for various baselines. In this section, we describe
these metrics as well as the baselines used for comparison.

4.4.1 Scores and distances

Following previous methodology [6, 54, 56], we compare
real and generated distributions employing these metrics:

• Inception Score (IS) [36] penalizes models whose
samples cannot be reliably classified into a single
class or that only belong to a few from all possible
classes. We report on the Pitch Inception Score (PIS)
and the Instrument Inception Score (IIS) [54].

• Kernel Inception Distance (KID) [57] measures
the dissimilarity between embeddings of real and

generated samples. A low KID means that the gen-
erated and real distributions are close to each other.

• Fréchet Audio Distance (FAD) [58] measures the
distance between continuous multivariate Gaussians
fitted to embeddings of real and generated data. The
lower the FAD, the smaller the distance between dis-
tributions of real and generated data.

4.4.2 Consistency of Attribute Controls

This work aims to learn semantically meaningful controls
with DarkGAN by distilling knowledge from an audio-
tagging system trained on attributes from the AudioSet on-
tology. Therefore, we evaluate if changing an input at-
tribute is reflected in the corresponding output of Dark-
GAN. To that end, we examine the change in the predic-
tion of the teacher model (w.r.t. the output of DarkGAN)
when changing a particular DarkGAN input attribute. A
second property to assess is whether the dark knowledge
helps DarkGAN learn well-formed representations of spe-
cific attributes and generalize to out-of-distribution input
combinations. To assess these two aspects, we perform the
following tests:

1. Attribute correlation: we generate 10k samples us-
ing attribute vectors from the validation set as input
to DarkGAN. The generated samples are fed to the
teacher model to predict the attributes again. Then,
for each attribute i, we compute the correlation be-
tween the input vector ↵ and the predictions ↵̂ as

⇢
i(↵̂,↵) = ⇢(F i(G(z, p,↵)),↵),

where F
i is the classifier’s prediction for the ith at-

tribute, p is the pitch, and z is the random noise.

2. Out-of-distribution Attribute Correlation: for each
attribute i exhibiting a positive correlation, i.e., S =
{⇢i : ⇢

i
> 0}, test (1) is repeated 50 times, but

using 1k samples instead of 10k. In each repetition,
a specific attribute is progressively incremented by
an amount �l := 10�3+l 3.650 , l = 0, 1, ..., 50* and we
calculate

⇢�l =
1

| S |
X

S
⇢
i(↵̂,↵+ �l).

3. Increment consistency: for the 50 attributes with the
highest correlation, we compute

�F�k =
50X

i=1

100X

j=1

F i(G(zj , pj ,↵j + �k))� F i(G(zj , pj ,↵j))

50⇥ 100⇥ std(F i(G(z,p,↵)))
,

where ↵j is the jth original feature vector from a set
of 100 samples randomly picked from the validation
set, and �k := k

5 , k = 0, 1, ..., 25. Intuitively, it is
defined as the average difference of the predicted at-
tributes of the generated audios (i.e., the difference
before and after the attribute increment) as a func-
tion of the increment �k. We express the result in
terms of standard deviations of the non-incremented
generated examples as std(G(z, p,↵)).

*The step of �l is defined to obtain more density of points in the
range of variation of the attributes (i.e., [0, 1]) as well as �l > 1.
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4.4.3 Baselines

We compare the metrics described above with real data
to obtain a baseline for each metric. Also, GANSynth
[5], the state-of-the-art on audio synthesis with GANs, is
used for comparison. 5 As GANSynth generates 4-second
long sounds, the waveform is trimmed down to 1 second
for comparison with our models. Additionally, we exam-
ine the effect that KD has on these metrics by comparing
against a model analogous to DarkGAN, but without using
the AudioSet feature conditioning (baseline). Experiment
results for DarkGAN are shown for different temperature
values T 2 {1, 1.5, 2, 3, 5} (1) as part of the KD process
(see Sec. 3.2), and we report separate results for condi-
tional attributes obtained from the training (tr) and valida-
tion (val) set.

5. RESULTS
In this section, we present the results from the evaluation
procedure described in Sec. 4.4. Furthermore, we validate
the quantitative results based on an informal assessment of
the generated content.

5.1 Quantitative Metrics

Table 1 presents the metrics scored by DarkGANT and the
baseline models, as described in Sec. 4.4.3. Note that we
condition DarkGAN on attribute vectors randomly sam-
pled from the validation set. Overall, DarkGANT2{1.5,2}
obtains better results than the baselines and is close to real
data in most metrics. All models score higher PIS than
real data, with GANSynth in the first place, suggesting
that the generated examples have a clear pitch and that
the distribution of pitch classes follows that of the train-
ing data. This is not surprising, as all the models have
explicit pitch conditioning. In contrast, we do not provide
conditioning attributes for the instrument class. Therefore,
we observe a slight drop in IIS for all models compared
to real data. DarkGANT2{1.5,2} achieves the highest IIS,
suggesting that the model captured the timbre diversity ex-
istent in the dataset and, also, that the generated sounds can
be reliably classified into one of all possible instruments.
In terms of KID, DarkGANT2{1.5,2} and baseline are on
a par with real data. A KID equal to real data indicates
that the Inception embeddings are similarly distributed for
real and generated data. As our Inception classifier is
trained on pitch and instrument classification and predict-
ing AudioSet features, similarities in such an embedding
space indicate common timbral and tonal characteristics
between the generated and the real audio data distribution.
This trend is maintained in the case of the FAD, where
DarkGANT=2 obtains the best scores followed closely by
DarkGANT2{1,1.5}.

From the results discussed above, we can conclude that
distilling knowledge from the AudioSet classifier helps
DarkGAN learning the real data distribution. Furthermore,
using slightly higher temperatures in the distillation pro-
cess yields an improvement over the baseline without fea-
ture conditioning. We speculate that the additional super-

5 https://github.com/magenta/magenta/tree/master/
magenta/models/gansynth

Model PIS" IIS" KID#a FAD#
real data 17.7 5.7 6.7 0.1

GANSynth [5] 19.6 4.0 7.1 4.5
baseline 18.5 4.3 6.7 0.8

DarkGANT tr val tr val tr val tr val

T = 1 18.4 18.3 4.0 4.0 6.8 6.8 0.7 0.7
T = 1.5 19.0 19.0 4.5 4.5 6.7 6.7 0.7 0.7
T = 2 19.1 19.0 4.2 4.1 6.7 6.8 0.6 0.6
T = 3 19.1 19.1 4.2 4.1 6.8 6.8 0.8 0.8
T = 5 19.2 19.1 4.0 4.0 6.8 6.8 0.8 0.8

a⇥10�4

Table 1. PIS, IIS, KID and FAD (see Sec. 4.4)

Attribute T=1 T=1.5 T=2 T=3 T=5

Acoustic guitar 0.20 0.36 0.39 0.23 0.10
Bass guitar 0.30 0.38 0.46 0.38 0.19

Brass Instrument 0.28 0.49 0.38 0.26 0.00
Cello 0.24 0.29 0.26 0.17 0.00
Chime 0.15 0.33 0.39 0.31 0.03
Guitar 0.28 0.37 0.42 0.34 0.13

Plucked string 0.27 0.37 0.42 0.32 0.11
Saxophone 0.25 0.41 0.41 0.41 0.03
Trombone 0.18 0.41 0.29 0.16 0.00
Trumpet 0.16 0.46 0.36 0.25 0.00

... ...
Didgeridoo 0.06 0.16 0.21 0.20 0.08

Drum 0.05 0.21 0.24 0.12 0.01
Electronic tuner 0.35 0.44 0.50 0.29 0.13

Percussion 0.04 0.19 0.30 0.14 0.08
Sine wave 0.28 0.32 0.27 0.17 0.10

Singing bowl 0.08 0.20 0.24 0.21 0.03
Siren 0.13 0.19 0.24 0.10 0.08

Tuning fork 0.22 0.29 0.35 0.29 0.10
Zither 0.03 0.18 0.19 0.07 -0.01

... ...
Cat -0.01 -0.01 -0.01 -0.01 0.00

Chicken, rooster 0.00 -0.06 -0.02 -0.01 -0.01
Domestic animals, pets -0.01 -0.02 -0.02 0.00 0.00

Frog 0.00 0.03 0.07 0.06 -0.03
Insect 0.00 -0.02 -0.02 -0.02 -0.01
Speech -0.04 -0.10 -0.07 -0.05 0.01

Table 2. A few examples of attribute correlation coeffi-
cients ⇢i(↵̂,↵) (see Sec. 4.4.2).

vised information that the teacher model provides to Dark-
GAN’s discriminator results in a more meaningful gradi-
ent for the generator. Also, attribute conditioning (i.e., at-
tribute vectors sampled from the validation set) may help
the generator synthesize diverse samples closer to the train-
ing data distribution.

5.2 Attribute Consistency and Generalisation
Note that the metrics discussed in this section are not guar-
anteed to relate directly to human perception, but we con-
sider them suitable indicators of whether the model re-
sponds coherently to the input conditioning. There exists
the threat of the generator producing adversarial examples,
but we argue that this is prevented by the discriminator
having to satisfy the Wasserstein criterion (as adversarial
examples would exhibit out-of-distribution artifacts). This
assumption is also supported by informal listening tests
where we find that the metrics correlate with our percep-
tion (see Sec. 5.3).

Table 2 shows the results for the attribute correlation
⇢
i(↵̂,↵) (see Sec. 4.4.2). At the top of the table, we show

a few attributes corresponding to classes represented in the
NSynth dataset (e.g., "guitar", "trumpet"). In the mid-
dle, we show attributes that, while not being present in
the dataset (e.g., "siren", "tuning fork"), still exhibit (rel-
atively) high correlation. At the bottom, attributes that ob-
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tain low correlations are presented (e.g., "cat", "insect").
We can observe that models trained with T 2 {1.5, 2, 3}
generally obtain better results than T 2 {1, 5} in most
attributes. Specifically, DarkGANT=2 yields the highest
correlations, followed by DarkGANT=1.5. Note that tem-
peratures higher than 1 also improve the correlation for
attributes that do not have corresponding classes in the
dataset (e.g., "didgeridoo", "percussion", "singing bowl").
This suggests that DarkGAN can extract dark knowledge
(which is emphasized by increasing T ) from the soft labels.
The soft labels indicating the presence of (potentially just
slight) timbral characteristics in various sounds are helping
the model to learn linearly dependent feature controls for
those attributes.

A more in-depth analysis of feature errors and the distri-
bution of features in the dataset would be required to fur-
ther characterize the results for each attribute. However,
it is reasonable that those classes obtaining higher corre-
lations share some timbral features with the training data
(e.g., clearly, "violins" are contained in the data set, and a
"tuning fork" is similar to a "mallet"). In contrast, those
attributes obtaining low correlations may be related to un-
derrepresented features in the training set or features that
the model failed to capture.

Fig. 2 shows the correlation coefficient when increasing
each attribute by a value �l in the input conditioning. The
plot reveals that the trend of Table 2 is maintained through-
out an ample range of variation of the attributes. Interest-
ingly, while the correlation of DarkGANT=1 considerably
declines after an increase �l > 10�0.8, using a temperature
T 2 {1.5, 2, 3} the decline is more moderate, and we ob-
serve some correlation even for a �l > 1, which is outside
the range of the attributes.

As the correlation coefficient provides normalized re-
sults (regarding scale and offsets), we evaluate the attribute
control using the increment consistency metric �F �k (see
Fig. 3). We observe that for low increments of the features
(�k < 1) temperatures T 2 {1, 1.5, 2} yield comparable
input-output relationships of the features. A temperature
T = 1.5, however, yields more consistent feature differ-
ences for increments �k > 1 of the conditional input fea-
tures. In conclusion, while DarkGANT=2 yields better
correlation over all the data (i.e., conditional and predicted
attributes are more strongly dependent), for attributes with
particularly high correlation, DarkGANT=1.5 performs
best in over-emphasizing dark knowledge contained in the
data (i.e., the degree of change is higher, especially for
�k > 1).

5.3 Informal Listening

In the accompanying website, 6 we show sounds gener-
ated under various conditioning settings, including gener-
ations with feature combinations randomly sampled from
the validation set, generations where we fix ↵ and p while
changing z, timbre transfer, scales, and more. Overall, we
find the results of PIS, IIS, KID, and FAD, discussed in
Sec. 5.1, to align well with our perception. The quality
of the generated audio is acceptable for all models. Also,

6 https://an-1673.github.io/DarkGAN.io/

�l

⇢
� l

Figure 2. Out-of-distribution average attribute correlation
⇢�l (see Sec. 4.4.2)

�k

�
F

� k

Figure 3. Increment consistency �F �k (see Sec.4.4.2)

we find the generated examples to be diverse in terms of
timbre, and the tonal content is coherent with the pitch
conditioning. Moreover, we perceive that most of the at-
tributes exhibiting high correlations (see Table 2) are au-
dible in the generated output, particularly in the case of
DarkGANT2{1,1.5,2}. For higher temperatures T 2 {3, 5},
the model’s responsiveness to the attribute conditioning
drops substantially. We find the model to be particularly
responsive to attributes such as "drum", "tuning fork",
"theremin", "choir", or "cowbell". To other attributes (e.g.,
"accordion", "piano", or "organ"), even though the analysis
yields moderate correlations, the model does not seem to
produce perceptually satisfactory outputs.

6. CONCLUSION
In this work, we distilled knowledge from a large-scale au-
dio tagging system into DarkGAN, an adversarial synthe-
sizer of tonal sounds. The goal was to enable steering the
synthesis process using attributes from the AudioSet on-
tology. A subset of the NSynth dataset was fed to a pre-
trained audio tagging system to obtain AudioSet predic-
tions. These predictions were then used to condition Dark-
GAN. The proposed Knowledge Distillation (KD) frame-
work was evaluated by comparing different temperature
settings and employing a diverse set of metrics. Results
showed that DarkGAN can generate audio resembling the
true dataset and enables moderate control over a compre-
hensible vocabulary of attributes. By slightly increasing
the temperature during the distillation process, we can fur-
ther improve the responsiveness of the attribute controls.
It is also notable that KD can be performed even when
the original dataset (i.e., the AudioSet collection) is not
involved.
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ABSTRACT

This paper describes a phase-aware joint beat and down-

beat estimation method mainly intended for popular mu-

sic with a periodic metrical structure and steady tempo.

The conventional approach to beat estimation is to train a

deep neural network (DNN) that estimates the beat pres-

ence probability at each frame. This approach, however,

relies heavily on a periodicity-aware post-processing step

that detects beat times from the noisy probability sequence.

To mitigate this problem, we have designed a DNN that es-

timates the beat phase at each frame whose period is equal

to the beat interval. The estimation losses computed at

all frames not limited to a fewer number of beat frames

can thus be effectively used for backpropagation-based su-

pervised training, whereas a DNN has conventionally been

trained such that it constantly outputs zero at all non-beat

frames. The same applies to downbeat estimation. We also

modify the post-processing method for the estimated phase

sequence. For joint beat and downbeat detection, we inves-

tigate multi-task learning architectures that output beat and

downbeat phases in this order, in reverse order, and in par-

allel. The experimental results demonstrate the importance

of phase modeling for stable beat and downbeat estimation.

1. INTRODUCTION

Rhythm analysis of music signals such as beat, downbeat,

and tempo estimation often constitutes the crucial front end

of automatic music transcription [1, 2] and music struc-

ture analysis [3]. The typical approach to beat estimation

consists of (1) computing an onset strength signal (OSS)

from a music signal and (2) detecting regularly-spaced beat

times from the OSS with autocorrelation analysis or comb

filtering [4–6]. The step (1) has recently been implemented

with a deep neural network (DNN) that outputs the proba-

bility of the presence of a beat at each frame [7–11]. In par-

ticular, convolutional neural networks (CNNs) attained the

noticeable improvement of beat estimation [7–9]. Since

the same applies to downbeat estimation, we often focus

on only beat estimation in the remainder of the paper.

© T. Oyama, R. Ishizuka, and K. Yoshii. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: T. Oyama, R. Ishizuka, and K. Yoshii, “Phase-Aware Joint

Beat and Downbeat Estimation Based on Periodicity of Metrical Struc-

ture”, in Proc. of the 22nd Int. Society for Music Information Retrieval

Conf., Online, 2021.
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Figure 1. For beat estimation, the proposed DNN aims to

estimate a sawtooth-shaped beat phase sequence, whereas

a conventional DNN aims to estimates an impulsive beat

presence probability sequence.

The major problem of the typical approach is that the

periodic nature of beat times is not considered explicitly

in the step (1). The performance of DNN-based beat esti-

mation thus heavily depends on the periodicity-aware post-

processing step (2) that detects beat times from the noisy

probability sequence. This calls for the improved accuracy

of the raw output of a DNN used in the step (1).

To solve this problem, in this paper we propose a new

approach to beat estimation that aims to estimate not the

beat presence probability but the beat phase at each frame

(Fig. 1). Note that a sequence of beat phases is represented

as a semi-continuous sawtooth wave whose period corre-

sponds to beat intervals, whereas a sequence of beat pres-

ence probabilities as an impulse train that takes one at only

beat frames and zero at the other frames. The key advan-

tage of the phase-based representation is that all frames not

limited to beat frames give meaningful information about

the periodic beat structure. Since a DNN is usually trained

with backpropagation such that the sum of frame-level es-

timation losses is minimized, the phase-based representa-

tion would be a more suitable target for periodicity-aware

supervised training.

We also propose a post-processing method that detects

beat times from the noisy phase sequence (Fig. 2). In

recent beat estimation [7–10], a dynamic Bayesian net-

work (DBN) based on the bar-pointer model [12], which

is approximately implemented as a hidden Markov model

(HMM) [13], is used for picking beat times from a number

of peaks included in a beat probability sequence. We mod-

ify the observation model of the DBN to deal with a beat

phase sequence. The global tempo can be estimated by

identifying the most dominant frequency component from

the Fourier transform of the noisy sinusoidal wave con-

verted from the estimated phase sequence.
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Since beat and downbeat times form the hierarchical

metrical structure of music in a mutually dependent man-

ner, we investigate three multi-task learning architectures

for joint beat and downbeat estimation. More specifically,

one can (1) predict beat phases from an audio spectrogram

and then predict downbeat phases from the spectrogram

and the estimated beat phases, (2) predict the downbeat

and beat phases in this order (the reverse order of (1)), and

(3) predict both the beat and downbeat phases in parallel.

Several examples estimated by the proposed method are

available at https://phase2bdbt.github.io/.

2. RELATED WORK

Classical beat estimation methods focus on the periodicity

of a music signal with signal processing techniques [5, 6].

In recent years, DNNs have actively been used for directly

estimating the probability of the presence of a beat at each

frame, given the spectrogram or acoustic features of a mu-

sic signal. The first attempt for DNN-based beat estimation

used a long short-term memory (LSTM) network that esti-

mates a sequence of beat presence probabilities from mel

spectrograms with different window lengths [14]. More

recently, the temporal convolutional network (TCN) [15]

was shown to improve the performance with shorter train-

ing time [9]. It consists of dilated convolution layers like

WaveNet [16] originally proposed for audio synthesis such

that the receptive field of a deeper layer becomes wider ex-

ponentially to capture the long-term dependency of time-

series data. For better estimation, the TCN used in [9] has a

non-causal architecture, i.e., both the past and future input

data are used for making a prediction at the current frame,

whereas the original TCN has a causal architecture.

For tempo estimation, one can estimate the tempo from

a kind of onset strength signal (OSS) extracted from a mu-

sic signal and detect the most dominant period correspond-

ing to the tempo from the OSS with autocorrelation analy-

sis, comb filtering, or the discrete Fourier transform (DFT)

[17–19]. In the same way as beat estimation, the tempo

has recently been estimated directly from a music signal

with a DNN [20, 21], where the tempo estimation is in-

terpreted as a classification problem. Schreiber et al. [20]

attempted to estimate local tempos as well as the global

tempo. Foroughmand et al. [21] proposed a new represen-

tation of the DNN input called harmonic constant-Q mod-

ulation (HCQM) that represents the harmonic series con-

sidering tempo frequencies.

Several multi-task methods have been proposed for joint

estimation of mutually-dependent multiple kinds of metri-

cal elements. In the earliest years, Goto [22] proposed a

method based on signal processing techniques and expert

knowledge of metrical structure for real-time joint beat and

downbeat estimation. In recent years, the LSTM was used

for joint beat and downbeat estimation [10] and the TCN

was used for joint beat and tempo estimation [8], which

was extended for joint beat, downbeat, and tempo esti-

mation [7], resulting in the state-of-the-art performances.

In [7], a single TCN was shared over three tasks and was

trained with a data augmentation technique.

Logarithmic spectrogram

Feature embedding

TCN layer x 11

Decoder

Beat phase

Dynamic Bayesian network

Beat time

Discrete Fourier transform

Global tempo

Figure 2. The proposed phase-aware beat estimation fol-

lowed by tempo estimation.

3. PROPOSED METHOD

This section describes the proposed phase-aware method

for rhythm analysis. Our goal is to estimate beat and down-

beat times and the global tempo from the log-magnitude

spectrogram X ∈ RF×T of a music signal, where F is the

number of frequency bins and T is the number of frames.

For beat estimation, we perform DNN-based phase classi-

fication (Section 3.1) followed by DBN-based peak pick-

ing (Section 3.2) and tempo estimation (Section 3.3). We

then describe three possible architectures of multi-task learn-

ing for joint beat and downbeat estimation (Section 3.4).

3.1 DNN-Based Beat/Downbeat Phase Classification

We tackle beat phase estimation in terms of a DNN-based

classification problem. In our preliminary investigation on

the Beatles dataset [23], we found that when a DNN is

used for phase regression, it often fails to decrease the es-

timation loss without careful pretraining. The beat phase

is reset to zero at a beat frame and linearly increases to 2π
until the next beat frame, i.e., the phase sequence forms

a sawtooth wave (Fig. 1). The phase resolution is set to

2π/K, i.e., the phase is quantized into K classes.

Let Zb ! {zbt}
T
t=1 be a sequence of beat phases, where

zbt ∈ {0, 1}K is a K-dimensional one-hot vector at frame

t whose k-th element zbtk takes one when the beat phase zbt
satisfies

2π(k−1)
K

≤ zbt < 2πk
K

. Let Zd ! {zdt }
T
t=1 be a se-

quence of downbeat phases defined in the same way. Here-

after, ∗ is denoted as b or d. In practice, we use a blurry

version of Z∗ as target data for training a DNN-based clas-

sifier. More specifically, when z∗tk = 1, we assume that

z∗t,k±1 = 0.75, z∗t,k±2 = 0.50, and z∗t,k±3 = 0.25.

Let ψ∗ ! {ψ∗
t }

T
t=1 be a sequence of class probability

vectors estimated by the DNN, where ψ∗
t ∈ [0, 1]K is a

K-dimensional normalized vector of frame t. The DNN is

trained in a supervised manner such that it maximizes the

posterior probability of Z∗ given by

J ∗
phase =

1

T

T
∑

t=1

K
∑

k=1

z∗tk logψ
∗
tk. (1)
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Figure 3. Network architectures.

The overall structure of the proposed method is shown

in Fig. 2 and the detailed architecture of the DNN is shown

in Fig. 3. The DNN used for phase classification in this

study is basically the same as one used in the latest study [7]

except that skip connections in the TCN used for tempo es-

timation are removed. It takes as input the log-magnitude

spectrogram of a music signal on a logarithmic frequency

axis, which is fed to the feature extraction layer referred

to as Feature embedding in Fig. 2. The extracted feature

vectors with 20 channels at each frame are fed to a stack

of eleven TCN layers, which is referred to as TCN layer ×
11, followed by Decoder that outputs a sequence of beat

or downbeat phases. For the K-class outputs, we slightly

modify the components of Decoder as in Fig. 3. One can

refer in particular to [9] for detailed descriptions of the

other DNN components.

3.2 DBN-Based Beat/Downbeat Detection

We modify the existing dynamic Bayesian network (DBN)

used in [13] for detecting beat and downbeat times from a

noisy sequence of the estimated beat and downbeat phases.

The main modification lies in the change of the observed

variable of the DBN from the presence probabilities to the

phases.

3.2.1 State Space

For each frame t, we represent the tempo Sv
t as the number

of frames per beat, Sv
t ∈ {svmin, s

v
min+1, svmin+2, . . . , svmax}

(Sv
t ∈ Z) where svmin and svmax are calculated as follows:

svmin =

[

60× fps

BPMmax

]

, svmax =

[

60× fps

BPMmin

]

, (2)

where BPMmin (BPMmax) indicates the minimum (maxi-

mum) BPM, fps indicates the number of frames per sec-

ond, and [x] denotes the closest integer to x. Let BPB be

the number of beats per measure, and Nt = BPB × Sv
t is

tempo

bar position

one beat

Figure 4. Two-dimensional representation of hidden state

space at frame t used in DBN.

the number of frames per measure. Let Sp
t ∈ {1, 2, . . . , Nt}

be the position in a measure at frame t, and S ! S1:T =
(Sp

1:T ,S
v
1:T ) be a sequence of hidden states. The hidden

states at frame t is shown in Fig 4

3.2.2 State Transition Model

We use the same transition model as [13], where the tran-

sition probabilities are computed as follows:

p(St|St−1) = p(Sp
t , Sv

t |S
p
t−1, Sv

t−1)

= p(Sp
t |S

p
t−1, Sv

t−1)p(S
v
t |S

p
t , Sv

t−1). (3)

The first term of (3) represents a bar transition model, which

is defined as

p(Sp
t |S

p
t−1, Sv

t−1)

=

{

1 (Sp
t − 1 ≡ Sp

t−1 mod Nt−1);

0 (otherwise).
(4)

The second term of (3) represents a tempo transition model

and the tempo is only allowed to change at beat times.

p(Sv
t |S

p
t , Sv

t−1) is defined as follows: if Sp
t ∈ B,

p(Sv
t |S

p
t , Sv

t−1) = exp

(

−λ×

∣

∣

∣

∣

Sv
t

Sv
t−1

− 1

∣

∣

∣

∣

)

, (5)

otherwise

p(Sv
t |S

p
t , Sv

t−1) =

{

1 (Sv
t = Sv

t−1);

0 (otherwise),
(6)

where B is the set of positions that corresponds to beats

and λ ∈ Z≥0 is the parameter to determine the steepness

of the above distribution.

3.2.3 Observation Model

We formulate an observation model that stochastically gen-

erates an acoustic feature sequence X from a latent state

sequence S. We use the output of the DNN as the proba-

bility distribution of a certain phase sequence Z∗ given the

acoustic features X as follows:

p(Z∗|X) =
T
∏

t=1

K
∏

k=1

(ψ∗
tk)

z∗

tk . (7)

We represent Zb and Zd together as Z = (Zb,Zd). To

compute p(X|S) using p(Z|X), p(X|S) is transformed as

p(X|S) =
∑

Z

p(X,Z|S) =
∑

Z

p(X|Z,S)p(Z|S). (8)
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Beat phase

frame
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Figure 5. Observation probabilities p(Xt|St) are repre-

sented as product of ψb
tkb

and ψd
tkd

.

Let ZS be the beat and downbeat series Z corresponding

to the given latent state S. Because ZS is uniquely deter-

mined by S, p(X|S) can be calculated as follows:

p(Z|S) = δZ,ZS
, (9)

p(X|S) =
∑

Z

p(X|Z,S)δZ,ZS
= p(X|ZS). (10)

Because p(ZS) is a uniform distribution and the term p(X)
is negligible, we get

p(X|ZS) =
p(ZS|X)p(X)

p(ZS)
∝ p(ZS|X). (11)

Finally, p(X|S) can be written using the estimated proba-

bilities as follows:

p(X|S) ∝ p(ZS|X) =
T
∏

t=1

ψb
tkb
ψd
tkd

, (12)

kb =

[

K ×
Sp
t mod Sv

t

Sv
t

]

, (13)

kd =

[

K ×
Sp
t

BPB · Sv
t

]

=

[

K ×
Sp
t

Nt

]

. (14)

3.3 Tempo Estimation

Global tempo is computed from the beat phases estimated

by the DNN using the DFT. The beat phase series is firstly

converted into a sinusoidal curve Y ! {yt}Tt=1 as follows:

yt = sin

(

2π

K
× arg max

1≤k≤K

ψb
t

)

. (15)

The DFT is applied to the series Y and we can calculate

the global tempo V as follows:

V =
60 ωmax × fps

2π
[beats/60[s]], (16)

where ωmax[rad/frame] denotes the angular velocity with

the largest absolute value of the Fourier coefficient in the

DFT result. We can thus compute the most plausible tempo

from a noisy beat phase sequence estimated by the DNN.

3.4 Joint Beat and Downbeat Estimation

We compare three architectures for joint estimation of beat

and downbeat phases (Fig. 6). In the first architecture, we

add another Decoder for downbeat estimation to the DNN

described in Section 3.1. The components of the added de-

coder are the same as those used for beat estimation. The

Input

FE

TCN

DEC DEC

Beat
phase

Downbeat
phase

Input

FE

TCN

DEC

Downbeat
phase

Beat
phase

FE

TCN

DEC

Input

FE

TCN

DEC

Downbeat
phase

Beat
phase

FE

TCN

DEC

Figure 6. Three network architectures for joint beat and

downbeat estimation. FE, TCN, and DEC correspond to

“Feature embedding”, “TCN layer×11”, and “Decoder” in

Fig. 2, respectively.

beat and downbeat phases are estimated in parallel. In the

second architecture, the DNN described in Section 3.1 esti-

mates beat or downbeat phases and then another DNN with

the same architecture estimates the other, where the output

of the former DNN in addition to the acoustic features are

fed to the latter DNN. The third architecture estimates the

beat and downbeat phases in the reverse order of the sec-

ond architecture.

In the second architecture, when the output of the for-

mer DNN is fed to the latter DNN, the output probability

series ψ∗ is converted into the phase series Ẑ∗ ! {ẑ∗t }
T
t=1

as follows:

ẑt
∗ =

2π

K
× aT Gumbel-softmax(ψ∗

t ), (17)

where a = [1, . . . ,K]T is a K-dimensional index vector

and Gumbel-softmax(ψ∗
t ) is a differentiable function that

samples a random variable ẑ∗t that follows a discrete dis-

tribution ψ∗
t . We concatenate the phase sequence Ẑ∗ with

the 20-dimensional vector obtained from the Feature em-

bedding of the second DNN and input the 21-dimensional

vector into the main TCN layer of the second DNN. Cal-

culating the phase series in a differentiable state enables us

to back-propagate the two DNNs at the same time.

4. EVALUATION

This section reports experiments conducted for validating

the effectiveness of the proposed phase-aware DNN train-

ing and comparing the performances of the three multi-task

learning architectures.

4.1 Experimental Conditions

To increase the amount of training data with various tem-

pos, each song was pitch-shifted by −12, −6, +6, and +12
semitones and time-stretched by min_rate, (min_rate + 1) /

2, (max_rate + 1) / 2, and max_rate times, where min_rate

and max_rate are given by

min_rate =
BPMmin

bpm
, max_rate =

BPMmax

bpm
, (18)
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Method F-measure CMLt AMLt

RWC

Baseline 0.835 0.717 0.85

Proposed 0.846 0.765 0.861

Beatles

Baseline 0.798 0.69 0.777

Proposed 0.806 0.729 0.798

SMC

Baseline 0.502 0.214 0.424

Proposed 0.428 0.312 0.39

RWC

Baseline 0.87 0.745 0.909

Proposed 0.883 0.787 0.901

Beatles

Baseline 0.847 0.763 0.866

Proposed 0.834 0.748 0.819

SMC

Baseline 0.569 0.466 0.621

Proposed 0.538 0.422 0.565

Table 1. The performances of beat estimation. The upper

half of the table is the result using peak-picking and the

lower half using the DBN as a post-processing step.

where bpm is the original tempo and BPMmax = 215 and

BPMmin = 55 were used. The log-magnitude spectrogram

was obtained by short-time Fourier transform (STFT) with

a window size of 2048 and a hop length of 441 (100 frames

per second) and then transformed into the log-frequency

scale consisting of 81 bins from 30 to 17,000 Hz.

The DNN was trained with Adam optimizer [24]. The

batch size was 1. The learning rate was initialized to 1 ×
10−3 and then halved gradually if the validation loss did

not improve for 15 epochs. The training was terminated

when the validation loss did not improve for 50 epochs or

when 200 epochs were finished. To prevent gradient ex-

plosion, gradients greater than 0.5 were clipped. The ker-

nel size of the dilated convolutions was set to 5 and the

dropout rate was set to 0.1. The phase value was quan-

tized into K = 360 classes. Other parameters are shown

in Fig. 3. In the DBN-based post-processing, the maxi-

mum and minimum BPMs were the same as those in the

data augmentation, and the λ was set to 100.

We separately conducted eight-fold cross validations on

the RWC Popular Music dataset [25] and the Beatles dataset

[23]. Although our main target is popular music, we also

used the SMC dataset [26], which contains various genres

such as classical, blues, and film music. As in [7], we used

the F-measure, CMLt, and AMLt as evaluation metrics for

beat and downbeat estimation, and Accuracy 1 and Accu-

racy 2 for tempo estimation. F-measure has a tolerance

window of ± 70 ms around the ground-truth beats. CMLt

considers a beat to be correct if its tempo and phase are

within a 17.5% tolerance of those of the ground-truth beat.

In addition to CMLt, AMLt allows a series of double/half

and triple/third tempo of the annotated beats. Accuracy 1

considers an estimated tempo correct with a tolerance of

4% of the correct tempo, and Accuracy 2 considers correct

Ground truth

Baseline model

Proposed model

0

0

1
0

1 Probability
Probability

Phase[rad]

1:40 2:302:05

Proposed model

0

Time

Phase[rad]

2π

2π

Figure 7. Estimation results for “Dear Prudence” by

The Beatles. From top to bottom, the ground truth, the

beat presence probability series estimated by the baseline

method, the probability of each phase at each time esti-

mated by the proposed method, and the phase series with

the highest probability at each time in the third panel.

if the estimated tempo satisfies the Accuracy 1 also with

tempo in double/half and triple/third target tempo.

First, we compared methods that estimate only beats.

The proposed method estimates beat phases, whereas the

baseline method estimates beat presence probabilities. The

decoder of the baseline method was modified so that it

consists of dropout, dense, and sigmoid layers as in [7–

9]. We tested both a naive peak-picking method and the

periodicity-aware DBN in a post-processing step that de-

tects beat times. The peak-picking algorithm first identifies

all the maxima and then selects the peaks with intervals

greater than a specified horizontal distance in the order of

increasing magnitude 2 . We used 40 frames (400ms) as the

distance value.

Next, we compared the three multitask learning archi-

tectures that jointly estimate beat and downbeat times fol-

lowed by tempo estimation. For comparison, we imple-

mented the existing method [7] by adding another decoder

for downbeat estimation that is equivalent to the decoder

for beat estimation in the baseline method, and adding the

decoder for tempo estimation described in [7].

4.2 Experimental Results

Table 1 shows the performances of the proposed and base-

line methods that estimate only beat times on the RWC,

Beatles, and SMC datasets. When the basic peak-picking

method was used for post-processing, the proposed method

outperformed the baseline method, especially in terms of

the CMLt by a large margin. This indicates that the pro-

posed method better captures the periodic nature of met-

rical structure, resulting in the better regularity of the es-

timated beat times. We found that the proposed method

achieved a better CMLt for not only popular music (RWC

2 We use the peak-picking function specified here: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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Beat Downbeat Tempo

F-measure CMLt AMLt F-measure CMLt AMLt Accuracy 1 Accuracy 2

RWC

beat-and-downbeat 0.907 0.817 0.907 0.878 0.822 0.887 0.861 1.00

beat-to-downbeat 0.884 0.783 0.902 0.854 0.802 0.880 0.850 0.990

downbeat-to-beat 0.920 0.845 0.914 0.884 0.843 0.890 0.900 0.990

Böck et al. [7] 0.914 0.83 0.952 0.902 0.850 0.941 0.853 0.980

Beatles

beat-and-downbeat 0.823 0.722 0.786 0.753 0.683 0.748 0.872 0.955

beat-to-downbeat 0.832 0.738 0.819 0.774 0.703 0.778 0.861 0.961

downbeat-to-beat 0.825 0.740 0.800 0.767 0.708 0.767 0.883 0.966

Böck et al. [7] 0.862 0.779 0.895 0.825 0.767 0.871 0.860 0.967

Table 2. The performances of joint beat and downbeat estimation. “beat-and-downbeat” denotes the architecture that

simultaneously estimates beat and downbeat, “beat-to-downbeat” denotes the architecture that first estimates beats and

subsequently estimates downbeats, and “downbeat-to-beat” denotes the reverse version of the “beat-to-downebat”.

and Beatles dataset) but also various music genres (SMC

dataset). When the DBN was used for post-processing, in

contrast, the baseline method worked best in almost all

cases except for the F-measure and CMLt on the RWC

dataset. Further refinement of the DBN suitable for a se-

quence of phases should be investigated in the future.

Fig. 7 shows an example of the estimation results ob-

tained by the baseline and proposed methods. While the

baseline method showed high beat probabilities even at

non-beat times, the proposed method estimated high prob-

abilities at the target phases. Thus, our method has the po-

tential to continuously estimate the phase with a constant

angular velocity, This is in line with the high accuracy of

CMLt in peak-picking results. However, as can be seen

from the third panel in Fig. 7, the phase probabilities in the

proposed method tend to be blurred in difficult segments

to detect the periodicity. The baseline method, in such seg-

ments, showed high probabilities in aperiodic locations in-

stead of blurring the beat probabilities. This difference in

the output behavior in the difficult section is considered to

have an effect on the DBN.

Table 2 shows the comparison of the methods used for

simultaneously estimating beat, downbeat, and tempo. In

the three architectures of the proposed method, “downbeat-

to-beat” worked best for the RWC dataset, whereas “beat-

to-downbeat” worked well for the Beatles dataset. Because

downbeat estimation can be performed accurately for the

RWC dataset compared with the Beatles dataset, the beat

detection of “downbeat-to-beat” is considered to have the

best accuracy by leveraging the downbeat estimation. By

contrast, in the Beatles dataset, the estimated beat phases

are considered to help improve the downbeat estimation

because “beat-to-downbeat” had higher accuracy. In both

datasets, “beat-and-downbeat” did not show the highest ac-

curacy in the beat and downbeat evaluation. We consider

that this is because “beat-to-downbeat” or “downbeat-to-

beat” can use additional information for training and esti-

mation. For example, in the case of “beat-to-downbeat”,

the latter DNN which estimates downbeats can utilize the

result of beat estimation, which is expected to improve

the downbeat estimation, and the parameters of the for-

mer DNN are optimized to output the better downbeat es-

timation, which is expected to improve the beat estimation

as well. In the results of tempo estimation, “downbeat-

to-beat” showed the best accuracy in Accuracy 1. This is

considered to have a relationship with the better accuracy

of CMLt in our method when applying the peak-picking

method since our tempo estimation method relies on the

estimated phase series.

5. CONCLUSION

We proposed a phase-aware beat, downbeat, and tempo es-

timation method. More specifically, we trained a DNN

to estimate a phase at each frame instead of a beat pres-

ence probability and calculate beat and downbeat times and

tempo on the basis of the estimated phase. The experimen-

tal results showed that the proposed method could estimate

more periodic beats than the conventional method that de-

pends on a post-processing step.

For future work, we plan to utilize tempo to estimate

more periodic beat times. Considering that beat and down-

beat times are closely related to the other components used

in MIR (e.g. drum scores), it would be beneficial to train

an end-to-end model that directly estimates beat times and

other components from music signals in the framework of

multi-task learning.
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ABSTRACT 

Cross-cultural musical analysis requires standardized sym-
bolic representation of sounds such as score notation. 
However, transcription into notation is usually conducted 
manually by ear, which is time-consuming and subjective. 
Our aim is to evaluate the reliability of existing methods 
for transcribing songs from diverse societies. We had 3 ex-
perts independently transcribe a sample of 32 excerpts of 
traditional monophonic songs from around the world (half 
a cappella, half with instrumental accompaniment). 16 
songs also had pre-existing transcriptions created by 3 dif-
ferent experts. We compared these human transcriptions 
against one another and against 10 automatic music tran-
scription algorithms. We found that human transcriptions 
can be sufficiently reliable (~90% agreement, κ ~.7), but 
current automated methods are not (<60% agreement, κ 
<.4). No automated method clearly outperformed others, 
in contrast to our predictions. These results suggest that 
improving automated methods for cross-cultural music 
transcription is critical for diversifying MIR. 

1. INTRODUCTION 

Cross-cultural analysis is essential to explore diversity and 
universality of music [1-2]. Such analyses require sym-
bolic representations of sounds such as score notation. 
However, transcription into notation is usually conducted 
by ear, which is time-consuming and subjective [3-4].  

Automated methods of music transcription and melody 
extraction might potentially solve these problems [5-7]. 
However, automated extraction of fundamental frequency 
(F0) alone is not sufficient. Instead, a continuous funda-
mental frequency must be segmented into discrete notes 

with the categorical pitches and rhythms that are distinc-
tive features of almost all the world’s music [8]. This chal-
lenge is particularly important for variable pitch instru-
ments such as the voice (the most universal instrument [8-
9]). However, to our knowledge, agreement among human 
and automated transcription has not been objectively quan-
tified using cross-cultural samples or multiple human tran-
scribers. 

The main objective of this paper is to evaluate the de-
gree of agreement among human and automated transcrip-
tions for a global song sample. We demonstrate that the 
degree of agreement between human transcriptions is sub-
stantially higher than the agreement between humans and 
machines. Our evaluation also reveals that no single algo-
rithm outperforms the others, and there are no clear differ-
ences between signal-processing-based methods and data-
driven methods. 

2. RELATED WORK 

2.1 Subjectivity of manual transcription 

Manual transcription is central to musicological research, 
but to our knowledge, agreement among different human 
transcriptions of the same songs has never been objectively 
measured. Even qualitative evaluation is rare. A notable 
exception was a 1963 symposium on transcription where 
four leading ethnomusicologists independently transcribed 
a single recording (“A Hukwe* song with musical bow”), 
resulting in “four rather different transcriptions” [1, 4]. In 
contrast, List compared transcriptions of three songs (“Ru-
manian carol”, “Yiddish lullaby”, “Thai lullaby”) by be-
tween 2-9 transcribers and concluded that “transcriptions 
made by ear in notated form are sufficiently accurate, suf-
ficiently reliable to provide a valid basis for analysis” [3]. 
More recently, Mehr et al. [9] combined transcriptions by 
3 experts of 118 diverse traditional songs into a single set 
of “consensus” transcriptions, and had 10 experts rate their 
accuracy on a subjective scale from 1 (“Terrible”) to 8 
(“Perfect”), finding a median rating of 6 (“Very accurate”). 
Yet none of these studies provided an objective measure-
ment of the degree of agreement between individual tran-
scribers. 
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Figure 1. Map of the 32 songs transcribed and analyzed.

2.2 Reliability of automated transcription 

Automatic transcription reliability has been evaluated ex-
tensively for piano music and some other genres of West-
ern music, but rarely for non-Western music. Ycart et al. 
[10] evaluated the performance of four automated tran-
scription systems against perceptual ratings from 186 par-
ticipants over 153 examples of piano music taken from the 
MAPS dataset of MIDI-aligned piano recordings [11]. 
They found an average Fleiss’ Kappa coefficient of 0.59, 
or “borderline between moderate and substantial agree-
ment” on participant ratings. Holzapfel and Benetos asked 
16 musicologists from 3 European universities to tran-
scribe 8 excerpts of sousta, a traditional Greek in-strumen-
tal dance genre, either from scratch or starting from an au-
tomatic transcription, finding “no quantitative advantage 
of using [automatic music transcription]” [12]. Although 
computer-assisted transcription studies exist [13], recent 
reviews by musicologists argued that computational tools 
for musical analysis are either useful for only low-level 
analysis or not widely adopted within mainstream musi-
cology [14-15]. Overall, there is a clear need for objective 
measurements of agreement among automated and human 
transcriptions for a cross-cultural sample of songs. 

3. METHODS AND DATASET 

3.1 Audio data 

To examine the degree of agreement among human and 
automated transcriptions of diverse songs, we collected a 
sample of 14-second excerpts from 32 traditional songs 
evenly distributed across 8 geographic regions (Fig. 1). 16 
songs were sampled from the publicly available 14-second 
excerpts of the Natural History of Song (NHS) Discogra-
phy dataset [9] and manually extracted 14-second excerpts 
of the Global Jukebox audio files [16], respectively. We 
choose these datasets since they cover traditional songs 
from a global sample of societies. Sampling is randomly 
conducted using the following criteria: 

l Songs are sampled equally from each of the eight 
regions previously used by NHS for their sampling 

(i.e. 4 songs per region from North America, Oce-
ania, etc.). 

l To assess capabilities of extracting vocal melodies 
from instrumental accompaniment, songs are sam-
pled to consist of half solo singing without instru-
ments and half solo singing with instruments. 

One exception is that the NHS dataset contains no audio 
recordings of solo singing with instruments in the Middle 
East region, so two solo singing excerpts without instru-
ment examples were chosen from this region instead. We 
deliberately let sampled audio recordings contain various 
degrees of noise, reflecting the real-world challenges of 
analyzing traditional recordings. We did not include songs 
with polyphonic singing since polyphonic transcription is 
substantially more challenging for both humans and auto-
mated methods [5], and is beyond the scope of this study. 

3.2 Automated methods 

We selected 10 automatic music transcription/vocal mel-
ody extraction/pitch detection methods. We first choose 
methods listed in [10] as a baseline. However, that study 
focused on the systems designed for piano music, so we 
add methods designed for extracting pitch from human vo-
cals. Considering the difference in the approach of the 
pitch estimation, our selection consists of automated meth-
ods from non-data-driven models and data-driven models. 
If the model employs a machine learning method (such as 
artificial neural networks) to learn model parameters from 
data in a training step, we call it data-driven, otherwise 
non-data-driven. Table 1 summarizes the selected auto-
mated methods. Regarding pYIN [17], we used the TONY 
[18] software to obtain its F0 estimation. Recently, several 
symbolic-level automatic transcription methods have been 
developed [19-21]. However, some models were evaluated 
with only MIDI synthesized sounds and were not specifi-
cally designed for singing voice, so we did not select those 
methods. 

3.3 Transcription process 
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Twelve-tone equal temperament (12-TET) with A4 = 440 
Hz is used to transcribe audio into staff notation by humans. 
Equal temperament is also applied to automated methods 
to standardize their outputs. As explained in the introduc-
tion, it is essential to obtain symbolic representations of 
pitch contours to analyze acoustic stimuli as melody. How-
ever, 12-TET is not completely appropriate since the pitch 
quantized into 12-TET does not always correspond to the 
actual scales/modes and perceptual tonal models even for 
Western singing, let alone non-Western [30-31].  

Method Target sound Unit Category 

pYIN [17] Monophonic vocal Frame 
Non data-
driven: pa-
rameters 
specified 
manually 

TONY [18] Monophonic vocal Note 

Melodia [22] Vocal melody Frame 

STF [23] Multiple 12-tone ET Frame 

CREPE [24] Monophonic vocal Frame 

Data-
driven: pa-
rameters 
optimized 
by training 
with da-
tasets. 

SPICE [25] Monophonic vocal Frame 

SS-nPNN [26] Vocal melody Frame 

AD-NNMF [27] Multiple piano sound Note 

OAF [28] Multiple piano sound Note 

madmom [29] Multiple piano sound Note 

Table 1. Summary of the selected automated methods. 
Unit indicates if the F0 estimation is frame-level or note-
level [5] that the latter predicts onset and offset timing. 

While binning continuous F0 into a simplified discrete 
set of 12 100-cent intervals loses information about micro-
tonal nuance, 100 cents (1 semitone) is both the most com-
monly used system and roughly corresponds to general 
levels of variability in singing intonation (imprecision and 
inaccuracy) [31-32], making it a reasonable choice to use 
to evaluate accuracy. It's also what was used by Mehr et al. 
[9] when creating the dataset we use, enabling us to com-
pare our results with theirs. In summary, we decide to take 
advantage of the convenience and comparability of 12-
TET, while acknowledging that it does not capture all mu-
sical nuances. 

This study focuses on the evaluation of agreement 
among melodies, and we discard temporal/rhythmic infor-
mation so we only extract pitch from transcriptions to cre-
ate a sequence of notes. However, regarding the notes rep-
resenting unison melodic intervals (i.e. repeated notes), we 
create two transcription patterns. This is because not all 
selected automated methods can perform note segmenta-
tion. The change in pitch class can be used to segment two 
notes in the case of the other intervals, but the determining 

 
1  Mehr et al.’s full consensus transcriptions are published at 
https://osf.io/jh7t5/ 

boundary between the notes of the same pitch class would 
require a note segmentation algorithm. 
Firstly, the raw note sequences are created as a note se-
quence which includes the unison interval. Based on this 
version, we also create a note sequence which discards re-
peated notes and treats the notes of the unison interval as a 
tied single note (i.e. “CCFGGC” becomes “CFGC”). We 
call this version “non-unison”. This treatment enables us 
to evaluate how much the pitch estimation itself, which is 
a baseline function of automatic transcription, determines 
performance. In addition, 12-TET has enharmonic equiva-
lent pitch classes, so we only use flat notes for the same 
sounding sharp and flat notes. 

3.3.1 Transcription by humans 

We asked three Japanese experts with professional training 
in Western classical music to independently transcribe the 
32 recordings. One of them has professional experience of 
transcribing non-Western music using Western staff nota-
tion. None of them had seen the transcriptions contained in 
the NHS dataset. They were instructed to use MuseScore3 
[33] as a tool to create transcriptions. Following Mehr et 
al. [9]1, we also created a consensus version of our 3 new 
human transcriptions. Importantly, however, while Mehr 
et al. only analyzed and published their consensus tran-
scription, we include the three independent transcriptions 
as well as their combined consensus version to allow us to 
measure agreement between individual human transcribers. 
Our three coauthors who undertook transcription were 
blinded from our hypothesis testing and were asked to cre-
ate transcriptions prior to discussions about coauthorship. 

3.3.2 Transcription by automated methods 

In order to standardize the output of each method, we apply 
post-processing steps including manual work, such as the 
quantization of frequency, smoothing of pitch contour, or 
the selection of melody contour by the Viterbi algorithm 
with manually specifying frequency range of melody for 
the case of multi-pitch estimation methods (cf. supplemen-
tary materials for details). Note that songs used in the eval-
uation contain solo singing with instrumental accompani-
ment but chosen methods are not designed to estimate the 
F0 of those styles of singing except for Melodia and SS-
nPNN. Therefore the automated methods other than Melo-
dia and SS-nPNN may include the pitch estimation of in-
strumental sounds, which is excluded from human tran-
scriptions. 

3.4 Sequence alignment and evaluation metrics 

We use the Needleman-Wunsch algorithm [34] to align 
note sequences (cf. supplementary materials for further de-
tails). Agreement between two string sequences can be 
quantified in various ways. We mainly use Fleiss' Kappa 
inter-rater reliability coefficient (κ), which measures how 
much the observed agreement exceeds chance [35]. How-
ever, κ does not provide other relevant information such as 
how many notes actually differ among note sequences or 
whether differences are due to disagreement about note 
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Figure 2. Overview of the agreement evaluation using an example 8-second excerpt from NAIV-075 (Healing song, 
Kwakwaka'wakw people, 00:06-00:14 from https://osf.io/y29wp). Red indicates disagreement with our new consensus 
transcription (#4, made by combining the three individual transcriptions #1-3).  For visibility, only the automated transcrip-
tion produced by TONY is shown, and octave information is omitted from the note sequences. The degree of human-human 
and human-machine agreement is calculated based on the note sequences (c). For example, #4.5 (NHS consensus) is 95% 
identical to our consensus #4 (14 out of 15 notes each), while TONY is only 48% identical (7 identical notes out of average 
note length of 14.5), corresponding to Fleiss’ Kappa values of .94 and .34, respectively. *NB: NHS consensus transcriptions 
were not available for the 16 songs from the Global Jukebox sample. 

pitch (i.e., substitution) or note segmentation (i.e., inser-
tion/deletion). We also report such quantities by using per-
cent identity (PID) [36-37] (cf. Fig. 2 for an example and 
for Supplementary Material for detailed explanation and 
additional analyses using Levenshtein distances). Alt-
hough our approach did not utilize the real time infor-
mation of note events, we confirmed it can still make 
meaningful alignment of notes as in the previous study 
[37] from the pilot experiment. Meanwhile, we also admit 
there is the technical difficulty of the extraction of note 
event timing (i.e. segmentation of sounds). Importantly, 
our work differs from the related studies evaluating the 
agreement between human and automated methods' mel-
ody annotation [38-39] in aiming symbolic-level note 
comparison rather than frame-level F0 comparison. In ad-
dition, previous studies only reported individual metrics 
(e.g. either distance-like metrics or inter-rater reliability, 
but not both), while our study explored agreement of sym-
bolic-level melody using multiple metrics. 

3.5 Transposition 

We applied transposition in the note sequence alignment 
process to exclude the effect of disagreement by the  
discrepancy of the key when calculating κ, PID and Le-
venshtein distance. The transposition interval was 
searched from -2 semitones to +2 semitones. For human-
human transcription comparison, the transposition was 
performed to maximize PID. Regarding the human-ma-
chine transcription comparison, the transposition interval 
was searched to maximize the average PID of all 10 hu-
man-machine pairs for each song and each human tran-
scriber. 

4. HYPOTHESES 

 
2 https://osf.io/bjemd 

We pre-registered2 the following two primary hypotheses 
and 10 corresponding predictions based on pilot analysis 
of 4 songs not included in our main analyses:  

H1: Human transcriptions are sufficiently reliable. 
This predicts a Fleiss’ Kappa coefficient significantly 
greater than 0 when comparing our consensus transcription 
against the consensus transcriptions of Mehr et al. [9]. 
Note sequences including unison intervals are used. 

H2: TONY is the most reliable method of automated 
singing transcription. We predicted this because unlike 
other methods TONY was designed to perform note seg-
mentation for human vocal melody, better matching hu-
man standards for transcription. This predicts that Fleiss’ 
Kappa comparing TONY with our consensus note se-
quences will be significantly greater than for the other 9 
algorithms when evaluated against the note sequences in-
cluding unison intervals.  

5. RESULTS 

5.1 Q1. To what degree do humans’ transcriptions 
agree? 

The left-hand side of Figure 3 shows inter-rater reliability 
and percent identity results comparing human transcribers. 
As predicted, there was significant agreement between our 
new consensus transcriptions and the pre-existing NHS 
consensus transcriptions (median κ = .74, p < .001; median 
PID = 88%). When we compare the results using individ-
ual transcriptions rather than consensus transcriptions, we 
see that agreement is slightly lower but still relatively high 
(lowest median κ of .64 and PID 83% for Transcribers A 
& B).  The left-most two boxes show that individual vs. 
consensus yields higher agreement than individual vs. in-
dividual combinations (e.g. A-Cons, A-B, A-C) for all 
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Figure 3. Agreement among human-human and human-machine transcribed note sequences. “A”, “B”, and “C” represent 
the three individual transcribers. The dashed line at κ = 0 and 8.3% identity indicates chance levels of agreement. The 
numbers appearing above the violin plots indicate effect sizes for our 10 pre-registered predictions, and * and ^ indicate 
significant p-value and posterior probability, respectively (cf. text for details). Black circles indicate medians, and bars 
represent 95% confidence intervals of the median [40]. Results using alternative transcription methods, and full p-value 
and posterior probabilities are available in the supplementary material (figure S3-S7 and table S2-S3). 

transcribers. This means that consensus is indeed reflect-
ing the elements of those three transcribers' transcriptions 
rather than the particular pairs. These results suggest that 
transcription of pitch contour could be reliable even for 
non-Western music. 

We also analyze some low agreement results. There are 
25 pairwise κ values lower than 0.4, all of which involved 
7 songs (NAIV-033, NAIV-100, NAIV-117, T5431R27, 
T5482R03, NAIV-015 and NAIV-048). In particular, 
NAIV-033 (Maya healing song) is a near-monotone chant, 
and so the degree of agreement by chance is so large that 
it negates the proportion of agreement. As the unison in-
terval dominates, the note sequences of this song are 
highly homogeneous (PID > 0.9 for all 6 pairs). Other than 
this song, the remaining disagreement is mainly caused by 
disagreement of the pitch rather than segmentation. (cf. 
supplementary material table S1). In other words, tran-
scribers generally captured the same note events, but the 
assigned pitch sometimes differs by 1-2 semitones. 

Incidentally, we observed that using raw note sequences 
yielded the median of κ very close to zero (κ = -0.019) due 
to cases where the tonal center differed by a semitone (and 
sometimes a whole tone, cf. supplementary material figure 
S1-S2 for a sample figure and the results). Therefore, our 
evaluation actually focused on whether relative pitch, or 
the shape of the pitch contour, matches between transcrib-
ers. 

5.2 Q2. Which automated method agrees best with 
transcription of non-Western music by humans? 

The right-hand side of Figure 3 shows κ and PID obtained 
by comparing the machine note sequences and our consen-
sus version's note sequences. Contrary to our prediction, 
there is no evidence for the superiority of TONY except 
when compared with AD-NNMF and SPICE. The figure 
also indicates generally low reliability of automated tran-
scription methods (median κ values are all below 0.4). In 
particular, SPICE and AD-NNMF both had median κ be-
low 0, suggesting they performed worse than chance. Es-
pecially, AD-NNMF failed to pick up notes correctly in 
many cases and indeed, sometimes the length of note se-
quence of AD-NNMF is zero (cf. supplementary material 
figure S8-S9). In such cases, the proportion of agreement 
between human note sequences also becomes around zero, 
but chance agreement probability is still positive by its def-
inition, resulting in many negative Kappa values. 

In addition, SPICE and CREPE had difficulty estimat-
ing F0 of the particular tracks of monophonic singing, 
which is apparent from the drop in the plot of note se-
quence length (cf. supplementary material figure S8-S9). 
As predicted, κ of automated methods designed for mono-
phonic vocal melody (i.e. TONY, pYIN, CREPE and 
SPICE) show a relatively large difference dependent on in-
strumental accompaniment compared to the other methods, 
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but STF also suffered from instrumental sounds. (cf. Fig-
ure 3 and supplementary material figure S10). 

See supplementary material for additional analysis de-
tails including results of measuring agreement with Le-
venshtein distances (which were generally similar to re-
sults found using PID). 

6. DISCUSSION AND FUTURE WORK 

Overall, we observed that the degree of agreement of tran-
scriptions of diverse traditional songs among human tran-
scribers was relatively high (~90% agreement, κ ~0.7; Fig. 
3), while the degree of agreement between human and au-
tomated methods was relatively low (< 60% agreement, κ 
<.4; Fig. 3). Automated methods where less than 60% of 
estimated notes agree with human judgments are unlikely 
to produce satisfactory results for the kinds of tasks we 
hope to use them for, such as cross-cultural comparison of 
scale and interval systems [41-42]. Landis and Koch [43] 
suggested that κ of .61-.8 be considered "substantial" 
agreement .21-0.4 as "fair" agreement, but some have sug-
gested that less than .4 is unacceptably low [44]. Our qual-
itative examination of the transcriptions (e.g., Fig. 2) sup-
ports the interpretation that human transcriptions of di-
verse traditional songs can be sufficiently reliable, but cur-
rent state-of-the-art automated methods are not. However, 
high agreement does not necessarily equate to high quality. 
The quality of transcription may depend on its goal [45-
46], so future research should expand on our results to 
evaluate transcriptions for specific applications (e.g., tonal 
analysis [41-42]). 

Different combinations of human transcribers and 
songs had varying levels of agreement, but overall the 
agreement among three female Japanese experts and the 
consensus transcription by three white American male ex-
perts was surprisingly high, with more differences appear-
ing between individuals than between the two groups. Of 
course, by definition the experts had been trained in West-
ern music and transcription methods - future studies should 
explore perceptual variability among listeners with vary-
ing degrees of training in different musical systems [47]. 

Disagreement among humans appeared to primarily in-
volve assignment of pitch to different pitch classes. In con-
trast, disagreement in automated methods appeared to pri-
marily reflect segmentation, rather than F0 estimation. Fu-
ture studies might be able to clarify this point by collecting 
both F0 annotations and score transcriptions by humans. 
This might also allow us to compare our results with more 
conventional metrics used in research on pitch estimation 
algorithms such as frame-wise and note-wise F0 agree-
ment and the use of true positive and false positive scores 
[10] (though we emphasize that our work brings into ques-
tion the idea that a single 'ground-truth' annotation might 
even exist that all can agree on for diverse songs). [48] de-
veloped a method for evaluating the degree of agreement 
of F0-estimates among multiple automated methods, and 
such a method would be especially advantageous to assess 
the overall reliability of automated methods against global 
songs once F0 annotation is collected. 

We were surprised that all automated methods per-
formed so poorly even for the relatively simple task of 
transcribing only pitch sequences for monophonic songs. 

Some might argue it is unfair to evaluate MIR methods de-
signed primarily for F0 transcription of Western instru-
mental music using symbolic notation transcriptions of 
(mostly) non-Western songs. Our feelings are somewhat 
opposite - it is unfair and unethical to limit MIR to a nar-
row slice of the world’s music [49]. Since our goal was to 
evaluate the ability of existing MIR algorithms to tran-
scribe global songs using symbolic notation, we believe it 
is fair and necessary to evaluate state of the art algorithms 
even though - in fact especially because - they were not 
designed for this application. Our results thus confirm the 
strong need for automatic music transcription and other 
MIR tasks to expand algorithms and datasets beyond the 
traditional focus on Western classical and popular music 
to be suitable for more diverse musical styles [49]. Moving 
from a reliance on convenient but restricted datasets (e.g., 
the MAPS dataset of MIDI-aligned piano recordings com-
monly used to evaluate automatic transcription [11]) to 
cross-cultural datasets like the one presented here and else-
where [9, 16, 50] will be essential for diversifying MIR. 

The formalization of a general algorithm that agrees 
with human pitch recognition and note segmentation is an 
ongoing challenge related to a central issue in MIR: the 
“correctness” of the algorithm depends on the degree of 
perceptual variability in the human ground-truth data [51]. 
Thus, accounting for diversity and subjectivity in human 
transcriptions is equally critical to advance research on the 
automatic analysis of music. For example, while we found 
relatively high agreement among expert transcribers using 
Western 12-TET notation, we do not know whether the 
singers whose songs we transcribed would agree with our 
transcriptions, or whether transcription using a different 
notation system (e.g., Middle Eastern 24-note microtonal 
notation, ‘Are’Are 7-note equiheptatonic notation [52], 
Killick’s “global notation” [53], etc.) would give better or 
worse results. We see our current results using 12-TET - 
with all its known problems and cultural baggage [1-5, 45-
46] - as a baseline against which future studies can test 
whether other methods of cross-cultural transcription may 
be able to improve. 

Furthermore, here we solely focused on pitch, but a 
more comprehensive description of music necessitates 
other dimensions such as rhythm, timbre, and social con-
text [54]. Other cross-cultural systems of music analysis 
such as Cantometrics [54-55] and CantoCore [56] have 
been designed to capture such features. Somewhat coun-
terintuitively, our current results show substantially higher 
agreement using Western staff notation to analyze a global 
song sample (κ ~0.7) than was found using these cross-
cultural song classification systems (κ ~0.3-0.5 [8, 16, 56]). 
This suggests a need for MIR to better account for diver-
sity in human ground-truth representations of all dimen-
sions of music, not only pitch [57]. 

Musical diversity is a crucial challenge and opportunity 
for MIR. Quantifying diversity in human “ground-truth” 
cross-cultural data is an important first step for diversify-
ing MIR. Our study demonstrates that there is still substan-
tial room for improvement for automated methods of mu-
sic transcription, and provides quantitative estimates of di-
versity among human transcriptions to help guide develop-
ment of future MIR methods. 
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ABSTRACT

Renaissance music constitutes a resource of immense rich-
ness for Western culture, as shown by its central role in
digital humanities. Yet, despite the advance of computa-
tional musicology in analysing other Western repertoires,
the use of computer-based methods to automatically re-
trieve relevant information from Renaissance music, e. g.,
identifying word-painting strategies such as madrigalisms,
is still underdeveloped. To this end, we propose a score-
based machine learning approach for the classification of
texture in Italian madrigals of the 16th century. Our out-
comes indicate that Low Level Descriptors, such as inter-
vals, can successfully convey differences in High Level
features, such as texture. Furthermore, our baseline re-
sults, particularly the ones from a Convolutional Neural
Network, show that machine learning can be successfully
used to automatically identify sections in madrigals asso-
ciated with specific textures from symbolic sources.

1. INTRODUCTION

The ‘classical’ Italian madrigal is a secular vocal composi-
tion from the 16th century, typically for 4 to 6 vocal parts,
characterised by a close relationship between music and
text [1]. Due to the great historical value of madrigals for
the Western cultural heritage, many initiatives aiming to
preserve and investigate this repertoire through computa-
tional means have been presented, such as The Marenzio
Online Digital Edition (MODE) 1 and the Tasso in Music
Project [2], amongst others [3–6]. Nevertheless, in com-
parison to other relevant genres from Western repertoires,
such as Bach’s chorales [7–9] or operas [10–12], the appli-
cation of machine learning (ML) to the understanding of
Renaissance music is still rare [13, 14]. Indeed, the inves-
tigation of madrigalisms, i. e., the word-painting strategy

1 www.marenzio.org/index.xhtml
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typical of madrigals [1], has not yet been automatised – a
subject identified as of great interest [15].

In the ‘classical’ Italian madrigal, unlike the madrigal
of the 17th century, the meaning of the lyrics is often
expressed through textural changes. Due to the promi-
nent role of texture in the madrigalisms of these specific
madrigals, as a first step to approach this topic, we sta-
tistically assess which musical features are involved in
different textures. Furthermore, we present baseline re-
sults for their classification. The experiments were car-
ried out on the SEILS dataset [16], from which a vari-
ety of features related to the time, frequency, and time-
frequency dimensions were extracted with the music21
toolkit [17]. The performance of four ML models, i. e.,
Support Vector Machines (SVM), Multi-layer Perceptrons
(MLP), Convolutional Neural Networks (CNN), and Bidi-
rectional Long-Short Term Memory Recurrent Neural Net-
works (BLSTM-RNN), was evaluated for recognition of
three types of texture: antiphonal (ANT), contrapuntal
(CON), and homorhythmic (HOM).

The goal of our study is three-fold: (i) Identify the fea-
tures characteristic of different textures through the extrac-
tion and evaluation of symbolic Low Level Descriptors and
statistical functionals; (ii) initialise a research path for au-
tomatic recognition of word-painting, as a first step fo-
cussed on texture, which later should be followed by the
evaluation of madrigalisms’ textual content; (iii) increase
the interest within the ML community in applying artificial
intelligence (AI) to digital humanities.

The rest of the manuscript is laid out as follows: Sec-
tion 2 gives an overview of the related work; Section 3
introduces the considered repertoire; Section 4 and Sec-
tion 5 outline the feature extraction and evaluation; Sec-
tion 6 and Section 7 describe the experimental set-up and
the ML baseline; Section 8 concludes the paper. To pro-
mote further improvements in the field, the source code
which enables researchers to replicate the statistical assess-
ment and the baseline results are freely released. 2

2. RELATED WORK

With the advent of digital humanities in general and com-
putational musicology in particular, more and more sym-

2 github.com/SEILSdataset/Texture_Recognition
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bolic musical corpora have been presented in the literature.
Some of these are the ELVIS database, 3 the Kernscores
database [18], the MUTOPIA project 4 database, or the
Digital Interactive Mozart Edition [19]. The potential of
preserving music in a codified syntax has prompted well-
defined crowdsourcing initiatives aimed to encode and
share symbolic music [20]. In parallel to these, projects fo-
cusing on the symbolic codification of Renaissance music,
such as the Tasso in Music Project [2] have been carried
out. Furthermore, given the inherent complexity of codi-
fying early music, specific guidelines, aimed to minimise
encoding inconsistencies [21] that may lead to bias in the
data and therefore distort the ML outcomes [22], have been
presented [23].

Nevertheless, when we consider the symbolic corpora
containing annotations, these are considerably reduced
[24]; therefore, systems such as Dezrann [25], designed to
collaboratively collect analytic annotations, have been de-
veloped. Concerning Western music in general, annotated
symbolic corpora have been presented, e. g., to enable the
automatic analysis of harmony [24, 26] and musical struc-
ture [27, 28]. Although annotated corpora of Renaissance
music have also been presented, these are still much more
limited [29–31]. Similarly, computational methods aim-
ing to investigate early music have also been developed,
such as the online analysis search functionalities of the
Josquin Research Project [32] and the SIMSSA Project
[6], amongst others [14,33,34]. However, to the best of our
knowledge, approaches to automatically extract or retrieve
specific attributes typical of early music, such as madri-
galisms, have not yet been presented.

3. DATA DESCRIPTION

The word-painting strategy used in madrigals to musically
imitate the meaning of particular words is known as madri-
galism [1]. In the ‘classical’ Italian madrigals of the 16th

century, madrigalisms can involve rhythm or pitch but are
in particular defined by changes in polyphonic texture, for
example the alternation between imitative and homophonic
counterpoint. Specifically, we will consider three types of
texture typically associated to madrigalisms: antiphonal
texture (ANT), i. e., alternating a musical-linguistic pattern
between two parts; contrapuntal texture (CON), i. e., stag-
gering a musical-linguistic pattern along the timeline over
the different parts; and homorhythmic texture (HOM), i. e.,
musical-linguistic patterns occur simultaneously in the dif-
ferent parts. For musical examples and further details on
each texture, the reader is referred to [29].

The experiments were carried out on the SEILS dataset
[16], a corpus containing 30 symbolically codified madri-
gals from the Il Lauro Secco anthology. This collection
is particularly suited to evaluate madrigalisms, since this
word-painting technique is common for its composers,
e. g., Luca Marenzio [1]. All the madrigals in the corpus
are written for five parts: Canto, Alto, Quinto, Tenor, and
Basso, from the higher to the lower. The modern notated

3 database.elvisproject.ca/
4 www.mutopiaproject.org/

Group LLD Description

Time BEAT Note’s position
(parsed into time-signature units)

OFFSET Note’s position
(parsed into crotchet units)

RHYTHM Note’s rhythm
(as a fraction of crotchet notes)

Frequency PS Pitch space representation
(e. g., 60.0 stands for C4)

Time-freq. INTERVAL Interval between two notes
(expressed in semitone units)

MUS-TEXT Binary music-text relationship
(syllabic and melismatic)

Table 1. Description of the 6 Low Level Descriptors
(LLDs) and their corresponding feature groups.

transcriptions codified in **kern syntax were considered.
Although four kinds of texture are annotated in the corpus
– CON, HOM, ANT, and COMB (combined) – the COMB
one, which is a combination of the previous ones, was dis-
carded due to its ambiguity. For simplicity, from now on
we will refer to the annotated sections as madrigalisms.

4. FEATURE EXTRACTION

The extracted features can be grouped into three classes
related to three dimensions: Time, Frequency, and Time-
freq., i. e., the combination of the first two. This formu-
lation relates to the ‘standard’ 2-dimensional score repre-
sentation typical of written Western music, where Time is
encoded on the x axis and Frequency (pitch in music the-
ory) on the y axis, as shown in piano-rolls [35]. 5 For
each dimension, specific Low Level Descriptors (LLDs),
i. e., “Unambiguously defined and objectively verifiable
concepts” [36], were extracted with the python library
music21 [17]. Note that other formulations of LLDs in
symbolic music differing from the herein considered have
also been presented [37]. Subsequently, statistical func-
tionals were computed from the LLDs (cf. Section 4.2).

4.1 Low Level Descriptors (LLDs)

For each annotated madrigalism, six LLDs, chosen from
those most representative of each feature group, were ex-
tracted over time considering the ‘note’ as frame unit:
Three LLDs relate to Time (BEAT, OFFSET, and RHYTHM);
one to Frequency (PS); two to Time-freq. (INTERVAL and
MUS-TEXT); cf. Table 1. BEAT indicates the position of
each note according to the time-signature. 6 OFFSET gives
the position of each note according to crotchets (stan-
dard length unit). 7 RHYTHM is indicated as a fraction of
crotchets (represented as 1). PS (pitch space) represents ab-
solute pitches according to the chromatic scale. 8 INTER-

5 Although this representation applies to most of the Western musical
notation, exceptions should be considered, e. g., contemporary notation.
Note that we are not referring to the musical syntax, e. g., Humdrum.

6 A 3/4, i. e., a triple simple meter, would be parsed into three crotchet
units; a 6/8, i. e., a binary compound meter, into two dotted crotchet units.

7 For coherence with respect to BEAT and to avoid biasing the features
by the score length, the OFFSET was computed within bars’ boundaries.

8 As in MIDI, 60 stands for C4; yet, PS contemplates also microtones
and values beyond 0-127, although not present in the evaluated repertoire.
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47

CANTO

47

CANTO

BEAT          1      1.5      2      2.5      3       4

 Δ BEAT       -3      0.5     0.5     0.5     0.5      1

OFFSET        0      0.5      1      1.5      2       3

 Δ OFFSET     -3      0.5     0.5     0.5     0.5      1

RHYTHM       0.5     0.5     0.5     0.5      1       1

 RHYTHMΔ     -0.5      0       0       0      0.5      0

PS           72      74      76      77      79      74

 PSΔ          -2       2       2       1       2      -5

INTERVAL     -2       2       2       1       2      -5

 INTERVALΔ     0       4       0      -1       1      -7

MUS-TEXT     MEL     MEL     MEL     MEL     MEL     SYL

BEAT          1   1  1.5 1.5  2   2  2.5 2.5  3   3   3   3   4   4   4   4

 BEATΔ        -3  -3  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  1   1   1   1

OFFSET        0   0  0.5 0.5  1   1  1.5 1.5  2   2   2   2   3   3   3   3

 OFFSETΔ      -3  -3  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  1   1   1   1

RHYTHM       0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  1   1   1   1   1   1   1   1

 RHYTHMΔ     -0.5-0.5  0   0   0   0   0   0  0.5 0.5 0.5 0.5  0   0   0   0

PS           72  72  74  74  76  76  77  77  79  79  79  79  74  74  74  74

 PSΔ          -2  -2   2   2   2   2   1   1   2   2   2   2  -5  -5  -5  -5

INTERVAL     -2  -2   2   2   2   2   1   1   2   2   2   2  -5  -5  -5  -5

 INTERVALΔ     0   0   4   4   0   0  -1  -1   1   1   1   1  -7  -7  -7  -7

MUS-TEXT     MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL SYL SYL SYL SYLCANTO CANTO

ALTO

QUINTO

TENOR

BASSO

re-sample

Figure 1. For each part, the Note Level Descriptor (NLD) matrix (on the left) is re-sampled and subsequently ‘assembled’
into a multi-dimensional NLD (on the right). The example corresponds to bar 47 (Canto part) of Alberti’s madrigal.

VAL indicates musical intervals in semitones, where neg-
ative values indicate downward intervals, positive upward
intervals. MUS-TEXT expresses the (categorical) music-
text relationship: either syllabic (one-to-one correspon-
dence between pitches and text syllables) or melismatic
(more than one pitch corresponding to each text syllable).

Although in Figure 1, MUS-TEXT is encoded categor-
ically for comprehensibility (SYL as syllabic, MEL as
melismatic), in the LLDs, it is encoded as: 0 for no text,
i. e., rests; 1 for syllabic; �1 for melismatic. As standard
procedure in over-time feature extraction [38], for the 5
continuous LLDs (all except for MUS-TEXT), Delta coef-
ficients (�), i. e., the differences between two consecutive
values, were computed. From now on, we refer to the 6
LLDs and the 5� as Note Level Descriptors (NLDs). � PS
and INTERVAL are redundant; yet, they were extracted be-
cause they belong to different groups and are thus needed
in the statistical analysis. Note that � BEAT and � OFF-
SET are only redundant when the subdivision unit of the
time-signature is a crotchet note.

The NLDs were extracted (i) for all the parts together,
i. e., 1 NLD matrix per madrigalism; (ii) for each part in-
dividually, i. e., 5 NLD matrices per madrigalism. The
former were extracted through the .flat property of
music21 (which disregards the vertical alignment across
parts) with the only purpose of computing the statistical
functionals; 9 the latter are assembled together into multi-
dimensional NLDs, by this preserving the correspondence
between parts over time, which is relevant to musical tex-
ture, thus, also to madrigalisms. Since each part presents a
unique note’s configuration, considering the note as frame
unit leads to NLD matrices with different lengths across
parts. Thus, in order to assemble them, the NLD matrices
were re-sampled to the fraction of the shortest note in the
corpus, i. e., a semiquaver (cf. Figure 1).

4.2 Statistical Functionals

For the 10 continuous NLDs, 16 functionals were extracted
(cf. Table 2). Since for INTERVAL and � INTERVAL, the
functionals were extracted considering positive and nega-
tive values separately, a total of 12 continuous descriptors

9 For the functionals the correspondence between parts is irrelevant.

Category Description

Extremes Maximum, minimum, range
Means Arithmetic, harmonic, geometric
Moments Standard deviation, variance, kurtosis,

skewness, coefficient of variation
Percentiles Median, 1st quartile, 3rd quartile,

interquartile range
Other Mode

Table 2. Description of the 16 statistical functionals ex-
tracted from the continuous NLDs.

were used (i. e., 6 LLDs + 6�). This is necessary to obtain
a meaningful result, otherwise the upward and downward
intervals are mutually cancelled. For the categorical NLD
(MUS-TEXT), 3 functionals were extracted: N(umber) of
syllabic notes (Nsyl); N of melismatic notes (Nmel); and
the ratio between Nsyl and Nmel (SYL-MELratio). All in
all, 195 functionals were computed: 192 from the continu-
ous NLDs (16 functionals ⇥ 12 continuous descriptors); 3
from the categorical NLD (3 functionals ⇥ 1 NLD).

5. FEATURE EVALUATION

5.1 Feature Groups Comparison

To evaluate whether the chosen feature groups are suitable
to differentiate between the madrigalism classes (ANT,
CON, HOM), Welch-ANOVA was considered, an alterna-
tive to the one-way ‘classic’ ANOVA (analysis of vari-
ance), suitable in this case: The data were normally dis-
tributed but the homogeneity assumption was violated
[39]. For the pairwise comparisons across classes, the
Games-Howell post-hoc test was employed. Since p-
values as evaluation criteria have been repeatedly criticised
[40], they will be reported but the statistical outcomes will
be interpreted in terms of effect size [41]: epsilon squared
(✏2) for the Welch-ANOVA and Hedge’s g for the post-
hoc test. To enable the comparison across the three feature
groups, Principal Component Analysis (PCA) was applied
as a method for dimensionality reduction to the function-
als’ vectors of each group. Although PCA implies infor-
mation loss, this is a plausible method which enabled us to
perform an overall assessment. The remaining variances
were: 80% for Time; 67% for Frequency and Time-freq.
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group F df1 df2 p ✏2
ANT–CON ANT–HOM CON–HOM

lwr upr p g lwr upr p g lwr upr p g
Time 6.4 2 410 .002 .02 �1.47 1.67 .988 0.02 �3.51 0.04 .057 0.33 �3.05 �0.61 .001 0.40
Frequency 1.5 2 410 .216 .01 �1.08 1.28 .977 0.03 �0.60 1.98 .413 0.19 �0.24 1.42 .220 0.19
Time-freq. 9.9 2 410 .000 .03 �1.27 1.00 .956 0.04 0.68 3.68 .002 0.42 1.08 3.55 .000 0.52

Table 3. Welch-ANOVA and Games-Howell results for the evaluation of the madrigalisms: antiphonal (ANT), contrapuntal
(CON), homorhythmic (HOM); for each feature group: Time, Frequency, Time-freq. F statistic, degrees of freedom (df1 and
df2), p-values, epsilon-squared (✏2), Hedge’s g, confidence intervals: lower (lwr) and upper (upr), are given.

functional H df1 df2 p ⌘2
ANT–CON ANT–HOM CON–HOM

Z p d Z p d Z p d
Nsyl (syllabic) 76.6 2 410 .000 .18 �1.57 .167 0.29 4.76 .000 0.87 8.66 .000 0.88
Nmel (melismatic) 26.7 2 410 .000 .06 �0.83 .406 0.10 2.85 .006 0.64 5.04 .000 0.59
SYL-MELratio (ratio) 18.67 2 410 .000 .04 �0.98 .326 0.19 2.17 .045 0.26 4.30 .000 0.41

Table 4. Kruskal-Wallis results and Dunn pairwise comparisons for the evaluation of the madrigalism classes: ANT, CON,
HOM; for the three MUS-TEXT statistical functionals: N(umber) of syllabic and melismatic notes, and the ratio between
both. H statistic, degrees of freedom (df1 and df2), p-values, eta-squared (⌘2), Z-score, and Cohen’s d, are given.

The statistical analysis shows that the Time-freq. fea-
tures present the most prominent differences across madri-
galism classes, as indicated by a higher (although small)
effect size with respect to the other feature groups (✏2 =
.03); cf. ✏2 for Time-freq. in Table 3. This difference is
medium for CON vs HOM (g = 0.52), slightly lower for
ANT vs HOM (g = 0.42), and almost no difference is dis-
played for ANT vs CON (g = 0.04); cf. g for Time-freq.
in Table 3. The same trend is displayed to a lower extent
for Time: higher differences are shown for CON vs HOM
and ANT vs HOM (g = 0.40 and g = 0.33, respectively);
almost no difference is shown for ANT vs CON (g = 0.02);
cf. g for Time in Table 3. Conversely, all the differences
between classes are small for the feature group Frequency
(g  0.19) which indicates that there is no relationship be-
tween madrigalisms’ texture and specific vocal registers.
Nevertheless, the role of frequency-related features should
be further investigated by considering the meaning and rel-
evance of the words used in each madrigalism class.

Overall, the statistical evaluation indicates that HOM
and CON are the madrigalisms with the highest dissimi-
larity, while ANT and CON are the most similar ones. This
might seem obvious if we think of the madrigalisms’ tex-
ture, i. e., by evaluating them from a High Level perspec-
tive: Contrapuntal and homorhythmic textures are dissim-
ilar; contrapuntal and antiphonal textures are similar. Yet,
our analysis indicates that the functionals related to the
Time and Time-freq. dimensions capture relevant proper-
ties in the definition of the evaluated classes; consequently,
their NLDs are also representative of madrigalisms’ inher-
ent texture. This shows a direct relationship between Low
Level and High Level musical descriptors, meaning that
measuring the former may enable us to predict the latter.

5.2 Music-Text Relationships

Since the relationships between music and lyrics are cru-
cial in madrigalisms, the functionals extracted from the
MUS-TEXT NLD (Nsyl, Nmel, and SYL-MELratio) are eval-
uated individually. Note that these are already vectors,
thus, PCA was not performed. Since the assumptions for
normality and homogeneity were both rejected, the rank-

based non-parametric Kruskal-Wallis test was carried out.
For the pairwise comparisons across classes, the Dunn
post-hoc test with Benjamini-Hochberg (BH) p-value ad-
justment was applied [42]. Again, the statistical outcomes
will be evaluated in terms of effect size: eta-squared (⌘2)
for Kruskal-Wallis and Cohen’s d for the Dunn test.

Our analysis shows that the functionals related to the
counts of each MUS-TEXT relationship (syllabic and melis-
matic) are relevant to differentiate between madrigalism
classes, as shown by the large and moderate effect sizes,
respectively: ⌘2 = .18 (for Nsyl); ⌘2 = .06 (for Nmel);
cf. ⌘2 in Table 4. Differences between classes are less
prominent for the ratio, as shown by a lower effect size
(⌘2 = .04); cf. ⌘2 for SYL-MELratio in Table 4. Simi-
larly to the outcomes from the overall evaluation (cf. Sec-
tion 5.1), HOM shows generally noticeable differences with
respect to the other two classes. The pairwise comparisons
for CON vs HOM and ANT vs HOM indicate big differences
for Nsyl (d = 0.88 and d = 0.87); moderate for Nmel

(d = 0.59 and d = 0.64); smaller (as expected) for SYL-
MELratio (d = 0.41 and d = 0.26); cf. Cohen’s d for
CON-HOM and ANT-HOM, respectively, in Table 4. Again,
ANT vs CON yielded small differences for all the function-
als (0.10  d  0.29); cf. d for ANT-CON in Table 4.

Since the music-text relationships might particularly
vary across the different parts, statistical functionals were
also extracted from the MUS-TEXT NLD, considering each
part individually; 10 then, the same evaluation was carried
out. The results of the statistical analysis for the individual
parts, although showing smaller effects, display the same
overall trend as described for the parts together. For Nsyl

and Nmel (in all the parts), HOM vs the other two classes
yielded a moderate effect size (0.41  d  0.71), for ANT
vs CON a small one (0.03  d  0.34). Similarly, for
SYL-MELratio (in all the parts), all the pairwise compar-
isons yielded d  0.40, except for Canto, which showed a
slightly higher difference for HOM vs the other two classes
(0.45  d  0.56). This is due to the Canto’s promi-
nent use of melismas in CON and ANT, which – contrasting

10 The functionals were again extracted before the re-sampling, but in
this case, processing the 5 NLD matrices of each madrigalism separately.
Note that due to space constraints these results are not displayed in a table.
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Sp. Fold A Fold B Fold C
ANT CON HOM ANT CON HOM ANT CON HOM

I 19 58 47 24 79 39 21 64 62
II 22 69 33 26 70 60 16 62 55
III 16 71 42 19 73 58 29 57 48
IV 21 72 51 25 60 49 18 69 48

Table 5. Number of madrigalisms per class (ANT, CON,
HOM), in the four splittings (Sp.), performed according to
the 3-fold composer independent partitioning (A, B, C).

with the syllabism typical of HOM – makes the differences
in SYL-MELratio across classes much more prominent for
this part. This suggests that the role of specific features
might be more clearly displayed in some parts, indicating
that a particular weight should be attributed to them.

6. EXPERIMENTAL SET-UP

To create the baseline for the automatic recognition of
madrigalisms’ texture, four ML models were considered:
a Support Vector Machine (SVM) classifier, a Multi-
layer Perceptron (MLP), a Convolutional Neural Network
(CNN), and a Bidirectional Long-Short Term Memory Re-
current Neural Network (BLSTM-RNN). The SVM and
the MLP were fed with the statistical functionals (cf. Sec-
tion 4.2), the CNN and the BLSTM-RNN with the multi-
dimensional NLDs (cf. Section 4.1). Both feature repre-
sentations were z-score normalised according to the mean
and variance, estimated from the respective training set. In
addition, a FUSION approach considering the NLDs and
functionals was investigated (cf. Figure 2).

6.1 Partitions, Experiments, and Evaluation Metrics

The experiments were carried out on a 3-fold composer in-
dependent partitioning, i. e., the madrigalisms were split
into 3 disjunct sub-sets (A, B, C), and no madrigalisms
by the same composer appeared across sub-sets. Note that
each madrigal is by a unique composer. The 30 composers
were randomly 11 assigned to the 3 sub-sets (10 for each),
which were considered alternately as training, validation,
and test sets. To generalise the outcomes, the 3-fold parti-
tioning was performed 4 times (cf. Table 5), and the exper-
iments were carried out for each of the 4 splits individually.
Furthermore, the 6 possible permutations between sub-sets
were considered per split; thus, a total of 24 experiments
was carried out: 6 permutations ⇥ 4 splits.

As the features from the Frequency group proved not to
be relevant in the statistical analysis, the following experi-
ments were performed: (i) using the whole feature set (All),
i. e., 195 functionals (for SVM and MLP) and 11 NLDs
(for CNN and BLSTM-RNN); (ii) excluding the features
from the Frequency group (Selected), i. e., 163 function-
als and 9 NLDs. Finally, given the high similarity be-
tween ANT and CON, two classification problems were ad-
dressed: (i) 3C(lass), i. e., considering the three types of
madrigalisms; (ii) 2C, i. e., excluding ANT (the minority
class). Thus, the 24 experiments were performed in four
set-ups: 3C with All features; 3C with the Selected ones;

11 A fixed random seed was chosen to guarantee reproducibility.
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Figure 2. FUSION model: NLDs are fed into a CNN (1 or
2 convolutional blocks and global pooling over time), con-
catenated with the functionals, and then fed into an MLP.

2C with All features; 2C with the Selected ones; i. e., 96
experiments (4 splits ⇥ 6 permutations ⇥ 4 set-ups) were
carried out per model. To enable a fair comparison, the
models were optimised individually for each set-up.

Since the distribution of madrigalisms across com-
posers is unbalanced (cf. Table 5), the samples belonging
to the minority classes were up-sampled in training by ran-
domly 11 duplicating madrigalisms until matching the size
of the majority class, i. e., CON. Unweighted Average Re-
call (UAR) was considered as appropriate metric to evalu-
ate the models’ performance due to the unbalanced classes
in the test set; furthermore, the recall for each class will be
discussed. To report the overall results, mean (µ) and stan-
dard deviation (�) across the 24 experiments per set-up and
model will be indicated for both UAR and recall.

6.2 Model Optimisation

We employed an SVM classifier with linear kernel built on
the python library scikit-learn [43]. For the optimi-
sation, five different complexities (C) from 0.00001 to 0.1
(on a logarithmic scale, with a factor of 10 between steps)
were considered. The C which yielded the highest UAR
on the validation set was chosen to re-train the SVM con-
sidering the samples from the training and validation sets
together. The MLP, CNN, and BLSTM-RNN were built on
TensorFlow 2.3 [44] through the API Keras [45]. For
all of them, Adam optimiser, Softmax activation function
in the output layer, a maximum of 200 epochs, and early
stopping with a patience of 15 were used.

For the MLP, an architecture of two hidden layers with
an optimised number of neurons for each given as 25, 75,
or 175 and Sigmoid activation, with a dropout of 20% af-
ter the first hidden layer, was considered. The batch size
was optimised choosing the optimum of 10, 25, and 75;
the learning rate was fixed as 0.001. All optimisations and
the early stopping were done on the validation set. For the
CNN and BLSTM-RNN models, the multi-dimensional
NLDs (time ⇥ part ⇥ NLD) were first reshaped fusing the
part and NLD dimensions. 12 Both front-ends were fol-
lowed by a fully-connected network where the same archi-
tecture and hyperparameters as for the MLP were used.

The CNN front-end consisted of convolutional blocks
with a 1D-convolutional layer of 150 filters followed by
batch normalisation, ReLU, and a max-pooling layer. For
the convolutional layer, the filter length was 3 and the shift
2; for the max-pooling layer, both the filter length and the
shift were 2. The number of convolutional blocks was op-
timised between one and two. The sequential represen-

12 Using different heads for each part was also tried in initial experi-
ments, but the performance was found to be worse.
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All (Time + Freq. + Time-freq.) Selected (Time + Time-freq.)
3C SVM MLP CNN BLSTM-RNN SVM MLP CNN BLSTM-RNN FUSION

ANT 13.0± 8.5 14.3± 10.4 8.2± 7.5 24.0 ± 20.8 13.5± 7.0 9.4± 9.4 9.6± 7.1 19.7 ± 14.8 10.2± 8.5
CON 61.5± 7.2 57.0± 11.8 74.3 ± 11.3 51.1± 16.5 62.3± 7.5 65.5± 11.9 72.4 ± 9.6 55.9± 13.3 68.1± 8.1
HOM 58.4± 5.9 59.4± 7.9 70.5 ± 11.8 69.7± 16.7 59.7± 5.9 59.9± 8.8 70.8 ± 12.0 69.8± 9.7 67.1± 9.0
UAR 44.3± 3.0 43.6± 4.0 51.0 ± 4.6 48.3± 5.6 45.2± 3.3 44.9± 4.0 50.8 ± 4.4 48.4± 5.0 48.5± 3.9

2C SVM MLP CNN BLSTM-RNN SVM MLP CNN BLSTM-RNN FUSION
CON 74.4± 6.0 72.8± 6.1 80.0 ± 10.3 74.0± 11.6 75.9± 6.7 75.0± 5.9 77.5± 10.0 73.0± 11.2 80.3 ± 8.6
HOM 61.4± 8.2 62.1± 8.2 71.0 ± 9.6 69.3± 11.5 62.7± 8.4 61.3± 8.1 74.2 ± 9.2 70.3± 8.0 68.1± 10.2
UAR 67.9± 3.6 67.4± 3.8 75.5 ± 4.5 71.7± 6.3 69.3± 3.5 68.2± 4.6 75.9 ± 4.4 71.7± 5.6 74.2± 5.0

Table 6. Baseline results for the 3C(lass) and 2C classification of madrigalisms (ANT, CON, HOM) for All and Selected
features. Recall per class and Unweighted Average Recall (UAR) are given (highest values marked in bold) for SVM, MLP,
CNN, BLSTM-RNN, and FUSION approaches. Mean and standard deviation (µ±�) [%] across experiments are indicated.

tations extracted by the CNN front-end are subject to a
global max-pooling (over time). The BLSTM-RNN front-
end consisted of BLSTM layers of 150 units, a dropout
of 20%, and Tanh activation. The number of layers was
again optimised between one and two. When using two
layers, the first layer returned a sequential output, followed
by self-attention (SeqSelfAttention layer).

7. BASELINE RESULTS

In Table 6, the baseline results are given. Generally, the
experiments with Selected features present a higher UAR
than those with All features, which confirms the outcomes
of the statistical evaluation (cf. Section 5.1); still, the dif-
ferences for Selected vs All for any classifier are small
( 1.4%). The model reaching the highest UAR was the
CNN (cf. UAR for CNN in Table 6), generally showing a
statistically significant difference with respect to the oth-
ers. Pairwise comparisons with Tukey post-hoc for CNN
vs SVM and CNN vs MLP, in all the set-ups, yielded:
p < .0001, Cohen’s d > 1.3; for CNN vs BLSTM-RNN,
in 2C: p < .05, Cohen’s d > 0.7; while in 3C, no signifi-
cant difference was shown: p > .05, Cohen’s d < 0.5.

The higher performance of the CNN, and to some ex-
tent BLSTM-RNN, might be due to the use of the NLDs,
which unlike the functionals contain the correspondences
across parts over time, which is relevant in madrigalisms.
While the CNN generally performed best with one convo-
lutional block (chosen in 84 out of the 96 experiments),
the BLSTM-RNN performed best with two layers (65 out
of 96). Yet, the BLSTM-RNN generally shows more un-
stable results across experiments, as displayed by a higher
std. dev. (cf. � in Table 6), which indicates that a simpler
architecture can more reliably model the considered data.

The class recognised worst was, as expected, ANT,
showing a recall, for all the models, at chance level (cf. µ
for ANT in Table 6). This is due to ANT madrigalisms be-
ing much fewer than the others and very similar to CON, as
shown in the features evaluation. The confusion between
both classes particularly reduces the recall of CON in the
3C problem, whose improvement is much more prominent
than the one shown for HOM when comparing the 3C and
the 2C experiments (cf. the upper with respect to lower half
of Table 6 for CON and HOM): Across all the models and
feature sets, the average recall difference for CON between
2C and 3C is 12.85%, while for HOM, it is only 1.76%.

To evaluate whether a FUSION between the multi-
dimensional NLDs and the functionals might yield a bet-
ter performance, the best performing architecture, i. e., the
CNN, was concatenated with the functionals, using the
same architecture for the MLP as before (cf. Figure 2).
The whole network was trained from scratch to enable
the model to learn complementary representations. Ex-
periments were carried out considering the same hyperpa-
rameter optimisation as previously described and the same
four set-ups: 3C and 2C, for All and Selected features.
The same pairwise combinations between functionals and
NLDs were used: Selected functionals were concatenated
with the output of the CNN trained with Selected multi-
dimensional NLDs, and correspondingly for All. In Ta-
ble 6, the best results for 3C and 2C problems with the
FUSION model, i. e., considering the Selected features,
are given. While FUSION’s recall on CON (2C) increased
over the one from the CNN, no consistent improvement is
shown, which indicates that multi-dimensional NLDs are a
good representation of madrigalisms’ texture on their own.

8. LIMITATIONS & CONCLUDING REMARKS

Our research outcomes indicate that symbolic features and
ML methods are both appropriate to further investigate
word-painting strategies in madrigals. They also highlight
the potential of applying AI in the study of Renaissance
music. Yet, since this study was the first of its kind, at
this stage we evaluated the lyrics only in terms of syllabic
and melismatic relationship, while the importance of spe-
cific words, which might be given by their meaning (both
linguistic/metaphorical) within and across madrigals, typi-
cally highlighted through specific word-painting strategies,
was not yet considered. A deeper evaluation of the lyrics
is indeed one of the next priorities in our future work,
by this systematically identifying the connections between
music and poetry in the Italian madrigal. Furthermore, we
will also compare the ML outcomes from the feature-based
methods with those achieved through humdrum-based end-
to-end approaches already presented in the literature [46].

Our work shows that symbolic Low Level Descriptors
are suitable to automatically identify different textures in
Italian madrigals. In addition, the presented baseline will
hopefully stimulate further research advances in the appli-
cation of ML to early music, by this promoting a deeper
understanding of the Renaissance musical heritage.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

514



9. REFERENCES

[1] W. Apel, The Harvard dictionary of music. Cam-
bridge, MA, USA: Harvard University Press, 2003.

[2] E. Ricciardi and C. Sapp, “Editing Italian madrigals in
the digital world: The Tasso in Music Project,” in Proc.
of Music Encoding Conference, Virtual event, 2020.

[3] L. Pugin, “Editing Renaissance music: The Arus-
pix Project,” in Beihefte zur Editio: Internationales
Jahrbuch für Editionswissenschaften. Tübingen: Max
Niemeyer, 2009, pp. 94–103.

[4] F. J. Castellanos, J. Calvo-Zaragoza, and J. M. Inesta,
“A neural approach for full-page optical music recog-
nition of mensural documents,” in Proc. of the Interna-
tional Society for Music Information Retrieval Confer-
ence. Virtual event: ISMIR, 2020, pp. 23–27.

[5] D. Rizo, J. Calvo-Zaragoza, and J. M. Iñesta, “Muret:
A music recognition, encoding, and transcription tool,”
in Proc. of the International Conference on Digital Li-
braries for Musicology, Paris, France, 2018, pp. 52–56.

[6] G. Vigliensoni, A. Daigle, E. Liu, J. Calvo-Zaragoza,
J. Regimbal, M. A. Nguyen, N. Baxter, Z. McLennam,
and I. Fujinaga, “From image to encoding: Full optical
music recognition of Medieval and Renaissance mu-
sic,” in Proc. of Music Encoding Conference, Vienna,
Austria, 2019.

[7] Y. Ju, S. Howes, C. McKay, N. Condit-Schultz,
J. Calvo-Zaragoza, and I. Fujinaga, “An interactive
workflow for generating chord labels for homorhyth-
mic music in symbolic formats,” in Proc. of the Inter-
national Society for Music Information Retrieval Con-
ference. Delft, The Netherlands: ISMIR, 2019, pp.
862–869.

[8] A. Leemhuis, S. Waloschek, and A. Hadjakos, “Bacher
than Bach? On musicologically informed AI-based
Bach chorale harmonization,” in Proc. of the Joint Eu-
ropean Conference on Machine Learning and Knowl-
edge Discovery in Databases. Würzburg, Germany:
Springer, 2019, pp. 462–469.

[9] H. Hild, J. Feulner, and W. Menzel, “Harmonet: A neu-
ral net for harmonizing chorales in the style of J. S.
Bach,” in Advances in Neural Information Processing
Systems, 1992, pp. 267–274.

[10] M. Krause, F. Zalkow, J. Zalkow, C. Weiß, and
M. Muller, “Classifying leitmotifs in recordings of Op-
eras by Richard Wagner,” in Proc. of the International
Society for Music Information Retrieval Conference.
Virtual event: ISMIR, 2020, pp. 473–480.

[11] E. Parada-Cabaleiro, M. Schmitt, A. Batliner, S. Han-
tke, G. Costantini, K. Scherer, and B. Schuller, “Iden-
tifying emotions in Opera singing: Implications of ad-
verse acoustic conditions,” in Proc. of the International
Society for Music Information Retrieval Conference.
Paris, France: ISMIR, 2018, pp. 276–382.

[12] C. Brazier and G. Widmer, “Addressing the recitative
problem in real-time Opera tracking,” arXiv preprint
arXiv:2010.11013, 2020.

[13] C. Antila and J. Cumming, “The VIS framework: An-
alyzing counterpoint in large datasets,” in Proc. of the
International Society for Music Information Retrieval
Conference. Taipei, Taiwan: ISMIR, 2014, pp. 71–76.

[14] A. Brinkman, D. Shanahan, and C. Sapp, “Musical
stylometry, machine learning and attribution studies:
A semi-supervised approach to the works of Josquin,”
in Proc. of the Biennial International Conference on
Music Perception and Cognition, San Francisco, CA,
USA, 2016, pp. 91–97.

[15] C. Sapp, “Suggestions for future corpus-based text
painting analyses: A response to Strykowski,” Empir-
ical Musicology Review, vol. 11, no. 2, pp. 120–123,
2017.

[16] E. Parada-Cabaleiro, A. Batliner, A. E. Baird, and
B. Schuller, “The SEILS dataset: Symbolically en-
coded scores in modern-early notation for compu-
tational musicology,” in Proc. of the International
Society for Music Information Retrieval Conference.
Suzhou, China: ISMIR, 2017, pp. 575–581.

[17] M. S. Cuthbert and C. Ariza, “Music21: A toolkit for
computer-aided musicology and symbolic music data,”
in Proc. of the International Society for Music Infor-
mation Retrieval Conference. Utrecht, Netherlands:
ISMIR, 2010, pp. 637–642.

[18] C. Sapp, “Online database of scores in the Humdrum
file format,” in Proc. of the International Society for
Music Information Retrieval Conference. London,
UK: ISMIR, 2005, pp. 664–665.

[19] I. Cividini, “Zwischen klassischer Musikphilologie
und angewandter Informatik: Die Digitale Mozart-
Edition (DME) der Stiftung Mozarteum Salzburg,”
in Jahrestagung der Gesellschaft für Musikforschung,
Paderborn / Detmold, Germany, 2019.

[20] M. Gotham, P. Jonas, B. Bower, W. Bosworth,
D. Rootham, and L. VanHandel, “Scores of scores: An
openscore project to encode and share sheet music,”
in Proc. of the International Conference on Digital Li-
braries for Musicology, Paris, France, 2018, pp. 87–95.

[21] N. Nápoles, G. Vigliensoni, and I. Fujinaga, “Encoding
matters,” in Proc. of the International Conference on
Digital Libraries for Musicology, Paris, France, 2018,
pp. 69–73.

[22] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and
A. Galstyan, “A survey on bias and fairness in machine
learning,” arXiv preprint arXiv:1908.09635, 2019.

[23] J. Cumming, C. McKay, J. Stuchbery, and I. Fuji-
naga, “Methodologies for creating symbolic corpora of

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

515



Western music before 1600,” in Proc. of the Interna-
tional Society for Music Information Retrieval Confer-
ence. Paris, France: ISMIR, 2018, pp. 491–498.

[24] J. Devaney, C. Arthur, N. Condit-Schultz, and
K. Nisula, “Theme and variation encodings with ro-
man numerals (TAVERN): A new data set for symbolic
music analysis,” in Proc. of the International Society
for Music Information Retrieval Conference. Málaga,
Spain: ISMIR, 2015, pp. 721–734.

[25] M. Giraud, R. Groult, and E. Leguy, “Dezrann, a web
framework to share music analysis,” in Proc. of the In-
ternational Conference on Technologies for Music No-
tation and Representation. Montreal, QC, Canada:
TENOR, 2018, pp. 104–110.

[26] M. Neuwirth, D. Harasim, F. C. Moss, and
M. Rohrmeier, “The annotated Beethoven corpus
(ABC): A dataset of harmonic analyses of all
Beethoven string quartets,” Frontiers in Digital Hu-
manities, vol. 5, 2018.

[27] P. Allegraud, L. Bigo, L. Feisthauer, M. Giraud,
R. Groult, E. Leguy, and F. Levé, “Learning sonata
form structure on Mozart’s string quartets,” Transac-
tions of the International Society for Music Informa-
tion Retrieval, vol. 2, no. 1, pp. 82–96, 2019.

[28] M. Giraud, R. Groult, and F. Levé, “Computational
analysis of musical form,” in Computational Music
Analysis. Springer, 2016, pp. 113–136.

[29] E. Parada-Cabaleiro, M. Schmitt, A. Batliner, and
B. W. Schuller, “Musical-linguistic annotations of Il
Lauro Secco,” in Proc. of the International Society
for Music Information Retrieval Conference. Paris,
France: ISMIR, 2018, pp. 461–467.

[30] R. de Valk, R. Ahmed, and T. Crawford, “JosquIntab:
A dataset for content-based computational analysis of
music in lute tablature,” in Proc. of the International
Society for Music Information Retrieval Conference.
Delft, The Netherlands: ISMIR, 2019, pp. 431–438.

[31] E. Parada-Cabaleiro, A. Batliner, and B. Schuller, “A
diplomatic edition of il Lauro Secco: Ground truth for
OMR of white mensural notation,” in Proc. of the Inter-
national Society for Music Information Retrieval Con-
ference. Delft, The Netherlands: ISMIR, 2019, pp.
557–564.

[32] A. Kirkman, “Review: The Josquin research project
by Jesse Rodin and Craig Sapp,” Journal of the Ameri-
can Musicological Society, vol. 68, no. 2, pp. 455–465,
2015.

[33] P. van Kranenburg and G. Maessen, “Comparing offer-
tory melodies of five Medieval Christian chant tradi-
tions,” in Proc. of the International Society for Music
Information Retrieval Conference. Suzhou, China:
ISMIR, 2017, pp. 204–210.

[34] R. de Valk and T. Weyde, “Bringing ‘musicque into the
tableture’: Machine-learning models for polyphonic
transcription of 16th-century lute tablature,” Early Mu-
sic, vol. 43, no. 4, pp. 563–576, 2015.

[35] M. Müller, Fundamentals of music processing. Cham,
Switzerland: Springer Verlag, 2015.

[36] A. Aljanaki and M. Soleymani, “A data-driven ap-
proach to mid-level perceptual musical feature mod-
eling,” in Proc. of the International Society for Music
Information Retrieval Conference. Paris, France: IS-
MIR, 2018, pp. 615–621.

[37] D. C. Corrêa and F. A. Rodrigues, “A survey on sym-
bolic data-based music genre classification,” Expert
Systems with Applications, vol. 60, pp. 190–210, 2016.

[38] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile:
The Munich versatile and fast open-source audio fea-
ture extractor,” in Proc. of ACM Multimedia. ACM,
2010, pp. 1459–1462.

[39] M. B. Brown and A. B. Forsythe, “372: The ANOVA
and multiple comparisons for data with heterogeneous
variances,” Biometrics, pp. 719–724, 1974.

[40] R. L. Wasserstein and N. A. Lazar, “The ASA’s state-
ment on p-values: Context, process, and purpose,” The
American Statistician, vol. 70, pp. 129–133, 2016.

[41] D. Lakens, “Calculating and reporting effect sizes to
facilitate cumulative science: A practical primer for t-
tests and ANOVAs,” Frontiers in Psychology, vol. 4,
2013.

[42] Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: A practical and powerful approach to
multiple testing,” Journal of the Royal Statistical Soci-
ety, vol. 57, pp. 289–300, 1995.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in python,” Journal of machine Learning re-
search, vol. 12, pp. 2825–2830, 2011.

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. of the {USENIX} Symposium on
Operating Systems Design and Implementation, 2016,
pp. 265–283.

[45] F. Chollet et al., “Keras,” https://github.com/fchollet/
keras, 2015.

[46] H. Verma and J. Thickstun, “Convolutional composer
classification,” in Proc. of the International Society for
Music Information Retrieval Conference. Delft, The
Netherlands: ISMIR, 2019, pp. 549–556.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

516



IS DISENTANGLEMENT ENOUGH? ON LATENT REPRESENTATIONS
FOR CONTROLLABLE MUSIC GENERATION

Ashis Pati
Center for Music Technology

Georgia Institute of Technology, USA
ashis.pati@gatech.edu

Alexander Lerch
Center for Music Technology

Georgia Institute of Technology, USA
alexander.lerch@gatech.edu

ABSTRACT

Improving controllability or the ability to manipulate one or
more attributes of the generated data has become a topic of
interest in the context of deep generative models of music.
Recent attempts in this direction have relied on learning dis-
entangled representations from data such that the underlying
factors of variation are well separated. In this paper, we
focus on the relationship between disentanglement and con-
trollability by conducting a systematic study using different
supervised disentanglement learning algorithms based on
the Variational Auto-Encoder (VAE) architecture. Our ex-
periments show that a high degree of disentanglement can
be achieved by using different forms of supervision to train
a strong discriminative encoder. However, in the absence
of a strong generative decoder, disentanglement does not
necessarily imply controllability. The structure of the latent
space with respect to the VAE-decoder plays an important
role in boosting the ability of a generative model to ma-
nipulate different attributes. To this end, we also propose
methods and metrics to help evaluate the quality of a latent
space with respect to the afforded degree of controllability.

1. INTRODUCTION

Automatic music generation using machine learning has
seen significant improvements over the last decade. Deep
generative models relying on neural networks have been suc-
cessfully applied to several different music generation tasks,
e.g., monophonic music generation consisting of a single
melodic line [1–3], polyphonic music generation involving
several different parts or instruments [4,5], and creating mu-
sical renditions with expressive timing and dynamics [6, 7].
However, such models are usually found lacking in two
critical aspects: controllability and interactivity [8]. Most
of the models typically work as black-boxes, i.e., the in-
tended end-user has little to no control over the generation
process. Additionally, they do not allow any modes for
interaction, i.e., the user cannot selectively modify the gen-
erated music or some of its parts based on desired musical

c� Ashis Pati, Alexander Lerch. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribution:
Ashis Pati, Alexander Lerch, “Is Disentanglement enough? On Latent
Representations for Controllable Music Generation”, in Proc. of the 22nd

Int. Society for Music Information Retrieval Conf., Online, 2021.

characteristics. Consequently, there have been considerable
efforts focusing on controllable music generation [9–11]
in interactive settings [12–14]. One promising avenue for
enabling controllable music generation stems from the field
of representation learning.

Representation learning involves automatic extraction of
the underlying factors of variation in given data [15]. The
majority of the current state-of-the-art machine learning-
based methods aim at learning compact and useful represen-
tations [16, 17]. These have been used for solving different
types of discriminative or generative tasks spanning several
domains such as images, text, speech, audio, and music. A
special case of representation learning deals with disentan-

gled representations, where individual factors of variation
are clearly separated such that changes to a single underly-
ing factor in the data lead to changes in a single factor of
the learned disentangled representation [18]. Specifically,
in the context of music, disentangled representations have
been used for a wide variety of music generation tasks such
as rhythm transfer [10, 19], genre transfer [20], instrument
rearrangement [21], timbre synthesis [22], and manipulat-
ing low-level musical attributes [23–25].

Disentangled representation learning has been an active
area of research in the context of deep generative models for
music. Previous methods have focused on different types
of musical attributes (e.g., note density [23], rhythm [10],
timbre [22], genre [20], and arousal [25]) and have achieved
promising results. However, contrary to other fields such
as computer vision [18, 26], research on disentanglement
learning in the context of music has been task-specific and
ad-hoc. Consequently, the degree to which disentangled rep-
resentations can aid controllable music generation remains
largely unexplored. While we have shown that unsuper-
vised disentanglement learning methods are not suitable
for music-based tasks [27], the use of supervised learning
methods has not been systematically evaluated.

In this paper, we conduct a systematic study on con-
trollable generation by using supervised methods to learn
disentangled representations. We compare the performance
of several supervised methods and conduct a series of exper-
iments to objectively evaluate their performance in terms of
disentanglement and controllability for music generation.
In the context of this paper, controllability is defined as
the ability of a generative model to selectively, indepen-
dently, and predictably manipulate one or more attributes
(for instance, rhythm, scale) of the generated data. We show
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that while supervised learning methods can achieve a high
degree of disentanglement in the learned representation, not
all methods are equally useful from the perspective of con-
trollable generation. The degree of controllability depends
not only on the learning methods but also on the musical
attribute to be controlled. In order to foster reproducibil-
ity, the code for the conducted experiments is available
online. 1

2. METHOD & EXPERIMENTAL SETUP

The primary goal of this paper is to investigate the degree
to which learning disentangled representations can provide
control over manipulating different attributes of the gener-
ated music. To this end, we train generative models based
on Variational Auto-Encoders (VAEs) [28] to map high-
dimensional data in X to a low-dimensional latent space
Z by approximating the posterior distribution q(z|x) (en-
coder). The latent vectors z 2 Z can then be sampled to
generate new data in X using the learned likelihood p(x|z)
(decoder). We use different supervised learning methods to
enforce disentanglement in the latent space by regularizing
specific attributes of interest along certain dimensions of the
latent space. These attributes can then be manipulated by
using simple traversals across the regularized dimensions.
Once the models are trained, different experiments are con-
ducted to evaluate disentanglement and controllability.

2.1 Learning Methods

Three different disentanglement learning methods are con-
sidered. Each method adds a supervised regularization loss
to the VAE-training objective

L = LVAE + �Lreg, (1)

where L, LVAE, Lreg correspond to the overall loss, the
VAE-loss [28], and the regularization loss respectively. The
hyperparameter � is called the regularization strength.

The first method, referred to as I-VAE, is based on the
regularization proposed by Adel et al. [29]. It uses a sepa-
rate linear classifier attached to each regularized dimension
to predict the attribute classes. Note that while Adel et
al. use this regularization while learning a non-linear trans-
formation of a latent space, we apply it during training of the
latent space itself. This is a suitable choice for categorical
attributes and is similar to the regularizer used in MIDI-
VAE [20]. The second method is the S2-VAE [26]. This
regularization, designed for continuous attributes, uses a
binary cross-entropy loss to match attribute values to the reg-
ularized dimension. The third method is the AR-VAE [30],
which uses a batch-dependent regularization loss to encode
continuous-valued attributes along specific dimensions of
the latent space. This method is effective at regularizing
note density and rhythm-based musical attributes [25]. For
comparison, baseline results obtained using the unsuper-
vised �-VAE method [31] are also provided.

1 https://github.com/ashispati/dmelodies_controllability
last accessed: 1st Aug 2021

Figure 1: Overall disentanglement performance (higher is
better) of different supervised methods on dMelodies. In-
dividual points denote results for different hyperparameter
and random seed combinations.

2.2 Dataset & Data Representation

To conduct a systematic study and objectively evaluate
the different methods, not only do we need to be able to
measure the degree of disentanglement in the learned rep-
resentations, but we should also be able to measure the
attribute values in the generated data. Considering this, we
use the dMelodies dataset [27] which is an algorithmically
constructed dataset with well-defined factors of variation
specifically designed to enable objective evaluation of disen-
tanglement learning methods for musical data. This dataset
consists of simple 2-bar monophonic melodies which are
based on arpeggiations over the standard I-IV-V-I cadence
chord pattern. The dataset has the following factors of vari-
ation: Tonic, Octave, Scale, Rhythm for bars 1 and 2, and
the Arpeggiation directions for each of four chords. We use
the tokenized data representation used by dMelodies [27].

2.3 Model Architectures & Training Specifications

The VAE architecture is based on a hierarchical RNN
model [27], which is inspired by the MusicVAE model [1].
Additional experiments using a CNN-based architecture are
omitted here for brevity but provided in the supplementary
material. 1 Since both S2-VAE and AR-VAE are designed
for continuous attributes, the factors of variation are treated
as continuous values by considering the index of the cat-
egory as the attribute value and then normalizing them to
[0, 1]. For instance, the Scale attribute has 3 distinct options
and hence, the normalized continuous values are [0, 1

2 , 1]
corresponding to the major, harmonic minor, and blues
scales, respectively. Three different values of regularization
strength � 2 {0.1, 1.0, 10.0} are used.

For each of the above methods and hyperparameter com-
binations, three models with different random seeds are
trained. The dataset is divided into training, validation, and
test set using a 70%-20%-10% split. To ensure consistency
across training, all models are trained with a batch size of
512 for 100 epochs. The ADAM optimizer [32] is used
with a fixed learning rate of 1e�4, �1 = 0.9, �2 = 0.999,
and ✏ = 1e�8.
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(a) �-VAE (b) I-VAE (c) S2-VAE (d) AR-VAE

Figure 2: Attribute-change matrices for different methods. Tn: Tonic, Oc: Octave, Sc: Scale, R1 and R2: rhythm for bars 1
and 2 respectively, A1-A4: arpeggiation direction for the four chords.

3. RESULTS AND DISCUSSION

We now present and discuss the results of the different
experiments conducted. The first experiment objectively
measures the degree of disentanglement in the represen-
tations learned using the different methods. The second
experiment evaluates the degree to which each method al-
lows independent control over the different attributes. The
third experiment throws additional light into the behavior
by visualizing the latent spaces with respect to the different
attributes. Then, we introduce a new metric to evaluate the
quality of latent spaces with respect to the decoder. Finally,
we present a qualitative inspection of the data generated by
traversals along different regularized dimensions to further
illustrate the key findings.

3.1 Attribute Disentanglement

In order to objectively measure disentanglement, we rely on
commonly used metrics: (a) Mutual Information Gap (MIG)
[33], which measures the difference of mutual information
between a given attribute and the top two dimensions of
the latent space that share maximum mutual information
with the attribute, (b) Modularity [34], which measures if
each dimension of the latent space depends on only one
attribute, and (c) Separated Attribute Predictability (SAP)
[35], which measures the difference in the prediction error
of the two most predictive dimensions of the latent space
for a given attribute. For each metric, the mean across all
attributes is used for aggregation. For consistency, standard
implementations are used [18].

The disentanglement performance of the three super-
vised methods on the held-out test set is compared against
the �-VAE model in Figure 1. Unsurprisingly, all three su-
pervised methods outperform the �-VAE across the three
disentanglement metrics. The improvement is much higher
for the MIG and SAP score which both measure the de-
gree to which each attribute is encoded only along a single
dimension of the latent space.

Using supervision, therefore, leads to better overall
disentanglement. Note that this superior performance is
achieved without sacrificing the reconstruction quality. All
three supervised methods achieve a reconstruction accuracy
> 90%. 1 This is a considerable improvement over the un-
supervised learning methods seen in the dMelodies bench-
marking experiments (average accuracy of ⇡ 50% [30]).

3.2 Independent Control during Generation

Considering that supervised methods can obtain better dis-
entanglement along with good reconstruction accuracy, we
now look at how effective these methods are for indepen-
dently controlling different attributes. To measure this quan-
titatively, we propose the following protocol. Given a data-
point with latent vector z, 6 different variations are gen-
erated by uniformly interpolating along the dimension rl,
where rl is the regularized dimension for attribute al. The
limits of interpolation are chosen based on the maximum
and minimum latent code values obtained during encoding
the validation data. For the �-VAE model, the dimension
with the highest mutual information with the attribute is con-
sidered as the regularized dimension. An attribute change
matrix A 2 RL⇥L, where L is the number of attributes, is
computed using the following formulation:

A(m,n) =
6X

i=1

⇥
0 6= |an(zmi )� an(z)|

⇤
, (2)

where A(m,n) computes the net change in the nth attribute
as one traverses the dimension rm (which regularizes the
mth attribute), [·] represents the inverse Kronecker delta
function, an(·) is the value of the nth attribute, and zmi
is the ith interpolation of z obtained by traversing along
the rm dimension. This attribute change matrix is com-
puted for each model type by averaging over a total of 1024
data-points in the test-set and across all 3 random seeds (reg-
ularization hyperparameters are fixed at � = 0.2, � = 1.0).
The matrix is also normalized so that the maximum value
across each row corresponds to one. Independent control
over attributes should result in the matrix A having high val-
ues along the diagonal and low values on the off-diagonal
entries which would denote that traversing a regularized
dimension only affects the regularized attribute.

The following observations can be made from the matri-
ces visualized in Figure 2. First, �-VAE performs the worst
as traversals along different dimensions change multiple
attributes simultaneously. Second, among the supervised
methods, I-VAE and S2-VAE seem to perform better than
AR-VAE. This can be seen from the lighter shades of the
off-diagonal elements in the plots for I-VAE and S2-VAE.
While the better performance of I-VAE is expected since it is
designed for categorical attributes, the poorer performance
of AR-VAE in comparison to S2-VAE needs further inves-
tigation. Finally, the scale attribute (3rd column) changes
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(a) Rhythm Bar 2 (b) Scale

Figure 3: Data distribution (top row) and surface plots
(bottom row) for I-VAE.

the most while traversing the regularized dimensions for
the supervised methods. This indicates that all supervised
methods struggle in generating notes conforming to particu-
lar scales. One explanation for this could be that the scale is
the most complex among all the attributes. Note that while
there is no considerable difference between the disentangle-
ment performance of the three methods (compare Figure 1),
I-VAE and S2-VAE show much better performance com-
pared to AR-VAE in this experiment which shows that
disentanglement does not ensure better controllability.

3.3 Latent Space Visualization

To better understand the difference between disentangle-
ment and controllability of attributes, we try to visualize the
structure of the latent space with respect to the different at-
tributes. This is done using 2-dimensional data distribution

and latent surface plots. Both plots show the variance of a
given attribute (using different colors for different attribute
values) with respect to the regularized dimension (shown
on the x-axis) and a randomly chosen non-regularized di-
mension (shown on the y-axis).

For the data distribution plots, first, latent representations
are obtained for data in the held-out test set using the VAE-
encoder. Then, for each attribute, these representations
are projected onto a 2-dimensional plane where the x-axis
corresponds to the regularized dimension and the y-axis cor-
responds to a non-regularized dimension. To generate the
surface plots, for a given attribute, a 2-dimensional plane
on the latent space is considered which comprises the reg-
ularized dimension for the attribute and a non-regularized
dimension. The latent code for the other dimensions is
drawn from a normal distribution and kept fixed. The latent
vectors thus obtained are passed through the VAE decoder
and the attributes of the generated data are plotted.

Figures 3, 4, and 5 show the results for I-VAE, S2-VAE,
and AR-VAE respectively. In each figure, the top row cor-
responds to the data distribution plots, and the bottom row
shows the latent surface plots. For the surface plots, the

(a) Rhythm Bar 2 (b) Scale

Figure 4: Data distribution (top row) and surface plots
(bottom row) for S2-VAE.

generated data-points sometimes have attribute values that
are either not present in the training set or cannot be deter-
mined (e.g., the generated melody might not conform to any
of the 3 possible scales in the dataset, or the arpeggiation
direction might be neither up nor down). These undefined

or out-of-distribution attribute values are shown as empty
spaces in the latent surface plots.

For all three methods, the data distribution plots (top
rows) show a clear separation of attribute values along the
regularized dimension which explains the high disentangle-
ment performance seen in Section 3.1. However, the meth-
ods differ considerably when the latent surface plots (bot-
tom rows) are compared. I-VAE (see Figure 3) shows good
performance where moving along the regularized dimension
(x-axis) changes the corresponding attribute, while traver-
sals along the non-regularized dimension (y-axis) have little
effect. However, the manner of change is unpredictable.
For instance, in Figure 3(a)(bottom), only 5 out of the 28
possible rhythms are generated. In addition, the order of the
generated rhythms is different from the encoder distribution
in Figure 3(a)(top). In contrast, for S2-VAE, the gradual
change of color in Figure 4(a)(bottom) shows a high de-
gree of controllability for the rhythm attribute. However, it
struggles to control the scale attribute. Traversing along the
non-regularized dimension in Figure 4(b)(bottom) results in
an undesirable change in the scale of the generated melody.
The latent space of AR-VAE (see Figure 5) has the most
discrepancies. Not only is the latent space not centered
around the origin (see the top row of Figure 5(b)) for the
scale attribute, but the degree of controllability is also poor.
For instance, the scale attribute does not change at all along
the regularized dimension (see Figure 5(b)(bottom)). In ad-
dition, the empty spaces in the surface plots show that many
of the generated data-points have an out-of-distribution at-
tribute value. Results for all other attributes are provided in
the supplementary material. 1

The empty regions in the latent spaces show that while
these methods can train strong discriminative encoders
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(a) Rhythm Bar 2 (b) Scale

Figure 5: Data distribution (top row) and surface plots
(bottom row) for AR-VAE.

which are good for disentanglement, they tend to have weak
generative decoders which are incapable of utilizing the
learned disentangled representations thereby resulting in
holes or vacant regions in the latent space where the behav-
ior of the decoder is unpredictable.

3.4 Latent Density Ratio

From the perspective of the VAE-decoder, holes in the
latent space can have a significant impact on controllability.
Yet, established metrics do not capture this phenomenon
properly. To help quantify this, we propose the Latent
Density Ratio (LDR) metric. We first sample a set of N
(=10k) points in the latent space, pass them through the
VAE decoder, and compute the percentage of data-points
with valid attribute values out of the total number N . The
overall LDR is obtained by averaging this metric across all
attributes. The results in Table 1 show that both S2-VAE
and I-VAE have a lower degree of holes (higher LDR value)
in comparison to AR-VAE which is in line with observations
in the previous experiments.

3.5 Qualitative Inspection of Latent Interpolations

Finally, we take a qualitative look at the data generated
by the different methods while traversing the latent space
along the regularized dimensions. Ideally, traversals along
a regularized dimension should only cause changes in the
corresponding attribute while leaving the other attributes
unchanged. In addition, the regularized attribute should
also change in a predictable manner. Figure 6 shows the
results for the I-VAE method. For each sub-figure, different
rows correspond to melodies generated by traversing along
the regularized dimension for the attribute in the sub-figure
caption. Results for S2-VAE and AR-VAE are shown in
Figures 8 and 7, respectively.

Across methods, most of the time, the melodies gen-
erated by traversing along regularized dimensions show
changes in the corresponding attribute only. For instance,

Learning Method LDR
I-VAE 0.448

S2-VAE 0.544

AR-VAE 0.244

Table 1: LDR metric (higher is better) for different methods

in Figures 6(a) and 7(a), only the rhythm of the second
bar changes while the rest of the melody stays intact. In
Figure 6(c,d), the arpeggiation directions of the third and
fourth chords are flipped, respectively. Also, in Figure 6(b),
all the other attributes remain constant (rhythm, arpeggia-
tion directions) while the pitches of the generated notes
change to reflect different scales. While this is desirable,
there are a few important things to note.

First, the scale attribute seems hard to control. For
instance, in Figure 6(b), for I-VAE, some of the gener-
ated melodies (the first two rows) do not conform to any
of the scales present in the dataset. In Figure 7(b), for
AR-VAE, the scale does not change at all. This diffi-
culty in controlling the scale attribute was also observed in
Section 3.2. Second, depending on the holes in the latent
space, traversals along regularized dimensions sometimes
create melodies with attributes that are unseen in the train-
ing data. This happens also for attributes other than scale.
For instance, in Figure 7(c), row 2, the third chord has an
unseen arpeggiation direction. Finally, for I-VAE, the direc-
tion of change for arpeggiation factors (see Figure 6(c,d))
is unpredictable. While the arpeggiation direction (of the
third chord) goes from up to down in Figure 6(c), the di-
rection (for the fourth chord) is flipped from down to up
in Figure 6(d). This is due to the I-VAE regularization for-
mulation which is agnostic to the order of the categorical
attributes. Contrast this to AR-VAE and S2-VAE, where the
nature of the change in the attribute values is predictable.
The direction of arpeggiation will always go from up to
down for these methods (see Figures 8(a,b) and 7(c,d)).

3.6 Discussion

The results of the experiments in this section show that
supervised methods for disentanglement perform signifi-
cantly better than unsupervised methods. This is expected
since the former use attribute-specific information during
training to guide the model towards learning better repre-
sentations. Among the supervised methods, there are no
major differences in terms of the disentanglement metrics
in Section 3.1. However, controllability during data genera-
tion (discussed in Sections 3.2, and 3.5) differs considerably
between the methods. These differences suggest that while
disentanglement is closely related to a strong encoder (learn-
ing the posterior q(z|x)), improving controllability requires
a strong decoder (learning the likelihood p(x|z)). This ex-
plains the often better performance of conditioning-based
methods relying on adversarial training of decoders [36,37].

Visualizing the latent spaces (in Section 3.3) with re-
spect to the attribute values highlights that the presence or
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(d) Arp Chord 4

Figure 6: Generated data by traversing along regularized dimensions for I-VAE.
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(d) Arp Chord 4

Figure 7: Generated data by traversing along regularized dimensions for AR-VAE.
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(b) Arp Chord 4

Figure 8: Generated data by traversing along regularized
dimensions for S2-VAE.

absence of holes in the learned latent space plays a crucial
role in the degree of controllability afforded by a model.
The LDR metric proposed in Section 3.4 is an attempt to
quantify this behavior. Note that other factors can be con-
sidered while evaluating controllability that have been left
out of this study. For instance, for continuous-valued at-
tributes, one would prefer the regularized dimension having
a positive correlation with the attribute value [30].

4. CONCLUSION

In this paper, we present a systematic investigation of the
relationship between attribute disentanglement and control-
lability in the context of symbolic music. Through a diverse

set of experiments using different methods, we show that
even though different supervised learning techniques can
force effective disentanglement in the learned representa-
tions to a comparable extent, not all methods are equally
effective at allowing control over the attributes during the
data generation process. This distinction is important be-
cause controllability is paramount for generative models [8]
and is often not taken into account while evaluating disen-
tanglement learning methods.

An important observation is the issue of holes in latent
spaces. It should be noted this has also been seen in other
data domains relying on discrete data such as text [38].
There are a few promising directions to address this prob-
lem. One option is to constrain the latent space to conform
to a specific manifold and perform manipulations within
this manifold [38, 39]. An alternative direction could be to
learn specific transformation paths within the existing latent
manifold to avoid these holes [40].

The experiments in this paper have used labels from
the entire training set. Another interesting direction for
future studies could be to extend these experiments to a
semi-supervised paradigm by using a limited number of
labels obtained from only a fraction of the training set [26].
This would increase the confidence in applying these meth-
ods to real-world data where obtaining label information
for the entire dataset might be either too costly or simply
impossible.
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ABSTRACT

In this paper we present novel pulse clarity metrics based
on different sections of a state-of-the-art beat tracking
model. Said model consists of two sections: a recurrent
neural network that estimates beat probabilities for audio
and a dynamic Bayesian network (DBN) that determines
beat moments from the neural network’s output. We ob-
tained pulse clarity metrics by analyzing periodical be-
havior from neuron activation values and we interpreted
the probability distribution computed by the DBN as the
model’s certainty. To analyze whether the inner workings
of the model provide new insight into pulse clarity, we
also proposed reference metrics using the output of both
networks. We evaluated the pulse clarity metrics over a
wide range of stimulus types such as songs and mono-tonal
rhythms, obtaining comparable results to previous models.
These results suggest that adapting a model from a related
task is feasible for the pulse clarity problem. Additionally,
results of the evaluation of pulse clarity models on multi-
ple datasets showed that, with some variability, both ours
and previous work generalized well beyond their original
training datasets.

1. INTRODUCTION

In music, the pulse refers to the underlying regular rhyth-
mic pattern in a song, usually expressed by listeners by
tapping their foot. In western notation, the pulse takes on
an especially relevant role, given that location and duration
of rhythmic events are described with respect to it. Listen-
ers can extract a pulse from the acoustic surface and infer
a meter structure that may enable them to adjust their own
behaviour to it (e.g. dance accordingly to a song) [1].

The strength with which the feeling of the pulse

© N. Pironio, D. Fernández Slezak, and M. Miguel. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: N. Pironio, D. Fernández Slezak, and M.
Miguel, “Pulse clarity metrics developed from a deep learning beat track-
ing model”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

emerges in a listener is not necessarily the same for all mu-
sic. The concept of pulse clarity refers to such subjective
experience. As the pulse is relevant for temporal organiza-
tion, pulse clarity facilitates a listener’s understanding of a
song, affecting the musical experience. Musical cognition
experiments have used pulse clarity as a high-level musi-
cal feature, usually correlating it to human responses. For
example, it has been related with degree and variability of
movement [2, 3], as well as with specific neural responses
to different musical stimuli [4]. Pulse clarity has been seen
to be influenced by different rhythmic structure character-
istics (e.g. syncopation), as it affects participant’s beat tap-
ping variability [5–7].

In the mentioned experiments, pulse clarity is estimated
from the musical input using the model from Lartillot et
al. [8]. In their work, the authors present various descrip-
tors for audio recordings based on the analysis of an onset
detection curve and the periodicities it presents. The model
consists of the best descriptor, which was selected based
on experimental results where participants rated the pulse
clarity of movie soundtrack excerpts. Miguel et al. [9] pro-
posed another pulse clarity model for symbolic represen-
tations of rhythmic passages. Said model outputs a beat
congruence score over time which is interpreted as a pulse
clarity metric. The model’s score was evaluated by com-
paring it to human beat tapping variability data over songs
and achieved comparable results to the Lartillot et al. [8]
model.

A closely related problem in the Music Information Re-
trieval discipline is the beat tracking task, which consists of
determining the pulse moments for a musical excerpt [10].
This task has a long and varied history of models, with
most recent and proficient ones making use of novel tech-
niques such as deep learning. Since pulse clarity can be
thought of as the difficulty of performing beat tracking,
our work proposes a transfer learning approach using data
from beat tracking models to estimate pulse clarity in mu-
sical excerpts [11]. Here we develop a methodology for
interpreting the beat tracking deep learning architecture
presented by Krebs et al. [12] and Bock et al. [13] which
has proved its effectiveness on the beat tracking task. This
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family of models was selected because of its state-of-the-
art performance and its use of a dynamic Bayesian net-
work, which estimates probabilities of different beat inter-
pretations. We theorized these estimations to be useful to
approximate pulse clarity.

In this exploratory analysis, we propose a series of pulse
clarity metrics based on different sections from the archi-
tecture. We evaluated the proposed pulse clarity metrics
by calculating the Spearman rank correlation coefficient
against pulse clarity interpretations from three empirical
datasets: the movie soundtrack excerpts used in [8], where
pulse clarity was self reported, the musical excerpts from
the MIREX Beat tracking train dataset, where pulse clar-
ity was calculated from variability in the tapping data, and
the rhythmic passages from Miguel et al. [14] where pulse
clarity was both reported by participants and calculated
from the tapping data. We also present results for the Lar-
tillot et al. [8] and Miguel et al. [9] models over the datasets
as reference. Evaluation results show that there is relevant
information for the pulse clarity problem in the associated
beat tracking task as our metrics performed as well as pre-
vious pulse clarity models.

In the next section the general architecture from Krebs
et al. [12] and Bock et al. [13] is presented, as well as
the corresponding developed interpretations. The evalua-
tion section describes the datasets in detail, explains how
pulse clarity was estimated from tapping data and shows
the evaluation methodology and the obtained results. We
conclude by arguing that, based on our results, repurposing
a related task model is reasonable for pulse clarity estima-
tion and suggest further evaluation of the existing models.

2. PULSE CLARITY MODEL

In this section we briefly review the model architectures
presented by Krebs et al. [12] and Bock et al. [13] for the
beat tracking task, highlighting the key features relevant
for the pulse clarity metrics we derived. We then describe
each metric proposed, categorized by which aspects of the
beat tracking model were considered for its definition.

2.1 Beat tracking model

The beat tracking architecture consists of three steps: audio
preprocessing, estimation of beat probability for a given
audio frame, and selecting beat moments given the beat
probabilities. Bock et al. [13] presents a modification to
the original architecture from Krebs et al. [12] to also take
into account downbeat tracking. As these are fairly sim-
ilar in respect to their architecture, all metrics developed
are implemented from both the beat and downbeat mod-
els. Here we describe the downbeat model from Bock et
al. [13] (as it is implemented by the authors in the madmom
package [15], version 0.16.1) and clarify the significant
differences between the two models when necessary.

In the audio preprocessing stage, different magnitude
spectrograms are computed from the audio signal. These
in turn are used as the input for a neural network ensem-
ble. Each network in the ensemble is a recurrent neu-

Figure 1. Example 4/4 bar with the position, tempo and
meter state space variables associated.

ral network (RNN) that estimates the beat probability of
an audio frame. These RNN have three hidden recurrent
bidirectional layers, each with 25 long-short term memory
(LSTM) cells [16]. The network’s output consists of three
neurons with a softmax activation function, representing
the probability distribution over the beat, downbeat and no
beat classes for a given audio frame. In the case of the
Krebs et al. model, the probability distribution represents
only the beat and no beat classes. The final beat activa-
tion function of the ensemble is computed as the average
between each individual network’s output.

Lastly, a dynamic Bayesian network (DBN) is used to
determine the sets of beat and downbeat moments, given
the probabilities output by the RNN ensemble. Concep-
tually, the sequence of audio frames is associated with a
Markov chain of latent variables and the output of the RNN
is used as the observations. The latent variables state space
consists of a set of possible bar positions, tempi and time
signatures - only the first two variables are considered in
the Krebs et al. [12] model. Using the Viterbi algorithm,
the most probable sequence of variables is determined and
from it the sets of beats and downbeats moments are ex-
tracted.

2.2 Dynamic Bayesian Network based metrics

Compared to a deep learning architecture, the Bayesian dy-
namic network has a clearer interpretation. This is most
notable by the use of a state space and transition model
that encodes knowledge of the task at hand. In the analyzed
model, the state space S of the DBN encodes the position
within the bar (�), the tempo (�̇) and the time signature
for each audio frame (3/4, 4/4). In Figure 1 we depict how
these variables are related to an example 4/4 bar.

In a DBN, scores proportional to the probability of the
most likely state sequences are calculated using the Viterbi
algorithm. We define Ds as the scores for full sequences
(analyzing the entire input) for each possible ending state
s. From this distribution we make two possible interpreta-
tions of pulse clarity. The first one considers the probabil-
ity estimate of the most probable state, max(Ds), which
we interpret as the level of confidence with which the last
variable is determined. We name this metric Viterbi max.
The second aims to capture the uncertainty over Ds by
computing its entropy: H(Ds). We call this metric Viterbi
entropy. As entropy is lower for a more concentrated dis-
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Figure 2. Average cell state activation for the last layer
neurons in a 5 second excerpt of a song, contrasted with
the beat activation function of the network. Orange colors
are positive values, while blue colors are negative.

tribution, a low value for this metric can be interpreted as
a clearer decision made by the DBN.

2.3 Recurrent network based metrics

We decided to further explore whether the activations of
the recurrent neural networks could be used to estimate
pulse clarity. In this section of the architecture, we lacked
a clear interpretation of the inner states of the deep learn-
ing model. Yet, given that the pulse of a song is an inher-
ently periodical pattern, we hypothesized the RNN would
present periodical activations at different levels of the net-
work. When observing the network activations, these pat-
terns were present in the form of activation peaks. With
this in mind, we analyzed these activations from three dif-
ferent points of view, considering only a single trained net-
work from the ensemble for simplicity.

Firstly, we considered the cell state values, which act
as an "internal memory" of the LSTM cells, for each au-
dio frame. Specifically, for each frame, the mean cell state
activation of the 50 neurons in the last hidden layer is com-
puted, separating the positive and negative values into sep-
arate series. Then, for each series, a peak picking process
is performed, where the width for every peak is obtained.
Averaging these widths results in the Cell state precision
metric. In Figure 2 we can observe how the peak values of
the average cell state activations for the last layer neurons
tend to align to the final output of the network. The av-
erage width was interpreted as the confidence with which
the network determines the beat probability for a frame:
the wider a peak is, the lower the certainty.

Now focusing on capturing periodicity at a higher level,
we turn to consider the cell activations (the output of the
LSTM’s) through time. Figure 3 shows the output se-
ries for a subset of neurons, in which periodical activation
patterns can be interpreted for each neuron independently.
This behavior motivated looking into possible periodicities
between the output series of different cells and each cell
with itself.

In the case of considering different series, for each pair
of neurons i, j, the maximum absolute correlation between
the output series oi, oj value is computed, considering all
possible lags. We define the neurons cross correlation as

Figure 3. Sample output values of the forward layers neu-
rons for a 5 second excerpt of a song.

the sum of each of these values, as depicted in Equation 1.
With this metric we aim to determine the degree of coordi-
nation between neurons.

NCC =
X

oi 6=oj

max
lag2[0,|oi|]

��corr(oi, oj , lag)
�� (1)

When considering each series against itself, we define
autocorrelation periodicity as the average of the max-
imum autocorrelation values for each cell (Equation 2).
These maximum autocorrelation values are obtained con-
sidering only lags representing periodicities between 40
and 330 BPM. Each autocorrelation value is divided by the
size of the signal overlap, considering the lag. Compared
to the neuron’s cross correlation metric, the autocorrelation
periodicity is less strict, as it only tries to capture if every
neuron’s output has a periodic pattern with itself.

ACP =
1

N

NX

i

max
lag2L

Ai,lag

overlap(oi, lag)
(2)

Where:
Ai,lag =

��corr(oi, oi, lag)
��

overlap(oi, lag) = |oi|� lag

L = [40bpm, 330bpm]

(3)

2.4 Output-based metrics

As the intention was to determine if there was relevant in-
formation from within the model for the pulse clarity task,
we chose to develop reference metrics based on the output
both from the RNN and the DBN. Subsequently, we ana-
lyze if the metrics derived from the inner workings of the
networks surpass the performance of the output-based met-
rics. Using the beat activation function output by the RNN,
two interpretations of pulse clarity were computed. First,
we consider the average probability for beat moments as an
indication of the overall certainty of the output. The peak
average is obtained by applying a peak picking process
to the beat probability signal and then averaging the peak
probabilities. Second, using the previous calculated peaks
as beat moments, we define the RNN entropy as the en-
tropy of the inter-beat interval distribution. This concept is
the same as the one used in the calculations of tapping vari-
ability presented in the Evaluation section. Analogously,
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using the beat moments outputted by the DBN, we com-
pute the DBN entropy as the entropy over the inter-beat
interval distribution.

3. EVALUATION

In this section we evaluate the performance of the proposed
metrics. We will present the considered datasets in detail,
which vary in their type of stimuli and annotations and,
as such, we clarify the pulse clarity interpretations of the
annotated data specific to each one. Then the evaluation
process is described, in which for each pulse clarity met-
ric the absolute Spearman rank correlation coefficient is
computed against each dataset. Using this coefficient as a
performance score, a ranking of metrics is obtained.

3.1 Datasets

Three datasets were used for evaluation, which we named
the MIREX, rhythms and soundtracks datasets. The
MIREX dataset [17] has its origins in the beat tracking task,
developed for the evaluation of models, with the intent to
compile difficult-to-track musical excerpts. It consists of
30-second excerpts of 20 varied style songs. These ex-
cerpts have a stable tempo and present a varied distribution
of tempi values. 40 beat annotations are available for each
song.

The rhythms dataset was developed with the purpose
of capturing the subjective pulse experience. To this end,
we carried out an experiment were participants listened
to 33 rhyhtmic passages of varying rhythmic complexity
and were instructed to tap to a self selected beat. Partici-
pants were allowed to stop tapping if the beat was not clear
enough or change their selected beat mid-trial. After each
trial, participants rated how difficult the tapping task was
with values between 1 (easy) and 5 (hard). The stimuli
consisted of 11 rhythms from [14], 7 from [15], 5 were
isochronous beats at 150, 200, 250, 500, 800 ms inter-beat
intervals and 10 were new. 7 of the new stimuli were pre-
sented in increasing complexity order at the beginning of
the experiment to familiarize the participants with the task.
All other stimuli were randomized. With the exception
of the isochronous stimuli, presentation inter-beat intervals
varied between 450 and 550 ms avoiding having the same
IBI in two consecutive trials. Each stimulus consisted of
repeating a short rhythm the number of times required to
last a minimum of 24 seconds. From 35 total participants,
30 remained after filtering participants that were deemed to
not understand the concept of beat. They were selected as
participants who replicated the stimulus instead of defin-
ing a beat in more than three trials. 6 participants were
female, and 26 were male. Overall average age was 28.27
(sd = 7.94) and overall mean musical training was 4.85
years (sd = 3.90). For our evaluation, we will not consider
the 5 isochronous stimuli in the dataset as these were not
intended to evaluate rhythmic complexity.

Lastly, we use the soundtracks (ST) dataset used in [8],
which is composed of 100 five-second excerpts of movie
soundtracks, selected to cover a wide range of pulse clar-

ity scenarios. From these, 15 excerpts were discarded as
some metrics couldn’t be computed for them because they
provided too few beat events. Each track was rated by 25
musically trained participants in its beat clarity on a scale
from 1 to 9, labeled from “unclear” to “clear”. The mean
clarity score is provided in the dataset [18].

Tracks in the MIREX and rhythms datasets have more
than one annotation for each track. To obtain a single value
for each track and category, the empiric pulse clarity value
for a track is considered as the mean response of the sub-
jects. Previously, pulse clarity values (tapping variability
and self-reported) were z-standardized within participants.

As there are various types of annotations, we consider
different interpretations of pulse clarity for each dataset.
For the rhythms dataset we consider the answers to the
tapping difficulty question and in the soundtracks dataset
we use the “pulse clarity” reported answers. For both the
MIREX and Experimental datasets, human tapping anno-
tations are available. These consist of a list of moments
in time where the person felt the underlying pulse. Using
this information, we propose a tapping variability metric,
“inter-tap-interval entropy” (ITI-E), to act as a proxy for
pulse clarity. The computation is as follows: first the dif-
ference between subsequent taps is obtained. These differ-
ences are considered samples from the underlying subject’s
inter-tap interval distribution. A Gaussian kernel density
estimator with a bandwidth of 5ms is fitted over the sam-
ples and 400 equidistant points considered from the range
of 8 and 320 BPM are evaluated to obtain the density es-
timation. Lastly, the entropy over the density estimation
is calculated as a means to capture its variability. In trials
where less than five taps were produced, the metric was not
considered reliable. For these cases, it was considered the
participant had an unclear pulse precept and decided not
to tap. The entropy value was replaced with the maximum
entropy found for the participant. This methodology was
verified by correlating the obtained values for the rhythms
dataset and the reported tapping difficulty answers, obtain-
ing an r coefficient of 0.81 with p < 0.001.

Calculating the entropy over the distribution as opposed
to an approach based on standard deviation calculation was
chosen because we consider the possibility that the distri-
bution could be multi-modal, meaning that a subject tapped
to two or more possible interpretations of the pulse in the
same stimulus. In said case, the standard deviation would
result in high variability, when in fact it could be argued
that the tapping was precise for more than one pulse inter-
pretation.

3.2 Model selection

For the evaluation of the proposed metrics we classify them
in categories and select the best scoring metric in each
one. The categories considered were DBN metrics, RNN
metrics, output metrics and comparison metrics. This last
one is comprised of the pulse clarity model proposed by
Lartillot in [8] (mirpulseclarity function from MIR-
Toolbox 1.7.2 [19] with parameters for model=1), the
congruency score from the THT model presented in [9]
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MIREX Rythms ST Avg

ITI-E Conf ITI-E PC

Comp 0.550† 0.783 0.690 0.570 0.648

DBN 0.412‡ 0.912 0.775 0.860 0.740
Out 0.791 0.858 0.769 0.388† 0.701

RNN 0.632 0.627 0.621 0.372† 0.563

Table 1. Test set scores for each category in every dataset.
The selected metrics in the training process were: THT-
congruency (Comp), Viterbi max (beat version) (DBN),
DBN entropy (beat version) (Out), cell state precision
(RNN). All correlations have p-values below 0.001, except
for those with † where 0.05 > p > 0.001, and ‡ where
0.1 > p > 0.05.

and an additional interpretation of it called THT entropy,
which is the same as DBN entropy but using the beat mo-
ments outputted by the THT model. These categories al-
low the evaluation of the two main questions this work
proposed. The first one being if the interpretations made
of the beat tracking model are comparable to the previous
pulse clarity models. Furthermore it is of interest to know
if the metrics derived from internal behaviour surpass the
ones obtained by interpreting the output of the deep learn-
ing model.

We separate the data into train and test subsets to select
the best metric per category. The train set is obtained by
randomly selecting half of the soundtracks dataset. Select-
ing train data only from this dataset is motivated by the fact
that the other two have few stimuli and partitioning them
would increase the probability of losing representability in
the subsets. In the training process we selected one met-
ric from each category as the one that scored consistently
higher when considering the correlation on 10 subsets of
80% of the training data. In Table 1, we report the test set
scores for each metric selected in the training process.

From Table 1 we can observe that there is not a best
model overall. Nonetheless it is remarkable that in two of
the three datasets the DBN metrics section has the highest
score, achieving r values over 0.77 with the Viterbi Max
metric (2nd row on Table 1). Averaging all test set scores,
this metric performed best. Comparing against the Com-
parison section, no proposed metric provides better results
over all datasets. When comparing the metrics from the
inner behaviour of the model versus those calculated using
the output, neither the RNN or DBN categories surpass the
Output metric selected in all datasets. This category was
the second with highest average score with the DBN en-
tropy metric, providing similar results to the Viterbi max
metric.

4. CONCLUSIONS

In this paper we showed possible interpretations of pulse
clarity from the inner workings of a beat tracking model.
The developed metrics achieved comparable results with

respect to previous works over distinct datasets, showing
that there is relevant information in the analyzed beat track-
ing models. Specifically, the intuitive DBN based metrics
performed considerably better compared to the RNN met-
rics. Nevertheless, when comparing the inner calculations
of the model with simple transformations of the model’s
output, the inner calculations did not consistently yield bet-
ter results. This indicates that, although useful, inspecting
the inner behavior of the model may not be strictly neces-
sary.

We evaluated the pulse clarity models on very differ-
ent stimulus types: songs, rhythms and movie soundtracks.
Results showed that both the developed and comparison
models performed well on all datasets, even on those that
had different types of stimulus than their original training
data. This indicates that models can generalize well from
one type of stimulus to another. Yet, some variability was
present across datasets, inviting further evaluation of pulse
clarity models on a broader spectrum of musical stimuli.

The pulse clarity metrics obtained from the beat track-
ing model presented correlations comparable with those of
previous work. Given a more extensive dataset, with more
musical styles and exploring more dimensions of pulse
clarity, relevant pulse clarity predictors can be obtained.
These would provide new tools for the musical psychol-
ogy community. Overall, we propose that developments in
models for music perception tasks can be repurposed for
related tasks.

5. OPEN PRACTICES STATEMENT

A reference implementation written in Python is publicly
available at https://github.com/nPironio/
maipc, including all the metrics presented in this work.
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ABSTRACT

Local explanation methods such as LIME have be-
come popular in MIR as tools for generating post-hoc,
model-agnostic explanations of a model’s classification de-
cisions. The basic idea is to identify a small set of human-
understandable features of the classified example that are
most influential on the classifier’s prediction. These are
then presented as an explanation. Evaluation of such ex-
planations in publications often resorts to accepting what
matches the expectation of a human without actually be-
ing able to verify if what the explanation shows is what
really caused the model’s prediction. This paper reports
on targeted investigations where we try to get more insight
into the actual veracity of LIME’s explanations in an au-
dio classification task. We deliberately design adversarial
examples for the classifier, in a way that gives us knowl-
edge about which parts of the input are potentially respon-
sible for the model’s (wrong) prediction. Asking LIME to
explain the predictions for these adversaries permits us to
study whether local explanations do indeed detect these re-
gions of interest. We also look at whether LIME is more
successful in finding perturbations that are more prominent
and easily noticeable for a human. Our results suggest that
LIME does not necessarily manage to identify the most rel-
evant input features and hence it remains unclear whether
explanations are useful or even misleading.

1. INTRODUCTION

With the rise of deep learning methods used in Music
Information Retrieval (MIR), also the desire for explain-
ing the decisions made by such models has increased. A
plethora of explanation methods (“explainers”) have been
originally developed for text or image data and adapted to
the audio domain [1,2], or specifically introduced for MIR
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of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

systems [3]. Most notably, different versions of Local In-
terpretable Model-agnostic Explanations (LIME), a post-
hoc explainer [4], have been used to explain models in a
variety of MIR tasks [5–11].

Evaluation of explanations is known to be a hard task,
due to a lack of agreement on what constitutes a “good
explanation” [12] and, consequently, what may serve as
ground truth for measuring the quality of an explanation.
Explanations are often evaluated visually and the applied
“metric” is whether the highlighted input parts appear rel-
evant to the human observer (“confirmation bias”) [13].

We propose evaluating local explanations by exploiting
a known weakness of deep neural networks: adversarial
examples. By adversarially perturbing examples in a way
that a system’s original prediction is changed, we know ex-
actly what in the input caused the erroneous (adversarial)
prediction and can use this as the “ground truth” that the
explanation method should recover.

We are not the first to investigate the relationship be-
tween adversarial examples and interpretability. Slack et
al. [14] show that a racially biased model can be attacked
in a way that the (biased) prediction remains unchanged
but the explanation appears as if the model did not base the
prediction on sensitive attributes. This work is related in
the sense that it highlights weaknesses of post-hoc expla-
nation methods (including LIME).

Closest to our work are Göpfert et al. [15], who use “lo-
calised” adversarial attacks that target only selected seg-
ments of an image, and investigate the ability of different
explainers (including LIME) to recover the affected part.
In their experiments LIME outperforms the other explain-
ers, which supports our choice of LIME as an explainer
that deserves a more careful and critical investigation.

We perform four experiments with purposefully de-
signed adversarial examples in order to obtain more insight
about strengths and weaknesses of LIME-based explana-
tions in an audio classification task. As a test bed, we have
chosen a DNN-based singing voice detection model [16]
that currently defines the state of the art on that task, and
is suited to study the quality of explanations for several
reasons: it addresses a clearly defined task (as opposed
to genre classification for example), it has been used for
demonstrating explanations before [5, 11], and it has the
interesting previously documented property that it can be
confused by directly drawing on the spectrogram [17].
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2. LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS

LIME is an algorithm for explaining individual predictions
(local) for any black box machine learning model (it is
model-agnostic). The general idea of the algorithm is to
train a simpler model g that approximates the neighbor-
hood of the prediction f(x) that we want to explain. The
first step is to derive an interpretable representation de-
pending on the input domain, e.g. the presence or absence
of super pixels 1 in the image domain.

Let x 2 Rd (in the case of spectrograms, d = T ⇥ F )
be the representation in the original input domain and
x0 2 {0, 1}d0

be the interpretable representation where 0
and 1 denote the absence and presence of an interpretable
feature, respectively. In the next step we sample Ns in-
stances around x0 by randomly generating vectors of length
d0 containing 0’s and 1’s. Each generated instance z0 is
mapped back to the input domain and fed through the orig-
inal model f . z 2 Rd looks like the original input example
with all parts that are 0 in z0 occluded (e.g. gray values
in the image domain). The Ns instances z0 and the corre-
sponding predictions f(z) constitute the input to the expla-
nation model g [4]. The most commonly used explainers
are linear models of the form 2

g(z0) = b+ wgz
0. (1)

When training the linear explanation model, the gener-
ated instances are weighted via an exponential kernel de-
caying with increasing distance to the input example. This
distance (and based on it the weight) is computed between
the binary representation of the examples being explained
(all 1’s) and each of the instances in the neighborhood 3 .

A requirement for an explanation is that it be locally

faithful: we expect the explainer g to approximate f in the
neighborhood of x. The faithfulness is measured by the
fidelity score, which is computed by the coefficient of de-
termination (R2) of the linear model’s predictions [4], and
ranges from 0 to a perfect score of 1, with the exact inter-
pretation of the range of values being somewhat unclear.

Different flavours of LIME have been used for explain-
ing predictions in a variety of audio classification and tag-
ging tasks. The general LIME algorithm was kept the
same and the difference is the type of interpretable fea-
tures. Mishra et al. [5] proposed the first adaption of LIME
for MIR, termed SoundLIME (SLIME), which segments
the spectrogram into time, frequency, or time-frequency
segments. SLIME was demonstrated on the task of singing
voice detection [18] and used for analysing a replay spoof-
ing detection system [6]. Haunschmid et al. used other
types of interpretable features (super pixels [7], source sep-

1 (perceptually) grouped pixels
2 In the original paper [4], the explainer had the form g(z0) =

wgz0, mistakenly omitting the intercept b. Inspecting the source code
shows that the intercept was trained as well: https://github.com/
marcotcr/lime/

3 The original paper [4] stated that the distance for weighting the ex-
amples was computed between the images directly, but the source code
shows that it is actually computed between the binary representations,
which was later confirmed by the author.

aration estimates [8, 9]) for explaining the predictions of
a variety of models, including music taggers [8, 9] and a
content-based music recommender system [10]. Mishra et
al. [11] proposed different content types for replacing the
“grayed out” segments (e.g. zero, the min and the mean

value of the spectrogram) and found the mean value to
work best in their setting. For our experiments we will be
using time-frequency segments [5, 11]. The hyperparame-
ters for the LIME algorithm are described in Section 4.4.

3. ADVERSARIAL ATTACKS

In this section, we briefly describe a way to compute ad-
versarial examples for a singing voice detection system.
The goal is to obtain perturbations which do not affect
how a human perceives a particular example, yet simul-
taneously change the prediction of the system, i.e., trans-
form “Singing Voice” to “No Singing Voice” or vice versa.
To realise this, we use an adversarial attack that was origi-
nally proposed for audio [19], and was previously applied
in MIR to attack an instrument classification system and
a music recommender [20]. The attack, subsequently de-
noted by Carlini & Wagner (C&W), assumes a white-box
scenario, i.e. full knowledge about a model and its param-
eters.

As C&W is an iterative targeted attack, we use it to de-
crease the loss of a system with respect to a new (wrong)
target prediction, in multiple iterations. Following the no-
tation in [20], let f be a system and x 2 Rd its input, i.e., a
specific prediction is denoted by f(x). Also, let �ep 2 Rd

be an adversarial perturbation at iteration ep, and an adver-
sarial example x+�ep. Furthermore, we denote the system
loss by Lsys, and the target prediction by t. To restrict the
adversarial perturbation, C&W minimises a weighted sum
of the squared L2-norm of � and a system loss, resulting in
an optimisation objective as follows [19, 20]:

Ltotal = k�epk22 + ↵ ⇤ Lsys(f(x+ �ep), t),

�ep+1 = clip✏(�ep � ⌘ ⇤ sign(r�ep Ltotal)). (2)

Note that r�ep is the gradient w.r.t. to �ep, and updates
are performed based on the sign of the gradient and the
multiplicative factor ⌘. By applying clip✏, an adversarial
perturbation is always in the range of [�✏, ✏], and ↵ is used
to balance the magnitude of the perturbation and the sys-
tem loss w.r.t. the target prediction.

In the following experiments, we will compute adver-
sarial examples both for raw audio waveforms and for in-
put spectrograms. In either case, we will always analyse
the resulting perturbations in the time-frequency domain.
For adversaries computed for the waveform we compute
the time-frequency representation and subtract the original
example to obtain the adversarial perturbation in the time-
frequency domain. For adversarial examples computed for
the spectrogram directly, time-frequency information is al-
ready available.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

532



4. EXPERIMENTAL SETUP

This section describes the experimental setup, including
the data we use, details about the singing voice detection
system and hyperparameters for both the adversarial at-
tacks and computing the explanations.

4.1 Data

To train the singing voice detection system proposed by
Schlüter and Lehner, we use a subset of the data used
in their work [16], namely the openly available Jamendo

dataset [21]. The dataset consists of 93 songs totalling
around 6 hours of music, with a proposed training / vali-
dation / test split of 61 / 16 / 16 files respectively. Each
audio file has a sampling rate of 44.1kHz.

The annotations for the Jamendo dataset are provided
with sub-second granularity [18], and indicate the presence
/ absence of singing voice. The proportion of singing voice
(“sing”) in comparison to non-singing voice (“no sing”) is
close to 50 : 50 in all three data splits.

4.2 Singing Voice Detector

For subsequent experiments, we adapt the singing voice
detection system introduced by Schlüter and Lehner [16].
We use the proposed architecture of the Convolutional
Neural Network (CNN) and deploy the training routine
with unaltered hyperparameters on the Jamendo dataset.
Prior to training, the data is resampled to 22.05kHz and
then used to compute magnitude Mel spectrograms (frame
length 1024, hop size 315 samples and 80 Mel bands) [16].
The Mel spectrograms are logarithmically scaled and nor-
malised per frequency band to have zero mean and unit
variance over the training data.

The CNN is trained on spectrogram excerpts with a
length of 115 frames, for which the target prediction cor-
responds to the ground-truth annotation for the central
frame [16]. During training, we use a mini-batch size of
32 and Adam to optimise the Binary Cross Entropy loss
for 40.000 update steps. We start with a learning rate of
0.001 and scale it by 0.85 every epoch. To support gener-
alisation, dropout and data augmentation [18] is used; for
a more detailed description of the training procedure, hy-
perparameters and the CNN architecture, we refer to [16].

The final classification error of the singing voice de-
tector (in percent) on the Jamendo test data, given as
the mean ± standard deviation over 5 different runs, is
11.54 ± 0.96. Furthermore, recall and specificity over
5 runs are 89.61 ± 1.71 and 87.46 ± 1.00 respectively.
The metrics are computed based on binary predictions of
the network, which are obtained after applying a median
filter and a threshold tuned on validation data (cf. [16]).
Note that exact reproduction of previously reported errors,
namely 8.0 in [18] (with a slightly different architecture)
and 5.5 in [16], is difficult as Schlüter and Lehner train
on a larger (in-house) dataset, whereas we only use pub-
licly available data. Additionally, non-determinism (e.g.,
via data augmentation or initial weights) can influence the
performance of a model noticeably.

In the following experiments, let the singing voice de-
tection system be f , and f(x) the numeric model output
for class “sing”. The final classification is made by check-
ing whether f(x) is above (“sing”) or below (“no sing”)
a threshold that is optimised on the validation set, and is
equal to 0.51 for our system.

4.3 Hyperparameters for the Adversarial Attack

Equation (2) shows the hyperparameters we need to de-
termine before attacking the singing voice detector. The
maximum number of iterations in which we try to find
adversarial perturbations that change the prediction of an
excerpt is set to 1000 in our experiments. Other hyperpa-
rameters – clipping factor ✏, update factor ⌘ and weight
factor ↵ – are tuned on the validation set of Jamendo, and
chosen as the setting that results in the highest number of
successful adversarial perturbations, i.e., changed the most
predictions out of all audio excerpts in the validation data.
For the attack on raw audio we use ✏ = 0.01, ⌘ = 0.0003
and ↵ = 2; for the attack on the spectrograms we take
✏ = 0.1, ⌘ = 0.0005 and ↵ = 15. Due to the binary nature
of the singing voice detection task, the target t for each ex-
cerpt is chosen to be the opposite of its original prediction.
Note that we find successful perturbations for 28.4% of all
excerpts for attacks on the spectrogram, and for 60.5% of
excerpts for raw audio.

4.4 Hyperparameters for the Explanations

As mentioned above the LIME algorithm has a set of hy-
perparameters that have to be chosen. We segment the
spectrogram (80 frequency bins (F ) ⇥ 115 time frames
(T )) into 5 time and 4 frequency segments, respectively,
resulting in 20 “human-interpretable” features of size 20
frequency bins ⇥ 23 time frames. Repeating the calcula-
tion of an explanation might lead to different results due
to the randomness in the neighborhood generation when
the number of generated instances is too small. A pre-
liminary experiment as described in [5, 11] on a subset of
the explanations, suggests that 213 = 8192 instances are
sufficient to generate stable explanations, which is why
we set Ns = 8192 for all our experiments. We also
investigated different ways of replacing explanation seg-
ments [11] (zero, min, and mean), but as the results ap-
peared similar, we will focus on reporting the results for
the mean content type. For weighting the instances to train
the explainer we use the cosine distance function and an
exponential kernel with a kernel width of 0.25.

5. EVALUATION OF EXPLANATIONS

To investigate to what extent local explanation methods
can find the underlying reason for a particular classifica-
tion by a system, we perform four experiments. In the
first, we demonstrate how LIME can help detecting rather
obvious causes for a prediction that are due to manually
altered spectrograms. The goal of the remaining experi-
ments is to quantitatively evaluate the ability of LIME to
detect adversarial perturbations: in the second experiment
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we try to evaluate whether the segments that LIME high-
lights actually caused a prediction; in the third, we analyse
if the explanations can detect the correct location of the
adversarial perturbation if it only affects few segments of
the input spectrogram; and in the fourth, we compare the
fidelity scores for correct and incorrect explanations.

Due to the computation time needed for obtaining ex-
planations, we subsequently limit the number of analysed
excerpts for each song in the test set. For the first experi-
ment, we manually alter a single random excerpt per song
with an original classification of “no sing”. In the setting
of the second, third and fourth experiment, for each of the
16 test songs, we randomly select 10 adversarial excerpts
which were originally classified as “sing” and another 10
excerpts originally classified as “no sing”. We conduct
all experiments with adversarial attacks computed both on
raw audio and on spectrograms, as we want to account for
the fact that attacks on raw audio might use implicit con-
straints that are difficult to detect for LIME (which oper-
ates on spectrograms).

To allow reproducibility, we publish code 4 for all sub-
sequent experiments.

5.1 Explaining Manually Altered Spectrograms

In our first experiment, we exploit the fact that the pre-
decessor of the singing voice detector we use (cf. [18])
could easily be fooled by drawing on the input spectro-
gram 5 [17]. After choosing a set of excerpts originally
classified as “no sing”, we adapt drawings on the respec-
tive spectrograms until the prediction is changed to “sing”.
Then we ask LIME to explain these new predictions. Fig-
ure 1 shows that the explainer can correctly identify the
manually altered parts of the spectrogram as the cause for
the wrong prediction. Examples like these, supported by
relatively high fidelity scores, might make us think that
LIME knows what is going on and make us trust these ex-
planations. We could stop our evaluation here and put trust
in our model because the explanations highlight seemingly
correct behaviour [5], look meaningful [7], or match the
expected behavior [9], but we will continue with a more
careful investigation.

5.2 Explaining Predictions on Adversarial Examples

In this set of experiments, we first compute explanations
for the predictions obtained for each of the selected ad-
versarial excerpts. Every explanation consists of a list of
interpretable features (time-frequency segments) and their
corresponding weights. The weight of a particular feature
should indicate the importance of the feature for making
a certain prediction [4, 5]. To evaluate whether the expla-
nation actually selects the features that are responsible for
the (now wrong) prediction, we could naively check if the
segments selected by LIME correspond to regions of the
adversarial perturbation that have the highest magnitudes
(defined via the L2 norm).

4 https://github.com/CPJKU/veracity
5 https://github.com/f0k/singing_horse

Figure 1: Different examples of spectrograms for which
the model’s original prediction is “no sing” (left column)
but drawing certain symbols (middle) leads to a change
to “sing” with a model output f . The rightmost column
shows the top 3 interpretable features (which may be di-
rectly adjacent and thus look like one segment) picked by
the LIME algorithm, and their fidelity.

Waveform Spectrogram
“no sing” ! “sing” 53 % 41 %
“sing” ! “no sing” 21 % 32 %

Table 1: Percentage of label flips when using only k =
3 segments of an adversarial perturbation, based on the
most relevant features chosen by LIME. Columns denote
whether perturbations were computed for the waveform /
spectrogram, rows show original ! target prediction.

However, as we do not know which part of a perturba-
tion really led to a misclassification, i.e., whether parts of
a perturbation with the highest magnitude have the most
influence or not, this could lead to false conclusions.

To circumvent this, we follow another approach: we
split the adversarial perturbation into the same time-
frequency segments that LIME is using as interpretable
features; we then selectively add those k segments of the
perturbation to the input spectrogram that coincide with
the features identified as an explanation. If the selected
features are actually explaining the prediction, we expect
the partial perturbation to be sufficient to achieve the same
change of classification, or what we call label flip, as the
full perturbation did. However, using k = 3 (which seems
a reasonable number of segments to present to a user [5])
flips only 21� 53% of the predictions (see Table 1).

We therefore next look at whether larger numbers k of
segments are able to flip more of the predictions. We use
either LIME for selection of segments or choose the k per-
turbation segments with the highest magnitudes. We do
this for k 2 [1, ..., 20] and report the results in Figure 2.
For almost all k and across different settings we are more
often successful in flipping the label when segment selec-
tion is based on segment magnitude rather than on LIME
results. For LIME-based segments it is necessary to choose
almost all 20 available segments to achieve flip rates close
to 100%. This result suggests that it is indeed possible to

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

534



(a) “no sing” ! “sing”
(waveform)

(b) “no sing” ! “sing”
(spectrogram)

(c) “sing” ! “no sing”
(waveform)

(d) “sing” ! “no sing”
(spectrogram)

Figure 2: Percentage of classifications we can flip (y-axis)
by adding only k segments (x-axis) of an adversarial per-
turbation to an input. Choosing which k segments are used
is either based on LIME explanations (triangles), or on the
norm of a perturbation (circles).

Waveform Spectrogram
LIME norm LIME norm

“no sing” ! “sing” 86 % 99 % 91 % 98 %
“sing” ! “no sing” 49 % 74 % 44 % 55 %

Table 2: Percentage of label flips when adding all pertur-
bation segments that contributed positively according to
LIME, compared to using the same number of segments
k selected based on the norm.

explain predictions with larger numbers of k interpretable
features, but only when using the norm of a perturbation
(which in a real application we would not know) to select
the features and not when using LIME for the selection.

Finally, we analyse whether taking all segments that re-
ceive a positive weight from LIME can flip a prediction,
as positive weights should correlate positively with the ex-
plained class [5]. For this analysis, we no longer add a
fixed number of segments of a perturbation to each excerpt,
but instead select all k segments of a perturbation for which
the corresponding interpretable feature received a positive
weight. This number of segments k can be different for
each excerpt we look at. Additionally, we choose the same
number of k segments based on the largest magnitude, and
compare how often this results in label flips. The results
of this experiment are summarised in Table 2. Again, we
observe that taking partial perturbations is more successful
when selecting the segments with the highest magnitude,
as opposed to the segments most relevant for LIME.

These results suggest that LIME does not pick the in-
put features that are most relevant for making a particular
prediction.

5.3 Explaining “Localised” Perturbations

Considering the results in the previous section, one might
argue that an adversarial perturbation can be present in the
whole spectrogram, which could make it hard for LIME
to decide which segments are most relevant. We make
use of the finding that it is often sufficient to add only a
small number of selected segments of the perturbation to
flip a label, and conduct an additional experiment where
we analyse how often LIME detects those segments.

This is similar to [15], where adversarial perturbations
were constrained beforehand such that only selected re-
gions of the input could be modified, but in contrast we do
not restrict the perturbations directly. Instead we refine our
adversarial perturbations by first splitting them into seg-
ments that correspond exactly to the time-frequency seg-
ments that LIME uses. We then use only k such segments
of a perturbation, where the segments themselves are cho-
sen based on the highest magnitude.

We then identify the subset of adversarial excerpts
whose label can be flipped by only adding k 2 1, 3, 5 seg-
ments of the perturbation. These subsets are created for the
four different settings, namely the two types of adversarial
attacks (waveform / spectrogram), and for the two possible
label flips (“sing” to “no sing” and vice versa). This leads
to 3 ⇤ 2 ⇤ 2 = 12 subsets of adversarial excerpts.

After determining this subset of adversarial excerpts
with partial (“localised”) perturbations, we once again
compute explanations with LIME. Here we set the num-
ber of interpretable features that LIME should display to
k, i.e. the number of segments we previously added as lo-
calised perturbations. Since the time-frequency segments
of LIME and the partial perturbations align, we can then
examine how often LIME correctly identifies the regions
causing a particular prediction. Figure 3 shows the result
of this experiment, for all 12 adversarial subsets. Each plot
depicts how many of the k segments that were added as
adversarial perturbation, and that hence were crucial for a
particular classification, are correctly detected by LIME. It
is easiest to interpret results with only one modified seg-
ment (left column), since we know exactly what the cor-
rect explanation should look like. Overall, for less than
half of the excerpts is the correct segment presented as an
explanation. For 3 and 5 modified segments we can also
check how many segments are correctly identified, and we
can observe that it is rarely all of them and for some set-
tings none of them. This result suggests that even when the
cause is quite localised and aligns with the segments that
we are using as interpretable features, LIME is rarely able
to recover all affected features.

5.4 Are Fidelity Scores Reliable?

As Figure 1 in Section 5.1 suggested previously, “correct”
explanations are often accompanied by relatively high fi-
delity values. We do not know, however, whether we can
use fidelity to determine if an explanation highlights the
segments of the input that are really the most relevant for
a prediction, and it has been demonstrated that a high-
fidelity explanation of a black box model might not reflect
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(a) no sing ! sing (waveform) (b) no sing ! sing (spectrogram)

(c) sing ! no sing (waveform) (d) sing ! no sing (spectrogram)

Figure 3: The number of segments that are correctly identified when adding k perturbed segments to the original input and
asking LIME for an explanation containing the same k number of interpretable features.

(a) no sing ! sing
(waveform)

(b) no sing ! sing
(spectrogram)

Figure 4: Fidelity scores for explanations that correctly
and incorrectly identified the most relevant segment.

the actual cause for a prediction [22].
In the last experiment described above we have created

a setting with k = 1 where we exactly know which seg-
ment is relevant for the prediction, and we can use this
information to compare whether the fidelity is different
for “correct” and “wrong” explanations, i.e. explanations
which match the added segments of the perturbation as op-
posed to explanations which do not. As can be seen from
Figure 4, the fidelity for “correct” explanations is on aver-
age only slightly higher than for “wrong” predictions, with
ranges of fidelity values strongly overlapping. Based on
the fidelity score alone, a user hence cannot decide whether
an explanation is “correct” and whether it shows the most
relevant segment(s) for a prediction.

6. DISCUSSION AND CONCLUSION

In a nutshell, the central results of our investigations can
be summarised as follows:

• Figure 1: “Obvious” causes for predictions can be
detected with high fidelity.

• Table 1: When computing the 3 most relevant in-
terpretable features with LIME, we detect segments

that are able to flip the label for only 21-53% of the
excerpts.

• Figure 2: When using a varying number of inter-
pretable features, we detect fewer “correct” seg-
ments than when simply taking the same number of
segments with the highest magnitude.

• Table 2: When using all interpretable features that
received a positive weight, we detect fewer “correct”
segments than when taking the same number of seg-
ments with the highest magnitude.

• Figure 3: In a setting where we only add partial per-
turbations, only few segments are correctly detected.

• Figure 4: Based on the fidelity score it is impossible
to judge the quality of an explanation.

Taken together, we believe that these results support the
following conclusions: (1) local model-agnostic explana-
tions cannot reliably detect the input regions most relevant
for a prediction unless they are rather obvious; (2) evalu-
ation based on “what looks reasonable” leads to accepting
explanations that do not reveal the real cause of a predic-
tion; (3) the fidelity score may give a false sense of security
about the quality of explanations.

In [15], Göpfert et al. write, “It might be tempting to
judge explanatory methods on whether they succeed in
identifying features that a human observer thinks should
be relevant to the classification, but the existence of ad-
versarial examples shows that the reasoning of humans
and neural networks can differ dramatically.” This obser-
vation points to a fundamental dilemma between “veridi-
cal” explanations that faithfully reflect the workings of
the classification model (and may not be accessible to
model-agnostic explanation methods such as LIME), and
“human-interpretable” explanations that would connect a
machine decision to concepts familiar to us. Our results
confirm that one should be careful in interpreting model-
agnostic explanations as explanations of the underlying
model, and that experiments with carefully crafted exam-
ples are important to get more detailed insights into the
properties of such methods.
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ABSTRACT

Recommending automatically a video given a music or a
music given a video has become an important asset for the
audiovisual industry - with user-generated or professional
content. While both music and video have specific tempo-
ral organizations, most current works do not consider those
and only focus on globally recommending a media. As a
first step toward the improvement of these recommenda-
tion systems, we study in this paper the relationship be-
tween music and video temporal organization. We do this
for the case of official music videos, with a quantitative and
a qualitative approach. Our assumption is that the move-
ment in the music are correlated to the ones in the video.
To validate this, we first interview a set of internationally
recognized music video experts. We then perform a large-
scale analysis of official music-video clips (which we man-
ually annotated into video genres) using MIR description
tools (downbeats and functional segments estimation) and
Computer Vision tools (shot detection). Our study con-
firms that a "language of music-video clips" exists; i.e. ed-
itors favor the co-occurrence of music and video events us-
ing strategies such as anticipation. It also highlights that
the amount of co-occurrence depends on the music and
video genres.

1. INTRODUCTION

Each day, an ever-growing quantity of videos is created by
professionals (for advertisement, movies, series, etc) and
individuals (for Instagram, TikTok, YouTube, etc). Find-
ing an appropriate soundtrack to emphasize the video con-
tent is therefore a common exercise, which can be time-
consuming if done manually. This explains the success of
commercial systems such as MatchTune or of research pa-
pers such as “Look, Listen and Learn” [1]. While such
systems are very good at recommending music based on
the video content, the temporal synchronization between
both modalities is rarely taken into account. In order to
develop synchronization-aware recommendation systems,
some domain knowledge is required on how the synchro-
nization is performed in real videos that feature music. In

© Laure Prétet, Gaël Richard, Geoffroy Peeters. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Laure Prétet, Gaël Richard, Geoffroy Peeters, “Is
there a "language of music-video clips" ? A qualitative and quantitative
study”, in Proc. of the 22nd Int. Society for Music Information Retrieval
Conf., Online, 2021.

this work, we attempt at bridging this knowledge gap by
performing a fine-grained cross-modal analysis of the syn-
chronization between audio and video content. We hypoth-
esize that better understanding professionally produced
music videos helps designing better models for music-
video synchronization. This has applications in automatic
music-video recommendation [2–6] and generation [7–9].

Temporal structure (at the beat, bar or functional seg-
ment level) is one of the dominant characteristics of mu-
sic. For this reason, its automatic estimation has received
a lot of attention in the Music Information Retrieval (MIR)
community [10]. Temporal structure in video (cuts, scenes,
chapters) has similarly received a lot of attention in the
Computer Vision community (for example with the goal
of creating video summary [11]). Our fine-grained analy-
sis will be using these structural elements.

Our cross-modal analysis could be performed on any
type of video that features a musical soundtrack (eg com-
mercials, movies). We focus here on the special case of
of Official Music Videos (OMV). We call OMV an audio-
visual document where the audio part consists in a music
track, and which aims at promoting said track and its per-
forming artists. As a result, the music track is generally
the only source of audio in OMVs. This makes OMVs
good prototypes for a study on music-video synchronisa-
tion. We do not consider user-generated videos, because
we assume that analyzing professionally produced OMVs
is more likely to provide reusable insights.

In the specific case of OMVs, the editing team will of-
ten arrange the video rushes based on the structure of the
music track [12]. In some cases, the music track can also
be adapted from the studio version for narrative purposes.
Therefore, music and video structure are de facto associ-
ated. However, the level of synchronicity is not always the
same, depending on the considered OMV. This is not only
due to artistic choices but also depends on the music genre
and video genre, as we will see in our study.

Proposal and paper organization. In this paper, we
study the relationship between music and video tempo-
ral organization using a qualitative and a quantitative ap-
proach. The qualitative study is based on a set of in-
terviews with three renowned specialists of official mu-
sic videos. We interview them in order to find out if
and how they consider the relationship between music and
video structure in their work. The quantitative analysis
is based on a detailed analysis of music and video struc-
tural events in OMV using MIR and Computer Vision
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tools. The OMVs correspond to a subset of the Harmonix
dataset [13]. We study specifically the relationship be-
tween the duration of music and video segments and be-
tween the positions of their respective boundaries. We
highlight the dependency of those according to the OMV
music and video genre (for which we annotated the data).

The paper is organized as follows. Section 2 discusses
the related literature. Section 3 describes the qualitative
study and summarizes the interviews of three music video
experts: Jack Bartman (composer), Alexandre Courtès (di-
rector) and Maxime Pozzi (editor). Section 4 describes the
quantitative study: the dataset creation (4.2), the analysis
of the music and video segment duration (4.3.1) and of the
music and video segment position (4.3.2). Section 5 con-
cludes and discusses the perspectives of this work.

2. RELATED WORK

2.1 Music-Video Synchronization: A Short Review

Music supervision is an industry that aims specifically at
synchronizing music to video. Music supervision experts
are dedicated to proposing the best soundtrack to all types
of videos, ranging from commercials to movies and se-
ries. As of today, this recommendation and synchroniza-
tion work still features a large amount of manual work. In-
skip et. al. [14] interviewed music supervision experts and
described their workflow. The authors mention that "the
clearest briefs appear to be moving images", suggesting
that other types of data (emotion, textual description, ref-
erence soundtracks) are not necessary to perform the task.

At the same period, Gillet et al. [15] proposed a sys-
tem that can automate part of the music supervision task.
Their system relies on the synchronization of music struc-
ture (onsets and functional segments) and video structure
(motion intensity and cuts) to perform music-video rec-
ommendation, without external data. Yang [16] and Mul-
hem [17] proposed similar approaches.

More recently, Alexander Schindler gathered a dataset
of OMVs (the Music Video Dataset) and performed an
in-depth analysis of this specific media [18]. In [19],
Schindler and Rauber explain how shot boundary detection
is an ill-defined task in music videos, as shot transitions are
used in a complex and artistic way. By analyzing the clips,
they observe that the music videos present characteristic
editing styles (number of shots per second, types of transi-
tion) for certain music genres or moods. But they do not
quantify this correlation. In [12], the same authors analyze
the correlation between visual contents (objects present in
the scene) and music genre. For example, cowboy hats are
almost systematic in country music videos.

In our study, we propose a joint approach. We analyze
the correlation between the music/video structure and mu-
sic/video genres.

2.2 Audiovisual Structure Estimation Tools

Our quantitative study (Section 4) relies both on MIR to
analyze the music structure and on Computer Vision to

analyze the video structure. More specifically, we esti-
mate the downbeat positions, functional segments and shot
boundaries from the OMV of our dataset. In the following,
we describe the tools we have used for our analysis.

Downbeat tracking is a popular MIR task [20]. As a
result, several ready-to-use libraries are available to esti-
mate downbeat positions from audio files [21, 22]. The
state-of-the-art algorithm of Böck et al. [23] consists in
two steps. First, a RNNDownBeatProcessor, which
relies on multiple Recurrent Neural Networks (LSTMs),
estimates jointly beat and downbeat activation functions.
The output of the neural networks represents the proba-
bility of each frame of being a beat or downbeat position.
These activation functions are then fed as observations to a
DBNDownBeatTrackingProcessor, which relies on
a Dynamic Bayesian network (DBN). The DBN outputs
the beat positions of highest likelihood, along with their
position inside the bar.

At a larger timescale, the automatic detection of bound-
aries between functional segments (choruses, verses and
bridges) has also received a lot of attention from the MIR
community. The Ordinal Linear Discriminant Analysis
(OLDA) algorithm by McFee et al. [24] relies on super-
vised learning to perform this task. This method adapts the
linear discriminant analysis projection by only attempting
to separate adjacent segments. Then, the obtained features
are clustered with a temporal constraint: only similar suc-
cessive segments are merged together.

Similar to music, videos can be divided into segments
of various duration, from shots to scenes to chapters and
longer sequences. In this study, we focus on a segmenta-
tion into shots. The TransNet system [25], by Souček et
al., is a Convolutional Neural Network which employs di-
lated 3D convolutions and which is trained in a supervised
way on a shot boundary detection task.

3. QUALITATIVE ANALYSIS: INTERVIEWS

3.1 Methodology

In order to gather intuition on the synchronization of mu-
sic and video, we conducted a series of semi-structured
face-to-face interviews. We selected three music video
experts from different professions: composition, direction
and editing. Following Inskip et. al. [14], we selected the
respondents using a snowball sampling technique.

Interviews were performed using the Zoom video con-
ferencing software, lasting up to one and a half hours. The
interviews were transcribed manually by the researcher,
and transcripts were sent back to the respondents for vali-
dation. Areas of discussion included the participant’s day-
to-day workflow and technical tools, their interactions with
the other professions of the industry, and their opinion on
example music videos prepared by the researcher.

3.2 Interviews Summary

3.2.1 Jack Bartman, Composer

As a composer (for commercials such as Nike, Apple or
UbiSoft), Bartman has to adopt both a global and a pre-
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cise local approach: the content of the music has to match
the visual atmosphere, and its temporal structure must be
aligned both globally at clip level and locally at frame
level. In some cases, the editing follows the structure of
the music. But in other cases, typically for advertisement,
it is the opposite, and the composer has to adapt the music
to an existing movie. Most of the time, when music has
to be edited on an existing movie, the slicing operation is
privileged.

"Slicing can happen at unconventional moments, like
the first or last beat of a bar! I simply add a sound effect
to make it work."

Time stretching and accelerations can be employed too,
but are far less usual. Bartman stresses that synchronizing
cuts to audio events is especially important around emo-
tional climaxes of the video. Finally, for some projects, an
exact synchronization is not the golden rule:

"This year, I worked on a short movie about psycholog-
ical aspects of the Covid-19 lockdown. After getting used
to an imperfectly synchronized mockup soundtrack, the di-
rector did not want to use the final version, as the mockup
would better suit the intended "madness" atmosphere".

3.2.2 Alexandre Courtès, Director

As a director (such as for U2, Phoenix, Cassius, Franz Fer-
dinand or Jamiroquai), Courtès generally has a lot of free-
dom when it comes to the temporal organization of a music
video. Directors often come up with their own concept and
they have little constraint about the content of the video.
At large temporal scale, their mission is to emphasize the
music climaxes by the appropriate video content.

"The music video will often show a performance, so it
is similar to a musical comedy: it has to feature costumes,
chapters, sets, acts."

Directors are not responsible for placing the cuts, but
they can introduce diversity in the video transitions (explo-
sions, large objects passing in front of the camera; see [19]
for a more exhaustive list).

"Cuts have to follow the music’s rhythm, even though
they might not always co-occur with beats."

3.2.3 Maxime Pozzi, Editor

As an editor (such as for Rihanna, Taylor Swift, Foals or
Woodkid), Pozzi has to combine both a local, frame-level
approach to the design of a global emotional trajectory.

"Editors and musicians have a similar job, we all want
the same thing: rhythm, narration, climaxes."

For chorus and verses, the editing will follow the
rhythm and typically accelerate near climaxes. During
bridges, it will often be slower and poetic. This can be
illustrated for example by Katy Perry’s Firework music
video (Figure 1). In this clip, we can see some func-
tional segments where cuts happen very frequently (sev-
eral times in each bar) and segments where they happen
less frequently, for example on the downbeats only.

Editing can be used as an element of narration. For ex-
ample, in Adele’s Rolling in the deep music video, starting
at timestamp 02:20, the cuts are systematically placed just
before the downbeat (see Figure 2).
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Figure 1: Audiovisual structure of Katy Perry, Firework,
full clip. Horizontal axis: time. Cuts: TransNet estimates.
Downbeats: Madmom estimates. Music functional seg-
ments: OLDA estimates.
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Figure 2: Audiovisual structure of Adele, Rolling in the
deep, timestamps 02:20 to 02:30. Horizontal axis: time.
Cuts: TransNet estimates. Downbeats: Madmom esti-
mates. �a: anticipation of cuts with respect to downbeat.

"Off-beat cuts are used to create dynamics: to surprise
the viewer, and illustrate the music’s emotional climax. It
makes the video direction appear more "indie" as well, this
can be required by the performing artists."

3.3 Summary

These three interviews provide us with a series of intuitions
and hypotheses about the way audio and video are syn-
chronized in music videos. First, musical structure such
as chorus and verses are taken into account when direct-
ing a music video. Second, audio events such as rhythm,
beat and downbeat are taken into account when editing a
music video. Finally, according to the desired atmosphere,
the audio and video structural events can be more or less
perfectly synchronized.

4. QUANTITATIVE ANALYSIS

4.1 Methodology

In the following, we conduct a set of quantitative experi-
ments on how the Structural Events (SE) of the music and
of the video are synchronized in time. We do so using Of-
ficial Music Videos (OMVs). We therefore first collect a
dataset of OMVs, along with music and video genre an-
notations (Section 4.2). For each of them we use MIR
tools to estimate music SE (downbeats and functional seg-
ments) and Computer Vision tools to estimate video SE
(shot boundaries). In our first experiment, we study the

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

541



video

music

video shot
- duration
- position 

�shot

<latexit sha1_base64="5TfV4OgYzWeGnML88IiTO4zMOwc=">AAAC0HicjVHLSsNAFD2Nr1pfVZdugkVwVZIiqLuCLly2Yh/QlpKk0zY0TWIyEUsp4tadG93qyn/xB0T8Af0L70xTUIvohCRnzj3nzNwZ03fskGvaa0KZmZ2bX0guppaWV1bX0usb5dCLAouVLM/xgqpphMyxXVbiNndY1Q+Y0TcdVjF7R6JeuWBBaHvuGR/4rNE3Oq7dti2DE9WoHzOHG81h2PX4qJnOaFlNDnUa6DHI5OeLb893t08FL/2COlrwYCFCHwwuOGEHBkJ6atChwSeugSFxASFb1hlGSJE3IhUjhUFsj74dmtVi1qW5yAyl26JVHHoDcqrYIY9HuoCwWE2V9UgmC/a37KHMFHsb0N+Ms/rEcnSJ/cs3Uf7XJ3rhaONA9mBTT75kRHdWnBLJUxE7V790xSnBJ07gFtUDwpZ0Ts5ZlZ5Q9i7O1pD1d6kUrJhbsTbCh9glXbD+8zqnQTmX1feyh0U9k89hPJLYwjZ26T73kccJCihR9jnu8YBH5VS5VK6U67FUScSeTXwbys0nzkyY2w==</latexit>

�bar

<latexit sha1_base64="Thw7OLIpDFi3jDE7l7uvUsqmjOQ="></latexit>

�beat

<latexit sha1_base64="Jzbd65n1znhBb6YJ966RCJPHSHI="></latexit>

lshot

<latexit sha1_base64="YSs67S7rwshGEX4gxTAeeW1U+1s="></latexit>

funct. segments
- position

bar 
- duration
- position

beat
- duration

lsegment

<latexit sha1_base64="LSVClLmzg7IXxqxJqMcR5efJYgo="></latexit>

�shot

<latexit sha1_base64="5TfV4OgYzWeGnML88IiTO4zMOwc=">AAAC0HicjVHLSsNAFD2Nr1pfVZdugkVwVZIiqLuCLly2Yh/QlpKk0zY0TWIyEUsp4tadG93qyn/xB0T8Af0L70xTUIvohCRnzj3nzNwZ03fskGvaa0KZmZ2bX0guppaWV1bX0usb5dCLAouVLM/xgqpphMyxXVbiNndY1Q+Y0TcdVjF7R6JeuWBBaHvuGR/4rNE3Oq7dti2DE9WoHzOHG81h2PX4qJnOaFlNDnUa6DHI5OeLb893t08FL/2COlrwYCFCHwwuOGEHBkJ6atChwSeugSFxASFb1hlGSJE3IhUjhUFsj74dmtVi1qW5yAyl26JVHHoDcqrYIY9HuoCwWE2V9UgmC/a37KHMFHsb0N+Ms/rEcnSJ/cs3Uf7XJ3rhaONA9mBTT75kRHdWnBLJUxE7V790xSnBJ07gFtUDwpZ0Ts5ZlZ5Q9i7O1pD1d6kUrJhbsTbCh9glXbD+8zqnQTmX1feyh0U9k89hPJLYwjZ26T73kccJCihR9jnu8YBH5VS5VK6U67FUScSeTXwbys0nzkyY2w==</latexit>

�bar

<latexit sha1_base64="Thw7OLIpDFi3jDE7l7uvUsqmjOQ="></latexit>

�beat

<latexit sha1_base64="Jzbd65n1znhBb6YJ966RCJPHSHI="></latexit>

time

548 Official Music Video

MIR (OLDA, Madmom) + Harmonix annotations (bpm, meter)

lbar

<latexit sha1_base64="J/Bxq64x0uW7ThQkd4DkmByZdRo=">AAACynicjVHNSsNAGJxGrbX+VT16CRbBU0mKoN4KXjx4aMH+QC0lSbc1NE3CZiOU0Jsv0IsHfQDfxRcQ8QX0Lfx2m4JaRDckmZ1vZna/XTv03EgYxmtGW1peya7m1vLrG5tb24Wd3UYUxNxhdSfwAt6yrYh5rs/qwhUea4WcWSPbY017eC7rzVvGIzfwr8Q4ZJ2RNfDdvutYgqim101si0+6haJRMtTQF4GZgmIlW3t7vp8+VYPCC67RQwAHMUZg8CEIe7AQ0dOGCQMhcR0kxHFCrqozTJAnb0wqRgqL2CF9BzRrp6xPc5kZKbdDq3j0cnLqOCRPQDpOWK6mq3qskiX7W3aiMuXexvS306wRsQI3xP7lmyv/65O9CPRxqnpwqadQMbI7J02J1anInetfuhKUEBIncY/qnLCjnPNz1pUnUr3Ls7VU/V0pJSvnTqqN8SF3SRds/rzORdAol8zj0lnNLFbKmI0c9nGAI7rPE1RwgSrqqsspHvCoXWpcG2vJTKplUs8evg3t7hMqXZY8</latexit>

Computer Vision (TransNet)

Harmonix (1000 items - {music-genre, bpm, meter} annotations)

Video-genre annotation
{performance, concept/abstract; narrative, dance, other}

Figure 3: Schematic view of the different audiovi-
sual structural events considered: shots (�shot, lshot),
functional music segments (lsegment), bars/downbeats
(�bar, lbar) and beats (�beat, lbeat). Illustration music
video: Psy, Gangnam Style.

correlation between the duration of the shots and the vari-
ous musical SEs (beat and bar duration). In our second ex-
periment, we study the temporal co-occurrence of the shot
boundaries and the various musical SEs (bar and functional
segment boundaries). We analyze the results of those for
each music genre and each video genre.

4.2 Dataset

For our quantitative study, we consider a subset of the Har-
monix dataset [13]. Harmonix was initially released for au-
tomatic estimation of beat, downbeat and functional music
segments. It features popular (mostly hits) Western music
tracks for which there is a high probability of having an
associated music video. From the list of 1,000 YouTube
video links provided, 899 were successfully retrieved, of
which 40% contained only still images and 2.4% were du-
plicates. As a contribution of this work we provide the list
and URLs of the remaining 548 OMVs as well as the genre
annotations described below 1 .

4.2.1 Annotations into Structural Events

We consider here two types of Structural Events (SE):
those based on the music content -audio-, and those based
on video content -image frames over time (see Figure 3).

Music SE. We consider three types of music SEs.
At the smallest temporal scale we consider the beats and
downbeats; at the largest temporal scale we consider the
functional music segment boundaries (between the verses,
bridges, choruses). Harmonix features a set of manual
annotations 2 . However, these annotations correspond to
studio versions of the tracks which can, in some cases,

1 Our list is accessible at: https://gitlab.com/creaminal/publications/ismir-
2021-language-of-clips/-/blob/master/video_genres.csv.

2 into functional segments, downbeat and beat.

be largely different from the version used in the OMV.
For this reason, we only used the annotations into bpm
and meter of the Harmonix dataset to get the beat dura-
tion �beat = 60

bpm and bar duration �bar = 4 or 3�beat

(which is computed as a multiple of the bar duration us-
ing the time signature). For the downbeat positions, we
used the algorithm of Böck et al. [23], implemented in the
Madmom library [21]. In the following, we denote by lbar

the list of downbeat positions for a given track. For the
functional music segments, we used the implementation of
OLDA from the MSAF library [26]. In the following, we
denote by lsegment the list of boundary positions between
the segments for a given track. For our dataset, the average
duration of functional music segments is 19.73 s. and the
average bar duration is 2.30 s.

Video SE. We consider only the least ambiguous video
SE, the shot boundaries (or cuts). To detect boundaries
between shots, we use the TransNet system [25] and the
associated library, available on GitHub 3 . The TransNet
output is a continuous function of time fshot(t) 2 [0, 1]
representing the likelihood of a boundary at time t. fshot

has a sampling rate of 25 Hz.
Also, for each OMV, we compute the histogram of its

shot duration. We do so by first estimating the list of
shot boundary positions lshot by thresholding fshot(t) with
⌧ = 0.5. The resulting segments have an average duration
�shot of 4.76s. We then compute the histogram of these
durations. We denote by �max

shot the position of the maxi-
mum of this histogram (in seconds).

We sum up the various SE in Table 1.

Table 1: Notation associated to each SE considered.

Music
genre Harmonix annotations
funct. segments positions lsegment OLDA/MSAF
bar duration �bar Harmonix annotations
bar/downbeat positions lbar Madmom
beat duration �beat Harmonix annotations
Video
genre Manual annotations
shot boundary probability fshot(t) TransNet
shot boundary positions lshot
most common shot duration �max

shot

4.2.2 Annotations into genre

We consider both the genre associated to the music and the
one associated to the video.

Music genre. While still controversial in its exact def-
inition [27], music genre is a convenient way to describe
musical content. For this reason, it has been and it is still
a widely studied topic 4 . For our experiments, we use the
music genre annotations provided by the Harmonix dataset
metadata.

Video genre. Video genre classification is a much less
studied topic. Existing studies focus on a much smaller
sets of video genres [32–34]. Only Gillet et al. [2] and

3 https://github.com/soCzech/TransNet
4 It has dedicated challenges [28], and large datasets featuring hun-

dreds of categories [29–31].
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Schindler [18] studied the case of OMVs and there is no
consensus on their taxonomy of video genres. There is
also no annotated dataset for this task.

We merge [2] and [18] to obtain a set of 5 video
categories and and a corresponding single-label dataset.
Maxime Pozzi, a professional music video editor, validated
our taxonomy during our preliminary interview (see part
3.2.3). One author then manually annotated all 548 video
clips of Harmonix into the five following video genres:
• Performance videos (P): The artist or band

are presented performing the song. 74 videos; example:
Iron Maiden, Powerslave.

• Concept/Abstract videos (C): The video il-
lustrates the music metaphorically via a series of ab-
stract shots related to semantics or atmosphere of the
song. 227 videos; example: Lady Gaga, Poker Face.

• Narrative videos (N): The music video has a
strong narrative content, with identifiable characters and
an explicit chronology. 160 videos; example: Taylor
Swift, Teardrops on My Guitar.

• Dance videos (D): Artists present a rehearsed
dance choreography in sync with the music. 62 videos;
examples: Sean Paul, Get Busy.

• Other (O): Other types of music videos, including
lyrics videos, animated music videos, etc. 25 videos;
example: Train, Hey, Soul Sister.

4.3 Experiments

We hypothesize that the music structural events play an
important role for the placement of cuts during the video
editing. We check this assumption by measuring:
• if their segment duration are correlated in Section 4.3.1;
• if their position co-occur in Section 4.3.2.

According to Gillet [2], the performance of alignment-
based music-video recommendation systems are strongly
correlated to the video genre. We therefore differentiate
our results by music and video genre.

4.3.1 Comparison between events duration

Our first experiment aims at evaluating to which extent the
musical and video events have similar durations.

To measure this, we compare �max
shot (the most com-

mon shot duration) with the beat duration �beat and bar
duration �bar obtained from the Harmonix annotations.
When �max

shot is close to �bar, this indicates that a system-
atic change of shots occurs with the same speed as the bar
changes. This however does not mean that the changes oc-
cur simultaneously (we study this in Section 4.3.2).

This is for example the case of "Heartless" by Kanye
West (see Figure 4 [top]) where the large peak at
�max

shot=2.72 s can be explained by the tempo at 88 bpm; or
"Firework" by Katy Perry (see Figure 4 [bottom]) where
the large peak at �max

shot= 1.93 s can be explained by the
tempo at 124 bpm.

In our dataset, a synchronization at the bar level
(0.5�bar < �max

shot < 1.5�bar) occurs for one fifth of
the clips (95 music videos). Synchronization may also oc-
cur at other levels: at the beat level �beat, or the pattern

(2.6-2.8) ≈ 4

Shot duration (s)

60
88 bpm

(1.8-2.0) ≈ 4

Shot duration (s)

60
124 bpm

Figure 4: [top] Histogram of shot duration in the music
video of Heartless by Kanye West. The tempo is 88 bpm.
[bottom] Histogram of shot duration in the music video of
Firework by Katy Perry. The tempo is 124 bpm.

level �pattern (usually an even multiple of the bar dura-
tion). In our dataset, a synchronization at the beat level
(0.5�beat < �max

shot < 1.5�beat) occurs for two thirds of
the clips (329 music videos). However, synchronization
at pattern level �pattern = 4�bar almost never occurs (2
music videos).

In Table 2, we indicate for each music genre and video
genre, the number of tracks for which the �max

shot corre-
spond to �bar or �beat. We only focus here on the most
represented genres, i.e. which appear at least 10 times.
We observe a strong correspondence between �max

shot and
�bar for the music genres Country, Dance/Electro
and Rock (one fourth of the tracks). We observe a strong
correspondence between �max

shot and �beat for the music
genres Alternative and Reggaeton (three quarters
of the tracks). This may imply, for example, that mu-
sic video professionals favor more dynamic editing styles
(using shorter shots on average) for Reggaton than for
Country music. We observe a strong correspondence be-
tween �max

shot and �bar for the video genre Performance
(one fourth of the tracks). On the contrary, we observe
a low correspondence between �max

shot and �beat for the
video genre Other (one third of the tracks). It is likely
that music videos in the Other category favor experimen-
tal editing styles, with shots of more diverse duration.

As we see, there is a strong relationship between the
video events and musical events duration. This however
does not mean that the changes occur simultaneously. We
study this in the next section.

4.3.2 Comparison between events position

Our second experiment aims at evaluating to what extent
the musical events lseg , lbar and video events fshot(t) hap-
pen simultaneously. To measure this, we compute for each
audio boundary i (ti 2 lseg or ti 2 lbar) a score Si 2 [0, 1].
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Table 2: Agreement of musical structure (bar �bar and
beat �beat level) and dominant shot duration �max

shot ac-
cording to the music genre [top table] and according to
the video genre [bottom table]. Highest values are high-
lighted in bold, lowest values in italic.

�max
shot ' �bar �max

shot ' �beat
Music Genre # tracks % # tracks %
Alternative 2 8.3 19 79.2

Country 10 29.4 16 47.1
Dance/Electro 12 24.5 28 57.1

Hip-Hop 12 12.6 69 72.6
Pop 40 14.8 158 58.3

R&B 1 5.3 13 68.4
Reggaeton 1 8.3 9 75.0

Rock 4 23.5 10 58.8
�max

shot ' �bar �max
shot ' �beat

Video Genre # tracks % # tracks %
Concept 33 14.5 148 65.2
Dance 11 17.7 40 64.5

Narration 28 17.5 93 58.1
Performance 19 25.7 41 55.4

Other 4 16.0 8 32.0

Si is defined as the integral over time of the shot boundary
likelihood fshot(t) tampered by a non-normalized Gaus-
sian window w(t). w(t) is centered on ti, with � = 2 (such
that the effective duration of the window is approximately
0.5s at a frame rate of 25Hz) and with w(0) = 1.

Si =

Z

t
w(t � ti)fshot(t)dt, 8ti 2 {lseg, lbar}

A large value of Si indicates that the ti position (the music
structural event) corresponds to a large probability of shot
boundary. We then average Si for all audio boundaries
i to get S. S might be considered as a measure of pre-
cision, since it provides information on how many audio
boundaries are explained by a video boundary. It should
be noted that the number of video boundaries is larger than
the number of audio boundaries (as seen in Figures 1 and
2). S is also close to the measure proposed by [35] to eval-
uate the performances of beat-tracking algorithms. A large
value of S indicates that the shot boundaries are located
at the same positions as the music structural events lseg

or lbar. We compute S separately using the ti from lseg

or from lbar. To check if the amount of music-video event
synchronization depends on the music and video genre, we
average S over all tracks of a given genre (music or video).

Co-occurrence of music/video events by music genre.
Table 3 [top part] shows the co-occurrence scores S aggre-
gated over music genres. We observe variations of the val-
ues of S according to the music genre. For Pop, S(lseg)
is large (0.36) indicating that many shot transitions occur
at the functional segment boundaries positions. For R&B
and Reggaeton, S(lbar) is large (0.31 and 0.28) indicat-
ing that many shot transitions occur at the downbeat posi-
tions. We also observe that the value of S(lseg) and S(lbar)
vary according to the music genre with very small values
for Dance/Electronic, Hip-Hop and Rock. This
comes as a surprise especially for Dance/Electronic,
because in the previous experiment, we observed a strong
correspondence between the duration of shots and bars for
this music genre. This shows that even though bars and

Table 3: Shot transition intensity S around music bound-
aries (either functional segments boundaries lseg or bar
boundaries lbar) according to music genre [top table] and
according to the video genre [bottom table]. Mean val-
ues and confidence intervals at 95% are displayed. Highest
values are highlighted in bold, lowest values in italic.

Music Genre S(lseg) S(lbar) # tracks
Alternative 0.22 ± 0.08 0.23 ± 0.02 24

Country 0.20 ± 0.06 0.21 ± 0.02 34
Dance/Electro 0.18 ± 0.05 0.21 ± 0.02 49

Hip-Hop 0.19 ± 0.03 0.25 ± 0.01 95
Pop 0.36 ± 0.02 0.21 ± 0.01 271

R&B 0.29 ± 0.10 0.31 ± 0.03 19
Reggaeton 0.24 ± 0.11 0.28 ± 0.04 12

Rock 0.18 ± 0.07 0.19 ± 0.03 17
Video Genre S(lseg) S(lbar) # tracks

Concept 0.20 ± 0.02 0.23 ± 0.01 227
Dance 0.18 ± 0.04 0.24 ± 0.01 62

Narration 0.18 ± 0.03 0.23 ± 0.01 160
Performance 0.15 ± 0.04 0.16 ± 0.01 74

Other 0.11 ± 0.06 0.11 ± 0.02 25

shots have similar duration, their boundaries might not al-
ways co-occur.

Co-occurrence of music/video events by video genre.
Table 3 [bottom part] shows the co-occurrence scores S
aggregated over video genres. We observe variations of
the values of S according to the video genre. We see that
the Dance video genre has a large value of S(lbar) (0.24),
which is not surprising given that video labeled as Dance
actually show people dancing on the beat. We also observe
large values of S(lbar) for the Concept and Narration
video genres with consistent synchronization on the down-
beats. For the Performance video genre (the band is
playing in front of the camera), we don’t observe such a
large correspondence (S(lbar) = 0.16). For the Other
video genre, the low values (S(lbar) = S(lseg) = 0.11)
are not surprising, given that some videos are very exper-
imental and may feature complex video transitions, which
may be difficult to detect by the TransNet.

5. CONCLUSION

According to the professionals and to our experiments, of-
ficial music videos are edited by taking into account the
music structure. Although some experts mentioned that
synchronization was often a matter of taste and intuition,
we were able to bring out some trends. We showed that the
co-occurrence of music and video structural events would
vary according to the music and video genres. These ele-
ments can be reused to design or improve automatic music-
video recommendation systems. For example, if the task is
to recommend an illustration video for a Pop or R&B track,
the system is expected to favor candidates that allow high
synchronization of the structural events.

However, we have the intuition that other factors may
impact the editing style of OMV. In future work, we plan
to investigate the role of other metadata, such as release
date, artist popularity or harmonic complexity. Although
we focused on OMV for this study, we believe that a sim-
ilar analysis can be conducted on other types of musical
videos, e.g. movies or commercials.
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[34] K. Choroś, “Video Genre Classification Based
on Length Analysis of Temporally Aggregated
Video Shots,” in Computational Collective In-
telligence. Lecture Notes in Computer Science.
Springer, Cham, 2018, vol. 11056. [Online].
Available: https://link.springer.com/chapter/10.1007%
2F978-3-319-98446-9_48

[35] A. T. Cemgil, B. Kappen, P. Desain, and H. Honing,
“On tempo tracking: Tempogram representation and
Kalman filtering,” Journal of New Music Research,
vol. 29, no. 4, pp. 259–273, 2000. [Online]. Available:
https://www.mcg.uva.nl/papers/mmm-26.pdf

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

546
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ABSTRACT

Tabla is a percussion instrument in Hindustani music tradi-
tion. Tabla learning and performance in the Indian subcon-
tinent is based on stylistic schools called gharānā- s. Each
gharānā is characterized by its unique style of playing tech-
nique, dynamics of tabla strokes, repertoire, compositions,
and improvisations. Identifying the gharānā from a tabla
performance is hence helpful to characterize the perfor-
mance. This paper addresses the task of automatic gharānā
recognition from solo tabla recordings. We motivate the
problem and present different facets and challenges in the
task. We present a comprehensive and diverse collection
of over 16 hours of tabla solo recordings for the task. We
propose an approach using deep learning models that use a
combination of convolutional neural networks (CNN) and
long short-term memory (LSTM) networks. The CNNs are
used to extract gharānā discriminative features from the
raw audio data. The LSTM networks are trained to clas-
sify the gharānā-s by processing the sequence of extracted
features from CNNs. Our experiments on gharānā recogni-
tion include different lengths of audio data and comparison
between various aspects of the task. An evaluation demon-
strates promising results with the highest recognition accu-
racy of 93%.

1. INTRODUCTION

With the vast availability of varied music collections on the
digital platform and widespread use of personal digital de-
vices, there is a growing interest in accessing music based
on its various characteristics. The limited availability of
editorial metadata and annotations led to the need for mu-
sic information retrieval to automatically extract music’s
characteristic properties from the audio recordings. Auto-
matic identification of metadata from audio-like, stylistic
school recognition—especially in the context of the same
genre—is a tough task, even for humans.

This paper addresses the automatic identification of
tabla gharānā-s, valuable metadata from solo tabla record-
ings. The percussion instrument tabla is an integral part

© Gowriprasad R, Venkatesh V, Hema A Murthy, R Ar-
avind and Sri Rama Murty K. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: Gowriprasad R, Venkatesh V, Hema A Murthy, R Aravind and
Sri Rama Murty K, “Tabla Gharānā Recognition from Audio Music
Recordings of Tabla Solo Performances”, in Proc. of the 22nd Int. Society

for Music Information Retrieval Conf., Online, 2021.

of Hindustani music as it keeps track of rhythm. It is
not only used as an accompaniment but also used in solo
performances. Tabla solo is intricate and elaborate, with
a variety of precomposed forms used for developing fur-
ther elaborations based on the player’s stylistic schools
called gharānā-s. Identifying gharānā from a tabla perfor-
mance provides valuable editorial metadata, which helps
characterize performance and further musicological anal-
ysis. From the standpoint of Music Information Retrieval
(MIR), studying and analyzing various tabla performance
patterns is vital. It has applications in music description,
auto-tagging, similarity measures, discovery, informed and
enhanced music listening, music training, and computa-
tional musicology. We first discuss an overview of tabla
and its gharānā-s.

1.1 Tabla and its gharānā-s

Tabla consists of a pair of drums, dāyān and bāyān, a
treble drum and a bass drum respectively [1]. The tabla
repertoire and technique are transmitted from generation to
generation by guru-shishya (teacher-student) lineage [2],
which is primarily an oral tradition. This guru-shishya lin-
eage gave rise to different schools of tabla practice called
gharānā-s. The word gharānā literally means the house of
the teacher. Tabla solo performance showcases the per-
cussionist’s skill with tabla developing upon a variety of
precomposed compositions such as thēkā, kāyadā, palatā,

rēlā, pēs̀kār and gat. within the rhythmic framework called
tāl. Each composition has different functional and aes-
thetic roles in a solo performance. The developments are
intricate and elaborate based on the player’s gharānā.

There are two major playing styles (bāj) in tabla,
bandh (closed) bāj and khulā (open) bāj [3]. In bandh bāj,
the tabla is played more on its border area; hence the stroke
resonance is controlled or subdued. In this closed style
of playing, importance is given to the sound of tabla and
speedy progressions. In khulā bāj, the tabla is played more
in the middle portion with open strokes using full palm
and fingers. In this style, importance is given to tonal rich-
ness of the strokes with resonance. A few open and closed
strokes are illustrated in the Figure 1. Based on these two
broad playing styles, there are six gharānā-s developed
namely Delhi, Ajrada, Lucknow, Banaras, Farukhabad,
and Punjab. Each gharānā is characterized by its unique
styles of playing, strokes played on the tabla, improvisa-
tions, and precomposed patterns. Every gharānā has a dif-
ferent approach to technique, and repertoire [3].
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Figure 1. Illustration of a few tabla strokes.

1.2 Related Work

Most of the research related to Indian percussion focused
mainly on stroke transcription and sequence modeling.
Gillet et al. [4] focused on stroke transcription, and Chor-
dia [1] extended the work by using additional features with
larger-diverse dataset. Chordia et al. [5] used predictive
models for tabla stroke sequence by making use of tabla
syllables. Samudravijaya et al. [6] used hidden Markov
models for recognition of tabla strokes. Kuriakose et al. [7]
and Anantapadmanabhan et al. [8] worked on transcription
of mridangam strokes. Chordia et al. [9] have worked on
multiple viewpoints on modeling tabla sequences. Gupta
et al. [10] identifying syllabic percussion patterns from the
transcribed tabla audio.

The works on music style and classification are as fol-
lows. Vidwans et al. [11] used melodic contours to classify
vocal style and classify cultural music using melodic fea-
tures [12]. Agarwal et al. [13] did a comparative study of
Indian and western music forms. Tang et al. [14] used hi-
erarchical LSTMs for music genre classification. Gessle et
al. [15] did a comparative analysis of Convolutional neu-
ral network (CNN) and Long short-term memory (LSTM)
networks for music genre classification. Gogineni et al.
[16] worked towards mridangam artiste identification from
solo mridangam audio. We address a similar task of tabla
gharānā recognition from solo tabla audios using the CNN-
LSTM approach. As per our knowledge, identifying the
tabla gharānā has not been attempted before.

The rest of the paper is organized as follows. The chal-
lenging factors influencing the task are categorically men-
tioned motivating the experiment. The dataset collected
for the task is described. We formulate the task and ex-
plain the proposed model architecture. Multiple experi-
ments addressing various facets of the task are described.
The experimental results are analyzed and discussed.

2. TABLA GHARĀNĀ RECOGNITION

Tabla gharānā recognition is a task of identifying the stylis-
tic schools of tabla given a solo tabla recording. We ad-
dress the task by processing the composition-specific se-
quential information from the audio. We discuss the vari-
ous aspects of the task and the collected dataset.

2.1 Motivation and Challenges

We motivate the task of tabla gharānā recognition by get-
ting insight into the factors influencing the task. The fac-
tors include both the supporting and challenging aspects.

Gottlieb [17] mentions three factors for comparing the sim-
ilarities and differences in the playing: (1) Sound produc-
tion, that is, quality and the technique used, (2) Reper-
toires, and (3) Rhythmic practices. The technique and the
rhythmic practices differ from artiste to artiste. Compo-
sitions bearing the gharānā distinctions are based on the
repertoires from each gharānā-s.

To get the expert’s advice on the factors influencing the
task, we consulted four tabla maestros. A few common
opinions provided by the artistes on the task are mentioned
here. Artistes nowadays would have learned from sev-
eral teachers from different gharānā-s. Different gharānā
styles will also influence their playing style [2]. Hence
it is not straightforward to classify the artiste as coming
from a particular gharānā in the present era. Therefore the
repertoires [3] and compositions with some specific com-
bination of certain strokes become the distinguishing fac-
tor in identifying the gharānā. This means that it is more
straightforward and valid to recognize the gharānā based
on the compositions rather than the artistes’ playing styles.

Considering the vast diversity of the tabla solo reper-
toire and its practices, we list out a few possible challeng-
ing aspects influencing the system. (1) Tonic variability -
Tabla is a pitched harmonic percussive instrument tuned to
a specific tonic in a concert [18, 19]. As the tonic varies,
the properties of the sound like harmonics, timbre, tone,
etc., also vary. Thus the feature vectors representing the
same stroke with different tonic will also change, chal-
lenging the system performance. In an ideal scenario, the
gharānā distinctions are independent of tonic variability.
(2) Artiste variability - Each artiste has their approach to
techniques, finger postures, individual nuances with ex-
tempore development. Thus there exist an invariable influ-
ence of the artiste variability. (3) Composition variability
- A few gharānā-s share similarities between their compo-
sitions. This is because some gharānā-s are the offshoots
of others [2], share common stroke sets and techniques.
There are equally significant instances where the compo-
sitional theme is entirely different within the gharānā it-
self. Thus composition variability has a strong influence
on gharānā distinction.

2.2 Dataset Description

To experiment with various shades of tabla gharānā re-
quires a diverse collection of annotated audio data. As
there is no dataset available for this task, we collected solo
tabla recordings from commercial audio CDs, live record-
ings from the artistes’ archives, and online sources. This
corpus consists of tabla solo from 18 different artistes with
at least 20 years of tabla playing experience. The full-
length tabla solo consists of different compositions played
one after the another with a few cycles of t.hēkās in between
adjacent compositions, marking the start and end of a com-
position [3]. These compositions are usually from differ-
ent gharānā-s. Thus we consider the aspect of repertoire,
in so far as it has a bearing on the gharānā distinctions [2].
Kāyadā-s are the extendable compositions elaborated upon
a theme from a particular gharānā through paltā-s. Paltā-
s are the variations of original phrase or theme [2]. Each
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Gharānā name

(ID)

No. of

Artistes

No. of

Tonics

No.of

Compositions

Durations

hh:mm:ss

Ajrada (A) 7 5 21 2:23:58
Banaras (B) 8 9 35 3:09:01
Delhi (D) 10 5 16 2:32:11

Farrukhabad (F) 8 9 23 2:36:50
Lucknow (L) 7 7 36 2:34:52

Punjab (P) 7 5 42 2:53:27

Table 1. Dataset Description.

kāyadā rendition usually lasts for three to five minutes. The
kāyadā compositions exists in all the gharānā-s [2]. Gat.-s
and chakradhār are preset compositions that last for more
than one to two metrical cycles. Hence in these composi-
tions, one can observe the theme of the gharānā as well as
the artiste’s playing style.

Professional performers were employed to listen and
extract the kāyadā, gat., and chakradhār sections from the
audio by marking the start and end points. In addition,
the datasets from Gupta et al. [10], and Rohit et al. [20]
are included in our dataset. Then four tabla maestros from
different gharānā-s were requested to listen to these audio
segments and give the ground truth gharānā labels. By do-
ing so, we were able to collect around 16 hours of gharānā
annotated audio. The details of the dataset are described in
Table 1. The complete dataset is heterogeneous with artiste
variability (18 artistes), tonic variability, tempo variability,
and soft harmonium or sarangi accompaniment. Most of
the audio played predominantly in tīntāl consisting of 16
beats. There are a few audios from the other tāls, such as
jhaptāl and ektāl. The audios are sampled at 44.1 kHz. We
use the downsampled version of the data at 16 kHz.

3. PROPOSED APPROACH FOR GHARĀNĀ

RECOGNITION

The factors influencing the task necessitates a system
that addresses various aspects and automatically perform
gharānā recognition. With recent advances in Deep Neu-
ral Networks (DNNs), several tasks like music style recog-
nition [21], music genre recognition [22] have achieved
performance improvement with DNNs over the statistical
methods. The success of DNNs motivates us to formulate a
neural network based gharānā recognition system address-
ing various facets of the task.

We formulate the task by proposing a CNN-LSTM
model. The model is trained by examples of different
compositions from various artistes. The CNNs are trained
to extract the local discriminative features pertaining to
different stroke sounds from the raw audio. Tabla solos
are developed, improvised, and elaborated upon a theme
through a series of variations according to rhythmic prac-
tices [3]. Thus some strokes co-occur more often than oth-
ers in the tabla compositions. Hence it is essential to train
the models by encoding the sequence information. The
LSTM networks are trained to classify the gharānā-s by
processing the sequence of extracted features from CNNs.

3.1 Proposed model Architecture

The proposed CNN-LSTM method has a single training
stage, which takes the raw samples and models posterior

Figure 2. Proposed model architecture.

distribution over the six classes. The overall architec-
ture of CNN-LSTM for gharānā recognition is shown in
Figure 2. It has two components: a 1-dimensional con-
volution neural network (1D-CNN) and a long short-term
memory (LSTM) network. Five layers of 1D-CNN are
used in the model. The first 1D-CNN component takes the
raw audio samples as input. The CNN section acts as a fea-
ture extractor, performing convolutions on samples along
the time axis. It produces a feature vector for every 10 ms
with a reduced frame rate. This sequence of feature vectors
of 10 ms stride acts as input for the LSTM.

Every CNN layer is followed by BatchNormalization
[23] and ReLU activation [24]. The kernel size, number of
kernels, stride, and padding of each convolution layer are
(1 x 10, 256, 5, 3), (256 x 8, 256, 4, 2), (256 x 4, 256, 2, 1),
(256 x 4, 256, 2, 1), (256 x 4, 256, 2, 1), respectively. This
1D-CNN component configuration is adapted from con-
trastive predictive coding encoder [25]. The LSTM com-
ponent consists of two-layer LSTMs, each with 256 dimen-
sions. The final hidden activation of 256 dimensions is fed
to the log-softmax classification layer with six units to get
the gharānā predictions. The model is trained using Adam
optimizer [26] with a batch size of 32 and the learning rate
of 0.01. We have used learning schedule of dropping the
learning rate to half of current whenever the validation loss
doesn’t decrease [27]. We also experimented by adding
one more CNN with 5% dropout, and an LSTM layer. An
implementation of the proposed architecture is available 1 .

4. EXPERIMENTS AND RESULTS

4.1 Human Assessment

For the task of gharānā recognition from audio record-
ings, we need to know the duration that encapsulates good
gharānā specific information. From the experts feedback,
we got to know that each gharānā has certain compositions
practiced and played by almost all the tabla experts nowa-
days. Hence, if the tabla artistes were to recognize the
gharānā by listening, they do it within two to three seconds
if the composition is known. If they do not know the com-
position that is played, it takes some time to analyze the
combination of strokes in the theme for a few cycles and
predict the stylistic school gharānā. Thus to have a human
assessment on time taken to recognize and the accuracy, a
survey experiment is conducted.

1 https://git.io/JEoo0
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Student ID

(Years of practice)
Avg Time taken (secs) Accuracy

S1 (12) 9 - 12 85%
S2 (8) 11 - 15 76%

S3 (12) 7 - 10 87%
S4 (16) 6 - 8 97%
S5 (12) 8 - 10 92%
S6 (11) 8 - 11 89%
S7 (10) 10 - 13 83%
Average 8.4 - 11.3 87%

Table 2. Senior tabla students survey (Human baseline).

Since the four tabla maestros were also consulted for
preparing the ground truth annotations, it is not proper to
have the same experts for the human baseline survey exper-
iment. Thus, we conducted a survey experiment on seven
senior tabla students. These students have more than eight
years of tabla practice. The students are asked to listen to
the compositions from our collected dataset and predict the
gharānā labels. The time taken for prediction is noted by
pausing the audio at the instance of prediction. The details
of the survey are tabulated in Table 2. One can observe that
around 87% of the recordings were predicted correctly by
the students on average. The average time taken to predict
each recording was found to be eight to eleven seconds.

4.2 Baseline Experiments

As there are no previous works available on gharānā recog-
nition, we adapted CNN maxpooling LSTM model from
[22] to achieve baseline results. The model use two CNN
layers and one LSTM layer. MFCC + derivatives + dou-
ble derivatives (MFCC_∆∆) features are fed at the input.
Each audio file is segmented to the 10-sec duration and
treated as individual examples. MFCC_∆∆ features are
extracted with a window size of 25 ms and a frameshift of
5 ms. Each example is represented by (2000, d) feature
matrix. Each feature vector is of dimension d=57. It is the
sum of MFCC (19)+ ∆+ ∆∆ (d=19+19+19=57). 70% of
the entire audio is used for training the models. 15% of the
audio was used for development and test each. This model
is considered as baseline for the following reasons: (1) The
model is used for a similar task of music style classifica-
tion, and a comparison with the state-of-the-art systems are
made [22]. (2) This uses a simpler architecture similar to
our proposed system. (3) Handcrafted MFCC_∆∆ fea-
tures are used as the input.

4.3 CNN-LSTM Experiments

We conducted seven different sets of experiments with the
proposed CNN-LSTM model addressing various aspects.
The training, development, and test data split is the same
as the baseline experiment (70− 15− 15). The motivation
for different experiments and their results are described.

4.3.1 Experiment with segment duration

Each theme is played initially at the speed of or double the
speed of the original tempo for one or two cycles and is
then played at four times the original tempo [3]. The un-
derlying tempo is flexible in Indian music and differs from
artiste to artiste. Some themes have a structure of three
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Figure 3. Histogram of stroke density per second,
Mean=11.72, Median=10.25.

Weighted F1 Score

Trial 1 2 3 4 5 Avg

3s 0.68 0.67 0.69 0.67 0.65 0.67
5s 0.79 0.77 0.78 0.8 0.79 0.78

10s 0.85 0.86 0.85 0.84 0.86 0.85
15s 0.85 0.90 0.89 0.88 0.91 0.89

15s DA 0.89 0.95 0.91 0.93 0.93 0.92

Table 3. Cross validation scores data length experiments.

strokes per beat (triple rhythm) [3, 18], which has nearly
12 strokes per beat at the fourth speed. Thus on average,
around 8-12 strokes are played per beat at the fourth speed
depending on the compositions. The mean and median
of stroke density per second as obtained in the histogram,
Figure 3 are found to be 11.72 and 10.25 respectively.

Repetition of the phrases is commonly observed in a
musical concert. While playing at the fourth speed, one
can hear at least one to two cycles of the theme or paltās in
around 10 seconds of duration. This is evident as around
100 strokes are played in 10 seconds, which spans two to
three cycles of the composition theme length. Since al-
most the whole structure of a theme can be found in about
10 seconds, it is adequate to segment the audio recordings
into 10 to 15 second segment and treat them as separate ex-
amples. The average time duration as needed in the human
assessment is also around 10 seconds. Thus we limited the
length of train examples to be 10 to 15 seconds.

The entire data is segmented into 10s and 15s segments
with 10% overlap with adjacent segments and treated as
separate examples. The examples are randomly shuffled,
and the train-dev-test split is done. Two models are trained
and tested with 10s and 15s segments. The test segments
are further chunked to 3s and 5s and treated as separate
test examples in the next two experiments. This is done to
analyze and get an insight into how much audio length is
required for the system to recognize the gharānā specific
sequence information. The longer the audio, the better the
recognition. These experiments are 5-fold cross-validated,
and the weighted F-1 scores are reported in Table 3. F-1
score is the harmonic mean of precision and recall.

4.3.2 Data Augmentation (DA)

To increase the training data diversity, data augmentation is
performed. Speed perturbation with the factor of 0.9X and
1.1X (10% variation) without altering the pitch is done on
the entire data using HPSS-TSM method [28, 29]. To get
the value of the speed perturbation factor that does not alter
the original data structure, we referred to the histogram of
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Weighted F1 Score

Exp Model~Variant 1 2 3 Avg

15 IA Std. Network 0.70 0.63 0.66 0.66
+1 LSTM 0.73 0.68 0.70 0.70

15s IC Std. Network 0.37 0.45 0.47 0.43
+1 LSTM 0.38 0.46 0.49 0.44

Std. Network 0.69 0.71 0.63 0.67
15s IT +1 CNN 0.72 0.76 0.68 0.72

f_0 = 260.63Hz 0.77 0.80 0.76 0.77

Table 4. Cross validation scores IA, IT, IC.

the average number of strokes per second.
Figure 3 shows the histogram depicting the statisti-

cal estimate of stroke density per second over the entire
dataset. To get the stroke density per second, initially, the
audio was preprocessed by computing the Hilbert envelop
of linear prediction residual on the raw audio as described
in [30]. Then the onset locations of each stroke are com-
puted using a spectral flux onset detector [31]. The com-
puted onset locations are considered for further analysis
without any post-processing as the ground truth onset lo-
cations for the entire data are not available. The first dif-
ference of the onset locations gives the inter-onset interval
(IOI). The inverse of IOI gives the stroke density.

The modes in the histogram have sharp peaks. One can
infer that the underlying original tempo is almost uniform
across the recordings. Thus a larger deviation from the
original tempo is not advisable. The audio did not sound
realistic if the speed perturbation was large. Therefore we
restricted to only a 10% deviation from the original tempo.
This increased the size of the dataset to three times the
original. Since better performance was observed on 15s
segments of the test data earlier, we choose to experiment
with the same on augmented data as well.

4.3.3 Inter Artiste(IA) and Composition(IC) Experiments

The presentation of a particular composition by different
artistes differs due to varied rhythmic practices and extem-
pore development. We conducted IA experiment where
the train and test artistes are distinct. Each compositional
theme is unique in its own way. Thus to have an insight
into various compositions, we performed an IC experi-
ment. We took the help of senior students to have three
sets where the compositions are diverse and performed the
experiment. We experimented by adding a layer of LSTM
to the model. This task is performed to check if an extra
LSTM layer could learn more sequence information.

4.3.4 Inter Tonic (IT) Experiment

Different tonic essentially means the tabla itself is differ-
ent. The tonic value is not a differentiating factor between
the gharānā-s. We performed IT analysis to explore the di-
versity of the dataset. The train and test data tonics (tabla)
are distinct in this experiment. We also tried two variants
in IT experiments. (1) Adding one more CNN layer to the
model with 5% dropout. This task is done to check if a
bigger model could perform better in the IT experiment
setup. (2) Preprocessing the data by normalizing the tonic
of all the audio to 260.63 Hz (C4), and then perform the

Method Models Weighted F1 Accuracy

10s 0.85 0.86
Proposed 15s 0.89 0.90

CNN-LSTM 15s DA 0.92 0.93

15s IA 0.66 0.67
15s IC 0.43 0.45
15s IT 0.67 0.67

15s IA + DA 0.69 0.71
15s IC + DA 0.44 0.45
15s IT + DA 0.7 0.7

Baseline

(Sec 4.2)

CNN-LSTM
10s-(MFCC)

0.53 0.55

Table 5. Results with different experiments.

experiment. The length of the audio is initially varied by
a factor of ( 260.63

f0
)X using HPSS-TSM [28, 29] method,

where f0 is the original tonic value. Then it is resam-
pled to play at the original speed, which in turn changes
the pitch. This task is done to check if the preprocessing
aids the performance in the IT experiment. The IA, IC,
IT experiments are performed on 15s segments. The 3-
fold cross-validation scores are reported in Table 4. The
"Std.Network" in Table 4 refers to the proposed model
with 5-CNN and 2-LSTM layers.

5. ANALYSIS AND DISCUSSION

5.1 Performance analysis

Table 5 summarizes the experiments’ average performance
scores after n-fold cross-validation. One can observe that
the proposed CNN-LSTM model tested with 15s data seg-
ments has the best performance of 90%. Performance
dropped during IA, IC, and IT experiments. This is evident
as the experiments are on the challenging aspects influenc-
ing the system. From Table 4, we can see that the addition
of an extra CNN layer improved the performance of IT by
5%. An extra LSTM layer improved the performance of
IA by 4% and IC by 1%. Data augmentation improved the
performance of 15s, IA , IT by 3% and IC by 1%. This
indicates that tuning a bigger model aids the system to be
robust to tonic and artiste variation. This emphasizes that
the composition variability has a larger influence on the
task than the artiste variability. This is also evident from
the artistes’ feedback described in section 2.1.

The experiment with preprocessing the data by normal-
izing the tonic favored but did not add a larger value. If
this preprocessing approach helped, the results should have
been on par with the 15s experiment with the random train-
test split. Few reasons which we are able to examine are as
follows. (1) The artifacts and distortions due to time scale
modification and resampling. (2) The bass drum is usually
not set to any tonic. Shifting the pitch of the treble drum
invariably shifts the pitch of the bass drum with the same
factor. This does not sound realistic. It is to be observed
that the performance improved nearly by 10% by prepro-
cessing the audio. This indicates that suitable preprocess-
ing aids the system performance. We observed that adding
one more CNN and LSTM layer to the proposed model did
not improve the performance in the random shuffle exper-
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Figure 4. Confusion matrices depicting the best performing experiments on different facets.

iments with segment duration. Thus we reported the aver-
age scores from the proposed standard model in Table 5.

One can observe a clear improvement in the perfor-
mance by 32% by comparing the 10s experiment with the
baseline. This indicates that the features extracted from the
raw audio by the CNN model have better discriminatory
information than the handcrafted MFCC features.

5.2 Confusion analysis

The confusion matrices depicting the results for the major
experiments are displayed in Figure 4. Figure 5 shows the
t-SNE visualization of test data embedding from the CNN-
LSTM model extracted from the 15s-DA samples. These
embeddings are tapped at the output of the LSTM layer
just before the linear layer. The visualization of embed-
dings and confusion matrices depicts the similarities and
uniqueness of gharānā-s among each other. Different clus-
ters are marked for the benefit of reference. One can ob-
serve that Punjab gharānā embeddings form a clear sepa-
ration from the others (C1). This is evident as the Punjab
gharānā has had a separate existence and is unique com-
pared to the other ones [3].

We can observe an inevitable overlap and confusion
between Lucknow and Farrukhabad embeddings (C2) as
well as Delhi and Ajrada embeddings (C3). This over-
lap is acceptable as the Ajrada, and Farrukhabad gharānā-s
are the offshoots of Delhi and Lucknow gharānā-s respec-
tively [2]. It is also a fact that Delhi and Ajrada have sim-
ilar playing styles, and both belong to bandh bāj [3]. Luc-
know and Farrukhabad also lot of similarities traditionally,
and both belong to khulā (open) bāj [17].

The founders of Lucknow gharānā hailed from Delhi
gharānā [2]. Both Farrukhabad and Banaras styles orig-
inated from Lucknow gharānā. Thus we can observe
the Lucknow gharānā embeddings getting overlapped with
others. This confusion is also observed in various exper-
iments addressing different facets. One can also observe
the clear separation of Banaras gharānā embeddings (C4).
This is evident as Banaras gharānā has a lot of changes
to Lucknow gharānā getting influenced by Pakhawaj bōls
[2, 17] and has a unique way of playing the bass drum [3].
Farrukhabad repertoire exploited entire vocabulary of the
instrument [3]. Thus Farrukhabad embeddings can be seen
confused with others.

Figure 5. t-SNE visualization of test data embedding ex-
tracted from the 15s CNN-LSTM Model.

By visualizing the embeddings, and confusion matrices,
one can verify many traditional similarities and differences
between the gharānā-s as depicted and explained in the
sources [2, 3, 17, 18]. Thus one can claim that the model
has been trained in a positive way.

6. CONCLUSION

We addressed an unexplored problem of recognizing tabla
gharānā, the stylistic schools of tabla, by proposing a
deep learning model. The task used around 16 hours of
gharānā class annotated data consisting of various compo-
sitions played by contemporary artistes. We motivate the
problem and present different facets and challenges in the
task. CNN and LSTMs in tandem are trained to extract
gharānā discriminative features from the raw audio data
and classify gharānā-s by processing the sequence infor-
mation. Different experiments addressing various aspects
of the task are performed. Additionally, proposed variants
improved the performance in respective experiments. The
system performance is comparable with the human assess-
ment. The proposed CNN-LSTM model delivered promis-
ing results with the highest accuracy of 93% and a relative
improvement of 31% over the considered baseline.

As a first attempt, we started by proposing a CNN-
LSTM model for the task. Incorporating the tonic infor-
mation during training will be beneficial. We aim to extend
the dataset by incorporating other tabla compositions such
as pēs̀kār, tukda, etc., and perform the experiments.
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ABSTRACT 

Audio features such as inharmonicity, noisiness, and spec-
tral roll-off have been identified as correlates of “noisy” 
sounds; however, such features are likely involved in the 
experience of multiple semantic timbre categories of var-
ied meaning and valence. This paper examines the rela-
tionships among audio features and the semantic timbre 
categories raspy/grainy/rough, harsh/noisy, and 
airy/breathy.  

Participants (n = 153) rated a random subset of 52 stim-
uli from a set of 156 ~2-second orchestral instrument 
sounds from varied instrument families, registers, and 
playing techniques. Stimuli were rated on the three seman-
tic categories of interest and on perceived playing effort 
and emotional valence. With an updated version of the 
Timbre Toolbox (R-2021 A), we extracted 44 summary 
audio features from the stimuli using spectral and har-
monic representations. These features were used as input 
for various models built to predict mean semantic ratings 
(raspy/grainy/rough, harsh/noisy, airy/breathy) for each 
sound.  

Random Forest models predicting semantic ratings 
from audio features outperformed Partial Least-Squares 
Regression models, consistent with previous results sug-
gesting non-linear methods are advantageous in timbre se-
mantic predictions using audio features. In comparing Rel-
ative Variable Importance measures from the models 
among the three semantic categories, results demonstrate 
that although these related semantic categories are associ-
ated in part with overlapping features, they can be differ-
entiated through individual patterns of feature relation-
ships.  

1. INTRODUCTION 

Several audio features have been identified as correlates of 
“noisy” sounds, including inharmonicity, spectral flatness, 
spectral centroid, and spectral roll-off. However, not all 
types of noise are semantically equal: when timbre catego-
ries are nuanced, “noisy” features may be correlates of 

multiple semantic categories with varied meanings and 
even varied valence. Through interviews and rating tasks, 
Reymore and Huron [1] built a 20-dimensional model of 
musical instrument timbre qualia. Intriguingly, the final 
model included three timbre dimensions plausibly related 
to noise components—shrill/harsh/noisy, raspy/grainy 
and airy/breathy—while a further two dimensions ap-
peared to potentially refer to harmonicity and/or a lack of 
“noisy” features—pure/clear and focused/compact. Spec-
ulating on correlates of these semantic categories, Rey-
more and Huron [1] noted that while noise has been often 
associated with negative valence and high physical exer-
tion as in Wallmark, Iacoboni, Deblieck, and Kendall [2], 
noise components in breathy timbres, typically measured 
in speech research with harmonic-to-noise ratio (HNR), 
may convey a sense of proximity or intimacy that carries 
positive valence. Thus, a feature such as HNR may be im-
portant for multiple semantic categories. Although seman-
tic categories can share acoustic correlates, varying rela-
tionship strengths with audio features may create distinc-
tive, perceptible patterns for listeners that are associated 
with varying semantic content. 

The current study examined three semantic categories 
derived from Reymore and Huron’s model: 
raspy/grainy/rough, harsh/noisy, and airy/breathy. The 
aim was to determine how these semantic categories may 
be distinguished based on their relationships with audio 
features. We used linear and non-linear approaches to 
model semantic ratings using audio features, with the goal 
of uncovering distinctive acoustic signatures for each se-
mantic category. Predictors included spectral and har-
monic features from a recently updated version of the Tim-
bre Toolbox (R-2021A) [3]. Among these features, several 
have been associated with noise in previous literature and 
so were of particular interest for the interpretation of our 
results (see Section 2.2). 

We first describe the methods used in the rating study 
and in audio feature extraction. These features are then 
used in models to predict semantic ratings. McAdams et 
al. [4] used Timbre Toolbox audio features to model affec-
tive qualities of timbre using both linear and nonlinear 
modeling approaches and found that the nonlinear ap-
proach was more successful. Accordingly, we compare 
linear and nonlinear methods for analysis to assess whether 
this observation holds in a similar dataset. We consider our 
findings with regard to comparative relative importance 

 © L. Reymore, E. Beauvais-Lacasse, B. Smith, and S. 
McAdams. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: L. Reymore, E. Beauvais-
Lacasse, B. Smith, and S. McAdams, “Navigating noise: Modeling per-
ceptual correlates of noise-related semantic timbre categories with audio 
features”, in Proc. of the 22nd Int. Society for Music Information Retrieval 
Conf., Online, 2021. 

555



  
 
values of features for each of the semantic categories. Our 
results illustrate in detail relationships between low-level 
features extracted using MIR techniques and high-level se-
mantic features whose validity and reliability have been 
established through perceptual studies [1, 5-6].  

2. METHODS 

2.1 Semantic Ratings 

2.1.1 Participants 

Participants (n = 153; F = 95, M = 57, other = 1), were 
recruited using the internet platform Prolific. Participants 
were on average 32 years of age (SD = 11.2, range = 18–
68); 41 of the 153 self-identified as musicians using the 
single-question measure from the Ollen Musical Sophisti-
cation Index [7]. As identified through Prolific’s screening 
process, all participants were native English speakers. Par-
ticipants provided informed consent and were compen-
sated for their participation. 

2.1.2 Materials 

Stimuli consisted of 156 approximately 2-second sound 
clips of single notes (pitch class C) played by various or-
chestral instruments, normalized and matched for loudness 
by the researchers. Stimuli were taken from three sound 
banks: Vienna Symphonic Library (VSL) [8], McGill Uni-
versity Master Samples (MUMS) [9] and conTimbre [10]. 
The stimulus set included 42 instruments playing in 5 reg-
isters (C2–C6) using both traditional and unconventional 
playing techniques. The unconventional playing tech-
niques that were selected generated additional noise com-
ponents (such as bowing a violin at the bridge). In select-
ing stimuli, we aimed to sample as widely as possible from 
the semantic space of interest—that is, to sample sounds 
representing high, moderate, and low ratings on all given 
categories of interest. To help achieve this goal, the final 
stimulus selection process was guided by the results of a 
pilot study (n = 10) of 46 sounds. 

Principal Component Analysis of the pilot results, in 
which sounds were rated on individual rather than grouped 
terms (e.g., separate ratings were made for “airy” and 
“breathy”) confirmed the appropriateness of grouped 
terms. Specifically, a three-component PCA model with 
promax rotation demonstrated strong loadings which 
aligned with the groupings of terms used in the main study 
(raspy/grainy/rough, harsh/noisy, airy/breathy).   

2.1.3 Procedure 

To avoid an overly long experiment, the stimulus set was 
partitioned into three subsets for each group of three par-
ticipants, each of whom rated one-third of the stimulus set 
(52 sounds). This resulted in 51 complete sets of rating 
data on the entire stimulus set. 

Participants rated how applicable each semantic cate-
gory was to a given stimulus using a continuous sliding 
scale from 1 (does not describe at all) to 7 (describes ex-

tremely well), where the midpoint was labeled describes 

moderately well. Participants also rated valence (negative 
to positive) and perceived playing effort (little to no exer-

tion to high exertion).  

Ratings were made in separate blocks for each scale; 
participants thus rated their subset of 52 stimuli a total of 
five times. At the beginning of each trial (except the first 
in each block), the stimulus was automatically played, and 
participants could play the stimulus again as many times 
as desired. The presentation order of the scales and the 
presentation order of stimuli within each block were ran-
domized. The experiment took approximately 30 minutes 
to complete. 

2.2 Audio Feature Extraction 

To investigate relationships between semantic timbre cat-
egories and acoustic features, we used an updated version 
of the Timbre Toolbox [3]. The Timbre Toolbox calculates 
spectral, temporal, and spectrotemporal acoustic features 
from an audio signal in Matlab [11]. First, input represen-
tations of the signal are computed. Then, both scalar and 
time-series features are extracted from different input rep-
resentations. Lastly, the Timbre Toolbox calculates inter-
quartile range (IQR) and median values of time-series fea-
tures. These values represent the central tendency and var-
iability of the audio features, respectively [12].  

For this study, we used the STFT (Short-Time Fourier 
Transform) and HARM (Harmonic) input representations. 
The STFT is a spectrotemporal representation obtained us-
ing a sliding-window analysis over the audio signal. Then, 
the amplitude spectrum of the STFT is used as one of the 
representations to derive the audio features. HARM (sinus-
oidal harmonic model) is a harmonic representation that 
uses frame analysis to estimate slowly varying amplitude 
and frequency of individual harmonics [12]. 

Each stimulus was analyzed in the Timbre Toolbox to 
determine the median and IQR of audio features. Several 
features are derived from both the STFT and HARM rep-
resentations. Results reported here for these overlapping 
features were taken from the STFT representation. In total, 
we used medians and IQRs of 22 features provided by the 
Timbre Toolbox [3], listed in Table 1.  

Several of the features provided by these two represen-
tations in the Timbre Toolbox have been previously asso-
ciated with noise, including inharmonicity, noise energy, 
noisiness, spectral flatness, HNR, and spectral centroid.  

 
Audio Features from Timbre Toolbox 
Inharmonicity Spectral Spread  
Noisiness Spectral Centroid  
Noise Energy Spectral Variation 
Harmonic Energy Spectral Roll-Off 
Pitch Spectral Decrease 
Harmonic-to-Noise Ratio Spectral Skewness  
Tristimulus 1 Spectral Flux  
Tristimulus 2 Spectral Kurtosis 
Tristimulus 3  Spectral Flatness 
Harmonic Odd-to-Even Ratio Spectral Crest 
Harmonic Spectral Deviation Spectral Slope 

 
Table 1. List of Timbre Toolbox audio features; median 

and IQR values were extracted for each feature. 
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Inharmonicity is the degree to which the frequencies of 
overtones depart from multiples of the fundamental fre-
quency; inharmonicity within the auditory signal manifests 
as noise [2], [13]. Noise energy is calculated as the energy 
of the signal not explained by stable partials [3]. (Note that 
this definition differs from that of the feature in previous 
versions of Timbre Toolbox, which calculates noise en-
ergy based only on stable harmonic partials [12]).  Noisi-
ness refers to the ratio of noise energy to total energy; high 
noisiness values indicate a signal that is mainly nonhar-
monic. Spectral flatness, which has also been associated 
semantically with “noisy” timbres [2], [14], roughly dis-
criminates noise from harmonic content because sinusoi-
dal components produce a peak in the spectrum, whereas 
white noise produces a flat spectrum [12].  

Phonetic processes, such as breathy and creaky voice, 
may also offer insight into the acoustic correlates that un-
derlie semantic timbre categories. Keating et al. [15] found 
that different acoustic features or combinations of these 
features, including HNR, characterized different varieties 
of creaky voice. HNR is an assessment of the ratio between 
periodic and non-periodic components comprising a seg-
ment of an acoustic signal [15]. 

Spectral centroid is the center of mass of the power 
spectrum of an acoustic signal and is related to the percep-
tion of brightness [16]. Because Wallmark [14] suggests 
that increased brightness is associated with the perception 
of physical exertion, and because we anticipate that our se-
mantic categories of interest will be related to perceived 
exertion, spectral centroid may be a relevant correlate for 
one or more categories. 

3. ANALYSIS 

3.1 Semantic Ratings 

All analyses reported in this paper were carried out in R, 
version 4.0.5 [17]. Cronbach’s alpha was calculated 
among complete sets of ratings using the alpha function in 
the psych package [18], where each set of ratings was com-
pleted by three participants (see 2.1.3). All alpha values 
were greater than .9, indicating excellent internal con-
sistency. Mean semantic ratings were distributed over a 
large portion of the 1–7 rating scale for each category, sug-
gesting that our stimulus set was successful in representing 
the semantic space of interest. Ranges among mean ratings 
and Cronbach’s alpha values are reported in Table 2. 

With Holm corrections implemented by the corr.test 
function in the psych package [18],1 we observed signifi-
cant Pearson correlations between harsh/noisy and 
rough/raspy/grainy, r(154) = .53 and between harsh/noisy 

and airy/breathy, r = -.54. The correlation between 
rough/raspy/grainy and airy/breathy was not significant. 
 

Semantic category Min Max  Cronbach’s a 
Raspy/grainy/rough 1.63 6.72 .97 
Harsh/noisy 2.12 6.45 .95 
Airy/breathy 1.50 5.65 .93 

 

Table 2. Range of mean ratings among stimuli and 
Cronbach’s alpha for each semantic category. 

 
1 This method is used for all correlations reported in this paper. 

3.2 Models 

Following McAdams et al. [4], we performed both linear 
and nonlinear modeling. Scaled and centered values for the 
audio features from the Timbre Toolbox were used to pre-
dict mean semantic ratings; separate models were gener-
ated for each of the three semantic categories.  The linear 
method of analysis used was partial least-squares regres-
sion (PLSR), a supervised learning algorithm that takes a 
dimension-reduction approach including a Principal Com-
ponent Analysis process. Unlike principal component re-
gression, however, PLSR takes both the predictor and out-
come variables into account when building the linear 
model. This kind of statistical approach can handle data 
that exhibit multicollinearity and thus was appropriate for 
our dataset. Random forest regression was used as the non-
linear method of analysis. A random forest (RF) is a super-
vised machine learning algorithm that builds multiple de-
cision trees by randomly selecting observations and spe-
cific variables and then averaging the results [19]. Both 
types of models were built with the caret package [20]. 

R2 was computed on the complete dataset using ten-fold 
cross-validation repeated three times. To obtain Q2, we ap-
plied a further five-fold cross-validation to each model. 
The observations were divided into five subsets; the model 
was trained on four out of the five subsets and then pre-
dicted the last remaining subset. The subsets were rotated 
to ensure that the training and prediction steps were ap-
plied to every combination of the subsets. Within each of 
the train-test subsets, models were trained using a 10-fold 
cross-validation repeated three times. This process also 
produced the RMSE values that are reported below. Table 
3 contains values for R2, Q2, and RSME for each model.  
 

Semantic category Model 
Type 

R2 Q2 RMSE 

Raspy/grainy/rough RF .82 .78 .47 
 PLSR .64 .56 .70 
Harsh/noisy RF .56 .54 .69 
 PLSR .43 .28 .93 
Airy/breathy RF .45 .43 .78 
 PLSR .36 .29 .89 

 
Table 3. Average R2 and RMSE values from PLSR and RF 
models for all three semantic categories.  

3.3 Relative Variable Importance 

We calculated Relative Variable Importance (RVI) using 
the varImp function from the caret package [20]. RVI val-
ues are reported in Tables 4 and 5. RVI for the PLSR is 
based on the weighted sums of the absolute regression co-
efficients. The weights are a function of the reduction of 
the sums of squares across the number of PLS components 
and are computed separately for each outcome [20]. For 
the RF, the mean squared error is recorded on the out-of-
bag portion of the data and after permuting each predictor 
variable. Differences between these values are averaged 
across all trees and normalized by the standard deviation 
of the differences [21]
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 Airy/breathy Harsh/noisy Raspy/grainy/rough 
 Feature Value Feature Value Feature Value 

1. Harm Spec Dev IQR 100.00 Spectral Decrease Med 100.00 HNR Med 100.00 
2. Harm Spec Dev Med 72.27 Spectral Centroid Med 64.79 Noisiness Med 92.05 
3. Spectral Roll-Off Med 68.76 Pitch Med 54.92 Spectral Variation IQR 74.63 
4. Spectral Spread Med 64.50 Spectral Spread Med 50.88 Harmonic Energy Med 73.24 
5. Spectral Centroid Med 62.17 Spectral Roll-Off Med 50.03 Inharmonicity Med 73.17 
6. Spectral Flux IQR 58.61 Spectral Variation IQR 46.63 Pitch Med 72.26 
7. Spectral Slope IQR 58.24 Harm Spec Dev IQR 40.62 Spectral Slope Med 70.63 
8. Tristimulus 1 Med 56.17 Harm Spec Dev Med 39.97 Spectral Crest Med 66.84 
9. Spectral Flux Med 52.86 HNR Med 31.52 Tristimulus 3 Med 63.57 

10. Spectral Skewness Med 48.44 Spectral Decrease IQR 31.36 Spectral Variation Med 59.95 

Table 4. Top 10 important variables and their respective relative variable importance values for each semantic category 
using partial least-squares regression. 
 
 

 Airy/breathy Harsh/noisy Raspy/grainy/rough 
 Feature Value Feature Value Feature Value 

1. Odd:Even Ratio Med 100.00 Spectral Decrease Med 100.00 HNR Med 100.00 
2. Odd:Even Ratio IQR 72.34 Spectral Spread Med 87.68 Inharmonicity IQR 62.11 
3. Harm Spec Dev IQR 71.73 Spectral Roll-Off Med 72.04 Spectral Variation Med 54.34 
4. Spectral Roll-Off Med 49.60 Spectral Centroid Med 71.21 Noisiness Med 40.84 
5. Spectral Flux IQR 40.98 Spectral Spread IQR 62.49 Spectral Variation IQR 39.43 
6. Spectral Spread Med 30.97 Spectral Variation IQR 37.58 Tristimulus 3 Med 21.00 
7. Spectral Centroid Med 29.13 Spectral Flatness IQR 31.09 Inharmonicity Med 18.98 
8. Spectral Variation IQR 27.13 Spectral Variation Med 26.13 Pitch Med 18.81 
9. Spectral Skewness IQR 19.02 Spectral Flatness Med 24.44 Harmonic Energy Med 5.11 

10. Tristimulus 1 IQR 16.67 Noisiness IQR 24.24 Tristimulus 1 Med 3.13 

Table 5. Top 10 important variables and their respective relative variable importance values for each semantic category 
using random forest regression. 
 

4. DISCUSSION 

4.1 Relative feature importance profiles for semantic 
categories 

Partial least-squares and random forest models were built 
to predict mean semantic ratings from extracted audio fea-
tures. These models were most successful in predicting rat-
ings of raspy/grainy/rough (Q2: RF .78, PLSR .56); mod-
els predicting harsh/noisy (Q2: RF .54, PLSR .28) and 
airy/breathy (Q2: RF .43, PLSR .29) were also moderately 
successful. McAdams et al. [4] found that a nonlinear ap-
proach produced better models than a linear approach 
when modeling affective qualities using Timbre Toolbox 
audio features. We also observed an advantage for the non-
linear method, as random forest models consistently 
yielded higher Q2 values and lower RMSE values than the 
linear PLSR models. Because random forest regression of-
fered the more successful models, the current discussion of 
results focuses on the random forest models unless other-
wise noted. 

HNR median was the most important variable in pre-
dicting ratings of raspy/grainy/rough. Spectral decrease 
median was the most important feature for predicting 
harsh/noisy, and harmonic odd-to-even ratio median was 
the most important feature for airy/breathy. Spectral vari-
ation IQR was in the top ten important features predictive 
of ratings for all three semantic categories.  

Patterns of variable importance were distinct for each 
semantic category. Particularly among the RF models, fea-
tures ranking especially high in relative importance were 
often unique to one of the three semantic categories, 
though some important features were overlapping between 
categories. This suggests that specific combinations of fea-
tures may be important for the perception of varying se-
mantic information.  

One method of comparing feature importance among 
the three semantic categories is to choose a minimum im-
portance value in order to define what constitutes a “rele-
vant” feature. Relevant features—i.e., the features exceed-
ing that threshold for each category—can then be com-
pared across models. For example, spectral variation IQR 
is the only feature with an RVI value over 25 for all three 
semantic categories, suggesting that it is at least moder-
ately relevant for models of all three categories.  

In this manner, we can identify which features are 
uniquely “relevant” to each semantic category, where “rel-
evant” is defined by the researcher as referring to features 
with RVI greater than a given value. A threshold of 25 was 
set for the purpose of this analysis, based on the distribu-
tion of RVI values and tractability for discussion. Defini-
tions of “relevance” in similar interpretations can be de-
fined with respect to the goals of the interpretation.  

With this definition in mind, uniquely relevant features 
for raspy/grainy/rough include the HNR median, inhar-
monicity IQR, and noisiness median. Of these features, 
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Pearson correlations (r) demonstrate that median HNR and 
median noisiness were strongly negatively correlated in 
the dataset, r(154) = -.96, p < .001. 
 

  
 
Figure 1. Radar plots of Relative Variable Importance 
measures for random forest models of each semantic cate-
gory. 
 

For harsh/noisy, uniquely relevant features include the 
spectral decrease median, spectral spread IQR, and spec-
tral flatness IQR. Unique features for airy/breathy include 
the harmonic odd-to-even ratio (median and IQR, which 
are intercorrelated at r = .99), harmonic spectral deviation 
IQR, and spectral flux IQR.  

The spectral variation median was relevant for both 
raspy/grainy/rough and harsh/noisy. Harsh/noisy and 
airy/breathy also shared relevant features—spectral roll-
off median, spectral spread median, and spectral centroid 
median; these three features were strongly correlated 
among our stimuli set (roll-off/spread, r = .97; roll-off/cen-
troid, r = .95, centroid/spread, r = .91). 

RVI values for the 14 most important features across 
semantic categories from the random forest models are il-
lustrated in the radar plots of Figure 1. The radius repre-
sents RVI; features are listed in the same order around the 
circles for all three plots in order to facilitate visual com-
parisons of semantic categories. 

4.2 Noise-related features 

In Section 2.2, we reviewed several features which previ-
ous literature suggests may be relevant for our semantic 
categories of interest, including inharmonicity, noisiness, 
noise energy, spectral flatness, spectral centroid, and 
HNR. We will now consider these specific features in re-
lation to our semantic rating results.  

Inharmonicity IQR was of particular relative im-
portance in both linear and nonlinear models predicting 
raspy/grainy/rough, but neither the IQR nor the median 
were ranked highly in importance for either of the other 
semantic categories. Spearman correlations (ρ) suggest a 
robust monotonic relationship between mean ratings of 
raspy/grainy/rough and inharmonicity IQR, ρ(154) = .78; 
correlation with the median is ρ = .59. Harsh/noisy values 
demonstrate a moderate correlation with inharmonicity 
IQR, ρ = .40, but not with the median.  

The noisiness median also received high RVI values for 
both linear and nonlinear models predicting 
raspy/grainy/rough, but this feature (and the correspond-
ing IQR) received relatively low RVI values for the other 
semantic categories. However, both the noisiness median 
and noisiness IQR correlated positively with ratings of all 
three semantic categories. Spearman correlations were 
strongest for raspy/grainy/rough: median, ρ = .75; IQR, ρ 
= .55. Harsh/noisy demonstrated moderate correlations, 
median, ρ = .39; IQR, ρ = .38, and airy/breathy was weakly 
correlated but not significant, median, ρ = .15, p = .06; 
IQR, ρ = .14, p = .08.  

Noise energy somewhat unexpectedly was not given 
particular importance in any of the models and demon-
strated relatively weak correlations with semantic ratings. 

HNR was the most important contributor to models of 
raspy/grainy/rough. Neither median nor IQR were signif-
icantly correlated with airy/breathy, but both were corre-
lated with raspy/grainy/rough, median, ρ = -.77; IQR, ρ = 
.40, and harsh/noisy, median, ρ = -.42; IQR, ρ =.35, where 
higher ratings in these categories were associated with a 
lower HNR median but a higher HNR IQR. Given this fea-
ture’s use in speech research in relation to breathy voice, 
the lack of significant correlation with airy/breathy was 

raspy/grainy/rough

airy/breathy

harsh/noisy
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surprising. Because higher HNR is also associated with 
higher ratings for raspy/grainy/rough and harsh/noisy, one 
explanation for this may be that our dataset contained 
many stimuli with high HNR that were very 
raspy/grainy/rough and/or very harsh/noisy but not 
airy/breathy. While the HNR-airy/breathy correlation was 
not significant, it was in the anticipated direction, ρ = -.11, 
p = .17. 

Spectral flatness figured in harsh/noisy models but was 
not highly important for any of the three categories. Spear-
man correlations suggest positive monotonic relationships 
between spectral flatness (both median and IQR) with 
rough/raspy/grainy, median, ρ = .34; IQR, ρ = .39, and 
harsh/noisy, median, ρ = .49; IQR, ρ = .50. These relation-
ships with airy/breathy were both weaker and in the oppo-
site direction, median, ρ = -.26; IQR, ρ = -.22. 

Spectral centroid, the correlate for semantic brightness, 
figured as relatively important in models for harsh/noisy 

and airy/breathy, but not for raspy/grainy/rough. The me-
dian correlated positively with ratings of harsh/noisy, ρ 
=.58, and negatively with airy/breathy, ρ = -.45. The IQR 
correlated positively with both harsh/noisy, ρ = .43, and 
raspy/grainy/rough, ρ = .36. 

In summary, among our features of interest, we found 
that inharmonicity IQR, noisiness median, and HNR me-
dian seemed to be most specifically associated with 
raspy/grainy/rough, although some moderate relationships 
among these features can also be identified with 
harsh/noisy. Spectral flatness was weakly to moderately 
correlated to all three categories but did not figure promi-
nently in models. Spectral centroid was primarily associ-
ated with harsh/noisy and airy/breathy. Both median and 
IQR for noisiness were correlated positively with all three 
categories, whereas for roll-off, flatness, and centroid, cor-
relations for raspy/grainy/rough and harsh/noisy were in 
the opposite direction than those for airy/breathy. 

4.3 Variance in valence and perceived exertion associ-
ated with semantic categories 

Rating results demonstrated that the three semantic cate-
gories varied in perceived valence and playing exertion. 
While ratings of raspy/grainy/rough and harsh/noisy were 
negatively correlated with valence, r(154) = -.90 and r = -
.61, respectively, ratings of airy/breathy were positively 
correlated with valence, r = .31. Raspy/grainy/rough and 
harsh/noisy were also moderately correlated with in-
creased exertion, r = .50 and r = .46, respectively; how-
ever, ratings of airy/breathy did not correlate significantly 
with perceived playing exertion. Thus, we can consider 
rough/raspy/grainy to be associated strongly with negative 
valence and moderately with perceived exertion. 
Harsh/noisy is moderately associated with negative va-
lence and perceived exertion, and airy/breathy is moder-
ately associated with positive valence but not associated 
with exertion. 

These descriptive statistics demonstrate how two se-
mantic categories with relatively similar perceptual rela-
tionships to emotional valence and exertion may be differ-
entiated by patterns of relationships with audio features; 
for example, the most important predictors of 
raspy/grainy/rough include HNR, inharmonicity, and 

noisiness, while the most important predictors of 
harsh/noisy include spectral decrease, spread, roll-off, and 
centroid. We can also see that categories with differing re-
lationships to emotional valence and perceived exertion 
may both have relevant relationships with a given feature. 
Such overlapping relationships may be in either opposite 
directions—for example, harsh/noisy is positively associ-
ated with spectral roll-off median and spectral flatness me-
dian—or in the same direction—for example, noisiness 
median and HNR median. 

5. CONCLUSION 

This research examined associations between spectral and 
harmonic audio features and the timbre semantic catego-
ries raspy/grainy/rough, harsh/noisy, and airy/breathy. 
We collected semantic ratings from 153 participants for 
156 orchestral instrument sounds varying in register, in-
strument family, and playing technique. Ratings confirmed 
that the three semantic categories were distinct, and that 
categories differed in their relationships with exertion and 
valence. 

We built partial least-squares and random forest models 
predicting mean semantic ratings for each category. 
Across the three categories, nonlinear random forest re-
gression models outperformed linear partial least-squares 
regression models. The spectral and harmonic features 
used in this paper were most successful for predicting 
rough/raspy/grainy, followed by harsh/noisy. Models 
were least successful in predicting ratings for airy/breathy. 

In comparing Relative Variable Importance measures 
from the models among the three semantic categories, re-
sults demonstrate that although these semantic categories 
are associated in part with overlapping features, they can 
be differentiated through individual patterns of feature re-
lationships. Among plausibly noise-related features, we 
observed that inharmonicity IQR, noisiness, and HNR 
were in general related strongly to raspy/grainy/rough and 
moderately to harsh/noisy. Spectral roll-off, flatness, and 
centroid demonstrated moderate relations to harsh/noisy 

and airy/breathy, but in opposite directions. Finally, the 
directions of associations with HNR and noisiness were 
the same across all three semantic categories but varied in 
strength. 

These results contribute to efforts to bridge understand-
ings of timbre in MIR and music cognition by clarifying 
the relationships between low-level audio features and nu-
anced semantic categories generated from perceptual stud-
ies. The methods presented here may be used to build fea-
ture profiles of other semantic categories beyond those re-
lated to noise. Furthermore, our findings may be useful in 
timbre synthesis, in that they can help guide the creation 
of sounds with specific semantic content. Such applica-
tions to synthesis may be especially relevant to audio 
branding and electroacoustic composition. 
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ABSTRACT

Diversity is known to play an important role in recom-
mender systems. However, its relationship to users and
their satisfaction is not well understood, especially in the
music domain. We present a user study: 92 participants
were asked to evaluate personalized recommendation lists
at varying levels of diversity. Recommendations were gen-
erated by two different collaborative filtering methods, and
diversified in three different ways, one of which is a simple
and novel method based on genre filtering. All diversified
lists were recognised by users to be more diverse, and this
diversification increased overall recommendation list satis-
faction. Our simple filtering approach was also successful
at tailoring diversity to some users. Within the collabora-
tive filtering framework, however, we were not able to gen-
erate enough diversity to match all user preferences. Our
results highlight the need to diversify in music recommen-
dation lists, even when it comes at the cost of "accuracy".

1. INTRODUCTION

Music recommender systems play an ever-increasing role
in individual listening habits as music consumption moves
to online platforms and services such as Spotify, and Ap-
ple Music. Along with this growth has been an equiva-
lent growth in research on how to better tailor music rec-
ommendations to match individual users’ preferences and
habits. Much of this research, especially in academia, de-
pends on offline evaluations and metrics calculated on ex-
isting known listening histories as a proxy for real user sat-
isfaction and list evaluation.

Along with metrics measuring the overall predictive
ability (accuracy metrics) are offline evaluation metrics
that measure additional qualities such as Diversity. These
metrics are less standardised than accuracy metrics, and
numerous definitions of each have been used in previous
research [1, 2]. There is little public research on the ef-
fect of, and preference for, recommendation list diversity
of actual music listeners.

© K.Robinson, and D. Brown. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: K.Robinson, and D. Brown, “Quantitative User Perceptions of
Music Recommendation List Diversity”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

We asked 92 online participants to evaluate three differ-
ently diversified personal recommendation lists from each
of two different collaborative filtering recommendation al-
gorithms. Participants were also asked questions about
their preference for novel music and diversity as they re-
late to concepts discovered in the first study. We iden-
tified that accuracy and individual song ratings differed
from overall list satisfaction, and our implementation of
inner diversity filtering resulted in higher levels of list sat-
isfaction despite no significant decrease in perceived di-
versity. We also found that participants were less satisfied
with the recommendations from a neural network model’s
recommendations despite its superior performance in of-
fline testing accuracy. Finally, we found that none of our
diversification methods resulted in too diverse recommen-
dations, suggesting that were not able to match all users
diversity preferences: some users wanted more diversity in
their recommendations than we could provide.

2. BACKGROUND AND RELATED WORK

With novelty, coverage, and serendipity, diversity has long
been identified as an important metric in providing sat-
isfying automated recommendations to users [1]. Diver-
sity has its origins in information retrieval, where it was
used as a solution to ambiguous searches [3]. In recom-
mender systems, diversity prevents over-personalization of
recommendations to users in order to increase user satis-
faction [1, 2]. Recommender system diversity has often
been described as the opposite of similarity [4,5]. One def-
inition of diversity in music recommender systems is intra-
list diversity (ILD): the average pairwise dissimilarity of
items by a similarity metric [5, 6]. There are many alter-
natives: modifications of ILD [7, 8] and novel approaches
that do not rely on pairwise dissimilarity [9–11].

Vargas et al. use the distributions of genres in a user
listening histories and recommendations to satisfy three
properties of diversity: genre coverage, redundancy, and
size-awareness [10]. Oliveira et al. similarly seek to
Pareto-optimize a set of self-selected aspects of diversity:
contemporaneity, locality, gender, and genre [12]. None of
these methods are evaluated with any users, though they
outperform other methods on the defined metrics.

Anderson et al. found that use of personalized recom-
mendations leads to a reduction in overall consumption di-
versity, diversity was related to higher user retention, and
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users’ consumption diversity was increased by a migra-
tion away from personalized recommendations [13]. Holtz
et al. found similar results with podcast recommenda-
tions [14]. Finally, Hansen et al. examine different meth-
ods of shifting consumption on one large music platform
towards more diversity [15]. Although these works provide
vital information on the current diversity of users on music
platforms, they do so using commercial metrics such as re-
tention and consumption. We provide a more foundational
view of diversity for user satisfaction and perception.

3. METHODOLOGY

We trained our own recommendation models to control for
all aspects of recommendation and diversification.

3.1 Recommendation Overview

3.1.1 Data

We extended the publicly available LastFM data set cre-
ated for our previous work by retroactively topping up each
user’s listening history [16]. For each LastFM username
we collected up to 10,000 new song Listening Events (LEs)
starting from July 2020 and working back to their latest LE
in the existing data set. Users who did not have any new
LEs during this period were removed from the data set.
Tracks in this data set are identified using unique artist and
track name tuples. The total un-processed and updated data
set consists of 520,134,112 unique LEs, and 15,804,356
unique artist-track tuples recorded by 50,440 users over a
period of roughly 2 years during 2019 and 2020.

To remove noise, we eliminated tracks which were lis-
tened to 10 or less times. This filtering resulted in a drastic
reduction in unique artist-track tuples to 2,817,819 (82.2%
decrease), while only modestly reducing the number of
LEs to 488,528,514 (6% decrease) and the number of users
to 50,437 (< 0.01% decrease).

In the filtered data set, the median number of LEs per
user is 9,857, the 25th percentile is 4,663, and the 75thth

percentile is 14,277. The user-track-interaction matrix
contains 176,151,310 non-zero entries (play counts) across
2,817,819 unique tracks, resulting in a 50,437⇥2,817,819-
sparse matrix. Entries in this matrix correspond to the
number of unique times a user (row) played the track (col-
umn). An anonymized version of this updated data is avail-
able upon request.

Data was split into training, validation, and test sets us-
ing weak generalization, where user-item interactions are
sampled at random from the entire dataset to form the sub-
sets. This differs from the strong generalization used by
Liang et al. which samples entire users resulting in each
user occuring in only one data subset [17]. We used weak
generalization because matrix factorization can not effi-
ciently deal with a large number of unseen users. Data was
split into train, validation, and test subsets by successively
splitting by a ratio of 85/15.

3.1.2 Algorithms

We chose two collaborative filtering recommendation al-
gorithms designed for implicit feedback data sets: Alter-
nating Least Squares matrix factorization (ALS) [18], and
Variational Autoencoders for Collaborative filtering (Mult-
VAE) [17]. The results of both algorithms are presented as
a form of replication for diversity, and we plan to contrast
the overall performance of both models in another work.
We provide a brief overview of how these algorithms work
in practice, and refer readers to the original papers for de-
tailed descriptions and mathematical processes.

ALS uses classical matrix factorization, and has been
used frequently in recommendation research and produc-
tion [18–20]. The algorithm generates recommendations
by factorizing a large sparse matrix of user and item play-
counts to compute a low-rank matrix approximation. The
factorizations give a vector for each user and item. The
product of any user vector and item vector represents rel-
evance.Vectors for unseen users can be calculated using
their listening history and the latent item factorizations.
This method is known as the fold-in method [21].

In addition to generating recommendations, the column
factorizations give latent features representing each song.

MultVAE is a modern neural network approach based
on a Variational Autoencoder architecture. It is the only
neural network approach identified by Dacrema et al. to
outperform basic top-n recommendation algorithms us-
ing various measurements of accuracy on commonly used
benchmark data sets [22]. MultVAE passes a dense in-
put vector with length equal to the total number of recom-
mendable items (x) through an encoder (g�) to a lower-
dimensional latent representation (z), and then through a
decoder (f✓) which has an inverse architecture to the en-
coder. The general architecture of MultVAE is:

x �! g� �! z �! f✓ �! x0

The authors suggest that g� and f✓ consist of 0 or 1
densely connected perceptron layers with a dimensionality
of 600, and the dimensionality of z to be 200. The dimen-
sionality of x and x0 is equal to the number of items in the
database. The vector x0 gives expected play counts which
we can sort in decreasing order and select top-n items from.

3.1.3 Hyperparameter Optimization and Training

For the general performance analysis, hyperparameter op-
timization, and baseline comparison we adopt binary Nor-
malized Discounted Cumulative Gain (NDCG) [4]. Dis-
counted Cumulative Gain (DCG) is based on recall and
defined as: DCG =

Pk
i=1

reli
log(i+1) where rel is a binary

value representing whether the recommendation at rank i
appears in the unseen portion of the users listening his-
tory. The denominator then discounts the relevance based
on how far from rank 1 it appears. NDCG for one user is:
NDCG = DCG

DCG0 where DCG’ is the ideal DCG: reli is
always equal to 1. Total NDCG@k is the average value
across all users for some defined list length k.

We optimized ALS hyperparameters using randomized
search over 60 iterations. The best performance on valida-
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Model Validation NDCG@100 Test NDCG@100

ALS 0.217 0.325

MultVAE 0.223 0.349

Table 1: Final results of both recommendation algorithms.
Note that the test results reflect models trained using the
combined training and validation data sets.

tion data was achieved using 224 factors, � = 1, ↵ = 1,
after 98 iterations.

Our implementation of MultVAE was based on the orig-
inal author’s Tensorflow 1 implementation, and a PyTorch
implementation by James Le 1 . Due to the large number
of unique tracks in our data set, full cross-validation of
MultVAE architectures was not computationally feasible.
We instead trained a number of different models and archi-
tectures concurrently based on the original authors results.
The best performance on validation data was achieved us-
ing 0 hidden encoder/decoder layers, annealing cap of 1,
10000 annealing steps, learning rate of 0.001, and batch
size of 500 over 250 epochs. We implemented early stop-
ping based on NDCG@100, but it was not triggered. The
final dimensionality of the model was:

[2, 817, 819] �! [200] �! [2, 817, 819]

Both models were retrained on the combined training
and validation data, and evaluated on the unseen test data.
The final evaluation results can be seen in Table 1.

ALS, generates a new latent user vector using their lis-
tening history and the existing latent item vectors. We mul-
tiply this new user vector with all item vectors to generate
item relevance. For MultVAE we feed the user’s listening
history through the trained network and obtain a new vec-
tor containing each item’s relevance. The relevance values
from each list are then sorted in decreasing order to form
top-n lists.

3.2 Item Features

We calculate diversity with latent item features generated
from ALS matrix factorization. To lessen the effect of pop-
ularity on latent features, each track’s feature vector was
`2-normalized to unit-length. Item distances were com-
puted using simple Euclidean distance.

3.3 Music Recommendation Lists

We used three different techniques to generate top-10 mu-
sic recommendation lists for both recommendation algo-
rithms, giving 6 different top-10 recommendation lists per
user. Recommendation lists generated using ALS are pre-
fixed with als, and recommendation lists generated using
MultVAE are prefixed with vae.

1 The original authors’ code can be found at
https://github.com/dawenl/vae cf. Permission to use Le’s code was
obtained through email correspondence; his implementation can be
found at https://github.com/khanhnamle1994/MetaRec

3.3.1 Control (als, vae)

Our control recommendation lists consist of the raw ranked
output from each recommendation algorithm after remov-
ing tracks which appeared in the user’s listening history.
This gives the metrics reported in Table 1.

3.3.2 Maximally Diverse (als_max_div, vae_max_div)

We generated these recommendation lists using the greedy
ILD diversification method described by Ziegler et al. us-
ing � = 1 [6]. This greedy diversification algorithm starts
with the maximally diverse track from some larger rec-
ommendation list; we start with the top-1000 recommen-
dations from each model. The algorithm incrementally
adds the track maximally distant from the already selected
tracks until the list is of the desired length. This method
ensures that the tracks are not only maximally distant from
all other tracks, but that the final recommendation list tra-
verses multiple extremes in the item feature space. We do
not consider the relevance ranking within the top-1000 rec-
ommendations when generating diverse recommendation
lists; this corresponds to setting � = 1 in the original di-
versification process.

3.3.3 Filtered Diverse (als_filt_div, vae_filt_div)

We also use filtered diverse lists, where the top-1000 rec-
ommendations are filtered based on the user’s existing lis-
tening history. This aims to better align recommendations
with user preference for inner diversity identified in exist-
ing research [16]. We considered two methods for filtering
recommendations: feature clustering, and genre filtering.

For feature clustering, we tried to remove tracks too dis-
tant from existing LEs. We clustered user LE history into
n groups, and filtered recommendations which fall outside
the clustering. This approach proved unsuccessful.

For genre filtering we remove recommendations in gen-
res which do not appear in the user’s existing listening
history. We used Spotify artist genre tags, and defined a
track’s genres as the genres of that track’s artist retrieved
from Spotify.

For each user, we identified all genres which appear in
the user’s listening history and their frequencies. Next, we
find the most diverse track among the top-1000 recommen-
dations (the first track in the Maximally Diverse list) and
its genres. The user’s genre list is searched for this track’s
genres, and we save the lowest frequency found (or 0 if
none) to be the user’s genre threshold. We remove from
the top-1000 recommendation list any tracks with a single
genre either not in the user’s hash table, or with a frequency
below the found threshold. We run greedy diversification
on the filtered list.

3.4 User Study

Our interactive user study consisted of a pre-interaction
survey on personal music consumption, discovery, and
preference, followed by 6 personalized top-10 music rec-
ommendation lists as described in Section 3.3. The rec-
ommendation lists included a 5-point Likert evaluation for
each track, and questions on the recommendation list as
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a whole using the same 5-point Likert scale. The music
recommendations were displayed as 30 second song pre-
views using Spotify Play Button widgets. 2 The study was
hosted as an online web-app which collected participant
LastFM data and generated recommendations while par-
ticipants completed the surveys.

We completed a pilot study with participants recruited
at our institution in order to test the system before com-
pleting the primary study. The pilot study included a post-
interview on their experience with the system. No sig-
nificant concerns were discovered during the pilot study.
Primary study participants were recruited through Ama-
zon Mechanical Turk, whose terms of service prohibit ask-
ing workers (participants) to register for a service, or log
into an existing service. We therefore required workers to
have a LastFM account in order to participate, and spec-
ified such in the HIT description, the HIT layout, and as
a question on the consent form. After obtaining informed
consent, we had workers provide their LastFM username
which we used to obtain their public listening history. We
also required that the LastFM account had at least 50 LEs
recorded in the last 6 months. To verify ownership without
requiring a login, workers were given 3 attempts to name
one artist they had listened to in the previous 6 months. Pi-
lot participants were compensated $10CAD, and primary
participants were compensated $4USD.

Participants were shown recommendation lists using a
balanced Latin square design to control for differences in
recommendation list order.

4. RESULTS

4.1 Data and Demographics

We recruited 9 pilot participants, and 97 primary partici-
pants. Only primary participant data was used for analysis.

Five participants were removed for completing lists
too quickly, resulting in a final participant count of 92.
The proceeding results include only these 92 participants.
Completion times for vae and als were observably lower
than for diversified lists.

The median participant age was 29, the youngest was 19
and the oldest 62; 50 identified as male (54%), 40 identi-
fied as female (43%), and 2 identified as non-binary (2%).

Only tracks in our base training data set can be used to
generate recommendations and be recommended. The me-
dian count of LEs per participant was 857 before removing
tracks not in the base data set, and 627 after. This is com-
pared to a median value of 3110 for users in the base data
set.

4.2 Pre-Interaction Survey

In addition to demography, the pre-interaction survey
asked questions focused on music consumption, discovery,
and music recommendation preferences.

Participants agreed that their diversity preference de-
pended on who makes the recommendations, the quality

2 https://developer.spotify.com/documentation/
widgets/generate/play-button/

of the recommendations, what they are doing, and their
mood. Almost 50% of participants disagreed or strongly
disagreed that their location was important to how they felt
at a given time about music diversity.

We also asked yes/no questions about diversity
preference–most participants selected "yes" for all with the
notable exception of the question: "Do you want music
recommendations outside of genres you like?", for which
32% indicated they were unsure, and 15% responded “no”.
This question also serves as a parallel to the ideas of inner
and outer diversity preference.

4.3 Recommendation List Evaluation

We assign labels to the recommendation list evaluation
questions based on the order in which they were presented
to participants. These questions, their labels, and their re-
sponses can be seen in Figure 1.

4.4 List Comparisons

We preformed a Friedman test on the distributions of re-
sponses between each list for all LQ and found that at
least one list type’s distribution differed significantly for
each LQ (p < 0.001 for all). A post-hoc Nemenyi test is
performed to identify which list’s distributions differ from
each other. The results of the post-hoc tests are visualised
in Figure 1 as black bars connecting significantly differ-
ent distributions. Note that statistical significance is found
more readily among LQ0 because there are 10 samples per
list, and we used Dunn’s tests instead of Nemenyi test 3 .

In the responses to rating questions (LQ0) and satisfac-
tion questions (LQ3, LQ4), the control als recommenda-
tions were consistently rated more positively than the vae
recommendations (LQ0: p  0.001, LQ4: p = 0.005).
The als_max_div recommendations were also consistently
rated higher than vae_max_div (LQ0: p  0.001, LQ3:
p = 0.007, LQ4: p  0.001). Regarding the filtered
lists, als_filt_div and vae_filt_div were rated similarly or
better than their un-diversified counterparts in list satisfac-
tion (LQ3, LQ4) despite receiving less positive individual
track ratings (LQ0). Filtered lists also performed similar
to or better than their maximally diverse counterparts in all
cases.

We also examined the distributions of responses to LQ0
and LQ3 by list type using a Kruskal Wallis test, and found
significant differences among the control lists (p  0.001),
which highlights a clear distinction between track ratings
and overall list satisfaction, especially for control lists.

The diversity results (LQ1, LQ2, LQ5, LQ6, LQ7) show
that all diversified lists were recognised to be significantly
more diverse, and to portray a wider range of genres than
than their non-diversifed controls (LQ1, LQ5, LQ7 : p 
0.001). No significant differences in perceived diversity
or genre range were found between filtered diverse and
maximally diverse lists. Participants did not find any list

3 We preform Kruskal-Wallis and Dunn’s (with Bonferroni adjust-
ment) tests for LQ0 instead of Friedman and Nemenyi due to the un-
balanced data. While this test is typically used for independent samples,
we are unaware of a better non-parametric alternative.
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my music interests
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Figure 1: Responses to Likert questions on recommendation lists. Black bars connect significantly different distributions
(thick: p  0.001, thin:p  0.05). LQ0 ratings used Like/Dislike, while all others used Agree/Disagree.

to be overly diverse, though they did feel more strongly
that the control lists were not overly diverse as compared
to most diversified lists (LQ6 : p  0.05). The filtered
als_filt_div and vae_filt_div lists most consistently por-
trayed the breadth of participants’ music interests (LQ2).

An additional Kruskal-Wallis test was performed on the
distributions of responses to LQ1 and LQ5 for all list types
with no statistically significant results, supporting the idea
that one way users perceive diversity is genre range.

4.5 Summary of Statistically Significant Results

We found statistically significant differences among rec-
ommendation algorithms and list generation approaches.
In general, recommendations from the ALS model were
more satisfying than those from the VAE model, and fil-
tered lists performed similar to or better than control, and
maximally diversified lists from the same model. List sat-
isfaction and individual track ratings also differed signifi-
cantly.

In analysing diversity responses we found that all di-
verse recommendation lists were recognised as such, and
filtered lists were found to be just as diverse as maximally

diversified ones. Filtered lists also most consistently con-
veyed the breadth of participants interests. Additionally,
participant responses on genre range mirrored their evalu-
ations of diversity, and no list types were found to be too
diverse.

In the next section, we explore what our results suggest
about how to build good music recommender systems.

5. DISCUSSION

5.1 Satisfaction

In recommender systems research, the quality of a recom-
mendation list is often inferred from some accuracy mea-
sures computed on known data sets [4]. Our results show
that accuracy does not tell the whole story. MultVAE out-
performed ALS on the base data set using NDCG@100
(Table 1), but participant responses on individual recom-
mendations showed markedly higher satisfaction from the
ALS model with an ostensibly lower test accuracy. This
gap in satisfaction only grows larger for the maximally
diverse recommendations generated from top-1000 lists.
We plan to explore this dichotomy through additional and
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more exhaustive offline evaluation in another manuscript.

5.2 Diversity

Previous research has identified that mood and context are
important factors in determining how much diversity a user
wants [16], and this is further supported by user responses
on diversity preference which showed that users identify
mood and context (among other factors) as important. The
difference in responses between ‘what I am doing’ vs.
‘where I am’ emphasise the difference between context and
location. A user may be working out if they are detected
at a gym, but the location alone is not as significant as the
action.

Previous work on optimising diversity levels in recom-
mendation lists has also depended heavily on accuracy
measurements [1, 2, 4]. Our results suggest that the dif-
ference between control and diversified lists is not well
portrayed in individual recommendation ratings. Although
maximally diverse lists did result in lower individual track
ratings (LQ0), there was no detectable impact on overall
list satisfaction (LQ3). Despite strong statistical evidence
that both filtered and maximally diversified lists were sig-
nificantly more diverse. It is especially important to keep
in mind that the maximally diverse lists were created using
a beta value of 1 from all top-1000 participant recommen-
dations. Either the additional diversity of the lists made up
for a decrease in the quality of each recommendation, or
the top-1000 recommendations are all of a relatively high
quality.

5.3 Genre and Filtering

The nearly identical responses to questions about list diver-
sity and the range of genres further solidify the relationship
between the two concepts [10, 16]. When users are asked
to evaluate the diversity of a music recommendation list,
genre is clearly one of the primary factors they consider.

Overall, the filtered recommendation lists performed as
well or better than the maximally diversified lists for sat-
isfaction while also portraying similar levels of diversity.
When maximally diverse recommendations were good (as
for als_max_div) the filtering had no statistically signifi-
cant impact on list satisfaction or diversity. Alternatively,
when maximally diverse recommendations were poor (as
for vae_max_div) the filtering had a sizeable positive im-
pact on satisfaction without impacting perceived diversity.

The filtered and maximally diverse lists can be viewed
as simple implementations of a system for inner and outer
diversity.

5.4 Diversity and Personalization

The ILD method we chose is arguably the simplest such
diversity metric. Despite its simplicity, our results add to
the existing evidence that increasing ILD is perceived by
users as increasing diversity, this time in the domain of
music [7, 20]. In fact, the significant negative impact of
this diversification method was only observed in the Mult-
VAE recommendations, and was removed through genre

filtering.
We extend this one step further by noting that the fil-

tered recommendations were generated with at � = 1. Fil-
tering can result in positive satisfaction even with maximal
ILD, suggesting that any and all values of � will present
viable recommendation lists for each user. This may sim-
plify the task of selecting an optimal level of diversification
based on mood and context.

5.5 Pushing Diversity Further

We were unable to generate recommendation lists which
reached outside the bounds of our participant’s diversity
preferences. Even maximally diverse recommendations
were not seen as too diverse. It is very hard to generate
overly diverse recommendations using either model. In
an ideal collaborative filtering system, diversity preference
would be implicitly considered. Also, some users prefer
outer diversity: recommendations which differ from their
existing listening preferences.

Since hyper-parameter optimization of recommenda-
tion models make use of accuracy measurements such
as NDCG@k (Section 3.1.3) which incentivize only rec-
ommendations in training users’ hidden listening history;
most existing recommender systems, because they so
strongly focus on accuracy, are unlikely to make risky rec-
ommendations.

In order to generate truly diverse music recommenda-
tions that match user preference, we first need to under-
stand the extents of their preferences for diversity. The
idea of recommending surprising items is typically associ-
ated with the related beyond-accuracy metric of serendip-
ity [23]. It is easy to equate user preference for outer di-
versity to a preference for serendipity, but this does not ex-
plain why even maximally diverse recommendations were
not too diverse. Perhaps by extending beyond the top-1000
most relevant recommendations, we can find more diverse
recommendations.

If collaborative filtering algorithms do not generate ad-
equate levels of diversity, then are they really working to-
wards generating better music recommendations for users?

5.6 Summary

Our results highlight the large disconnect between offline
and online accuracy and diversity evaluations of music rec-
ommender systems. Through a sizeable within-subjects
study, we evaluated two collaborative filtering algorithms
and found that the offline accuracy–and even the user pro-
vided track ratings–were not good indicators of overall list
satisfaction.

Diversity continues to be an important topic of discus-
sion in recommender systems. Our genre filter-based di-
versification approach enabled satisfying and diverse rec-
ommendations within users’ existing preferences despite
using a simple diversity definition. We found success in
modeling diversity based on user ideas of the term, and
then asking them to evaluate it. In doing so, we brought
to light the limited diversity contained within collaborative
filtering recommendation algorithms.
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ABSTRACT

Extended tonality is a central system that characterizes
the music from the 19th up to the 21st century, including
styles like popular music, film music or Jazz. Develop-
ing from classical major-minor tonality, the harmonic lan-
guage of extended tonality forms its own set of rules and
regularities, which are a result of the freer combinatorial-
ity of chords within phrases, non-standard chord forms, the
emancipation of dissonance, and the loosening of the con-
cept of key. These phenomena posit a challenge for for-
mal, mathematical theory building. The theoretical model
proposed in this paper proceeds from Neo-Riemannian and
Tonfeld theory, a systematic but informal music-theoretical
framework for extended tonality. Our model brings to-
gether three fundamental components: the underlying al-
gebraic structure of the Tonnetz, the three basic analytical
categories from Tonfeld theory (octatonic and hexatonic
collections as well as stacks of fifths), and harmonic syntax
in terms of formal language theory. The proposed model is
specified to a level of detail that lends itself for implemen-
tation and empirical investigation.

1. INTRODUCTION

Harmony is a central latent structure governing Western
music since centuries until today [1]. While a consider-
able amount of research has focused on theoretical, math-
ematical, and computational exploration of harmony in
common-practice major-minor tonality, comparably less
attention has been devoted to the challenges that come with
the paradigm shift of extended tonality, as it is in place
since the 19th century up until the present day in various
styles like Jazz, popular or film music.

Extended tonality exhibits harmonic sequences that
defy the logic of common-practice (major-minor) tonal-
ity. In this paper, we address the problem of accounting
for such phenomena with a grammar approach that bridges
formal language theory and (mathematical) music theory.

1.1 The Challenge of Extended Tonality

Briefly construed, harmonic progressions in pieces in di-
atonic common-practice tonality involve chords that are

© M. Rohrmeier and F. C. Moss. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: M. Rohrmeier and F. C. Moss, “A Formal Model of Extended
Tonal Harmony ”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

mostly stacks of thirds derived from the seven diatonic de-
grees of major or minor scales. Larger harmonic structures
emerge through modulations between different keys that
are usually close to one another on the line of fifths [1–4],
thus forming a system that governs the global hierarchy of
pieces [5–9].

In contrast, pieces employing extended tonality may
rely on a variety of different scales (e.g., pentatonic, hex-
atonic, and octatonic scales; see Section 2), freely use
harmonies that are not necessarily construed by stacking
diatonic thirds, and modulate to or immediately combine
chords from relatively distant keys [10–13]. For example,
late-Romantic pieces often distinguish themselves from
earlier diatonic ones by featuring frequent enharmonic ex-
changes of pitches, resulting in uncommon chord combi-
nations [14–16], and by the frequent usage of symmetri-
cal scales that impede a listener’s orientation towards a
unique tonic, possibly resulting in multiple parallel tonal
centers [17, 18].

However, extended tonality is not restricted to late
19th-century pieces, but reaches into many more recent
styles, in particular in Jazz with its highly chromatic har-
monies [19, 20], and film music, such as scores by Korn-
gold or Williams [21–24]. It also plays a role in Rock and
Pop [25–27], and minimalist music, such as by Glass,
Frahm or Richter. Extended tonality thus describes not
a historical time span but rather captures characteristic
features of a harmonic language that extends common-
practice major-minor tonality with a variety of phenom-
ena reaching from the late 18th century until the present
day [28].

1.2 Related Work

1.2.1 The Tonnetz and Neo-Riemannian Theory

A major analytical approach to extended tonality is neo-
Riemannian theory (NRT), which models harmonic pro-
gressions between pairs of triads or keys through parsimo-
nious voice-leading transformations [16, 29, 30]. For in-
stance, the relative transformation R converts C major into
A minor, the parallel transformation P converts C major
into C minor, and the leading-tone exchange transforms
C major into E minor. All transformations are involutions,
i.e. they are self-inverse. Repeated application of (com-
binations of) NRT transformations leads to patterns on the
Tonnetz (Section 2.1) that visualize a particular analysis.

Figure 1 shows an excerpt of the Tonnetz. Note that the
alternation of P and R transformations creates a pattern
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on the Tonnetz that covers all pitches from an octatonic
scale (shown in blue), the alternation of P and L trans-
formations creates a path on the Tonnetz that contains all
members of a hexatonic scale (shown in orange), and com-
binations of R and L transformations generate a sequence
of triads that modulates through all diatonic scales (not
shown; the diatonic is encompassed by a horizontal line
of six fifths or two adjacent horizontal lines connecting 6
triangles ). The green rectangle delineates a stack of fifths
(see below). Due to its focus on triadic transformations,
and in particular those that form hexatonic or octatonic cy-
cles, NRT analyses are commonly restricted such that the
assumed algebraic spaces imposes some inflexibility with
regard to the chord form. Further, stacks of fifths (see be-
low) are commonly not addressed in NRT. Also, though
some analyses work with reductions and abstractions from
the score, there is no formalized theory of harmonic hier-
archy in NRT. In further work, mathematical spaces have
been extended or generalized [31–33], used in computa-
tional models of harmony or tonality [34–38], or explored
empirically [39–42].

1.2.2 Tonfeld Theory

Another recent theory addressing the challenges of ex-
tended tonality is Tonfeld theory (TFT) [43–49]. Unlike
NRT, it does not fundamentally rely on triads or keys.
Instead, it departs directly from three so-called Tonfelder
(‘tone fields’) that correspond to hexatonic, octatonic, and
fifths-related (e.g., pentatonic, diatonic) tone collections
(see Section 2.2 for details) that are assumed to govern
segments of pieces at the granularity of the pitch level.
It mostly focuses on late 19th-century compositions but
some analyses for 18th and 20th century pieces exist as
well [28,50,51]. Moreover, TFT subscribes to a fundamen-
tally hierarchical conception of compositions by analyzing
a piece’s tonal coherence through the presence and inter-
actions of Tonfelder on several structural levels of abstrac-
tion/reduction. This allows in principle for the expression
of nested structures and non-local dependencies.

1.2.3 Harmonic Syntax

Syntactic formalisms derive musical (e.g. harmonic or
melodic) sequences through generative models that re-
sult in trees or similar hierarchical dependency struc-
tures [6, 52–57]. They frequently adopt frameworks from
formal language theory and adapt them to the particular
needs for the case of music. In recent years, several for-
mal and computational approaches have been developed
for Western classical music [7, 58, 59], Blues [60, 61],
Jazz [20, 62–65]. We build on such previous approaches
and expand their scope to extended tonality.

2. THE MODEL

2.1 The Tonnetz

One foundation of the present model is the Tonnetz. It goes
back to Leonard Euler’s definition of intervals in just into-
nation [66], leading to an abstract pitch class space [67].

Accordingly, every just interval can be expressed by a fre-
quency ratio:

f1/f2 = 2x · 3y · 5z, x, y, z 2 Z. (1)

Since the factor 2 defines the octave, the two other integer
factors y and z span a coordinate system of pitch classes
(modulo the octave) that defines an infinite plane of fifths
and major thirds. Taking into account that a fifth is com-
posed of a major and a minor third, the plane corresponds
to a triangular graph such that there are three main axes
of major, minor thirds and fifths, in which each triangle
defines a major or minor triad (see Figure 1).

A] E] B] F]] C]] G]]

F] C] G] D] A] E]

A E B F] C] G]

F C G D A E

A[ E[ B[ F C G

Figure 1: The Tonnetz and the construction of the three
types of Tonfeld structures. The pitch class set shaded in
blue defines one octatonic, the set shaded in orange defines
one hexatonic, the set in green defines a stack of fifths.

The Tonnetz defines an infinite space of spelled pitch
classes none of which are identical, i.e. different nodes in
the graph with the same label are indeed distinct. If one
identifies nodes with the same labels, the infinite line of
fifths wraps itself around the so-called Spiral Array [37].
If, further, enharmonic equivalence is assumed (e.g. D] ⌘
E[), the space becomes a torus [39, 68] and the resulting
pitch-class space is isomorphic to Z12.

2.2 The Tonfelder

Tonfeld theory comprises three fundamental concepts that
are expressed in terms of pitch collections: octatonic, hex-
atonic, and stacks of fifths. This section introduces these
building blocks that the theory operates on. All concepts
are formulated in the toroidal Z12 pitch space, yet they
could be easily generalized to the spelled pitch space and
the infinite Tonnetz. At first, a stack of intervals SI is de-
fined by a starting pitch p, and an interval i with k itera-
tions. If the iterations reach the starting pitch, SI defines a
cyclic group (simply written as SI p,i). 1

SI p,i,k := {p+ im | m  k; k,m 2 N0} (2)

Interval cycles are musically meaningful units to ground
a tonal theory [69, 70]. Here, the three Tonfelder are con-
structed from the three directions in the Tonnetz. The oc-
tatonic is defined by shifting a fifth along the axis of minor

1 An analogous definition in the infinite Tonnetz space would not result
in a cyclic group.
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thirds, the hexatonic by shifting a fifth along the axis of
major thirds, and the stack of fifths by collecting consecu-
tive fifths along the axis of fifths (see Figure 1).

Octp := {i, i+ 7 | i 2 SI p,3} ⌘ SI p,3 ] SI p+7,3 (3)
Hexp := {i, i+ 7 | i 2 SI p,4} ⌘ SI p,4 ] SI p+7,4 (4)
Fif p,k := SI p,7,k (5)

Notably, all three Tonfelder are based on the founda-
tional tonal interval of the fifth. This construction re-
sults in the three different octatonic (halftone–wholetone)
scales and the four hexatonic (minor-third–halftone) scales
(Oct i = Oct i+3; Hex i = Hex i+4):

Oct0 = {C,D[, E[, E\, G[, G\, A,B[} (6)
Oct1 = {D[, D,E\, F,G,A[, B[ , C[} (7)
Oct2 = {C,D,E[, F,G[, A[, A\, B} (8)
Hex 0 = {C,E[, E,G,A[, B} (9)
Hex 1 = {C], E, F,G], A, C} (10)
Hex 2 = {D,F, F ], A,B[, C]} (11)
Hex 3 = {E[, F ], G,B[, B\, D} (12)

Since stacks of fifths do not form a mode of limited
transposition [71], there are 12 different types of stacks of
fifths until the whole chromatic is reached.

Fif C,2 = {C,G,D} (13)
Fif C,3 = {C,G,D,A} (14)

. . . Fif C,5 = {C,G,D,A,E,B} (15)

The set of all Tonfelder T is defined as T :=
{Oct0,Oct1,Oct2}[ {Hex 0, . . . ,Hex 3}[ {Fif p,k | p 2
0, . . . , 11, k 2 2, . . . , 10}. One can apply filters to a Ton-
feld t to arrive at basic musical units, such as triads or
tetrads. For instance, all triads in a Tonfeld are filtered
out by

f : t 7! {{a, b, c} | iv({a, b, c}) = (0, 0, 1, 1, 1, 0)} (16)

where iv is the interval vector of a given pitch-class set,
which counts all possible interval classes [72]. One can
easily define filters for other chord types or, in fact, arbi-
trary pitch-class sets [72, 73].

In terms of common chord types, the octatonic scale
yields four major, minor, dominant seventh, minor sev-
enth and half-diminished chords each, all related by minor
thirds, and two fully diminished tetrads a fifth/a semitone
apart. The hexatonic scale in turn yields three major, mi-
nor, major seventh, minor-major-seventh chords a major
third apart, and two augmented triads a fifth/a semitone
apart. Stacks of fifths yield chords that are often classified
as sus-chords or quartal voicings in Jazz harmony termi-
nology, 2 and also cover complex add 6, 9th or 11th chords
as they appear in Jazz [74]. Notably, also complex chords

2 The stack of fifths chords (e.g. C � G � D) are technically not
suspension chords since they do commonly not imply a resolution of the
dissonant fourth into a third as in standard common-practice. [3]

such as the “Tristan chord”, the “Petrouchka chord”, Scri-
abin’s “mystical chord” as well as many upper structure
chords in Jazz (e.g. G-F -B-D-E-G]-B) [75], are cap-
tured within the octatonic set. Non-diatonic minor chords
with major sevenths as they occur in Jazz are captured by
the hexatonic set. The set of all chords derived by suit-
able filters (for the particular surface to be modeled) from
a Tonfeld t 2 T is denoted by Ct. This definition encom-
passes occurrences of non-standard chord forms, such as
the ones above.

Tonfelder further bear generalizing expressive power
with respect to central tonal relations. The set of chords
with a dominant function may, for instance, involve V ,
V 7, vii0, [VII , [II 7 (tritone substitution), or III 7. Simi-
lar, subdomantic/pre-dominantic chords may, e.g., involve,
IV , ii , II , iv6, [VI . Both of these sets of equivalences are
all encompassed by the set of chords from the two octaton-
ics neighboring the reference tonic chord [44, 70]. There-
fore, the octatonic Tonfeld can be understood as a general-
ization over the concept of tonal harmonic function (tonic,
dominant, predominant) as well as intra-functional prolon-
gation/substitution (within the same octatonic).

Conversely, Neo-Riemannian theories (as well as TFT)
have identified chords from the hexatonic to establish con-
trastive relationships, such as the hexatonic pole (e.g., C
major – A[ minor), [14, 76]. Such relations between har-
monies are the basis of the hierarchical dependencies that
are modelled by the grammar outlined in the next subsec-
tion.

2.3 The Grammar

The proposed harmonic grammar formalism is based on
abstract context-free grammars (ACFGs) [63] and extends
previous models of harmonic syntax [7, 20, 58]. It consists
of four components: G = (K,⌃, P, s), non-terminal cat-
egories K, terminal symbols ⌃, production rules P , and
a start symbol s 2 K. The set of all terminals ⌃ encom-
passes all (potentially non-standard) chords derived from
the Tonfelder: ⌃ := {c | c 2 Ct 8t 2 T}.

There are three kinds of non-terminal category symbols:
K = {s}[ {⇥t | t 2 T}[ {ct | c 2 Ct, t 2 T}. s denotes
the abstract start symbol. Except for the start symbol, non-
terminal category symbols have a feature t, which indicates
the assigned Tonfeld of the category. Abstract Tonfeld cat-
egories ⇥t (2 {⇥}⇥T) define an unspecific Tonfeld t 2 T
that has not yet been instantiated in terms of a concrete
chord category. Chord categories ct (2 ⌃⇥ T) are defined
in terms of any chord symbol c derived from its assigned
Tonfeld t.

In ACFGs, the production rules P are defined as func-
tions mapping the left-hand side to the right-hand side.
Here, P involves three kinds of rules: general rules (start,
instantiation, Tonfeld cast, termination), rules character-
izing hierarchical functional relations (prolongation, (sub-
stitution), preparation, plagal dependency, contrast), and
rules with set operations for manipulating stacks of fifths
(fifth shift, fifth expansion & contraction, fifth split). No-
tably, it is not necessary to formally assume substitution
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because substitutable equivalences are already expressed
at the level of the octatonic Tonfeld. The following para-
graphs define each rule type:

2.3.1 General Rules

Start. A piece is modeled as a sequence of different Ton-
feld categories ⇥.

s �! ⇥(1)
t1 . . . ⇥(n)

tn (17)

Note that in contrast to previous (diatonic) syntax the-
ories [7], there is no requirement of an overarching single
tonic node of a derivation tree (although this ‘downward
compatability’ can be achieved by a single overarching oc-
tatonic chord category). This comes from the different
logic of Tonfeld structures [28,44]. Thus, the top level may
consist in a sequence of different Tonfelder. For abridged
derivations or analyses of partial sequences, the trees can
also directly be headed by a single Tonfeld or chord cate-
gory, omitting the start symbol (see the examples below).
Tonfeld instantiation. An abstract Tonfeld symbol ⇥t of
the Tonfeld t may be instantiated with one or more member
chords from its set.

⇥t �! Y (1)
t . . . Y (n)

t (18)

Tonfeld casting. Generalizing modulations, a chord cat-
egory can change its underlying Tonfeld and recursively
yield different generations. Importantly, this operation
can only be performed over chord categories, since the
abstract Tonfeld categories are ambiguous with regard to
their chord instantiation, and therefore their cast to a dif-
ferent Tonfeld is not well-defined. An abstract Tonfeld cat-
egory can only be cast into another through instantiation in
terms of a pivot chord category. Therefore, Tonfeld casting
necessarily involves the set intersection of two Tonfelder
(which in turn enforces the chord type category for X).

Xm �! Xk, X 2 Cm \ Ck (19)

Terminal rules. The grammar needs to ensure that the se-
quence generation terminates. The production can termi-
nate when there are no more abstract categories in the se-
quence. Since chord categories are already absolute chords
matching surface chord forms, the only final step is to cast
the chord category into a terminal chord without a Tonfeld
feature: Xt �! X . For stacks of fifths, the resulting chord
forms may be non-standard, e.g. non-triadic (see Figure 6).

2.3.2 Rules for functional relations

Prolongation. Going beyond previous models [7,20], pro-
longation need not only combine identical categories but
may combine elements of the same Tonfeld. Following
the generalization by Steedman, prolongation can be un-
derstood as an instance of syntactic coordination [62, 77].
Prolongation can be established with two different types,
abstract Tonfeld categories and chord categories, and may
combine two or more categories.

⇥t ! ⇥t . . . ⇥t (20)

Xt ! Y (1)
t . . . Y (n)

t , Xt = ⇥t _ 9i : Y (i) = X (21)

(Substitution.) The octatonic moreover generalizes over
possible substitutions of certain sets of chords. It is use-
ful to formulate this as a rule even though, in most cases,
the direct derivation of dominant or subdominant substitu-
tions may be achieved directly though the preparation- and
plagal-dependency rules (and therefore, the rule may not
be necessary in computational implementations).

XOcta �! YOcta , X 6= Y (22)

Preparation. The octatonic generalizes over the class of
chords that may prepare other chords [20]. Since there are
only three different octatonics (3) there are only two possi-
ble preparations (motions between them): preparation and
plagal dependency (see below). A preparation is derived as
the preceding left child of the prepared chord. The types
of X and Y can be an abstract octatonic Tonfeld ⇥Octa or
a chord category ct.

XOcta �! YOcta+1 XOcta (23)

Plagal dependency. The octatonic also generalizes over
the set of subdominants. A plagal dependency/relaxation
into a chord is modeled as its left child. Although the pla-
gal relaxation has a similar form as the preparation rule,
its semantics is different. This implies that the semantic of
the applied dependency type (preparation or plagal) cannot
be inferred from its shape in the tree (i.e. a left child is not
necessarily a dominant – pace GTTM [6]). Similarly to the
preparation rule, the types of X and Y can either be both
abstract octatonic Tonfelder or chord categories.

XOcta �! YOcta�1 XOcta (24)

Contrast. The hexatonic and the stack of fifths allow for
the instantiation of the relation of a contrast to a given ele-
ment. For the hexatonic, contrast is established within the
same hexatonic. The most frequent form of the hexatonic
contrast is the hexatonic pole [78]. For the stack of fifths,
contrast is established between two quasi-complementary
stacks of fifths (fifth flipover).

XHexi �! YHexi XHexi , X 6= Y (25)
XHexi �! XHexi YHexi , X 6= Y (26)

⇥Fif a,b
�! ⇥Fif c,d ⇥Fif a,b

, if inv(Fif a,b,Fif c,d) (27)

⇥Fif a,b
�! ⇥Fif a,b

⇥Fif c,d , if inv(Fif a,b,Fif c,d) (28)

The Boolean inverse relation inv between two stacks of
fifths Fif p,k and Fif q,l is fulfilled if they are sufficiently
distinct for some distance function d and threshold � (29).
Since the stacks are sets, a suitable candidate is the Jaccard
distance (30).

inv(Fif p,k,Fif q,l) := d(Fif p,k,Fif q,l)  � (29)

d(A,B) :=
|A \B|
|A [B| (30)

2.3.3 Rules for Stacks of Fifths

Fifth shift. A stack of fifths can be shifted one step in ei-
ther direction of the circle of fifths. The rule can instantiate
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an instance before or after the parent category.

⇥Fif p,k
�! ⇥Fif p,k

⇥Fif p±7,k
(31)

⇥Fif p,k
�! ⇥Fif p±7,k

⇥Fif p,k
(32)

Fifth expansion and contraction. A stack of fifths can
be extended or reduced by a number of fifths. This re-
sults in a stack of fifths with a different number m of
fifths, respecting the defining criterion of a stack of fifths
of 2 < m < 11. Fifth expansion and contraction may
propagate to the left or the right within the sequence.

⇥Fif p,k
�! ⇥Fif p,k

⇥Fif p,m
,m 6= k (33)

⇥Fif p,k
�! ⇥Fif p,m

⇥Fif p,k
,m 6= k (34)

Fifth split. A stack of fifths can be split into two different,
potentially overlapping, stacks of fifths.

⇥Fif p,k �! ⇥Fif q,l⇥Fif r,m ,Fif q,l [ Fif r,m = Fif p,k (35)

3. EXAMPLES

Figure 2 illustrates how the use of the octatonic generalizes
over remote variants of authentic preparation progressions
or cadences, without requiring modulation, borrowing, tri-
tone substitutions, or chromatic operations.

COct0

C⇥Oct1

⇥Oct1

G7

⇥Oct2

⇥Oct2

D7

⇥Oct0

Am

COct0

C⇥Oct1

⇥Oct1

D[7

⇥Oct2

⇥Oct2

D7

⇥Oct0

E[7

COct0

C⇥Oct1

⇥Oct1

B[

⇥Oct2

⇥Oct2

A[

⇥Oct0

E[7

Figure 2: Generalizing over 3 preparatory progressions.

One example that well illustrates the octatonic set is
given by two phrases from the second movement of An-
tonin Dvořák’s ninth Symphony (Figure 3). It illustrates
(a) that the chords used in sequence defy a purely diatonic
(e.g. D[ major) analysis, thus requiring a different analyt-
ical framework, and (b) that the two excerpts sound very
similar even though they use different and remote chords
at the surface. Our analysis illuminates that the chords
stem from two octatonic Tonfelder which are identical for
both examples. The very similar impression of both ex-
cerpts is modeled by the identical deep structure of the tree
derivations. Further octatonic examples include Schubert’s
Ganymed D544 and Scriabin’s Prelude op. 74/2.

One paradigmatic example for hexatonic Tonfelder is
John Coltrane’s piece “Giant Steps” (Figure 5). Similarly
to the previous example, the chord sequence here also de-
fies diatonic derivations because of the overarching major-
third relations of the harmonic centers B major, G major
and E[ major. Notably, the piece abandons the sense of an
overarching key, osciallating between the harmonic centers
establishing an overarching abstract hexatonic Tonfeld in-
stead. The tree analysis demonstrates that the chord se-
quence is simple to derive once hexatonic relations are as-
sumed at the top level. The local ii�V �I progressions are

D[Oct1

D[Oct1

D[Oct1

D[

⇥Oct0

F ]m6
Oct0

F ]m6

F ]mOct0

F ]m

AOct0

A

D[Oct1

D[Oct1

D[

EOct1

E

B[Oct1

B[

EOct1

E

D[Oct1

D[Oct1

D[Oct1

D[

⇥Oct0

E[m6
Oct0

E[m6

E[mOct0

E[m

G[Oct0

G[

D[Oct1

B[Oct1

B[

D[Oct1

D[

GOct1

G

D[Oct1

D[

Figure 3: Dvořák, Symphony IX, op. 95–II, mm. 22-25,
mm. 120-123

⇥Hex0

EHex0

E

A[mHex0

A[m

EHex0

E

A[Hex0

A[

Figure 4: Chord progression for Aragorn and Arwen’s
love scene from Lord of the Rings (Howard Shore).

well-modeled with octatonic preparatory relations. Thus,
this example also illustrates a case of hierarchical inter-
twining of two different types of Tonfelder.

Another example for a hexatonic progression is taken
from Howard Shore’s score to the film Lord of the Rings
for the scene in which the characters Aragorn and Ar-
wen, a couple that embodies contrast (human/mortal vs.
elf/immortal), engage in intimate conversation. Underly-
ing this scene is a loop of the chord progression A[ �
E � A[m � E. Similar to the octatonic example above,
these chords can not be subsumed under a single key and
an analysis where each chord change entails a key modula-
tion seems implausible. Rather, these chords are all taken
from the hexatonic Tonfeld Hex 0, as shown by the anal-
ysis in Figure 4. Not all triads possible in this Tonfeld
do occur but the sequence expresses all pitch classes from
Hex 0, except G. Further hexatonic examples can be found
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Figure 5: John Coltrane’s “Giant Steps”. The three harmonic centers B, G, E[ span a complete hexatonic Hex 3.

in the prelude of Wagner’s Parsifal and Bruckner’s Ecce
Sacerdos Magnus WAB 13. As shown in [25], octatonic
and hexatonic structures occur frequently in Popular mu-
sic, e.g. Shake the Disease by Depeche Mode, Easy Meat
by Frank Zappa, Creep by Radiohead, or Lay, Lady, Lay
by Bob Dylan.

“Maiden Voyage” by Herbie Hancock provides a good
illustration for the use of stacks of fifths (Figure 6). First,
none of the sus chords in the leadsheet are proper suspen-
sion chords because they do not imply a resolution to an
omitted harmonic interval. In fact, they are implicit nota-
tions for quartal voicings, which are in fact stacks of fifths.
Both chord pairs in both sections constitute a split of an
overarching stack of fifths. The relation between both parts
is that the overarching prolonged stack of fifths is con-
trasted by fifth flipover. Other examples for this Tonfeld
are Bartók’s Boating from Mikrokosmos V, Tailleferre’s
Pastorale, Ligeti’s piano etude no. 8, Kraftwerk’s Trans
Europa Express, Zimmer’s film music to Interstellar.

⇥Fif E[,6

⇥Fif E[,6

⇥Fif E[,6

⇥Fif E[,3

F 7sus4

⇥Fif C,3

D7sus4

⇥Fif C[,5
(inv)

⇥Fif C[,3

D[7sus4

⇥Fif D[,3

E[7sus4

⇥Fif E[,6

⇥Fif E[,3

F 7sus4

⇥Fif C,3

D7sus4

13
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Figure 6: Analyzing Herbie Hancock’s “Maiden Voyage”
illustrating operations on stacks of fifths.

4. CONCLUSION

We present a model of extended tonality bridging mu-
sic theoretical accounts and formal grammars. It captures
chord forms and chord sequences that are challenging for

other (diatonic) approaches. While some details, e.g. cases
not yet covered, may be subject to debate, we argue that
the core innovation and main benefit lies in providing a
well-formalized hierarchical model of extended tonal har-
mony. As an aside, our model offers an explanation why
some previous computational models find octatonic and
hexatonic structures as efficient structures in their latent
space [40, 42].

Our model is based on three Tonfelder as construed
from the Tonnetz and the foundational interval of the per-
fect fifth, both of which we consider fundamental for ex-
tended tonality. We argue that the collections that can be
constructed from the Tonnetz have a special status in es-
tablishing (extended) tonality compared with the manifold
other scales. For instance, the whole-tone scale cannot be
directly represented on the Tonnetz, and we argue that it
can thus not form a deep structure, despite appearing on
the surface. Our model constitutes an extension of for-
mal grammars for diatonic music, meaning that it can also
generate purely diatonic sequences, in analogy to extended
tonal compositions containing also purely tonal sections.

The aim of the theory is to not only capture musical sur-
face events but to model the kinds of underlying dependen-
cies with theoretically meaningful concepts and assump-
tions, i.e. strong generativity [79]. Similarly to previous
syntactic theories of music, the latent analytic derivations
link structure and interpretation in terms of dependencies
and chord functions (e.g. preparation, contrast) [20,80,81].
Because of the expressive richness of the model multiple
concurrent analyses are possible for a given sequence. This
makes it possible to express diverging hearings and nu-
ances of a passage that different listeners may experience.
The theory will not suffice as a forward generative model
for computational composition on its own. It would re-
quire additional (inferable) style-specific parameters, since
extended harmony works differently in Dvořák, Ravel, the
Beatles, Coltrane, or Richter, and may as well benefit from
a joint model of rhythm [20, 82]. The theory is sufficiently
well-specified such that it is testable, debatable, and lends
itself for empirical investigation in a probabilistic formula-
tion in future work.
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ABSTRACT

In this paper, we propose a novel score-base generative
model for unconditional raw audio synthesis. Our pro-
posal builds upon the latest developments on diffusion pro-
cess modeling with stochastic differential equations, which
already demonstrated promising results on image genera-
tion. We motivate novel heuristics for the choice of the
diffusion processes better suited for audio generation, and
consider the use of a conditional U-Net to approximate the
score function. While previous approaches on diffusion
models on audio were mainly designed as speech vocoders
in medium resolution, our method termed CRASH (Con-
trollable Raw Audio Synthesis with High-resolution) al-
lows us to generate short percussive sounds in 44.1kHz
in a controllable way. Through extensive experiments, we
showcase on a drum sound generation task the numerous
sampling schemes offered by our method (unconditional
generation, deterministic generation, inpainting, interpola-
tion, variations, class-conditional sampling) and propose
the class-mixing sampling, a novel way to generate “hy-
brid” sounds. Our proposed method offers flexible gen-
eration capabilities with lighter and easier-to-train models
than GAN-based methods.

1. INTRODUCTION AND RELATED WORK

After multiple works in the spectral domain [1, 2], deep
generative models in the waveform domain have recently
shown the ability to produce high fidelity results with
different methods: autoregressive [3, 4], flow-based [5],
energy-based [6] or based on Generative Adversarial Net-
works [7].

In the task of generating drum sounds in the wave-
form domain, GAN-based approaches have been explored
in [7], [8] and [9]. Interactive sound design is often a ma-
jor motivation behind these works: in [10] the authors use
Variational Autoencoders (VAE) in order to generate spec-
trograms of drums apply a principal component analysis
on the latent space of the VAE in order to explore the drum
timbre space. One of the disadvantages of this model is

© Simon Rouard, Gaëtan Hadjeres. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Simon Rouard, Gaëtan Hadjeres, “CRASH: Raw Audio
Score-based Generative Modeling for Controllable High-resolution Drum
Sound Synthesis”, in Proc. of the 22nd Int. Society for Music Information

Retrieval Conf., Online, 2021.

that the reconstruction of the sounds by the VAE tends to
be blurry. In [11], the authors use a VQ-VAE2 [12] in order
to perform inpainting on instrument sound spectrograms.

Score-based generative models [13–16] propose a dif-
ferent approach to generative modeling, which consists
in estimating the gradient of noise-corrupted data log-
densities (score function): by iteratively denoising a sam-
pled noise, these approaches obtained promising results,
but mainly on image data.

To this day, only two score-based generative models in
the waveform domain have been published [17, 18] and
they are mostly focused on the task of neural vocoding with
conditioning on a mel-spectrogram. In [17], the authors
achieved the task of generating audio with an uncondi-
tioned model trained on the speech command dataset [19].
The inference scheme of [17] does not provide a flexible
sampling scheme because it is trained on a fixed discrete
noise schedule whereas [18] is trained on a continuous
scalar indicating the noise level.

In the image domain, [16] generalizes the works of
[14, 15, 20] by framing the noise corruption procedure as
stochastic differential equation.

Score-based generative models offer the following ad-
vantages over GAN-based approaches:

• Training time is reduced and training is more stable
since there is only one network to train.

• Class-conditioning generation can be achieved by
training a classifier a posteriori, which lets us train
a model only one time.

• Data can be mapped to a latent space without the
need to train an additional encoder compared to
GANs [21], which makes the interpolation between
two given input data readily available with only one
model.

These properties alleviate us to search for directions in the
latent space as in [22] or to directly hardcode conditional
features in the architecture as in [23]. This easily con-
trollable latent space permits sound design applications.
One downside of score-based models compared to GANs
is their higher inference times to generate new samples.

In this work, we extend the approach of [16] and pro-
pose CRASH (Controllable Raw Audio Synthesis with
High-resolution), a score-based generative model adapted
to the waveform domain. On a drum sound dataset, the nu-
merous capabilities offered by this architecture allows for
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musically-relevant sound design applications. Our contri-
butions are the following:

• A score-based model for unconditional generation
that can achieve high fidelity 44.1 kHz drum sounds
directly in the waveform domain,

• The use of a noise-conditioned U-Net to estimate the
score function,

• A novel class-mixing sampling scheme to generate
"hybrid" sounds.

• Experimental and practical insights about the choice
of the stochastic differential equation used to corrupt
the data.

2. BACKGROUND

2.1 Score Based Modelling through Stochastic
Differential Equations

Figure 1. Illustration of the noising and denoising pro-
cesses of a kick sound with a VP schedule

2.1.1 Forward Process

Let pdata be a data distribution. Diffusion models consist in
progressively adding noise to the data distribution to trans-
form it into a known distribution from which we can sam-
ple from as shown in Fig. 1. In [16], the authors formalize
this noising process as the following forward Stochastic
Differential Equation (SDE):

dx = f(t)xdt+ g(t)dw (1)

where f(t) is a continuous negative function from [0, T ] !
R�, g(t) a continuous positive function from [0, T ] ! R+,
and w is a standard Wiener process. Such approach can
be understood as a continuous-time generalization of De-
noising Diffusion Probabilistic Models (DDPMs) [14, 20]
and denoising Score Matching with Langevin Dynamics
(SMLD) [15]. For x(0) ⇠ pdata, the transition kernel of
Eq. 1 is given by a normal distribution:

pt(x(t) | x(0)) = N (x(t);m(t)x(0),�2(t)I), (2)

where m(t) and �(t) follow the system:
(

dm
dt = f(t)m(t)
d�2(t)

dt = 2f(t)�2(t) + g2(t)
(3)

with the following initial conditions m(0) = 1 and
�2(0) = 0. The solutions for m(t) and �(t) are :

(
m(t) = e

R t
0 f(s)ds

�2(t) = e
R t
0 2f(s)ds

R t
0 g2(u)e

R u
0 �2f(s)dsdu.

(4)

In [16], the authors define three types of SDEs which
are presented in Tab. 1. For the Variance Preserving (VP)

f(t) g(t)

VP � 1
2�(t)

p
�(t)

VE 0
q

d[�2(t)]
dt

sub-VP � 1
2�(t)

q
�(t)(1� e�2

R t
0 �(s)ds)

Table 1. Functions used in the VP, VE and sub-VP SDEs

and sub-Variance Preserving (sub-VP) schedules, m(T ) ⇡
0 and �(T ) ⇡ 1 which means that the original data dis-
tribution is transformed into a distribution close to a stan-
dard normal distribution i.e. pT ⇡ N (0, I). For the Vari-
ance Exploding (VE), �2(T ) � m ⇡ 1 which means
that the original data is not discernable at t = T and that
pT ⇡ N (0,�2(T )I).

2.1.2 Generation with the Reverse Process

In order to sample from the data distribution, we can sam-
ple xT ⇠ pT and apply the associated reverse time SDE
[24] given by:

dx = [f(t)x� g2(t)rx log pt(x)]dt+ g(t)dw̃ (5)

where w̃ is a standard Wiener process running backwards
from T to 0 and dt is an infinitesimal negative timestep.

It means that by knowing rx log pt(x), we can use a
discretization of Eq. 5 to sample x(0) from p0 = pdata.

In practice, the score function s(x(t),�(t)) =
rx log pt(x) is intractable and it is approximated by a neu-
ral network s✓(x(t),�(t)) parameterized by ✓. In order to
train the network, [13] shows that for any t, minimizing

Ept(x)ks✓(x,�(t))�rx log pt(x)k22 (6)

is equivalent to minimizing

Eks✓(x,�(t))�rx log pt(x(t) | x(0))k22 (7)

where the expectation is over x(0) ⇠ pdata, x(t) ⇠
pt(x(t) | x(0)), and the latter distribution is given by
Eq. 2.

Now, in order to train the network for all t 2 [0, T ]
we consider the following mixture of Eq. 7 losses over all
noise levels:

L(✓) = E�(t)
��s✓(x(t),�(t))�rx(t) log pt(x(t) | x(0))

��2
2

(8)

where we sample t ⇠ [0, T ], x(0) ⇠ pdata, x(t) ⇠
pt(x(t) | x(0)) and where �(t) is a weighting function.
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In [14–16], �(t) is empirically set such that �(t)�1 /
E
��rx(t) log pt(x(t) | x(0))

��2
2

/ �2(t)�1 while in [25]
the authors show that the maximum likelihood estimator
is obtained with �(t) = g2(t) in L(✓).

The training procedure is described in Alg. 1, where
we reparameterize our neural network as ✏✓(x(t),�(t)) :=
��(t)s✓(x(t),�(t)) in order to estimate ✏.

Algorithm 1 Training procedure
while Training do

Sample t ⇠ U([0, T ]),x(0) ⇠ pdata, ✏ ⇠ N (0, I)
Compute x(t) = m(t)x(0) + �(t)✏

Gradient descent on r✓

����
p

�(t)

�(t) [✏✓(x(t),�(t))� ✏]

����
2

2
end while

Once the network is trained, a N-step discretization of
the backward SDE is done in order to unconditionally
generate samples. This process is described in Alg. 2, it is
non-deterministic since we obtain various sounds by start-
ing from the same sample x(T ).

Algorithm 2 Sampling via SDE
Choose N , sample xN ⇠ N (0,�2(T )I)
for i = N � 1, ..., 0 do
ti = T i

N , fi = f(ti), gi = g(ti),�i = �(ti)

xi = (1� fi+1

N )xi+1 �
g2
i+1

N�i+1
✏✓(xi+1,�i+1)

if i > 0 then
Sample zi+1 ⇠ N (0, I)
xi = xi +

gi+1p
N
zi+1

end if
end for

2.2 Deterministic Sampling via Score based Ordinary
Differential Equation

As mentioned in [16], for any SDE, there exists a corre-
sponding deterministic process which satisfies an ordinary
differential equation (ODE):

dx = [f(t)x� 1

2
g2(t)rx log pt(x)]dt (9)

This defines a flow �t such that the marginal distributions
�t
⇤(pdata) are identical to the ones obtained by applying the

SDE of Eq. 1. This mapping is interesting because it pro-
vides a latent representation for each x ⇠ pdata.

The procedure of sampling via the N-step discretization
of the ODE is described in Alg. 3.

Algorithm 3 Sampling via ODE
Choose N , sample xN ⇠ N (0,�2(T )I)
for i = N � 1, ..., 0 do
ti = T i

N , fi = f(ti), gi = g(ti),�i = �(ti)

xi = (1� fi+1

N )xi+1 �
g2
i+1

2N�i+1
✏✓(xi+1,�i+1)

end for

2.3 Inpainting

Let’s imagine that we don’t like the attack of a kick (or any
other part of a sound), the method of inpainting permits us
to regenerate the desired part. In order to do that, we apply
a reverse-time SDE or ODE discretization to an isotropic
Gaussian and fix the part that we want to keep (with the
associated noise corruption) after each denoising timestep.
As presented in section 6, we obtain very diverse and co-
herent results.

2.4 Interpolations

The flexibility of SDEs and ODEs allows to compute inter-
polations between sounds. In fact, there exists an infinity
of latent spaces indexed by t 2 [0, T ]. We present here
two types of interpolations: ODE interpolation in the la-
tent space of isotropic Gaussians and SDE interpolation in
any t-indexed latent space.

Figure 2. Interpolation of two sounds via Forward and
Backward ODE

2.4.1 ODE interpolation in the latent space of isotropic

Gaussians

Let ✏1 and ✏2 be two samples from a standard normal
distribution of RL where L is our space dimension and
0  �  1. We consider the spherical interpolation
✏� = �✏1 +

p
1� �2✏2 and then apply the ODE sampling

to it. We choose a spherical interpolation in order to pre-
serve a variance close to 1 for ✏�.

Morever, if we want to interpolate two sounds x1 and
x2, we can apply the Forward ODE in order to obtain the
corresponding latent codes ✏1 and ✏2, apply the desired
spherical interpolation and then apply an ODE sampling.

2.4.2 ODE interpolation in a t-indexed latent space

In [17], the authors perform a linear interpolation between
two sounds at a corresponding intermediate t-indexed la-
tent space before applying Denoising Diffusion Probabilis-
tic Model (DDPM is the discrete equivalent of a VP SDE).
We adapt the method to the continuous framework with
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SDE and ODE. Here again, the interpolation can be done
between two t-indexed latent codes or between sounds cor-
rupted using the transition kernel of Eq. 2.

2.5 Class-Conditional sampling with a classifier

For any class y, we can train a noise-conditioned classifier
on corrupted data x(t). As a consequence, the output of
the classifier gives us pt(y | x(t)) for each class y. We can
use automatic-differentiation to differentiate this quantity
and by the Bayes Formula, since p(y) is constant for each
class y, we have the following formula:

rx log pt(x | y) = rx log pt(x)+rx log pt(y | x) (10)

As a consequence, we can generate samples of one class
by solving this reverse time SDE:

dx = [f(t)x� g2(t)rx log pt(x | y)]dt+ g(t)dw̃ (11)

This approach is flexible since it only requires to train a
noise-conditioned classifier: there is no need to design and
train a class-conditional score-based model as done in [17].

3. A DISCUSSION ABOUT CHOOSING THE
RIGHT SDE: A GENERALIZATION OF THE

SUB-VP SDE

In this section T = 1.

3.1 About the relation relation between m(t) and �(t)

The VP SDE is the continuous version of the Denoising
Diffusion Probabilistic Model (DDPM) used in [14] [17]
[18]. One of the main features of this model is that the
mean coefficient m(t) of the perturbation kernel is linked
to the standard deviation �(t) (or noise-level) by the fol-
lowing equation m(t) =

p
1� �2(t). Because the de-

crease of m is relatively small on a large range of values
for �, this means that a (very-noisy) drum sound audio
must begin to appear after only a few steps of denoising
during the sampling algorithm. (For instance if � = 0.8,
m = 0.6). We believe that this fast decay of the signal-to-
noise ratio can be detrimental when sampling with Alg. 2
and 3.

Moreover, without mentioning this fact, in [16] the au-
thors introduce the sub-VP SDE which is characterized by
the following formula m(t) =

p
1� �(t). The authors

obtained state of the art results on the image generation
task which corroborates our intuition that m might be too
large for values of � near 1 tends to be right.

In this work, we explore the four relations between m
and � plotted in Fig. 3. The blue one corresponds to the VP
SDE, the yellow is the sub-VP SDE and the green and red
ones corresponds to a generalization of the sub-VP sched-
ule. In Tab. 2 we write the functions f(t) and g(t) for each
of these 4 relation. For the rest of the paper we take the
convention f(t) := � 1

2�(t) in order to compare the VP
and sub-VP schedules with ours.

Figure 3. Different relations between m and �

m-� relation f(t) g(t)

m =
p
1� �2 (VP) � 1

2�(t)
p

�(t)

m =
p
1� � (sub-VP) � 1

2�(t)
q

�(t)(1� e�2
R t
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Table 2. Functions used in the VP, sub-VP and generalized
sub-VP SDEs.

3.2 Choosing the right functions for the SDE

Choosing a particular relation between m and �, imposes a
relation between g and �. The remaining free parameter is
the function �, needed to fully define the SDE. In [16], the
authors use a linear schedule for �(t) because it is the con-
tinuous generalization of DDPMs. As presented in Fig. 4,
this choice leads to a �(t) function that rapidly grows to
its maximum. In [26], the authors mention this fast grow-
ing � function as a potential shortcoming and propose a
smoother function (the green one in Fig. 4).

Figure 4. Different choices for the �(t) function

Our approach differs from [16] in that the definition of
our SDE is motivated by choosing a relatively smooth in-
creasing function �(t) such as �(0) = 0 and �(1) = 1� ✏
(where ✏ is a small constant), together with a m-� relation,
from which all other quantities can be computed as shown
in Tab. 2. If the two approaches are equivalent, we believe
that these quantities are more interpretable. In the regime
of a small number of discretization steps, a slow increasing
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function may induce less approximation errors. For our ex-
periments we propose �(t) = 1

2 [1 � cos((1 � s)⇡t)] with
s = 0.006 which is the red plot in Fig. 4. We also sample
t in the interval [⌘, 1] during the training where ⌘ is chosen
such that �(⌘) = 10�4 because 10�4 is imperceptible.

4. CLASS-MIXING SAMPLING WITH A
CLASSIFIER

Drum classes are not perfectly distinct. For instance, the
dataset contains drum sounds that are percussive enough to
be seen as kicks but also sufficiently brilliant to be seen as
snares and some kicks are combined with a hi-hat sound.
We observe that our classifier (at the noise-level � = 0)
sometimes outputs a mixed classes such as [0.3, 0.3, 0.4]
and that it aligns well with our feeling when hearing the
sound.

We introduce the Class-Conditional sampling to a mix-
ture of classes: For a given noisy sound x(t), the vector
rx(t) log pt(yi | x(t)) points out to the direction of the
class yi in the noisy t-indexed latent space. Now, assuming
that we have N classes (yi)i=1,. . . ,N , let (�i)i=1,. . . ,N be
positive real numbers such as

PN
i=1 �i = 1, we define a

mixture of classes that we note {(yi,�i)} and the associ-
ated vector:

rx log pt({(yi,�i)} | x) :=
NX

i=1

�irx log pt(yi | x)

(12)
In practice, we put this term in equation 10 in replacement
of the last term and use equation 11 to sample class-mixed
audios. It gives us interesting results with a great palette of
sounds.

5. ARCHITECTURE

5.1 Conditioned U-Net

Our model architecture is a conditioned U-Net [27], orig-
inally proposed for source separation. It takes two inputs:
the noise level �(t) and the noisy audio x(t). The noise-
level is encoded by Random Fourier Features [28] followed
by a Multi-Layer Perceptron. The noisy audio goes into
FiLM-conditioned [29] Downsampling Blocks. Then, the
signal goes into Upsampling Blocks that receive skip con-
nections from the DBlocks of same levels. The output of
the network is the estimated noise ✏estimated.

This bears similarities with the architecture from [17]
which has a similar succession of blocks with dilated
convolutions but no downsampling or upsampling layers,
which makes it slow in terms of computation. The archi-
tecture from [18] has a U-Net-like shape [30], but heavily
depends on the spectrogram conditioning and relies on a
different noise-conditioning scheme. The �-conditioned
U-Net architecture seems to retain advantages from both
approaches and is particularly suited for unconditional
generation (see Fig. 5).

Figure 5. Architecture of the Conditioned U-Net

5.2 Noise conditioned classifier

Our noise-conditioned classifier closely mimics the archi-
tecture of our Conditioned U-Net presented in in Sect. 5.1.
The classifier is composed of a succession of FiLM-
conditioned DBlocks followed by a projection layer and
a softmax.

6. EXPERIMENTS AND RESULTS

Code is available at: https://github.com/

simonrouard/CRASH

6.1 Dataset

For this work, we use an internal non-publicly available
dataset of drum sounds which has also been used in [8].
It is composed of approximately 300.000 one-shot kick,
snare and cymbal sounds in equal proportions. The sam-
ples have a sample rate of 44.1kHz and are recorded in
mono. We restricted and padded the audio to 21.000 time-
steps because most sounds last less than 0.5 second. We
used 90% of the dataset in order to train our model.

6.2 Models and process

We evaluate the influence of �(t) and four m-� schedules.
The training of the network is done with a learning rate
of 2.10�4 and the Adam optimizer. In parallel, smoothed
weights with exponential moving average (EMA) with a
rate of 0.999 are computed and saved at each step. For
each model, the network is trained for about 120 epochs
and the weights are saved each 8 epochs. We generated
drum sounds with the regular weights and with the EMA
weights and we observed the same phenomenon as in [31]:
for the regular weights the quality of the sounds is not nec-
essarily increasing with the training time whereas the EMA
weights provide better and more homogeneous Fréchet
Audio Distance [32] (FAD) during training 1 .

1 We use the original implementation [32] available at https:

//github.com/google-research/google-research/

tree/master/frechet_audio_distance
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After generating 2700 sounds for each checkpoint of
each model, we choose the best checkpoints and generate
27000 drum sounds for each. It takes 12 hours to generate
27000 drum sounds on a Nvidia RTX-3090 GPU with an
ODE or SDE schedule of 400 steps and batches of 180
sounds per generation (maximum memory capacity).

6.3 Quantitative Results

We report the FAD (lower is better) between the 27000
generated drum sounds and the test set for each uncondi-
tional generation with SDE and ODE (with a discretization
of 400 steps) in the table 6.3. The cos schedule refers to
the function �(t) = 1

2 [1� cos((1� s)⇡t)] (the red one in
Fig. 4) and the exp schedule corresponds to the function
�(t) =

p
1� e�0.1t�9.95t2 used in [16] (the blue one in

Fig. 4).

Schedule SDE 400 steps ODE 400 steps
VP exp schedule (as in [16]) 4.30 4.03

VP cos schedule 2.32 1.79
sub-VP cos schedule 2.46 2.07

sub-VP 1-1 cos schedule 2.62 1.73
sub-VP 1-2 cos schedule 2.56 1.75

Table 3. FAD comparison (lower is better)

Choosing a smoother � function indeed improves the
FAD of the generated sounds for a fixed number of dis-
cretization steps.

By using the classifier that we trained, we observe that
all models generate kicks, snares and cymbals in equal pro-
portions but the generated samples are less diverse than in
the original dataset. For a fixed number of discretization
steps, we think that the cos schedule performs better be-
cause it is smoother than the exp schedule.

6.4 Interactive sound design

Audio samples for all experiments described in this section
can be heard on the accompanying website: https://
crash-diffusion.github.io/crash/.

6.4.1 Interpolations

The relative lack of diversity of the unconditional genera-
tion is not dramatic since the model can still perform inter-
active sound design by modifying existing samples from
the dataset. In order to do that, we apply the forward ODE
to an existing sound and obtain its corresponding noise in
the latent space of isotropic Gaussians. As presented in
Fig. 7, we can perform spherical combinations on the la-
tent codes and apply the backward ODE to obtain interpo-
lations. Moreover the reconstructed sounds (at the left and
right of the schema) are accurate.

6.4.2 Obtaining Variations of a Sound by Noising it and

Denoising it via SDE

Let’s take a sound x(0). We can noise it at a desired noise
level �(t) via x(t) = m(t)x(0) + �(t)✏ and then denoise

it with a SDE discretization from t to 0. We obtain then
variations of the original sound.

6.4.3 Inpainting

We can also perform inpainting on a sound in order to re-
generate any desired part. We show this method on Fig. 6
where we regenerate 6 endings of a snare sound.

Figure 6. Six Inpaintings on the end of a snare sound

This provides an innovative way to generate a variety of
plausible sounds starting with the same attack.

6.4.4 Class-Conditioning and Class-Mixing with a

Classifier

We trained a noise-conditioned classifier on the 3 classes
(kick, snare, cymbal) and used it to generate class-
conditioned and class-mixing generation. Once again, by
using the latent representation of a sound we can regener-
ate it (via ODE) with control on its "kickiness, snariness or
cymbaliness".

Figure 7. Transformation of a cymbal into a kick via class-
conditioning ODE

7. CONCLUSION

We presented CRASH, a score-based generative model for
the generation of raw audio based on the latest develop-
ments in modeling diffusion processes via SDEs. We pro-
posed novel SDEs, well-suited to drum sound generation
with high-resolution, together with an efficient architec-
ture for estimating the score function. We showcased how
the many controllable sampling schemes offered new per-
spectives for interactive sound design. In particular, our
proposed class-mixing strategy allows the controllable cre-
ation of convincing "hybrid" sounds that would be hard to
obtain with conventional means. We hope that these new
methods will contribute to enrich the workflow of music
producers.
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ABSTRACT

A problem inherent to the task of large vocabulary auto-
matic chord recognition (ACR) is that the distribution over
the chord qualities typically exhibits power-law character-
istics. This intrinsic imbalance makes it difficult for ACR
systems to learn the rare chord qualities in a large chord vo-
cabulary. While recent ACR systems have exploited the hi-
erarchical relationships that exist between chord qualities,
few have attempted to exploit these relationships explicitly
to improve the classification of rare chord qualities.

In this paper, we propose a convolutional Transformer
model for the task of ACR trained on a dataset of 1217
tracks over a large chord vocabulary consisting of 170
chord types. In order to address the class imbalance of
the chord quality distribution, we incorporate the hierarchi-
cal relationships between chord qualities into a curriculum
learning training scheme that gradually learns the rare and
complex chord qualities in the dataset. We show that the
proposed convolutional Transformer model achieves state-
of-the-art performance on traditional ACR evaluation met-
rics. Furthermore, we show that the proposed curriculum
learning training scheme outperforms existing methods in
improving the classification of rare chord qualities.

1. INTRODUCTION

The task of automatic chord recognition (ACR) has been
an active area of research in the field of music informa-
tion retrieval (MIR) for over 20 years [1]. This task auto-
mates the process of chord sequence annotation, which can
be time consuming when done manually. ACR systems
have been shown to be useful in other MIR applications,
as chord annotations can be used as descriptive low-level
features to assist other MIR tasks, such as key detection,
harmonic analysis, and even style analysis [2]. Typically,
an ACR system takes as input the audio signal correspond-
ing to a musical recording. Then, the system outputs a
time-aligned sequence of chord labels describing the un-
derlying harmonic structure of the musical recording.

© L. Rowe and G. Tzanetakis. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: L. Rowe and G. Tzanetakis, “Curriculum Learning for Imbalanced
Classification in Large Vocabulary Automatic Chord Recognition”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,

Online, 2021.

Figure 1: Top: Power-law distribution of chord qualities
in BRIM (see Section 3 for details). Bottom: Hierarchy of
chord qualities.

Most early ACR systems operated over a small chord
vocabulary consisting of only major and minor chords and
lacked the complexity needed for more complex chords.
Recently, the focus has shifted to large vocabulary ACR,
which includes a wider variety of chord qualities, such
as augmented, diminished, sixth, seventh, and suspended
chords. A critical issue with large vocabulary ACR is that
the distribution over the chord qualities – and hence over
the chord classes – exhibits a power-law distribution (see
Figure 1). This imbalance is not specific to any particu-
lar ACR dataset but is intrinsic to large vocabulary ACR.
Specifically, chord progressions seen across almost all gen-
res of music overwhelmingly favor the major and minor
chord qualities, which makes it difficult for ACR systems
to learn the rare chord qualities.

Despite the complexities that arise in large vocabulary
ACR, important structural relationships exist between the
chord qualities in a large chord vocabulary [3]. As out-
lined in Figure 1, the chord qualities can be arranged into
a hierarchical structure consisting of base chord qualities,
or triads, (in rectangles) and extended chord qualities, or
tetrads, (in ovals). Given an extended chord quality qE and
a base chord quality qB , we say qE extends qB if the set
of intervals that defines qE is a superset of the set of inter-
vals that defines qB . Each extended chord quality extends
a corresponding base chord quality, with the extends rela-
tionship indicated by an arrow in Figure 1. We hypothe-
size that an ACR model can better learn an extended chord
quality when it has sufficiently learned its corresponding
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base chord quality. The underlying intuition is that the base
chord quality can be viewed as a harmonic base for the ex-
tended chord quality, and thus each extended chord quality
can be interpreted as a more complex variant of its corre-
sponding base chord quality. For example, the extended
chord quality 7 can be viewed as a variant of base chord
quality maj, where an additional b7 interval is included.

Each extended chord quality is rarer in frequency than
its corresponding base chord quality as can be seen in
Figure 1. Based on this observation, we introduce a cur-
riculum learning (CL) reweighting scheme that gradually
converges from the initial distribution to a balanced chord
quality distribution. This way, the curriculum allows the
model to learn the base chord qualities prior to learn-
ing its corresponding extended chord qualities. The pro-
posed scheme is integrated with a convolutional Trans-
former model which is trained over a chord vocabulary
of 170 chord types. We show that the proposed model
achieves state-of-the-art performance on traditional ACR
evaluation metrics. Moreover, we show that the proposed
CL scheme outperforms existing methods in improving the
classification of rare chord qualities.

2. RELATED WORK

2.1 Automatic Chord Recognition

Most ACR systems have two stages: feature extraction
and chord sequence decoding. Arguably the most no-
table recent advancement in ACR is the replacement of
traditional machine learning with deep learning for both
stages of the ACR pipeline. For example, recent ACR sys-
tems have utilized deep neural networks [4–6], convolu-
tional neural networks [7–11], and deep belief networks
[12, 13] to produce robust feature representations that out-
perform earlier conventional methods. Moreover, recurrent
neural networks [4, 9–14] and conditional random fields
(CRFs) [8, 10, 11] have largely replaced hidden Markov
models to capture the temporal dependencies in the chord
sequence decoding process. Inspired by the recent suc-
cess of Transformer-based models in the field of natural
language processing [15–18], recent approaches have ap-
plied end-to-end Transformer-based models to the task of
ACR [19] and to the related tasks of symbolic chord recog-
nition and functional harmony recognition [20, 21].

Recent focus has shifted to the large vocabulary variant
of the ACR task [3, 9, 11, 13, 14]. Since the chord qual-
ity distribution over a large chord vocabulary is extremely
skewed, these systems must explicitly overcome the im-

balanced class-learning problem, whereby model learning
is biased towards the frequently-labelled classes, resulting
in poor classification performance of the sparsely-labelled
classes [22]. To address this problem within large vo-
cabulary ACR, recent approaches have incorporated aux-
iliary training targets by decomposing chords into struc-
tured components [9, 11]. However, these structured train-
ing methods still provide limited exposure to the rare chord
qualities, and thus model learning is still heavily biased to-
wards the frequently-labelled chord qualities. Deng and

Kwok addressed this problem by implementing an “even-
chance” training scheme, which ensures that each chord
type has an even chance of being chosen at the beginning
of each training sample [14]. Jiang et al. combined their
structured chord representation with a reweighting scheme
to reduce the model learning bias induced by the imbal-
anced distribution of each structured component [11].

2.2 Curriculum Learning

CL was first proposed by Bengio et al. in [23], where they
demonstrated that for certain tasks with an established dif-
ficulty metric, introducing training data from easy to hard
difficulty in a deep neural network can lead to faster con-
vergence and guide training towards better local minima.
To the best of our knowledge, the only existing applica-
tion of CL to the task of ACR is in [24]. In [24], McVicar
et al. designed a curriculum to train an ACR system us-
ing ground-truth annotations with noisy alignments. CL
has recently been utilized to address the imbalanced class-
learning problem. In [25], Wang et al. proposed a CL
training scheme for the task of human attribute recogni-
tion, which gradually converges from the training distribu-
tion to a balanced distribution to improve the classification
performance of sparsely-labelled classes.

3. DATA PREPARATION

The ground-truth chord labels are mapped to a chord vo-
cabulary V of 170 chords [9]. V includes chords that span
all 12 pitch classes and the following 14 chord qualities Q:
maj, min, dim, aug, min6, maj6, min7, minmaj7, maj7, 7,

dim7, hdim7, sus2, and sus4. Additionally, V contains two
extra labels: N (no chord) and X (unknown chord). Our
model also integrates the structured chord representation
proposed in [9], whereby each chord label is decomposed
into its root, bass, and pitch structured components.

For training and evaluation, we use the dataset collected
by Humphrey and Bello [9, 11, 26], which comprises of
1217 tracks from the Billboard, RWC Pop, Isophonics,
and MARL collections. We refer to this collected dataset
as BRIM. We augment the training data using MUDA [27]
by pitch-shifting each audio track across �6 to +5 semi-
tones. To properly compare the performance on traditional
ACR metrics with previous methods, we use the same 5-
fold cross-validation split that is used in [9, 11, 26].

We employ a separate 5-fold cross-validation split for
the imbalanced class-learning ACR experiments. Since the
chord-type distribution in BRIM is extremely imbalanced,
it is imperative for proper evaluation that this distribution
is maintained across each fold of our 5-fold split. How-
ever, since the 5-fold split occurs at the track level but the
distribution is measured at the frame level, we found strati-
fying over the chord types to be intractable. Therefore, we
propose an approximate 5-fold stratification algorithm that
instead ensures that the distribution over the chord quali-

ties in BRIM is approximately maintained across each fold.
The proposed algorithm (Algorithm 1) takes as input a set
of chord quality profiles P = {Pt}, where Pt[q] is the pro-
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Algorithm 1: N -Fold Chord Quality Stratification
Input: Number of folds: N ; set of chord qualities: Q; set
of tracks T ; chord quality profiles: P = {Pt}; rarest chord
quality: qr.
for i = 0 to N � 1 do

initialize empty list folds[i]
initialize fold profile Fi, where for each q 2 Q,
Fi[q] = 0

Tsorted = SortDescending(T , by=P [qr])
for i = 0 to N � 1 do

append Tsorted[i] to folds[i]
Fi[q] = Fi[q] + PTsorted[i][q] for each q 2 Q
remove Tsorted[i] from T

while T 6= ; do
q0 = argmax

q2Q
Var(F0[q], . . . , FN�1[q])

tmin = argmin
t2T

Pt[q0]

imax = argmax
i2{0,...,N�1}

Fi[q0]

append tmin to folds[imax]
Fimax [q] = Fimax [q] + Ptmin [q] for each q 2 Q
remove tmin from T
for each remaining fold i 6= imax do

t0 = argmin
t2T

Pt[q0] + Fi[q0]� Fimax [q
0]

append t0 to folds[i]
Fi[q] = Fi[q] + Pt0 [q] for each q 2 Q
remove t0 from T

return folds

portion of q chords in track t over BRIM, for each q 2 Q.
The algorithm iteratively builds up a fold profile Fi for
each fold i, where Fi[q] is the proportion of q chords in fold
i over BRIM, for each q 2 Q. At each iteration, one track
is added to each fold. At iteration 1, we take the 5 tracks
with the highest proportion of the rarest chord quality qr
and add one track to each fold. Each subsequent iteration
can be viewed as a “correction step,” whereby one track is
added to each fold to minimize the variance of the highest-
variance chord quality over the folds. The result of the
5-fold chord quality stratification is shown in Figure 2b.

4. METHODS

4.1 Convolutional Transformer (CT)

The proposed system uses the log-power Constant Q-
Transform (CQT) spectrogram as its input feature rep-
resentation. We apply a convolutional-residual encoder
shown in Figure 3b to capture short-term context and in-
duce sufficient temporal smoothing of the spectrogram.
The encoder first applies batch-normalization (BN) [28]
to the input CQT. We then apply a series of convolutional
layers and add 3 skip connections [29] to ease the train-
ing process. Each convolutional layer is zero-padded to
preserve the spatial dimension of the CQT. After each con-
volutional layer, a BN layer followed by a Rectified Lin-
ear Unit (ReLU) activation is applied. The output of the

(a) 5-fold split used in [9, 11, 26].

(b) 5-fold Stratified Split.

Figure 2: 5-fold splits of BRIM. The height of each bar at
chord quality q corresponds to the proportion of q chords
contained in the corresponding fold.

convolutional encoder is passed through a stack of N bi-
directional self-attention layers proposed in [19]. Details
of this layer can be found in [19]. We replace the absolute
positional encoding used in [19] with relative positional
encoding [16], which has been shown to offer better gen-
eralization capabilities by taking into account the relative
positions between frames in the self-attention mechanism.

The model facilitates structured training of the root
note, bass note, and pitch classes as is done in [9]. Un-
like in [9], we multiply the pitch structured loss by � > 1
to assign more priority to the pitch structured component.
The model learns to jointly minimize the cross-entropy
chord label loss Llabel and the cross-entropy structured loss
Lstruct, where Lstruct is the sum of the cross entropy losses
for the pitch, root, and bass structured components. For
each frame t, the model outputs a softmax distribution
ŷ(t) 2 [0, 1]|V | over V . At evaluation time, the system pre-
dicts the label with the highest activation in ŷ(t) for each
frame t. An overview of the model is shown in Figure 3.

4.2 Curriculum Learning

The idea of CL is to train the easy samples before the
hard samples. Loosely, we define an easy sample as a
frame where the ground-truth chord quality is a base chord
quality, and a hard sample as a frame where the ground-
truth chord quality is an extended chord quality. We want
to ensure that for each extended chord quality, the sys-
tem first sufficiently learns its corresponding base chord
quality. A critical observation in Figure 1 is that each ex-
tended chord quality is rarer than its corresponding base
chord quality. Based on this observation, we propose a
CL reweighting scheme that gradually converges from the
training distribution to a balanced chord quality distribu-
tion, similar to the scheme proposed by Wang et al. in [25].
The proposed scheme enables the model to put empha-
sis on the frequently-labelled chord qualities at the begin-
ning of training and put increasingly more emphasis on the
rare chord qualities as training converges. Since the pitch-
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(a) (b)

Figure 3: Proposed CT architecture. (a) outlines the end-
to-end architecture and (b) outlines the layers of the pro-
posed convolutional encoder.

shifting data augmentation eliminates the root bias in the
training data, then balancing the chord-quality distribution
also balances the chord-type distribution during training.

The proposed scheme runs for E epochs. At epoch
e = 1, the target distribution is the training distribution
(i.e. an imbalanced chord quality distribution). As e ap-
proaches E, the system gradually modifies the target chord
quality distribution to be more balanced; this is achieved
by reweighting samples by placing higher weights on the
frames where the ground-truth chord quality is sparsely-
labelled and lower weights on the frames where the
ground-truth chord quality is frequently-labelled. At epoch
e = E, the chord quality distribution is balanced.

Let Q0 = Q[{N,X}. Let Cq be the number of frames
in the training set with chord quality q 2 Q0 and let qmin 2
Q0 be the chord quality with the least number of frames
in the training set. We define the chord quality training
distribution Dtrain by Dtrain,q = Cq

Cqmin
for all q 2 Q0.

Let De be the target chord quality distribution at epoch
e. Then D1 = Dtrain. During model training, the target
chord quality distribution gradually transfers to a balanced
distribution with the following function:

De,q = (Dtrain,q)
g(e) 8q 2 Q0 (1)

where e is the epoch number and g(e) is the curriculum
scheduler function. The scheduler function is a monotoni-
cally decreasing function from 1 to 0 that sets the pace of
the curriculum. We experiment with three scheduler func-
tions (visualized in Figure 4): g(e) = 0 (baseline, fixed
balanced chord quality distribution), g(e) = 1� e�1

E�1 (lin-
ear schedule), and g(e) = �e � �E (convex schedule),
where � is a hyperparameter. Observe that for all three
scheduler functions, g(E) = 0 and thus DE,q = 1 for all
q; i.e. the target chord quality distribution is balanced.

At epoch e, to facilitate training with target chord qual-
ity distribution De, we reweight the samples such that for
chord class i 2 V having chord quality q 2 Q0, the class
weight wi assigned to i in Llabel is defined by:

wi = De,q/Dtrain,q (2)

As the training set chord quality distribution is extremely

Figure 4: Proposed curriculum scheduler functions.

imbalanced, the variation in the magnitude of the weights
wi across the different chord classes i 2 V is extremely
large at epoch e = E. We hypothesize that this may cause
the temporal smoothness of the output predictions to be
impaired. Therefore, we train an additional CRF decoder
on top of the output logits to smooth the output predictions,
in the same way as [8].

The proposed CL scheme differs from [25] in three crit-
ical ways. First, the training set statistics are used for com-
puting the reweighting terms wi, whereas [25] uses batch
statistics. Using batch statistics is suboptimal for ACR
since batches typically consist of a small number of se-
quences, and the frames of each sequence are highly inter-
dependent. Therefore, we believe that the training statis-
tics are more representative of the true chord quality im-
balance. Second, in [25], the frequently-labelled samples
are down-sampled by setting some samples to have weight
0 and the remaining to have weight 1. Down-sampling is
ill-advised for ACR as this would disrupt the temporal co-
herence of the training sequence. Therefore, the proposed
scheme instead employs a fully reweighted approach so
that the continuity of the training sequences are preserved.
Third, the proposed scheme employs a CRF decoder to
smooth the output predictions at model convergence.

5. EXPERIMENTS

5.1 Model Evaluation

To compare the proposed CT model with previous meth-
ods, evaluation is conducted using mir_eval [30]. We
obtain Weighted Chord Symbol Recall (WCSR) scores
for: Root, Thirds, Triads, Sevenths, Tetrads, Maj-Min, and
MIREX. We average the results of each metric across the
folds, as is done in [19]. For the methods addressing the
imbalanced class-learning problem, we utilize two evalua-
tion metrics proposed in [11]: the mean frame-wise accu-
racy (accframe) and mean class-wise accuracy (accclass) over
V . accframe is defined by:

accframe =

Pn
i=1 CiPn
i=1 Fi

(3)

where n is the number tracks for evaluation, Fi is the num-
ber of frames in track i, and Ci is the number of correctly-
predicted frames in track i over vocabulary V . accclass is
defined by:

accclass =
1

|V |
X

v2V

Pn
i=1 C

v
iPn

i=1 F
v
i

(4)

where F v
i is the number of frames in track i with ground-

truth chord label v and Cv
i is the number of frames in track
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i that are correctly predicted as v. Further, we define an
additional metric termed the mean quality-wise accuracy
(accquality) over V to be used in the CL experiments. We
define accquality by:

accquality =
1

|Q|
X

q2Q

Pn
i=1 C

q
iPn

i=1 F
q
i

(5)

where F q
i is the number of frames in track i with ground-

truth chord quality q and Cq
i is the number of frames in

track i that are correctly predicted as having ground-truth
chord quality q. As previously outlined in [11, 14], when
addressing the imbalanced class-learning problem within
the task of large vocabulary ACR, we want to maximize
the accclass while still maintaining the accframe.

5.2 Implementation Details

Using librosa [31], audio is transformed into a log-
power constant-Q spectrogram spanning 6 octaves with 36
bins per octave. The sample rate is 44100 Hz, and the
hop size is 4096. We tune the hyperparameters of the
bi-directional self-attention layers (optimized to BRIM):
number of self-attention layers N = 6, number of self-
attention heads nh = 8, hidden dimension d = 512, and
dropout probability p = 0. The CT model is trained us-
ing the Adam optimizer [32] with initial learning rate 1e-
4. The learning rate is reduced by a factor of 10 when
the validation Llabel loss does not improve after 10 con-
secutive epochs. Model training terminates when the val-
idation Llabel loss does not improve after 20 consecutive
epochs. We save the model weights with the lowest valida-
tion Llabel loss for evaluation. In each epoch, a contiguous
248-frame segment is randomly sampled from each train-
ing track, and a mini-batch consists of 32 such segments.
Structured training is conducted in the same way as [9],
with the exception that we set � = 7. We set the Llabel
class weights to wi = 1 for all i 2 V .

For the CL experiments, we set E = 90 and � = 0.95.
Since only the chord qualities of the 5-fold split are strati-
fied, the imbalance in the root distribution across the folds
may cause accclass to be an unreliable validation metric.
Thus, we instead use accquality. The training details re-
main the same with a few exceptions. Namely, the learn-
ing rate is reduced by a factor of 10 when the validation
accquality has not improved for 10 consecutive epochs. For
the linear and convex scheduler functions, we save the
model weights at convergence (epoch e = E) for eval-
uation. For the baseline scheduler function g(e) = 0,
we save the model weights with the highest validation
accquality for evaluation. We train the CRF using Adam
with a learning rate of 1e-2. We terminate training the
CRF once the validation accquality stops improving. Our im-
plementation is available at https://github.com/
RLuke22/curriculum-learning-acr.

5.3 Methods under Comparison

We compare our proposed CT architecture with CR2S+A
[9], BTC [19] and the best-performing model of [11],

Metric CT CT�RE CT�RE,S
CT�RE,S,C

(BTC) [19] CR2S+A [9] CRNN⇤ [11]

Root 0.838 0.836 0.831 0.829 0.821 0.837
Thirds 0.809 0.807 0.802 0.798 0.784 0.803
Triads 0.767 0.764 0.759 0.754 0.742 0.759
Sevenths 0.714 0.711 0.709 0.700 0.677 0.694
Tetrads 0.650 0.646 0.644 0.638 0.615 0.630
Maj-Min 0.826 0.823 0.819 0.813 0.802 0.822
MIREX 0.832 0.828 0.825 0.820 0.803 0.812

Table 1: WCSR scores averaged across 5 folds. �RE de-
notes removal of relative positional encoding. �S denotes
removal of structured training. �C denotes removal of
the convolutional encoder. ⇤operates over a larger chord-
vocabulary V 0 consisting of 301 chord types [11].

Method accframe accclass
CT 0.677 0.347
CT+CLBaseline 0.647 0.427
CT+CLLinear 0.658 0.439
CT+CLConvex 0.657 0.449
CT+EC [14] 0.650 0.379
CRNN0.5,10 [11] 0.630 0.321

Table 2: accframe and accclass scores over V for all data-
balancing methods using stratified split over BRIM.

which we call CRNN. As BRIM is significantly larger than
the dataset used to train the BTC model, the BTC model is
re-trained on BRIM as described in Section 5.2. We eval-
uate these models using the WCSR metrics and the same
5-fold split of BRIM that is used in [9, 11, 26].

All CL experiments are trained and evaluated with the
CT model. We denote the models with convex and lin-
ear scheduler functions as CT+CLConvex and CT+CLLinear,
respectively. The baseline model with scheduler function
g(e) = 0 is denoted CT+CLBaseline. We also evaluate the
even-chance training scheme proposed in [14], which we
call CT+EC. Specifically, we adjust the CT model train-
ing procedure so that each chord type v 2 V has an even
chance of being selected at the beginning of each train-
ing segment. accquality is used as the validation metric for
the CT+EC model. Further, we evaluate the reweighting
scheme of [11] on the CRNN model. We experiment with
the best-reported reweighting configuration (�, wmax) =
(0.5, 10.0), which we call CRNN0.5,10. For evaluation we
use the accframe and accclass metrics using the stratified 5-
fold split of BRIM.

5.4 Results

The WCSR scores for all models considered are shown in
Table 1. Table 1 also includes an ablation study that out-
lines the performance degradation with the removal of each
novel component in the CT architecture; i.e. the convolu-
tional encoder (C), structured training (S), and relative po-
sitional encoding (RE). Note that the CT architecture with-
out all three novel components (and with the inclusion of
global z-normalization) is equivalent to BTC [19]. Table
1 shows that the CT model outperforms existing ACR sys-
tems across all WCSR metrics. Further, the ablation study
indicates that each novel component offers a gradual, yet
consistent improvement to the CT model.

Table 2 shows the results of the methods that address
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Chord Quality Accuracy
Method maj min 7 min7 maj7 sus4 maj6 min6 sus2 dim aug hdim7 dim7 minmaj7
CT 0.801 0.637 0.518 0.576 0.570 0.277 0.102 0.134 0.034 0.365 0.236 0.357 0.031 0.031
CT+CLConvex 0.735 0.626 0.537 0.595 0.634 0.406 0.275 0.288 0.261 0.395 0.517 0.476 0.181 0.229
CT+CLBaseline 0.727 0.618 0.512 0.581 0.604 0.411 0.250 0.264 0.235 0.386 0.460 0.450 0.209 0.151

Table 3: Chord quality accuracies of various CT models over BRIM at evaluation. Chord quality accuracy is defined as the
proportion of frames where the predicted chord quality matches the ground-truth chord quality.

imbalanced class-learning including a baseline CT model
(i.e. no reweighting). Unsurprisingly, the CT model per-
forms the best in the accframe metric. This is consistent
with previous works that have shown that optimizing the
class-wise accuracy typically harms the frame-wise accu-
racy [11,14]. The best-performing CL model CT+CLConvex
provides substantial improvement (10.2%) in the class-
wise accuracy, with only a modest degradation (2.0%)
in the frame-wise accuracy. This indicates that the CL
scheme considerably suppresses the learning bias in the
model induced by the imbalanced chord quality distribu-
tion without significantly impairing the performance of
the frequently-labelled classes. Moreover, both CL con-
figurations CT+CLConvex and CT+CLLinear offer improve-
ments in the accframe and accclass metrics over the baseline
CT+CLBaseline. This indicates that by having the model suf-
ficiently learn the base chord qualities prior to the corre-
sponding extended chord qualities, the model better gener-
alizes on both the frequently-labelled and sparsely-labelled
chord qualities. This is further confirmed in Table 3,
which shows that CT+CLConvex outperforms CT+CLBaseline
in chord quality accuracy on every chord quality except for
sus4 and dim7.

In Figure 5, we evaluate the chord quality accuracies of
the CT+CLConvex model at different epochs in the curricu-
lum. Note that the dim base chord quality accuracy (in
dark green) improves substantially from epochs 1 to 10,
followed by an improvement in the hdim7 (in red) and
dim7 (in purple) extended chord qualities from epochs 10
to 20 and 10 to 40, respectively. Similar trends can be ob-
served for the maj and min base chord qualities. This
indicates that sufficient learning of the base chord qualities
leads to performance improvements in the corresponding
extended chord qualities. We hypothesize that the convex
scheduler function outperforms the linear scheduler func-
tion in class-wise accuracy because the extreme imbalance
in the chord quality distribution warrants a faster curricu-
lum pace at the beginning of training. As shown in Table
2, the proposed CT+CLConvex model convincingly outper-
forms previous methods in the accclass metric. Note that the
CRNN0.5,10 results in Table 2 differ from the results re-
ported in [11] as we run CRNN0.5,10 over a different chord
vocabulary V than the one used in [11].

To validate the inclusion of the CRF decoder in the
CL scheme, we count the number of chord changes in
BRIM predicted by the CT model, the CT+CLConvex model,
and the CT+CLConvex model without the CRF (denoted
CT+CLConvex-CRF). Table 4 shows that the model weights
at CL convergence disrupt the smoothness of the out-
put chord-label predictions, as evidenced by the substan-

Figure 5: Chord quality accuracies of CT+CLConvex evalu-
ated at different points along the curriculum.

Method Chord Changes
CT 170,287
CT+CLConvex 123,350
CT+CLConvex-CRF 235,885
Ground-Truth 122,231

Table 4: Predicted chord changes over BRIM.

tially larger number of predicted chord changes by the
CT+CLConvex-CRF model.

6. CONCLUSION

We propose a convolutional Transformer architecture for
ACR and a novel CL reweighting scheme to handle the im-
balanced chord quality distribution. The proposed scheme
exploits the hierarchical relationships between chord qual-
ities by gradually converging from the initial distribution
to a balanced chord quality distribution. The proposed cur-
riculum outperforms existing methods and non-CL base-
lines in improving the classification performance of rare
chord qualities without significantly degrading the classifi-
cation performance of the frequently-labelled chord qual-
ities. Although the proposed method considerably dimin-
ishes the model-learning bias induced by the imbalanced
chord quality distribution, the model still generally fa-
vors the frequently-labelled chord qualities. We believe
this is primarily an issue of data scarcity. Therefore, a
promising future direction to handle the imbalanced class-
learning problem for ACR is to generate more annotated
data either synthetically or by leveraging the vast amount
of publically-available unannotated audio tracks.
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ABSTRACT

Music segmentation algorithms identify the structure
of a music recording by automatically dividing it into
sections and determining which sections repeat and when.
Since the desired granularity of the sections may vary
by application, multi-level segmentation produces several
levels of segmentation ordered by granularity from one
section (the whole song) up to N unique sections, and
has proven to be a challenging MIR task. In this work we
propose a multi-level segmentation method that leverages
deep audio embeddings learned via other tasks. Our
approach builds on an existing multi-level segmentation
algorithm, replacing manually engineered features with
deep embeddings learned through audio classification
problems where data are abundant. Additionally, we
propose a novel section fusion algorithm that leverages
the multi-level segmentation to consolidate short segments
at each level in a way that is consistent with the segmen-
tations at lower levels. Through a series of experiments
we show that replacing handcrafted features with deep
embeddings can lead to significant improvements in multi-
level music segmentation performance, and that section
fusion further improves the results by cleaning up spurious
short sections. We compare our approach to two strong
baselines and show that it yields state-of-the-art results.

1. INTRODUCTION

Audio-based music structure analysis, also known as
music segmentation, is one of the most widely studied and
challenging tasks in Music Information Retrieval [1]. The
goal of this task is to obtain a series of non-overlapping
sections (segments) defined by a set of temporal bound-
aries, and to identify and label which sections are
repetitions of each other. Automatic segmentation could
enable efficient intra-track navigation [2], assisted mu-
sic creation [3], and section-based music retrieval and
recommendation [4], to name some applications.

A key challenge in music segmentation is to capture the
different possible levels of temporal granularity with which
a song can be segmented. From an application perspective,

© J. Salamon, O. Nieto, N. J. Bryan. Licensed under a Cre-
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Section Fusion Improve Music Segmentation”, in Proc. of the 22nd Int.
Society for Music Information Retrieval Conf., Online, 2021.

a multi-level segmentation 1 that produces multiple seg-
mentations ranging from coarse (e.g., 1-3 unique sections
and their repetitions) to granular (e.g., 8-12) would allow
application designers and/or end users to choose the
level(s) of segmentation that best fits their needs. To
facilitate this, datasets such as SALAMI [5] and SPAM [6]
have been manually annotated with multiple segmentation
levels based on length (e.g., long-scale sections, short-term
motives) or functional role (e.g., “sax solo,” “outro”). Met-
rics to evaluate multi-level segmentation have also been
proposed recently [7,8] and adopted by the community [9].

Most segmentation methods yield just one level. An
early approach identified sharp differences in time series of
audio features related to timbre and harmony by running a
checkerboard kernel along the diagonal of a self-similarity
matrix [10]. More sophisticated handcrafted features were
later proposed, yielding superior boundary detection [11].
Currently, the best boundary detection is obtained with
deep learning models, such as a deep convolutional neural
network (CNN) [12] or deep metric learning which yields
an effective feature space for boundary detection [13].
Multi-level approaches appeared more recently, and just
a handful have been proposed to date. McFee and Ellis
apply spectral clustering to a self-similarity matrix ob-
tained via a simple combination of DSP features [14], an
approach later enhanced by Tralie and McFee by adding
harmonic embeddings from a convolutional-recurrent
neural network and using Similarity Network Fusion
(SNF) to combine features [9]. Supervised approaches
include ordinal linear discriminant analysis [15] and a
CNN that outputs two segmentation levels [16].

We propose an approach 2 that builds on the work of
McFee and Ellis [14]. We summarize our contributions as
follows: (1) we propose replacing or augmenting the hand-
crafted features with deep audio embeddings that can ro-
bustly capture various similarity and repetition cues; (2) we
introduce a multi-level section fusion algorithm that lever-
ages the different segmentation levels, consolidating short
sections to produce a cleaner and more consistent segmen-
tation across levels; (3) through a series of experiments
and qualitative analysis, we demonstrate the effectiveness
of each of our contributions. We compare our approach to
strong baselines and show that it produces state-of-the-art
results for multi-level music structure segmentation.

1 Also known as hierarchical structure segmentation, but since the lev-
els do not strictly form a hierarchy, we use multi-level segmentation.

2 Code: github.com/justinsalamon/musicseg_deepemb
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2. LAPLACIAN STRUCTURAL DECOMPOSITION

We start with an overview of Laplacian Structural Decom-
position (LSD) [14], which forms the basis for our method.

A recurrence matrix captures the similarity between
feature frames of a track, and can expose song struc-
ture [11]. It is a binary, squared, symmetrical matrix R
such that Rij = 1 if frames i and j are similar–for a spe-
cific metric, e.g., cosine distance–and Rij = 0 otherwise.
McFee and Ellis [14] treat the recurrence matrix as an un-
weighted, undirected graph, where each frame is a vertex
and 1’s in the recurrence matrix represent edges. Then they
apply spectral clustering [17] (unrelated to audio spectro-
grams), yielding a per-frame cluster assignment. Sections
are derived by grouping frames by their cluster assignment.
Sections with the same cluster ID represent repetitions.

In the original approach, R is obtained by combin-
ing two recurrence matrices obtained from audio features:
Rloc computed from mel-frequency cepstral coefficients
(MFCC) to identify local similarity between consecutive
frames, and Rrep computed from Constant-Q transform
(CQT) features to capture repetition across the entire track.
The goal is to detect sudden sharp changes in timbre with
Rloc, while capturing long-term harmonic repetition with
Rrep. These matrices are combined via a weighted sum
controlled by a hyper-parameter µ 2 [0, 1], which can be
set manually or automatically [14]:

R = µRrep + (1� µ)Rloc (1)

The number of unique sections produced by the seg-
mentation is equal to the number of clusters N used for
spectral clustering. By clustering with increasing N =
1...M we obtain a multi-level segmentation: the higher M
is, the finer the resulting segmentation [18]. The clustering
uses an eigenvalue decomposition, such that for a given M
the data are projected onto the first M eigenvectors (or-
dered by their eigenvalues) of the symmetrical normalized
Laplacian of R and then clustered. The key takeaway is
that the same eigenvectors are reused for increasing M
(each time adding one more), meaning cluster assignments
at different levels are related. This property is essential for
the multi-level section fusion algorithm we present later.

3. DEEP AUDIO EMBEDDINGS

We replace or augment the handcrafted features in LSD
with deep audio embeddings learned via other tasks, mak-
ing this a transfer learning approach. We propose to: (1)
replace the MFCC features with deep embeddings learned
via Few-Shot Learning (FSL) [19], and (2) augment the
CQT features with deep embeddings learned via a state-
of-the-art music auto-tagging model designed to capture
music similarity across genre, mood, tempo, and era [20].

3.1 Few-shot Learning Embeddings

The purpose of the MFCC features used in the LSD
method is to capture local (short-term) timbre similarity,
with the goal of identifying sharp transitions as potential

boundary locations. However, MFCC have been shown to
be sensitive to noise [21], and so we hypothesize that an au-
dio feature that captures short-term timbre similarity more
robustly could lead to better boundary detection.

To this end, we employ the Few-Shot Sound Event De-
tection model recently proposed by Wang et al. [22]. Few-
shot learning (FSL) is an area of machine learning which
aims to train models that are able, once trained, to robustly
recognize a new class given a handful of examples of the
new class at inference time [19]. Wang et al. showed that
Prototypical Networks [19], a metric-based approach orig-
inally proposed for FSL on images, can be successfully ap-
plied to the audio domain given the right adaptations. Im-
portantly, Prototypical Networks do not require fine-tuning
or retraining. Rather, they are used to embed audio such
that perceptually similar sounds are also close in the em-
bedding space, as shown by Wang et al. [22, 23]. As such,
these embeddings, which are computed from a 0.5 second
window, can be viewed as a general-purpose, short-term,
timbre similarity feature. Wang et al. focused on the task
of sound event detection (SED), training and evaluating
the model on few-shot word recognition via an annotated
speech corpus. We refer the reader to this study for further
details about the model architecture and training [22].

As this model was trained on hundreds of thousands
of audio samples, we hypothesize that the resulting audio
embedding will be more robust compared to MFCC for
capturing short-term timbre similarity. We replace MFCC
with these embeddings, henceforth FSL, to compute Rloc.
We use the model trained by Wang et. al, courtesy of the
authors. Even though the model was trained on speech
audio data, preliminary experiments indicated it captures
timbre similarity for music too–a form of transfer learning.

3.2 Music Similarity Embeddings for Repetition

In LSD the repetition recurrence matrix Rrep is obtained
using Constant-Q transform (CQT) features [24] computed
from the audio signal after applying Harmonic-Percussive
Source Separation (HPSS) [25] to enhance the harmonic
components of the audio signal. Still, not all songs ex-
hibit harmonic repetition, e.g., an EDM song may exhibit
repetition of timbre (presence/absence of a beat, a high-
or low-pass filter that is applied in specific sections, etc.).
Many Western popular music songs use the same harmonic
progression for both the verse and chorus, with only the in-
strumentation and lyrics indicating a section change.

We propose to use, in addition to CQT, deep audio
embeddings that can capture other complementary music
qualities that may be indicative of repetition, such as in-
strumentation, tempo, and mode. To achieve this, we lever-
age the deep music auto-tagger presented by Lee et al. [20].
In their work, the authors contrast classification and met-
ric learning for training a deep music embedding that can
be used for similarity-based music retrieval. Of the ap-
proaches compared, disentangled multi-task classification
yielded an embedding that gave the best music retrieval
results, in addition to producing state-of-the-art results for
music auto-tagging. Here, disentangled means that the em-
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bedding space is divided into sub-spaces that capture dif-
ferent dimensions of music similarity. The full embedding
of size 256 is divided into four disjoint subspaces, each of
size 64, where each subspace captures similarity along one
musical dimension: genre, mood, tempo, and era. We refer
the reader to Lee et al. [20,26] for further details about the
model architecture and optimization.

We hypothesize that this embedding, which is obtained
from a 3-second context window and was trained on the
Million Song Dataset [27], captures musical qualities that
can be complementary to those captured by the CQT: genre
is often a reasonable proxy for instrumentation; mood can
be a proxy for tonality and dynamics; tempo is an impor-
tant low-level quality in itself; and era, in addition to be-
ing related to genre, can be indicative of mixing and mas-
tering effects. Combined, the full embedding, henceforce
referred to as DEEPSIM, may surface repetitions along di-
mensions that are not captured by the CQT.

3.3 Fusing Similarity Matrices

In Section 2 we explained that the LSD method uses two
matrices: Rloc (from MFCC) and Rrep (from CQT fea-
tures). Now, we replace MFCC with FSL features for com-
puting Rloc. For computing Rrep we do not replace the
CQT features but rather combine them with the DEEPSIM
embeddings, since they are potentially complementary. We
do this via another weighted sum controlled by a hyper-
parameter � 2 [0, 1], leading to the following equation:

R = µ
�
�RDEEPSIM + (1� �)RCQT�+ (1� µ)RFSL (2)

All three matrices are normalized prior to being com-
bined to ensure their values are in the same [0, 1] range.
This simplistic approach to feature fusion may not be opti-
mal, and indeed more advanced fusion techniques such as
Similarity Network Fusion [9] have been proposed. How-
ever, this approach has the advantage of allowing us to eas-
ily and clearly study the relative importance of the features
we are proposing to use: µ controls the relative importance
of local versus repetition similarity, while � controls the
relative importance of CQT versus DEEPSIM features for
repetition similarity. We set our initial parameterization to
µ = 0.5, � = 0.5, meaning we give equal weight to local
similarity obtained via FSL features and repetition similar-
ity, which is given by the simple average of the RCQT and
RDEEPSIM matrices. Later on we will explore the impact of
varying these parameters on two different datasets to gain
insight about feature relevance for different data.

4. MULTI-LEVEL SECTION FUSION

In Section 2 we explained how segmentation is achieved
by clustering each frame of the audio signal. This assigns
each frame a cluster ID, and then consecutive frames with
the same cluster ID are grouped to form sections. This pro-
cess can sometimes result in a small number of consecutive
frames having a different cluster ID to those around them,
leading to very short sections. These often do not repre-
sent actual sections in the song, and even when they do,
they may not be helpful to the end user or application.

The LSD method attempts to alleviate this issue via
smoothing: it applies median filtering to RRep to enhance
diagonals in the matrix before it is combined with RLoc,
and also applies median smoothing to the vectors obtained
via spectral clustering. Even with this smoothing, we
found that our approach (and LSD) can still produce spuri-
ous short sections. Smoothing more aggressively would
deteriorate the temporal accuracy of the boundaries be-
tween sections, and is thus undesirable. What is more, it
is unlikely for there to be a single “best” minimal section
duration for all use cases. Rather, the appropriate lower
bound on section duration will depend on the application.

We address this challenge in a way that allows the user
to define their desired minimal section duration. Given the
desired minimal duration in seconds, we now need to re-
move sections whose duration is below this value, hence-
forth “short sections”, by fusing them with the previous
section, the next section, or both. But, how do we deter-
mine which section(s) to fuse with? We propose an algo-
rithm that leverages multi-level segmentation to solve this.

4.1 Multi-level Section Fusion Algorithm

Our method leverages two heuristics: (1) section IDs
should mostly be consistent with overlapping sections at
lower segmentation levels, since we are reusing the same
eigenvectors for clustering (cf. Section 2); (2) section
boundaries should be mostly consistent across segmenta-
tion levels, and thus a boundary that overlaps with bound-
aries at lower levels of the hierarchy is more likely to be a
real boundary compared to one that does not.

The algorithm works as follows: say we need to fuse a
short section at level n. If the section is the first or last of
the song, we merge it to the next or previous section re-
spectively, as that is our only option. If the section is in the
middle of the song and both the previous and next sections
have the same ID, we merge all three together. These three
simple scenarios are depicted in Figure 1a. Otherwise, we
need to determine whether to merge the short section with
the previous or the next section at level n. So, we look one
level down in the hierarchy (n � 1) and find the section
that overlaps the most with our short section. If the ID of
the overlapping section at level n � 1 matches the ID of
either the previous or next sections at level n, we merge
the short section with the matching section (Figure 1b). If
the overlapping ID at level n� 1 does not match the ID of
neither the previous nor the next section at level n, we go
down to level n � 2 and try again (Figure 1c), and so on
until we find an overlapping section whose ID matches the
ID of either the previous or next section at level n.

If we reach the bottom level and still do not find a
match, we turn to our second multi-level cue: the bound-
aries (Figure 1d). Our short section at level n has two
boundaries, let’s call them “start” and “end.” For each of
the two we count how many boundaries they overlap with
at all lower segmentation levels, where we consider bound-
aries at different levels to overlap if they are within one
second of each other. Whichever of the two (start or end)
overlaps with the most boundaries at lower levels is more
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Figure 1: Multi-level section fusion algorithm: in all plots the short orange section needs to be fused. The number to the
left of each segmentation represents its level, with the number in orange indicating the level being cleaned: (A) three simple
fusion scenarios, (B) fusion via multi-level segmentation IDs: level n� 1 gives us the answer, (C) same as (B) but this time
level n � 2 gives us the answer, (D) fusion via multi-level segmentation boundaries: the start boundary is consistent with
boundaries at levels n� 1 and n� 2, whereas the end boundary is not consistent with any boundaries at lower levels.

likely to be a real boundary, so we keep that boundary and
remove the other by fusing the short section to the adjacent
section separated by the “losing” boundary.

We repeat the entire process until there are no short sec-
tions left at level n. We iterate over the sections in a dou-
ble loop: the outer loop iterates over section IDs, from the
highest to the lowest. The section ID corresponds to the
eigenvector to which the section was clustered. By iterat-
ing in this way, we are more likely to keep sections with
lower IDs, which in turn are more likely to appear at lower
levels of the hierarchy. Within each section ID, our inner
loop iterates over the sections from shortest to longest. We
have found that this approach leads to more coherent sec-
tion fusion across the entire hierarchy.

5. EXPERIMENTAL DESIGN

5.1 Datasets

We experiment with two datasets: Harmonix [28] and
SALAMI [5], which are the largest datasets published to
date with structural segmentation annotations. They are
notably different in terms of audio content and annotations.

The Harmonix set contains 912 tracks of Western pop-
ular music that have been manually annotated with func-
tional sections (“intro,” “chorus,” “solo,” etc.). As such,
the annotations are not multi-level (i.e., they are “flat”)
and represent a single segmentation level with one anno-
tator per track. This dataset was compiled by the video
game company Harmonix with the goal of incorporating
music segmentation into some of its music games (e.g.,
Rock Band, Guitar Hero). This makes it highly relevant
for evaluating algorithms that will be applied in real-world
applications focusing on Western music.

The SALAMI set is comprised of 1,355 tracks spanning
a wide range of musical genres including classical, jazz,
non-Western music, live performances, etc. Each track is
manually annotated with three levels: (1) functional seg-
ments representing sections such as “guitar solo,” “verse,”
etc.; (2) larger-scale segments representing longer struc-
tural sequences, annotated with upper-case letters, e.g.,
A, B, C’; (3) small-scale segments capturing shorter time
scales in the song that may include melody lines or motifs,
annotated with lower-case letters, e.g., a, b’, c. To be com-

parable to previous work [9], we evaluate against the large-
(2) and small-scale (3) annotations, limiting our test set to
tracks that have two or more annotations (884 tracks). The
remainder (471) are used for hyper-parameter tuning.

5.2 Metrics

The L-Measure (L-M) is the preferred metric for evalu-
ating multi-level segmentations [7]. It treats music seg-
mentation as a similarity ranking problem, capturing both
boundary alignment (otherwise evaluated as a binary clas-
sification problem) and segment labeling (otherwise eval-
uated as a clustering problem). To compute L-M, we di-
vide the reference annotation into time points (frames), and
compare each point t against all other time points. If t is
closer to point u than point v when considering all seg-
mentation levels, we represent it as a triplet (t, u, v). We
repeat the same process for the algorithm’s estimate seg-
mentation. We then define the L-Precision (L-P) as the
fraction of estimate triplets that match reference triplets,
the L-Recall (L-R) as the fraction of reference triplets that
match estimate triplets, and L-M as their harmonic mean.

Our method and the baselines we compare it against
produce much deeper segmentations than the two levels
annotated in SALAMI or the single level annotated in Har-
monix, meaning the L-Precision may not be sufficiently re-
liable [7,9]. Conversely, the L-Recall, which captures how
well the structure defined in the reference is retrieved in the
estimation is, in this context, a more trustworthy metric,
and so we focus on it in our study. Still, for completeness
we report all three L metrics (L-P, L-R, L-M).

We also report the standard metrics used to evaluate
flat music segmentation: Hit Rate for boundary retrieval at
0.5 and 3 second tolerance windows, HR0.5 and HR3, and
the Pairwise Frame Clustering (PFC) [29] and Normalized
Conditional Entropies (NCE) [30] for segment labeling.
Since our application scenario assumes the preferred seg-
mentation level will be preset by the application designer
or set by the end user based on their needs, we simulate this
scenario in our evaluation by computing these metrics for
each track using the segmentation level that maximizes the
metrics. For conciseness, we only report the aggregated
harmonic mean for each of the flat metrics.
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Deep Embs. Sec. Fusion L-P L-R L-M
No No 36.70 65.77 46.82
No Yes 38.07 66.68 47.92
Yes No 40.91 76.56 53.01
Yes Yes 43.50 76.47 55.01

Table 1: Ablation results on the Harmonix dataset.

5.3 Baselines

We compare our approach against two baselines: the orig-
inal LSD method [14], and its improved variant that adds
deep harmonic embeddings and uses Similarity Network
Fusion (SNF) to combine the recurrence matrices [9].
While the latter baseline also leverages deep embeddings,
they are only designed to capture harmony, unlike our
multiple deep embeddings which capture a variety of mu-
sical properties. We use the LSD implementation from
MSAF [6] and the SNF implementation released by the au-
thors. 3 LSD and our method use beat-aligned features, for
which we use the beat tracker by Korzeniowski et al. [31]
implemented in the madmom package [32], as it has been
been shown to yield better segmentation results [28] com-
pared to the default beat tracker in Librosa [33]. SNF does
not rely on beat tracking.

5.4 Ablations

To demonstrate the effectiveness of our contributions, we
perform a systematic ablation compared to LSD: we fix
µ = 0.5 for LSD and µ = � = 0.5 for our approach,
and then compare LSD, LSD + section fusion, our method
(LSD + deep embeddings) without section fusion, and fi-
nally our full method (LSD + deep embeddings + section
fusion). For section fusion we set the minimum section
duration to 8 seconds (=4 bars at 120 bpm) as a reasonable
lower bound. In a real world scenario this value could be
chosen by an end user or preset by the application designer.

6. RESULTS

6.1 Ablations

In Table 1 we present the results of the ablations described
above on the Harmonix dataset. We see that our deep
embeddings and section fusion independently improve the
baseline. Noteworthy is the dramatic increase in L-Recall
due to our proposed deep embeddings. Combining the
deep embeddings with section fusion improves L-Precision
and thus the overall L-M. Though omitted from Table 1 for
conciseness, we also confirmed that just replacing MFCC
with FSL (without DEEPSIM) improves over the baseline,
strengthening our hypothesis from Section 3.1.

6.2 Feature Importance

To understand the relative importance of the features used
in our approach, we run a grid search over µ and �, focus-
ing on L-Recall (cf. Sec. 5.2). Remember that µ controls
the ratio of local similarity (FSL embeddings) to repetition,

3 https://github.com/ctralie/GraphDitty

Figure 2: Grid search for µ and �, red square is best.

while � controls the relative contribution of the DEEPSIM
embeddings versus the CQT features to repetition.

We present the results in Figure 2 for Harmonix and
SALAMI, with the L-Recall maxima marked by a square.
First, we note that results always worsen when µ = 0 or
1, illustrating the importance of combining both local sim-
ilarity and repetition matrices. While less pronounced, the
same is true of �, showing that both datasets benefit from
combining DEEPSIM and CQT features for repetition.

For Harmonix, performance is maximized when µ =
0.1, � = 0.9: most weight goes to local repetition via FSL,
with most of the remainder going to DEEPSIM features for
repetition. On the other hand, for SALAMI performance
is maximized when µ = � = 0.1, i.e., most of the weight
goes to FSL with the remainder going to CQT features.

The difference in optimal parameter values per dataset
warrants discussion. A small µ in both cases highlights the
importance of local similarity information (FSL), regard-
less of music genre. On the other hand, we see the DEEP-
SIM embeddings are preferred when segmenting Western
popular music (Harmonix), while CQT features are fa-
vored for SALAMI which is more diverse. One possible
explanation is that DEEPSIM was trained on a subset of
MSD that leans more heavily toward Western popular mu-
sic compared to SALAMI [34]. Still, it is always beneficial
to use a combination of both features.

6.3 Multi-level and Flat Results

We compare our approach against two strong baselines
representing the state-of-the-art in multi-level music struc-
ture segmentation [9, 14]. We compute the baselines us-
ing the same setup reported by their authors. LSD sets µ
automatically per-track in a data-driven fashion. For our
approach, Deep Embeddings with section Fusion (DEF),
we report results for three parameter configurations: (1)
µ = � = 0.5, (2) optimal values obtained via grid search
on SALAMI-train (µS , �S), (3) optimal values obtained
via grid search on Harmonix (µH , �H) 4 .

The full multi-level segmentation results are presented
in Table 2. For SALAMI, we see that the parameter values
obtained by optimizing DEF over SALAMI-train general-
ize well to the test set, beating all other methods in terms
of multi-level segmentation (L-P, L-R, L-M) and setting a
new state of the art. Turning to Harmonix, we see that DEF
outperforms the baseline for all three parameter configura-
tions, setting a new state of the art for this dataset too. Most

4 These may be artificially inflated due to the lack of train/test splits
for the Harmonix dataset.
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SALAMI Harmonix
Method L-P L-R L-M L-P L-R L-M
LSD [7] 41.89 63.60 49.77 39.05 69.33 49.63
SNF [9] 43.08 66.82 51.65 36.38 67.47 47.01

DEF0.5, 0.5 42.43 64.51 50.38 43.50 76.47 55.01
DEF

µ
S
, �

S 43.46 67.30 52.02 42.63 75.43 54.06
DEF

µ
H
, �

H 41.64 66.06 50.38 43.23 81.03 56.04

Table 2: Multi-level segmentation results.

SALAMI Harmonix
Method HR0.5 HR3 PFC NCE HR0.5 HR3 PFC NCE
LSD [7] 31.99 47.46 56.13 59.00 40.69 56.50 61.21 57.43
SNF [9] 29.17 45.59 56.73 59.98 26.57 51.42 57.38 54.86

DEF0.5, 0.5 33.78 55.65 59.44 62.16 45.74 68.84 70.11 66.48
DEF

µ
S
, �

S 32.07 53.91 59.99 62.39 43.18 67.34 69.34 65.44
DEF

µ
H
, �

H 31.79 56.35 58.56 61.48 41.61 71.17 71.49 67.59

Table 3: Flat segmentation results.

sections in the “lowercase” level of SALAMI are shorter
than 8 s which, given our section fusion, may explain why
the improvement is moderate compared to Harmonix. Fur-
thermore, SALAMI contains various tracks with limited
inter-annotator agreement [6], making it harder for an al-
gorithm to match the reference annotations.

Finally, we report the flat results in Table 3 (SALAMI
is evaluated against the “uppercase” level). Note that these
results mimic the behavior of a user choosing their desired
segmentation level, as described in Section 5.2. Similar
to the multi-label results, vanilla DEF also outperforms
the baselines on all flat metrics in both datasets, including
HR0.5 which is the strictest metric for boundary retrieval.

6.4 Qualitative Analysis

To gain further insight into how our approach compares to
the LSD baseline, we examine the multi-level segmenta-
tions they produce for a particular track in the Harmonix
dataset: track 199, “The Number of the Beast” by Iron
Maiden (we encourage the reader to listen to this track to
better follow this section). The multi-level segmentations
are shown in Figure 3 (we use vanilla DEF0.5, 0.5) with the
reference boundaries overlaid as vertical magenta lines and
the reference section labels printed at the top of each plot.

It is apparent that the baseline method produces many
more noisy segments (i.e., too short, not pertinent) com-
pared to our approach. Particularly relevant is the “break-
down” segment, where there are multiple changes in terms
of instrumentation: the drums stop suddenly, the rhythm
and bass guitars change riffs drastically, and all this occurs
between two different guitar solos (“solo” and “solo2”).
The baseline method detects these short changes starting
at level 3, without being able to detect the whole “break-
down” as a single whole section. This also prevents it from
recognizing other important sections at levels 3 and 4 such
as “inst,” which is where the drums kick in along with a
loud and long scream, or the “verse” and “chorus” sections,
since the new unique sections introduced at these levels are
“cannibalized” by the changes in the “breakdown.”

In contrast, our method detects the breakdown as a
segment starting from level 6, labeling it similarly to the
“bridge,” which makes musical sense given that both parts
are instrumental and quite different to all others parts. The

Figure 3: Segmentation of Harmonix track 199: LSD (top)
and DEF0.5, 0.5 (bottom). Ground truth in vertical lines.

absence of noisy short segments in our approach can be at-
tributed, in all likelihood, to our proposed section fusion
algorithm. Our method successfully captures the drum
entrance in level 3, identifying three highly differentiated
long segments: spoken word intro (blue), music with min-
imal drums (orange), and music with full drums (yellow).
Successfully capturing these key changes in timbre can be
attributed to our introduction of the proposed deep em-
beddings. Overall, it is apparent in this example that our
method obtains notably cleaner sections that better align to
the reference annotations thanks to both the deep embed-
dings and the multi-level section fusion algorithm.

7. CONCLUSION

In this work we introduced a multi-level segmentation
method that leverages deep audio embeddings learned via
other tasks. Building on an existing multi-level segmenta-
tion algorithm based on spectral clustering, we replaced
MFCC features with deep embeddings trained via Few-
Shot Learning for computing local timbre similarity. We
also augmented the CQT features used to identify sec-
tion repetition with deep embeddings from a state-of-the-
art music auto-tagging model that captures similarity along
different music dimensions. Next, we introduced a novel
section fusion algorithm that leverages the multi-level seg-
mentation to consolidate short segments. Through a series
of experiments we showed that our two key contributions–
replacing the handcrafted features with our proposed deep
embeddings and applying multi-level section fusion–lead
to significant improvements in multi-level music segmen-
tation, outperforming two strong baselines and yielding
state-of-the-art results. Finally, we complemented our
quantitative results with a qualitative analysis to gain fur-
ther insight into how our proposed enhancements improve
segmentation performance. Future work includes evaluat-
ing a broader range of deep embeddings with our segmen-
tation approach such as OpenL3 [35] and VGGish [36],
exploring advanced feature fusion approaches such as SNF
[9], and investigating automated strategies for determining
the optimal minimum section duration for section fusion.
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ABSTRACT

Music streaming platforms rely heavily on learning mean-
ingful representations of tracks to surface apt recom-
mendations to users in a number of different use cases.
In this work, we consider the task of learning music
track representations by leveraging three rich heteroge-
neous sources of information: (i) organizational informa-
tion (e.g., playlist co-occurrence), (ii) content informa-
tion (e.g., audio and acoustics), and (iii) music stylistics
(e.g., genre). We advocate for a multi-task formulation
of graph representation learning, and propose MUSIG:
MUlti-task Sampling and Inductive learning on Graphs.
MUSIG allows us to derive generalized track representa-
tions that combine the benefits offered by (i) the induc-
tive graph based framework, which generates embeddings
by sampling and aggregating features from a node’s local
neighborhood, as well as, (ii) multi-task training of aggre-
gation functions, which ensures the learnt functions per-
form well on a number of important tasks. We present
large scale empirical results for track recommendation for
the playlist completion task, and compare different classes
of representation learning approaches, including collabo-
rative filtering, word2vec and node embeddings, as well
as graph embedding approaches. Our results demonstrate
that considering content information (i.e., audio and acous-
tic features) is useful and that multi-task supervision helps
learn better representations.

1. INTRODUCTION

Recent advancements in recommendation technology [1–
7] have fueled music listening on on-demand music
streaming apps (e.g., Spotify, Pandora, Apple Music).
Playlists form the backbone of how music is consumed,
with users relying on curated or user generated playlists to
discover and consume music from a massive pool of mil-
lions of songs. Personalization models built for selection
of tracks, generation of playlists and subsequent recom-

†This work was done while the first author was an intern at Spotify.
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Information Retrieval Conf., Online, 2021.

mendation of playlists to users, rely heavily on represent-
ing tracks in a meaningful way, to best capture the various
intricacies and differences across musical tracks.

When learning track representations, one can leverage
various types of heterogeneous information encoded in
music data to benefit downstream tasks of music recom-
mendation: (i) organizational information: tracks orga-
nized into playlists; (ii) content information: audio and
acoustic features extracted from tracks; and (iii) musical

stylistics: musical domain characteristics like music gen-
res. Further, such representations are used by system de-
signers for many different downstream tasks, e.g., track
recommendation for playlist completion, ranking tracks
within a playlist and suggesting tracks in sequential ses-
sions (i.e., track radios). Unfortunately, the learnt repre-
sentations are often ill-suited for such tasks, because of
mismatch between the original learning and downstream
task. Instead, training the representation learning system
on multiple, complementary tasks would enable learning
richer representations, allowing for an increased adoption
of the representations for a variety of newer downstream
tasks, which is important in an industrial setting.

Motivated by the above aspects, we propose a MUlti-
task based Sampling and Inductive Graph learning ap-
proach (MUSIG) for learning track representations, that
combines information from heterogeneous sources and
benefits from supervision signals from a number of tasks.
Instead of training a distinct embedding vector for each
node, following recent advancements in graph based learn-
ing [8], we train a set of aggregator functions. These func-
tions aggregate information from different nodes in the lo-
cal neighborhood, and are trained via pairwise multi-task
supervision. For each pair of nodes, we consider three
tasks: (i) playlist co-occurrence, (ii) genre prediction, and
(iii) regression of tracks’ audio and acoustic properties.

Furthermore, the trained aggregator functions afford the
inductive ability to the model. Indeed, we can generate em-
beddings for unseen nodes by applying the learned aggre-
gation functions. Finally, jointly leveraging organizational,
content and stylistics information helps us cover individ-
ual track level information (e.g., audio/acoustic features)
as well as information from across various groupings of
track such as music stylistics based grouping (e.g., genres)
and user consumption based grouping (e.g., playlists).

We present a case-study on music recommendations
and conduct large scale analysis to compare different tech-
niques across several qualitative and quantitative measures.
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We make a number of contributions, including algorith-
mic and qualitative insights of music data at scale. Our
findings suggest that extracting audio and acoustic features
from music content is useful, and the addition of such con-
tent attributes better drives the representation of the tracks,
especially when large amount of consumption data is not
available, e.g., when launching in new markets. Further-
more, we show that training the model on multiple tasks
results in performance improvements and enables learning
more generalizable representations. We contend that our
findings have implications on the design and development
of representation learning approaches not only for music,
but also for other types of data.

2. RELATED WORK

Music representation learning. Recent works on mu-
sic representation learning rely on deep neural networks
to generate music embeddings, using various groups of
features: sequence of notes [9], music signals [10], pitch
sequences, temporal dependencies [11, 12], and artist fea-
tures [13]. Using music signals/notes from a track to gen-
erate track embeddings has shown various degrees of suc-
cess, and research in this area is still ongoing. In this work,
we use similar features and compare how graph represen-
tation learning models can incorporate them.

Word2Vec style embeddings. Text representations have
been extensively studied in the last years. Word em-
beddings refer to low-dimensional real-valued vector
representations for each term in the input vocabulary.
Word2Vec [14] and GloVe [15] are two well-known word
embedding algorithms that learn embedding vectors based
on the idea that similar words appear in similar contexts.
Word embeddings have been applied in various contexts,
such as item recommendations [16–18], music recommen-
dations [19] and query modeling and expansion [20, 21].
We also use Word2Vec to generate track embeddings based
on the idea that tracks appearing together in a playlist
should be closer in the embedding space. However, these
approaches are limited as they only consider the sequence
in which the items appear, and could not include additional
information on the actual content.

Graph based embeddings. In recent years, varia-
tions of Word2Vec working on graph structured data
were developed. Examples include Deepwalk [22] and
Node2Vec [23], which generate random walks in a spec-
ified neighborhood of the target node, to compute the
node embedding. Significant advancements of learning
on graph structures for recommendation applications in-
clude GraphSAGE [8], PinSAGE [24], PinnerSAGE [25],
IntentGC [26], MEIRec [27]. Most of these methods are
based on Graph Convolutional Networks (GCNs) [28],
which combine the graph information from the neighbor-
hood of a node (graph structure) and node features (content
information) in the creation of the embeddings. Graph-
based embeddings are especially useful when nodes and
edges have different types [29–32]. Graph representa-
tion learning exploit the structure and the features of the

Feature Description

Genre One-hot encoded vector of the top-50 popular genres

Popularity 2-dimensional vector with the global and the region popularity

Audio 42-dimensional vector that includes: danceability, energy,
liveness, acousticness, loudness, tempo, instrumentalness, va-

lence, etc

Acoustic 8-dimensional vector, corresponding to audio characteristics

Table 1. Track features (values are normalized in 0–1).

data. However, the embeddings are learnt by optimizing
the model on a single task, which makes the embeddings
not easily generalizable to additional downstream tasks.

3. MULTI-TASK GRAPH EMBEDDINGS

Recommender systems rely heavily on learning meaning-
ful representations of users and content, to offer personal-
ized recommendations piquing users’ interest. With an ex-
plicit focus on streaming music platforms, we briefly dis-
cuss few important characteristics of representation learn-
ing and describe our proposed method, MUSIG, for node
representation learning with multi-task supervision.

3.1 Music Graph Data

We work with data consisting of track and playlist informa-
tion from Spotify, a popular music streaming platform 1 .
Tracks are organized into playlists. Playlists provide in-
formation on how users organize their music. We rep-
resent playlist-track information as a graph and create a
(weighted) homogeneous graph containing all tracks in our
dataset. Let the graph be G = (V, E), with nodes V be the
tracks and edges E be the connections between tracks co-
appearing in the same playlist. We set the weight of an
edge to be the number of distinct playlists in which the
connected tracks co-appear. We keep edges with weight
� 10. Our graph contains 5.2M edges and 15.9K nodes,
from a collection of 95K playlists (albums and movies).

Following the approach outlined in [33], we extract var-
ious content features from the music recording of the track,
including acousticness, danceability, energy, instrumental-
ness, liveness, loudness, speechiness, valence and tempo,
etc., which we refer to as audio features (Table 1). Further-
more, we train a deep neural model on the music recording
of each track (via 30-second windows) for a binary classi-
fication task of playlist co-occurrence and we use the last
layer projected to 8 dimensions as the acoustic features of
the track.

3.2 Desired Characteristics

We identify few desirable characteristics for representation
learning approaches and motivate their need for inclusion
with brief supporting analysis. First, many industrial ap-
plications, especially in the music domain, require repre-
sentations to be promptly available for new tracks. Fig-
ure 1 (left) plots the increase in new content on a daily

1 https://www.spotify.com
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Figure 1. (Left) Percentage of tracks per day in our
sample. (Right) Correlation between number of common
playlists and acoustic similarity on 50K pairs of tracks.
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b) GraphSAGE
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Figure 2. (a) Input graph (each color represents a differ-
ent track). (b) GraphSAGE model, aggregating the blue

node’s neighbors to generate the node embedding. (c) Our
multi-task model (MUSIG) computing blue and red nodes’
embeddings while optimizing for three different tasks.

basis; hundreds of tracks are added every day 2 and learn-
ing their representations as early as possible is crucial for
production machine learning systems.

Second, a good representation learning approach should
leverage all available information, including both playlist
co-occurrence and content features. Figure 1 (right)
presents the relationship between playlist co-occurrence
and acoustic features between randomly selected track
pairs. For each pair, we compute the similarity between
tracks using their acoustic features, and plot those against
the percentage of playlists in which the two tracks co-
occur. We observe very low correlation between the two
modalities (�0.029), and low density of the scatter-plot in
the high similarity co-occurrence region, which highlights
that these modalities (graph structure and additional fea-
tures) capture different information.

Finally, the learnt track representations are employed
in a number of use cases across multiple product features.
Usually, methods that compute representations are opti-
mized for a specific task. We hypothesize that training the
representation learning modules on multiple tasks would
enable learning generic representations which would help
in a wide variety of downstream recommendation tasks.

3.3 MUSIG Overview

The key idea behind MUSIG is multi-task supervision of
neighborhood aggregator functions that aggregate infor-

2 In 2019, there is an average 0.09% daily increase of the catalog,
resulting in a 19% increase from the start of the year.

mation from a node’s neighborhood. The idea of exploiting
node’s neighborhood has shown to provide state-of-the-art
results [8, 34]. MUSIG adopts a multi-task based learning
of aggregator functions, which enables it to learn param-
eters of the functions based on feedback from multiple,
complimentary tasks. Specifically, the algorithmic com-
putations performed by MUSIG are divided into two key
steps: (i) Neighborhood Aggregator Step, which gener-
ates embeddings by aggregating information from differ-
ent nodes in multiple hops away from a given node (based
on search depth), and (ii) Multi-Task Supervision Step,
which trains the parameters of the aggregation functions
by jointly predicting multiple tasks, and back-propagates
the combined losses to the aggregator function parameters.

3.4 Neighborhood Aggregator Step

Unlike traditional representation learning approaches,
which train a specific embedding for each item in an end-
to-end neural model, MUSIG relies on local neighbour-
hood information and learns aggregator functions that can
digest local information to obtain a representation of any
given node (Figure 2). For any depth d, the aggregator
function recursively aggregates information from all nodes
in the d-depth neighborhood of a node, and uses a set of
weight matrices Wk, 8k 2 {1, . . . ,K} to propagate in-
formation between layers arising for each depth. At each
iteration, or search depth, the nodes aggregate information
from their local neighbors, and as this process iterates, the
nodes incrementally gain more information from further
reaches of the graph. We follow an iterative approach to
aggregate information. First, each node v 2 V aggregates
the representations of the nodes in its neighborhood N (v),
{hk�1

u , 8u 2 N (v)}, into a single vector hk�1
N (v):

hk�1
N (v)  AGGREGATEk({hk�1

u , 8u 2 N (v)}) (1)

The representations at step k depend on the representa-
tions generated at k � 1, with representations at k = 0
being encoded by the default node features provided to the
graph. By incorporating node features in the learning al-
gorithm, the model simultaneously learns the topological
structure of each node neighborhood as well as the distri-
bution of the node features in the neighborhood. To extract
all adjacent nodes, we uniformly sample a fixed-size set
of neighbors and thereby keep the computational footprint
of each batch fixed. Following [34] we use a permutation
invariant aggregator function which implements the mean
operator, taking the element-wise mean of the vectors in
{hk�1

u , 8u 2 N (v)}:

AGGREGATEk(h
k�1
v ) MEAN({hk�1

u , 8u 2 N (v)}) (2)

We then concatenate the node’s current representation,
with the aggregated neighborhood vector. This concate-
nated vector is fed through a fully connected layer with
nonlinear activation function, which transforms the repre-
sentations to be used at the next step of the algorithm (i.e.,
hk
v , 8v 2 V ):

hk
v  �

⇣
CONCAT(hk�1

v ,hk
N (v))

⌘
(3)
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The final representations output at depth K is denoted as
sv ⌘ hK

V , which is used in the next step during training.

3.5 Multi-Task Supervision

The performance of representations learnt by MUSIG
model relies heavily on how well the aggregator functions
are trained and what tasks they are trained on. Most graph-
based representation learning approaches are trained only
on link prediction tasks, and hence learn function param-
eters only to do well on link prediction task. We hypoth-
esize that training these parameters in a multi-task setting
would make the parameters (and in turn, output represen-
tations) generalizable across multiple downstream applica-
tions. Learning under multi-task supervision offers various
benefits, including imparting inductive bias via auxiliary
tasks, which cause the model to prefer hypotheses that ex-
plain more than one task. This improves generalization
by sharing the domain information between complimen-
tary tasks, which is achieved by using a shared represen-
tation to learn multiple tasks — what is learned from one
task can help learn other tasks.

Considering the output from the previous step, we de-
note by si a track from the input space S and a collection
of task spaces {Y t}t2[T ]. To train the aggregator func-
tions in a multi-task learning setup, we consider large sam-
ple of i.i.d. data points {hsi, sj2I(i)i, y1i , y2i ..., yTi }, where
hsi, sj2I(i)i represents a pair of nodes (i.e., tracks) with
sj2I(i) being a track derived either from neighborhood of
si, N (si), or negatively sampled from elsewhere. T is the
number of tasks, N is the number of such node pairs sam-
pled, and yti is the label of the t-th task for the i-th track
pair. Essentially, for each pair of tracks sampled from the
graph, we consider labels obtained via different tasks. We
further consider a parametric hypothesis class per task as
f t(hsi, sj2I(i)i; ✓sh) : S ! Y t, such that the parame-
ters (✓sh) are shared between tasks. We also consider task-
specific loss functions Lt(·, ·) : St ⇥ St ! R+.

We employ an empirical risk minimization formulation
of multi-task learning, and minimize the loss function:

min
✓sh

TX

t=1

ctLt(✓sh) (4)

for some static or dynamically computed weights ct per
task. In essence, losses from all tasks are combined into a
single surrogate task via linear weighted scalarization, with
each task having ct weight. We perform grid search over
the space of the parameters to estimate the final set of task
weights used to report results. Lt(✓sh) is the empirical loss
of the task t, defined as:

Lt(✓sh) , 1
N

X

i

L(f t(hsi, sj2I(i)i; ✓sh), yt
i) (5)

We apply a multi-task supervision based loss function to
the output representations, zu, 8u 2 V , and tune the weight
matrices Wk, 8k 2 {1, . . . ,K}, and parameters of the
aggregator functions via stochastic gradient descent.

3.5.1 Identifying Supervision Tasks

The multi-task supervision of the model encourages nodes
to have representations that help them solve all tasks for
which the model is trained on. Our choice of supervi-
sion tasks is guided by our focus on leveraging the hetero-
geneous information encoded in music data, specifically,
around three types of information (i) organizational infor-

mation: tracks organized into playlists, (ii) content infor-

mation: audio and acoustic features extracted from tracks,
and, (iii) musical stylistics: musical domain characteristics
like music genres. To have a representative set of tasks to
train the model on, we select one task from each of these
three categories of information:

1. Playlist prediction: binary classification task,
where we predict whether or not the two tracks co-
occur in same playlists. This task encapsulates the
organization structure embedded in music playlists:
two tracks sharing a playlist would make their rep-
resentations similar to each other.

2. Genre prediction: binary classification task, where
we predict whether two tracks belong to the same
genre. Genres are useful for the categorization, and
training on them ensures that tracks with the same
genre have similar representations.

3. Acoustic or audio similarity prediction: regres-
sion task, where we encourage the embeddings to
capture similarities in the music content space. We
define track similarity as the inner product between
acoustic or audio vectors and, thus, force the learnt
space to encode music characteristics. This training
task enforces representations to rediscover audio and
acoustic distances between the tracks.

To better highlight that these tasks contribute heteroge-
neous information during representation learning, we com-
pute the label correlation across them, and observe that the
playlist prediction task has very little correlation with the
other two tasks, and that the genre and acoustic similarity
prediction tasks do share some commonality, but still dif-
fer enough (Figure 1). We use binary cross-entropy loss
for the classification task and RMS loss for the regression
task. Overall, the final loss function combines the losses
from each of the three tasks as:

LFinal = c1LPlaylist + c2LGenre + c3LAudioDist. (6)

Importantly, unlike previous approaches, the representa-
tions si that are fed into this loss function are generated
from the features contained within a node’s local neigh-
borhood, rather than training a unique embedding for each
node (via an embedding look-up).

4. EXPERIMENTAL SETUP

To study the quality of the track embeddings, we conduct
an empirical evaluation using data from Spotify.
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Method Features HR MRR Prec@1 Prec@5 Prec@10 NDCG@1 NDCG@5 NDCG@10

CF - 0.2715 0.1350 0.0119 0.0136 0.0119 0.0610 0.0890 0.0921
TRACK2VEC - 0.5616 0.0174 0.0123 0.0218 0.0225 0.0123 0.0520 0.0813
NODE2VEC - 0.4739 0.0128 0.0001 0.0005 0.0025 0.0001 0.0008 0.0065

TRACK2VEC GENRE 0.5017 0.0137 0.0126 0.0133 0.0139 0.0126 0.0378 0.0575
TRACK2VEC POPULARITY 0.5029 0.0138 0.0125 0.0140 0.0137 0.0125 0.0388 0.0564
TRACK2VEC AUDIO 0.5020 0.0133 0.0156 0.0132 0.0128 0.0156 0.0368 0.0539
TRACK2VEC ACOUSTIC 0.5014 0.0137 0.0145 0.0145 0.0140 0.0145 0.0425 0.0610

GRAPHSAGE GENRE 0.4981 0.0132 0.0038 0.0129 0.0135 0.0038 0.0318 0.0499
GRAPHSAGE POPULARITY 0.5038 0.0149 0.0239 0.0219 0.0180 0.0239 0.0624 0.0808
GRAPHSAGE AUDIO 0.5914 0.0162 0.0143 0.0155 0.0154 0.0143 0.0420 0.0615
GRAPHSAGE ACOUSTIC 0.5382 0.0163 0.0164 0.0217 0.0186 0.0164 0.0594 0.0795

MUSIG GENRE 0.7077 0.0359 0.0278 0.0362 0.0393 0.0278 0.0724 0.1150
MUSIG POPULARITY 0.7505 0.0358 0.0024 0.0193 0.0327 0.0024 0.0312 0.0776
MUSIG AUDIO 0.7203 0.0324 0.0661 0.0494 0.0415 0.0661 0.1240 0.1614
MUSIG ACOUSTIC 0.7305 0.0308 0.0412 0.0429 0.0372 0.0412 0.1047 0.1404

Table 2. Results of the comparison methods using the 50% of playlist’s tracks as seed track list.

4.1 Downstream Task: Playlist Completion

Playlists are the backbone of how music content is con-
sumed, with over one-third consumption resulting from
user-generated playlists. 3 To assist users in selecting mu-
sic for their playlists from the massive music catalog of
million tracks, platforms rely on track recommendation
services for playlist completion. Good track representa-
tions are crucial for the playlist completion task to be ef-
fective. Given a number of tracks in a playlist, our goal is
to recommend related tracks. We construct this experiment
in an offline fashion. We randomly select 10K playlists that
have at least 40 tracks. We keep the top x% tracks to be
the seedlist and we calculate the average embedding from
those. Then, we mix the bottom (100 � x)% tracks with
the same number of tracks from a random pool and we call
them candidate tracks C. We calculate the cosine similar-

ity of all pairs (zs, zc), where zs is the average seedlist em-
bedding and zc is the embedding of candidate c 2 C, and
we rank them in descending order. Finally, we recommend
the top (100� x)% ranked tracks.

4.2 Baselines

We compare the proposed MUSIG with representative
models from the three different classes of representa-
tion learning approaches: collaborative filtering, word2vec
based models and graph embedding based model.

1. Collaborative Filtering. We compare with a collab-
orative filtering matrix factorization method trained with
WARP loss [35], which aims at maximizing the rank of
positive examples by repeatedly sampling negative ones.

2. Track2Vec. We compare a Word2Vec-based model,
considering tracks co-occurring in the same playlists. We
also concatenate the normalized features of Table 1 to
the final embeddings of the model for fair comparison
(TRACK2VEC-FEATURE).

3. Node2Vec. This approach takes into account random
walks in the neighborhood of the node to create embed-
dings. Tracks connected by links in the graph are encour-
aged to be closer in the embedding space.

3 https://www.businessofapps.com/data/spotify-statistics/

4. GraphSAGE [8]. This is a node representation model
that produces embeddings based on the structure (i.e., node
neighborhood) as well as the feature vector.

5. GraphSAGE-Feature. To investigate the performance
of the model when adding features, we run the GraphSage
model with all four different groups of features. To tune
the model, we use the same parameters as before.

Our MUSIG/MUSIG-Feature model. Since the pro-
posed MUSIG model affords multiple supervision, it
is trained on genre prediction and audio/acoustic fea-
ture similarity tasks in addition to playlist co-occurrence
task. We modulated the balance between the three
tasks by empirically selecting the best performing
triple (c1, c2, c3) of Eq. (6) across the following set:
{(1, 1, 1), (1, 0, 0), (0.7, 0.1, 0.2), (0.4, 0.2, 0.4)}, to eval-
uate different properties of the single loss functions (i.e.,
when all losses weight the same; when only the first is non-
zero, which is equivalent to a single task GraphSAGE).

4.3 Evaluation Metrics

We use four metrics to compare the approaches on the
playlist completion task. Firstly, we include the standard
versions for Precision at k (P@k) and Normalized Dis-
counted Cumulative Gain at k (NDCG@k). We define hit

rate (HR) as the fraction of tracks that were ranked in the
top K candidates for a specific playlist P . This metric di-
rectly measures the probability that the track recommenda-
tions are the correct ones. In our experiments, K dynam-
ically changes based on the size of the playlist, and it is
defined as K = (100� x)/|P |, where x is the size of the
seedlist tracks and |P | the size of the playlist. We also use
(scaled) mean reciprocal rank (MRR), which takes into ac-
count the rank of the track u among recommended tracks
for playlist P , defined as [24]:

MRR =
1

n

X

u2P

1

|Ru/10|
,

where n is the number of all pairs and Ru is the rank of the
track u among all recommended tracks for playlist P .
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4.4 Comparison across approaches

We compare all representation learning approaches to ours
(MUSIG), on the playlist completion task (Table 2). Re-
sults are calculated using the 50% of the playlist as seedlist.
In Section 4.6, we discuss more on the performance of
the models using all features. MUSIG trained on the
Music Graph using the multi-task training and including
the POPULARITY in the node attributes, outperforms all
other models. More specifically, we observe that MUSIG–
POPULARITY achieves the best HR=75.05%, while the
best performance from any of the comparison models is
achieved by GRAPHSAGE-AUDIO with an HR=59.14%.
All results were tested for statistical significance and
proven significant (p ⌧ 0.01).

4.5 Impact of training on multiple tasks

MUSIG improves the hit-rate score of the best existing
model by 27%. This is an important indicator that em-
beddings generated by optimizing on multiple tasks are
able to significantly improve the performance of the down-
stream task of playlist completion. Furthermore, this indi-
cates that imparting the representations to perform well on
genre classification and acoustic/audio distance similarity
tasks enriches them further, improving the performance.
We leave for future work further validation of other tasks
for training, and the impact on other downstream tasks.

4.6 Impact of Features

We extensively investigate the importance of leveraging
content features while learning embeddings. We select the
best performing track (TRACK2VEC) and node embedding
(GRAPHSAGE) models, and we evaluate the performance
of these models and MUSIG using different groups of
features node attributes (GENRE, POPULARITY, AUDIO,
ACOUSTIC). For fair comparison, in TRACK2VEC we use
aggregations of features and track embeddings.

In Table 2 we observe that TRACK2VEC achieves best
performance when trained without the content features,
which was expected since the model is designed to lever-
age only organization information. Second, we observe
that in MUSIG the GENRE 4 , AUDIO and ACOUSTIC fea-
tures achieve lower hit rate scores, when compared to the
POPULARITY features. An explanation is that all three fea-
tures are already included as tasks in MUSIG, while popu-
larity enriches further the learning phase. Intuitively, pop-
ularity does have a relationship to content, as it is related to
more “mainstream” or “alternative” track types. However,
in all groups of content features, our model outperforms all
other models when trained with the same content features.
The improvements of our model for each group of con-
tent features are: GENRE: 42%, POPULARITY: 49%, AU-
DIO: 22%, and, ACOUSTIC: 36% compared to the second
best model. This highlights that the information contained
by the audio and the acoustic features extracted from mu-

4 An explanation for the limited performance offered by genre could
be our restriction to the most 50 popular genres (Table 1).

Regr. Task Features HR MRR Prec@10 NDCG@10

AUDIO ACOUSTIC 0.7305 0.0308 0.0372 0.1404
AUDIO AUDIO 0.5518 0.0186 0.0164 0.0581

ACOUSTIC ACOUSTIC 0.7203 0.0324 0.0415 0.1614
ACOUSTIC AUDIO 0.4339 0.0134 0.0085 0.0295

Table 3. Regression task and node features interplay.

sic recordings is indeed informative, and leveraging them
while learning embeddings is useful.

We also evaluate the models for the playlist comple-
tion task when using all four feature categories as node
attributes. For MUSIG, we only add the POPULAR-
ITY feature in the node attributes, as information from
the rest of the available features is already used in the
tasks during the training. The best performing model
is MUSIG, which achieves HR=0.75. The second best
performance, GRAPHSAGE with all features as node at-
tributes; achieves HR=0.50. This highlights that the multi-
task learning in our MUSIG model achieves better results
in all cases, for each feature separately but also in combi-
nation, further motivating multi-task learning methods for
node classification tasks.

4.7 Variations in Multi-task Learning

To leverage music audio and acoustic properties, the pro-
posed model not only considers them as node features, but
also as regression tasks in the multi-task setting. We inves-
tigate the interplay between using such content informa-
tion, and we compare multi-task models trained on both
audio and acoustic features and tasks (Table 3). Among all
combinations of tasks and features, using AUDIO similar-
ity as the regression task with ACOUSTIC features as node
features gives the best hit rate, while the reverse model,
i.e., ACOUSTIC similarity task with AUDIO features, out-
performs other combinations for all other metrics. AU-
DIO features capture rich information about music content.
This further motivates the usefulness of hybrid representa-
tion learning approaches, that combines playlist organiza-
tion information with content information.

5. CONCLUSION

We propose a multi-task graph-based learning model for
music recommendation. Our method learns the track rep-
resentations based on content features and structural graph
neighborhoods, while the multi-task training is aggregat-
ing multiple functions and learning representations based
on supervision from multiple training tasks. The induc-
tive aspect of MUSIG helps in reducing the wait time to
surface new, fresh content in front of users from days to
few hours, while the multi-task supervision enables the
use of these representations for tasks that could not di-
rectly benefit from playlist co-occurrence only. Empirical
results demonstrate the benefits of our method, wherein we
show the value of the multi-task over the single-task learn-
ing. Furthermore, we show that extracting content features
(such as audio or acoustic) improves the performance in
existing methods, achieving the best improvements when
those features are used in the multi-task setting.
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ABSTRACT

Originating in the Renaissance and burgeoning in the dig-
ital era, tablatures are a commonly used music notation
system which provides explicit representations of instru-
ment fingerings rather than pitches. GuitarPro has estab-
lished itself as a widely used tablature format and soft-
ware enabling musicians to edit and share songs for mu-
sical practice, learning, and composition. In this work,
we present DadaGP, a new symbolic music dataset com-
prising 26,181 song scores in the GuitarPro format cover-
ing 739 musical genres, along with an accompanying tok-
enized format well-suited for generative sequence models
such as the Transformer. The tokenized format is inspired
by event-based MIDI encodings, often used in symbolic
music generation models. The dataset is released with
an encoder/decoder which converts GuitarPro files to to-
kens and back. We present results of a use case in which
DadaGP is used to train a Transformer-based model to gen-
erate new songs in GuitarPro format. We discuss other rel-
evant use cases for the dataset (guitar-bass transcription,
music style transfer and artist/genre classification) as well
as ethical implications. DadaGP opens up the possibility to
train GuitarPro score generators, fine-tune models on cus-
tom data, create new styles of music, AI-powered song-
writing apps, and human-AI improvisation.

1. INTRODUCTION

Historically, tablatures’ proliferation is closely linked to
the lute repertoire, compositions that roughly span from
the 16th century onwards, and are still available today [1].
In opposition to standard notational practices (usually re-
ferred to as staff notation), in a tablature system for string
instruments each staff line on the score represents a string
of the instrument, substituting a representation of pitch by
a given location on said instrument (i.e. a fingering) [2].
Tablatures are a prescriptive type of notation, where the

© P. Sarmento, A.Kumar, CJ Carr, Z. Zukowski, M. Barthet
and Y. Yang. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: P. Sarmento, A.Kumar, CJ
Carr, Z. Zukowski, M. Barthet and Y. Yang, “DadaGP: A Dataset of Tok-
enized GuitarPro Songs for Sequence Models”, in Proc. of the 22nd Int.
Society for Music Information Retrieval Conf., Online, 2021.

Figure 1. An excerpt from a GuitarPro song notation using
tablatures and score for two guitars, bass and drums.

emphasis is on the action (symbol-to-action), contrary to
descriptive forms of notation, which establishes a symbol-
to-pitch relationship. This characteristic makes tablatures
an intuitive and inclusive device for music reading and
learning, which can explain their large prevalence for mu-
sic score sharing over the Internet [3,4]. Often represented
as non-standardised text files that require no specific soft-
ware to read or write, tablatures’ online dissemination has
surpassed more sophisticated music notation formats, such
as Music XML or MIDI [3]. However, tablature represen-
tations that rely solely on text have limitations from a user
perspective. For example, it is common that rhythm indica-
tions are discarded, preventing a comprehensive transcrip-
tion of the music and automatic playback. Tablature edi-
tion software (e.g. GuitarPro 1 , PowerTab 2 , TuxGuitar 3 )
can be regarded as a solution for this problem, keeping
the prescriptive approach, and supporting rhythm notations
and playback. By supporting the annotation of multiple in-
struments, as observable in Figure 1, these tools account
for an interactive music experience, either for songwriting
or music learning purposes.

The release of this dataset intends to leverage the
GuitarPro format used by the before-mentioned software
to support guitar and bands/ensembles’ related research
within the MIR community, focusing specifically on the

1
https://www.guitar-pro.com/

2
http://www.power-tab.net/guitar.php

3
https://sourceforge.net/projects/tuxguitar/

610



task of symbolic music generation. The contributions of
this paper are: (1) a dataset of over 25,000 songs in Gui-
tarPro and token format, together with statistics on its fea-
tures and metadata, (2) an algorithm and Python software
to convert between any GuitarPro file and a dedicated to-
ken format suitable for sequence models 4 , (3) results from
its main use case, the task of symbolic music generation,
and (4) a discussion about further applications for DadaGP
and its ethical implications.

In this paper, we first present some relevant background
concerning previously released music datasets in symbolic
format. In Section 3, we discuss advantages of tab-based
datasets for MIR research. We then describe, in Section 4,
the details of the DadaGP dataset, its encoder/decoder sup-
port tool, the features it encompasses and the ones it lacks.
Within Section 5 we present a use case of symbolic music
generation using our proposed dataset, supported by previ-
ous approaches concerning databases of symbolic music.
Section 6 proposes additional applications for the dataset.
Finally, in Section 7 we explain the steps needed in order to
acquire the dataset, further pointing out some ethical con-
siderations in Section 8.

2. BACKGROUND

Since its release in 1983, the MIDI (Music Instrument Dig-
ital Inferfaces) standard has remained highly ubiquitous.
Unsurprisingly, MIDI has been the most recurrent option
in terms of musical notation formats, concerning datasets
released within the MIR community, either targeting music
generation purposes, that lately have boomed by leverag-
ing deep learning approaches, or aiming for musical anal-
ysis, musicology or purely information retrieval ends. A
comprehensive overview of previously released datasets in
symbolic format is presented in [5]. The authors present
MusPy, a toolkit for symbolic music generation, that na-
tively supports a total of eleven datasets. Considering cu-
mulative song duration, the top five datasets are the Lakh
MIDI dataset [6], the MAESTRO dataset [7], the Wikifo-
nia Lead Sheet dataset 5 , the Essen Folk Song database [8],
and the NES Music database [9]. With respect to music no-
tation formats, these datasets employ MIDI, MusicXML
and ABC. Recently, the GiantMIDI-Piano dataset [10],
comprising 10,854 unique piano solo pieces, the POP909
dataset [11] and the Ailabs.tw Pop1K7 dataset [12], con-
taining respectively piano arrangements of 909 and 1,748
popular songs, were also released, all relying on MIDI for-
mat. This standardisation around MIDI is useful for there
are several Python libraries to work with this format, such
as music21 [13], mido [14], pretty_midi [15], and jSym-
bolic [16].

Regarding guitar-oriented research, previous dataset re-
leases have not particularly targeted automatic music gen-
eration goals, instead focusing on guitar transcription or
playing technique detection. The GuitarSet consists of
360 excerpts of acoustic guitar along with annotations for

4 Available at: https://github.com/dada-bots/dadaGP
5 No longer available.

string and fret positions, chords and beats [17]. Further-
more, the Guitar Playing Techniques dataset [18] contains
6,580 clips of notes together with playing technique an-
notations. Likewise, the IDMT-SMT-Guitar dataset [19]
also comprises short excerpts that include annotations of
single notes, playing techniques, note clusters, and chords.
Lately, Chen et al. compiled a dataset of 333 tablatures
of fingerstyle guitar, created specifically for the purpose of
music generation [20].

To the authors best knowledge, there exists no multi-
instrument dataset that is able to combine the ease of use of
symbolic formats whilst providing guitar (and bass) play-
ing technique information. Such expressive information is
lacking in other formats, and GuitarPro appears as a viable
resource for music analysis and generation.

3. MOTIVATIONS: WHY GUITARPRO?

GuitarPro is both a software and a file format, widely used
by guitar and bass players, but also by bands. It is mostly
utilized for tasks such as music learning and practicing,
where musicians simply read or play along a given song,
and for music notation, in which composers/bands use the
software to either support the songwriting process, or sim-
ply as a means for ease of distribution once compositions
are done. As an example of the software’s widespread
dissemination, the tablature site Ultimate Guitar 6 hosts a
catalogue of over 200,000 user-submitted GuitarPro files,
containing notations of commercial music, mostly from the
genres of rock and metal. One of the main motivations
for the creation of DadaGP is to engage the MIR com-
munity into research that leverages the expressive infor-
mation, instrumental parts and song diversity in formats
such as GuitarPro. Although GuitarPro is a paid software,
free alternatives such as TuxGuitar are capable of edit-
ing/exporting into GuitarPro format. Moreover, GuitarPro
files can be easily imported into MuseScore 7 , a free soft-
ware notoriously known for music notation, which also
possesses tablature features. However, using MuseScore
might present some occasional incompatibilities, specif-
ically those regarding the selection of instruments (e.g.
drums are often imported as piano, and the correspond-
ing MIDI instruments need to be manually switched). An-
other important motivation for the release of this dataset is
that it is possible to make conversions between GuitarPro
and MIDI files. This can be done inside any of the afore-
mentioned software, by simply exporting into MIDI, or by
scripting. Thus, by converting the dataset’s GuitarPro files
into MIDI, MIDI-based music feature extraction functions
available (e.g. Python libraries referenced in Section 2)
can be applied. Finally, we believe that our dataset is able
to provide researchers with the information present in stan-
dard MIDI datasets, while including at the same time pre-
scriptive information useful for guitar-oriented research.

6
https://www.ultimate-guitar.com/

7
https://musescore.com/
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4. DADAGP DATASET

Leveraging the proliferation of music transcriptions avail-
able online as GuitarPro files, we compiled DadaGP, a
dataset containing 26,181 songs. We also devised an en-
conding/decoding tool to convert GuitarPro files into to-
kens, which is described in Section 4.1. In total, it con-
tains 116M tokens, which is about the size of WikiText-
103 [21]. In terms of duration, the dataset amounts to over
than 1,200 hours (average song length of 2:45 minutes).

4.1 Encoding/Decoding Tool

4.1.1 Feature Extraction with PyGuitarPro

PyGuitarPro [22] is a Python library which reads, writes
and manipulates GuitarPro files 8 . Our encoding/decoding
tool explores its feature extraction functions, in order to
convert much of the information into a tokenized text for-
mat. With PyGuitarPro it is possible to acquire informa-
tion regarding music-theoretic features (e.g. pitch, rhythm,
measure, instrument) and playing technique information.

4.1.2 Tokenization

The token format takes inspiration from event-based MIDI
encodings used in previous music generation works, such
as MuseNet [23], REMI [24] and CP [12]. The tool con-
sists of a Python script that utilizes PyGuitarPro to pro-
cess GuitarPro files into/from token format. Syntactically,
every song begins with artist, downtune, tempo
and start tokens. A depiction of the conversion pro-
cess can be seen in Figure 2. Notes from pitched in-
struments are represented by a combination of tokens in
the format of instrument:note:string:fret and
rests by instrument:note:rest. For the drum-
set, the representation is done by drums:note:type,
leveraging GuitarPro 5 percussion MIDI maps (e.g.
drums:note:36 for a kick drum, drums:note:40
for a snare). Every note or rest is separated in time by
wait tokens. This is sufficient for the decoder to figure
out note durations. There is no need to use note-off to-
kens, because new notes silence old notes, unless a ghost
note or let ring effect is used. Every new measure, note ef-
fect, beat effect, and tempo change is registered as a token.
Effect tokens are applied to the preceding note token. A
histogram containing the most common tokens in DadaGP
is available in Figure 4(g).

Furthermore, the DadaGP token format is resilient to
syntax errors, such that random token sequences will still
produce decodable music. We believe this is helpful when
creatively pushing generators to make out-of-distribution
sequences using high temperatures, early epochs, extreme
latent dimension values, interpolated style conditioning,
and other experimental practices.

4.2 Repertoire

Each song is labelled with artist and genre information,
although genre tags are absent within original GuitarPro

8 Currently, it supports GP3, GP4 and GP5 files.

Figure 2. A measure with a distorted guitar, bass and
drums in GuitarPro’s graphical user interface (left), and its
conversion into token format (right).

files. To this end, we compiled a genre list, with infor-
mation acquired from the Spotify Web API 9 , querying by
artist and song title, resulting in genre metadata for each
composition. It is worth mentioning that a given song can
have more than one genre attached to it. Information about
the most prevalent genres within DadaGP can be seen in
Figure 3. While its emphasis is on genres and sub-genres
from rock and metal, its corpus is diverse, also including
stylistically distinct genres such as jazz, classical, pop and
EDM. From Figure 4(a) we observe that most of the songs
in DadaGP contain four instrumental parts, usually two
guitars, a bass and drums.

Figure 3. Word cloud representation of the musical genres
in DadaGP. Tag size increases with amount of songs.

4.3 Instruments

Regarding instrumentation, for DadaGP a maximum of
nine instruments were chosen: three distorted or over-
driven guitars, two clean or acoustic guitars, one bass, one
drumset, one lead (for instruments with sharp attacks, e.g.
piano), and one pad (for instruments used more ambiently,
like a choir or a string ensemble). Multiple drum tracks are
combined into one. Rare instruments are combined into

9 Available at: https://developer.spotify.com/

documentation/web-api/
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Figure 4. Statistical information about the DadaGP dataset. Histograms of tracks per song (a), initial tempos (b), most
common note durations in token and staff notation format (c), time signatures (d), note effects (e), amount of tempo changes
(f), most frequent tokens (g) and instruments (h).

the lead and pad tracks. In Figure 4(h) we can notice a pre-
dominance of distorted guitars in the dataset. Intuitively
this is justified by the presence of two distorted guitars (of-
ten one rhythmic and one lead) on most of the songs in
DadaGP, due to the predominance of the rock/metal genre.
Concerning guitar and bass, 7 string guitars are supported,
as are 5 and 6 string basses. Downtuning is supported only
if all instruments downtune the same amount, and common
tunings such as Drop D 10 and Drop AD are also included.
Rare tunings were dropped from the dataset as the encoder
does not support them.

Guitar playing technique notations are represented by
note effect tokens (nfx), although this family of to-
kens also holds information about other instruments (e.g.
nfx:tie, which acts as a link between two adjacent
notes). On Figure 4(e) we present a histogram of the most
frequent occurrences of these in our dataset, namely palm
mute (a technique often used with distortion guitars where
the guitar player dampens the strings with the right hand
palm), bends and vibratos, slides, hammer-ons and pull-
offs (both under nfx:hammer).

4.4 Meter

As clarified before, each note/rest event is followed by a
wait token which specifies the number of ticks between
it and the succeeding event. In DadaGP, tick resolution
uniformly corresponds to 960 ticks per quarter note. For a
tempo of 100 bpm, a tick corresponds to 60/(100⇤960) =
0.000625 seconds. Referring to the excerpt in Figure 2,
eighth note events are separated by wait:480 tokens,
and sixteenth note ones by wait:240. A histogram with
the most common durations in DadaGP is presented in Fig-
ure 4(c), in both token and standard staff notation formats,
to ease visualization.

10 A tuning in which only the lowest string is downtuned by one whole
step, usually from E to D.

Usually, in a GuitarPro file a default tempo is speci-
fied for the entire song, although it supports the inclu-
sion of tempo changes throughout the piece. This is ad-
dressed by our encoder/decoder with the tokens tempo
and bfx:tempo_change respectively, which affects
note/rest duration. In Figure 4(b) and Figure 4(f) are pre-
sented plots corresponding to the most frequent tempos
and tempo changes.

The encoder/decoder also supports the representation of
measure repetitions with the measure:repeat token.
Although time signatures are not tokenized, they are in-
ferred by summing the wait tokens between the occur-
rences of new_measure. However, this method is in-
sufficient to distinguish between 3/4 and 6/8 measures,
for example. To circumvent this, for the plot presented in
Figure 4(d) we leveraged PyGuitarPro functions to extract
accurate information about the most prevalent time signa-
tures for each measure in our dataset.

4.5 What is Missing?

Information regarding key signature is not provided as part
of the dataset. Although key signature can be represented
in GuitarPro format, it is rarely present within files. Sim-
ilarly to the results presented in [6] for the Lakh MIDI
dataset, 93.7% of the songs in DadaGP were automatically
assigned the key of C Major, rendering these statistics in-
accurate.

GuitarPro does not include note velocity informa-
tion as in MIDI. However, in GuitarPro loudness be-
tween notes and musical phrases is notated using tra-
ditional dynamic instructions (e.g. forte, pianissimo,
mezzo-forte). In its token format, DadaGP does not yet
support this, but there is a possibility of accentuating
notes at two levels with nfx:accentuated_note and
nfx:heavy_accentuated_note.

Concerning vocals, a common practice with GuitarPro
files is to select MIDI wind instruments to notate singing
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Figure 5. Training loss of the rock subset model, per
epoch.

melodies. Currently, our dataset is not well-suited to han-
dle vocals, for these get converted into the leads instru-
ment, which may also contain information about other in-
struments, such as the piano. Lyrics are also possible to
include in GuitarPro, but that feature is currently not sup-
ported by our encoder/decoder tool.

5. USE CASE: SYMBOLIC MUSIC GENERATION

Recently, the field of symbolic music generation has wit-
nessed consistent progress. Considering works that target
symbolic music generation with Transformer-based mod-
els, MusicTransformer [25] is a MIDI generator trained
on piano performances with improved long-term coher-
ence over vanilla RNNs due to the use of the Transformer
[26]. Similarly, MuseNet [23] is a generative Sparse Trans-
former [27] trained on a larger dataset of MIDI includ-
ing over 600 styles. An API for the model was launched
by OpenAI, which powers the songwriting app MuseTree
[28]. However, the model was not released, so it cannot
be fine-tuned on custom data. In [29] the author trained
a charRNN generator on dozens of GuitarPro songs en-
coded as a sequence of ASCII characters. It only supported
one instrument, and its verbose character-sequence format
opened up the possibility for syntax errors.

We tested the DadaGP dataset for a symbolic music
generation use case by using the Pop Music Transformer
model [24], in which the authors devised a Transformer-
XL [30] architecture to generate pop piano compositions
in MIDI format. The reason for the choice of this architec-
ture is because this work considers metrical structure in the
input data, allowing for an increased awareness in terms
of beat-measure structure. We chose the Transformer-XL
model as it is able to learn dependencies that are 450%
longer than vanilla Transformers, thus well-suited for our
task. As per the settings, similarly to the original paper,
we used M = 8 attention heads and N = 12 self-attention
layers.

As a proof-of-concept, we collected a subset from our
dataset, retrieving 6,910 songs labelled as genre:rock.
We generated a list of all the unique tokens in this subset,
creating a vocabulary with 2,104 entries.

Training was set to run for 50 epochs. With around 43M
parameters, this model took around 10 days to perform this
task on a Tesla K80 GPU. We consider this to be impracti-
cal in terms of reproducibility, so we intend to release pre-
trained models from epochs 40 and 50, for which losses
can be seen in Figure 5.

Figure 6. Violin plot of number of errors per song at dif-
ferent epochs.

Regarding inference, we conditioned the model by
prompting it with an initial list of tokens comprising
artist, downtune, tempo and start, necessary for
the DadaGP decoder. Furthermore, in an attempt to guide
the model towards the generation of music comprising spe-
cific instruments, we included tokens for a single note of
a distorted guitar, bass guitar and drums. Through experi-
mentation, we set on a limit of 1,024 tokens for each gener-
ated song, using 1.2 as temperature parameter. Finally, we
manually appended an end token in order for the decoder
to be able to convert it to GuitarPro format, as this is the
instruction which tells the decoder when the song finishes.

As a simple evaluation metric, we focused on the no-
tion of grammar errors, namely repetitions of the tokens
that should only occur once (artist:, downtune:,
tempo:, start and end), or adjacent repetitions of the
same token. Using this, we estimated the number of errors
per song, for a corpus of 1,000 generated songs from the
model at epochs 10, 20, 30, 40 and 50. As observable in
Figure 6, not only the median of the number of errors per
song is smaller in later epochs, but also the occurrence of
outliers is diminished, as expected.

Despite the limitations of the current evaluation, it al-
lowed us to notice a predominance of a specific error,
namely the repetition of the token end. This is problem-
atic, because the decoder immediately stops the conversion
when an end token appears, ultimately shortening songs
when in GuitarPro format. To counter this effect, we de-
vised a condition that, during inference, would force the
model to sample a different token in the event that an end
token is selected. Results of generated songs without any
curation or post-processing have been made available 11 .

6. PROSPECTIVE APPLICATIONS

Although primarily tailored for symbolic music genera-
tion, below we describe further applications for DadaGP.

11 Available at: https://drive.google.com/drive/

folders/1USNH8olG9uy6vodslM3iXInBT725zult?usp=

sharing
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6.1 Guitar-Bass Transcription

The task of guitar-bass transcription from audio recordings
is still mostly done manually by musicians, requiring ex-
pertise and being both effort and time consuming. In order
to automate this, previous research has focused on both
solo bass guitar [31, 32] and solo guitar [33–35] transcrip-
tion. As a contribution to solve this problem, we anticipate
that DadaGP can be used to create a synthetic dataset for
training guitar-bass transcription models, by rendering its
corpus from tablatures into audio, using a DAW and appro-
priate sound fonts. Such a synthetic dataset can be used to
pre-train a model, which can then be fine-tuned afterwards
using realistic sounds with aligned scores. This argument
is supported by the promising results shown by the Slakh
dataset, a synthesized version of the Lakh MIDI dataset,
on the task of music source separation [36].

6.2 Music Style Transfer

Recently, the task of style transfer, the process of changing
the style of an image, video, audio clip or musical piece
so as to match the style of a given example, has been the
subject of much attention. First investigated in applica-
tions that target computer vision, music style transfer has
recently shown promising results in both the audio [37]
and symbolic domains [38–40]. As a prospective applica-
tion of DadaGP, we envisage that genre information can be
leveraged in segregating the dataset across different gen-
res, rendering it suitable for the task of musical genre style
transfer, as proposed in [41] for the specific morphing be-
tween Bach chorales and Western folk tunes. Furthermore,
besides musical genre, artistic information can also be used
towards the task of composer style transfer, once again by
filtering DadaGP across distinct artists.

6.3 Artist/Genre Classification

Another task for which artistic and musical genre infor-
mation present in DadaGP is useful is artist/genre classi-
fication. We hypothesize that these features can be used
to train classification models, in order to predict composer
style and genre related information from the symbolic rep-
resentation of the songs itself, similarly to what has been
implemented in [42–44]. A thorough survey of the most
important approaches regarding music genre classification
in the symbolic domain can be consulted in [45]. Fur-
thermore, there is a symbiosis between this task and the
one present in the previous subsection, since the models
trained for artist/genre classification can be prospectively
used in composer style-based feature extractions, which
can be further utilized in tasks like composer style con-
ditioned generation and music style transfer.

7. DISTRIBUTION

To ensure reproducibility and facilitate the usage of the
dataset, we allow researchers to access DadaGP from a
Zenodo repository 12 , on application by request. Here

12
https://zenodo.org

we include the token format versions of the songs, the
encoder/decoder Python script in order to convert them
into/from GuitarPro format, and the statistical data pre-
sented on this paper.

8. ETHICAL CONSIDERATIONS

Training large models has a carbon footprint. Some cloud
services are carbon neutral, others are not. This should be
considered when training large models on this data. Re-
leasing pre-trained models reduces impact, and we intend
to do so with the models present in this paper.

Many questions regarding production and consumption
of music created with AI are still unanswered. For exam-
ple: Is it wrong to train machine learning models on copy-
righted music? Should this be protected by fair use for
artists and scientists? What about commercial use? How
to acknowledge, reward and remunerate artists whose mu-
sic has been used to train models? What if an artist does
not want to be part of a dataset? Should creators have
a monopoly on their style and exclude others from using
their style? Or is style communal? Some of these ques-
tions were also raised upon the release of Jukebox [46], an
audio model trained on more than 7,000 artists. However,
OpenAI made the case that "Under current law, training
AI systems constitutes fair use (...)" and that "Legal uncer-
tainty on the copyright implications of training AI systems
imposes substantial costs on AI developers and so should
be authoritatively resolved" [47].

9. CONCLUSION AND FUTURE WORK

In this paper we presented DadaGP, a dataset of songs
in GuitarPro and token formats, together with its encod-
ing/decoding tool. We discussed the features, strengths and
weaknesses of the dataset. Moreover, we presented a sym-
bolic music generation use case entailing a novel approach
for multi-instrument music generation in tablature format.
Finally, we pointed out additional research applications for
DadaGP and discussed some ethical implications. We in-
tend to improve the DadaGP dataset, namely the possibility
of removing measure:repeat tokens. During genera-
tion, we discovered that these tokens were often hard for
the model to interpret, sometimes leading to disproportion-
ate measure repetitions. Also, we plan to include note and
phrase dynamics information, and the support for vocal in-
strumental parts. Regarding music generation, we envision
to (1) release a pre-trained model which can be fine-tuned
on new music, (2) collaborate with artists that use Gui-
tarPro, (3) explore genre/style transfer, (4) and attempt to
play the generated songs in social performances.
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[39] O. Cífka, U. Şimşekli, and G. Richard,
“Groove2Groove: One-Shot Music Style Trans-
fer With Supervision From Synthetic Data,” in
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, 2020, pp. 2638–2650.

[40] S.-L. Wu and Y.-H. Yang, “MuseMorphose: Full-song
and fine-grained music style transfer with just one
Transformer VAE,” arXiv preprint arXiv:2105.04090,
2021.

[41] Y.-Q. Lim, C. S. Chan, and F. Y. Loo, “Style-
Conditioned Music Generation,” in 2020 IEEE Inter-
national Conference on Multimedia and Expo (ICME),
2020, pp. 1–6.

[42] T. J. Tsai and K. Ji, “Composer Style Classification of
Piano Sheet Music Images Using Language Model Pre-
training,” in Proc. of the 21st International Society for
Music Information Retrieval Conference, 2020.

[43] S. Kim, H. Lee, S. Park, J. Lee, and K. Choi, “Deep
Composer Classification Using Symbolic Representa-
tion,” in Late-Breaking Demo Session of the 21st Inter-
national Society for Music Information Retrieval Con-
ference, 2020.

[44] A. Kotsifakos, E. E. Kotsifakos, P. Papapetrou, and
V. Athitsos, “Genre Classification of Symbolic Music
with SMBGT,” in Proc. of the 6th International Con-
ference on PErvasive Technologies Related to Assistive
Environments. New York, NY, USA: Association for
Computing Machinery, 2013.

[45] D. C. Corrêa and F. A. Rodrigues, “A Survey on Sym-
bolic Data-based Music Genre Classification,” Expert
Systems with Applications, vol. 60, pp. 190–210, 2016.

[46] P. Dhariwal, H. Jun, C. Payne, J. W. Kim,
A. Radford, and I. Sutskever, “Jukebox: A Generative
Model for Music,” 2020. [Online]. Available: https:
//github.com/openai/jukebox.

[47] OpenAI, “USPTO Comment Regarding Request for
Comments on Intellectual Property Protection for
Artificial Intelligence Innovation,” 2019. [Online].
Available: https://www.uspto.gov/sites/default/files/
documents/OpenAI_RFC-84-FR-58141.pdf

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

617



DOES TRACK SEQUENCE IN USER-GENERATED PLAYLISTS MATTER?

Harald Schweiger Emilia Parada-Cabaleiro Markus Schedl
Institute of Computational Perception, Johannes Kepler University Linz (JKU), Austria

Human-centered AI Group, AI Lab, Linz Institute of Technology (LIT), Austria
harald.schweiger@jku.at emilia.parada-cabaleiro@jku.at markus.schedl@jku.at

ABSTRACT

The extent to which the sequence of tracks in music
playlists matters to listeners is a disputed question, nev-
ertheless a very important one for tasks such as music rec-
ommendation (e. g., automatic playlist generation or con-
tinuation). While several user studies already approached
this question, results are largely inconsistent. In contrast,
in this paper we take a data-driven approach and investigate
704,166 user-generated playlists of a major music stream-
ing provider. In particular, we study the consistency (in
terms of variance) of a variety of audio features and meta-
data between subsequent tracks in playlists, and we relate
this variance to the corresponding variance computed on a
position-independent set of tracks. Our results show that
some features vary on average up to 16% less among sub-
sequent tracks in comparison to position-independent pairs
of tracks. Furthermore, we show that even pairs of tracks
that lie up to 11 positions apart in the playlist are signif-
icantly more consistent in several audio features and gen-
res. Our findings yield a better understanding of how users
create playlists and will stimulate further progress in se-
quential music recommenders.

1. INTRODUCTION

Over the last decade, online streaming services have sub-
stantially changed the way people consume music. As a re-
sult, research on automatic playlist generation (APG) and
automatic playlist continuation (APC) has gained attrac-
tion and contributed to improving machine-based creation
and extension of item sequences (most commonly, mu-
sic tracks), respectively. All the more as users nowadays
spend over 36 % of their online music listening time on
user-generated playlists, 17 % on playlists personalized by
recommendation engines, and 15 % on the ones created by
professional playlist curators. 1 Together with the fact that
users create and share massive amounts of playlists on mu-

1 https://www.goodwatercap.com/thesis/
understanding-spotify
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(CC BY 4.0). Attribution: H. Schweiger, E. Parada-Cabaleiro, and M.
Schedl, “Does Track Sequence in User-generated Playlists Matter?”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

sic streaming platforms, 2 this raises the question of how
well current research understands the underlying semantics
of user-generated playlists.

Most APG and APC approaches include algorithms that
are capable of learning sequences [1–5] while other focus
on smooth transitions [6]. However, contradictory findings
from user-centered studies [7, 8], as well as from offline
evaluations of sequence-aware recommenders [9, 10], im-
pair a clear understating of whether tracks’ sequential or-
der has a meaningful role in users’ listening experiences.

To narrow this research gap, the work at hand investi-
gates directly, in a multifaceted manner, various properties
shared across subsequent tracks in user-generated playlists.
In contrast to other works, we argue that our conducted
in-depth statistical analysis of a large set of real user-
generated playlists complement findings over conclusions
previously drawn from other indirect approaches, such as:

• measuring differences in recommendation accuracy
for shuffled playlists [9, 10],

• comparing different machine learning approaches
such as sequence aware vs. only context-aware rec-
ommenders [3],

• analyzing the effects of adding an additional re-
ranking stage to the model [2, 4],

• evaluating feedback from user studies [7, 8, 11].
Against this background, we investigate the following

research questions:
RQ1: Does the sequence of tracks matter in user-
generated playlists? We approach this question by com-
paring the variance of subsequent tracks to the overall
playlist variance, in terms of a variety of properties, con-
cerning track metadata and audio features.
RQ2: For how long do the properties of one track per-
sist on its successors? We study this question by evaluat-
ing the number of tracks that are affected by the previous
ones concerning the aforementioned properties.

2. RELATED WORK

Related work can be categorized into (i) user studies in-
vestigating the quality criteria of user-generated playlists,
(ii) research analyzing the difference between sequential
and order-agnostic algorithms for APG or APC, and (iii)
works that consider APG and APC as sequential problems,
thereby, indirectly assuming the importance of track order.

2 For instance, Spotify reports having over 4 billion playlists (https:
//newsroom.spotify.com/company-info/).
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Concerning user studies, in the works by Kamehkhosh
et al. [8, 11] users were asked to identify quality criteria of
playlists. In both works participants ranked (out of 7 op-
tions) the track order as the fourth and sixth most impor-
tant criteria, respectively. Although this might indicate that
track order has less relevance to users than other properties,
one third of the participants reordered their tracks during
one of the experiments by Kamehkhosh et al. [11], which
shows that (even unconsciously) track order is, to some
extent, relevant to the users. Differently, in the user study
conducted by Tintarev et al. [7], participants did not expe-
rience their track recommendations to be ordered. Some
participants even reported that they generally use random-
ization for listening to their songs.

Concerning sequence-aware music recommender sys-
tems, Bonnin and Jannach [3] showed that algorithms
based on sequential patterns outperform association rules.
Chen et al. [12] trained a Latent Markov Embedding capa-
ble of reproducing coherency of playlists, thereby, outper-
forming n-gram models. Yang et al. [13] proposed an au-
toencoder architecture which performed better when track
order was not manipulated. In contrast, Vall et al. [9, 10]
investigated a recurrent neural network trained once on ac-
tual playlists and once on shuffled playlists. They showed
that rank-based accuracy did not significantly change be-
tween the two settings.

Furthermore, some research acknowledged the impor-
tance of track order by directly implementing methods ca-
pable of learning track sequences. Bittner et al. [5] iden-
tified a vast support for the creation of smooth transitions
in commercial DJing software, which led them to imple-
ment a system that fosters such transitions. Amongst other
works related to the topic [6, 14], Jannach et al. [4] pre-
sented a two-stage approach for APC to re-rank candi-
dates coherently with recent tracks. Similarly, Volkovs
et al. [2] used a two-stage model including temporal and
pairwise interactions which achieved the best score in the
2018 ACM Recommender Systems Challenge. 3

Finally, since previous work on APG and APC mostly
focus on western music, considering theoretical principles
from tonal music is important when investigating tracks’
transitions. Yet, in previous works the mode is typically
considered [15] while the key (essential to represent tonal-
ity besides the mode), is often disregarded. Indeed, the
role of tonality, despite its importance in the hierarchical
relationships inherent of Western music, 4 has been rarely
considered in the context of playlist sequentiality [5, 18].

3. DATA AND METHODOLOGY

3.1 Dataset

In order to answer the research questions, we consid-
ered the Million Playlist Dataset (MPD) provided by Spo-

3 http://www.recsyschallenge.com/2018
4 From a music theory perspective tonal functionality models listeners’

expectations, within and across songs, as shown by the tonal relationship
between the different movements of unique compositions, e. g., sonatas
(cf. Sonata A in [16]), whose movements’ tonalities are typically related
in terms of dominant, subdominant, relative, or modal relationships [17].

tify for the ACM Recommender Systems Challenge 2018.
It encompasses one million user-generated playlists from
US-citizens, with a length between 5 and 250 tracks, and
an average length of 66.35 tracks. Overall, the playlists
in the dataset contain about 2.3M unique tracks by 296K
artists. The dataset includes only publicly shared playlists
with at least 5 followers; thus, minimizing the risk of in-
cluding collections of tracks without any musical theme
which are just enjoyed by the creator.

One additional advantage of using this dataset is the
coverage of high-level audio features, i. e., descriptors de-
rived from low-level acoustic properties, that can be re-
trieved by the Spotify API. 5 These features have been
used frequently in the literature [19–22] to analyze or rec-
ommend music. In this work, we investigate the following
audio features: acousticness (confidence that a track con-
tains non electronic instruments); danceability (how suit-
able a track is for dancing); energy (measure representing
tracks’ intensity and activity according to perceptual fea-
tures such as dynamic range or loudness); instrumental-
ness (probability that a track does not contain vocals); key
(indicates the tonality of the track without referring to the
mode, i. e., the pitch-class); liveness (confidence value that
indicates whether the track has been performed in presence
of an audience); loudness (average loudness of the track
in decibel); speechiness (measures the presence of spoken
words); mode (indicates the scale of the track, i. e., major
or minor, to which the key refers to); tempo (pace of the
track in beats per minute); valence (indicates a track’s he-
donistic value, i. e., whether it sounds positive or negative).

In addition to the described audio features, we also take
into account other three related to metadata, i. e., artist,
genre, and popularity. As MPD provides only the main
artist per track, we enrich the set of artists by retrieving for
each of the 2.3M tracks, also through the Spotify API, all
artists which have contributed to a track. This has been
done to account for artist collaborations as possible ef-
fect of smooth transitions inside playlists. For 136, 854
of the 402, 867 artists in the enriched artist set, a set of
genres is available. 6 We link these genres to the tracks
of the playlists in order to analyze whether a shift in gen-
res over time can be observed. Finally, the popularity of a
track, which describes the recent average number of listen-
ing events, is retrieved by the same query as the artists.

All in all, 9 continuous features, i. e., acousticness,
danceability, energy, instrumentalness, liveness, loudness,
speechiness, tempo, and valence, as well as 5 discrete, i. e.,
key, mode, genre, artist, and popularity, are considered.

Note that some features, i. e., acousticness, instrumen-
talness, liveness, and speechiness, describe confidence lev-
els rather than meaningful musical characteristics. Never-
theless, we include these features as they might still be in-
sightful, even with their skewed distribution, towards val-
ues of 0 and 1.

From the one million playlists provided by the dataset,
we filter out all playlists which have less than 30 tracks:

5 https://developer.spotify.com/documentation/
web-api/reference/#category-tracks

6 https://everynoise.com/
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this yields 704, 166 playlists with 2, 165, 065 unique tracks
to be analyzed. The filtering is mainly done for RQ2, so
that we can analyze tracks dependencies that lie up to 15
tracks apart, which is necessary since our method requires
twice of this number of tracks to assure that all tracks
are covered in the variance calculation presented in Sec-
tion 3.2.2. As a side effect of the filtering procedure, we
also minimize random noise caused by small playlists. 7

3.2 Definitions

3.2.1 Playlist Variance

Let T be a list of n tracks [t1, . . . , tn] forming an arbitrary
playlist of our dataset. Each track ti is assigned to a set of
features where xi denotes a single feature value, represent-
ing any of the considered Spotify features (i. e., the audio
features and popularity). Besides, the genres and artists of
each track are defined as discrete feature sets, Gi and Ai,
respectively, through a bag-of-words representation.

The variance according to a feature x across all tracks,
independently of the track order inside a playlist, is cal-
culated as the sum of differences between the average of
the feature x and all feature values xi, as given by Equa-
tion (1). To avoid ambiguity, from now on we call this the
playlist variance.

pl_var(T ) =
1

n� 1

nX

i

(xi � x)2 (1)

This formula works in cases for which the mean can
be computed. However, calculating the overlap between
genres and artists, e. g., with the Jaccard distance, does not
provide a mean value. Similarly, the discrete features key
and mode need also a different distance measurement to
capture the similarities across tracks’ tonalities. In these
cases, the playlist variance can be calculated by averaging
the differences of all pairwise combinations. This has been
demonstrated by Zhang and Cheng [23] and it is shown in
Equation (2).

var(T ) =
1

n

nX

i

(xi � x)2 =
1

2n2

nX

i

nX

j

(xi � xj)
2 (2)

Equation (2) can now be extended by any arbitrary dis-
tance measurement D and since the distance w. r. t. the
same track is always zero, a degree of freedom n � 1 is
considered to compute the variances, as shown in Equa-
tion (3).

pl_var(T ) =
1

2n(n� 1)

nX

i 6=j

D(xi, xj)
2 (3)

In order to eliminate possible correlations between re-
peating artists, we prevent some pairwise track combina-
tions to be considered for calculating the playlist variance.
The corresponding filter function F(Ai, Aj) returns 1 if all
artists of Ai are different from those of Aj and 0 otherwise.

7 It seems that playlists in the dataset are stratified by their track size.
The smallest playlists is 5 tracks long and the largest 250.

Adding the filter function F(Ai, Aj) to the playlist vari-
ance results in the constrained playlist variance, as defined
by Equation (4).

cpl_var(T ) =
P

i 6=j F(Ai, Aj)D(xi, xj)2

2
P

i 6=j F(Ai, Aj)
(4)

3.2.2 Sequential Variance

To answer the RQs we need to compare the playlist vari-
ance with a variance eligible to account for the track order
inside playlists. We will refer to this as sequential vari-
ance, which is the variance of a pair of tracks occurring at
a fixed distance (number of tracks) apart in a given playlist.
The sequential variance for all track combinations that lie d
tracks apart is defined by Equation (5). Note that d = 1
means that the two tracks are direct neighbors.

seq_var(T ) =
1

2(n� d)

n�dX

i

D(xi, xi+d)
2 (5)

Similarly as for the constrained playlist variance, to
compute the constrained sequential variance we apply
again the filter function F on the sequential variance, thus
ignoring pairs of tracks by the same artist(s), as defined in
Equation (6).

cseq_var(T ) =
Pn�d

i F(Ai, Ai+d)D(xi, xi+d)2

2
Pn�d

i F(Ai, Ai+d)
(6)

3.2.3 Proportional Variance

To analyze the aggregated differences between playlist
and sequential variance for all considered playlists in the
dataset, we calculate for each track list T 2 D, where D
denotes to the dataset, the ratio of the playlist variance to
the sequential variance. From now on, we refer to it as
the unconstrained proportional variance (UPV), by this
denoting that repeating artists were not excluded. As a
minor part of the tracks might present very homogeneous
features, sequential variances with values close to zero can
occur. Since dividing the playlist variance through these
variances may yield proportional variances converging to
infinity, we use the median instead of the mean to reduce
the UPV values of all playlists to one average value, as
shown in Equation (7).

prop(D) = medianT2D
pl_var(T )

seq_var(T )
(7)

Note that the constrained proportional variance (CPV)
is calculated as shown in Equation (7) but considering the
constrained versions of the playlist and sequential variance
instead.

3.2.4 Feature-specific Distance Measurement

In this section, we summarize the three different distance
measurements, previously denoted as D, to calculate the
variances, both the playlist variance and the sequential one:

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

620



A
D

GCFBZ
EZ

AZ
DZ GZ/F\ B E

f\b
eadg

c
f

bZ eZ/d\ g\ c\
h

h

Figure 1. Visualization of the Euclidean distance (marked
with the red dashed line) between ‘AZ’ and ‘a’ in R3. Major
and minor tonalities are indicated with upper- and lower-
case, respectively; \ stand for sharps, Z for flats.

(i) For all the continuous features and the discrete pop-
ularity, the variance is calculated by Euclidean distance.

(ii) For the discrete features key and mode, related in
terms of tonality from a music theory perspective, these
were considered together, as proposed by Bittner et al. [5],
who maps mode and key into the three dimensional space
R3. Keys, i. e., the pitch classes, are mapped according to
the circle of fifths and represented as points onto a two di-
mensional unit circle. The third dimension is added by the
mode (major or minor) so that key and mode are equidis-
tant. In Figure 1 the representation of key and mode in the
three dimensional space is shown. From now on, we will
refer to the combination of these tow features as tonality.

(iii) For the overlap in artists (or genre) between two
tracks, the variance is calculated by the Jaccard distance,
as shown in Equation (8), where Ai and Aj represent the
artist (or genre) sets of track ti and tj , respectively.

J (Ai, Aj) =
|Ai [Aj |� |Ai \Aj |

|Ai [Aj |
(8)

3.3 Method

To investigate the RQs, we first calculate for each playlist
in the dataset the playlist variance, as defined in Sec-
tion 3.2.1. The playlist variance is our baseline, which
represents the variance of features irrespective of the order
of the tracks. Then, the sequential variance is computed
for each playlist as defined in Section 3.2.2. In contrast
to the playlist variance, the sequential variance considers
only tracks which lie exactly d tracks apart from each other
inside the playlist.

To answer RQ1 we choose d = 1, so that only fea-
tures of direct neighbors, i. e., (x1, x2), . . . (xn�1, xn), are
considered for the variance calculation. If for the major-
ity of playlists the sequential variance is lower than the
playlist variance, thus yielding a high proportional vari-
ance, i. e., above 1.0, we can conclude that users, con-
sciously or unconsciously, create playlists with smooth
transitions between tracks for the given feature under in-
vestigation. In contrast, if the sequential variance is higher
than the playlist variance for a certain feature, thus yield-
ing a low proportional variance, i. e., below 1.0, we can

conclude that users tend to prefer a more rapid change for
that feature. Reasons for rapid changes can be multifari-
ous. For instance, in playlists with the purpose of dancing,
a change towards slower or different music style might be
used to give listeners a recovery break.

We also investigate the effects of repeating or partially
overlapping artists across tracks. Assuming that artists
tend to produce tracks with similar features, sequences of
tracks by the same artist might bias the variances of other
features, especially when correlations between artists and
features are strong. Therefore, we adapted the sequential
variance and playlist variance as defined by Equation (4)
and Equation (6) with the constraint of excluding subse-
quent tracks for which artists repeat.

To answer RQ2 we compare the playlist variance with
the sequential variance for different track distances d. This
enables us to assess how the features of a given track per-
sist on the neighboring ones in relation to the distance be-
tween them. We interpret the changes in the UPV w. r. t.
different track distances as defined in Section 3.2.2 and
Section 3.2.3. We also compute a series of Welch’s two-
tailed t-tests between the playlist variances and sequen-
tial variances to identify how many consecutive tracks of
a given track are affected w. r. t. the feature under consid-
eration. Generally, track distance and significance are in-
versely proportional, i. e., when the former increases, the
latter decreases. As soon as the two-tailed t-test returns
a p-value larger than .001, we conclude that there is no
significant difference between sequential and playlist vari-
ance. 8

4. RESULTS AND DISCUSSION

For RQ1 we first investigate in Section 4.1 the variation of
subsequent tracks in comparison to the order-independent
playlist variance. Next, in Section 4.2, we focus on the dis-
tribution of loudness, i. e., the audio feature with the largest
UPV. For RQ2 the number of tracks affected by the previ-
ous one, i. e., those for which properties characteristic of
previous tracks still persist, are assessed in Section 4.3.

4.1 Quantitative Analysis of Proportional Variances

In Figure 2, the unconstrained and constrained propor-
tional variances, i. e., UPV and CPV, respectively, as de-
fined in Section 3.2.3, are shown.

The statistical analysis shows that genre seem to be the
most important property influencing users in the selection
of neighboring tracks, as displayed by the highest UPV,
i. e., 1.159 (meaning that playlist variance exceeds sequen-
tial variance by 15.88%); cf. UPV for genre in Figure 2. A
high UPV indicates a low variance for neighboring tracks
in comparison to the overall playlist variance for a given
feature. However, as explained in Section 3.1, the tracks’
genres, being the union of the corresponding artists’ gen-

8 Note that the reported results are comparable to those obtained from
the non-parametric alternatives Mann-Whitney U rank and Wilcoxon
signed-rank test.
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Figure 2. Bar chart representing the unconstrained propor-
tional variances (UPV) and the constrained proportional
variances (CPV) for all the analyzed features.

res, 9 are often sparse, leading to large Jaccard distances
when repeating artists are filtered out, which yields a very
low CPV (cf. no visible CPV bar for genre in Figure 2).

The next most important properties for low sequential
variance (in relation to playlist variance) are artist and pop-
ularity, as shown by their high UPV: 1.153 and 1.151, re-
spectively (cf. UPV for artist and popularity in Figure 2).
This indicates that user-generated playlists often repeat the
same artists in subsequent tracks. The proportional vari-
ance for popularity drops considerably, i. e., �0.133, after
filtering out repeating artists: compare UPV (1.151) w. r. t.
CPV (1.019) for popularity in Figure 2. 10 We assume this
is due to tracks from famous artists, which are more com-
mon in playlists, being typically more popular; therefore,
repeating artists have a large effect on tracks’ popularity.

Several audio features (loudness, energy, danceability,
acousticness, and valence) have lower but still consider-
able proportional variances, both in the unconstrained and
the constrained setting: all of them show a UPV � 1.082
and a CPV � 1.046; while tempo, tonality, and liveness
show UPV  1.021, CPV  1.013; and speechiness falls
in between with UPV = 1.056, CPV = 1.024 (cf. UPV and
CPV in Figure 2). This shows that concerning loudness,
energy, danceability, acousticness, and valence, the ma-
jority of playlists tend to have smooth transitions between
directly neighboring tracks even in cases where all artists
are different from one song to another. Differently, for
tempo, tonality, liveness, and to a lesser extent for speech-
iness, no substantial differences are displayed. Neverthe-
less, a deeper evaluation focusing on specific genres, such
as ‘classical’ or ‘rap’, should be performed in order to un-
derstand whether the importance of these features is biased
by the effect of predominant genres, e. g., ‘pop’ or ‘rock’,
in which they might not have a prominent role.

Interestingly, for instrumentalness it can be observed

9 There are 5, 145 genres across the whole dataset with an average of
3.17 genres per track.

10 For obvious reasons there is no bar referring to the constrained pro-
portion for artist in Figure 2.

Figure 3. Scatter plot of the loudness feature. Each point
represents one playlist with the playlist variance on the x-
axis and the sequential variance on the y-axis. The red
point marks the center of gravity. The lower line (in blue)
visualizes the general differences between both variances
in comparison to the line of equality (in yellow).

that the proportional variances are below the line of equal-
ity (i. e., 1.0 on the y-axis), meaning that the sequential
variance is on average larger than the playlist variance.
More precisely, the UPV is 0.985 (or �1.49% in relation
to the playlist variance). The effect is even stronger for
CPV: 0.958 (or �4.23%). This is an unexpected outcome,
which might be explained by the very skewed distribution
(skewness = 3.593) of this feature.

4.2 Visualization of Proportional Feature Differences

To visually explore the relationship between playlist and
sequential variance over all playlists in the dataset, we rep-
resent each playlist as a point on a scatter plot with the x-
axis corresponding to the playlist variance and the y-axis to
the sequential variance of a chosen feature. Figure 3 shows
the distribution of the feature loudness. We chose loudness
as example as it is the audio feature with the largest UPV.
For completeness, we provide the plots for all features as
well as the source code to reproduce the experiments. 11

Figure 3 displays that the scattered points are not sym-
metrically distributed along the line of equality, i. e., the
diagonal (upper line) considered as reference. Most of the
points fall below the line of equality, as shown by the gen-
eral trend of the distribution, indicated by the lower line
crossing the center of mass (large dot), which has a slope
of 0.83, i. e., 39.77 degrees. This indicates that directly
neighboring tracks vary less arbitrary than other tracks in
the playlist, in other words, there is a large imbalance be-
tween sequential and playlist variance.

Furthermore, the effect seems to be even stronger for
playlists with generally large playlist variances (cf. empty
area in the upper left part compared to the lower right part
of Figure 3). Thus, we conclude that the majority of user-
generated playlists have a smooth change in loudness.

11 https://gitlab.cp.jku.at/haralds/spv_analysis
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4.3 Proportional Variances for Increasing Track
Distances

Unlike in Section 4.1, where the sequential variance was
only considered for every track and its direct neighbor, in
order to answer RQ2, we compute now the sequential vari-
ance of tracks which lie a predefined distance d apart from
each other. Figure 4 depicts along the x-axis the increas-
ing track distance considered, whereas the y-axis shows the
drop in features persistence according to the UPV defined
in Section 3.2.3. Dashed lines indicate non-significant re-
sults on the t-test: as significance threshold, we consider
p  .001.

It can be seen that the UPV of the analyzed features, ex-
cluding instrumentalness, genre, and artist, drop in a sim-
ilar fashion. The larger the initial UPV (i. e., the UPV at
track distance d = 1), the longer specific characteristics
of a given feature prevail on the upcoming tracks. Gen-
erally, energy, loudness, danceability, accousticness, and
valence are properties that significantly persist on tracks
which lie up to 11 tracks apart (cf. solid lines for these
features in Figure 4). Differently, the UPV drop faster for
genre and artist than for the audio features, which indi-
cates that repeating artists and overlapping genres are only
important for neighboring tracks lying close to each other,
i. e., within a track distance of 2 or 3. Interestingly, after
around 8 tracks the lines for genre and artist drop below
1.0. This suggests that after 8 tracks it is more likely that
artists and genres differ than they do not.

As mentioned in Section 4.1, the audio features tempo,
tonality, and liveness present an initial UPV  1.021,
which drops even further with increasing track distance
(cf. Figure 4). Nevertheless, although these features do not
generally show a high UPV for any track distance, they are
still significant: especially tonality, whose characteristics
persist even 9 tracks apart (cf. solid line for tonality in Fig-
ure 4). This suggest that these features might be important
for specific genres or themes but not for the dominant ones,
i. e., the most popular, whose weight could have hidden
the role of these features for concrete genres in the inves-
tigated scenario. A similar trend (persisting up to 8 tracks)
is shown for speechiness, falling in between audio features
with high UPV and low UPV. The exact reason for the per-
sisting significance but low UPV values is an open research
question which will be investigated in future work.

The only outlier feature in this assessment is again, as
expected by the findings described in Section 4.1, instru-
mentalness. Unexpectedly, the UPV continues to drop un-
til a track distance of 8 is reached, afterwards it increases
again. This might be explained by pronounced overlaps be-
tween artists or between genres, as well as by the skewed
distribution (skewness = 3.6) of this feature. Investigating
this behavior further will also be part of our future work.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated to which extent audio
and metadata characteristics of subsequent tracks in user-
generated playlists differ, and we related this difference

Figure 4. Visualization of the change in UPV according to
track distance. The feature labels of the legend are sorted
by the starting values of UVP in descending order. Gray
dashed lines mark the point at which t-test between playlist
and sequential variance return a p-value � .001.

to the difference of arbitrary tracks in the playlist. For
this purpose, we defined variance measures on the level
of subsequent tracks (sequential variance) and on the level
of an entire playlist (playlist variance). Using these mea-
sures, we analyzed both direct neighbors and tracks up to
a certain distance apart in the playlist. Our major find-
ings can be summarized as follows. (i) Metadata, i. e.,
genre, artist, and popularity, vary on average by 15.10%
more for the overall playlist variance than for order de-
pendent sequential variance. (ii) The audio features loud-
ness, energy, danceability, acousticness, and valence per-
sist stronger over subsequent tracks at larger distances in
the playlist than the metadata aspects genre, artists, and
popularity. This effect is particularly pronounced for track
distances � 3, and specially marked for energy, danceabil-
ity, acousticness, and valence, which significantly persist
on average up to 11 subsequent tracks. (iii) Filtering tracks
by the same artist(s) shows similar, but less pronounced
results for all features, except for genre and popularity,
where the difference between playlist and sequential vari-
ance almost vanishes.

Future work will include research about the content of
playlists for which very large or very small UPV values
are measured. This will enables us to identify possible pat-
terns inside playlists as well as the ‘themes’ that the creator
might have had in mind. We will also focus on a more pro-
found explanation about correlations between features and
will further investigate the reasons of certain outliers, e. g.,
instrumentalness. Since we are aware that the sequential
relationship between tracks for some of the evaluated fea-
tures, such as key and mode, might strongly depend on the
musical genre, 12 a deeper evaluation on selected musical
genres will also be carried out. We will ultimately leverage
our findings to improve APG and APC algorithms.

12 For instance, in classical music the sequential relationship between
pieces in terms of tonality is stronger than in other genres, e. g., rock.
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ABSTRACT

Intonation is the process of choosing an appropriate pitch
for a given note in a musical performance. Particularly
in polyphonic singing, where all musicians can continu-
ously adapt their pitch, this leads to complex interactions.
To achieve an overall balanced sound, the musicians dy-
namically adjust their intonation considering musical, per-
ceptual, and acoustical aspects. When adapting the into-
nation in a recorded performance, a sound engineer may
have to individually fine-tune the pitches of all voices to
account for these aspects in a similar way. In this paper,
we formulate intonation adaptation as a cost minimization
problem. As our main contribution, we introduce a differ-
entiable cost measure by adapting and combining existing
principles for measuring intonation. In particular, our mea-
sure consists of two terms, representing a tonal aspect (the
proximity to a tonal grid) and a harmonic aspect (the per-
ceptual dissonance between salient frequencies). We show
that, combining these two aspects, our measure can be used
to flexibly account for different artistic intents while al-
lowing for robust and joint processing of multiple voices
in real-time. In an experiment, we demonstrate the poten-
tial of our approach for the task of intonation adaptation
of amateur choral music using recordings from a publicly
available multitrack dataset.

1. INTRODUCTION

The widely-used 12-tone equal temperament (12-TET)
tuning system divides the octave in twelve equal semitones
of the ratio 2

1/12 ⇡ 1.0595. This allows instruments with
fixed pitch to play in any key at the cost of most inter-
vals being slightly out of tune in comparison to the natural
overtone spectrum of harmonic sounds. Just Intonation (JI)
scales, on the other hand, are constructed from intervals
with small integer ratios to a root note. As a result, the har-
monic overtones of two tones in a JI scale are more congru-
ent than those in 12-TET. However, the absolute pitches in
the JI scale change for different root notes, so that the grid
must be adapted to different keys and musical contexts.

c� S. Schwär, S. Rosenzweig, and M. Müller. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: S. Schwär, S. Rosenzweig, and M. Müller, “A Differ-
entiable Cost Measure for Intonation Processing in Polyphonic Music”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,

Online, 2021.

Figure 1: Joint adaptation of the voices in an example ca-
dence. (a) Sheet music. (b) Fundamental frequencies of
the original synthesized voices measured with pYIN [1]
(orange: soprano, red: alto, green: tenor, blue: bass). (c)
Overall intonation cost C between all voices with w =

0.33. (d) Pitch shift curve for all voices obtained from
joint gradient descent on C with w = 0.33 and µ = 350.

Many instruments can produce any pitch in between the
12-TET or JI grid or have considerable variance in tun-
ing. This allows performers to dynamically change the
sounding scale or chord, both intentionally and acciden-
tally. This flexible intonation is particularly relevant in a
cappella choral singing. While 12-TET if often used as
an approximation for the distribution of chosen pitches by
singers [2, 3], their intonation is influenced by a multitude
of aspects. For example, choir singers tend to aim for JI
in harmonies [4], whereas other influences may prevail in
melodic or solistic phrases [5]. At the same time, singers
continuously have to account for the intonation of their fel-
low musicians [6,7], while pitch changes also occur during
the sounding tone [8]. Depending on the singers’ ability to
control their voices, this complex setting often results in
defects like poor local intonation or intonation drift [9,10].

Different aspects of intonation are illustrated in the syn-
thesized example cadence shown in Figure 1: The pitches
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(where “pitch” is used as a technical term synonymously
with fundamental frequency here and in the following) in
chord I correspond to a JI scale with root F, while chord II
is tuned to 12-TET. Continuous deviations are illustrated
in chords III and IV, where the soprano in III and all voices
in IV are detuned randomly between �25 and +25 cents
around the 12-TET grid. Even with these large pitch fluc-
tuations, the chords can still be clearly recognized 1 .

When post-processing multitrack recordings, pitch-
shifting the individual audio signals may mitigate some
unintended intonation deviations in a performance. How-
ever, this requires a known target pitch, and similarly to
intonation in a live performance, the desired target can be
influenced by many aspects. Instead of quantizing to a
fixed set of pitches like 12-TET or manually tweaking indi-
vidual notes, we formulate intonation adaptation as a cost
minimization problem. A good cost measure for this task
should have a local minimum at the target pitch for each
individual note.

As our main contribution, we propose a differentiable
cost measure, where the local minima can be adjusted ac-
cording to artistic intent. In particular, we employ two ex-
isting models to account for different aspects of intonation:
The first model represents a tonal aspect, that most music
is composed from a set of discrete pitches approximated by
equal divisions of the octave [11]. The second model con-
siders a harmonic aspect and uses perceptual dissonance to
capture the tendency for JI in multi-part harmonies [12].

We show that our cost-based approach has several ad-
vantageous properties over existing methods for intonation
processing:

• A variable weight between the terms allows for flex-
ibly setting the local minimum anywhere between
12-TET and JI.

• In contrast to purely dissonance-based adaptation,
our cost measure has a local minimum also for mu-
sically unstable voices of a chord.

• Using gradient descent, intonation can be adapted in
real-time, dynamically reacting to changing inputs.

For example, the overall cost shown in Figure 1c is high
when voices deviate strongly from the desired pitches. At
the same time, musically dissonant chords like the dimin-
ished seventh chord in III have a higher inherent percep-
tual dissonance. Therefore, an adaptation should not aim
to achieve zero cost, but to find the nearest local minimum.

Figure 1d shows the pitch shift curves for the voices in
our example that locally minimize the cost measure. The
curves were obtained using joint gradient descent, where
all voices are processed at the same time and influence each
other. The resulting “optimal” pitches after applying the
shift lie in between 12-TET and JI, as can be seen e. g. in
the major third of chord I. Its initial pitch in the present
example is �14 cents w.r.t. 12-TET and it is pitched up by
10 cents to minimize the cost with the given parameters.
Furthermore, the algorithm finds meaningful solutions in

1 Audio examples are available online:
https://www.audiolabs-erlangen.de/resources/MIR/
2021-ISMIR-IntonationCostMeasure.

the more complex situations occuring in chords III and IV.
The remainder of this article is structured as follows.

In Section 2, we review existing approaches to intonation
adaptation and adaptive tuning, in Section 3 we introduce
the cost measure, and in Section 4, we demonstrate the
applicability to local intonation adaptation in a multitrack
choral music recording with amateur singers.

2. RELATED WORK

A common intonation adaptation strategy implemented in
many commercial products like Melodyne [13] or Auto-

Tune [14] is to measure the fundamental frequency (F0) in
a monophonic recording and to pitch-shift the signal such
that the F0 approaches a fixed target value. The target can
be chosen manually by the user or determined automati-
cally from a predefined grid or score.

Several approaches have been proposed to dynamically
choose a target pitch based on musical assumptions. Rule-
based algorithms like Groven.Max [15] or Hermode Tun-

ing [16] choose pitches for all voices of a synthesizer by
analyzing the musical structure of a chord. Aiming for JI,
they implement fixed rules to compromise in chords where
just intervals between all pairs of notes are not possible.
This problem can also be addressed by solving a quadratic
program [17]. This way, the deviation from JI is distributed
evenly across the pitches and all intervals are as close as
possible to a small integer ratio. Additional constraints can
enable temporal continuity.

Deep learning is used in [18] to infer “good” intona-
tion from curated training examples of monophonic vocal
recordings over a backing track. The model then outputs a
pitch shift curve that can match the intonation in an input
recording with the characteristics of the training examples.

Sethares [19] relates the chosen scale to the timbre of
the sound. Summing the perceptual dissonance [20] of all
individual salient frequency pairs between two sounds, he
obtains a dissonance landscape, in which local minima ex-
ist for small integer ratio intervals if the timbre is harmonic.
This principle is also used for adaptive tuning using gra-
dient descent [12], which achieves a tuning similar to JI
without requiring explicit musical analysis of the chords.
In [21], the idea was further enhanced to be stable in more
complex settings by adding a proximity constraint. This
limits the deviation from 12-TET to a few cents and re-
quires the input to be in the same range.

3. INTONATION COST MEASURE

Our cost measure is based on the assumption that proper
intonation in a polyphonic context is a balance between
the proximity to pitches in an equal temperament tuning
system most suitable for the composition and the mini-
mization of perceptual dissonance. Mathematically, this
can be expressed as the sum of a tonal cost Ct, indicating
the distance to the pitches in an equal temperament tuning
system, and a harmonic cost Ch, measuring the perceptual
dissonance in the overall sound:

C := w · Ct + (1� w) · Ch. (1)
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Figure 2: Conceptual overview of our cost measure. (a)
Ct is higher when salient frequencies are far from the equal
temperament grid. (b) Ch is higher when salient frequen-
cies of a tone (blue) are similar but not equal to salient
frequencies of a concurrent reference tone (red). (c) Shift-
ing the tone shown in blue by x cents changes the overall
cost C. A higher relative weight w of Ct to Ch results in
local minima closer to the 12-TET grid.

A lower cost C corresponds to a “better” choice for the
pitch, where the parameter w 2 [0, 1] controls the relative
weight between the two aspects.

Figure 2 exemplifies the behavior of C for two hypo-
thetical tones with five harmonic partials each (depicted in
blue and red). The graphs in Figure 2c show the change
in C when the tone represented in blue is pitch-shifted by
�200 to +200 cents. As the two tones form a major third,
a shift by +14 cents would result in a just interval. With a
larger w, the relative weight of Ct increases, correspond-
ing to a preference for equal temperament, whereas with
decreasing w, the local minima move closer to JI intervals.

In the upcoming section, we develop differentiable ex-
pressions for Ct and Ch and illustrate their properties by
continuing our example from Figure 1. In Section 3.4, we
then show how the cost measure can be used to adapt the
intonation using gradient descent.

3.1 Prerequisites

For a given audio signal, we assume a stationary sound in
each analysis time frame n and represent it by a set

P[n] := {(fm, am) |m 2 {1, ...,M}}, (2)

consisting of M salient frequencies fm in Hz with ampli-
tude am. The cost measure is defined for a signal w.r.t. to
a reference (or “background”) signal represented by a set
Pref [n]. In the following, we omit the frame index for P
and Pref where the time-dependency is not relevant.

To obtain this representation from audio signals, we use
a short-time Fourier transform (STFT) with a frame and

hop size of 0.1 sec and detect peaks in the magnitude spec-
trum of each time frame that constitute the salient frequen-
cies. Avoiding the misinterpretation of transient peaks in
the spectrum, we filter the STFT representation to remove
percussive components of the signal [22]. Then, we iden-
tify up to 16 peaks in the remaining spectrum of each time
frame by selecting the local maxima above a threshold.
To increase frequency resolution, we interpolate the ex-
act peak frequency and amplitude by fitting a parabola to
the magnitudes of neighboring bands [23]. For an inactive
voice or a purely percussive signal frame, we set P = ;.

Note that, for harmonic sounds in a monophonic signal,
all salient frequencies in P are close to integer multiples
of the lowest frequency f0. This assumption does not hold
for inharmonic sounds and polyphonic recordings.

For the example in Figure 1, we synthesize the signals
using a sawtooth waveform with 16 harmonic partials and
amplitudes ai = 1/(i⇡) using a reference frequency of
440 Hz for A4.

3.2 Tonal Cost

Equal divisions of the octave are a good approximation
for the distribution of pitches in many music theories [11].
Furthermore, measuring the distance to an equal tempera-
ment grid is an often used strategy to assess the intonation
in a performance [3, 24].

We define the tonal distance dKt (f1, f2) between two
positive frequencies f1 and f2 in Hz on a K-TET grid as

dKt (f1, f2) :=
1

2

⇣
1� cos

�
2⇡K log2(f1/f2)

�⌘
, (3)

where the distance is small if the interval between f1 and
f2 is close to a K-TET interval (i. e., f1/f2 ⇡ 2

k/K with
k 2 Z). By measuring the tonal distance of each frequency
in P to a given reference frequency fref , we define the
tonal cost Ct as

Ct :=

P
(f,a)2P a · dKt (f, fref)P

(f,a)2P a
, (4)

where frequencies with higher amplitude contribute more
to Ct. The highest cost Ct = 1 is reached, when all salient
frequencies lie exactly in the middle between two frequen-
cies on the equal temperament grid defined by K and fref .
The parameters K and fref can either be estimated from
Pref or fixed to known values. Note that, with fixed pa-
rameters, Ct does not depend on Pref . Furthermore, Fig-
ure 2a shows that for integer-multiple frequencies in P , not
all frequencies can align with the grid, so that Ct is never
0 for such signals. However, the local minimum is reached
when the loudest partials are close to the grid.

For the example, let P include the salient frequencies
of the soprano voice while all other voices are contained
in Pref . By setting K = 12 and fref = 440 Hz, we ob-
tain the cost heatmap shown in Figure 3. By pitch-shifting
the soprano signal by �200 to 200 cents and evaluating
the cost for each time frame, it shows for which shifts the
salient frequencies in the signal fit best on the 12-TET grid.
Tracking the nearest local minimum starting at a shift of 0
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Figure 3: Tonal cost heatmap for the soprano voice in the
example from Figure 1, pitch-shifted by �200 to +200

cents. White line indicates local minimum closest to 0.

Figure 4: Harmonic cost heatmap for the soprano voice in
the example from Figure 1, pitch-shifted by �200 to +200

cents. White line indicates local minimum closest to 0.

cents, the white line corresponds to the pitch shift required
to minimize the cost.

3.3 Harmonic Cost

The perceptual dissonance between concurrent sounds can
be expressed in terms of the pure-tone dissonance between
all combinations of salient frequencies present in each
sound [19]. While the perceived dissonance between two
pure tones was first determined experimentally [20], we
quantify the dissonance between two positive frequencies
f1 and f2 using the parametrized model from [11] (omit-
ting a global scaling factor):

dh(f1, f2) := exp

⇣
� ln

2 � | log2(f1/f2)|
wc

�⌘
, (5)

with wc := 6.7 · min(f1, f2)�0.68 as the frequency-
dependent parameter that controls the interval of maximal
dissonance and the decay of the dissonance curve. To en-
sure differentiability, we define dh(f1, f2) := 0 for f1 =

f2. 2 As illustrated in Figure 5, dh(f1, f2) approaches 0

from both sides when f1 is close to f2. dh(f1, f2) = 1

is maximal when the logarithmic distance between the two
frequencies is | log2(f1/f2)| = wc.

The sum of dh(f1, f2) between all pairs of salient fre-
quencies in P and Pref weighted by the amplitude consti-
tutes the harmonic cost:

Ch :=

P
(f,a)2P

P
(fr,ar)2Pref

min(a, ar) · dh(f, fr)
P

(f,a)2P
a

(6)

The normalization does not restrict Ch to [0, 1], because
the total number of salient frequency pairings is |P|·|Pref |,
but when comparing harmonic signals, only a small frac-
tion of pairings have dh(f1, f2) � 0. By normalizing
by the sum of amplitudes in P , we achieve a comparable
range for Ct and Ch, where Ch vanishes when the am-
plitudes in Pref are very small (i. e. no reference signal is
present for which a harmonic relation can be evaluated).

The concept of the harmonic cost is illustrated in Fig-
ure 2b, where only the pairings between sets (blue and red)
contribute to the cost. With the frequency-dependent wc,

2 Proof of differentiability can be found on the accompanying website.

Figure 5: Pure-tone dissonance dh(f1, f2) from [11] with
f1 = 220 Hz and f2 between 110 and 440 Hz.

the dissonance curve becomes more narrow towards higher
frequencies. Applied to the soprano in our example analo-
gous to Figure 3, this results in the heatmap in Figure 4.

3.4 Joint Intonation Adaptation

In a musical performance, the cost C may vary between
time frames n and we denote the cost in each frame by
C[n]. The goal of intonation adaptation is to obtain a pitch
shift function p : Z ! R, where a pitch shift of p[n] cents
applied to the considered signal minimizes C[n].

When multiple voices can be adapted simultaneously in
a polyphonic multitrack setting, the cost for each individ-
ual voice depends on the salient frequencies in the other
voices. We denote the cost for each voice v with respect to
all other voices by Cv[n] and the current pitch shift for the
signal of v by pv[n]. Then the optimal shift can be found
by solving

min
pv [n]

Cv[n]. (7)

As described in [12], gradient descent is an effective
method to find the local minimum. Pitch-shifting with
pv[n] affects the salient frequencies in P[n] equally on a
logarithmic scale while the frequencies in Pref [n] stay con-
stant. Thus, the shift p in cents can be moved out of the
logarithm in the tonal distance dKt (f1, f2) and the disso-
nance dh(f1, f2), for which we introduce auxiliary func-
tions �Kt (f1, f2, p) and �h(f1, f2, p):

�Kt (f1, f2, p) :=
1

2

⇣
1� cos

�
2⇡K(log2(f1/f2) + p/1200)

�⌘

�h(f1, f2, p) := exp

⇣
� ln

2 � | log2(f1/f2) + p/1200|
wc

�⌘

(8)

In the following, we omit the arguments of the distance
and dissonance functions for brevity. Analogous to (5),
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Figure 6: Adaptation curves pv[n] resulting from joint gra-
dient descent with all four voices (orange: soprano, red:
alto, green: tenor, blue: bass, µ = 350). (a) w = 1.0 (b)
w = 0.0 (c) w = 0.33

we define �h := 0 for log2(f1/f2) = �p/1200 to re-
tain differentiability. Furthermore, we assume for �h that
wc stays constant for small shifts p, so that its frequency-
dependency does not play a role in a single gradient de-
scent step. Replacing dKt with �Kt and dh with �h in (4)
and (6) allows calculating the derivative of Cv[n] directly
with respect to p, so that the update rule becomes

pv,new[n] = pv[n]� µ
dCv[n]

dp
, (9)

where µ is a step size parameter and the derivative of Cv[n]
(with the unit “cost change per cent shifted”) is a weighted
sum of d�Kt

dp and d�h
dp :

d�Kt
dp

=
⇡K

1200
sin

�
2⇡K(log2(f1/f2) + p/1200)

�
(10)

d�h
dp

=�
ln(

| log2(f1/f2)+p/1200|
wc

)

600(log2(f1/f2) + p/1200)

exp(� ln
2
(
| log2(f1/f2) + p/1200|

wc
)).

(11)

with d�h
dp = 0 for log2(

f1
f2
) = � p

1200 . By setting pv[n] to
an initial value (e. g. 0) and repeatedly evaluating (9), we
can now iteratively find the local minimum of Cv[n] for
each time frame. However, for short frame sizes, correla-
tion between salient frequencies in successive time frames
can be expected. Therefore, instead of finding the closest
local minimum for each frame independently, we can use
the pitch shift from the previous frame as the initial value
for pv[n]. Furthermore, to retain natural short-term pitch
variations in the signal (e. g. vibrato), we require a certain
temporal smoothness of pv[n]. This can be achieved by
updating pv[n] with only a single gradient descent step in
each time frame, which yields

pv[n] = pv[n� 1]� µ
dCv[n]

dp
(12)

for n > 0 and pv[0] = 0. Together with the frame size,
the step size µ controls the rate at which pitch changes in

the signals influence pv[n]. This can be observed in Fig-
ure 6, which shows the resulting pv[n] from joint gradient
descent with (12) for a varying weight w between Ct and
Ch in the example cadence. For example, the pitch shift
for the soprano voice visibly approaches a minimum in the
first few frames of chords I and II. Moreover, it can be
seen that the harmonic cost alone (Figure 6b) is not robust
in musically dissonant chords like chord III, whereas with
w = 0.33 (Figure 6c), the obtained pitch shift tends to-
wards JI without ending up in a local minimum far away
from equal temperament (cf. tenor in chords III and IV).

4. APPLICATION: INTONATION ADAPTATION
IN CHORAL MUSIC

In the previous section, we introduced a method to obtain
pitch shift curves by minimizing a cost measure that quan-
tifies two aspects of intonation: the distance of a pitch to
an equal temperament grid and the perceptual dissonance
with regard to a harmonic reference. As a tool, this allows
sound engineers to flexibly adapt the intonation in audio
recordings between equal temperament and JI using the
two parameters w and µ. With w, the relative weight be-
tween both aspects can be adjusted depending on artistic
intent and musical context. µ controls the temporal behav-
ior of the adaptation, where a larger µ corresponds to a
stronger reaction to short-term pitch fluctuations.

A subjective evaluation of preferred intonation in dif-
ferent musical contexts and the resulting suitable choices
for the parameters of our cost measure is beyond the scope
of this paper. Many additional aspects, including timbre,
acoustics, and performative choices (vibrato, portamento,
etc.) [25], as well as listener taste and experience [26],
influence intonation perception. Instead, we demonstrate
the utility of the cost-based adaptation tool with an exam-
ple from amateur performances of a cappella choral music.
In this application with particularly volatile intonation, we
show that the approach is robust on real-world signals and
can blindly achieve results that are comparable to score-
informed intonation adaptation.

For this, we apply the presented method to recordings
from the Dagstuhl ChoirSet (DCS) [27]. The intonation
adaptation of individual voices in a vocal recording re-
quires separate signals for each voice and the dataset con-
tains headset microphone signals for each singer. In this
section, we consider the last four bars (45 to 48) from a
performance of the motet Locus Iste (WAB 23, 1869) by
Anton Bruckner (Quartet B, Take 3 in the dataset). The
four-part a cappella composition is performed by a quartet
of soprano (S), alto (A), tenor (T) and bass (B).

First, we obtain the salient frequencies for each voice
from the four individual headset microphone signals, us-
ing the method described in Section 3.1. For the STFT, we
keep the hop size of 0.1 sec (2205 samples in the DCS au-
dio signals) and use a window size of 4096 samples for
an improved frequency resolution. Due to varying lev-
els and timbre of the singing voice and background noise,
the number of salient frequencies in P[n] fluctuates. On
average, |P[n]| is 6.6 (S: 5.6, A: 6.8, T: 4.4, B: 9.6) in
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the voiced frames (i. e., where |P[n]| > 0). To assess
the robustness of the detected salient frequencies against
crosstalk and noise, we calculate the average deviation
of each frequency from being an integer multiple of the
lowest frequency in this frame (corresponding to the “har-
monicity” of the signal). In the excerpt, the detected fre-
quencies deviate from the harmonic overtones by a factor
of 1.01 on average (S: 1.007, A: 1.012, T: 1.006, B: 1.016).

We now compute a pitch shift pCB
v [n] for each voice

with the cost-based (CB) method as described in Sec-
tion 3.4, using a single gradient descent step for each frame
(see (12)). For the present example, we set w = 0.2
and µ = 350 and used fixed parameters K = 12 and
fref = 440 Hz for the tonal cost. The pitch shifts pCB

v [n]
are applied to each signal with a time-variant pitch shift
algorithm based on resampling and time-scale modifica-
tion [28]. In a cappella performances, one often observes
(downward) intonation drifts [10], causing pCB

v [n] to drift
in the opposite direction to counteract this effect. For in-
stance, the mean pitch shift across all voices in bar 48 of
our example is 21 cents. Note that, to counteract a global
drift of all voices in a similar direction, even |pCB

v [n]| >
50 cents may be intended. In this case, additional regu-
larization can be added in the cost minimization to avoid
individual voices ending up in local minima that do not
reflect the relative intonation in the performance.

For the comparison of our method with a score-
informed baseline (BL) approach, we estimate the F0 tra-
jectories for each voice with pYIN [1] and assign the mea-
surements to individual notes from the aligned score an-
notation provided in DCS. Then, for each time frame of
0.1 sec duration, we choose a pitch shift pBL

v [n] that shifts
the median F0 in the current frame onto the 12-TET pitch
of the corresponding note in the score. To counteract larger
fluctuations that result from the relatively small frame size
for this method, we additionally smooth pBL

v [n] using a
moving average with a window size of 3 frames. The shift
is applied to the signals in the same way as pCB

v [n].
The pitch shift curves for the excerpt, calculated with

the blind CB approach (colored) and the score-informed
BL (black), are plotted for all voices in Figure 7a, c, e,
and g. Furthermore, subfigures b, d, f, and h show the
F0 trajectories of the original (black) and adapted (CB:
colored, BL: grey) signals. The difference between the
two pitch shift curves is small in most frames, particularly
when compared to the magnitude of overall pitch fluctua-
tions in the singing voices. Larger differences between the
curves can be observed at the onset of some notes. This can
be attributed to the strong influence of short-term fluctua-
tions in the measured F0 trajectories on the BL approach.

In addition, the harmonic cost term Ch has a recogniz-
able effect on the local minimum where JI intervals differ
from 12-TET. This can be prominently observed in the so-
prano voice in bar 48 (c.f. the zoomed detail in Figure 7),
where the sung note E is the major third of the final C
major chord of the piece and therefore has a JI pitch 14
cents lower than 12-TET. This shows that our real-time ca-
pable method for cost-based intonation adaptation is able

Figure 7: Joint adaptation of bars 45-48 of A. Bruckner
“Locus Iste” (DCS, Quartet B, Take 3). The F0 trajectory
plots (b,d,f,h) show the F0 of the original signal (black),
the baseline (BL, grey) and the cost-based (CB, colored,
w = 0.2, µ = 350) pitch-shifted signals. (a, b) Soprano
(c, d) Alto (e, f) Tenor (g, h) Bass

to approach JI tuning in vocal recordings without explicit
knowledge about scales and keys.

5. CONCLUSION

In this paper, we introduced a differentiable cost measure
for intonation processing in polyphonic music recordings,
which accounts for a tonal and a harmonic aspect in a user-
specified proportion. Our method can be used as a flexible
tool for intonation adaptation in multitrack choral music
recordings. In future work, we will investigate the percep-
tual implications of our intonation adaptation in real-world
signals. Furthermore, we want to apply this principle to
more intonation processing tasks such as adaptive tuning
of synthesizers and explore ways to incorporate additional
aspects of intonation in the cost measure.
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ABSTRACT

Several automatic approaches for objective music perfor-
mance assessment (MPA) have been proposed in the past,
however, existing systems are not yet capable of reliably
predicting ratings with the same accuracy as professional
judges. This study investigates contrastive learning as a
potential method to improve existing MPA systems. Con-
trastive learning is a widely used technique in representation
learning to learn a structured latent space capable of sep-
arately clustering multiple classes. It has been shown to
produce state of the art results for image-based classification
problems. We introduce a weighted contrastive loss suitable
for regression tasks applied to a convolutional neural net-
work and show that contrastive loss results in performance
gains in regression tasks for MPA. Our results show that
contrastive-based methods are able to match and exceed
SoTA performance for MPA regression tasks by creating
better class clusters within the latent space of the neural
networks.

1. INTRODUCTION

Within the context of western classical music, musical per-
formances are a sonic interpretation of a written musical
score. Performers are tasked with interpreting the score
and translating it to an acoustic rendition. In doing so,
they craft a unique performance by controlling and varying
performance parameters such as tempo and timing, dynam-
ics, intonation, and tone quality [1]. These performance
parameters and their variation impact the way in which lis-
teners perceive the music, and let them distinguish between
performances of the same musical score [2].

For music performers, the journey to competence and
mastery often spans years of practice and tailored instruc-
tion. As music performance is an inherently complex and
subjective task, proper feedback on performances is imper-
ative to growth as a performer, and such, regular feedback
by professional musicians is necessary. Music teachers are
expected to evaluate students on various criteria such as

© P. Seshadri and A. Lerch. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribution:
P. Seshadri and A. Lerch, “Improving Music Performance Assessment
with Contrastive Learning”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

musicality or tone quality, although rating these criteria
is highly subjective, complicating the task of consistent
and objective Music Performance Assessment (MPA) [3, 4].
These challenges, however, do not reduce the need of as-
sessing music performances, e.g., in institutions of musical
education. Thus, any effort towards either formalizing hu-
man assessments or the creation of objective, reproducible,
and unbiased systems for automatic assessment contributes
to overcoming the above-mentioned challenges.

A system for automatic MPA can be used for software-
based music tutoring applications to allow for easier acces-
sibility of music education and individualized instruction.
Past this, such objective assessment systems might also
serve as tools for the evaluation of performance generation
systems.

The approaches in automatic MPA follow the same gen-
eral historical patterns as other audio analysis systems.
Older systems extract hand-crafted features from recorded
performances and then use a data-driven approach such as
a regression model to map the features to a grade or as-
sessment rating that reflects human ratings [5]. Deep learn-
ing methods have since been found to outperform feature
extraction-based methods [6]; however, modern systems
still fall short of the reliability required for a ready-to-use
system [7].

Representation learning aims to accurately encode rel-
evant and useful characteristics into a compressed repre-
sentation. Representation learning methods such as VG-
Gish have been shown to encode powerful audio features
into a compressed representation which —when used as
input to classification systems— can produce state of the
art performance [8]. Contrastive learning is an emerging
representation learning method which uses a distance-based
loss between pairs of encoded training points in order to
create meaningful class separation within the latent space
of a neural network [9].

This study aims to investigate the use of contrastive
learning to improve the performance of MPA systems. We
investigate the use of contrastive-based learning methods
in a regression task, where a deep neural network taking an
input audio recording of a musical performance is tasked
with estimating a numerical rating consistent with that of a
professional judge. Our hypothesis is that learning a struc-
tured latent space will improve the ability of the regression
components of MPA models in predicting an assessment
rating. We investigate two methods of incorporating con-
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trastive learning into a standard CNN-based architecture
to learn a structured latent space, (i) a two-step training
method introduced by Khosla et al. [10], and (ii) a joint
loss method combining the contrastive loss term with a
mean squared error loss term, a standard loss for training
regression systems. As contrastive loss within a supervised
context is generally designed for classification tasks [10]
as opposed to regression tasks, we introduce a weighted
contrastive loss suitable for regression tasks.

The remainder of this paper is structured as follows.
First, we give an overview of music performance assess-
ment and previous work on contrastive loss. Then, we
introduce the proposed method in Sect. 3. Section 4 intro-
duces our experimental setup. In the following Sect. 5, we
evaluate the performance of the contrastive-based methods
against a baseline architecture to predict a regression rating
and perform analysis on the latent space of the baseline and
contrastive-based methods to determine the efficacy of this
clustering on the overall performance. Overall, we find that
contrastive-based learning is able to better cluster the latent
representation and produce performance gains within our
MPA regression task.

2. RELATED WORK

MPA aims to understand and model the parameters of a mu-
sical performance and investigate their impact on a human
listener [11]. MPA systems thus have the goal of assessing
musical performances based on audio recordings without
the input of expert judges. Early research on musical perfor-
mances centered around analyzing symbolic data extracted
from MIDI devices [12, 13], whereas recent research has
increasingly focused on analyzing raw audio [11, 14]. In
human performance assessment, music instructors must dis-
cern the individual subjective qualities and criteria and their
importance. Similarly, automatic performance assessment
systems extract features representing the audio file and then
use a data-driven model to estimate the assessment rating.
The features are either hand-crafted for the task [5, 15–18],
or learned from the training data [6, 19, 20]. Systems with
handcrafted features often use traditional machine learn-
ing approaches [21] while feature learning is usually done
within a more complex neural model with low-level input
representations such as spectrograms [22].

Some studies specifically aim to automatically produce a
numerical rating on a predefined scale from audio represen-
tations of a musical performance, which involves implicitly
learning the aspects of performances that correlate to certain
rating criteria [6,7,20]. However, since numerical scores do
not inherently include specific performance feedback, un-
derstanding the impacting factors can be challenging. The
methods based on deep neural networks, while generally
yielding superior performance, usually lack interpretability.
Learning a structured latent space is a first step towards
having a more easily understandable representation. Repre-
sentation learning is an emerging method for performance
assessment. For example, Huang et al. proposed a joint-
embedding network which learns a shared latent space of a
performance and its written score and derives a regression

rating by the cosine similarity between the two embed-
dings [7]. Representation learning methods thus potentially
provide both performance improvements, as well as better
interpretability of numerical scoring models, such as the
ones in this study.

An emerging method of representation learning is the
Contrastive Loss. Contrastive Loss aims to regularize the
latent space so that the distances between latent vectors are
meaningful. This is achieved by comparing the distances
between the latent representations of pairs of training points
and pushing them within a set distance in the latent space if
they have similar labels, and outside this set distance if they
are dissimilar. These distances are compared within the
contrastive loss function of a model in order to encode the
information within the latent vectors. This ideally creates
class clusters within the latent space. Contrastive-based
loss functions are often used to specifically learn structured
latent representations of data [9, 10, 23], which then can
be adapted for downstream tasks by training classifiers on
these produced latent vectors [10, 23]. There has been con-
siderable work done on the use of a supervised contrastive
loss to cluster latent spaces for classification tasks. Chopra
et al. introduce the max margin contrastive loss, and discuss
its potential to discriminate classes when the exact number
of classes may not be known, such as within recognition or
verification tasks [9]. Khosla et al. investigate a supervised
contrastive loss to train deep neural networks for classi-
fication tasks on the ImageNet dataset, and found that it
outperforms general cross entropy based methods [10]. This
implies that using the contrastive loss can produce an advan-
tageous latent space layout more suitable for the following
tasks. Ferraro et al. investigate the use of contrastive learn-
ing for music and audio for three downstream MIR tasks,
genre classification, playlist continuation, and automatic
tagging and found that contrastive-based learning outper-
forms the baseline within all three tasks and achieves com-
parable performance to SoTA [23]. Their findings suggest
that contrastive learning is able to cluster similar musical
recordings within the latent space of deep neural networks.
To our knowledge, the use of contrastive learning has not
been investigated within the context of MPA. Since it has
been found to be advantageous within classification tasks
across several modalities [9, 10, 23], we study the applica-
tion of contrastive learning to MPA.

3. METHOD

We propose a weighted contrastive loss as a modification of
the max margin contrastive loss introduced by Chopra et al.
[9]. The loss function is adapted to be suitable for regression
tasks. We investigate incorporating the contrastive loss via
two different training scenarios for a convolutional neural
network architecture. 1

1 The code is available at: https://github.com/pseshadri9/contrastive-
music-performance-assessment, last accessed 8/3/2021.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

635



As
se

ss
m

en
t

Conv Conv

Contrastive
Loss Li

ne
ar

Li
ne

ar

Si
gm

oi
d

c = 4
c = 8 c = 16

1-
D

 C
on

vo
lu

tio
n

1-
D

 B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

U

Kernel Size = 7,
stride = 3 

Conv Conv

c = 4
c = 8

1-
D

 C
on

vo
lu

tio
n

1-
D

 B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

U

c = 16

Encoder

Av
er

ag
e

Po
ol

in
g

Av
er

ag
e

Po
ol

in
g

Figure 1: Contrastive-Based network architecture for re-
gression.

3.1 Network architectures

3.1.1 Baseline

The baseline network used is the PCConvNet architecture
introduced by Pati et al. [6]. This architecture takes pitch
contours as input and uses three convolutional layers fol-
lowed by an average pooling layer in order to predict as-
sessment ratings. Each convolutional layer contains a 1-D
convolution, 1-D batch normalization [24], and ReLU non-
linearity.

3.1.2 ContrastiveCNN

Based on the baseline system, we design the network visual-
ized in Figure 1. Each branch of the network uses the same
convolutional layers of the baseline with shared weights.
Two linear layers are appended to this to predict the final
rating with a sigmoid activation.

A two-step training procedure as detailed by Khosla et
al. [10] is used to train this model. First, the encoder is
trained using contrastive loss over the output latent vectors.
After this, the encoder weights are frozen, and the linear
layers are trained to regress this space using a mean squared
error loss. Each datapoint within a training pair is fed
through one encoder channel.

3.1.3 ContrastiveCNN-JL

The architecture of this network is equivalent to the Con-
trastiveCNN, but differs in training procedure. Rather than
the two-step training procedure outlined above, the loss L
is the addition of the contrastive loss LC over the latent
vectors and the mean squared error loss LMSE

L = LMSE + LC. (1)

3.1.4 Input representation

The input for each model is a pitch contour of each indi-
vidual audition. Each pitch contour is an N ⇥ 1 vector
representing the fundamental frequency of each chunk of
a performance of sequence length N chunks. Pitch Con-
tour representations were extracted using the pYIN algo-
rithm [25] at a sample rate of 44.1 kHz with a block size

Middle School Symphonic Band
Alto Sax 696 641
Clarinet 925 1156
Flute 989 1196

Table 1: Number of recordings per instrument.

and hop size of 1024 and 256 samples, respectively. The
extracted fundamental frequencies are converted to MIDI
pitch values and normalized to a range of [0,1] by dividing
by 127, the maximum MIDI value.

3.2 Weighted Contrastive Loss

Contrastive loss is generally used for classification tasks in
order to create distinct class boundaries within the latent
space [9, 10, 23, 26]. The standard max margin contrastive
loss [9] is defined as:

LC =
1

2
Y D2 +

1

2
(1� Y )max(0, (m�D))2, (2)

where Y = 1 if the two datapoints in the pair have the
same ground truth label, and Y = 0 if they do not. D
is the Euclidean distance between the two latent vectors,
and m is a set margin distance for which similarly labeled
points should be clustered within. This results in points
from the same class clustered together, while differently
labeled points will be pushed past this pre-defined distance
margin.

Since this loss is not suitable for regression tasks like
ours, we propose a weighted contrastive loss term. For this
new loss, we first split our continuous regression range [0,
1] into C evenly spaced rating bins. For C = 5, for example,
each rating bin has a range of 0.2, with exact multiples of
0.2 serving as the lower bounds for each bin X (i.e., [0, 0.2),
[0.2, 0.4),. . . ). Each datapoint is assigned its respective bin
according to its ground truth rating. These bins are then
assigned the class indices [0, 1, 2, . . . , C�1], which will be
used for our weighted contrastive loss. Second, we propose
a variable margin to represent the ordered nature of the
rating bins. For example, it is expected that the rating bin
spanning [0, 0.2) should have a greater distance from the
bin covering [0.8, 1] than from the [0.2, 0.4) bin, as the bins
themselves express a rating distance. The variable margin
can therefore be defined as

m = |Xi �Xj | · s, (3)

where Xi and Xj represent the ground truth class indices
of each datapoint within a pair (Xi, Xj) and s is the set
margin distance. This variable margin scales the set distance
proportionally to the expected distance between each rating
bin. This variable margin then replaces the fixed margin m
in Eq. (2).

4. EXPERIMENTS

Our experiments investigate primarily the performance of
the proposed contrastive-based methods for MPA. In partic-
ular, we are interested in evaluating (i) the raw performance
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Figure 2: Results over the Middle School set.

in predicting ratings, (ii) the quality of the clustering of the
latent spaces, and (iii) the effect of this clustering on the
performance. We evaluate the learned representation both
quantitatively and qualitatively.

4.1 Dataset

The used dataset comprises audio recordings and ratings
of auditions from the Florida Bandmaster’s Association
(FBA) from 2013 to 2018. This dataset contains raw audio
recordings from three different levels of all-state auditions,
Middle School, Concert Band, and Symphonic Band. Each
student performs a prepared lyrical exercise, technical ex-
ercise, scales, and a sight reading exercise. This dataset
includes several monophonic and percussive instruments.
A subset of these data was used in this study, using the
technical exercise from the alto saxophone, Bb clarinet, and
flute recordings for the Middle School and Symphonic Band
levels. Table 1 shows the number of recordings per instru-
ment for both Middle School and Symphonic Band. The
average duration of a Middle School and a Symphonic Band
recording is approximately 30 s and 50 s, respectively.

Each singular recording represents the complete audi-
tion for one student and has assessment ratings by an expert
judge for four assessment criteria defined by the FBA: mu-
sicality, note accuracy, rhythm accuracy, and tone quality.
For consistency, we normalized each rating to the range [0,
1] by dividing the maximum rating, with 0 representing the
worst possible score, and 1 representing the best possible
score. Furthermore, the tone quality rating was ignored for
this study as the audition is represented as pitch contours
at our network input, a representation that does not carry
sufficient information for modeling this criterion.

4.1.1 Pre-processing

Pitch contour representations were computed from raw au-
dio recordings. Data augmentation via random chunking
was used while training due to its ability to improve model
performance [6]. Each pitch contour is chunked into sec-
tions of length 1000 (about 6 s) by randomly selecting the

Figure 3: Regression results over the Symphonic Band set.

start position. This approach has been shown to improve
model performance [6]. We assume the chunked segment
would receive the same assessment rating as the entire audi-
tion recording.

4.2 Training procedures

Pairs for the contrastive loss were randomly sampled via
generated random sequences each batch. Each datapoint
within the pair was fed into a separate encoder channel
of the model. Each model was trained using a stochastic
gradient descent optimizer with a weight decay of 1e-5 and
momentum of 0.9. Early stopping was applied in each train-
ing sequence to stop if the validation loss had not decreased
in 75 epochs. For training and evaluation, each dataset was
split into training, testing, and validation sets in an 8:1:1 ra-
tio. To measure the variance of the models, each model was
trained five times using random seeds, as represented by
the box plots. Within the two step training method follow-
ing [10], the encoder channels were trained for 150 epochs
at a learning rate of 0.1, while the linear layers were trained
for 300 epochs at a learning rate of 0.005. The Joint Loss
Network was trained for 300 epochs at a learning rate of
0.005.

4.3 Evaluation

We investigate the performance of the baseline and the
contrastive-regularized networks amongst three different
rating criteria, musicality, note accuracy, and rhythm ac-
curacy. We predict the ratings for these criteria over both
the Middle School and Symphonic Band dataset to deter-
mine performance over different levels of musical com-
plexity, which can provide insights over the performance
of MPA systems as musical complexity increases. The
Concert Band dataset was omitted for consistency, as it
was not evaluated in previous MPA studies that used this
dataset [6, 7]. Each model (PCConvNet, ContrastiveCNN,
ContrastiveCNN-JL) was trained separately for each as-
sessment criterion on both datasets. The unaltered PC-
ConvNet [6] served as the baseline model.
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(a) PCConvNet (b) ContrastiveCNN (c) ContrastiveCNN-JL

Figure 4: T-SNE visualization of the latent space of the three presented models.

4.3.1 Regression analysis

The coefficient of determination (R2score) over the output
scores serves as the evaluation metric:

R2 = 1�
P

i(yi � ŷi)2P
i(yi � ȳ)2

, (4)

where yi is the ground truth rating for a given datapoint, ŷi
is the predicted rating, and ȳ is the mean ground truth rating
over the entire set.

4.3.2 Latent space analysis

Using each trained model, the latent vectors of the testing
set were obtained by only passing the input through each
model’s encoder channels. A visualization was produced by
applying T-SNE dimensionality reduction [27] to the latent
vectors and plotting the output. Optimal parameters were
found via a parameter search.

For a quantitative evaluation of the clustering quality, the
latent space is evaluated by its Davies-Bouldin index [28].
The Davies-Bouldin index describes the average similarity
of each cluster to its most similar cluster, which is defined
as the ratio of within-cluster distances to between-cluster
distances. The minimum index is zero and smaller values
indicate better clustering [28].

5. RESULTS AND DISCUSSION

5.1 Regression results

Figure 2 and Figure 3 detail the results of the models on the
Middle School and Symphonic Band datasets, respectively.
Each box plot contains the five runs with random seeds 0-4
per each criteria and model. We can make the following
observations:

(i) All models perform better on the Middle School set
than the Symphonic Band set (higher R2 score). One
possible explanation for this is that the Symphonic
Band auditions tend to be longer and more complex
with higher skilled players, potentially increasing the
difficulty of extracting meaningful features represent-
ing the quality of the performance.

(ii) All contrastive-based models outperform the base-
line on the Middle School set; however, only the

ContrastiveCNN-JL meets and outperforms the base-
line on Symphonic Band. This implies that the con-
trastive learning is more beneficial at a lower complex-
ity of performance, but possibly has difficulty with
data of higher complexity. One possible explanation
could be that with a higher level of performance, and
thus a higher complexity of information within each
latent vector, the contrastive loss is unable to properly
semantically relate the distances to the quality of the
performance.

(iii) The ContrastiveCNN-JL outperforms both the base-
line and the ContrastiveCNN in every trial. This im-
plies that the information gained by combining the
traditional loss term with the contrastive loss helps
learning a more meaningful latent space representa-
tion.

5.2 Latent space analysis

5.2.1 T-SNE plots

T-SNE visualizations of the latent space are presented
for the baseline PCConvNet, ContrastiveCNN, and
ContrastiveCNN-JL in Figure 4. As a example, we only
present results for Note Accuracy on the Middle School
dataset. The effect of the contrastive loss can be easily
noticed, although the embedding spaces are not ordered per-
fectly in either case. The two models based on contrastive
loss display a more defined distinction between low classes
(0, 1) and higher classes (3, 4). Small same-class clusters
can also be identified.

5.2.2 Class Distance Surface plots

Figure 5 shows the distances between the centroids of each
class cluster within the latent space of the models trained
on the Middle School dataset for Note Accuracy. While the
contrastive-based models appear to have trouble properly
ordering the middle range of ratings between classes 2 and
3, the distances appear to scale more smoothly than the
distances within the baseline PCConvNet, indicating better
ordering within the latent space.
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(a) PCConvNet (b) ContrastiveCNN (c) ContrastiveCNN-JL

Figure 5: Class distances in the learned latent space of the three models.

5.2.3 Davies-Bouldin Index

Figure 6 shows the Davies-Bouldin indices of each model
on the Middle School regression set. Each contrastive-based
model has a considerably lower index than the baseline,
which indicates that the latent space clustering is improved.
Within this set, the lower the Davies-Bouldin index, the
better the regression performance, implying that better clus-
tered latent spaces do correlate with better regression.

6. CONCLUSION

This paper presented an approach to representation learning
to improve the accuracy of a system for music performance
assessment. We introduced a weighted contrastive loss
suitable for regression tasks and showed how this latent
space regularization improves results on a large real-world
dataset for music performance assessment.

In future work, we plan to incorporate score information
into the models, as this has been shown to improve perfor-
mance [7]. More analysis should be done within contrastive
learning methods to assess the effect of margin size, and
number of classes on the performance of the model and
the goodness of its clustering. Another approach to ensure
that the learned representations contain relevant informa-
tion is multi-task learning. It is worth investigating what
related tasks might help increase the performance of mu-
sic performance assessment. Moreover, supervised latent
space regularization methods such as AR-VAE [29] and
I-VAE [30] might be incorporated to force specific dimen-
sions to specific performance characteristics.
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ABSTRACT

Popular music streaming platforms offer users a diverse
network of content exploration through a triad of affor-
dances: organic, algorithmic and editorial access modes.
Whilst offering great potential for discovery, such platform
developments also pose the modern user with daily adop-
tion decisions on two fronts: platform affordance adop-
tion and the adoption of recommendations therein. Fol-
lowing a carefully constrained set of Deezer users over a
2-year observation period, our work explores factors driv-
ing user behaviour in the broad sense, by differentiating
users on the basis of their temporal daily usage, adoption
of the main platform affordances and the ways in which
they react to them, especially in terms of recommendation
adoption. Diverging from a perspective common in stud-
ies on the effects of recommendation, we assume and con-
firm that users exhibit very diverse behaviours in using and
adopting the platform affordances. The resulting complex
and quite heterogeneous picture demonstrates that there is
no blanket answer for adoption practices of both recom-
mendation features and recommendations.

1. INTRODUCTION

The contemporary music streaming platform is a far cry
from the digital repository which it once was. Increased
diversification at a platform level has resulted in a range
of affordances that is, modes of content access projected
by the platform to the user, which allow one to explore a
platform’s ever expanding musical catalogs through novel
paths. No longer is it necessary for the avid music listener
to spend hours on end trawling through digital reposito-
ries to find their ‘niche’, thus performing a direct, interest-
driven exploration of the whole catalog that is typically de-
noted as organic (O) use. Rather, they are free to draw
upon further affordances commonly encapsulated within
state-of-the-art platforms which provide some level of as-
sistance or guidance: either purely based on algorithmic

© Dougal Shakespeare, Camille Roth. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Dougal Shakespeare, Camille Roth, “Tracing Affordance
and Item Adoption on Music Streaming Platforms”, in Proc. of the 22nd
Int. Society for Music Information Retrieval Conf., Online, 2021.

(A) devices or on some level of editorial (E) curation.
While at one level, it is true that affordance diversification
yields increased potentials for exploration, this also comes
at the price of greater emphasis being placed on user plat-
form proficiency – questions of what affordance to employ
and what items therein to adopt quickly become frequent
decisions the modern user must deal with.

In our work we trace the aforementioned user tendencies
through the notion of adoption on two fronts: affordance
adoption (among the triad O,A,E) and item adoptions
therein (i.e., item transfers across affordances). Through a
comprehensive quantitative analysis of user listening prac-
tices on the popular music streaming platform, Deezer, our
work sheds light on the varied and often heterogeneous
nature of adoption and behavioural differences amongst
users. The contribution of this work both sits within and
helps to re-frame the growing body of literature which ap-
praises the interconnected effects of human behaviour and
algorithmic influence via an organic comparison.

2. LITERATURE REVIEW

2.1 Appraising Algorithmic Influence via an Organic
Comparison

Whilst historically the primary role of a music Rec-
ommender System (mRS) on streaming platforms was
to facilitate the efficient personalised exploration of a
platform’s often vast musical catalog thereby minimising
the risk of choice overload [1], a substantial body of
multi-disciplinary literature [2–5] points towards the
conclusion that user exploration may still in practice,
remain confined to a minute fraction of homogeneous
musical content – a phenomenon famously denoted as the
‘filter bubble’ [6]. Similarly in recent years a growing
body of simulation based RS literature has also shed light
on the tendency for feedback loops to emerge as a product
of algorithmic recommendation and (simulated) human
consumption [7–10]. Nonetheless, while the tendency for
such practices to emerge is clearly outlined in literature, a
less trivial second order question still remains ambiguous:

To what degree is user platform behaviour primarily a
product of algorithmic influence or rather, an autonomous
organic process imposed by the user themselves?
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In light of such questions, a novel branch of the state of
the art has sought to measure algorithmic influence by
drawing parallels to a user’s organic platform behaviour.
Roth conceptualises this debate through what he coins the
‘ROM-COM dichotomy’ [11] – the tendency for filtering
algorithms to either Read Our Minds (ROM) acting as
cognitive aids to facilitate organic exploration or rather,
Change Our Minds (COM) algorithmically distorting a
prior organic preference. Literature appraising algorithmic
influence through an organic reference has been applied
to a range of multi-disciplinary contexts. Bakshy et
al. [12] study the role of Facebook’s NewsFeed algorithm
in exposing users to cross-partisan content through an
organic reference. Their work finds filtering algorithms
to have minimal effect in reducing cross-partisan infor-
mation in comparison to the organic selection processes
suggesting a user’s diversity limitation may be prin-
cipally due to human pre- and post-selection. In the
music domain, Epps-Darling et al. [13] study the role of
Spotify’s algorithmic influence on gender representation
through an organic reference point. Their findings show
user’s organic preference towards male artists to be
marginally higher than that recommended by Spotify’s
mRS, again suggesting the human organic bias to be
stronger than that generated algorithmically. Anderson
et al. [14] also analyse diversity with respect to organic
vs programmed (algorithmic/editorial) listening events on
Spotify. Through the generation of a usage-based embed-
ding space, they find algorithmically-driven exploration
to be less diverse than organic, providing evidence for a
COM effect.

Furthermore, recent literature on music streaming uses
paints a picture of divergent practices dependent upon the
user’s degree of organic-algorithmic usage and actualised
with respect to context and user mindsets [15, 16]. Thus,
we commence our work with the prior hypothesis that user
platform behaviour is largely varied - there is no average
user for which a blanket answer to algorithmic influence
may be applied.

2.2 Item Adoption in Recommender Systems

Whilst item adoption in terms of consumption confined to
a given affordance has been covered extensively and criti-
cally both in terms of user studies [17, 18] and user mod-
elling [19–21], literature concerning item adoption in re-
lation to the dynamic transfer of items across affordances
remains to date, sparse. Nonetheless, the adoption of mu-
sic streaming platforms independent of their affordances
has notably been studied in the field of Cultural Studies. In
the works of Datta et al. [22], streaming adoption is shown
to lead to substantial increases in both the quantity and di-
versity of music consumed by a user. Similarly, Rushan et
al. [23] also study factors of the platform interface which
in itself, determine a consumer’s decision to adopt music
streaming platforms as a result of increased platform famil-
iarisation. Still, adoption with respect to transitions across
platform affordances remains a literature void which this

work seeks to fill.

2.3 Temporal Dimensions of mRS Usage

Time of day information has been evidenced to be an im-
portant signal in disentangling platform behaviour [24] and
has thus in recent years, become a commonly utilised sig-
nal in context dependent RS literature [25–27] to increase
personalisation and accuracy of recommendations. What
is more, user studies have also revealed that both the time
of day and week can play a substantial role in mediating
user platform experience and downstream projected user
behaviour [28, 29]. Utilising such rich temporal signals
encapsulated within listening logs, our work seeks to ex-
plore the degree to which adoption on both fronts may dif-
fer across temporal daily usages.

3. METHODOLOGY

3.1 Listening Events Data Set

We work with about 2 years of listening histories from
about 13K Deezer users who registered in the month of
September 2017. We constrain our field of observation to
users who remained active over the entire observation pe-
riod. Formally, we impose a maximum inter-event time
threshold of 10 days thus ensuring that users rely on the
platform for a regular source of music. This eventually
yields 2701 users which forms the ultimate user base for
our analysis. We discard listening events <30s as these
are deemed as so-called ‘skips’. We further merge unique
song identifiers which share identical audio embeddings in
a pre-build latent space supplied by Deezer (see [30] for
use case / generation details). This prevents double cout-
ing of identical songs which may have been mis-labeled
as distinct. For each listening event we characterise the
affordance used to retrieve content of which on Deezer
there exists a triad: organic (O), algorithmic (A) and edi-
torial (E). Our research commences from a strict ternary
classification of affordance taxonomies drawing influence
from the existing body of literature of which this work
closely relates [13, 14, 31]. We classify A affordances as
those that refer to the platform’s plethora of Recommender
System (RS) architectures (e.g., the popular Flow playlist
on Deezer) whilst E affordances correspond to curated
playlists (such as recommended playlists variously called
“10s electronic”, “Rock & Chill”, etc.) of which the major-
ity are mostly human constructed. All remaining modes of
access are classified as O including for instance, the search
bar, user-constructed playlists and more broadly, modes of
content access which do not utilise any degree of recom-
mendation.

3.2 Defining User Classes

Affordance Adoption. We capture user adoption of plat-
form affordances through the proportion of content ac-
cessed via each of the platform’s three main affordances
after aggregating listening histories. The listening history
of a given user is represented by the temporally-ordered list
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Figure 1. Ternary plot of affordance adoption classes o+
(blue), o (grey), œ (green), a (purple), disks represent cen-
troid positions. Crosses represent corrected centroid posi-
tions after taking into account the pre-adoption origin of
plays (see Sec. 5).

of listening events over our observation period, formally
defined as:

P =
�
(si, ti, fi)

�
in

where si is the song ID, ti the timestamp, and fi 2
{A,E,O} the affordance used for the i-th listening event.
We accordingly denote the sublist of P restricted to a
given affordance F as PF =

�
(si, ti, fi)

�
in^ fi=F

Considering the proportion of plays accessed organi-
cally, algorithmically and editorially respectively, the af-
fordance profile of a given user is defined by the triplet
(|PO|/|P |, |PA|/|P |, |PE |/|P |) which sums to 1 and can
be represented as a barycentric coordinate in ternary space
(see Figure 1). Performing a k-means clustering (k = 4)
across affordance profiles yields 4 distinct classes of users
which we label as follows: very organic ‘o+’ (1786 /
65.98%), organic ‘o’ (429 / 15.85%), algorithmic ‘a’ (224
/ 8.27%), organic/editorial ‘œ’ (268 / 9.90%). We note
that we rather deal with bins, areas or classes than with
well-separated clusters per se. Thus, from herein we re-
fer to affordance adoption clusters as classes. Already, a
highly varied picture of affordance adoption on the plat-
form emerges along with a shared preliminary benchmark:
for all classes, users on average display some degree of O
adoption whilst the same cannot be said for A and E. In-
deed, at first sight it appears Deezer users do not typically
adopt affordances on all fronts but rather, use the platform
predominately as an organic catalog much the way one
would search through a traditional song library, albeit a
much larger one here. However, as we shall later detail, a
user’s tendency to consume mostly O content may be mis-
leading: if a significant proportion of a user’s O catalog is
a product of A or E adoption the very definition of what it
means to adopt O affordances is brought into question.

Exploration Behaviour. Beyond sheer user activity over
the entire observation period denoted by play counts |P |,

Figure 2. Normalised platform affordance time-of-day ac-
tivity. Aggregate levels are shown (top) followed by z-
normalised activity (middle) and residual de-trended ac-
tivity levels (bottom).

we consider a notion of redundancy [29] quantified as a
measure of how much a given user saturates their listening
catalog (i.e., plays the same songs repeatedly), formally
defined as R = 1 � |S|/|P | where S = {s|(s, t, f) 2 P}
is the set of unique songs in P .

We additionally characterise the diversity of a user’s ex-
ploration using a pre-built 32-dimensional latent space E
constructed from low-level audio features via metric learn-
ing [30]. The audio embeddings were primarily used by
Deezer for the task of artist disambiguation (i.e., where
artists had the same name but were stylistically unique).
Thus, the construction of E maximises distance for acous-
tically dissimilar artists while acoustically similar artists
remain close in this space. For each user, we compute
their average pairwise cosine distances between audio em-
beddings Es for each s 2 S and ultimately, report average
values.

Temporal Time of Day Analysis. Platform usage can also
be seen to vary significantly over the elapsed day at both a
aggregate platform and user-centric level. Considering the
former first, we compute and plot aggregate activity levels
across all affordances at each hour of the day (Fig. 2, top
row). Activity is found to largely consist of O followed
by A and E at much lower magnitudes, consistent with
what has been previously detailed. Without loss of gen-
erality, we denote P as the platform-level history for all
users (i.e., the whole dataset). To analyse temporal trends
independent of magnitude, we consider hourly play counts
for each affordance:

PF (h) =
���
�
(si, ti, fi)

�
in^ (ti’s hour=h)^ (fi=F )

���

to which we subsequently apply a z-normalisation relative
to daily play count averages defined as:

fPF (h) =
PF (h)�

⌦
PF (h)

↵
h

�PF (h)

These normalised activity levels (Fig. 2, second row) re-
veal three peaks of gradually increasing magnitude, re-
spectively in the early morning, morning, and afternoon
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Figure 3. Normalised time-of-day activity levels for each
time-of-day class. Aggregate levels are shown (top) fol-
lowed by residual de-trended activity levels (bottom).

(16-17:00), from which a gradual decay in activity is expe-
rienced. To capture temporal adoption variations of affor-
dances with respect to one another, we finally apply so-
called ‘detrending’ as per [32] by comparing the above
z-normalisations fPF (h) relative to other affordances, for-
mally defined as:

ffPF (h) = fPF (h)�
⌦fPF (h)

↵
F

Affordance adoption at a platform level clearly varies
across hours of the day (Fig. 2, bottom row). In both
the early morning and between the afternoon hours and
evening we observe a tendency to favour O respective to A

and E affordance life cycles in the same time blocks (i.e.
independent of magnitude). Otherwise, either A or E seem
to be favoured (again, in relative trend) and essentially ap-
pear to exhibit bi-modal relative adoption peaks across the
day, albeit at different moments (rather in the morning for
A and in the early morning and early afternoon for E).

We complement the temporal platform-level analysis by
examining daily patterns at the user level, as users will
commonly have varied activity levels on music streaming
platforms [33] which may be missed by a standalone plat-
form level analysis. To this end, we consider user-level
hourly activity aggregated over all affordances P (h) =���
�
(si, ti, fi)

�
in^ (ti’s hour=h)

���. As in [29], we subse-
quently cluster users using k-means (k = 4 again) applied
on P (h) as a 24-dimensional unit vector. We observe 4
distinct user-centric behavioural dynamics which we label
as follows: the average user (726 / 26.82%), the night owl
(928 / 34.28%), the all rounder (245 / 09.05%) and the
daily user (808 / 29.85%). We represent the variations of
P (h) on Fig. 3 by applying the same type of normalization
as used above for platform-level quantities P(h), except
that we consider temporal clusters T instead of affordances
F i.e., PT (h) in place of PF (h).

3.3 Item Adoption

In this work we focus exclusively on item adoptions which
are imposed directly by the user themselves and thus, we

only characterise the tendency for users to adopt A or E
songs into their O catalog. To capture this behaviour, we
introduce the novel measure of adoption ↵. At a high level,
an item can be said to be adopted the first time it has been
played organically by a user given that the song was first
recommended through some affordance F and not played
organically as a prior. Since we are interested in item adop-
tion and thus unique songs, we now focus on song sets
rather than lists of plays i.e., S. We outline two possible
mutually exclusive song sets, denoted � and ⇢, to differen-
tiate songs which could have been adopted yet were not,
from those which were actually adopted:

– Adoption feasible, �, denoting the set of songs which
were played through F but not via O and thus, had the
potential to be adopted yet were not:

�F =
n
s 2 S

��� 9(s, t, F ) 2 P, @(s, t0, O) 2 P

o

– Adoption realised, ⇢, denoting the set of songs which
were played via F as a prior and were consumed through
O at least once subsequently:

⇢F =

⇢
s 2 S

��� 9(s, t, F ) 2 P, t < min
(s,t0,O)2P

t
0
�

Furthermore, if a user is exposed to more recommenda-
tions before ultimately making the decision to adopt, this
may indicate a weaker influence of the platform’s affor-
dance or that the act of adoption is less likely to be a direct
product of it (for instance the user might have heard the
song from an external source such as the radio). To cap-
ture this intuition, we introduce rF (s), the number of rec-
ommendations of song s which appeared through F before
organic adoption:

rF (s) =

����

⇢
(s, t, F ) 2 P

�� t < min
(s,t0,O)2P

t
0
�����

to which we apply a polynomial scaling function which
decays to give more weight to lower numbers of recom-
mendations - a similar practice to how listening counts are
often scaled logarithmically in mRS literature [34, 35].

We assess the relative impact of item adoption at two
levels of abstraction. Foremostly, with respect to the num-
ber of items which both could have been and were adopted
by the user through F i.e., |�F | + |⇢F |. Formally let this
be defined by:

↵F =

P
s2⇢

rF (s)
��

|�F |+ |⇢F |

where � 2 (0, 1] is a hyperparameter which affects the de-
gree of polynomial decay with respect to algorithmic im-
pact. In our experiments we set the value of � = 0.5. We
note our choice of � is cautious and should in future work
be more refined with statistical and qualitative user studies
exploring the role of repeated affordance recommendation
prior to adoption.

Secondly, we normalise adoption with respect to the
number of unique items consumed via O, thereby captur-
ing the relative impact of algorithmic adoption in a user’s
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o+ o

All
rounder

Average
user

Night
owl

Daily
user All All

rounder
Average

user
Night
owl

Daily
user All

|P | *26.62K 15.59K *20.87K 15.94K 18.58K 26.09K 15.63K 19.68K 16.88K 18.01K
R *0.90 0.85 0.86 *0.83 0.85 *0.82 0.77 0.77 0.77 0.77
↵A 0.28 0.25 0.28 0.25 0.25 0.15 0.14 0.15 0.14 0.14
↵E 0.26 0.27 0.24 *0.21 0.25 0.18 0.19 0.16 0.15 0.17
↵0
A 0.01 0.02 0.02 0.02 0.01 0.06 0.06 0.06 0.05 0.06

↵0
E 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02

E dist. 0.28 0.29 0.29 0.29 0.28 0.28 0.29 0.30 0.29 0.29

a œ

|P | 41.20K 15.06K 16.18K 19.75K 19.01K 23.80K 15.40K 19.68K 23.09K 20.14K
R *0.85 0.77 0.74 0.77 0.77 0.77 0.74 0.77 0.76 0.76
↵A 0.10 0.09 0.09 0.09 0.09 0.17 0.16 0.20 0.15 0.17
↵E 0.20 0.14 0.15 0.13 0.14 0.14 0.14 0.16 0.13 0.14
↵0
A 0.08 0.08 0.08 0.08 0.08 0.03 0.02 0.02 0.02 0.02

↵0
E 0.03 0.03 0.02 0.03 0.03 0.05 0.05 0.05 0.05 0.05

E dist. 0.29 0.30 0.29 0.30 0.30 0.28 0.29 0.28 0.29 0.29

Table 1. Experimental results across two static affordance and temporal time of day user classes. Values in bold represent
the top value, while marked with * are results where the difference is statistically significant (two tailed t-test, ↵ = 0.05/n
after Bonferroni correction).

.

overall organic listening catalog. Formally,

↵
0
F
= ⇢F /|{s 2 S | 9(s, t, O) 2 P}|

We note that this value is bounded by the number of or-
ganic streams in a user’s listening history but nonetheless,
we deem this to be a useful measure to capture the influ-
ence of item adoption in bringing into question the very
meaning of what is deemed organic.

4. RESULTS

Temporal Affordance Adoption Variations. We first ex-
amine the distribution of affordance classes across time-
of-day classes. As shown in Figure 4 we observe two fun-
damental preliminary findings: (1) daily users are more
heavily composed of both a and œ users respective to other
time-of-day classes; (2) o+ users are more proportionally
likely to reside within the all rounder and, to a lesser ex-
tent, night owl class. Framed differently, users who adopt
almost solely O are more likely to favour platform activ-
ity in the evening hours of the day whilst users who more
heavily A/E-adopt are more likely to favour activity in
the day time hours. Once again, our findings reiterate what
was observed from our temporal platform evaluation – the
use of recommendation affordances corresponds to differ-
ent categories of temporal use as well as, we contend, dif-
ferent types of users.

Characterising platform behaviour. To further disen-
tangle the respective use cases we now characterise be-
havioural dynamics for each time-of-day and affordance
class. Focusing first on affordances, we attain results that
go against the grain of a diversity-constraining narrative
(see Table 1). Users who A-adopt more frequently are
found to have more diverse exploration in E whilst main-
taining relatively low redundancy levels as measured by R.

Figure 4. Affordance vs. time-of-day distributions. Values
are normalised such that above or below 1 indicate respec-
tively similar, over- or under- representation of affordance
classes respective to those found globally.

It appears the consumption of A content in fact diversifies
a user’s P at both a behavioural and deeper content-based
level whilst on the contrary, o+ users are found to satu-
rate their listening catalog reflected in the high R levels
attained.

Regarding item adoption within affordance classes we
observe both a and œ users to have low levels of ↵A and
↵E respectively. This can be interpreted as a passivity to
recommendations - such users are more likely to use A

and E affordances regularly but on a so-called auto-pilot
akin to radio consumption. Nonetheless, when a and œ
users do take the decision to adopt this makes a substan-
tial impact to their O catalog and thus, the dispersion of
users in the A,E,O ternary space as we shall later de-
tail. Drawing parallels to a more pure organic behaviour
through the o+, we observe polar opposite dynamics in
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comparison to the a and œ users. Whilst o+ users A/E-
adopt sparsely, their ultimate downstream platform use is
less recommendation-skeptic reflected in the much higher
levels of item adoption rates for A and E affordances at-
tained (↵A = 0.25, ↵E = 0.25) but with minimal impact
to the constitution of their overall O catalog. From the
detailed findings it is clear that our preliminary assump-
tion that users display varied behavioural dynamics holds
true: users diverge dramatically regarding their affordance
adoption, adoption of items therein and perhaps most im-
portantly, subsequent downstream impact experienced to
their overall O catalog.

We next study the effect of temporal preference upon
behavioural practices. For a given affordance class and
behavioural measure (e.g. o+, R) we perform two-tailed
Welch’s unequal-variance paired t-tests [36] over all 6 pairs
of temporal classes which form the affordance class i.e.,
(all rounder, average user), (all rounder, daily user), (all
rounder, night owl), (average user, daily user), (average
user, night owl), (daily user, night owl). For a given
temporal class, Table 1 marks a value as significant if
p < ↵/6 (i.e., after adjusting for errors via Bonferroni
correction [37]) is attained for all 3 pairwise t-tests per-
formed containing the temporal class under consideration
(e.g. (all rounder, average user), (all rounder, daily user),
(all rounder, night owl)). The results show that users vary
significantly with respect to activity and R levels. Central
to this finding is the all rounder who displays significantly
higher activity levels for o+ users but at the price of satu-
rating their listening catalogue reflected in the significantly
higher R levels across the majority of affordance classes.
Such findings suggest that for a given affordance class, sig-
nificant deviations across temporal classes only occur for
low level behavioural features. There is no clear down-
stream propagation to a user’s deeper musical preferences,
reflected by diverse musical content in an audio embedding
space and preference for item adoption – a theory which
we shall now test empirically.

Disentangling heterogeneous platform behaviour. To
disentangle the influence of time-of-day preference and
affordance adoption on user item adoption and reactions
to recommendations we next perform a factorial ANOVA,
shifting each behavioural attribute to be the dependent
variable whose variance we seek to explain. We primar-
ily fit our data to an OLS model Y = �0 + �1F +
�2T + �3FT + " (where F and T represent affordance
and time-of-day labels respectively) before subsequently
applying a factorial ANOVA. Due to space constraints, the
full ANOVA results table is not included however we now
detail the results most relevant to this work. As hypothe-
sised, we observe the only effect size (⌘2

p
) for which tempo-

ral classes may have both a moderate and significant effect
is with regard to a user’s activity |P |. On the contrary, af-
fordance classes offer a moderate-to-high explanatory fac-
tor for the variance of the remaining behavioural attributes,
foremostly adoption. Perhaps most interestingly, the effect
of affordance classes on ↵A is particularly strong (0.11)
implying that a user’s decision to adopt items into their or-

ganic catalog may, as previously hypothesised, be princi-
pally a product of adopting recommendation affordances.

For completeness we ultimately examine the effect of
sequential time-of-day and affordance adoption influence
on the notion of what is meant by an organic stream. Con-
trary to our preliminary belief that organic access acted
as a benchmark for Deezer platform exploration, we ob-
serve users to actually be more algorithmic and editorial
than first thought, albeit indirectly. Considering a stream
to belong to the affordance in which it was adopted as op-
posed to organic we recompute centroids for each affor-
dance class. In cases where a stream was both adopted via
A and E we deem that the item was adopted via the af-
fordance which had the most streams prior to adoption. As
shown in Fig. 1, we observe all affordance adoption classes
centroids to experience a marked shift towards A and E

poles – even more so for users who are already closer to
these poles i.e., particularly for a and œ users.

5. CONCLUDING REMARKS

In a time where the modern music streaming platform en-
capsulates a myriad of modes of accessing content, users
may and do personalise their platform use in highly var-
ied ways. By acknowledging, assuming and confirm-
ing the diversity of user platform behaviour, our work
traces the interconnected yet surprisingly sequential fac-
tors which drive affordance and item adoption. Our results
paint a highly complex picture of user platform behaviour
whereby time-of-day preference mediates low-level plat-
form behaviour (activity levels) while affordance adoption
preference mediates the ultimate higher-level decision to
adopt content into one’s O catalog, a factor which is in-
deed more reflective of musical taste.

Coming full circle, the heterogeneity of item adoption
and its subsequent impact brings into question the nature
of what constitutes an O stream - after taking into consid-
eration the role of adoption, users are indeed found to be
markedly less organic than was initially thought. This, in
turn, may redefine what affordance adoption really is and
perhaps most importantly, challenge the emerging litera-
ture which seeks to appraise A influence via an O compar-
ison. Our work hints at the non-binary nature of O which
should be carefully considered and analysed. Although be-
yond the scope of this work, we suggest a fruitful future di-
rection could be to explore non-human item adoptions (i.e.,
item transfers from O ! A|E). We also advice for future
work to explore the role of temporal preference upon adop-
tion practices at varied degrees of abstraction be it weekly,
monthly or longitudinal. On the whole, this work aims
to hint at a direction that currently remains relatively un-
explored in outstanding scholarship concerning the impact
of RS on the diversity of user consumption: that user be-
haviour determines how recommendation affordances are
being adopted. In practice, this type of work and approach
could be utilised at the platform level to further the devel-
opment of context-dependent RS, providing musical rec-
ommendations which are far more suited to the high vari-
ety of user’s driving use cases.
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ABSTRACT

Performers’ distortion of notated rhythms in a musical
score is a significant factor in the production of convinc-
ingly expressive music interpretations. Sometimes exag-
gerated, and sometimes subtle, these distortions are driven
by a variety of factors, including schematic features (both
structural such as phrase boundaries and surface events
such as recurrent rhythmic patterns), as well as relatively
rare veridical events that characterize the individuality and
uniqueness of a particular piece. Performers tend to adopt
similar pervasive approaches to interpreting schemas, re-
sulting in common performance practices, while often for-
mulating less common approaches to the interpretation of
veridical events. Furthermore, some performers choose
anomalous interpretations of schemas. We present a ma-
chine learning model of expressive performance of Chopin
Mazurkas and a critical analysis of the output based upon
statistical analyses of the musical scores and of recorded
performances. We compare the timings of recorded human
performances of selected Mazurkas by Frédéric Chopin
with performances of the same works generated by a neural
network trained with recorded human performances of the
entire corpus. This paper demonstrates that while machine
learning succeeds, to some degree, in expressive interpre-
tation of schemata, convincingly capturing performance
characteristics remains very much a work in progress.

1. INTRODUCTION

Performers of classical music typically interpret a score’s
symbolic music notation as a basis of performance.
This interpretive transformation from symbols to musical
sound demands decisions regarding inherently imprecise
or vague symbols such as dynamic and tempo markings.
Furthermore, performers often divert from strict interpre-
tations of precise symbols such as quantized rhythms in
order to provide a sense of musical shape and direction.
Expressive timing is a particularly important aspect of per-
formance, with temporal deviations of tempi and distorted
rhythms [1] to indicate structural demarcations, express
implied affective [2] and articulate stylistic conventions.

© Z. Shi. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Z. Shi, “Computa-
tional analysis and modeling of expressive timing in Chopin Mazurkas”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

These interpretive performance decisions are often made
with little conscious thought reflecting internalized notions
of traditional performance practices and schemas.

The complexity and multidimensionality complicit in
the creation of an expressive musical performance has
made the task a rich domain for theoretical analysis and
computational modeling. Prior studies include analysis-
derived rule-based methods such as the KTH model [3], as
well as machine learning approaches dating back to Wid-
mer’s inference of note-level performance principles based
on Sonatas by Mozart [4]. Statistically derived rules in-
clude historically rooted schematic tendencies such as the
note inégales, arching tempo curves, and cadential ritard
were encapsulated in the KTH model. Some generalized
schematic rules, such as the tendency to perform a note
staccato if the note is repeated immediately, were observed
both in KTH and in Widmer’s machine learning model.

More recent novel data-driven approaches including
both linear [5] and nonlinear [6, 7] methods have been
developed to model expressive performance by extracting
basis functions (i.e. features) of each note. These fea-
tures include note, metrical position, dynamic, and tempo
markings. Recent efforts apply hierarchical attention net-
works [8] and conditional variational RNNs [9] to generate
expressive piano music performances.

Our goal here is to examine computational models of
expressive timing. As noted, performers rarely play metro-
nomically but rather introduce more or less subtle nuances
to vary performed durations. For example, most perform-
ers tend to slow their tempo in response to major structural
breaks [10]. Repp [1] studies patterns of expressive timing
over 115 performances of a same piece and suggests inde-
pendent timing strategies that can describe each pianist’s
timing pattern. Chew [11] reveals extreme pulse elasticity
as musical tipping points. Peperkamp et al. [12] propose
ways to formally represent relative local tempo variations
in a vector space.

We aim to understand how a neural-network-based sys-
tem generalizes performance practices and compositional
style given multiple performances of each of the Mazurkas
in our corpus. We train a neural network to predict the
tempo curve of each Mazurka. We then analyze expres-
sive timing by comparing human performed Mazurkas to
computer generated performances. We observe that while
machine learning generalizes key schematic performance
practices, it is less successful in capturing veridical perfor-
mance characteristics.
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2. SCHEMATA AND STATISTICAL
PERFORMANCE ANALYSIS

Schemata are prototypical melodic, harmonic, or rhyth-
mic/metric characteristics that constitute defining at-
tributes of a particular style or genre [13]. Some schemata,
such as the harmonic progression at the approaches to ca-
dential phrase endings, have evolved as pervasive attributes
of a common musical language. Chopin’s Mazurkas share
schemata. They are all composed in triple meter, with reg-
ular phrase lengths typically comprised of short motivic
units of one or two measures. Along with signature stylis-
tic attributes they also share particular performance prac-
tice traditions. In this section we focus on the evolution of
schematic features in performance.

2.1 Data

CHARM’s Mazurka Project 1 comprises a collection of
approximately 3000 individual recorded performances of
Mazurkas composed by Frédéric Chopin. Kosta et al.
[14] augmented the recordings from the project with au-
tomatically aligned score-beat positions, loudness values,
as well as positions of expressive markings. The result-
ing dataset, named as “MazurkaBL”, contains 44 Mazurkas
with 2000 performances. Sapp [15] has manually anno-
tated 5 Mazurkas with around 300 performances. For each
performance, beat times were recorded. These annotations,
as well as “MazurkaBL” were used as data for the study.

2.2 Statistical Analysis of Rhythmic Schemata in the
Mazurkas

Particular rhythmic patterns characterize the Mazurka, as
evident in the frequency of pattern occurrences across the
corpus. The ten most recurrent rhythmic patterns are sum-
marized and illustrated in Figure 1.

Figure 1: The ten most frequently occurring rhythmic pat-
terns in Chopin’s Mazurkas in order of prominence.

We define the Mazurka Quality as a beat that is accen-
tuated by temporal elongation repeatedly across most in-
stances of a given Mazurka. Mazurka performances are
often characterized as having a “stretched” second or third
beat of the measure, at the durational expense of the down-
beat [16]. We observed this short-long pattern in some
mazurkas. However, we also observed that the elonga-
tion of the Mazurka Quality was not always compensated

1 http://www.mazurka.org.uk

Pattern # % of 1st beat shortened
1 45.30%
2 67.74%
3 37.11%
4 50.29%
5 56.28%
6 22.00%
7 58.08%
8 82.08%
9 39.23%

10 33.36%

Table 1: Percentage of the first beat shortened over all
recorded performances of our corpus for the 10 most re-
curring Mazurka rhythmic patterns. Note that in most per-
formances, the first beat is shortened in rhythmic patterns
#2 and #8, indicating a schemata interpretive performance
practice.

for by shortening the downbeat. To validate this, we ob-
served how each pianist executes a pattern on each mea-
sure, comparing the duration of the downbeat to the other
beats in that measure. Alas, across all performances in the
dataset, we observed that only 47.93% of the downbeats
were shortened (as compared with the second beat).

This suggests that the short-long pattern appears only
in specific rhythmic patterns. We then examined the tempo
curve where human pianists played the above 10 rhythmic
patterns respectively. Table 1 summarizes a comparison
of how the duration of the first beat of each rhythm is
altered in the recorded performances compared with the
second beat. These 10 rhythmic patterns comprise over
70% of all rhythmic patterns in 44 Mazurkas in Mazurk-
aBL. We see that in column 2 of Table 1, for rhyth-

mic pattern #2 ( ˇ ˇ ˇ ˇ ) and rhythmic pattern #8

(

3ˇ ˇ ˇ ˇ ˇ ), there is a great percentage of down-
beats being shortened (67.74% and 82.08%).

2.3 High Correlation Sections

We examined musical phrases where performers have the
highest agreement. We calculated the Pearson’s correlation
coefficient (PCC), a statistic that measures linear correla-
tion between two variables (or two sets of numbers). This
method was previously used by Sapp [15] to represent sim-
ilarities between performers of Mazurkas. Pearson’s corre-
lation coefficient is defined as:

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
Pn

i=1(yi � ȳ)2
(1)

The equation means to divide the covariance of the two
variables by the product of their standard deviations. This
results in a number ranging from -1 to 1 where -1 indicates
negative correlation, 0 indicates no linear correlation, and
1 indicates positive correlation.
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Figure 2: Phrases with the highest correlation in tempo (in
order) in Op.68 No.3 performed by 53 pianists.

We looked at Op.68 No.3. As in Figure 2, we found
that phrase ends have the highest correlation. Figure 2(a)
is the end of C section, 2(b) is the end of the A section,
2(c) is the very end, 2(d) is the end of phrase 1, and 2(e)
is the end of phrase 1 after the C section. The Pearson’s
correlation coefficient of phrase (a) through (e) are: 0.84,
0.84, 0.79, 0.76 and 0.72. When we plotted the tempo of
how 53 different pianists playing the highest correlation
phrase in Figure 3, we found that all have similar trends:
the tempo of the phrase reached climax at the beginning,
and then gradually slowed down towards the end. A similar
situation was found in Op.24 No.2. The tempo curves of
the phrase reached highest at the beginning, then dropped
tremendously at the second half of the phrase.

3. VERIDICAL EVENTS IN MAZURKA
PERFORMANCES

We borrow Bharucha’s [17] distinction between schematic
events and veridical events. A veridical event is a musical
occurrence characterized by something unexpected within
the context of the work. This salient characteristic—
whether rhythmic, melodic, harmonic, textural, articu-
latory or a combination thereof—is typically relatively
unique and rare in the specific work, and often is noticeable
and attention grabbing. As opposed to a schema, veridical

Figure 3: Tempo curves of 53 pianists playing the phrase
with the highest correlation in Op.68 No.3. The Y axis
represents beat-per-second.

events are less likely to have broadly shared prevalent per-
formance practices.

3.1 Unexpected Change in Harmony

Unexpected changes in harmony often cause veridical
events. In the opening passage of Op.24 No.1 (Figure 4),

the signature rhythm ( ˇ @ ˇ ˇ ˇ ) appears for 6
times (beats 1–3, 7–9, 13–15, 19–21, 31–33, and 37–39).
They are rhythmic pattern #1. According to the schema
in section 2, they should be performed as a lengthening of
the first beat and a shortening of the second or third beat.
But performers did not all follow this schema. For the re-
peating motif in beats 1–3, 13–15, as well as 37–39, most
pianists performed the first beat long and the second beat
short. However, in beats 7–9, 19–21, 31–33, most pianists
changed their Mazurka Quality to lengthen the third beat
and shorten the first beat. This is due to a change of har-
mony in these beats. For example, in beat 9 and beat 33
the piece goes to a vii-th chord that makes the F# in the
top voice lead to the G on the next measure. In beat 21,
there is an accidental of C# that leads to D. These leading
actions cause the elongation of the third beat, rather than
the downbeat.

Another example is in Op.63 No.3. Figure 5 and Fig-
ure 6 show two phrases that appear at the end of the A
section, and at the end of the A’ section of Op.63 No.3.
According to the trends we summarized in section 2, the
phrases that are located at the end of a section are usually
the highest correlated phrases among all pianists, as the
tempo curves are usually gradually going down. However,
these two phrases are the least correlated phrases among
different pianists in the whole piece. When we performed a
harmonic analysis, we found that there is a secondary dom-
inant chord in the middle of both phrases. The secondary
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Figure 4: The first theme of Op.24 No.1. Veridical events
happen on highlighted notes where there are unexpected
changes in harmony. Yellow rectangles mark a lengthening
of the beat and red rectangles mark the shortening of the
beat.

Figure 5: The low correlation phrase in Op.63 No.3. There
is a secondary dominant chord in measure 7.

dominant chords change the harmonic color. In addition,
the last chord of each phrase is a common tone diminished
chord. Thus the phrase becomes a veridical event.

3.2 Rubato

In Op.24 No.2, the least correlated phrase among 68 pi-
anists is the one with a “rubato" mark on it, as in Figure 7.
This phrase appears after the B phrase, serving as a tran-
sitional phrase. When Chopin marks rubato, it typically
departs from the Mazurka schema and is thus a veridical
event, as there is no strict rule about how to perform this
excerpt. Pianists usually play the phrase with their own
interpretations.

4. COMPUTATIONAL MODEL OF EXPRESSIVE
PERFORMANCE

Can machine play music as expressively as humans do?
If so, to what extent? This section describes a computa-
tional model to synthesize expressive piano music perfor-
mances. The motivation is mainly to model the complex

Figure 6: The low correlation phrase 2 in Op.63 No.3.
There is a secondary dominant chord in measure 55.

Figure 7: The least correlated phrase in Op.24 No.2.

relationship between score properties and tempo in the per-
formance. The goal is to understand how a neural-network-
based system generalizes performance practices and com-
positional style given multiple performances of each of the
Mazurkas in the corpus.

4.1 Input Features

We used MusicXML encoding of the Mazurka scores.
Most computational systems of expressive performances
take a sequence of note features extracted from MusicXML
as input. However, for practical reasons MusicXML for-
mat does not readily identify simultaneities. For example,
a chord is represented as a sequence of note tokens. Since
our goal is to study expressive timing in Mazurkas, espe-
cially on how beats are grouped and emphasized, it is im-
portant to capture such metrical relationships in the encod-
ing. As a result, we used beat-based features (i.e., features
for each beat, rather than for each note).

We first extracted note information on a MusicXML file
using partitura [18]. For each metrical position, we ex-
tracted the following features: highest and lowest notes
within the beat, number of simultaneous notes within the
beat, the rhythmic pattern of the beat (i.e., triplet, two
eighth notes, one quarter note, etc.), articulation (accent
and staccato) markings in the beat, metrical phase (i.e.,
first, second, or third beat in the measure), indicator of the
start beat of a phrase, indicator of the final beat of a phrase.
The maximum and minimum pitch are represented numer-
ically between 0 and 1, while the rest of the features are
represented by one-hot vectors.

4.2 Output Features

Piano allows for expressive variation in timing, dynam-
ics, and articulation [1]. The output features are velocity,
tempo, and articulation.

The velocity is a numeric value between 0 and 1, corre-
sponding to the sone values in the dataset. The beat tempo
is first calculated as the reciprocal of the beat interval such
that

tempoi =
IBIscore

i

IBIperf
i

=
1

onseti+1 � onseti
(2)

, where IBIi represents the inter-beat-interval for the i-th
beat. The unit of the tempo is beat-per-second.

Then, we translated the absolute value of the tempo into
relative tempo ratio, such that

tempo
0

i =
tempoi � tempo

tempo
(3)

For example, -0.2 means 20% slower than the average
tempo, 0 means the same tempo as the average tempo, and
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1 means doubling the average tempo. We limited this value
to within -1 to 1.

During generation time, given the features of each beat,
our system predicts the velocity and the relative tempo ra-
tio of the beat. We then scaled the velocity to 1–127 and
we calculated the onset time for each beat as

onseti = onseti�1 +
1

tempo0
i ⇥ T + T

(4)

, where T is a constant that the user specifies the mean
tempo to be. The unit of T is beat-per-second.

We encoded the generated performance in MIDI files
capturing onset time, offset time, and velocity of each note.
Due to the limitation of the dataset representation, the off-
set time of each note is unknown. Thus the prediction of
the articulation (duration of the note in the performance
over duration of the note in the score) is replaced with a
fixed length. This does not affect our research about ex-
pressive timing since tempo is affected only by the onsets.

4.3 Training

We used 3-layer bi-directional LSTMs with 128 units to
model beat-wise parameters. For velocity, the final layer is
a sigmoid activation. For tempo prediction, the final layer
is a tanh activation. The models were trained in a super-
vised fashion to minimize the mean-square-error loss. The
sequence length was 64, the dropout rate was 0.5, and the
learning rate was 0.001. We split the data into 80% train-
ing data and 20% validation data. The validation loss was
0.0412 for velocity and 0.0837 for tempo.

5. WHAT DOES THE NEURAL NETWORK
LEARN?

5.1 Schemata

In section 2, we demonstrated that the characteristic sig-
nature rhythms are associated with the Mazurka Quality.
To validate that the neural network can learn the Mazurka
Quality on different signature rhythms, we encoded 16
measures of each signature rhythm as testing cases (the in-
put scores) to feed into the beat-based neural network.

We then plotted the absolute tempo curve for each 16-
bar signature rhythm input score. As in Figure 8, different
input scores output different tempo curves. We see that in
signature rhythms #2, #7, and #8, the output of the neural
networks shows the “short-long” pattern, i.e., the tempo
value of the first beat of each measure is higher than that
of the second beat. Such pattern is especially strong on
signature rhythm #8—there is on average a 26.6 beat-per-
minute tempo difference between the first beat and the sec-
ond beat. While in other rhythm as input, we see lengthen-
ing (slower tempo) of the first beat. This result aligns with
Table 1, showing that the model learns about this general
schema about Mazurkas.

5.2 Tempo Correlation

To evaluate the correlation of model-generated perfor-
mance and human average performance, we calculated the

Figure 8: Tempo curves of different signature rhythm in-
puts. The “short-long" pattern is evident rhythms #2, #7,
and #8.

Pearson’s correlation coefficient (PCC) between computer-
generated tempo and average human tempo for five pieces
in the test set. From Table 2, we see that PCC-BH (PCC
between the tempo generated by beat-based model and hu-
man average tempo) is higher than PCC-VH (PCC between
the tempo generated by Virtuosonet [8] and human average
tempo), indicating that the beat-based model learned gen-
eralized schematic performance practices more success-
fully than Virtuosonet in tempo estimation. As a reference,
PCC between one human performance and other human
performances is between 0.29 and 0.97.

Mazurka Op. # PCC-VH PCC-BH PCC-HH
Op.17 No.4 0.065 0.151 0.794
Op.24 No.2 N/A 0.497 0.778
Op.30 No.2 0.048 0.44 0.786
Op.63 No.3 0.167 0.59 0.714
Op.68 No.3 0.489 0.59 0.889

Table 2: Pearson’s correlation coefficient of performance
tempo generated by Virtuosonet and human average tempo
(PCC-VH), the beat-based model and human average
tempo (PCC-BH), and a random human performance
tempo and average human performance tempo (PCC-HH).

5.3 Veridical Events

When plotting the tempo curve of Op.63 No.3 (Figure 9),
we see that the beat-based model (line 3) learns about the
schema that when pattern #2 occurs, the downbeat gets
shortened. This aligned mostly with human performances.
For performances generated by Virtuosonet (line 4), since
it is trained on 16 composers’ pieces, it is understandable
that it does not favor Mazurka’s rhythmic tempo. Thus we

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

654



see an almost opposite direction.

Figure 9: Tempo curves of the first 10 measures of Op.63
No.3 from two human performances (lines 1 & 2), a beat-
based model (line 3) and Virtuosonet (line 4), with the
score (line 5). Tempo trends of pattern #2 (boxed) are
noted with arrows.

In an analysis of 95 distinct human performances of the
same work, in beats 5 and 6 (the first rectangle in Figure 9),
89 performers shortened the downbeat, in beats 11 and 12
(the second rectangle), 82 performers shortened the down-
beat, and in beats 23 and 24 (the fourth rectangle), 88 per-
formers shortened the downbeat. However, in beats 17 and
18 (the third rectangle), there were more performers (53
out of 95) who lengthened the downbeat rather than short-
ening it. While this seems to be an “outlier”, we were in-
terested to further investigate what’s happening musically
on these two beats.

Harmonic analysis was performed on the first ten mea-
sures of the score as in Figure 10. Note that there is a sec-
ondary dominant in measure 7 (beats 17-19), whose veridi-
cal change of color and direction prompts performers to
emphasize the moment. The beat-based network captured
the schematic “short-long” accent across many Mazurka
performances, however, performance of this salient veridi-
cal event was not compellingly captured.

Another example is the A phrase of Op.24 No.2 (as in
Figure 11). This phrase consists of four sub-phrases. Each
sub-phrase is two-bar long. When the machine played this
passage, we saw a very consistent trend. As in Figure 12,
for each sub-phrase of 2 bars (6 beats), the machine length-
ened the second to last beat. In addition, for all four sub-
phrases, the tempo curves were similar: during the first
three beats the tempo surged, and for the next two beats the

Figure 10: Harmonic analysis of the first 10 measures of
Op.63 No.3. The secondary dominant in measure 7 is a
veridical characteristic not captured by the beat-based net-
work.

Figure 11: Phrase A of Op.24 No.2 . This phrase consists
of four sub-phrases, each two-bar long.

Figure 12: The tempo curve of machine playing the A
Phrase of Op.24 No.2. For each sub-phrase, the machine
emphasized (lengthened) the second to last note. This
trend is consistent among all four sub-phrases.

tempo decreased, and finally the tempo slightly increased
for beat 6. However, when we examined human perfor-
mances, we found different results. As in Table 3, in con-
trast to the computer performance, human performers tend
to vary the emphasized beat for each sub-phrase, whereas
the computer performs the same one for each sub-phrase.

Sub-phrase B1 B2 B3 B4 B5 B6
1 24 11 2 3 8 2
2 0 0 0 11 27 12
3 7 7 0 26 7 3
4 4 2 4 25 10 5

Table 3: Beats that human performers lengthened most for
each sub-phrase in Op.24 No.2.

6. SUMMARY

In this paper we described our implementation of a beat-
based model to learn expressive timing parameters in
Chopin Mazurkas. Comparing human performances with
performances generated by our model, we note that neu-
ral network succeeds at modeling schemas (such as dis-
tortion of the characteristic “short-long” Mazurka rhythm,
and temporal augmentation at the approach to phrase-
ends). However piece-specific veridical events (such as
performed variations of repeated rhythmic units) are dif-
ficult to learn. One reason for this is that insufficient in-
stances of examples of such veridical moments in the train-
ing set make it difficult for a deep learning-based system
to acquire. Capturing the performance nuances of veridi-
cal events is a critical next step for the success of future
computational models of expressive music performance.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

655



7. REFERENCES

[1] B. Repp, “A microcosm of musical expression. i. quan-
titative analysis of pianists’ timing in the initial mea-
sures of chopin’s etude in e major,” The Journal of
the Acoustical Society of America, vol. 104, no. 2, pp.
1085–1100, 1998.

[2] C. Palmer, “Music performance,” Annual review of
psychology, vol. 48, no. 1, pp. 115–138, 1997.

[3] A. Friberg, R. Bresin, and J. Sundberg, “Overview
of the kth rule system for musical performance,” Ad-
vances in Cognitive Psychology, vol. 2, no. 2-3, pp.
145–161, 2006.

[4] G. Widmer, “Machine discoveries: A few simple, ro-
bust local expression principles,” Journal of New Mu-
sic Research, vol. 31, no. 1, pp. 37–50, 2002.

[5] M. Grachten and G. Widmer, “Linear basis models for
prediction and analysis of musical expression,” Journal
of New Music Research, vol. 41, no. 4, pp. 311–322,
2012.

[6] C. E. Cancino-Chacón, T. Gadermaier, G. Widmer, and
M. Grachten, “An evaluation of linear and non-linear
models of expressive dynamics in classical piano and
symphonic music,” Machine Learning, vol. 106, no. 6,
pp. 887–909, 2017.

[7] C. E. C. Chacón, “Computational modeling of expres-
sive music performance with linear and non-linear ba-
sis function models,” Ph.D. dissertation, Johannes Ke-
pler University Linz, Austria, 2018.

[8] D. Jeong, T. Kwon, Y. Kim, K. Lee, and J. Nam, “Vir-
tuosonet: A hierarchical rnn-based system for model-
ing expressive piano performance,” in Proceedings of
the 20th International Society for Music Information
Retrieval, Delft, The Netherlands, 2019, pp. 908–915.

[9] A. Maezawa, K. Yamamoto, and T. Fujishima, “Ren-
dering music performance with interpretation varia-
tions using conditional variational rnn,” in Proceedings
of the 20th International Society for Music Information
Retrieval, Delft, The Netherlands, 2019, pp. 855–861.

[10] N. Todd, “A model of expressive timing in tonal mu-
sic,” Music Perception: An Interdisciplinary Journal,
vol. 3, no. 1, pp. 33–57, 1985.

[11] E. Chew, “Playing with the edge: Tipping points and
the role of tonality,” Music Perception: An Interdisci-
plinary Journal, vol. 33, no. 3, pp. 344–366, 2016.

[12] J. Peperkamp, K. Hildebrandt, and C. C. S. Liem, “A
formalization of relative local tempo variations in col-
lections of performances,” in Proceedings of the 18th
International Society for Music Information Retrieval
Conference, 2017, pp. 158–164.

[13] R. Gjerdingen, Music in the Galant Style. Oxford
University Press, 2007.

[14] K. Kosta, O. Bandtlow, and E. Chew, “Mazurk-
aBL: score-aligned loudness, beat, expressive mark-
ings data for 2000 chopin mazurka recordings,” in
Proceedings of the fourth International Conference on
Technologies for Music Notation and Representation
(TENOR)(Montreal, QC), 2018, pp. 85–94.

[15] C. S. Sapp, “Comparative analysis of multiple musical
performances.” in ISMIR, 2007, pp. 497–500.

[16] A. Swartz, “The polish folk mazurka,” Studia musi-
cologica Academiae Scientiarum Hungaricae, vol. 17,
no. Fasc. 1/4, pp. 249–255, 1975.

[17] J. J. Bharucha, “Tonality and expectation.” Musical
perceptions, pp. 213–239, 1994.

[18] M. Grachten, C. E. Chacón, and T. Gadermaier, “par-
titura: A python package for handling symbolic musi-
cal data,” in Late-Breaking Demo Session of the 20th
International Society for Music Information Retrieval
Conference. Delft, The Netherlands, 2019.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

656



COMPUTATIONAL ANALYSIS OF MELODIC MODE SWITCHING IN
RAGA PERFORMANCE

Nithya Shikarpur1 Asawari Keskar2 Preeti Rao1

1Department of Electrical Engineering, 2Department of Physics
Indian Institute of Technology Bombay, India
{nithyas, prao}@ee.iitb.ac.in

ABSTRACT

Melodic mode shifting is a construct used occasionally by
skilled artists in a raga performance to enhance it by bring-
ing in temporarily shades of a different raga. In this work,
we study a specific North Indian Khyal concert structure
known as the Jasrangi jugalbandi where a male and female
singer co-perform different ragas in an interactive fashion.
The mode-shifted ragas with their relatively displaced as-
sumed tonics comprise the identical set of scale intervals
and therefore can be easily confused when performed to-
gether. With an annotated dataset based on available con-
certs by well-known artists, we present an analysis of the
performance in terms of the raga characteristics as they are
manifested through the interactive engagement. We anal-
yse both the aspects of modal music forms, viz. the pitch
distribution, representing tonal hierarchy, and the melodic
phrases, across the sequence of singing turns by the two
artists with reference to representative individual perfor-
mances of the corresponding ragas.

1. INTRODUCTION

Ragas are melodic modes that underpin all performances
of Indian art music across both the North Indian (Hin-
dustani) and South Indian (Carnatic) traditions. There
are dozens of ragas in common practice, distinguished by
their salient melodic properties which include the choice
of tonal material, the hierarchy of notes (svara), their in-
tonation and typical phrasal contexts and, finally, the asso-
ciation with a particular mood. A drone sounds the tonic
throughout the concert making the relative intervals of all
the notes clearly apparent to the listener providing, thus,
strong cues to the raga identity in terms of the correspond-
ing tonal material and hierarchy, and the melodic phrases.
Automatic raga identification from computed pitch class
histograms, normalised by the concert tonic, have worked
well, especially when ragas with different tonal material
appear in the dataset [1, 2]. Ragas with the identical
scale notes relative to the tonic such as allied ragas have

© N. Shikarpur, A. Keskar, and P. Rao. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: N. Shikarpur, A. Keskar, and P. Rao, “Computational anal-
ysis of melodic mode switching in raga performance”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

also been successfully differentiated with pitch distribu-
tions that exploit the differences in intonation and empha-
sis across the common set of svara [3]. A particular raga
performance construct that has not received much atten-
tion computationally is melodic mode switching. As in
other modal music, it is possible to develop a large number
of scales by means of the modal shift by using any note
of a raga as the tonic and building a new set of scales by
maintaining the intervals or ratios between the notes and
the tonic [4]. Termed ‘murchana’, this is a subtle form of
modulation (similar to key modulation from a major to its
relative minor) and is used by skilled musicians to tem-
porarily bring in shades of another raga during a perfor-
mance.

In this work, we specifically consider a recent but
widely acclaimed development in the North Indian Khyal
classical music scenario of mode-shifted ragas performed
together in concert by a pair of singers. Motivated by a de-
sire to create a space where a male and a female singer can
perform together in spite of the ½ octave difference typ-
ical of their vocal pitch ranges, the two ragas are chosen
such that the M (the lower octave fourth) of the higher-
pitched voice serves as the S (tonic) for the lower-pitched
voice with all actual note values (i.e. in terms of fun-
damental frequency or MIDI number) being identical in
the two [5]. Figure 1 shows the scales of the pentatonic
raga pairs considered in this paper. With the concert drone
typically tuned to the Sa of the female voice, the singers
strive to maintain the character of their respective ragas
in the ‘jugalbandi’ performance that interleaves the two
singers’ voices in equally weighted roles, as in what may
be considered a ‘call and response’ musical format. What
makes it particularly interesting is that the call and the re-
sponse, both improvised, are drawn from different ragas.
With a common set of notes, the challenge lies in meaning-
fully linking the phrases during the interaction while also
carefully preserving the individual raga-specific character-
istics. There are occasional episodes of singing together.

The above discussed form, known as the "Jasrangi ju-
galbandi" after proponent Pt. Jasraj, has been performed
over the past decade by a handful of well-known Hin-
dustani vocalists drawing from a limited number of raga
pairs [6]. The chosen raga pairs presumably satisfy the
music theory and aesthetic requirements for the simulta-
neous presentation in the jugalbandi concert format. In
the present work, we carry out the computational analy-
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Figure 1. The solfege of each raga superposed on the stan-
dard keyboard. ‘S’ denotes the tonic note of the raga. We
see that the same set of keyboard notes is shared across
ragas in each pair. (a) Abhogi (A) and Kalavati (K); (b)
Chandrakauns (C) and Madhukauns (M). Ragas A and C
are sung by the female (f) artist of the corresponding pair,
ragas K and M by the male (m).

ses of the melodic content of available Jasrangi jugalbandi
(shortened to "JJ" in this paper) concerts in two differ-
ent raga pairs. Specifically, we seek to answer questions
around the JJ concerts with reference to the correspond-
ing normally performed individual ragas that can possibly
be addressed with computed melodic representations. An
important question is the extent to which raga characteris-
tics are preserved when performed in the context of a JJ
song. Considering that the interaction between singers is
the main highlight of a JJ performance, we are also inter-
ested in analysing the melodic relationships of the call and
response format. The larger goal for this empirical study is
to derive the structure or schema of the JJ concert in terms
of the individual raga presentations and the dynamics of
the interaction between the two artists. Apart from its value
to music appreciation and pedagogy, the insights obtained
could serve to identify new raga pairs that potentially fit
the format for future JJ performance. In the next section,
we present our dataset with descriptions of the represented
raga pairs. The manual annotation and the observations di-
rectly derivable from this are provided. The melodic repre-
sentations considered in this work are discussed next. Our
experimental analyses are presented with a discussion of
the observations and the implications of the outcomes.

2. DATASET & AUDIO PROCESSING

There have been about 7 distinct raga pairs in publicly
performed JJ concerts so far. We select, for our work,
the two raga pairs that are best represented in the pub-
licly accessible JJ concert recordings. These are the pen-
tatonic raga pairs, Abhogi-Kalavati (A-K henceforth) and
Chandrakauns-Madhukauns (C-M). We also identify a
number of the corresponding raga-specific (i.e. individual)
concert recordings.

A concert may comprise more than one song (ban-
dish), complete with improvisation and chosen composi-
tion, and we segment the concert audio accordingly. Our

Feature Abhogi Kalavati Chandrakauns Madhukauns

Aaroh SRgMDṠ SGPDnDṠ SgMdNṠ SgmPnṠ
Avaroh ṠDMgMgRS ṠnDPGPGS ṠNdMgMgSN. S ṠnPmgS
Vadi,
Samvadi S, M P, S M, S P, S

Nyas S, R, M, D S, P, D S, M, N S, m, P

Char.
Phrases

D. SRg, MRS,
RD. SRg, MgRS,
MDṠ

SGPD, PDnD,
GPDṠ, GPDP,
GPGS

SgMgS, N. S,
gMdNṠ, NdṠ,
NdMgMgS

Sgm, PmgmP,
mPnṠ,
ṠnPmg S

Table 1. Raga grammar details; dots over and under indi-
cate upper and lower octave pitches respectively

Figure 2. Turn duration versus start time plotted separately
for each singer and for the simultaneous (both) singing for
a C-M JJ song from our dataset

dataset, summarised in Table 2, comprises recordings from
the Hindustani music corpus Dunya compiled as part of
the CompMusic project [7–9] supplemented by available
YouTube audio content by well-known Khyal artists, espe-
cially for the relatively more scarce JJ concerts. The cho-
sen recordings are vocal performances accompanied by the
tanpura (drone), tabla and harmonium. The JJ concerts are
manually segmented into male, female and simultaneous-
singing episodes or turns Figure 2 illustrates the temporal
sequence of singing turn durations across the three labels
for one of our C-M JJ songs. We note the dominance of
solo singing with roughly equal durations across the two
artists, an important characteristic of the JJ format. The
simultaneous singing episodes are relatively short and are
observed to correspond to the refrain (mukhda) of the song
and sometimes the long held notes.

Our melodic analysis is based on vocal pitch contours
automatically extracted from the audio recordings. The
pre-trained 4-stems Spleeter model [10] is used to obtain
the vocals component from the stereo mixtures. While
not trained on Indian art music, the model produces vocals
with either absent, or low enough, levels of the accompany-
ing melodic instruments for the ensuing vocal pitch detec-
tion step to work reliably. The regions of the separated vo-
cals, corresponding to the previously labeled solo singing
regions, are processed for F0 detection at intervals of 10 ms
using an autocorrelation function based method followed
by temporal smoothing with search range restricted to the
anticipated two octave range of the singer [11, 12]. The
resulting pitch time series were checked for accuracy via
listening to the resynthesis for any extended duration er-
rors that could be corrected with suitable adjustments of
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Raga
Pair

Number of songs (minutes)
Raga 1 Raga 2 JJ

A-K 12 (185) 12 (227) 5 (89)
C-M 13 (214) 14 (171) 4 (69)

Table 2. Number of songs and total audio duration for each
raga and JJ raga-pair in our dataset

the pitch analysis settings. The concert tonic is obtained
for each song using an automatic tonic detection method
that exploits the presence of the drone in a multipitch de-
tection framework and further manually verified [13, 14].

3. MELODIC REPRESENTATIONS

In Western music, the psychological perception of “key”
has been linked to distributional and structural cues present
in the music [15]. Likewise, the bare essential theoret-
ical description of a raga lists the allowed pitch classes,
the dominant (vadi) and sub-dominant (samvadi) notes, the
resting notes (nyas) and the raga motifs or characteristic
phrases. Table 1 presents the same for the ragas in our
study. The distribution of pitch classes in terms of either
duration or frequency of occurrence in scores of Western
music compositions has been found to correspond with the
perceived tonal hierarchies in different keys [16–19]. That
is, the emphasis given to the different notes in a composi-
tion is indicative of the underlying musical scale.

First-order, octave-folded pitch distributions (or pitch
profiles) computed from the concert recording, and nor-
malised by the concert tonic F0, have been widely used in
raga identification. Given the pitch continuous nature of
the Indian traditions, different kinds of representations and
distance measures have been experimentally evaluated in
different contexts [1]. Derived from the continuous pitch
contour, the instantaneous pitch samples can be binned
as such to obtain ‘continuous pitch histograms’. The bin
width is an important analysis parameter choice in this case
with finer bin widths more fully capturing precise note in-
tonation and note transitions that are possibly distinctive of
the raga. Bin widths of up to 25 cents (i.e. 48 intervals per
octave) were found to obtain perfect separation in the clus-
tering of allied raga concerts, with performance degrading
at larger bin widths [20].

Alternately, a stage of segmentation and quantization
can be applied to the continuous pitch time series to ob-
tain ‘stable note’ regions. To account for non-standard
note intonations, the underlying scale interval locations or
svara are estimated from the most prominent peaks of the
finely-binned long-term tonic-normalized continuous pitch
histogram across the concert. Following [3], segments of
the melodic contour of duration greater than 250 ms that
display a deviation of within +/-35 cents from a svara lo-
cation, with gaps upto 100 ms discounted, are labeled as
stable notes corresponding to the particular svara.

Octave-folded histograms are computed for each raga-
specific song by accumulating the pitch values across the
song audio. The continuous pitch (CP) distribution with

25 cent bin width has a vector dimension of 48. The stable
notes histogram has a dimension equal to the number of
raga notes or pitch classes. We consider two distinct inter-
pretations for the strength of a pitch class in the song audio,
viz. its total duration and the number of occurrences (or
count) to obtain two types of stable-note (SN) histogram
representations. The previous studies on raga recognition
using first-order distributions have considered a variety of
distance measures to quantify the similarity between two
histograms. For this work, we implement the two measures
that have been found to perform best, viz. correlation and
Bhattacharya distance [3,9]. We further extend the study to
unfolded pitch distributions to investigate how the octave
dependence of the realised notes contributes to the discrim-
ination of the mode-shifted ragas in performance.

Apart from pitch profiles, the melodic character of a
raga lies in sequential representations including motifs, as
is true for other forms of modal music [21, 22]. Similar-
ity of phrase shapes has been exploited in raga recognition
using sequence matching techniques [8, 23, 24]. Different
ways to deal with the challenges from melodic variation in-
herent to oral traditions and the imperfect correspondence
of any automatically quantized pitch contour to the under-
lying note sequence give rise to a variety of melodic rep-
resentations and distance computation methods [25]. For
the current task, we employ the continuous pitch contour
as well as the extracted stable note (SN) sequence to derive
various features that potentially capture the salient charac-
teristics of the JJ song call and response phrases.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Our experiments are targeted towards (i) examining how
closely the singers adhere to the raga-specific characteris-
tics of their respective parts in the JJ song while drawing
from the identical sets of notes in terms of the standard
keyboard as in Figure 1, and (ii) describing the interaction
between the two singers to model the phenomenon of ‘call
and response’. Raga-specific characteristics are modeled
from the individual raga concerts in our dataset. We im-
plement the distinct melodic representations, presented in
the previous section, for each raga-specific song as also
for the separated raga components of each JJ song. In or-
der to simulate the JJ concert scenario of a single overall
concert tonic, we pitch transpose all the concert audios so
that the female-sung raga songs (i.e. Abhogi and Chan-
drakauns) assume a tonic (i.e. the svara S) of 207 Hz (G#3
on the standard keyboard) and their complementary raga
songs assume C#3 for the tonic, corresponding to the de-
piction in Figure 1. This ensures that all the represented
note pitches in terms of the standard keyboard notes are
drawn from the same set for all concerts within a raga pair,
making the raga discrimination ambiguous to that extent
(just as it would be to the listener of the JJ performance).
The experiments, presented next, are organised based on
the specific melodic representation employed in the com-
parisons.
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4.1 Pitch distributions

We consider three distinct first-order pitch distributions:
the 25-cent bin width continuous pitch (CP) histogram and
the stable-note histograms based on duration, SN-d, and
count, SN-c. We evaluate both octave-folded and unfolded
histogram representations of each type. The fixed tonic
normalization gives rise to histograms that are aligned
across the two ragas of a pair as in Figure 1. The simi-
larity between two songs is then computed by the distance
between their corresponding distributions. Based on the
assumption that the individually performed ragas adhere
closely to the raga grammar, we use the estimated ‘good-
ness of clustering’ for the raga-specific songs (i.e. the in-
dividual raga concerts only) to obtain a model for the sub-
sequent investigation of the JJ songs. A popular measure
of cluster quality is the silhoutte coefficient [26]. For the
2-class problem, it is computed as a normalised difference
between the mean distance of a point to points in the op-
posite cluster and the mean distance to other points in its
own cluster [27]. It can take on values in [-1.0, 1.0] with
higher positive values indicating superior clustering, i.e.
the points are better matched to their own cluster members.
The silhoutte coefficient is computed for each raga-specific
song with respect to the two clusters, viz. other songs in
the same raga and all songs of the complementary raga..
Finally, an average silhoutte coefficient is obtained for each
raga pair across all the individually performed songs in ei-
ther raga, as presented in Table 3.
4.1.1 Discriminating raga-specific songs

All the considered combinations of pitch distribution and
histogram distance measure appear in Table 3. A num-
ber of observations are apparent. We obtain positive val-
ued coefficients in all cases implying that the tonal hier-
archy is sufficiently differentiated within a pair even with
identical keyboard notes and fixed tonic. For both raga
pairs, the unfolded representations yield superior clusters,
with the distinctions between other variations being some-
what less marked. The unfolded distribution is, of course,
helped by the pitch transposition effected between the ra-
gas, as reviewed earlier in this section. The distance mea-
sures, on the other hand, exhibit differences. As for the
octave-folded representations, only the A-K ragas demon-
strate good separation with the stable-note duration (SN-d)
representation taking on the highest values for both the dis-
tance measures. A possible explanation for reduced sepa-
ration in C-M is the overlapping nyas (rest notes) across the
2 ragas. We can conclude that of the considered methods
of comparing pitch distributions, the Bhattacharya distance
between SN-d representations overall best separates the in-
dividual songs across the two ragas of the complementary
raga pairs with the octave unfolded representation doing
better. This therefore forms our computational model of
melodic similarity to be applied to the investigation of raga
components of the JJ songs, as described next.
4.1.2 Discriminating ragas performed in JJ songs

The silhoutte coefficient computed using the above model
on a JJ song raga component (i.e. the song part rendered

Figure 3. MDS scatter plots for A-K and C-M raga pairs
with unfolded SN-d representations and Bhattacharyya
distance. All raga-specific songs appear as uniform filled
circles with the corresponding kernel density estimates su-
perposed. The JJ songs are indicated with distinct sym-
bols of shared shape but different raga-specific colours for
the two raga components of the same song, also connected
with a dashed line.

by a specific singer) with respect to the corresponding two
raga-specific song clusters can tell us about its "faithful-
ness" to its own raga characteristics in the JJ context. We
obtained positive valued silhoutte coefficients across the
set of JJ song components for all the representations in Ta-
ble 3, but report here only the values computed with the
unfolded SN-d and Bhattacharyya distance measure, viz.
0.75 (A-K) and 0.77 (C-M).

Further, a more visual rendition of the similarities be-
tween JJ song components and their own class of raga-
specific songs is possible with multi-dimensional scaling
(MDS) [27, 28]. The chosen representation (unfolded SN-
d) and distance measure (Bhattacharyya) are used to ob-
tain all inter-song distances in the corresponding multi-
dimensional space of the representation which is then pro-
jected to a two-dimensional space where the similarity
between items is preserved in the visual distances using
MDS. Figure 3 presents the MDS plots for each raga pair
separately. The different colours in each plot separate the
two ragas of the corresponding pair. The JJ song com-
ponents are depicted with special symbols that distinguish
them from the raga-specific songs but also serve to identify
the same-song components. We note that the raga-specific
songs as well as the JJ component songs of the A-K are
well separated in the 2 dimensional space. The two raga
components of the same JJ song tend to be at least as well
separated as the most closely spaced raga-specific songs
drawn from opposite ragas. The similar observations hold
for the C-M dataset indicating the preservation of the dis-
tributional characteristics of the raga in the JJ songs.

4.2 Melodic phrases

Our goal is to study the interaction between the two JJ
singers in terms of the nature of ‘call’ and ‘response’
phrases. We isolate the individual singing turns from the
JJ song pitch time-series and create pairs out of consecu-
tive turns with one each from the female and male singers.
The pairing is achieved from the manual annotation of the
singers’ parts as described in Section 2 and starts from the
first singing turn in the song. The interaction, if any, is
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Raga Pair Metric Folded Unfolded
CP (48) SN-d (5) SN-c (5) CP (128) SN-d (14) SN-c (14)

A-K Correlation 0.47 0.54 0.35 0.55 0.55 0.61
Bhattacharyya 0.36 0.53 0.31 0.82 0.78 0.79

C-M Correlation 0.16 0.19 0.03 0.71 0.68 0.68
Bhattacharyya 0.11 0.18 0.08 0.87 0.84 0.83

Table 3. Average silhoutte coefficient for raga-specific songs in each raga pair for different representations and distance
measures. (CP: continuous pitch; SN-d and SN-c: stable notes weighted with duration and count respectively. The corre-
sponding vector dimension appears in parentheses.)

expected to be more evident with shorter duration turns.
While any JJ song has singer turns with a wide range of
durations, short turns (10 s or lower) are relatively more
frequent in the faster tempo (drut laya) songs. We there-
fore restrict this part of the study to the drut songs in our
dataset, i.e. 4 A-K songs (83 turn pairs in total) and 3 C-M
songs (80 turn pairs in total), omitting altogether only one
JJ song from each of the raga pairs in our dataset. Figure
2 shows the variation of the duration of a turn with start
time of the turn in a drut song. The presence of rapid pitch
modulations (taans) in the drut songs leads to fewer de-
tected stable notes. We therefore relax the duration thresh-
old used in their extraction from the continuous pitch con-
tour to 150 ms.

We begin by examining the local pitch distributions at
the turn level. This allows us to compare the tonal con-
tent across the two turns in a call and response pair. The
two singing turns in a pair are assigned the same ‘index’.
Figure 4 presents 2 JJ song examples, one from each of
our raga pairs. We see the time-varying distribution of
the stable notes in terms of their durations in a given turn.
An immediate observation is the fairly consistent vertical
displacement in the range of notes covered in going from
one raga turn to the same-index turn in the complemen-
tary raga. Further, it appears that the shape of the distri-
bution of notes per turn, as it changes with turn index, is
roughly matched across the 2 singers with a visually some-
what closer match in the case of the C-M song.

4.2.1 Melodic shape features

In order to obtain a more quantitative analysis comparing
call and response across turn pairs, we define a few mean-
ingful scalar features that can be reliably computed from
the melodic pitch contours. The previously paired turns
are assumed to comprise a call and its response. We com-
pute the linear correlation between the corresponding fea-
tures of the two turns in a pair across all the pairs in the
A-K drut songs; similarly, the C-M drut songs. The se-
lected features are the turn duration (in seconds), the num-
ber of notes in the SN sequence representation of the turn
and the pitch range spanned by the turn as computed from
the corresponding continuous pitch contour. The estimated
correlations obtained for each raga pair appear in Table 4
as contrasted with the corresponding correlations between
randomly paired turns averaged over 50 shuffles of the set.
We note moderately high positive correlations for all the
features, suggestive of the similarity between the melodic
contours of the paired turns.

Raga
pair

No. of
turn pairs Duration (s) No. of

notes
Pitch range
(cents)

A-K 83 0.52 (0.02) 0.61 (0.02) 0.47 (0.04)
C-M 80 0.81 (0.02) 0.64 (0.03) 0.55 (0)

Table 4. Correlations between matched-index turns from
the 2 ragas for turn duration, number of notes and pitch
range, averaged over the turns in each raga pair. Values in
parentheses are the corresponding correlations across ran-
domly paired turns, serving as a baseline.

4.2.2 Transposition interval

With the turn-level pitch distributions of Figure 4 sugges-
tive of a fixed pitch interval shift between turns in a call
and response pair, we attempt to estimate the transposition
interval. In order to determine a suitable computational
model for this, we manually examined the continuous pitch
contours of a few call and response pairs where the singers
used the raga solfege as lyrics, providing us with a ready
transcription of the phrase in terms of the raga notes.

Figure 5 shows instances of two distinct kinds of call
and response interactions observed in a C-M JJ song. We
have (a), where the turns correspond to the identical key-
board pitch classes, i.e. the singers are actually in unison
(or one octave apart). In such a case, the solfege transcrip-
tions are quite different across the phrases, as expected
from different ragas and different assumed tonics. While
the notes uttered are valid for each raga given its assumed
tonic, the realised phrase is not necessarily a raga char-
acteristic phrase. The more common pattern, however, is
(b), where the turns have similar solfege notation, i.e. the
singers utter (mimic) the same solfege notes (svara) as far
as possible. When the svara is not available to the respond-
ing singer, they draw from the closest available svara of
their raga (verifiable from the raga grammar of Table 1).
The case (b) is expected to correspond to an exact tranpo-
sition by a fifth (700 cents), a desirable state of harmony
(samvaad), in the case of svara common to the two ragas
but only approximately so otherwise. We also occasionally
observe geometric transformations such as melodic con-
tour inversion or reversal across call and response.

Given the known challenges in transcribing the contin-
uous melodic contours to solfege notation (evident also in
Figure 5), we use the simplified, even if crude, measure of
the mean pitch (in Hz) of a turn to estimate the pitch off-
set between the corresponding phrases. Figure 6 presents a
histogram computed for each raga-pair showing the distri-
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Figure 4. Distribution of stable notes in a turn versus turn
index, separately (top and below) for each singer, in an A-
K JJ song (left) and a C-M JJ song (right). The song notes
are provided in terms of standard keyboard notes with nor-
malizing F0 selected so that the assumed tonic of the fe-
male component corresponds to G#3, and therefore that of
the male voice to C#3.

bution of the estimated intervals between the mean pitches
of turns in a call and response pair. We note that both raga
pairs show distributions concentrated around the interval of
a fifth. While the C-M distribution is centered around 700
cents, A-K is more skewed to lower intervals. To explain
the relatively high A-K histogram peak at (a relatively dis-
sonant) 600 cents, we examined turn pairs that exhibited
this specific mean pitch difference. A prominent example
of this turned out to be phrases that matched ‘g’ in Abhogi
with ‘G’ in Kalavati. Another case was the upward going
‘D-Ṡ’ transition in Abhogi being matched with a ‘D-n-Ṡ’
transition in Kalavati. In any case, given that we do not
have precise within turn alignments of the svara rendered
in call and response, we can only infer that the phrases in
a pair are largely centered at matching pitch intervals rela-
tive to their respective assumed tonics. With the two tonics
offset by a fifth, we see the transposition by 700 cents. The
occurrence of mean pitch differences of values below and
above 700 cents in Figure 6 may be explained by our ob-
servation that the automatic pairing of call and response
turns is occasionally incorrect with singers switching roles
at times.

5. CONCLUSION

We have presented here what is probably the first empir-
ical analysis of mode-shifting (murchana) in Hindustani

Supplementary material available at this link.

Figure 5. Two examples of call and response patterns from
a CM JJ song. (a) replicating the keyboard notes of the call
phrase, but an octave apart; (b) approximating the solfege
of the call phrase relative to own assumed tonic.

Figure 6. Histograms of the differences between the mean
pitches between turns in a pair, computed for all turn pairs
corresponding to A-K (83 turn pairs) and C-M (80 turn
pairs) drut songs.

raga performance using MIR tools. The specific form con-
sidered was the Jasrangi jugalbandi where two artists col-
laborate, each singing a different raga with the same set
of pitches shared across the two. Computed song-level
pitch distribution similarity revealed that the JJ singers ad-
here to raga characteristic tonal hierarchy to the same ex-
tent as in the corresponding individually performed ragas.
Simple melodic features of the singing turns during the
artists’ interaction revealed interesting insights about the
melodic shape transformations and transposition interval
in the course of the call and response. Overcoming the
limitations posed by data scarcity would facilitate the in-
vestigation of more complex models of melodic similarity
that also take note sequences into account.
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ABSTRACT

In this paper, we propose SinTra, an auto-regressive se-

quential generative model that can learn from a single

multi-track music segment, to generate coherent, aesthetic,

and variable polyphonic music of multi-instruments with

an arbitrary length of bar. For this task, to ensure the rele-

vance of generated samples and training music, we present

a novel pitch-group representation. SinTra, consisting of

a pyramid of Transformer-XL with a multi-scale training

strategy, can learn both the musical structure and the rel-

ative positional relationship between notes of the single

training music segment. Additionally, for maintaining the

inter-track correlation, we use the convolution operation to

process multi-track music, and when decoding, the tracks

are independent to each other to prevent interference. We

evaluate SinTra with both subjective study and objective

metrics. The comparison results show that our framework

can learn information from a single music segment more

sufficiently than Music Transformer. Also the comparison

between SinTra and its variant, i.e., the single-stage SinTra

with the first stage only, shows that the pyramid structure

can effectively suppress overly-fragmented notes.

1. INTRODUCTION

The current development trend of music generation is to

generate harmonious multi-track music with longer-term

dependency. However, in the composition of real life, the

inspiration is the beginning of a song, and the composer

usually creates a music based on a single music segment

that comes to mind. Thus, it’s more important to find ideas

that are relevant to the inspiration.

As for composers, the composition process can be di-

vided into two stages. The first stage is to generate a

large number of ideas that provide inspiration for subse-

quent creation. The second stage is about idea conver-

gency. Composers need to find ideas that can express their

feelings and emotions to the audience from a large num-

ber of ideas, then expand, repeat and arrange them, and

© Q. Song, Q. Sun, D. Guo, and H. Zheng. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Q. Song, Q. Sun, D. Guo, and H. Zheng, “SinTra: Learning

an inspiration model from a single multi-track music segment”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,

2021.
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Figure 1. One sample of four-track piano-roll (right) with

32-bar length (each block represents a bar), generated by

our SinTra model trained from a single music segment

(left). The y-axis and x-axis represent note pitch (range

from 0 to 127) and time step T , respectively.

finally end up with a song. At the first stage, generated

ideas constitute small segments of music, from which to

compose more similar segments can provide more inspira-

tion for composers. Therefore, as to music generation, it’s

significant to learn an inspiration model, that is, a genera-

tive model to generate music, inspiring the composers for

creating a song according to a single music segment.

Recently, music generation has witnessed great

progress due to the development of deep learning tech-

nologies. The mainstream methods are modeling the note

sequences by drawing lessons from language models in

natural language processing (NLP), which require a large

number of MIDIs as training set to learn the distribution of

notes. Generally, the training period is long, and the ran-

domness of generated music is relatively high. However,

if only a single music segment is available for training, it’s

hard for previous models to acquire enough information

for leaning reasonable musical structure and relation po-

sition relationship between notes, resulting in chaotic and

aesthetically unpleasant music (refer to Section 6).

At present, some one-shot generation works [1, 2] fol-

lowed the multi-scale training mechanism and achieved

compelling results, which allow the network to learn the

information from single training data in different scales

more sufficiently. Besides, recent works in music gener-
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ation [3–5] adopted the Transformer-XL [6], an improved

variant of the Transformer [7], to introduce recurrence to

the architecture, as the backbone sequence model.

In this paper, we leverage the multi-scale training

scheme and the Transformer-XL architecture, to tackle the

more challenging and meaningful one-shot music gener-

ation, that is, generating music from a single multi-track

music segment. To ensure the relevance of generated mu-

sic and training segment, we present a novel pitch-group

representation to contain all pitch group types of the sin-

gle training music segment. Besides, in order to deal with

more complex multi-track music, we design three modules

in each stage (scale) of our multi-scale training.

To summarize, SinTra can actually be regarded as an

inspiration model for music composition. When the com-

poser is lacking in inspiration, or in creation, it would be

very repetitive to make detailed adjustments at the struc-

ture level, and SinTra can help. Certainly, the subsequent

fine-tuning still needs to be done by humans. We make

four contributions: (1) A novel pitch-group representa-

tion is presented to model polyphonic music of single in-

strument into a sequence; (2) A novel inspiration model,

namely SinTra, is devised to generate meaningful music

from only a single music segment; (3) Three modules

based on Transformer-XL are designed for each stage of

multi-scale training to process multi-track music. (4) The

source code 1 and music data are made publicly available.

2. RELATED WORK

2.1 Music Generation

Music generation, as a niche research task of music infor-

mation retrieval (MIR), has a long history and has attracted

great attention in both industrial and art communities re-

cently.

As a traditional method, Markov models are often used

in the field of MIR, such as the work from Simon et

al. [8] and Tsushima et al. [9]. Chuan et al. [10] have

also used support vector machine (SVM) to select chord

tones from given melodies. Then, recurrent neural network

(RNN) [11] with long short-term memory (LSTM) [12]

and gated recurrent unit (GRU) [13], variational auto-

encoder (VAE) [14], and generative adversarial network

(GAN) [15], are common deep learning frameworks used

for modeling music sequence. MuseGAN [16] gener-

ated music as an image (converting MIDI into piano-

roll) with GANs, and used an inter-track latent vector

to make the generated multi-track music coherent. To

overcome the binarization issue, the upgraded version of

MuseGAN, Binary MuseGAN [17] proposed an additional

refiner network, which enables generator to directly gen-

erate binary-valued piano-rolls at test time. Moreover,

two types of binary neurons (BNs) considered features

fewer overly-fragmented notes as compared to MuseGAN.

MIDI-Sandwich2 [18], which also used piano-roll, applied

a hierarchical multi-modal fusion generative VAE network

1 https://github.com/qingweisong/SinTra
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Figure 2. Illustration of our pitch-group representation.

The pitch-group dictionary is built and regarded as the

database of music segment containing n + 1 key-value

pairs, where the key (e.g., 0) means the index of pitch

group type and the value (e.g., (60, 63)) means the pitch

group information. Piano-roll (T × 128) can be mapped to

token sequence (T × 1) through pitch-group dictionary (T

means time step).

based on RNN to collaboratively generate multi-track sym-

bolic music. XiaoIce Band [19], a melody and arrange-

ment generation framework for pop music, introduced co-

operate GRUs between each generation track to generate

melody and multi-track music arrangement. DeepJ [20],

based on Bi-LSTM [21], was trained using piano-roll for

style-specific music generating (baroque, classical, and ro-

mantic). Different from previous music generation models,

our work devotes to learning a model to generate music

from only a single segment.

2.2 Transformer and Multi-scale Training

Compared to LSTM or GRU, Transformer, a sequence

model based on multi-head self-attention mechanism, is

more parallelizable for both training and inferring, and

more interpretable [7]. Transformer has achieved com-

pelling results in tasks that require maintaining long-range

dependencies, such as neural machine translation [7],

pre-training language models [22], text-to-speech synthe-

sis [23], and speech recognition [24].

For music generation, Music Transformer [25] was the

first work that applies the Transformer to symbolic mu-

sic generation, Huang et al. used relative positional en-

coding [26] within the original Transformer architecture to

capture relative timing information. MuseNet [27] used

sparse kernels [28] to remember the long-term structure

in the composition. More recent works [3–5] adopted

Transformer-XL [6] that uses recurrent memory to enable

the model to attend beyond a fixed context. In this work,

we also leverage the powerful long-term dependency mod-

eling of Transformer-XL for one-shot music generation.

Notably, SinGAN [1] has achieved compelling results

on the task of unconditional generation from a single natu-

ral image, via a pyramid of fully convolutional light-weight

GANs in a coarse-to-fine fashion. Then TOAD-GAN [2]

was proposed for coherent style level generation following

the one-shot training approach of SinGAN. Our work also

involves the multi-scale training scheme into our SinTra

model for better training from a single music segment.
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Figure 3. SinTra’s multi-scale pipeline. Our model consists of a pyramid of Transformer-XLs, where both training and

inference are done in a coarse-to-fine fashion. At each scale, Tn learns the information of target R2
xn

by NLL loss, 2xn th

sequence means the sequence sampled by the 2xn th note (visualize the sequence into piano-roll, 2x0 > · · · > 2xN ! 4).

The input F 2
xn

to Tn from the previous output P 2
xn+1

, upsampled to the current temporal resolution (except for the

coarsest stage which comes from B, a downsampled version of the real music). The generation process at stage n involves

all Transformer-XLs {TN , · · · , Tn} up to this level.

3. DATA REPRESENTATION

We use the method of language modeling to train the gen-

eration models for symbolic music. Therefore, by serial-

izing polyphonic music into a single sequence, we express

music as a series of discrete symbols determined by the

data in music. For music generation learning from a sin-

gle music segment, we present a novel pitch-group repre-

sentation, which uses the index to represent various pitch

group types by flexibly building a pitch-group dictionary

of key-value pairs. The principle of pitch-group represen-

tation and the construction of pitch-group dictionary are

shown in Figure 2. For a segment of music, the dictionary

of pitch-group representation will not be very complex, so

this representation method is feasible.

We treat all types of pitch group in each time step

as elements, such as harmony, single tone and interval,

which can use 1-dim sequence to represent polyphonic mu-

sic. And the pitch-group representation can be regarded as

an upgraded representation of pitch-based representation

(support only monophonic music). However, this method

is a double-edged sword, which will limit the output space

and affect the diversity of generated music.

Piano-roll and event-based are the two most com-

monly data representations. Piano-roll representation used

in DeepJ [20], MuseGAN [16], Binary MuseGAN [17],

MIDI-Sandwich2 [18], and Music Transformer [25], is a

5-dim matrix representation of music where the vertical

and horizontal axes respectively represent note pitch and

time step. However, the piano-roll matrix is sparse since

there are many zeros, only a few notes are attacked during

each time step. Gale et al. [29] proved that sparse ma-

trix has great computational potential. Treating piano-roll

directly as dense matrix processing will waste computing

resources.

Event-based representation used in Music Trans-

former [25] and LakhNES [3], means that the MIDI note

events are converted into a sequence of tokens by a vocab-

ulary containing 388 events. A one-minute song may need

about 900 tokens in event-based representation. When the

temporal resolution is 16th note and the tempo is 120 bpm,

the piano-roll is a matrix whose shape is (480, 128) and the

pitch-group is a sequence whose length is 480. It means

that the length of the event-based is twice that of the other

two methods. Besides, although events are generated in

probability order, when there is not enough training data,

it’s easy to generate unreasonable note (e.g., Note_on

event of the same note is generated before the Note_off

event or super long note). In addition, TIME_SHIFT can

possibly cause the confusion of time value information as

proposed by Wu et al. [5].

Since traditional representation considers the universal-

ity of music representation, the coding space utilization is

low when representing the information of a specific seg-

ment of music. For example, a segment of music only uses

20 pitches but still needs to use 128 pitch coding spaces.

Or only 80 events appeared, but the encoding space of 388

events still needs to be used.

4. MUSIC GENERATION LEARNED FROM A

SINGLE MUSIC SEGMENT

4.1 Pyramid of Transformer-XL Model

For learning reasonable musical structure and relative

position relationship between pitch-group indexes of a

single music segment, we adopt the multi-scale train-

ing mechanism to design a pyramid of Transformer-XLs

{T0, · · · , TN}. Figure 3 shows the pipeline of SinTra

for the generation of music samples. SinTra is trained
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with a sequence pyramid of each stage’s real music R:

{R2
x0
, · · · , R2

xN } by the Negative Log Likelihood (NLL)

loss, where R2
xn

is a downsampled version of R2
x0

. Each

Transformer-XL Tn is responsible of producing music

samples P 2
n

with the corresponding scale of R2
xn

. The

generation of a music sample starts at the coarsest scale

and sequentially passes through all models up to the finest

scale. The Transformer-XLs have the different processing

length and thus capture more details as we go up the gen-

eration process.

In order to get the sequence pyramid of R for each

stage, we use different note-values to sample the original

sequence. This kind of down-sampling method preserves

the coarse-grained music structure information of the train-

ing music. We artificially define the note-value of each

stage as 2xn th, and the scale of the corresponding stage

is N
2x0−xn

. For our training, the 16th note sequence of N

length is sampled down to N
2

and N
4

by the 8th note and

the 4th note respectively.

4.2 Processing of Multi-track Sequences

All the models of each scale have a similar archi-

tecture, as depicted in Figure 4. For maintaining the

inter-track correlation, we use convolution operation

to process multi-track music, and when decoding, the

tracks are independent of each other to prevent inter-

ference. The Track_multi2one module is used

to map multi-track sequence into a single sequence,

and the Track_one2multi is the inverse process of

Track_multi2one. The Track-wise Decoder

module is used to decode each track independently.

4.3 Training and Inference

The first transformer generates bar by bar sequentially and

the others refine each bar in a coarse-to-fine manner. In the

1st scale of training, the sequence sampled by the 4th note

of the tth bar R4
t is fed into the model, and the (t+1)th bar

R4
t+1 is taken as training target with NLL loss. In the 2nd

scale of training, to get the 8th sequence F 8
t+1, the output

P 4
t+1 to the previous scale needs to be upsampled, and the

model will be trained with R8
t+1 as output. In the same

way, the 3rd scale needs F 16
t+1 as input and to be trained

with output R16
t+1. And the final output is P 16

t+1 from the

3rd scale. The overall training process is shown in Eqn (1).

1st : P 4
t+1 = Model1st(R

4
t )

loss1st = NLL(P 4
t+1, R

4
t+1)

2nd : F 8
t+1 = Upsample(P 4

t+1)

P 8
t+1 = Model2nd(F 8

t+1)

loss2nd = NLL(P 8
t+1, R

8
t+1)

3rd : F 16
t+1 = Upsample(P 8

t+1)

P 16
t+1 = Model3rd(F

16
t+1)

loss3rd = NLL(P 16
t+1, R

16
t+1)

(1)

In the inference of the NLP model, if the highest proba-

bility result is used as the prediction result every time, the

token sequences
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token sequences
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Relative Positional 
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Separate the 
track channel
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Figure 4. Network structure of each scale Tn (left) and

three modules related to multi-track sequence process-

ing (right). After the process of Track_multi2one,

the shape of input sequence (1, track, T ) becomes to

(1, T ). The shape of the Transformer-XL encoder out-

put (1, T, Feature) becomes to (1, T rack, T, Feature)
after Track_one2multi. Via the Track-wise

Decoder, the final output token sequence shape is

(1, T rack, T ).

generated content will repeat easily, this method is called

Top1. Hence, we adopt the Topp method proposed by

Holtzman et al. [30], that is, the model will sample the pre-

dicted results from several of the most likely results. In our

inference process, the 1st scale is used to predict the next

bar, so we can set a larger p = 0.9 to increase the diversity

of the generated samples. However, the latter two scales

are used to enhance the details, if the variety is robust, the

generated content will become overly-fragmented, so we

set a smaller p = 0.3.

5. EXPERIMENT SETUPS

5.1 Data

We test our method both qualitatively and quantitatively on

a variety of music files in MIDI format, containing well-

known works of multiple styles of music. The MIDIs that

we used are taken from the JSB Chorale dataset [31], clas-

sical music used in C-RNN-GAN [32] from the website 2 .

We only use the JSB Chorale dataset for objective eval-

uation, because Music Transformer only supports single-

track music. And we use all the MIDIs for subjective study.

5.2 Model Configurations & Training Setup

We performed our experiments under an NVIDIA GeForce

GTX TITAN X graphics card, with PyTorch 1.4.0 running

under CUDA 11.2. We implemented our multi-scale train-

ing framework (Figure 3) based on the Transformer-XL

encoder. The encoder has 6 layers and the number of heads

is 8 with a dimension of 32. The dimension of the embed-

ding layer is 256 and the hidden layer dimension is 1024.

2 https://www.classicalarchives.com/
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The dropout ratio is set at 0.09. The length of training in-

put tokens (processing length) and the memory length of 3

stages are 4, 8, 16, respectively.

Considering downsampling, to make SinTra learn the

single training segment sufficiently, it is necessary to

choose the note-value of each scale reasonably. The shorter

notes appear in the training music segment, the smaller

note-value used for sampling needs to be set in the finest

scale, and the number of stages required for training is

larger. Besides, the note-values of the adjacent scale are

preferably a 2-fold relationship. Formally, the note-value

of the finest scale is set to the shortest note that appears,

the note-value of the 1st stage is set to the 4th note value

(standard time unit in music).

We choose Music Transformer 3 and our variant, the

model with only the first stage named single-stage SinTra,

whose temporal resolution is set to the 16th note value,

for comparison. We use Adam optimizer with β1 = 0.5,

β2 = 0.999, ε = e−8 and follow the same learning rate

schedule in Transformer-XL [6]. We set the number of

input bars as 12 and the number of generated bars as 32.

5.3 Subjective Study

We set up a blind listening test for human evaluation in

which test-takers listen to 7 segments of music, one from

the real music, three from SinTra and three from Mu-

sic Transformer. In the test, test-takers will be asked the

same set of questions after listening to each of the two test

groups, namely, to rate them on a five-point scale about the

following aspects:

• Quality (Q): Does the generated music sound pleas-

ing overall?

• Relevance (R): Whether the generated music give

you the same feeling as the real music?

• Diversity (D): Does the generated music have new

arrangement that impresses you?

Finally, we collect responses from 50 subjects, of which

20 are classified as professional composers for their mu-

sical background. The 20 professions were asked to rate

each music segment they heard from the music composi-

tion theory aspect, while 30 non-composers were asked to

rate their subjective feelings.

5.4 Objective Evaluation

Objective evaluation in music generation is still an open

question, though various metrics have been proposed, the

feeling of music varies from person to person, it’s hard

to measure the quality of generated music. To quantita-

tively compare the performance differences between the

three models, we use the following metrics to measure the

similarity and diversity between generated music samples

and the realistic single music segment.

3 Since the official code is highly coupled with Magenta, data pro-
cessing and training scripts are not shown explicitly. We thus used a
third-party implementation (https://github.com/jason9693/
MusicTransformer-pytorch) instead.

Quality Relevance Diversity

SinTra 3.20/5.00 3.66/5.00 2.86/5.00

Music Trans. 2.34/5.00 2.38/5.00 2.54/5.00

Table 1. Results of subjective study in a five-point scale.

5.4.1 KL Divergence

KL divergence measures the distance between two distri-

butions. In this paper, pitch group indexes are used as

the essential element for calculating the music distribution.

The way we measure similarity is by calculating KL diver-

gence between distributions of pitch group:

Dkl(P ||Q) =
1

Nsample

Nsample∑

j=0

Ntype∑

i=0

P (i)log2(
P (i)

Q(i)
),

(2)

where Nsample means the number of generated samples,

Ntype means the number of pitch group types, P (i) means

the ith pitch group type of the generated samples, Q(i)
means the ith pitch group type of the original music. The

smaller the KL divergence, the closer the two distributions.

5.4.2 Pitch Group Overlap

Referring to the idea of IoU (Intersection over Union), we

design a metric named pitch group overlap:

Overlap =
N∑

j=0

len(set(P ) ∩ set(Q))

N ∗ len(set(P ) ∪ set(Q))
, (3)

where set(P ) means a set contains all pitch group types

appearing in the sample, set(Q) means a set contains all

types appearing in the real music segment. Overlap means

the length of intersection between set(P ) and set(Q) di-

vided by the length of the union. Compared to KL di-

vergence, the overlap can measure the difference between

P and Q distributions at a coarser granularity. The larger

the overlap, the more similar the pitch group types of two

songs.

It should be noted that both KL divergence and overlap

can only roughly measure the similarity between the two

pieces of music. In the music generation task, if the sim-

ilarity is too high, the diversity will be low. Conversely,

if the similarity is too low, the correlation with real music

will not be ideal. Therefore, to balance diversity and rele-

vance, it is necessary to find a suitable similarity interval.

6. RESULTS AND ANALYSIS

6.1 Results of Subjective Study

The results shown in Table 1 indicate that our SinTra re-

ceives commendable scores, especially in relevance (R).

After communicating with the subjects, they reflected that

there were several fluent segments in samples, but the oc-

casional messy notes led to the decline of the overall audi-

tory perception. The output space dictionary constructed

in the pitch-group representation ensures the correlation
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Figure 5. Samples generated by the three models. Each

model lists 4 samples. All models are trained under the

same training data.

Music Trans. Single-stage SinTra

KL-Div 40.53 27.84 21.67

Overlap 5% 55% 79%

Table 2. Results of objective metrics by Music Trans-

former, single-stage SinTra and SinTra on JSB Chorale

dataset. The metrics of SinTra are marked in bold.

between generated music and real music. Besides, the

coarse-to-fine fashion introduced by the pyramid structure

enables the model to fully learn the features of training

data. Although we introduce randomness at each stage in

terms of diversity (D), the results show that the generated

music is still close under a single training music.

6.2 Comparison with Previous Work

We compare music generation quality of SinTra with Mu-

sic Transformer by: 1) we conduct experiments in the same

one-shot learning condition, and since Music Transformer

only supports single-track music, we use JSB Chorale

dataset to evaluate the performance; 2) both models are

asked to generate 10 segments in about 1 minute; 3) we

set the velocity of all notes in musical pieces generated by

models to a reasonable value (100).

The comparison results are shown in Table 2 and the

local detail of the generate music is demonstrated in

Figure 5. The convergence values of NLL loss shown in

Table 3 also validate that Music Transformer does not fit

the training music well. The music generated by SinTra is

more realistic and fits more closely with real music.

6.3 Method Analysis

6.3.1 Analysis on Pyramid Structure

To verify the effectiveness of the pyramid structure, we

build the single-stage SinTra. As depicted in Figure 5,

Music Trans. Single-stage SinTra

NLL ∼ 1.0 10−3 ∼ 10−4 10−3 ∼ 10−4

Table 3. Results of NLL loss by Music Transformer,

single-stage SinTra and SinTra on JSB Chorale dataset

when model converges. Both variants of SinTra can con-

verge in 10−3 ∼ 10−4 while Music Transformer can’t.

4th 8th 16th

Figure 6. The effect of detail enhancement at each stage

of SinTra. In the stage of the 4th note-value, simple notes

will be generated but lack details, while in the 8th and 16th

stages, the model refines some details.

we can see that the embryonic form of melody appears

in single-stage SinTra, but is overly-fragmented and noisy.

The KL divergence (27.84) and overlap (55%) shown in

Table 2 are not ideal because of overly-fragmented notes.

The comparison results show that SinTra can effectively

suppress messy notes.

6.3.2 Analysis on Multi-stage Output

Figure 6 shows the output effect of SinTra at each stage. In

the 1st stage (the 4th note-value), the model generates sim-

ple notes, ignores local details, and sketches roughly the

outline of songs. Then the 2nd and 3rd stages enrich the

contour in turn, bringing local detail changes. This model

structure can effectively solve the problem of music gener-

ated by single-stage SinTra, while ensuring the generation

quality, which can introduce randomness in each stage.

7. CONCLUSION AND FUTURE WORK

In this work, we propose SinTra, an inspiration genera-

tion framework to complete the task of one-shot learning

in music generation. SinTra, consisting of a pyramid of

Transformer-XL with a multi-scale training strategy, can

learn both the musical structure and the relative positional

relationship between notes of the single training music seg-

ment. Moreover, we present a novel pitch-group repre-

sentation to ensure the relevance of generated samples and

training music. The results of subjective study and objec-

tive evaluation show the effectiveness of SinTra for learn-

ing from single training data, generating music samples

with a strong correlation with the training music. How-

ever, there is still room for improvement in the quality and

diversity of generated music.

In the future, we will study controllable music genera-

tion that can integrate emotion- and style-controlled gener-

ations into SinTra. We will also consider large-scale gener-

ative pre-training to improve generation quality. We hope

SinTra can be leveraged to enhance musicians’ productiv-

ity and inspire them to compose higher quality music.
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ABSTRACT

While deep learning has enabled great advances in many
areas of music, labeled music datasets remain especially
hard, expensive, and time-consuming to create. In this
work, we introduce SimCLR to the music domain and con-
tribute a large chain of audio data augmentations to form a
simple framework for self-supervised, contrastive learning
of musical representations: CLMR. This approach works
on raw time-domain music data and requires no labels to
learn useful representations. We evaluate CLMR in the
downstream task of music classification on the MagnaTa-
gATune and Million Song datasets and present an abla-
tion study to test which of our music-related innovations
over SimCLR are most effective. A linear classifier trained
on the proposed representations achieves a higher average
precision than supervised models on the MagnaTagATune
dataset, and performs comparably on the Million Song
dataset. Moreover, we show that CLMR’s representations
are transferable using out-of-domain datasets, indicating
that our method has strong generalisability in music clas-
sification. Lastly, we show that the proposed method al-
lows data-efficient learning on smaller labeled datasets: we
achieve an average precision of 33.1% despite using only
259 labeled songs in the MagnaTagATune dataset (1% of
the full dataset) during linear evaluation. To foster repro-
ducibility and future research on self-supervised learning
in music, we publicly release the pre-trained models and
the source code of all experiments of this paper.

1. INTRODUCTION

Supervised learning methods have been widely used in mu-
sical tasks like chord recognition [1, 2], key detection [3],
beat tracking [4], music audio tagging [5] and music rec-
ommendation [6]. These methods require labeled corpora,
which are difficult, expensive and time-consuming to cre-
ate for music in particular [7], while raw unlabeled music
data is available in vast quantities. Unsupervised alterna-
tives to end-to-end deep learning for music are compelling,
especially if they can generalise to smaller datasets.

Despite the importance of unsupervised learning for
raw audio signals, unsupervised learning for musical tasks

© J. Spijkervet and J.A. Burgoyne. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of
Musical Representations”, in Proc. of the 22nd Int. Society for Music

Information Retrieval Conf., Online, 2021.

Figure 1: Performance and model complexity comparison
of supervised models (grey) and self-supervised models
(ours) in music classification of raw audio waveforms on
the MagnaTagATune dataset to evaluate musical represen-
tations. Supervised models were trained end-to-end, while
CLMR and CPC are pre-trained without ground truth: their
scores are obtained by training a linear classifier on their
learned representations but nonetheless perform competi-
tively to the supervised models.

has yet to see breakthroughs comparable to those in super-
vised learning. There have been successes with methods
like PCA, PMSC’s and spherical k-means that rely on a
transformation pipeline [8, 9], and very recently with self-
supervised methods in the time-frequency domain for gen-
eral audio classifiation tasks [10–13], but learning effective
representations of raw audio in an unsupervised manner
has remained elusive for musical tasks.

Self-supervised representation learning is an unsuper-
vised learning paradigm that has demonstrated advances
across many tasks and research domains [14–18]. This
includes the ability to use substantially less labeled data
when fine-tuning on a specific task [17, 19, 20]. Without
ground truth, there can be no ordinary loss function for
training; self-supervised learning trains by way of a proxy
loss function instead. One way to preserve the amount
of useful information during self-supervised learning is to
define the proxy loss function with respect to a relatively
simple pretext task, with the idea that a representation that
is good for the pretext task will also be useful for down-
stream tasks. Many approaches rely on heuristics to design
pretext tasks [21, 22], e.g., by witholding a pitch trans-
formation [23]. Alternatively, contrastive representation

learning formulates the proxy loss directly on the learned
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representations and relies on contrasting multiple, slightly
differing versions of any one example by often using nega-
tive sampling strategies [17,24,25] or by bootstrapping the
representations [18].

In this paper, we combine the insights of a simple
contrastive learning framework for images, SimCLR [17],
with recent advances in representation learning for audio
in the time domain [26]. We also contribute a pipeline
of data augmentations on musical audio, to form a sim-
ple framework for self-supervised, contrastive learning of
representations of raw waveforms of music. To compare
the effectiveness of this simple framework compared to a
more complex self-supervised learning objective, we also
evaluate representations learned by contrastive predictive
coding (CPC) [15]. The self-supervised models are evalu-
ated on the downstream music tagging task, enabling us to
evaluate their versatility: music tags describe many char-
acteristics of music, e.g., genre, instrumentation and dy-
namics. Our key contributions are the following.
• CLMR achieves strong performance on the music clas-

sification task compared to supervised models, despite
self-supervised pre-training and training a linear classi-
fier on the downstream task with raw signals of musical
audio (see Figure 1).

• CLMR enables efficient classification: we achieve
comparable performance using as few as 1% of the la-
beled data.

• We show the out-of-domain transferability of represen-
tations learned from pre-training CLMR on entirely dif-
ferent corpora of musical audio.

• CLMR can learn from any dataset of raw music audio,
requiring neither transformations nor fine-tuning on the
input data; nor do the models require manually anno-
tated labels for pre-training.

• We provide an ablation study on the effectiveness of
individual audio data augmentations.

2. RELATED WORK

The goal of representation learning is to identify fea-
tures that make prediction tasks easier and more robust
to the complex variations of natural data [27]. In unsu-
pervised representation learning, generative modeling and
likelihood-based models typically find useful representa-
tions of the data by attempting to reconstruct the observa-
tions on the basis of their learned representations [28, 29].
Self-supervised representation learning aims to identify the
explanatory factors of the data using an objective that is
formulated with respect to the learned representations di-
rectly [15, 18, 19, 21, 22].

Compared to vision, work on self-supervised learning
in audio is still very limited, but there are a number of
works that appeared very recently. Contrastive predictive
coding is a universal approach to contrastive learning, and
has been successful for speaker and phoneme classification
using raw audio, among other tasks [15]. PASE [30] intro-
duces several self-supervised workers that solve regression

or binary discrimation tasks, that jointly optimise an en-
coder for speech recognition. To improve the representa-
tions for mismatched acoustic conditions and their trans-
ferability, they apply augmentations to the input speech
signal [31]. In music information retrieval, recent advances
have been made in self-supervised pitch estimation [23],
closely matching supervised, state-of-the-art baselines [32]
despite being trained without ground truth labels. L3-Net
learns deep embeddings from audio-visual correspondence
in videos by way of self-supervised learning [10]. Their
work uses mel-spectrograms for audio and requires more
than 40 million audio-video training samples to learn op-
timal embeddings. Audio2Vec also operates in the time-
frequency domain and learns by reconstructing spectro-
gram slices from past and future slices [11]. With lim-
ited data, Audio2Vec outperforms supervised models in
pitch and instrument classification. CLAR also uses a con-
trastive learning objective, and computes a loss on a con-
catenation of representations learned from both raw audio
and mel-spectrograms [12]. COLA uses a similar method
with mel-spectrograms only, and uses bilinear compar-
isons instead of cosine similarity [13]. Both works are
evaluated on speech command, environmental sound clas-
sification, and on pitch and instrument classification on the
NSynth dataset [33].

3. METHOD

This work builds on SimCLR, a simple contrastive learning
framework of visual representations [17]. Despite a task-
agnostic, labelless discriminative pre-training approach, a
linear classifier achieved performance comparable to fully
supervised models in many image classification bench-
marks. Its learning objective is to maximise the agreement
of latent representations of augmented views of the same
image using a contrastive loss. In Section 2, we will con-
tinue an overview of contrastive learning.

In CLMR, we adapt this framework to the domain of
raw music audio. While most core components of CLMR
have appeared in previous work, its ability to model wave-
forms of music cannot be explained by a single design
choice, but by their composition. We will first elaborate
the four core components in the following subsections:
• A stochastic composition of data augmentations that

produces two correlated, augmented examples of the
same audio fragment, the ‘positive pair’, denoted as xi

and xj .

• An encoder neural network genc(·) that maps the aug-
mented examples to their latent representations.

• A projector neural network gproj(·) that maps the en-
coded representations to the latent space where the con-
trastive loss is formulated.

• A contrastive loss function, which aims to identify xj

from the negative examples in the batch {xk 6=i} for a
given xi.
The complete framework is visualised in Figure 2.
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Figure 2: The complete framework operating on raw au-
dio, in which the contrastive learning objective is directly
formulated in the latent space of correlated, augmented ex-
amples of pairs of raw audio waveforms of music.

3.1 Data Augmentations

We designed a comprehensive chain of audio augmenta-
tions for raw audio waveforms of music to make it harder
for the model to identify the correct pair of examples. For
details, see Appendix B 1 . Each consecutive augmentation
is stochastically applied on xi and xj independently, i.e.,
each augmentation has an independent probability ptransform
of being applied to the audio. The order of augmentations
applied to audio is carefully considered, e.g., applying a
delay effect after reverberation empirically gives an en-
tirely different result in music.
1. A random fragment of size s is selected from a piece of

music, without trimming silence (e.g., the intro or outro
of a song). The two examples xi and xj from the same
audio fragment can overlap or be very disjoint, allowing
the model to infer both local and global structures.

2. The polarity of the audio signal is inverted, i.e., the am-
plitude is multiplied by �1.

3. Additive white Gaussian noise is added with a signal-
to-noise ratio of 80 decibels to the original signal.

4. The gain is reduced between [�6, 0] decibels.

5. A frequency filter is applied to the signal. A coin flip
determines whether it is a low-pass or a high-pass filter.
The cut-off frequencies are drawn from uniform distri-
butions on [2200, 4000] or [200, 1200] Hz respectively.

6. The signal is delayed and added to the original signal
with a volume factor of 0.5. The delay is randomly
sampled between 200-500ms, in 50ms increments.

7. The signal is pitch shifted. The pitch transposition in-
terval is drawn from a uniform distribution of semitones
between [�5, 5], i.e., a perfect fourth compared to the
original signal’s scale.

8. Reverb is added to alter the signal’s acoustics. The im-
pulse response’s room size, reverbation and damping
factor is drawn from a uniform distribution on [0, 100].

1 The supplementary material can be found at the accompanying web-
page of this paper : https://spijkervet.github.io/CLMR

The space of augmentations is not limited to these oper-
ations and could be extended to, e.g., randomly apply-
ing chorus, distortion and other modulations. Some of
these have been shown to improve performance in self-
supervised learning for automatic speech recognition in the
time-domain as well [31, 34].

3.2 Batch Composition

A larger batch size N makes the contrastive learning objec-
tive harder – there are simply more negative examples the
anchor sample needs to identify the positive sample from
– but it can substantially improve model performance [17].
We sample one song from the batch, augment it into two
examples, and treat them as the positive pair. We treated
the remaining 2(N � 1) examples in the batch as nega-
tive examples, and did not sample the negative examples
explicitly. Larger batch sizes introduces a practical prob-
lem for raw audio when training on a GPU, as their input
dimensionality increases for higher sample rates. When
training on multiple GPU’s, we used global batch normal-
isation, i.e., we aggregate the batch statistics over all de-
vices during parallel training, to avoid potential leakage
of batch statistics because the positive examples are sam-
pled on the same device (which improves training loss, but
counteracts learning of useful representations).

3.3 Encoder

To directly compare a state-of-the-art end-to-end super-
vised model used in music classification on raw wave-
forms against a self-supervised model, we use the Sam-
pleCNN architecture as our encoder [26]. Similarly, we
use a fixed audio input of 59 049 samples with a sam-
ple rate of 22 050 Hz. In this configuration, the Sam-
pleCNN encoder genc consists of 9 one-dimensional con-
volution blocks, each with a filter size of 3, batch normal-
isation, ReLU activation and max pooling with pool size
3. The final output layer is removed, which yields a 512-
dimensional feature vector hi for every audio input. The
feature vectors from the encoder can be directly used in
the learning objective, but formulating the objective on en-
codings mapped to a different latent space by a parame-
terised function helps the effectiveness of the representa-
tions [17]. In our experiments, we use a non-linear layer
zi = W (2) ReLU(W (1)hi) with an output dimensionality
of 128 as the projection head gproj. There are 2.5 million
trainable parameters in total, which is put in comparison
with other state-of-the-art models in Figure 1.

We used 96 examples per batch and the afore-
described encoder configuration to directly compare our
self-supervised performance with the equally expressive
fully supervised method [26]. We ran experiments with
batch sizes of 96 on 2⇥ NVIDIA 1080Ti, while for larger
batches up to 4 ⇥ Titan RTX’s were used. With 2 1080Ti’s,
it takes ⇠5 days to train 1 000 epochs on our largest
dataset.
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3.4 Contrastive Loss Function

In keeping with recent findings on several objective func-
tions in contrastive learning [17], the contrastive loss func-
tion used in this model is normalised temperature-scaled
cross-entropy loss, commonly denoted as NT-Xent loss:

`i,j = � log
exp (sim (zi, zj) /⌧)P2N

k=1 [k 6=i] exp (sim (zi, zk) /⌧)
(1)

The pairwise similarity is measured using cosine sim-
ilarity and the temperature parameter ⌧ helps the model
learn from hard negatives. The indicator function [k 6=i]

evaluates to 1 iff k 6= i. This loss is computed for all pairs,
both (zi, zj) and (zj , zi), for i 6= j.

3.5 Contrastive Predictive Coding

We adjusted the original CPC encoder genc [15] to a deeper
architecture for more direct comparison [26]. The encoder
genc consists of 7 layers with 512 filters each, and filter
sizes [10, 6, 4, 4, 4, 2, 2] and strides [5, 3, 2, 2, 2, 2, 2]. In-
stead of relying on max-pooling, the filter sizes and strides
are adjusted to parameterise and facilitate downsampling.
We also increased the number of prediction steps to 20,
effectively asking the network to predict 100 ms of audio
into the future. The batch size is set to 64 from which 15
negative examples in the contrastive loss are drawn.

3.6 Linear Evaluation

The evaluation of representations learned by self-
supervised models is commonly done with linear evalua-
tion [15–17], which measures how linearly separable the
relevant classes are under the learned representations. We
obtain the representations for all datapoints from a frozen
CLMR network after pre-training has converged, and train
a linear classifier using these self-supervised representa-
tions on the downstream task of music classification. For
CPC, the representations are extracted from the autoregres-
sor, yielding a context vector of size (20, 256), which is
global-average pooled to obtain a single vector of 512 di-
mensions. For CLMR, the last 512-dimensional vector h
from the encoder is used instead of z from the projection
head because that yielded consistently better results for all
our experiments. We compute the evaluation metrics on a
held-out test set, averaged over three runs on the training
set using different random seeds.

3.7 Optimisers

We use the Adam optimiser [35] with a learning rate of
0.0003 and �1 = 0.9 and �2 = 0.999 during pre-training
and employ He initialisation for all convolutional layers.
The temperature parameter ⌧ is set to 0.5, since we ob-
served consistent results regardless of varying batch sizes
and temperature ⌧ 2 {0.1, 0.5, 1.0}. For linear evaluation,
we use the Adam optimiser with a learning rate of 0.0003
and a weight decay of 10�6. Backpropagation is only done
in the final (linear) head for all experiments in this paper.
We also employ an early stopping mechanism when the
validation scores do not improve for 5 epochs.

Model Dataset ROC-AUC PR-AUC

CLMR (ours) MTAT 88.7 (89.3) 35.6 (36.0)
Musicnn [5]† MTAT 89.0 34.9
SampleCNN [26]† MTAT 88.6 34.4
CPC (ours) MTAT 86.6 (88.0) 31.0 (33.0)
1D CNN [36]† MTAT 85.6 29.6

Transformer [37]†§ MSD 89.7 34.8
Musicnn [5]† MSD 88.0 28.7
SampleCNN [26]† MSD 87.9 28.5
CLMR (ours) MSD 85.7 25.0

Table 1: Tag prediction performance on the MagnaTag-
ATune (MTAT) dataset and Million Song Dataset (MSD),
compared with fully supervised models(†) trained on raw
audio waveforms. We omit most works that operate on
(mel-) spectrograms(§) to make a fair comparison with our
approach on raw audio. For reference, we add the Trans-
former model that is the current state-of-the-art in music
tagging. For the self-supervised models, the scores are
obtained by training a linear, logistic regression classi-
fier using the frozen representations from self-supervised
pre-training. Scores in brackets show performance when
adding a hidden layer to the linear classifier.

4. EXPERIMENTAL RESULTS

4.1 Datasets

We evaluated the quality of our representations with music
classification experiments. Predicting the top 50 seman-
tic tags in the MagnaTagATune and Million Song datasets
[38, 39] is a popular benchmark for music classification.
These semantic tags are annotated by human listeners, and
have a varying degree of abstraction and describe many
facets of music, including genre, instrumentation and dy-
namics. It is a multi-label classification task: each track
can have multiple tags, of which we use the 50 most fre-
quently occuring to compare our performance against su-
pervised benchmarks.

The MagnaTagATune dataset consists of 25k music
clips from 6 622 unique songs, of which we use about
187k fragments of 2.6 seconds for training, and the same
train/test split as previous work [5,9,26]. The Million Song
Dataset contains a million songs, of which about 240k pre-
views of 30 seconds are available and labeled with Last.FM
tag annotations. We only use the train, validation and test
split of 201 680 / 11 774 / 28 435 songs as used in previous
work [5, 26], not all million songs during self-supervised
pre-training. This results in 2.2 million music fragments of
2.6 seconds for training, i.e., almost 1 600 hours of music.
The tags for the Million Song Dataset also contain over-
lapping genre and semantic tags, e.g., ‘beautiful’, ‘happy’
and ‘sad’, which are arguably harder to separate during the
linear evaluation phase.

We use average tag-wise area under the receiver operat-
ing characteristic curve (ROC-AUC) and average precision
(PR-AUC) scores as evaluation metrics. They are mea-
sured globally for the whole dataset, i.e., for the tag metric
we measure the retrieval performance on the tag dimen-
sion (column-wise) and for the clip metric we measure the

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

676



performance on the clip dimension (row-wise). PR-AUC
is calculated in addition to ROC-AUC, because ROC-AUC
scores can be over-optimistic for imbalanced datasets like
MagnaTagATune [40].

4.2 Quantitative Evaluation

The most important goal set out in this paper is to evaluate
the difference in performance between an otherwise iden-
tical, fully supervised network when learning representa-
tions using a self-supervised objective.

CLMR exceeds the supervised benchmark for the
MagnaTagATune dataset with a PR-AUC of 35.6%, de-
spite task-agnostic, self-supervised pre-training and a lin-

ear classifier for training, as shown in Table 1. An addi-
tional 0.4% PR-AUC performance gain is added by adding
an extra hidden layer to the classifier. When increasing
the batch size and the number of parameters, we observe
another performance gain to 37.0% PR-AUC as show in
Appendix C.1. The performance on the larger Million
Song Dataset is lower compared to the supervised bench-
mark, and especially to the current state-of-the-art model
that is trained using mel-spectrograms [37], but is still re-
markable given the use of a linear classifier. The tags
in the Million Song Dataset are semantically more com-
plex, e.g., ‘catchy’, ‘sexy’, ‘happy’, and have more similar
genre tags, e.g., ‘progressive rock’, ‘classic rock’ and ‘in-
die rock’, which our proposed contrastive learning method
may not distinguish.

CPC also shows competitive performance with fully su-
pervised models in the music classification task. Despite
CPC’s good performance, self-supervised training does not
require a memory bank or more complex loss functions,
e.g., those incorporating mutual information or more ex-
plicit negative sampling strategies, to learn useful repre-
sentations.

We also analyse the quality of our representations,
showing they can cleanly separate audio fragments from
different classes, and visualise the convolution filters of the
self-supervised models in Appendix C.4.

4.3 Data Augmentations

The CLMR model relies on a pipeline of strong data aug-
mentations to facilitate the learning of representations that
are more robust and allow for better generalisation in the
downstream task. In Table 2, we show the linear evalu-
ation scores obtained by taking a random crop of audio
and performing one additional, individual augmentation.
While all datasets contain songs of variable length, we al-
ways sample a random crop of audio of the same size be-
fore applying other augmentations. This makes it harder to
assess the individual contribution of each augmentation to
the downstream task performance. We therefore consider
an asymmetric data transformation setting: we only apply
the augmentation(s) to one branch of the framework, while
we settle with an identity function for the other branch
(i.e., t(xj) = xj) [17]. The model is pre-trained from
scratch for 1 000 epochs after which linear evaluation is
performed.

Tag Clip

Transform ROC-AUC PR-AUC ROC-AUC PR-AUC

Filter 87.6 33.3 92.5 67.9
Reverb 86.5 31.7 91.8 65.8
Polarity 86.3 31.5 91.7 65.7
Noise 86.1 31.5 91.5 65.5
Pitch 86.4 31.5 91.5 65.3
Gain 86.2 31.1 91.5 65.1
Delay 85.8 30.5 91.3 64.9
Crop 85.8 30.5 91.3 64.8

Table 2: CLMR music tagging performance using a ran-
dom crop together with one other audio data augmentation.

Figure 3: PR�AUCTAG scores for transformations un-
der different, consecutive probabilities p 2 {0.0, 0.4, 0.8}

When only taking a random crop of audio, we achieve
a PR-AUC score of 30.5. Most individual augmentations
show an increase in performance, while adding gain or de-
lay does not impact performance as much. Adding a fil-
ter to the augmentation pipeline increases the downstream
performance more significantly.

Besides evaluating the individual contribution of each
augmentation with augmentation probability pt = 1, we
also vary pt 2 {0, 0.4, 0.8}. This is done to assess the
optimal amount of augmentation to each example, i.e., the
contrastive learning task should neither be too hard, nor too
simple, for learning effective representations for the music
classification task. The linear evaluation PR-AUC score is
shown for each augmentation under a different probability
pt in Figure 3. For the Polarity and Filter transformations,
performing them more often with a probability of pt = 0.8
is beneficial. For the Delay, Pitch and Reverb transforma-
tions, a transformation probability of pt = 0.4 works better
than performing them more aggressively. Generally, we
find that strong data augmentations result in more robust
representations and better downstream task performance.

4.4 Data Efficient Classification Experiments

To test the efficient classification capability of the CLMR
model, we train the linear classifier on consecutive, class-
balanced subsets of the labels in the train dataset and report
its performance. During the task-agnostic, self-supervised
pre-training phase, 100% of the data is used. Figures 4
and 5 show the PR-AUC scores obtained when increasing

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

677



Figure 4: Percentage of labels used for training vs. the
achieved PR�AUCTAG score on the MTAT dataset.

Figure 5: Percentage of labels used for training vs. the
achieved PR�AUCTAG score on the MSD.

the amount of labels available during training. For both
datasets, self-supervised pre-training greatly improves per-
formance when less labeled data is available. Using 100
times fewer labeled songs, i.e., only 259 songs, CLMR
scores 33.1% PR-AUC compared to 24.8% PR-AUC ob-
tained with an equivalent, end-to-end trained supervised
model trained on about 25 000 songs. Pre-training using a
self-supervised objective without labels therefore substan-
tially improves efficient classification: only 1% of the la-
bels are required while maintaining a similar performance.
For the Million Song Dataset, a fully supervised model ex-
ceeds CLMR at 10% of the labels, which are 24 190 unique
songs in total.

4.5 Transfer Learning Experiments

To test the out-of-domain generalisability of the learned
representations, we pre-trained CLMR on entirely different
music datasets. After pre-training, we freeze the weights of
the network, i.e., we do not fine-tune the encoder, and sub-
sequently perform the linear evaluation procedure outlined
in Section 3.6. While originally made for chord recog-
nition, we use 461 contemporary pop songs recorded be-
tween the 1940’s and 2000’s from the McGill Billboard
dataset [41]. The Free Music Archive dataset [42] consists
of 22 413 songs for the ‘medium’ version, and the fault-
filtered GTZAN dataset [43,44] contains 930 fragments of

Model Train Dataset ROC-AUCTAG PR-AUCTAG

CLMR MSD 87.8 33.1
CPC FMA 86.3 (87.8) 30.7 (32.5)
CLMR FMA 86.2 (86.6) 30.6 (31.2)
CPC Billboard 85.8 (86.3) 29.7 (30.2)
CPC GTZAN 83.4 (86.0) 26.9 (29.7)
CLMR Billboard 82.7 (84.2) 26.9 (27.8)
CLMR GTZAN 81.9 (85.4) 26.2 (29.5)

Table 3: Transfer learning experiments for CLMR and
CPC, which are trained on a separate dataset and evalu-
ated on the MagnaTagATune dataset. The reported scores
are obtained with a frozen, pre-trained encoder and a linear
classifier. Scores in parenthesis are obtained when adding
one extra hidden layer to the classifier.

30 seconds, both popular for music classification.
The results of the transfer learning experiments are

shown in Table 3. Both CPC and CLMR show the abil-
ity to learn effective representations from out-of-domain
datasets without ground truth, and even exceed accuracy
scores of previous, supervised end-to-end systems on raw
audio [36]. Moreover, both models even demonstrate the
ability to learn useful representations on the much smaller
GTZAN and Billboard datasets. The CLMR model per-
forms better when it is pre-trained on larger datasets, which
is expected as it heavily relies on the number of unique, in-
dependent examples that make the contrastive learning task
harder, resulting in more robust representations. When pre-
training on smaller datasets, CPC can find more useful rep-
resentations, especially when adding an extra hidden layer
to the fine-tune head.

5. CONCLUSION

In this paper, we presented CLMR, a self-supervised con-
trastive learning framework that learns useful representa-
tions of raw waveforms of musical audio. The framework
requires no preprocessing of the input audio and is trained
without ground truth, which enables simple and straight-
forward pre-training on music datasets of unprecedented
scale. We tested the learned, task-agnostic representations
by training a linear classifier on the music classification
task on the MagnaTagATune and Million Song datasets,
achieving competitive performance compared to fully su-
pervised models. We also showed that CLMR can achieve
comparable performance using 100 times fewer labeled
songs, and demonstrated the out-of-domain transferabil-
ity of representations learned from pre-training on entirely
different datasets of music. To foster reproducibility and
future research on self-supervised learning in music infor-
mation retrieval, we publicly release the pre-trained mod-
els and the source code of all experiments of this paper 2 .
The simplicity of training the model without any labels and
without preprocessing the audio, together with encourag-
ing results obtained with a single linear layer optimised
for a challenging music task, are exciting developments to-
wards unsupervised learning on raw musical audio.

2
https://github.com/spijkervet/clmr
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ABSTRACT

Recently, some single-step systems without onset detec-
tion have shown their effectiveness in automatic musical
tempo estimation. Following the success of these systems,
in this paper we propose a Multi-scale Grouped Attention
Network to further explore the potential of such methods.
A multi-scale structure is introduced as the overall network
architecture where information from different scales is ag-
gregated to strengthen contextual feature learning. Further-
more, we propose a Grouped Attention Module as the key
component of the network. The proposed module sepa-
rates the input feature into several groups along the fre-
quency axis, which makes it capable of capturing long-
range dependencies from different frequency positions on
the spectrogram. In comparison experiments, the results on
public datasets show that the proposed model outperforms
existing state-of-the-art methods on Accuracy1.

1. INTRODUCTION

Although there are many different ways to describe musi-
cal tempo (e.g., measures per minute, bars per minute, or
even a range of Italian terms), beats per minute (BPM) is
the most commonly used measurement unit. The estima-
tion of BPM plays an important role in a variety of appli-
cations, such as music recommendation, automatic accom-
paniment, playlist generation, etc. Because of its utility,
the automatic estimation of tempo has been an important
task and received continuous attention in the field of music
information retrieval (MIR) [1–4].

Traditional methods for automatic tempo estimation are
usually based on hand-crafting signal processing. To esti-
mate the tempo of a given audio segment, an onset strength
signal (OSS) function is firstly derived, and the frequency
of the major pulses is extracted and converted to BPM. The
OSS function is a function whose peaks should correspond
to onset times. It can be obtained by various methods,
such as means of auto-correlation [5, 6], comb filters [2, 7]
and Fourier analysis [8]. Machine learning techniques
are also adopted for tempo estimation, including Gaus-
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sian mixture models (GMM) [9], support vector machines
(SVM) [10, 11], k-nearest neighbors (k-NN) [12, 13], ran-
dom forests [14] and so on. Since Böck [15] proposed
a recurrent neural network (RNN) model to learn beat-
level representations from audio signals, attempts to use
deep neural networks (DNN) for tempo estimation began
to grow [16–18].

In all methods mentioned above, the extraction of BPM
depends on some post-processing of OSS functions or beat
activation functions. It is only in recent years that the
single-step tempo estimation systems based on DNN ap-
peared. As the first single-step approach for tempo esti-
mation, the CNN model proposed by Schreiber [19] is ca-
pable of extracting BPM value directly from a Mel-scaled
spectrogram. In this work, classification is proved to be an
effective method for tempo estimation. Adopting a similar
idea, Foroughmand [20] proposed the Harmonic-Constant-
Q-Modulation (HCQM), a new representation of audio sig-
nal, as the input of a relatively simple CNN classification
model. The experimental results also showed its effective-
ness.

A commonly used metric in tempo estimation is Ac-
curacy1 [3], indicating the percentage of correct estimates
allowing a ±4% tolerance. However, automatic tempo es-
timation systems tend to predict a wrong tempo by a factor
of 2 or 3, known as octave errors. As an additional mea-
sure, Accuracy2 is introduced, which ignores octave errors.
In some applicational scenarios (such as DJ software), ac-
curate tempo annotations are mandatory and octave errors
are unacceptable [21], but most existing algorithms’ per-
formance on Accuracy1 is still far from satisfactory.

Previous works [19, 20] have shown the potential of
CNN-based single-step approach to improve performance
on Accuracy1. Following the success of these meth-
ods, in this paper we propose a CNN-based single-step
model named Multi-scale Grouped Attention Network
(MGANet). A multi-scale network architecture is designed
to aggregate information from different scales to produce
superior feature representations. Furthermore, a Grouped
Attention Module (GAModule) is proposed to capture
long-range dependencies and refine the feature based on
the attention mechanism.

The remainder of this paper is organized as follows. In
Section 2, we introduce the proposed method in detail. In
Section 3, experimental results are presented to show the
effectiveness of our method. Finally, we make further con-
clusion in Section 4.
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Figure 1: The overall architecture of Multi-scale Grouped Attention Network (MGANet). The numbers in dashed boxes
indicate the three parameters of GAModules: {output channel number C, pooling size p, group number k}. Every concate-
nation operation in the figure is followed by a 1×1 convolution layer to adjust channel number. The classifier consists of a
concatenation operation, a fully connected layer, and a softmax layer.

2. APPROACH

2.1 Proposed Model

Same as [19] and [20], we also treat tempo estimation as a
classification problem. The output of our model is a prob-
ability distribution of 256 BPM classes (from 30 to 285
BPM). Because the Mel-scaled frequency matches closely
the human auditory perception, we choose the Mel-scaled
spectrogram as the raw feature. First, the original au-
dio data is resampled to 11.025 kHz. Then, we use half-
overlapping windows of 1,024 frames, and transform each
window into an 81-band Mel-scaled magnitude spectrum.
The input of the proposed model is designed as a spectro-
gram segment of 128 frames, roughly 6 seconds long.

In the rest of this section, we first present the overall ar-
chitecture of the proposed MGANet. Then, we introduce
the GAModule, which is the key component of the net-
work.

2.1.1 Multi-scale Network Architecture

The goal of tempo estimation is to extract a periodic pat-
tern from an audio signal. Therefore, global information of
the input spectrogram is particularly important. Due to the
characteristics of CNN, overall pattern extraction is usually
achieved by stacking multiple layers. But directly repeat-
ing convolution layers makes the model difficult to design
and optimize. Another way is to use large-size convolution
kernels to enlarge the receptive fields. However, this is also
costly because of the increase in parameters and multiply-
add operations. To solve the problem, we introduce the
idea of multi-scale structure, which has been proved to be
effective in many classification tasks [22–24]. By down-
sampling / upsampling the feature to different scales and
exchanging information repeatedly, high-level representa-
tions can be derived after just a few layers.

As shown in Figure 1, the overall architecture of
MGANet is mainly composed of three branches for dif-
ferent scale. In each branch, input features are gradually
downsampled over the frequency (vertical) axis, but main-
tains the resolution through the whole process on the time

(lateral) axis. Furthermore, these feature maps from differ-
ent scales are merged repeatedly to integrate contextual in-
formation, leading to high-level representations amenable
to classification.

Specifically, the input spectrogram is first downsampled
by 1/2 and 1/4 over the time axis with average pooling,
resulting in three representations of sizes (81, 128), (81,
64), and (81, 32). Then, the representations are fed into
three parallel branches respectively to perform feature pro-
cessing. The processing is mainly done by the proposed
GAModule described in section 2.1.2. Through the whole
structure, we repeat multi-scale fusion by rescaling and
concatenation. Average pooling and transposed convolu-
tion [25] layers with kernel size of 1 × 3 are used to per-
form rescaling. For concatenation, a 1 × 1 convolution
layer with the exponential linear unit (ELU) [26] activa-
tion is followed to adjust the channel number.

Processed by GAModules, the features are gradually
downsampled over the frequency axis to summarize fre-
quency bands, making the representations easier to detect
periodicity. On each branch, the downsampling is repeated
four times. Accordingly, the channel numbers of the fea-
tures are increased. After the above processes, three fea-
ture maps with shapes (1, 128, 128), (1, 64, 128), and (1,
32, 128) are obtained. Then, these feature maps are fused
again and fed into a 1×3 convolution layer to adjust chan-
nel numbers to 256. After global average pooling, three
vectors of length 256 are concatenated together. Finally, a
fully connected layer takes the vector as input and a soft-
max layer is used to derive the probability distribution of
256 tempo classes.

2.1.2 Grouped Attention Module

The proposed GAModule structure is shown in Figure 2.
The module consists of two parts: a trunk branch perform-
ing feature processing, and k attention branches produc-
ing an attention mask to capture global context information
and recalibrate the output feature map.

The structure of the attention branch is mainly inspired
by the global context network (GCNet) [27], which is de-
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Figure 2: The structure of Grouped Attention Module
(GAModule). Feature maps are shown as feature dimen-
sions, e.g. (F, T, C) denotes a feature map with height F ,
width T , and channel number C. p and k denote pool-
ing size and group number respectively. " denotes matrix
multiplication and ⊗ denotes broadcast element-wise mul-
tiplication.

signed for long-range dependency modeling through atten-
tion mechanism. The attention mechanism biases the al-
location of the most informative feature expressions and
suppresses the less useful ones. Recently, the benefits of
the attention mechanism have been demonstrated in a se-
ries of tasks. We introduce the attention mechanism into
GAModule mainly for two purposes: 1) model the long-
range dependencies to obtain global context features; 2)
reweight the importance of different channels to improve
the representational capacity of the refined feature.

Unlike the images in the field of computer vision, the
two axes of audio spectrograms have different meanings,
which respectively represent frequency and time. Further-
more, it is known that different musical instruments have
different frequency ranges, and different frequency ranges
have a different impact on the total sound. These facts
indicate that different frequency bands contain relatively
independent information. Based on these observations,
we believe that it’s inappropriate to aggregate the whole
spatial scope at once to calculate long-range dependen-
cies. Instead, different frequency positions of the feature
should be handled separately, which will help to filter the
useful information more efficiently. Therefore, different
from traditional channel-wise attention models that aggre-
gate the entire feature to generate one attention map (e.g.,
squeeze-and-excitation networks [28]), we divide the fea-

ture equally into k groups along the frequency axis and
send each fragment into an independent attention branch.
We termed the operation as grouped channel attention.

As shown in Figure 2, the framework of the attention
branch is roughly the same as the GC block in GCNet.
Firstly, the feature map is squeezed into a channel descrip-
tor by global attention pooling. The pooling is achieved
by convolution, softmax, and matrix multiplication. For an
input feature map x, the generated descriptor z ∈ RC is
calculated by

z =
∑Np

j=1

exp(ELU(Wxj))∑Np

m=1
exp(ELU(Wxm))

xj (1)

where j and m enumerate all possible positions, and W
denotes linear transformation matrix. We adopt ELU as
the activation of the convolution layer to further increase
robustness. After the pooling, global spatial information
is gathered in the descriptor. Then, a bottleneck of two-
layer architecture is formed to transform information. We
adopt a reduction ratio of 4 and ELU activation in the first
layer. A sigmoid function is then applied to rescale the
transformation output. Finally, k attention maps with the
shape of (1, 1, C) can be obtained. We concatenate these
attention maps along the frequency axis and get the output
attention map of (k, 1, C).

Simultaneously, in the trunk branch we simply stack
three convolution layers with kernel of 3× 3 and ELU ac-
tivation. Because of the existence of attention branches,
the trunk does not need a complex structure and too many
layers, which reduces the number of parameters and the
complexity of the model. We use average pooling with
pooling size of p × 1 to downsample the feature map to
(F/p, T, C). Finally, broadcast element-wise multiplica-
tion is performed to fuse the output of the trunk branch and
attention branches. Through the fusion, the output feature
map is refined by global contextual information gathered
by grouped attention operation.

2.2 Training Data & Augmentation

For training and validation, we adopt the three train-
ing datasets used in [19]: LMD Tempo (3,611 items),
MTG Tempo (1,159 items), and Extended Ballroom (3,826
items). However, though covering multiple musical gen-
res, the combination of these datasets is not genre-
balanced, and some common genres are even missing. It
is known that tempo perception is closely related to music
genre. For example, for popular music, people usually per-
ceive tempo through drumbeats, while for classical music,
people often perceive tempo from bass instruments such as
double bass. To alleviate the genre imbalance, we use two
additional datasets to supplement the training data:

• RWC-popular: To further enhance the model’s ability to
estimate pop music tempo, we used RWC-popular [29]
(a pop music database with 100 pieces) for training. We
cut the songs into 30s fragments without overlapping,
resulting in 735 items.
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Figure 3: Tempo distribution before and after augmenta-
tion.

• FD-Tempo: To enrich the genres of training data, we se-
lected some tracks of classical music. For each track, we
chose several 30s excerpts with stable tempi and anno-
tated them by manually tagging. Finally, 530 items are
obtained as an additional dataset termed FD-Tempo.

We use the combination of the five datasets for training
and validation. It contains 9,861 tracks with a total length
of 41h 3min. Specifically, we randomly choose 500 tracks
for validation, and the rest 9,361 tracks are used for train-
ing.

To alleviate the BPM class imbalance, we further aug-
ment the training set by speeding up / slowing down the se-
lected tracks with factors randomly chosen from 0.7∼1.4
without altering the pitch. We retain the original files and
make sure that the same audio will not be selected more
than 15 times. After augmentation, the number of tracks
increases from 9,361 to 23,512. Note that the validation
set is not augmented. The tempo distribution in the train-
ing set before and after augmentation is shown in Figure
3. Besides, we also adopt the scale-&-crop data augmenta-
tion mentioned in [19] to further increase the variability of
training data.

2.3 Training Details

For training, the batch size we set is 32. In each epoch, 128
consecutive frames of each sample are randomly selected
for training. We choose the categorical cross-entropy as
the loss function, and an Adam optimizer [30] is applied
with a learning rate of 0.001. We evaluate Accuracy1 of
the validation set every 500 iterations, and save the model
with the highest accuracy. The training is not stopped until
Accuracy1 has not improved for 50,000 iterations.

3. EVALUATION

We choose Accuracy1 (ACC1) and Accuracy2 (ACC2) [3]
as the evaluation metrics. Accuracy1 is defined as the per-
centage of correct estimates allowing a ±4% tolerance.
Accuracy2 ignores octave errors by a factor of 2 and 3,
and also allows a ±4% tolerance. As mentioned earlier,
the demand for highly accurate tempo annotations has be-
come increasingly urgent in many applicational scenarios.
Hence we mainly focus on improving Accuracy1.

We focus on the performance on global tempo estima-
tion based on the assumption the tempo of the input track
stays constant, and only one BPM value will be returned by

Method ACC1 ACC2

w/o AB 77.0 89.9
w/o GA 78.5 89.1
Single-scale 75.8 89.6
Proposed 78.9 91.3

(a) GTzan

ACC1 ACC2

79.8 95.3
79.0 94.2
71.2 94.5
82.1 95.7

(b) ACM Mirum

Table 1: Results of ablation study. "w/o AB" and
"w/o GA" denote "without attention branch" and "with-
out grouped attention" respectively. Best results are set in
bold.

the estimation system. In the experiment, the global tempo
is obtained by averaging the outputs of softmax layer over
different parts of a full track [19].

3.1 Ablation Study

We study the effect of each idea in our approach. To sim-
plify the discussion, we select two test datasets GTzan [31]
and ACM Mirum [9] for analysis. These two datasets are
relatively large (999 and 1,410 items respectively), and
both cover rich genres.

To investigate how much the proposed GAModule con-
tributes to the model, we design a set of experiments.
Firstly, we remove the attention branches in the module,
and only the trunk branch is remained to process features.
As shown in Table 1, the performance degrades for both
datasets. When focusing on Accuracy1, the performance
decreases by 1.9% for GTzan and 2.3% for ACM Mirum.
Then, in another experiment we keep only one attention
branch in each module, which can be achieved by setting
GAModules’ parameter k to 1. The Accuracy1 reduced by
0.4% and 3.1% respectively. For Accuracy2, in both ex-
periments there is also a certain degree of decline. These
results indicate that the attention mechanism is helpful to
capturing long-range dependencies and therefore improve
the generalization of the model. But directly using exist-
ing modules may hinder the effect. The proposed grouped
attention takes into account the characteristics of spectro-
gram and achieves further improvements of the model.

Then, we analyze the effect of the multi-scale architec-
ture by changing the architecture to a single-scale one. We
remove all downsampled subnetworks and only retain the
one with the highest resolution (the topmost branch in Fig-
ure 1). As shown in Table 1, model without multi-scale ar-
chitecture shows significantly worse performance on Ac-
curacy1. The Accuracy1 decreases by 3.1% and 10.9%
for GTzan and ACM Mirum respectively. For Accuracy2,
there is also a certain degree of performance degradation.
The results demonstrate that the multi-scale can improve
the classification ability as well as robustness.

3.2 Comparison with Previous Work

To compare with previous work, we use the same test
datasets as in [19] (see [14] for details): ACM Mirum [9]
(1,410 items), Hainsworth [32] (222 items), GTzan [31]
(999 items), SMC [33] (217 items), GiantSteps [34] (664
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Dataset böck schr foro mgan

ACM Mirum 74.0 79.5 73.3 82.1

Hainsworth 80.6∗ 77.0 73.4 77.5
GTzan 69.7 69.4 69.7 78.9

SMC 44.7∗ 33.6 30.9 29.0
GiantSteps 58.9 73.0 83.6 90.2

Ballroom 84.0∗ 92.0 92.6 95.1

ISMIR04 55.0 60.6 61.2 61.7

Combined 69.5 74.2 74.4 79.8

(a) Accuracy1

Dataset böck schr foro mgan

ACM Mirum 97.7 97.4 96.5 95.7
Hainsworth 89.2∗ 84.2 82.9 87.8
GTzan 95.0 92.6 89.1 91.3
SMC 67.3∗ 50.2 50.7 44.7
GiantSteps 86.4 89.3 97.9 97.6
Ballroom 98.7∗ 98.4 98.7 97.7
ISMIR04 95.0 92.2 87.1 88.8
Combined 93.6 92.1 92.0 91.9

(b) Accuracy2

Table 2: Comparison with the results published by Böck (böck) [15], Schreiber (schr) [19], and Foroughmand (foro)
[20]. Best results per test dataset are set in bold. Asterisk (*) denotes that the corresponding dataset were used for training.

items), Ballroom [3] (698 items), and ISMIR04 [3] (465
items). The union of all test datasets is referred to as Com-

bined. The most recent annotations available are used.
We compare our work (mgan) with previous studies

by Schreiber (schr) [19] and Foroughmand (foro) [20].
These two methods are both CNN-based single-step mod-
els that we are committed to improve. We consider them as
the state-of-the-art among single-step approaches. In addi-
tion, we also compare the model with an RNN-based tradi-
tional periodicity analysis approach by Böck (böck) [15].
The results are shown in Table 2. Note that Ballroom,
Hainsworth, and SMC are used for training in böck (val-
ues marked with asterisks *).

Focusing on Accuracy1, the experimental results show
that the proposed model surpasses other methods in most
cases, which proves the effectiveness of the proposed idea
to improve Accuracy1. Especially for GaintSteps (664
electronic dance music excerpts), there shows a signifi-
cant improvement of over 6.6%. The richness of electronic
dance music in training data can be considered as a reason.
The good performance in ACM Mirum and GTzan (both
multi-genre datasets) shows the generalization potential of
our model. Moreover, for Hainsworth, the model achieves
the highest Accuracy1 among single-step approaches. Fi-
nally, the proposed method also reaches the highest Accu-
racy1 for Combined (79.8%) compared with other meth-
ods, gaining improvement of 5.4%.

As for Accuracy2, it can be observed that böck

achieves the highest accuracy in most cases. Ignoring
böck, the proposed model shows a similar performance
to other single-step methods.

Among all datasets, the worst results of our model are
obtained for SMC. The dataset was designed to be difficult
to estimate tempo, covering various genres. Although we
have tried to supplement and augment the training data, the
genre-imbalance problem has not been solved very well.
This indicates the necessity to supplement more data with
different genres in the future work.

3.3 Comparison with Multi-task Approaches

In recent years, some works [17,18] have not only focused
on a single rhythm attribute, but combined the estimation

Accuracy1 Accuracy2
ACM Mirum

böck19 [17] 0.749 0.974
böck20 [18] 0.841 0.990

mgan 0.821 0.957
mgan+ 0.846 0.970

GiantSteps

böck19 [17] 0.764 0.958
böck20 [18] 0.870 0.965
mgan 0.902 0.976

mgan+ 0.861 0.973
GTzan

böck19 [17] 0.673 0.938
böck20 [18] 0.830 0.950

mgan 0.789 0.913
mgan+ 0.796 0.931

Table 3: Comparison with multi-task approaches. mgan+
is trained by multi-task learning with beat tracking. Best
results per test dataset are set in bold.

of interconnected rhythm attributes (such as beats, down-
beats, etc.) by multi-task learning, so that these highly
related tasks can reinforce each other. These approaches
are capable of embedding more musical knowledge into
a single model, and enrich the training data of each task.
In order to further explore the potential of the proposed
MGANet and compare its performance with multi-task ap-
proaches, we conduct experiments with reference to [17],
combining the beat tracking task to our model.

To predict beat positions, we add a branch to the orig-
inal network structure. The inputs of the branch are the
feature maps before sent into tempo classifier, with shapes
of (1, 128, 128), (1, 64, 128), and (1, 32, 128). The low res-
olution feature maps are up-sampled to 128 frames length
on time axis by transposed convolution layers. Then, the
concatenated feature map with shape (1, 128, 384) is pro-
cessed by three 1 × 3 convolution layers (output chan-
nel number are set to 128, 32, and 1 respectively). Af-
ter a sigmoid operation, the beat activation function is
derived. This extended network structure is trained as a
multi-output model to combine the two tasks.
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Input Mel-spectrogram High resolution branch Low resolution branch

(a) Samba/Albums-Latin Jam2-14 (0:18-0:24)

Input Mel-spectrogram High resolution branch Low resolution branch

(b) Chacha/Albums-Latin Jam-01 (0:06-0:12)

Figure 4: Grad-CAM visualizations for layers on different
resolution branches.

For the training of beat tracking, we use a combina-
tion of the following datasets: Hainsworth [32], SMC [33],
Ballroom [3], ISMIR04 [3], Beatles [35], and HJDB [36].
As for the training of tempo estimation, the training and
validation datasets in section 2.2 are used. To further en-
rich the data, beat annotated datasets are also adopted for
the training of tempo classifier, using the average BPMs
derived from beat annotations as training labels. We train
the two task alternatively every epoch, without changing
other experimental settings mentioned in section 2.3.

The experimental results are shown in Table 3. Three
datasets ACM Mirum [9], GTzan [31], and GiantSteps [34]
are used as test datasets. We compare our works (the origi-
nal model mgan and the multi-task model mgan+) with
two multi-task approaches böck19 [17] and böck20

[18]. By multi-task training, improvement can be observed
on ACM Mirum and GTzan. Especially for ACM Mirum,
the Accuracy1 is increased by 2.5%, achieving the best re-
sult among all approaches. Because the two test datasets
are both multi-genre datasets, it can be considered that
the good performance comes from not only the multi-task
learning, but also the beat tracking datasets with rich mu-
sic genres. As for GiantSteps, mgan+ performs better than
böck19 and böck20, but a bit worse than mgan. This is
also due to the supplement of data, which affects the dom-
inant position of dance music in training data.

3.4 Grad-CAM Analysis

Gradient-weighted Class Activation Mapping (Grad-
CAM) [37] is a method that can faithfully highlight the
important regions in inputs for a CNN-based classifica-
tion model. It uses the gradient information in back-
propagation as weights (grad-weights) to explain the net-
work’s decisions. We visualize the activation maps derived
by Grad-CAM as shown in Figure 4 and Figure 5. Red in-
dicates the part more important in predicting tempo while
blue contributes less.

Figure 4 shows the activation maps on branches with
different resolutions. Their inputs are two audio clips from
Ballroom dataset. Time duration is marked below the cor-
responding images, following the audio title set in italic.

Input Mel-spectrogram Before attention After attention

(a) Chacha/Albums-Latino Latino-0 (0:00-0:06)

Input Mel-spectrogram Before attention After attention

(b) Chacha/Albums-Media-103405 (0:12-0:18)

Figure 5: Grad-CAM visualizations for layers before and
after grouped attention.

Figure 4a comes from a piece of Samba mainly played by
piano and kick drum. The piano in the clip has a higher
pitch, played with quarter notes while the kick drum falls
on every beat in the bar. It can be observed from the activa-
tion maps that the model mainly focuses on short-duration
parts of piano in the high-resolution branch, and the kick
drum parts with long duration in the low-resolution branch.
As for the second example, which is a Cha Cha song, the
beat positions can be identified from kick drum in low-
frequency part, vocal in middle-frequency part, and claves
in high-frequency part. Figure 4b shows that the low-
resolution branch considers downbeats to be important,
while the high-resolution branch focus on not only down-
beats but every other beat in a bar. It can be proved that the
multi-scale structure is capable of integrating useful infor-
mation with different granularities.

We also visualize the activation maps before and af-
ter the proposed grouped channel attention to explore the
its effect. The results are shown in Figure 5. The mu-
sic excerpt of Figure 5a is played with regular claves and
double bass, hence the high-frequency part and the low-
frequency part contribute more to tempo estimation. The
attention branch reweights the feature maps from the trunk
branch, giving top and bottom parts higher weights to de-
tect tempo information easier. In contrast, the vocal domi-
nates the rhythm information in the song of Figure 5b, thus
the model gives higher attention to the middle-frequency
part after grouped attention. By grouped attention, the net-
work can efficiently find which part would be considered
to be important for tempo estimation.

4. CONCLUSION

In this paper, we propose a new CNN-based single-step
approach for tempo estimation. We introduce the idea of
multi-scale network to construct the architecture of the
proposed MGANet. The GAModule with the grouped
channel attention is designed to be the key component
of the network. Compared with previous work, the pro-
posed approach exhibits good performance on Accuracy1
and outperforms existing models in most cases.
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ABSTRACT

Despite the latest advances in Deep Learning, the recogni-
tion of handwritten music scores is still a challenging en-
deavour. Even though the recent Sequence to Sequence
(Seq2Seq) architectures have demonstrated its capacity to
reliably recognise handwritten text, their performance is
still far from satisfactory when applied to historical hand-
written scores. Indeed, the ambiguous nature of handwrit-
ing, the non-standard musical notation employed by com-
posers of the time and the decaying state of old paper make
these scores remarkably difficult to read, sometimes even
by trained humans. Thus, in this work we explore the in-
corporation of language models into a Seq2Seq-based ar-
chitecture to try to improve transcriptions where the afore-
mentioned unclear writing produces statistically unsound
mistakes, which as far as we know, has never been at-
tempted for this field of research on this architecture. After
studying various Language Model integration techniques,
the experimental evaluation on historical handwritten mu-
sic scores shows a significant improvement over the state
of the art, showing that this is a promising research direc-
tion for dealing with such difficult manuscripts.

1. INTRODUCTION

Optical Music Recognition (OMR) [1] is devoted to the au-
tomated transcription of musical documents. As in most
document analysis subfields, OMR has gone through a
revolution [2] during the last decade, spearheaded by the
many advances in Deep Learning. In fact, the latest deep
learning architectures are raising the bar of the state of the
art, boosting the performance on many different topics of
research. In particular, Sequence to Sequence (Seq2Seq) is
a Deep Learning architecture that has been quite success-
ful [3]. It was originally conceived for Natural Language
Processing and applied to neural machine translation and

© P. Torras, A. Baró, L. Kang and A. Fornés. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: P. Torras, A. Baró, L. Kang and A. Fornés, “On the
Integration of Language Models into Sequence to Sequence Architectures
for Handwritten Music Recognition”, in Proc. of the 22nd Int. Society for

Music Information Retrieval Conf., Online, 2021.

related subjects, but it has seen adoption in plenty of other
fields, including Handwritten Text Recognition [4]. Re-
cently, this architecture has also shown its potential for
OMR, outperforming the well-known Long Short Term
Memory Neural Networks with Connectionist Temporal
Classification (BLSTM+CTC). [5, 6].

As in BLSTM+CTC, Seq2Seq models have the advan-
tage that they do not require symbol-level bounding boxes
for training. Instead, the network can learn to identify
symbols in an image from the ground-truth token sequence
alone. This might not be especially relevant when working
with typeset scores, since this information can be provided
with relative ease, but it becomes crucial when no such in-
formation is available or it is very costly to obtain. This
is the current situation for handwritten music recognition
in general [7], but more remarkably so in historical music
scores [8, 9].

Historical handwritten scores are particularly interest-
ing to recognise because there are many of them stored in
archives, churches and libraries throughout. Most of them
have never been transcribed, which makes it important
to devote efforts towards their conservation, transcription,
study and dissemination. However, aside from the afore-
mentioned lack of detailed-annotated data, these scores are
much harder to recognise than regular typeset ones because
of hundreds of years worth of paper degradation, the evolu-
tion of music notation conventions and the irregular nature
of handwriting, which leads to many ambiguities and hard-
to-read passages even for trained humans.

As expected, even the recent Seq2Seq architectures fail
in such scenario. Nevertheless, in the handwritten text
recognition literature, we have found that the incorpora-
tion of a Language Model (LM) can tackle most of these
ambiguities. This technique consists on the application of
a statistical LM trained to identify probable sequences of
tokens, which can then be used to assess the likelihood of
the recognised sequence and perform due corrections in the
case of an unreasonably unexpected output [10, 11]. As in
n-grams, it regulates what sequences are considered most
likely.

Inspired by this idea, in this work we explore the inte-
gration of LMs into a Seq2Seq architecture to minimise
the ambiguities when recognising historical handwritten
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scores. Concretely, we integrate a LM through three dif-
ferent techniques: Shallow, Deep [10] and Candidate Fu-
sion [11]. From the exhaustive evaluation of their perfor-
mance on historical manuscripts, we discuss the advan-
tages and disadvantages of these models, concluding that
they are capable to significantly boost the performance in
the aforementioned domain.

The structure for this document is the following. An
overview of current trends in music recognition is provided
in Section 2. Section 3 is devoted to describing the archi-
tecture. Section 4 describes the adaptation of the input data
for music score recognition, and the datasets employed to
train the LMs. Section 5 summarises experiments per-
formed to evaluate the performance of the various mod-
els. Section 6 is a discussion of the results and section 7
addresses the conclusions and closing words.

2. PREVIOUS WORK

Prior to the Deep Learning “revolution” of the last decades
there was mainly one typical pipeline for OMR, which
consisted on a set of well-established steps [1]: image pre-
processing and staff segmentation, music symbol recogni-
tion, music notation reconstruction and final representation
construction. This, however, changed with the advances
made in Deep Learning, which led to two distinct kind of
approaches.

On the one hand, there has been a “continuist” ap-
proach, where the aforementioned pipeline is more or less
preserved, but one or more steps are implemented with
Deep Neural Models. Examples of these systems can be
found in plenty of works. For example, Calvo-Zaragoza
et al. proposed a new method for staff line detection [12]
through the use of Convolutional Neural Networks; Calvo-
Zaragoza also presented work regarding pixel-level doc-
ument binarization with Convolutional Neural Networks
alongside Fujinaga and Vigliensoni [13]; Hajic et al. [14]
proposed a way to segment musical symbols and classify
them in a single step using U-Nets; Pacha et al. [15] pro-
posed a method to reconstruct the relationships between
segmented symbols through the use of Convolutional Neu-
ral Networks together with a novel graph-based system to
represent them.

On the other hand, there have been attempts to perform
the full OMR pipeline using a single neural-based end-
to-end architecture. The work of van der Wel et al. [5]
is interesting because it is the first precedent of Seq2Seq
for OMR, although it was exclusively designed for typeset
scores. Newer models such as Huang et al. [16] YOLO
darknet53-based architecture seem to have dropped the re-
current aspect while improving on the state of the art in this
context of typeset scores.

In terms of handwritten scores, RNNs are still being
used with good results. Baró et al. [17] used a CRNN
model on handwritten scores, which was the first single-
step baseline that was established for this domain. For
handwritten old scores, Calvo-Zaragoza [9] proposed a
CRNN + CTC model with an n-gram LM for recognis-
ing a specific set of scores in Mensural notation. Lately,

Baró et al. [6] presented a single-step system based on a
Seq2Seq model with an attention mechanism for recognis-
ing handwritten scores in common western notation.

The earliest instance of Language Modelling subject to
a recognition task is [18], which used n-grams in order
to make OCR machines context-aware and therefore more
robust. Since n-grams are fairly easy to implement and
give reasonably good results, they have been used quite
consistently even in recent times [9], although with the
rise of DNN technology other approaches based on neu-
ral LMs have emerged. Indeed, the integration of LMs
into Seq2Seq architectures has also been studied through
various methods that take advantage of RNN-based LMs.
These were introduced for fields within or related to Nat-
ural Language Processing like neural machine translation
[10], handwritten text recognition [11], or speech recogni-
tion [19], although the core idea is equally valid whenever
the final target is any ordered sequence of tokens.

In summary, Seq2Seq-based recognisers are promising
architectures that have shown to benefit from the integra-
tion of LMs. However, while LMs have been applied to
music recognition through n-grams [9], no precedents of
RNN-based LMs along with Seq2Seq OMR architectures
exist. Therefore, we hypothesise that such integration has
the potential to improve the current state-of-the-art results
in OMR, as it has already been observed in other related
fields [10, 11].

3. SEQUENCE TO SEQUENCE-BASED OMR

This section describes the core Seq2Seq system for OMR,
the three LM models and their integration into the archi-
tecture.

As stated before, our architecture is inspired in the
Seq2Seq OMR model described in [5, 6]. The whole ar-
chitecture is depicted in Figure 1, with a reference to the
LM integration step (see the dashed lines). Next, we de-
scribe its properties and its inference process.

3.1 Sequence to Sequence model

Seq2Seq models [3] are architectures capable of convert-
ing arbitrary-length input sequences into arbitrary-length
output sequences. They are an Encoder-Decoder architec-
ture: the input sequence is transformed by the Encoder into
an intermediate representation that the Decoder will use to
generate the output sequence.

A score image, which is treated as a sequence of column
vectors, is fed into a Convolutional Neural Network based
on a VGG19 [20] with its last max pooling layer removed.
Then, the Encoder, a bidirectional stack of Gated Recur-
rent Units (GRU) [21], generates an intermediate represen-
tation comprised of as many feature vectors as the convolu-
tional output. The idea behind this bidirectionality is that,
by processing the input image from both ends of the se-
quence, the model has the information of the full image
for all inference steps and is therefore much more context-
aware.
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Figure 1. Summary of the Seq2Seq model used in this work.

When the Encoder has processed the input image com-
pletely, the Decoder iteratively receives the generated hid-
den state alongside the last predicted token in the sequence,
which produces the next output token until a special “end”
token is produced. In order to assess the relevance of each
of the hidden state’s vectors, a location attention mecha-
nism (Chorowsky et al. [22]) weights each vector in the
hidden state, with the idea of making the model capable of
“focusing” on specific regions of the input image.

3.2 Language Model Integration

LMs are systems that model the probability distribution of
possible tokens at time step t conditioned by predictions
at time steps 1 to t � 1. Many language modelling tech-
niques exist throughout such as n-grams [9], but RNNs
are known to be a superior choice overall [23], thus this
work focuses on a single LM architecture consisting on
four stacked GRUs.

LM integration with Seq2Seq models has been explored
through various approaches aiming at improving recogni-
tion performance. Three of such approaches have been ex-
plored in this work: Shallow, Deep [10], which are among
the most used methods, and Candidate Fusion [11], which
showed good performance on handwritten text recognition.

Figure 2 shows a depiction of these methods and the fol-
lowing paragraphs are devoted to describing them in detail.

3.2.1 Shallow Fusion (Gulcehre et al. [10])

This technique was devised in the context of neural ma-
chine translation. It is a very intuitive system in which the
final output is obtained by summing log probabilities from
the LM and the Seq2Seq model. Let P , PCL and PLM be
the probability distribution of tokens predicted by the full
model, the Seq2Seq component and the LM respectively,
and let � be an arbitrary hyperparameter set on training,
Shallow Fusion is implemented as

(1)logP (yt|y1 . . . yt�1) = logPCL (yt|y1 . . . yt�1)

+ � logPLM (yt|y1 . . . yt�1) .

3.2.2 Deep Fusion (Gulcehre et al. [10])

This method comes from the same context as Shallow Fu-
sion and builds further on its idea by merging both LM
and Seq2Seq’s outputs in a more fine-grained manner. Es-
sentially, the � parameter is substituted by a coarse gating
mechanism and the final output is obtained using more in-
formation from across the model. Let � be the sigmoid
activation function and WDF and bDF be learnable param-
eters, Deep Fusion is implemented as

(2)P (yt|y1 . . . yt�1) = softmax(WDFh
DF
t + bDF ).

The Deep Fusion hidden state hDF
t is obtained concatenat-

ing the Seq2Seq context vector ct, the Classifier’s hidden
state hCL

t and a gated version of the LM’s hidden state, as
seen in

(3)hDF
t =

⇥
ct;h

CL
t ; gth

LM
t

⇤
.

The coarse gate mechanism gt is in its turn computed as

(4)gt = �(vTg h
LM
t + bg)

where vg and bg are learnable parameter vectors. We use
the implementation seen in [24], which does not feed the
previously inferred character in equation 3.

3.2.3 Candidate Fusion (Kang et al. [11])

This method was shown to be more suitable than Deep and
Shallow fusion in the context of Handwritten Text Recog-
nition. The core idea behind it is to reinforce the decision
process of the Seq2Seq Decoder at each output time step
by feeding it the output of the LM, so that both pipelines
can be leveraged accordingly. It can be defined as

(5)ht = Decoder(
⇥
ct, yt�1, p

lm
t�1

⇤
, ht�1)

where ct is the current context vector, yt�1 is the previous
prediction and plmt�1 is the probability distribution obtained
by the LM with the output at the previous time step.

Some comparisons can be drawn among all three meth-
ods both from their literature and their architectures. The
main selling point for Shallow Fusion is that it adds very
little complexity into the model, which is compensated by
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Figure 2. Dataflow graph depicting every integration method that was implemented

the fact that it requires hyperparameter tuning for its �
value and the impossibility to modify said value depending
on the LM output. Deep Fusion poses as a more flexible
model that can learn to weight the importance of the out-
put of the LM, at the cost of incorporating further layers
into the model. Finally, Candidate fusion boosts the com-
munication between the LM and the Seq2Seq component
and produces an output obtained not by linearly combin-
ing both outputs at the final inference step, but rather by
letting the Seq2Seq combine the criteria of visual features
and Language Probabilities. However, this might involve
more training for the model to become acquainted with the
output of the LM.

All these methods require both the classifier and the LM
to be properly pretrained for successful integration. More
detail is provided in section 5.

4. DATASETS

This section describes the adaptation of the data for music
score recognition using the Seq2Seq architecture.

a)

b)

c)

Figure 3. Sample measures from the SM, SO and HW
datasets respectively.

4.1 Serialising Input Data

Input music measures are annotated at a musical primitive

level. This means that notes are not full tokens by them-

selves, but are instead divided into their core elements:
noteheads with their pitch and type (black or white), stems
with their orientation, flags, beams and so on. There are
also some tokens which are atomic, such as time signa-
tures, dots, accidentals and rests, and some twin tokens
that require opening and closing, such as beginning and
end segments of a slur or a beam.

The epsilon token is a special one used to separate
groups of primitives belonging to different symbols placed
in adjacent columns. Thanks to this, 2D music notation
can be serialised into a flat one-dimensional array of tokens
that Seq2Seq can work with. An example of this format is
given in Figure 4.

4.2 Training Datasets

Various datasets of differing characteristics were used to
train the models, each of them for a specific task (more de-
tail on section 5). Their description is shown below along
with some examples (See Figure 3). Note also that, when
referring to synthetic datasets, we imply the musical con-
tent of these scores is randomly generated (thus we assume
that these datasets are, except for some trivial examples,
disjoint).

Synthetic Modern (SM): Dataset comprised of poly-
phonic measures of synthetic typeset scores. Most usual
music symbols can be found: G, C and F clefs, accidentals,
note components, time signatures and barlines, to name a
few. An example is shown in Figure 3a.

Synthetic Old (SO): A synthetic dataset with mono-
phonic measures distorted with typical paper degradation
effects. Similar to SM in terms of the range of tokens
present. An example is shown in Figure 3b.

Handwritten (HW): A compilation of measures of
real handwritten scores from a church in Barcelona
called Santa María del Pi. They were composed by its
Kapellmeister Pau Llinàs back in the 18th century for
choral interpretation during liturgical events. An example
is shown in Figure 3c.

Adjusted Synthetic Modern (ASM): A reduced ver-
sion of the SM dataset (see section 5).
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barline_light.noNote, epsilon, sharp.S4, epsilon,

noteheadBlack.S4, steamQuarterHalfDown.noNote, epsilon,

dot.noNote, epsilon, noteheadBlack.S4, flag8thDown.noNote,

epsilon, noteheadBlack.S3, steamQuarterHalfDown.noNote

epsilon, noteheadBlack.S3, steamQuarterHalfDown.noNote,

epsilon, barline_light.noNote

Figure 4. Sample measure from the HW dataset with its ground truth annotation. Bounding boxes indicate the boundaries
of what each “atomic” token is, dotted arrows indicate epsilons in the transcription and small vertical arrows indicate
symbols that are placed together between epsilons (or rather, primitives belonging to the same symbol).

5. EXPERIMENTS

The evaluation of all proposed LM integration methods
was performed under two training strategies, characterised
by the dataset which was used to pretrain the LM. Regard-
less of the LM dataset, training parameters and strategies
were the same altogether. For the sake of reproducibil-
ity, Table 1 summarises these hyperparameters and charac-
terises the various datasets employed throughout.

Since the goal for our work is to improve results on
handwritten scores, a training strategy was conceived to
gain the benefits of extra data from synthetic scores while
preventing optimisation towards them. All integration
methods tested hereby require both the LM and the recog-
niser to be properly pretrained. Thus, we first trained a
LM with an unmodified version of the SM dataset. Since
we were aware that this dataset had many tokens that were
not present in the HW one, we created a version of the SM
dataset comprised of the 66% of samples which contained
a higher ratio of tokens also present in the HW one, which
we will refer to as ASM, and we trained another LM with
it. The idea was trying to “de-noise” the output of the LM
in HW scores so that its predictions had a higher level of
confidence.

In both cases, we trained the Seq2Seq classifier with the
unmodified SM dataset until the model did not improve
for 30 epochs. We then joined both models and trained
them using a Curriculum Learning strategy: initially, 90%
of samples in the training mix were from the SO dataset
and the remaining 10% from the HW dataset. Every 10
epochs the proportion of SO scores decreased by 10% over
the total, down to 10%. Since the number of SO samples
is much higher than the number of HW samples, the latter
were duplicated randomly to match the number of samples
from the former. The incorporated image augmentation
system for training was used to prevent overfitting on in-
put images. Note also that experiments with homogeneous
datasets were avoided since they were seen to decrease per-
formance in earlier tests.

Validation and test were performed using HW dataset
samples. Lastly, for Shallow Fusion we used a � = 0.1
after testing three instances of the full architecture on the
SM dataset and keeping the value that gave better output
results.

6. EXPERIMENTAL RESULTS

This section is devoted to explaining the results obtained
with the aforementioned training strategies. This is, Shal-
low, Deep and Candidate Fusion using a LM pretrained
with the SM or the ASM Dataset. Numerical results are
provided using the Symbol Error Rate (SER(%)) metric,
which is defined as

SER(%) =
I +R+ S

T
· 100 (6)

where I , R and S are the number of token insertions, re-
movals and substitutions in order to obtain the ground truth
sequence from the predicted sequence and T is the length
of the ground truth sequence. Lower values mean better
results.

6.1 Quantitative Results

Table 2 shows the results obtained from all of our experi-
ments. Given the fact that Seq2Seq model pre-training on
the SM gave results well below 1% SER(%), we believe it
is not worth to experiment with the addition of a LM when
transcribing synthetic samples. Instead, we show test re-
sults using the training strategy in 5 and two baseline mod-
els: the BLSTM + CTC model and the LM-less Seq2Seq
model [6]. All results are obtained using the HW test par-
tition as input.

Best baseline results are 56.20% and 31.79% of
SER(%) for BLSTM + CTC and Seq2Seq respectively.
However, authors comment in the paper that there might be
overfitting in the best result of the former model because
training was done only with handwritten samples. When
training with a mix of synthetic and real data, the authors
state an increase from 56.20 SER(%) to 74.40 SER(%).

Our proposed models obtained mostly better results
than those from the Baseline. Candidate and Deep Fusion
are the better performing architectures, with best results (in
bold in Table 2) between 5 and 6 SER(%) points below the
baseline. Shallow Fusion obtained best results on par with
the baseline.

The general pattern is that earlier iterations perform
worse than latter ones. There are a few exceptions, which
are the SM version of Deep Fusion and the ASM version
of Shallow Fusion, which obtain better results in interme-
diate phases. This might be caused by the fact that the
model might be entering local minima, which it may leave
after further epochs.
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Table 1. Reproducibility table. The first segment is devoted to training hyperparameters. The second one to showing
relevant information about the various datasets that have been employed.

Parameters All Training Data SM SO HW

Optimiser Adam Train Samples 18,900 17,872 147
Learning Rate (LR) 3 · 10�4 Valid Samples 6,300 5,957 49
LR Checkpoints @ 20, 40, 60, 80, 100 epoch Test Samples 6,300 5,957 49
LR Sigma 0.5 Avg. Line Length 22 15 17
Loss Function Cross-Entropy Classes 109 123 62

Table 2. Summary of performed experiments and results in SER(%) (Lower is better). The table header indicates the
proportion of Synthetic scores against Handwritten scores. The “Pre” column indicates the LM pretraining dataset.

Model Pre 90-10 80-20 70-30 60-40 50-50 40-60 30-70 20-80 10-90 0-100

CNN + BLSTM [6] - - - - - - - - - - 56.20
Seq2Seq Baseline [6] - 60.03 - - 66.20 - 43.38 - 37.86 34.56 31.79

Seq2Seq + Deep LM SM 31.30 28.52 29.87 29.37 28.05 26.11 27.74 27.37 28.32 -
Seq2Seq + Shallow LM SM 36.79 32.91 33.27 33.36 31.76 32.75 30.87 30.72 30.58 -
Seq2Seq + Cand. LM SM 33.50 28.93 28.64 28.08 27.48 26.82 27.23 26.61 25.80 -

Seq2Seq + Deep LM ASM 28.24 29.53 27.82 27.36 25.95 27.21 25.63 25.15 25.54 -
Seq2Seq + Shallow LM ASM 35.34 34.75 36.67 32.42 34.23 34.52 33.76 33.79 35.13 -
Seq2Seq + Cand. LM ASM 32.07 28.61 28.71 27.55 27.71 27.20 27.77 28.04 25.73 -

Another general remark is that models pretrained with
the ASM dataset seem to perform slightly better, with a
0.96 SER(%) improvement in Deep Fusion and a 0.07 one
in Candidate Fusion, although this difference could be also
attributed to optimisation since it is not substantial.

6.2 Discussion

Numerical proof is found that a LM does help improve
recognition results in historical handwritten music scores,
especially when using Candidate or Deep Fusion. How-
ever, we agree that it is not easy to assess their differences
outside of a subjective qualitative study.

Expectedly, LM lowers the presence of certain syntactic
mistakes (for instance, tokens that require a specific suc-
cessor) or provides information on tokens that appear fre-
quently. There is, however, a set of possible recognition
mistakes that the LM was initially presumed to be able to
correct which we found it unable to. The most relevant was
enforcing the beat of the bar that is being recognised. It can
be argued that at no point in the measures that comprise the
dataset the time signature is indicated aside from its very
beginning, but since the training dataset is written exclu-
sively in a 4/4 time signature, the LM might have adapted
to measures adding up to a beat value. Perhaps this is due
to the purely statistical approach taken with the LM, so
some postprocessing (based on music notation rules) may
be needed for approaching such consistency checks.

Other “artistic” aspects of music cannot be corrected
with the LM, such as the pitch and duration of notes, which
can only be predicted up to a certain point based on its
frequency of appearance. This was expected and, unsur-
prisingly, most noteheads have been predicted on the most
common range within the original score.

A final remark is that we have observed that the adjust-
ment strategy attempted with the ASM dataset showed no
significant improvement. Instead, in order to better align
training and test datasets without overfitting, more data
should be used for training. A common issue when trying
to collect data for this purpose is that most common tran-
scriptions of old music adapt their notation style to current
trends, which defeats the purpose of using such data for
recognition.

7. CONCLUSION

This work successfully explored the integration of LMs
into a Seq2Seq OMR architecture for recognising histor-
ical handwritten scores. An improvement of around 6
SER(%) points from the baseline was obtained when using
a Deep Fusion mechanism, lowering it to 25.15 SER(%).
This was achieved by reinforcing the model’s capacity
to keep consistency on predicted sequences. Thus, we
can conclude that the integration of language models into
OMR Seq2Seq architectures is a promising research direc-
tion worth exploring.

From the results we obtained, we propose some future
work avenues. Since language models do not seem to en-
force key global aspects like beat, a grammar-based parser
might be implemented on top of the neural model in order
to correct syntactical mistakes. This could use the proba-
bility distribution produced by the neural model to weight
all possible corrections. Another improvement could be
to use the extra information the LM provides in order to
reinforce specific steps within the model, such as the at-
tention mechanism. Perhaps this preemptive information
might point the model where to look at in the score image.
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ABSTRACT
In light of the COVID-19 pandemic making it difficult

for people to get together in person, this paper describes
a public web service called Kiite Cafe that lets users get
together virtually to listen to music. When users listen to
music on Kiite Cafe, their experiences are characterized
by two architectures: (i) visualization of each user’s reac-
tions, and (ii) selection of songs from users’ favorite songs.
These architectures enable users to feel social connection
with others and the joy of introducing others to their fa-
vorite songs as if they were together in person to listen
to music. In addition, the architectures provide three user
experiences: (1) motivation to react to played songs, (2)
the opportunity to listen to a diverse range of songs, and
(3) the opportunity to contribute as curators. By analyz-
ing the behavior logs of 1,760 Kiite Cafe users over about
five months, we quantitatively show that these user expe-
riences can generate various effects (e.g., users react to a
more diverse range of songs on Kiite Cafe than when lis-
tening alone). We also discuss how our proposed archi-
tectures can continue to enrich music listening experiences
with others even after the pandemic’s resolution.

1. INTRODUCTION
Unlike listening to music alone, listening to music with
others adds the qualities of feeling social connection and
letting others listen to one’s favorite songs. For example,
the former quality occurs when attending a live concert and
sharing the experience with other audience members [1,
2], while the latter quality occurs when people introduce
others to their favorite songs [3–5].

These qualities have become hard to enjoy since the
COVID-19 pandemic has made it difficult to get together
in person and listen to music with others. Instead of attend-
ing a live concert, people can listen to the same music at
the same time via TV, radio, or live streaming on the web.
However, such media provide a poor alternative because
the former quality of social connection requires audiences
to get together in the same place so that they can see each
other’s reactions to the music. Similarly, instead of directly
introducing others to favorite songs, people can post URL
links to them (e.g., YouTube videos of songs) to social net-

© Kosetsu Tsukuda, Masataka Goto. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Kosetsu Tsukuda, Masataka Goto, “Kiite Cafe: A Web Service
for Getting Together Virtually to Listen to Music”, in Proc. of the 22nd
Int. Society for Music Information Retrieval Conf., Online, 2021.

working services (SNSs) such as Twitter and Facebook.
Even if many SNS users react to a song post (e.g., with
a “thumbs up”), there is no guarantee that they actually lis-
tened to the song and liked it. Rather, the latter quality of
sharing a favorite song with others requires knowing that
people who react actually listened to the song.

In light of the above, we propose a web service called
Kiite Cafe 1 2 that enables people to get together virtually
to listen to music without losing the above qualities. Kiite
Cafe is characterized by the following two architectures:
(i) when users listen to songs on Kiite Cafe, each user’s re-
actions are visualized, and (ii) songs played on Kiite Cafe
are selected from users’ favorite songs. To facilitate an in-
tuitive understanding of the user experiences provided by
these architectures, we give the following example.

Suppose that Emily is a Kiite Cafe user. One day, she
logs in to Kiite Cafe and finds that 14 users are logged in.
Each user is identified by his/her own icon. The users, in-
cluding Emily, can simultaneously listen to the same song,
which is automatically selected and played. Even if the
played song has a different mood from songs that Emily
usually listens to, if she likes it, she can add it to her list
of favorite songs (i.e., her favorites list). Because she has
encountered a new favorite song, she feels happy to listen
to a diverse range of songs. Moreover, when the currently
played song is added to her favorites list, architecture (i)
visualizes her reaction by displaying a heart symbol on her
icon. Because other users’ reactions are also visualized,
she can see their reactions to feel social connection. For
example, one of Emily’s favorite songs is played when it
is automatically selected by architecture (ii). While her fa-
vorite song is playing, she is pleased to notice that a heart
symbol is displayed on another user’s icon. Then, other
users also react to the song, and eventually the heart sym-
bol is displayed on eight users’ icons. Architecture (i) thus
enables Emily to see the moments when other users start
liking one of her favorite songs. This experience makes
her feel happy and want other users to listen to another of
her favorite songs. Thus, Emily looks forward to another
favorite song being played; until then, she stays on Kiite
Cafe and enjoys other users’ favorite songs.

Our contributions can be summarized as follows.

• We propose two architectures for enabling people to
simultaneously listen to the same music online while
achieving the qualities of social connection and the joy
of introducing other people to favorite songs.

1 “Kiite” means “Listen” in Japanese.
2 https://cafe.kiite.jp
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Figure 1. Screenshot of Kiite Cafe.

• We implemented and released a web service, called Ki-
ite Cafe, that applies these architectures.

• We describe three user experiences in which users (1)
are motivated to react to songs, (2) can listen to a di-
verse range of songs, and (3) can contribute as curators;
we also discuss the effects of these experiences on users
as a result of the two proposed architectures.

• By analyzing logs of user behavior on Kiite Cafe, we
show that the architectures do provide the above effects.
Specifically, users (1) react to songs more actively as
the number of users on Kiite Cafe increases, (2) react
to a more diverse range of songs on Kiite Cafe than
when they listen to songs alone, and (3) stay on Kiite
Cafe longer when they contribute more as curators.

2. OVERVIEW OF KIITE CAFE
Kiite Cafe is implemented as a novel function on Kiite,
which is an existing web service for exploring and discov-
ering music. Any Kiite user can use Kiite Cafe. Below, we
introduce Kiite’s functions related to Kiite Cafe and then
give an overview of Kiite Cafe.

2.1 Kiite
Song data on Kiite are routinely collected from Nico Nico
Douga, which is one of the most popular video sharing
services in Japan. On Nico Nico Douga, it is quite pop-
ular for both amateur and professional musicians to up-
load songs created with singing voice synthesizer software
called VOCALOID [6]. As of the end of Mar. 2021, more
than 220,000 songs can be played back on Kiite. When a
Kiite user listens to a song, its video clip is played on Kiite
by an embedded video player 3 .

Kiite enables users to effectively find favorite songs by
providing novel functions such as exploration of songs
based on their emotions and continuous listening to only
the choruses of multiple songs. A registered user can set
her own icon image, add songs to her favorites list, create
playlists, listen to other users’ playlists, and so on.

3 On Nico Nico Douga, all songs are uploaded as music videos.

2.2 Kiite Cafe
Fig. 1 shows an overview of Kiite Cafe. When a user logs
in, her icon is displayed at a random position in a two-
dimensional space that also displays other logged-in users.
All of the users listen to the same song played in a video
player ( A� in the figure) at the same time, like a live con-
cert. As mentioned in section 1, Kiite Cafe has two ar-
chitectures, for visualizing users’ reactions and selecting
songs to play from users’ favorite songs. In the rest of this
section, we describe the details of each architecture.

2.2.1 Architecture (i): User Reaction Visualization
We visualize the following four kinds of reactions so that
users can see each other’s reactions to a played song.

Favorite. When a user likes a played song, she can add
it to her favorites list by clicking the “favorite” button B�.
When the button is clicked, a heart symbol with an an-
imation effect is displayed at the top right of the user’s
icon while the song is playing ( C�). This enables users
to quickly see how many users like a song. When the user
had already added the played song to her favorites list, the
heart symbol is displayed without the effect.

Comment. When a comment is entered in a text box D�
and the “comment balloon” button E� is clicked, a com-
ment balloon is displayed above the user’s icon for 90 sec-
onds ( F�). The user can also manually delete her comment
by clicking the “delete” button G�. Users can thus use this
function to express their impressions of a played song or
have simple communication with each other.

Rotation. A user can rotate her icon by clicking the
“rotation” button H�. The icon then rotates clockwise at a
uniform rate until the played song ends. The user can also
manually stop the rotation by clicking the “rotation” button
again. Users can use this function to express feelings like
a sense of excitement. However, note that Kiite Cafe does
not provide any guidance on when users should use this
function, because we want them to use it as they please.

Move. By clicking an arbitrary position in the two-
dimensional space, a user can move her icon to the clicked
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position. The icon is animated to move to the position in
a straight line at a uniform rate. Kiite Cafe does not dis-
play any meaning for the quadrants and axes in the two-
dimensional space. Instead, as with the Rotation function,
we leave the usage of the Move function to users.

2.2.2 Architecture (ii): Song Selection from Users’
Favorite Songs
Let U denote a set of users who are logged in to Kiite Cafe.
For each user u, we define Su as the set of songs included
in u’s favorites list or playlists. A played song is selected
from

S
u2U Su. The automatic song selection process is

invoked before the end of the currently played song, and it
consists of the following two steps: (1) selection of a user
and (2) selection of a song from the user’s favorite songs.

In the first step, if there are biases toward certain se-
lected users, then the selected songs may also be biased.
Moreover, some users may become frustrated if their fa-
vorite songs are not selected at all. To avoid such biases
and satisfy every user, we developed an algorithm that
can randomly but fairly select users and thus diversify the
played songs. Suppose that user u is selected in the first
step, such that every user has an equal chance to be se-
lected. When song s 2 Su is randomly selected in the
second step, the reason for its selection is displayed, e.g.,
“This song is in u’s playlist” (first row of I� in Fig. 1). If s
is also among other users’ favorite songs, that information
is displayed (second and later rows of I�) so that those
users can notice that one of their favorite songs is being
played. Moreover, a user can set one of her playlists as a
“highly recommended list” by clicking a button J�. When
the selected user sets a list as “highly recommended,” a
song in that list is randomly but preferentially selected in
the second step. By setting such a list, a user can specify
the songs that she wants other users to listen to.

Note that the implemented selection algorithm de-
scribed above for our service is just an example, and other
algorithms can be used as long as they balance the fairness
and randomness of selecting both users and songs.

In addition, we created a bot account K� that is always
logged in. The bot periodically creates playlists according
to a daily/weekly popularity ranking of VOCALOID songs
on Nico Nico Douga. The bot is treated as one of the users,
and songs in its playlists can also be selected by the song
selection process. This gives a user a chance to listen to
the latest popular songs and find new favorite songs even
when no other human users are logged in. Note that the bot
does not show any reactions to played songs.

3. USER EXPERIENCES AND EFFECTS
As mentioned in section 1, the proposed architectures add
two qualities: social connection and the joy of introducing
others to favorite songs. In addition, the Kiite Cafe archi-
tectures provide three kinds of user experiences. This sec-
tion describes those experiences and their effects on users.

3.1 Motivation to React to Songs
Although many studies have been conducted on enabling
users to listen to music together, most of them have fo-
cused on visualizing the song selection process or propos-

ing methods for that process [7–11]. A system that can
show a summary of listeners’ feedback on a song (total
numbers of likes and dislikes) has been proposed [12];
however, little attention has been paid to visualizing each
user’s reactions. In contrast, Kiite Cafe visualizes users’
reactions via their icons, as in section 2.2.1. By sharing all
the users’ reactions with each other, Kiite Cafe motivates
them to react to the currently played song. Accordingly,
we expect that, the more people get together on Kiite Cafe,
the more meaningful it will be to show their reactions, and
the more actively they will react to songs. In the long term,
this would enable users to develop the habit of actively lis-
tening to music and enrich their listening experiences [13].

3.2 Diversification of Song Listening
Many studies have sought to play songs that match the mu-
sical preferences of as many users as possible [7, 9, 14].
In the short term, this approach may be able to increase
users’ satisfaction. In the long term, however, as is known
from the negative effects of a filter bubble [15, 16], this
approach could narrow users’ musical interests. On the
other hand, because Kiite Cafe plays songs selected from
various users’ favorite songs, it may not be able to always
match most users’ musical preferences. However, listen-
ing to a more diverse range of songs enables users to find
not only songs that match their preferences well but also
unexpected or serendipitous songs [17] that do not match
their usual preferences. In other words, we expect that a
user will react to a more diverse range of songs on Kiite
Cafe than when she listens alone. In the long term, this
experience would expand the user’s horizons.

3.3 Contribution as Curators
According to architecture (ii), suppose that a song in user
u’s playlist is selected and played on Kiite Cafe. Because
of architecture (i), u can see the moment when other users
start liking or show interest in that song (e.g., u can see
when other users add the song to their favorites list or ro-
tate their icon). In substance, for other users, u plays a
role as a curator. That is, the two architectures enable ev-
ery user to naturally contribute as a curator. We expect
that when a user experiences the joy of contributing as a
curator, she will look forward to the curation opportunity
when another of her favorite songs is played and thus in-
crease her dwell time on Kiite Cafe. It has been reported
that acting as a curator increases music listening activity
(e.g., listening to more songs and making playlists for cu-
ration) [18]. Therefore, in the long term, this experience
would promote users’ daily music listening activity.

4. EXPERIMENT
We launched the Kiite Cafe service on Aug. 5, 2020. In this
section, we evaluate the three expected effects discussed in
the previous section. To this end, we analyzed user behav-
ior logs for the period between Aug. 5, 2020 and Jan. 14,
2021. The number of unique users who logged in during
this period was 1,760. The Favorite, Comment, Rotation,
and Move reactions were used 29,127, 9,826, 59,983, and
45,353 times, respectively.
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Figure 2. Relation between the number of users on Kiite
Cafe and the normalized reaction proportion.

4.1 Frequency of User Reactions
As a result of users sharing their reactions with each other
on Kiite Cafe, we expect that they will be more motivated
to react as the number of users increases. To verify this ef-
fect, we evaluated the following research question: Does a
user react to a played song more frequently as the number
of users on Kiite Cafe increases? (RQ1)

Settings. We considered the four kinds of reactions:
R = {Favorite,Comment,Rotation,Move}. First, for each
played song, we obtained Us, the set of users except the
bot who were on Kiite Cafe when song s started playing.
According to the number of users (i.e., |Us|), we catego-
rized songs into four classes (C1: 1  |Us|  5; C2:
6  |Us|  10; C3: 11  |Us|  15; C4: 16  |Us|).
To answer RQ1, for each reaction, we compared the aver-
age proportion of users who reacted to a song among the
classes. More formally, let SCi denote a list of songs in
Ci (1  i  4) 4 . Given song s 2 SCi and reaction
r 2 R, let Ur

s denote the set of users who gave r as a re-
action to s. Then, the proportion of such users is given by
ratio(s, r) = |Ur

s |
|Us| . Finally, the average proportion over

SCi was computed as follow.

avgratio(SCi , r) =
1

|SCi |
X

s2SCi

ratio(s, r).

Results. Fig. 2 shows the results. For visibility,
avgratio(SCi , r) was normalized by avgratio(SC1 , r) for
each reaction. For all the reactions, the reaction proportion
monotonically increased as the number of users increased;
thus, the answer to RQ1 is “Yes.” Because the Favorite
function was obviously used to add a song to a user’s fa-
vorites list, we discuss how the users used the other three
functions. Regarding the Rotation function, although Kiite
Cafe does not explain its purpose, we searched Kiite Cafe
users’ tweets on Twitter 5 and found that a number of users
used it to express their feelings of excitement. Next, by
analyzing tweets about the Move function, we found that it
was used mainly for two purposes. First, users moved their
icons as if they were dancing. Second, users regarded the
top left of the two-dimensional space (i.e., near the video
player) as the front row at a live concert venue and moved
there when their favorite songs were played. It is interest-
ing that such a culture was created by the users and spread
among them. Finally, regarding the Comment function,

4 Because the same song can be played multiple times on Kiite Cafe,
the same song can appear multiple times in SCi .

5 We assumed that Twitter users who tweeted about the function were
Kiite Cafe users.

Reaction r |Ur| avgdiv(Sorg
u ) avgdiv(Sr

u) p-value
Favorite 130 10.493 10.960 1.99 ⇥10�6

Comment 56 10.384 10.920 4.40 ⇥10�3

Rotation 118 10.502 10.918 5.80 ⇥10�6

Move 110 10.559 11.050 8.21 ⇥10�9

Table 1. Diversity of musical preferences.

although the average length of the played songs was 237
seconds, 10.1% of comments were posted within the first
15 seconds of a song. In such comments, users often ex-
pressed the joy of having their favorite songs played (e.g.,
“Come ooooon!” and “Yeeeees!”). This was similar to the
phenomenon at live concerts in which the audience gets
excited when a favorite song starts. In summary, as the
number of users increased, they were more likely to ex-
press their excitement and behave as if they were attending
a live concert.

4.2 Diversity of Reacted Songs
Because Kiite Cafe enables users to listen to songs that do
not always match their musical preferences, we expect that
they will react to a more diverse range of songs. To verify
this effect, we evaluated the following research question:
Does a user react to a more diverse range of songs on Kiite
Cafe as compared to her musical preferences before she
started using the service? (RQ2)

Settings. Let tu denote the time when user u initially
logged in to Kiite Cafe. We assumed that songs added to
u’s favorites list before tu (i.e., before using Kiite Cafe),
denoted by Sorg

u , represented u’s original musical prefer-
ences; these were collected on the original Kiite service,
which was launched on Aug. 30, 2019, and described in
section 2.1. Moreover, we assumed that songs for which
u gave reaction r, denoted by Sr

u, represented u’s musical
preferences in terms of r after starting to use Kiite Cafe. To
answer RQ2, we compared the diversity of Sr

u with that of
Sorg
u for each reaction. Formally, the diversity was com-

puted as the intra-list diversity [19]. In the case of Sorg
u ,

div(Sorg
u ) =

P
si2Sorg

u

P
sj2Sorg

u \{si}dist(si, sj)

|Sorg
u |(|Sorg

u |� 1)
,

where dist(si, sj) is the Euclidean distance between the
feature vectors of si and sj . For the diversity, we obtained
a song’s feature vector by using OpenL3 [20]. For each re-
action r, we considered only users who had more than nine
songs in both Sorg

u and Sr
u so that we could appropriately

measure the users’ musical preferences 6 . Let Ur denote
the set of such users. Then, given r, the average diversity
of Sorg

u was computed as

avgdiv(Sorg
u ) =

1

|Ur|
X

u2Ur

div(Sorg
u ).

Similarly, avgdiv(Sr
u) =

1
|Ur|

P
u2Ur div(Sr

u).
Results. Table 1 lists the results. We can say that for all

reactions, the diversity of songs producing reactions statis-
tically increased in comparison to the diversity of favorite
songs before starting to use Kiite Cafe; thus, the answer to
RQ2 is “Yes.” These results indicate that Kiite Cafe is also

6 Because we released a beta version of Kiite Cafe on May 1, 2020,
users who logged in to Kiite Cafe for the first time between May 1, 2020
and Aug. 4, 2020 were not included in this analysis.
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No data was observed
for "0.5-" of "11-15 (C3)."�

Figure 3. Relation between the proportion of users who gave reactions (x-axis) and the normalized dwell time (y-axis).

useful as a service for users to find songs that are different
from their daily musical preferences.

4.3 Dwell Time
Because Kiite Cafe enables users to experience the joy
of contributing as curators, we expect that they will stay
longer as their contributions increase. To verify this, we
evaluated the following research question: Does a user
stay on Kiite Cafe for a longer time as the proportion of
users who react to her favorite songs increases? (RQ3)

Settings. We define user u’s session on Kiite Cafe as
the duration between u’s login and logout times. In u’s
kth session, suppose that three of u’s favorite songs were
played, and that 0%, 40%, and 16% of users gave reaction
r to those songs. Following the assumption that the max-
imum percentage (in this case, 40%) influenced u’s dwell
time, we categorized the maximum value of ratio(s, r) (de-
fined in section 4.1) into four classes (G1: ratio(s, r) = 0;
G2: 0 < ratio(s, r)  0.25; G3: 0.25 < ratio(s, r)  0.5;
G4: 0.5 < ratio(s, r)). However, for a proportion of
0.4, eight reacting users among 20 users would have a
higher impact on u than two reacting users among five
users. Therefore, we also considered the classes of |Us|
as in section 4.1. That is, to answer RQ3, given a class
of the number of users, we compared the average session
lengths between the reaction proportion classes for each
reaction. Formally, let Du denote a list of u’s sessions.
The kth session Tu,k 2 Du represents a list of songs from
u’s favorite songs (Su) that were played in the session. For
that session, we selected the song smax

u,k 2 Tu,k that had
the highest proportion of users who gave reaction r (i.e.,
smax
u,k = arg max

s2Tu,k

ratio(s, r)). Given Ci and Gj , we define

the set of smax
u,k belonging to Ci and Gj in all users’ ses-

sions as Si,j = {smax
u,k|u 2 U ^ 1  k  |Du| ^ smax

u,k 2
Tu,k ^ smax

u,k 2 Ci ^ smax
u,k 2 Gj}. Let len(u, k) denote the

length in seconds of u’s kth session. Then, the average
session length was computed as

avglen(Si,j) =
1

|Si,j |
X

smax
u,k2Si,j

len(u, k).

Results. Fig. 3 shows the results; avglen(Si,j) was nor-
malized by avglen(Si,1) for each reaction for visibility. For
the Favorite, Rotation, and Move functions, we can see
that the dwell time tended to increase as the proportion of
users who gave that reaction increased. In these graphs,
the line for the class of 1-5 users is located at the lowest
position among the four classes (C1 - C4). Especially for
Rotation and Move, at each reaction proportion, the nor-
malized dwell time tended to increase with the number of

users. These results indicate that not only the proportion
of users who gave a reaction but also the absolute number
of such users influenced the dwell time. On the other hand,
no clear tendency was observed for the Comment function
when the number of users was 6-10 or 11-15. Still, it is
possible that Comment also had a positive effect on the
dwell time, because it monotonically increased when the
number of users was 1-5 or at least 16. Detailed analysis
with more user behavior logs will be required to verify this
effect, and we leave that for a future work. In summary, the
answer to RQ3 is “Yes” for Favorite, Rotation, and Move.

5. DISCUSSION
In section 3, we described the user experiences provided by
Kiite Cafe and their effects. We believe that Kiite Cafe has
even more potential to diversify and enrich users’ music
listening experiences. In this section, to demonstrate that
potential, we discuss three themes.

5.1 Application Examples for Online Events
Kiite Cafe has been used for several online events includ-
ing VOCALOID-related events. At an event on Aug. 29,
2020, for example, a famous creator of VOCALOID songs
made a special playlist that consisted of songs that the cre-
ator liked or had created. During the one-hour event, as
many as 140 Kiite Cafe users enjoyed simultaneously lis-
tening to the songs in the playlist, and used the reaction
functions of Kiite Cafe to communicate with the creator
in real time. For another event on Feb. 11, 2021, a ques-
tionnaire was conducted on favorite songs related to winter
or snow in the VOCALOID event. During the 90-minute
event, 77 users enjoyed listening to songs in a playlist cre-
ated according to the questionnaire answers.

Although it has become difficult for people to get to-
gether in person and communicate with each other and
with artists because of the COVID-19 pandemic, we
demonstrated a new style of online music events through
these examples. Moreover, even after the pandemic’s res-
olution, we believe that this kind of online event will be
valuable for users who cannot easily attend physical events
for reasons such as geographic remoteness.

5.2 Additional Service Functions
Although all users on Kiite Cafe get together in one on-
line space, it would be interesting to provide additional
spaces for different purposes in the future (we could call
the main space and additional spaces the “main cafe” and
“branches,” respectively). For example, for a branch on the
theme of “time,” we could put a higher priority on songs re-
lated to time (e.g., playing night-related songs at night) by
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analyzing song lyrics if they are available in the song selec-
tion process. We could also consider a function that allows
any user to conduct a questionnaire by displaying possible
responses in each quadrant of the two-dimensional space.
For example, a user might ask “Who would you like to
listen to the played song with?” and assign responses of
“family,” “lover,” “friend,” and “other” to the quadrants.
Other users could answer this question by moving their
icons. This function would provide a good opportunity to
see how other users perceive a song.

5.3 Reusable Insights
The reusable insights can be summarized as follows.
• Through the experiments, we verified that the two ar-

chitectures are effective in promoting users’ music lis-
tening activity. These architectures can be helpful for
other researchers and companies to develop interfaces
that enable users to listen to music together.

• The examples of successful online events showed that
the architectures can offer new ways to enjoy mu-
sic with other people even during the COVID-19 pan-
demic. We thus opened up a new research theme to sup-
port interactions among creators, audiences, and music.

• We clarified the value of visualizing the moments when
users start liking a song. In contrast to traditional cura-
tion on an SNS, the approach of Kiite Cafe guarantees
that users who liked a user’s favorite song did listen to
it. This insight could also be beneficial in designing
other music listening systems or services.

6. RELATED WORK
6.1 Music Listening Systems for Group of Users
Music listening systems for a single user were reviewed by
Goto and Dannenberg [21] and Knees et al. [22]. In con-
trast, systems for a group of users can be classified into
two types. The first type aims to enable users to listen
to music at the same time. Most studies on this type as-
sume that users get together in person at a public space
such as a fitness center [7], a party [10], a bar [9], or a
room [8]. In MusicFX [7] and Flytrap [8], the system reads
users’ musical preferences from each user’s device, and
songs stored in the system are played by taking those pref-
erences into account, while in Jukola [9], PartyVote [10],
and WePlay [12], users nominate songs to be played, like
a jukebox. In the second type of group listening system,
users share songs with other users. Sharing music with
others is an important activity to expand listeners’ hori-
zons [4]. Studies on this type do not assume that users
listen to a song at the same time. Push!Music [4] and
tunA [3] are mobile music players that let users share songs
via Wi-Fi with others who are nearby. The user studies on
those systems showed that users are comfortable sharing
their favorite songs with others whether they are friends or
strangers. It has also been reported that users share songs
mainly because they want to recommend songs that oth-
ers would like, disseminate their favorite songs, talk about
shared songs with others, and so on.

Some applications designed for listening to music to-
gether have also been released (e.g., Group Session by

Spotify [23] and JQBX [24]). In these applications, any
user can let other users listen to her favorite songs by act-
ing like a DJ. Users can also communicate with each other
via a text chat system while listening to songs.

Our study is different from the above studies and ser-
vices in that we introduce the two architectures for reaction
visualization and song selection from users’ favorite songs.
In most of the above cases, because users’ reactions are not
visualized or are visualized only when chatting with text
messages, it is difficult for users to feel social connection
with each other. On the other hand, because the first ar-
chitecture on Kiite Cafe visualizes four kinds of reactions,
users can more strongly feel that they are enjoying music
with others. In addition, existing systems require users to
actively nominate or share songs or act like a DJ, but some
users may hesitate to do that, especially if there is a large
audience. In contrast, the second architecture on Kiite Cafe
enables a user’s favorite songs to be automatically played.
This lets any user share her favorite songs with other users
and see the moment when they start liking those songs.
6.2 Group Recommendation Algorithms
Various song recommendation methods for a single user
have been proposed [25–32]. One of the biggest differ-
ences between the methods for a single user and those for
a group of users is that the latter methods need to take mul-
tiple users’ preferences into account. A general approach
is to aggregate each user’s preferences by, for example,
merging recommendation results generated for each user
according to voting strategies [14, 33]. However, such an
approach cannot always reflect minority preferences.

To solve this problem, a concept of fairness has
been recently introduced into group recommendation algo-
rithms [34–38]. The basic idea of fairness is that a list of
items recommended to a group is fair when each user in the
group can find at least one item in the list that she finds sat-
isfying. In the context of music recommendation, existing
studies have only considered the fairness for users as audi-
ences. On the other hand, fairness for users as curators as
well as audiences is achieved by Kiite Cafe because of the
second architecture in which each user’s favorite songs are
fairly selected and played as described in section 2.2.2. In
particular, the “highly recommended list” plays an impor-
tant role in achieving fairness as curators. When a user’s
favorite and/or recommended song can be listened to with
other users, the user is satisfied from audience and curator
viewpoints.

7. CONCLUSION
In this paper, we described Kiite Cafe, a web service that
enables users to communicate while listening to the same
music online. Kiite Cafe is characterized by two proposed
architectures for visualizing each user’s reactions and se-
lecting played songs from users’ favorite songs. Our ex-
perimental results quantitatively showed three effects pro-
vided by the proposed architectures. We believe that these
architectures are also useful for different types of music
interfaces, including a three-dimensional interface where
user avatars could listen to the same music in a virtual re-
ality (VR) venue.
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ABSTRACT

Why and how do people view lyrics? Although various
lyrics-based systems have been proposed in MIR commu-
nity, this fundamental question remains unexplored. Better
understanding of lyrics viewing behavior would be bene-
ficial for both researchers and music streaming platforms
to improve their lyrics-based systems. Therefore, in this
paper, we investigate why and how people view lyrics, es-
pecially when they listen to music on a smartphone. To an-
swer “why,” we conduct a questionnaire-based online user
survey involving 206 participants. To answer “how,” we
analyze over 23 million lyrics request logs sent from the
smartphone application of a music streaming service. Our
analysis results suggest several reusable insights, including
the following: (1) People have high demand for viewing
lyrics to confirm what the artist sings, more deeply under-
stand the lyrics, sing the song, and figure out the structure
such as verse and chorus. (2) People like to view lyrics af-
ter returning home at night and before going to sleep rather
than during the daytime. (3) People usually view the same
lyrics repeatedly over time. Applying these insights, we
also discuss application examples that could enable people
to more actively view lyrics and listen to new songs, which
would not only diversify and enrich people’s music listen-
ing experiences but also be beneficial especially for music
streaming platforms.

1. INTRODUCTION
When people seek help in identifying a particular song
that they have listened to, they often provide words in the
song’s lyrics as a clue for identification [1,2]. In other situ-
ations when people listen to music, it has been reported that
they choose songs according to not only the musical audio
content, such as the music genre, mood, melody, vocal tim-
bre, and rhythm, but also the topics of lyrics [3,4]. To meet
these demands, in the field of Music Information Retrieval
(MIR), researchers have proposed systems for identifying
a song by using the words in lyrics as a query [5–8] and
systems for exploring songs according to the topics esti-
mated from lyrics [9–12]. As illustrated here, lyrics are

© Kosetsu Tsukuda, Masataka Goto. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Kosetsu Tsukuda, Masataka Goto, “Toward an Understanding
of Lyrics-viewing Behavior While Listening to Music on a Smartphone”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,

Online, 2021.

an essential element of music for both listeners and MIR
researchers.

Despite the importance of lyrics in the MIR community,
more fundamental investigation of lyrics remains an under-
addressed topic: why and how do people view lyrics? In
this paper, we aim to answer these questions. Investigating
people’s lyrics-viewing behavior and revealing reusable
insights would be beneficial for researchers and music
streaming platforms to implement lyrics-related systems
and functions, such as viewing support for lyrics and song
recommendation based on lyrics. With regard to music lis-
tening, researchers have investigated why and how peo-
ple listen to music [13–20], and the obtained insights have
contributed to later studies in the MIR community. Al-
though listening to music includes listening to sung lyrics,
our study differs from these studies in that we focus on
lyrics-viewing behavior.

Users can view lyrics in various ways, such as a lyrics
sheet included with a compact disc (CD), a web service
for lyrics search, and a YouTube video with lyrics over-
laid [21]. Recently, some smartphone applications for on-
line music services (e.g., Spotify and Apple Music) have
provided a function that enables a user to view song’s lyrics
while listening to the song. Such a function will become
one of the main means for viewing lyrics, given the cur-
rent situation in which music streaming services on smart-
phones have become a mainstream format for listening to
music [15]. In light of the above, we investigate the be-
havior of viewing lyrics on a smartphone while listening
to music, because we can make the obtained insights more
reusable for future work in MIR community.

Our main contributions can be summarized as follows:

• To our knowledge, this is the first study on the inter-
actions between users and lyrics in terms of why and
how users view lyrics when they listen to music.

• To investigate why users view lyrics, we conducted
a large-scale questionnaire-based online survey in-
volving 206 participants. In the survey, more than
75% of the participants answered that they often
view lyrics to confirm what an artist sings or more
deeply understand lyrics. Moreover, over 50% of
the participants often view lyrics to sing a song or
figure out the structure of the lyrics (verse, chorus,
etc.). These results are beneficial for both MIR re-
searchers and music streaming platforms to imple-
ment their systems or functions. In fact, in this pa-
per, we suggest examples of functions to support
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users according to their reasons for viewing lyrics,
such as a function that displays tips to sing each part
of the song’s lyrics for users who want to sing.

• We investigated how users view lyrics by analyzing
over 23 million lyrics request logs for over 600 thou-
sand smartphone users for a year on a music stream-
ing service. The data shows that people tend to view
more lyrics after coming back home at night and be-
fore going to bed. In addition, an average of 37.8%
of user’s viewed lyrics have already been viewed
by the user, and eventually the user gets bored with
viewing the same lyrics. Considering these findings,
we make several proposals for music streaming plat-
forms to attract users (e.g., when a user gets bored
with the lyrics of a song, the platform could suggest
related lyrics in terms of the topic).

2. RELATED WORK
2.1 User Behavior in Music Listening
One approach to analyze user behavior in music listening
is conducting user studies based on questionnaires and in-
terviews. Typical questions about music listening ask why
people listen to music [16–18,20] and how they use music
websites, services, and applications [1, 15, 22]. Regarding
the former question, the main reasons include emotional
reasons such as relaxation [17] (even at work [18]) and re-
lief [16]. People also listen to music to concentrate and
to pass time [20]. Regarding the latter question, Lee and
Waterman [15] revealed that people use music websites
and applications for various reasons such as discovering
new music and learning about the artists. They also com-
pared their results with those in 2004 [1] and showed in-
creases in the popularity of music streaming and mobile
music consumption. A more recent work conducted a sur-
vey on the use of cloud music services and considered the
future design of such services [22]. Moreover, Lee and
Price [14] conducted interviews with music listeners and
revealed seven typical personas, such as a user who enjoys
curating music that is already familiar and a user who en-
joys serendipitous music discovery.

Another approach is analyzing users’ play logs. These
logs are typically collected from (1) APIs provided by on-
line music services [23, 24] or (2) Twitter, where tweets
related to music listening are gathered via specific tags
such as “#nowplaying” and “#itunes” [25–27]. Logs have
been analyzed in terms of various aspects, including the
long tail distribution of listening events per user, track,
and artist [23, 24, 27], the popularity of genres, moods,
and tags [25–27], and the temporal distribution (hour of
day and day of week) [23, 26], etc. One characteristic of
music listening behavior is repeat consumption [28]. Re-
ports have indicated that, in a user’s music play logs, about
70% of played songs have already been played before, and
this percentage is much higher than for other domains such
as viewing videos and visiting restaurants [28, 29]. In re-
peat consumption, the number of times a song is played is
heavy-tailed (i.e., a user repeatedly listens to a small pro-
portion of songs again and again). Benson et al. [29] re-

ported that each song has its own lifetime for a user: at the
beginning of the lifetime, the temporal gap between listen-
ing events is small; but at the end of the lifetime, the gap
becomes large, and eventually the user becomes bored with
the song.

Although listening to sung lyrics is one factor in listen-
ing to music, our study differs from the above studies in
that we particularly focus on lyrics viewing behavior. Fo-
cusing on a particular element of music is beneficial to sug-
gest new possibilities for future research as was indicated
by Demetriou et al. [4] who focused on vocals. Research
on why people listen to music has tended to involve user
studies, because they have the advantage of enabling re-
searchers to ask questions to analyze people’s intent. In
contrast, research on how people listen to music has often
analyzed large log data to take advantage of statistical pro-
cessing. Applying both of these advantages, in this paper,
we investigate why and how people view lyrics by using
questionnaires and logs, respectively.

2.2 Lyrics in MIR
Researchers have considered lyrics in various studies,
including lyrics-to-audio alignment [30–36], analysis of
lyrics characteristics [37–42], accurate lyrics retrieval [43–
45], and genre and mood classification [46–51]. Below, we
review more related studies that aim to support user activ-
ity by using lyrics.

One major approach is enabling users to search for
songs by words in lyrics, in which a query can be text [5,6]
or user’s sung lyrics [7, 8]. Systems have also been pro-
posed for exploring songs according to topics estimated
from lyrics [9–12]. Fujihara et al. [52] proposed the
concept of a “Music Web” in which songs are hyper-
linked to each other based on phrases of lyrics. Visual-
ization is also a useful approach to browse a music col-
lection. SongWords [53] displays a music collection on a
two-dimensional canvas based on self-organizing maps for
lyrics and tags. Lyricon [54] is a system for displaying
icons that match the word sequences of lyrics so that users
can intuitively understand the lyrics. Moreover, Funasawa
et al. [55] implemented a system that automatically gener-
ates slideshows for music by generating queries from lyrics
and searching for images. O’Hara et al. [56] demonstrated
how to learn the meanings of chord sequences from lyrics
annotated with chords. Ibraham et al. [57] proposed a
method for estimating the intelligibility of lyrics in a given
song to help users learn a second language.

In this paper, we investigate more fundamental ques-
tions about lyrics: why and how people view them. For
researchers, the insights of our analysis can be used in im-
plementing lyrics-based systems. For example, when re-
searchers propose systems to support understanding lyrics,
they can claim these systems’ importance based on the
high demand for deeply understanding lyrics, as we will
report in Section 3.2.1. In Sections 3 and 4, we also sug-
gest application examples such as recommending songs ac-
cording to lyrics and supporting lyrics viewing. We believe
that our suggestions are also beneficial for music stream-
ing platforms to make their smartphone applications more
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attractive to users.

3. WHY PEOPLE VIEW LYRICS
In this section, we report why people view lyrics by con-
ducting an online survey involving 206 participants.

3.1 Participants
We recruited participants for our survey via an online re-
search company. We limited the participants to those who
listen to music on average at least one day per week on a
smartphone application via any online music service and
have viewed lyrics on the application while listening to
music at least 10 times in their lifetime. In addition, to
align with the user nationality in the lyrics viewing log
data, as described in Section 4.1.1, all participants were
Japanese. The participants answered our questionnaire
through a web browser. We paid about 21.1 USD (2,275
JPY) to each participant. Although 297 participants joined
the survey, to make the analysis results more reliable, we
removed the answers from 91 participants: 14 of them
gave the same answers to all questions (e.g., choosing “1”
for all questions), and 77 of them finished answering the
questions in a very short time 1 . The remaining 206 par-
ticipants were well balanced in gender and age range: 95
males (10s: 2; 20s: 20; 30s: 22; 40s: 26; 50s: 25) and 111
females (10s: 4; 20s: 21; 30s: 27; 40s: 28; 50s: 31).

3.2 Results and Discussion
3.2.1 Reasons

To understand why people view lyrics on a smartphone
while listening to music, we listed the following eight can-
didate reasons 2 . (1) Confirmation: The user wants to con-
firm what the artist sings. (2) Understanding: The user
wants to more deeply understand the lyrics. (3) Singing:
The user wants to sing to herself (not in public). (4) Struc-

ture: The user wants to figure out the structure of the lyrics,
such as verse and chorus. (5) Karaoke: The user wants to
practice for singing in public, as in karaoke. (6) Boredom:
The user wants to get rid of her boredom by viewing lyrics.
(7) Language: The user wants to learn a language with the
lyrics. (8) Writing: The user wants to study for writing
lyrics. The participants were asked to rate the frequency
of viewing lyrics for each reason on a scale of 1 to 5 (1:
never; 5: very often). The reasons were displayed in a ran-
dom order to each participant 3 .

For each reason, Figure 1 shows the frequency distri-
bution and the number of users whose score was 4 or 5
(i.e., the number who often viewed lyrics for that reason).
We can see that the ratings for Confirmation and Under-

standing are high: in fact, the paired Wilcoxon signed-

1 We applied a tight rule for this filtering to reduce the risk of noisy
answers as much as possible. Nonetheless, the remaining 206 participants
are sufficient to discuss the general tendency of people’s behavior [15].

2 The eight candidate reasons were decided through discussions among
the authors.

3 We also provided an open-ended answer format for asking the par-
ticipants to freely describe other reasons. However, only thee participants
used it; their answers are omitted here due to space limitations. We there-
fore think that the eight candidate reasons covered the possible reasons
well. Using a fully open-ended answer format to compare results could
be an interesting future work.

Figure 1. Frequency of reasons why people view lyrics on
a smartphone while listening to music (1: never; 5: very
often). The number in parentheses represents the number
of participants rating 4 or 5.

rank tests with Bonferroni correction reveal that the me-
dians of Confirmation and Understanding are statistically
higher than the remaining six reasons at p < 0.01. It would
be beneficial to provide additional functions according to
users’ reasons for viewing lyrics. For example, for a user
whose reason is Understanding, displaying diverse inter-
pretations of lyrics could help her understand them more
deeply. An interesting future work would be to automati-
cally mine web pages that describe interpretations of given
song’s lyrics and display the collected interpretations along
with the lyrics.

Among the remaining six reasons, more than half of the
participants gave a rating of 4 or 5 for Singing, Structure,
and Karaoke. For users who view lyrics to sing (Singing

and Karaoke), some smartphone applications already pro-
vide a function that automatically scrolls lyrics by syn-
chronizing them with the playback time. To improve their
singing performance, we suggest more advanced functions
that display tips for singing each part of the lyrics and au-
tomatically judge their singing skill [58]. As for the Struc-

ture reason, one possible application is coloring blocks of
lyrics according to the estimated structure [59, 60]; this
would enable the user to quickly figure out the structure.

Although Boredom, Language, and Writing are rela-
tively minor reasons, it is still worth considering functions
for them, not only because it is important to build sys-
tems to support niche uses but also because more users
may begin to view lyrics to use such functions. This may
give users chances to listen to music more frequently and
eventually provide benefits for music streaming platforms.
For a user who views lyrics because of Boredom, display-
ing information related to the played song, such as similar
songs by different artists, may help her discover unfamil-
iar songs. When a user views lyrics for learning (Language

and Writing), she may want to use functions that improve
the efficiency of the learning process. Examples for Lan-

guage include enabling the user to see the meaning of a
word in lyrics just by tapping the word and recommending
a song by the same artist with more intelligible lyrics [57].
Examples for Writing include explaining poetic and rhetor-
ical techniques used in writing lyrics and recommending
songs with the same techniques.

Finally, Table 1 lists the number of participants who
gave a rating of 4 or 5 to at least k reasons. Because 89.8%
of the participants gave high scores for more than one rea-
son and over 60% of them often view lyrics for more than
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Table 1. Number of participants who gave a rating of 4 or
5 to at least k reasons.

k 1 2 3 4 5 6 7 8
#participants 196 185 168 125 87 39 22 2
Percentage 95.1 89.8 81.6 60.7 42.2 18.9 10.7 3.88

three reasons, we can say that the reason for viewing lyrics
is not exclusive; rather, it is common to have multiple rea-
sons. An interesting future work would be to predict and
recommend lyrics-related functions (like those described
above) to use next according to those already used.

3.2.2 Behavior

We now investigate users’ detailed behavior in viewing
lyrics for different reasons in terms of three aspects. Note
that, for each reason, we asked follow-up questions to par-
ticipants who gave a rating of 4 or 5 so that we could in-
terpret the characteristics of the reasons more accurately
(see Figure 1 for the number of such participants for each
reason).

Aspect 1: timing. First, to each participant, we showed
a reason for which she gave a rating of 4 or 5 and asked,
“When you view lyrics for this reason, do you decide to do
so (a) before playing a song or (b) after playing a song?”
The possible answers were (1) mostly (a), (2) moderately
(a), (3) about the same, (4) moderately (b), and (5) mostly
(b). Answers (1) and (2) ((4) and (5)) were then merged
into a “Before” (“After”) group. The “Timing” column of
Table 2 lists the frequency of responses in each group for
each reason. For Structure that has a statistically high fre-
quency in the “After” group, it would be effective to enable
users to more quickly execute the corresponding function
proposed in Section 3.2.1 while listening to a song, as com-
pared to the functions for other reasons. On the other hand,
Karaoke has a statistically high frequency in the “Before”
group. Therefore, if a smartphone application provided an
option to play a song in the setting of the Karaoke function
explained in Section 3.2.1, users would be expected to use
the application more frequently to practice for karaoke. In
Table 2, although both Singing and Karaoke are related to
singing a song, it is interesting that Singing has almost the
same frequencies in the “Before” and “After” groups.

Aspect 2: repetition. Our next question was “When
you view lyrics for this reason, how many times do you
continuously view them while repeatedly playing a song?”
The answers consisted of (1) mostly once (i.e., no repeti-
tion), (2) mostly two or three times, and (3) mostly more
than three times. Because no significant difference was ob-
served between answers (2) and (3), we report the results
with answers (2) and (3) merged as a “Many” group, while
answer (1) is labeled as “Once.” The “Repetition” column
of Table 2 lists the results. It can be observed that, for
all reasons, the “Many” group has higher frequency. It is
thus common behavior to continuously view lyrics while
repeating a song. Therefore, it would be helpful for users
to change the displayed information according to the num-
ber of repetitions (e.g., when a user listens to a song for
the Understanding reason, different interpretations of the
lyrics can be shown every time she plays it.).

Table 2. Behavior frequency in terms of three aspects: tim-
ing, repetition, and percentage.

Timing Repetition Percentage
Reason Before After Once Many Partial Most

Confirmation 49 95⇤⇤ 70 111⇤⇤ 53 84⇤⇤
Understanding 60 70 38 121⇤⇤ 20 116⇤⇤

Singing 50 51 36 92⇤⇤ 16 85⇤⇤
Structure 29 46⇤ 33 70⇤⇤ 18 57⇤⇤
Karaoke 55⇤ 33 14 91⇤⇤ 13 78⇤⇤
Boredom 12 39⇤⇤ 29 40 19 31

Language 27 18 12 45⇤⇤ 2 39⇤⇤
Writing 11 10 3 25⇤⇤ 2 17⇤⇤

⇤ (⇤⇤) denotes the statistical difference at p < 0.05 (p < 0.01) based on a two-tailed
z-test.

Aspect 3: percentage. In our last question, we asked,
“When you view the lyrics for this reason, what percent-
age of the lyrics do you view?” The answers were (1)
20%, (2) 21%–40%, (3) 41%–60%, (4) 61%–80%, and
(5) �81%. We merged answers (1) and (2) ((4) and (5))
into a “Partial” (“Most”) group. The “Percentage” column
of Table 2 lists the frequency of responses in each group.
Because “Most” was more popular for all reasons, people
tend to view most of the lyrics in any situation. However,
a significant difference between “Partial” and “Most” was
not observed for Boredom only. This result indicates that
when a user stops viewing lyrics within a short time, she is
likely bored. Therefore, music streaming platforms have a
big opportunity to give such users valuable information, as
illustrated in Section 3.2.1.

4. HOW PEOPLE VIEW LYRICS

In this section, we report how people view lyrics based on
over 23 million lyrics request logs sent from smartphone
applications for playing music.

4.1 Dataset

4.1.1 Lyrics Viewing Log

For lyrics viewing, we used log data given by a lyrics dis-
tribution company (SyncPower Corporation) in Japan. Al-
though this company provides lyrics text to various music-
listening smartphone applications, we focused on the iOS
application of a Japanese online music service and used
logs collected from it. In the application, a user can view
the lyrics of a played song while listening to the song. The
application gets the lyrics by using an API provided by the
lyrics distribution company. The company stores request
logs that include the timestamp, user ID, and song ID. Note
that the application does not automatically get lyrics when
a song is played; rather, it only gets them when a user ex-
plicitly requests them. Therefore, the logs are suitable for
analyzing how users view lyrics.

We first collected logs whose timestamp was between
1/1/2018 and 12/31/2018. We then removed logs whose
duration was less than 30 seconds, because such short-term
logs may have resulted from users’ wrong operations. Fi-
nally, our dataset (hereafter, LyLog) consisted of 611,895
users, 214,434 unique songs, and 23,034,417 logs.
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Figure 2. Distribution of the number of logs per song.
There are y songs that have x logs.

4.1.2 Music Listening Log

To investigate the difference between lyrics viewing be-
havior and music listening behavior, we used the Last.fm
dataset released by Schedl [23]. This dataset consists of
users’ play logs, each of which includes the timestamp,
user ID, song ID, and artist ID. To align the users’ na-
tionality with the LyLog dataset, we first extracted logs
of Japanese users (the dataset also includes each user’s
nationality). We then collected logs whose timestamp
was between 1/1/2013 and 12/31/2013 and removed logs
whose duration was less than 30 seconds. This gave us
a music listening dataset (hereafter, Lastfm) consisting of
660 users 4 , 718,466 unique songs, and 2,932,430 logs 5 .

We do acknowledge some limitations of using Lastfm

for comparison. For example, the years in Lastfm are dif-
ferent from those in LyLog, and Lastfm includes play his-
tories from not only smartphones but also PCs. Therefore,
it should be noted that the purpose of the comparison in
this paper is not to provide generalizable insights about
the differences between lyrics viewing and music listen-
ing. Nonetheless, we think it is still worth comparing the
differences as a first step toward understanding the charac-
teristics of lyrics viewing behavior. We leave it as a future
work to compare lyrics viewing logs and music listening
logs from the same platform 6 .

4.2 Basic Statistics
We first investigated several basic characteristics of lyrics
viewing. Figure 2 shows the distribution of the number of
consumption logs per song 7 . Although the curves of both
LyLog and Lastfm show the heavy tail of their consumption
patterns, lyrics viewing behavior is more biased to popular
songs: in Lastfm, 80% of the whole logs are dominated by
the top 34.8% of the songs in terms of the number of logs,
while in LyLog, those are dominated by only the top 6.64%
of the songs.

4 There is no correspondence between the users in LyLog and those in
Lastfm.

5 A similar Last.fm dataset was released more recently [24], but the
included logs are older than those in Schedl’s dataset [23]. Therefore, we
decided to use the latter dataset.

6 We cannot do so in this paper because the lyrics distribution com-
pany mentioned in Section 4.1.1 cannot store music play logs that do not
include lyrics requests.

7 Throughout our investigation, the word “consumption” refers to
viewing lyrics in LyLog or listening to music in Lastfm.

Figure 3. Distribution of logs over the hours of the day.

In Figure 3, we show the distribution of logs over the
hours of the day 8 . According to a survey on time use by
the Statistics Bureau of Japan [61], the average Japanese
person gets up at 6:32 am, commutes to school or work
between 7:30 am and 8:30 am, commutes from school or
work between 6:00 pm and 7:00 pm, and goes to sleep
at 11:15 pm. Referring to this time schedule, we can see
some common characteristics in both datasets: the number
of logs increases during the morning commute and after
returning home in the evening; then, the number gradu-
ally decreases as people go to sleep. Between 5:00 pm
and 11:59 pm, however, LyLog has a higher percentage
than Lastfm does. Viewing lyrics on a smartphone requires
users to interact with the application more actively, as in
tapping the screen to request and look at lyrics; in con-
trast, users can listen to songs even with a smartphone in
a pocket. Therefore, we can guess that users often view
lyrics in a relaxed state after coming back home. When a
smartphone application recommends some of the functions
described in Section 3.2.1 to a user, night would be a more
suitable time, because the user would engage more actively
in viewing lyrics than during the daytime: it would be an
interesting future work to verify the usefulness of changing
the recommendation frequency of each function according
to time. Regarding the distribution of logs over the days
of week, although we do not show a chart due to the space
limitation, people view lyrics and listening to music 6.64%
and 6.53% more often on weekends than on weekdays, re-
spectively; and no significant difference was observed be-
tween the datasets.

4.3 Repeat Consumption
We next investigated repeat consumption behavior in
which a user consumes the same song repeatedly over time.
We first computed the fraction of repeat consumption for
each user. For example, if a user’s fraction is 0.4, then
40% of viewed lyrics have been already viewed by her.
Figure 4 shows this fraction’s distribution. It can be ob-
served that the fraction for LyLog tends to be lower than
that for Lastfm; in fact, the average fractions for LyLog and
Lastfm are 0.378 and 0.604, respectively. However, we can
say that the fraction of repeat consumption for lyrics view-
ing is still high compared to that of other domains such as
watching videos (fraction: 0.26) and clicking on English
Wikipedia pages (fraction: 0.15) [29]. The above analysis

8 Note that Japan does not observe daylight saving time.
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Figure 4. Fraction of repeat consumption for each user.

Figure 5. Distribution of the ratio of user-song pairs that
are repeatedly consumed x or more times.

did not consider how many times each song was repeatedly
consumed. Thus, we also computed the ratio of user-song
pairs, in which each song was repeatedly consumed x or
more times by each user, to all user-song pairs, as shown
in Figure 5. We can see that the numbers of repetitions for
both LyLog and Lastfm have a heavy tail. However, be-
cause the LyLog curve is located below and to the left of
the Lastfm curve, people do not repeatedly view the same
lyrics as many times as they listen to the same song.

Benson et al. [29] reported that, in repeat consumption,
each item has its own lifetime for a user, as described in
Section 2.1. Following their processes, we investigated the
lifetime characteristics of lyrics viewing as follows. Given
a user, we first sorted all songs for which she requested
lyrics in ascending order of the timestamp. We then ex-
tracted songs whose first and last consumption events were
in the middle 60% of the list, so that we could consider
songs that certainly began and ended their lifetimes dur-
ing the period of data collection. Suppose that a user’s
extracted consumption list consists of N songs and is rep-
resented by L = {i1, . . . , iN}. When a particular song s
is consumed k times at indices {is1, . . . , isk} 2 L, the in-
dex gap between the jth and j + 1th consumption events
is defined by gj = isj+1 � isj . Figure 6 shows the transition
of the mean gap, with all gaps normalized by the first gap
g1 (the average values of g1 for LyLog and Lastfm were
19.0 and 248, respectively). As in the report by Benson et

al. [29], in lyrics viewing behavior, too, the gap tends to
grow over time. This means that when a user repeatedly
views the lyrics of a song, she views it again within a short
span at the beginning; the span gradually increases as she
gets bored with it, and eventually she stops viewing the
lyrics. As can be seen in Figure 6, the gap increase rate for
LyLog was smaller than that for Lastfm.

Figure 6. Normalized mean index gaps.

Because the gap grows over time, there is a possibil-
ity that we can detect a user who begins to get bored with
particular lyrics by using the method proposed by Ben-
son et al. [29]. When such a user is detected, suggest-
ing functions (from those described in Section 3.2.1) that
she has not used for the lyrics is one possible way to hold
her attention on the lyrics for a longer time. In contrast,
recommending novel lyrics related in terms of, say, the
topic [9–12] would be a good trigger for the user to listen
to new songs and expand her interest to other artists; this
would also be beneficial for music streaming platforms.

5. CONCLUSION
In this paper, we investigated why and how people view
lyrics while listening to music on a smartphone. Regard-
ing the “why” part, we conducted an online user survey
involving 206 participants; regarding the “how” part, we
analyzed over 23 million lyrics request logs. From the
results, we discussed reusable insights that are beneficial
for researchers and music streaming platforms, such as the
extent of the demand for the eight major reasons to view
lyrics and the generality of repeatedly viewing the same
lyrics. We also suggested several functions according to
users’ reasons for viewing lyrics. We believe that realiz-
ing the functions would diversify and enrich users’ music
listening experiences. Some of the reported findings might
be obvious (e.g., people view lyrics more often at night).
However, in this kind of study that investigates research
questions on an unexplored topic, it is valuable to report
not only unexpected results but also such obvious results
based on the data; obvious but verified results can then be
used as evidence for claiming the appropriateness of pro-
posed methods or systems in later studies.

We acknowledge a limitation of this paper in that we
investigated lyrics viewing behavior by only Japanese peo-
ple in both the “why” and “how” parts. Nonetheless, we
believe that our study is a worthwhile contribution to MIR
community, because this is the first attempt to reveal lyrics
viewing behavior and verifies the fundamental character-
istics of the behavior. At the same time, this limitation
indicates the possibilities of this research topic and guides
future work such as investigating the differences in lyrics
viewing behavior among countries. It would also be an im-
portant future work to investigate lyrics viewing behavior
on other devices (e.g., PCs and tablets) and at various loca-
tions (e.g., homes, restaurants, and public transportation).
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ABSTRACT

Cover detection has gained sustained interest in the scien-
tific community and has recently made significant progress
both in terms of scalability and accuracy. However, most
approaches are based on the estimation of harmonic and
melodic features and neglect lyrics information although
it is an important invariant across covers. In this work,
we propose a novel approach leveraging lyrics without re-
quiring access to full texts though the use of lyrics recog-
nition on audio. Our approach relies on the fusion of a
singing voice recognition framework and a more classic
tonal-based cover detection method. To the best of our
knowledge, this is the first time that lyrics estimation from
audio has been explicitly used for cover detection. Fur-
thermore, we exploit efficient string matching and an ap-
proximated nearest neighbors search algorithm which lead
to a scalable system which is able to operate on very large
databases. Extensive experiments on the largest publicly
available cover detection dataset demonstrate the validity
of using lyrics information for this task.

1. INTRODUCTION

Cover detection, also known as version identification, aims
at detecting whether two recordings are of the same under-
lying musical work. A cover can be played by the same
artist as the original song, or by another artist, and can be
quite similar or vastly different. Generally, it is assumed,
as in [1], that tonal progression features (chord, melody,
and harmony) are mostly preserved between covers of the
same work. Inversely, musical attributes such as key, tim-
bre, tempo, and structure significantly vary across covers
[1]. Variations of these features between covers were ex-
tensively studied in [2]. Cover detection systems are then
built to be insensitive to these variations and exploit tonal
progression features. The task has been frequently studied
as a query and answer [1] one, i.e. given an input query,
the system outputs a ranked list of possible covers from a

© A. Vaglio, R. Hennequin, M. Moussallam and G.
Richard. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: A. Vaglio, R. Hennequin, M.
Moussallam and G. Richard, “The words remain the same: cover detec-
tion with lyrics transcription”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

music collection. True covers are to be ranked as highly as
possible while other songs should be ranked low. This list
is usually obtained by computing pairwise similarities be-
tween the query and each song of a pre-defined dataset [1].
If earlier cover detection systems were shown to be highly
efficient on small datasets (1000 songs or less) [3], per-
formances quickly dropped on larger ones [2, 4]. Recent
works have made significant advances in scalability and
accuracy, for larger datasets, taking inspiration from met-
ric learning [5] and knowledge distillation [6].

Almost none of the existing approaches explicitly con-
sider the textual information provided by the lyrics. To
the best of our knowledge, it is only used in [4], in which
lyrics are assumed to be available for a significant part of
the dataset. In this paper, the authors use metadata and
lyrics alongside audio to perform cover detection. The
textual similarity of lyrics and song titles is computed us-
ing a plain Bag-of-word Term Frequency–Inverse Docu-
ment Frequency (TFIDF). The authors show that results
obtained with lyrics are on par with those given by audio-
based features on a large-scale dataset. Moreover, the best
results are obtained when combining all of the features.
However, each feature is only used in a separate part of a
multi-layer database pruning method; the information car-
ried by each modality is thus not optimally combined. One
limitation of this work is that it assumes that the lyrics of
most songs are available. Considering the task of query
by singing, which may be regarded as a related task to
the cover detection one, authors in [7] employed lyrics
and melody recognition to recognize a singing query and
match it against a collection of songs. They employed a
basic bigram Hidden Markov model (HMM) model that is
trained on speech and adapted to singing voice. However,
this approach also presupposes that the lyrics of songs are
available. Lyrics from the considered dataset are, in fact,
utilized to inform singing voice recognition.

While this assumption arguably does not hold for large
musical collections, one could turn to Singing Voice Recog-
nition (SVR) frameworks to retrieve a noisy estimate of the
lyrics. We thus propose a novel cover detection approach
leveraging lyrics information extracted from audio. It is
based on the fusion of a SVR framework and a more classic
tonal-based cover detection system. Based on our review
of the literature, this is the first time that an estimation of
lyrics transcripts from audio has been explicitly leveraged

714



to perform cover detection. Our assumption, based on the
results of [4], is that lyrics are often preserved between
covers in popular western music. For the first modality
of our fused system, we thus propose using transcription
methods to obtain estimates of these lyrics for all songs.
The cover song here is framed as a noisy text-matching
task. We expect a lyrics-recognition based system to be
particularly relevant for pairs of covers displaying hugely
different tonal features while using the same lyrics. An
example of such cases is the cover of Summertime by Ja-
nis Joplin where the harmony and melody are considerably
different from the original score, but the lyrics remain quite
similar. Nevertheless, it is clear that a pure lyrics-based
system is inadequate for instrumental music (e.g. without
a singing voice). Therefore, we use a tonal-based system
such as the second modality of our fused system. An in-
strumental detector is applied on the output of the lyrics
recognition framework to inform the fusion strategy. We
provide extensive empirical evidence that both modalities
are indeed complementary. Extra attention is placed on the
scalability of our proposed approach using Approximated
Nearest Neighbors (ANN) methods.

2. RELATED WORKS

Classically, cover song detection systems use tonal fea-
tures, which are thought to be the least altered between a
song and its covers. Chroma [8] and derived features such
as Harmonic Pitch Class Profil (HPCP) [3] and CremaPCP
[5] are among most effective examples. Before computing
the similarity between two songs, multiple preprocessing
steps can be applied to obtain features that are invariant to
the key [9], the tempo [10], or the structure of the song [5].
After extracting the features to be compared for both songs,
a cross similarity matrix [11], or a cross recurrent plot [9],
is then generally computed. A similarity score is then
computed using dynamic programming like Dynamic Time
Warping (DTW) [12] and recurrence quantification analy-
sis [3]. For a given query, this score is calculated for all
tracks in a pre-defined dataset and thus yields the desired
sorted list. These methods achieve satisfactory results for
small datasets of up to a thousand songs [3], but are com-
putationally costly for larger datasets.

To address this issue, some authors have attempted to
reduce the size of the input representation to obtain a
low-dimensional fixed size representation for each track.
The similarity comparison thus boils down to a basic dis-
tance metric such as Euclidean distance or cosine similar-
ity [5] that are much faster than dynamic programming al-
gorithms of quadratic complexity. Early approaches of this
type include using fingerprinting in the form of Chroma
landmarks [10] and 2D Fourier transform of Chroma vec-
tors [13], both obtaining low performances. More recent
approaches using metric learning, triplet loss, and distilla-
tion methods show greater improvement [5, 6] in terms of
computation speed and retrieval performances. Database
pruning was also used to decrease the overall complex-
ity in [4, 14]. A first fast global candidate selection us-
ing text and metadata was performed, followed by a more

Singing Voice
Recognition

Tonal-Based
Matching

String Matching

Instrumental
Detection

W

Audio Pair  

Transcripts 

Figure 1. Audio from a pair of tracks is processed in paral-
lel by two branches computing lyrics and tonal-based simi-
larities respectively. The fusion mechanism is informed by
an instrumental detection on the transcripts

complex similarity function to re-rank the subset. Most
of these approaches, which are based on low-dimensional
embeddings and simple distance functions, are then simply
exploited into existing scalable nearest-neighbors meth-
ods. For example, the authors in [10, 15] use index-
based matching on extracted audio fingerprinting. Scalable
nearest-neighbors methods are more broadly discussed in
Section 3.6.

3. PROPOSED APPROACH

A general overview of our approach is described in
Figure 1. It is composed of a lyrics-recognition based
cover detection system and a classic tonal-based system.
The first branch is constituted of a lyrics recognition frame-
work and a string matching function. It takes two songs
x1 and x2 as input and outputs the respective estimated
lyrics b̂1 and b̂2. A similarity estimation slyrics is then ob-
tained using these transcriptions. The second branch of
our approach, the classic tonal-based system, also takes
these two songs as input and outputs a similarity estima-
tion stonal. They are then fused using a fusion function
to obtain a new similarity estimation sfus. Extra input is
added to the fusion function ↵ to weigh the participation of
both modalities during the fusion. The value of this input
depends on the instrumental detector taking as input both
transcripts and outputting the probability that at least one
of the tracks is purely instrumental. This avoids using the
lyrics-based recognition system during the fusion in the ab-
sence of lyrics. To obtain the desired sorted list, for a given
query, a similarity is then computed for the considered sys-
tem between the query and each track of the dataset. Fi-
nally, a fast approximate index search technique is used on
our system to make it scalable. In our work, we rely on
the ANN approach where the similarity is only computed
between the query and the nearest neighbors returned by
the method.
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3.1 Lyrics recognition

We choose a state-of-the-art framework [16] that obtained
the best results in the Music Information Retrieval Eval-
uation eXchange (MIREX) 2020 lyrics transcription chal-
lenge 1 . It uses an acoustic model composed of several
layers of Time Delay Neural Network (TDNN) that are
trained using the English tracks of the DALI dataset [17].
Background music is directly modeled as an output of the
acoustic model as such that it does not use any preprocess-
ing step of Singing Voice Separation (SVS). Moreover,
phoneme units are annotated with genre labelling informa-
tion. An extended lexicon is also employed to handle long-
vowel duration. Finally, a 3-gram word language model
with interpolated Kneser-Ney smoothing is trained on the
English portion of DALI lyrics. The complete framework
extracts Mel-Frequency Cepstral Coefficients (MFCC) of
dimension 40 from the input audio and outputs transcribed
English words. As this model cannot output non-English
words, extra care on the results of non-English tracks will
be considered later in this paper. The acoustic model
and lexicon are collected from the code implementation
of the authors 2 . We compute the language model with the
kenLM toolkit [18]. The vocabulary of the language model
is restricted to the 6000 most frequent words, thus reducing
overfitting. Obtained transcription results are on par with
those in MIREX with a Word Error rate (WER) of 62% on
the Jamendo dataset [19].

3.2 String matching

To allow for a swift computation of the similarity between
pairs of estimated transcripts, each string is transformed
to a vector using a TFIDF based on a 3-gram at character
level with IDF values computed from the DALI dataset.
The complexity of this type of algorithm is O(m + n)
with m and n, which are the respective length of each tran-
script. The similarity is then simply given using a cosine
similarity, which is independent of the length of each tran-
script. Using a word level 3-gram was not shown to im-
prove performances on a cover song tuning set described
in Section 4. We also considered the Levenshtein distance
for the string matching, but it did not yield significant gains
in performances while inducing a quadratic complexity.

3.3 Detecting instrumentals

Looking at various transcripts given by our SVR frame-
work, we notice that, for most instrumental tracks, the tran-
script obtained is composed of either a very few number
of words, or highly repeated ones such as onomatopoeia.
Therefore, we consider a track as instrumental if the re-
spective transcription is composed of less than l different
words with l tuned on the cover song tuning set. The mod-
ule outputs �x1,x2 = 1 if both tracks are not detected as
instrumentals, and 0 otherwise. For some rare cases where
the SVR framework is truly performing poorly, it is also

1 https://www.music-ir.org/mirex/wiki/2020:
MIREX2020_Results

2 https://github.com/chitralekha18/
AutoLyrixAlign

only outputting a few words. The instrumental detector
then helps with additionally filtering some marginal cases
where the lyrics transcription fails completely. We chose
to keep this very simple as it performed sufficiently well
for our purposes and allowed for improvements in future
works.

3.4 Tonal-based cover detection

The tonal-based cover detection method selected is de-
scribed in [6]. This system, called Re-MOVE [6], is an
updated version of MOVE [5] and obtains the second most
accurate benchmark on the Da-Tacos dataset [2]. Com-
pared to the best one reported [20], it has the advantage
of being publicly available 3 . The system is trained using
the training part of Da-Tacos, as described in Section 4.1,
and early stopping is performed using its validation com-
ponent. For a given track, the system takes CremaPCP ex-
tracted from the audio as input and outputs a correspond-
ing compact embedding. The CremaPCP feature is an in-
termediate representation of a chord estimation model. It
is considered an efficient way to capture the tonal infor-
mation of music and is shown to outperform more classic
HPCP features for cover detection [2]. The similarity be-
tween the query and each track of the dataset is then the
cosine similarity of their respective embeddings.

The Re-MOVE system uses a latent space reconfigu-
ration technique on top of MOVE in order to reduce the
embedding dimension (and then reduce memory require-
ments and retrieval time) while maintaining high detection
performances. This technique reconfigures a pre-trained
learned distance metric into a more compact embedding
space with the same learned semantic relation.

3.5 Fusion

It has been shown in multiple domains that the fusion
of different modalities can yield better performances than
those obtained with each single modality [21]. For cover
detection, fusing modalities, features or similarities matrix
have already shown to improve results [22,23], notably us-
ing rank aggregation methods [24]. The fusion function
chosen here is a weighted sum. It is more precisely de-
scribed by:

sfus =

(
↵slyrics + (1 � ↵)stonal if �x1,x2 = 1

stonal otherwise
(1)

↵ is a simple scalar defined as an hyperparameter to tune.
As the distributions of both similarities are very different,
calibration before fusion was also tested. However, no im-
provement was shown on the cover song tuning set. Other
fusion functions, such as linear regression or max function,
did not lead to improvements in our simulations.

3.6 Scalability

Pairwise comparisons between a given query and all tracks
in a dataset are linearly dependent on the size of the dataset

3 https://github.com/furkanyesiler/re-move
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without optimization, which cannot be considered scal-
able. In fact, a linear complexity for the queries involves
a quadratic complexity for retrieving all musical works in
the dataset, which can quickly become prohibitive for large
collections. To achieve better scalability properties, most
cover detection studies use ANN methods such as Locality
Sensitive Hashing (LSH) [25, 26]. The idea behind ANN
is that for a given query x and a database D the method
outputs an approximation of the k nearest neighbors of the
query in the database with the complexity being sublinear
in the size of the database. For a given query, in contrast
with classic K-Nearest Neighbors (KNN), ANN methods
are only browsing a subset of the complete search graph.
All these methods are based on an index table allowing
fast queries by outputting a "good" guess of the k nearest
neighbors of a given query, making it possible to recover
the most highly classified covers in the ranked list obtained
with all candidate points. The recall is used to quantify
the quality of an ANN method by averaging percentages
obtained, for various queries, of true k-nearest-neighbors
from k points returned by the method. In our case, we use
the Hierarchical Navigable Small World Graph (HNSW)
state-of-the-art ANN method; an extensive study of it is
given in [27]. This algorithm gives logarithmic complex-
ity for a query in terms of the size of the dataset. This
method is directly applied on Re-MOVE and TFIDF em-
beddings, outputting for a given query k nearest neighbors
for each of them. Both sets of points are then concatenated
and merged, obtaining a maximum of 2k points to consider
for the fusion. Pairwise similarities between the query and
these points are then generated using the Re-MOVE sys-
tem and our lyrics-recognition pipeline.

4. EXPERIMENTAL EVALUATION

4.1 Dataset

Da-Tacos [2, 6] is the largest publicly available dataset for
cover detection; the training set is composed of 83904
songs in 14999 cliques and the validation set of 14000
songs in 3500 cliques. A clique is defined as a cover
group gathering multiple recordings of the same under-
lying "piece". The Da-Tacos benchmark test subset is a
15000 tracks dataset composed of 1000 cliques with 13
songs each and 2000 noise songs (i.e. that are in a single-
song clique) that are not queried. To avoid overfitting, no
clique overlaps with any set of Da-Tacos. Instrumentals
represent around 20% of the dataset which motivates our
choice of using an instrumental detection process. Cur-
rently, only a set of precomputed audio features are pub-
licly available for the benchmarking subset test dataset.
The dataset is mainly composed of English tracks and pop-
ular western music with a few non-English cliques. All
hyperparameter tuning made during this paper is carried
out on a subpart of the Da-Tacos validation that we choose
to refer to as a Da-Tacos tuning set. We verified that no
clique of this subset overlaped with any clique present in
the dataset used to train the tonal-based cover detection
system, i.e. the Da-Tacos training set. Also, a clique is dis-

carded if it possesses one track present in the dataset used
to train the SVR framework, i.e. DALI dataset. Detection
of overlapping tracks and cliques is made using metadata,
i.e. titles and artists names. Da-Tacos tuning is notably
used to choose the string matching algorithm and the fu-
sion function. We recover audio of 12862 tracks from the
test dataset. 1849 are in single-song cliques and thus are
not queried and only used as noise songs. We make sure no
clique of this dataset overlaps with cliques in the Da-Tacos
train and validation and that cliques possessing tracks ex-
isting in the DALI dataset are discarded. It will be simply
referred to as Da-Tacos test for the rest of the document.

4.2 Fusion parameters

A track is classified as instrumental if the number of differ-
ent words of its transcript is less than l = 8. This number
is adjusted using Da-Tacos tuning as the value that maxi-
mizes the recall for the highest F1 score. Emphasis is put
on the recall in order to avoid taking into account the lyrics-
recognition based similarity for an instrumental track that
has been misclassified as non-instrumental. An ↵ value of
0.6 for fusing both system is tuned on Da-Tacos tuning.

4.3 Parameters of ANN

We use the HNSW implementation of the NMSLIB sim-
ilarity search library [28]. For each query, we return
the k = 100 nearest neighbors. This choice is derived
from [4], which shows performance does not evolve sig-
nificantly after the top-100 pruning. We use an approxi-
mated cosine similarity function to retrieve 100 candidates
for each branch which results in, at most, 200 items for the
fused model after concatenating and merging both sets.

4.4 Evaluation

The empirical evaluation of the cover detection task perfor-
mances is given using the Mean Average Precision (MAP)
4 . For a query, Average Precision (AP) is quantifying the
number of actual covers that are highly ranked. The AP
score increases when actual covers are detected in the top
ranks. The MAP is then simply obtained by averaging on
the AP of all queries. As the MAP is not properly defined
for systems that do not score every track (such as ANN),
we report MAP@100 for these cases considering only the
top-100 ranked item of each query. In any case, the MAP
does not significantly evolve after the top-100 pruning as
explained in the previous section.

5. RESULTS AND DISCUSSION

5.1 Lyrics-recognition based system results

5.1.1 Instrumental detection

Among the 12862 tracks in the test set, 3269 are detected
as instrumentals. We compared this with the "Instrumen-
tal" tag available in the Da-tacos for all tracks. We obtain a

4 Computed using the Metrics toolkit from https://github.
com/benhamner/Metrics
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Query System MAP (%)

Da-Tacos-voice Lyrics 66.4 (0.4)
Tonal 54.0 (0.4)

Da-Tacos-instr Lyrics 0.45 (0.06)
Tonal 47.8 (0.7)

Table 1. Results of lyrics-recognition based and tonal-
based cover detection system on Da-Tacos-voice. Da-
Tacos-instr is the subset of the Da-Tacos test restricted to
instrumental tracks. Standard errors are given in parenthe-
sis

precision of 82.86% for the instrumental detection, a recall
of 96.68% and a F1 score of 89.24%. A closer look at mis-
classified tracks showed that there is some annotation noise
in the Da-Tacos annotations which could artificially lower
the previous metrics. As simple as it is, the instrumental
detection performance seems suitable for our application.
After filtering detected instrumentals, we obtain a subset
of 9593 tracks that we label Da-Tacos-voice. 1582 tracks
are in single-song cliques. 8011 tracks are then queried.

5.1.2 Lyrics-based cover detection

We first evaluate our lyrics-recognition based system on
the Da-Tacos-voice. Our results, displayed in Table 1,
show that it is generally performing better than the tonal-
based one in terms of MAP. They validate the assumption
that lyrics can be considered as a strong invariant between
covers. It also proves that the most recent state-of-the-art
singing voice recognition framework produces transcrip-
tions of sufficiently good quality to perform the cover song
as a noisy text matching task. Looking empirically at re-
sults coming from both systems, most improvements of
the lyrics-recognition system over the tonal-based system
come, as expected, from covers with highly different tonal-
content and lyrics being roughly the same.

We also query the tracks detected as instrumental and
not from single-song cliques. Results are also displayed
in Table 1. As expected, performance of the lyrics-
recognition based system is almost close to zero. For the
tonal-based system, results seem to degrade when com-
pared to non-instrumentals tracks. This suggests that the
system has either learned characteristics of the melody car-
ried by the singing voice or implicitly estimated some of
the lyrics information to perform cover detection.

5.1.3 The case of non-English tracks

As stated in Section 3.1, our lyrics recognition framework
cannot output non-English words, therefore non-English
tracks may produce unexpected results. In order to assess
the impact of this issue, we predicted a language label for
every track of the Da-Tacos-voice using a language clas-
sifier [29] taking track metadata as input. Results show
that the dataset is largely composed of English with more
than 92.4% of the tracks being detected as English. Look-
ing at tracks outside single-song cliques detected as non-

Dataset System MAP (%)

Da-Tacos test
Fused 62.7 (0.3)

Fused-wo-inst 50.2 (0.3)
Tonal 50.6 (0.3)

Da-Tacos-voice Fused 80.4 (0.3)

Table 2. Results of fused, with and without instrumental
detection, tonal and lyrics-recognition based cover detec-
tion system on various datasets
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Figure 2. Similarities of sampled pairs of tracks from the
Da-Tacos-voice. Here, each point is a pair of tracks. Each
color indicates a same-clique belonging status. Some level
curves of sfus are also displayed

English, half of them are false positives. We query non-
English tracks of the resulting 44 cliques on the Da-Tacos-
voice, representing 299 tracks. It is interesting to report
that almost all cliques are homogeneous in terms of lan-
guage. We obtain a MAP of 28% (2). Results show that
even if performances deteriorate for these cases, our sys-
tem is often able to correctly classify these tracks. It can be
explained as the chosen singing voice framework is tran-
scribing something similar from one cover to another even
for non-English lyrics. Considering the small quantity of
non-English tracks and results on these tracks, we consider
that this issue has a limited impact on performance in our
evaluation setup.

5.2 Fused system results

Results for the fused system on the full Da-Tacos test and
its Da-Tacos-voice subset are given in Table 2. The fused
system significantly outperforms the results of the tonal-
based one alone showing the validity of our assumption of
both systems being highly complementary. The use of the
instrumental detection module to inform the fusion strat-
egy is empirically validated, with a major drop of perfor-
mances occurring when it is not considered. The gain in
performance comes essentially for increased accuracy on
the Da-Tacos-voice subset, where information from both
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System SVR MAP (%)

Lyrics
CTC 40.3 (0.7)
Our 79.0 (0.6)

Lyrics-informed 89.7 (0.4)

Fused
CTC 71.1 (0.6)
Our 88.5 (0.4)

Lyrics-informed 93.6 (0.4)

Table 3. Performances of lyrics-recognition and fused
based cover detection system on Da-Tacos-lyrics with var-
ious SVR framework. Lyrics-informed framework are in-
formed by lyrics at test time

branches is available and the MAP reaches around 80%.
To highlight this complementarity, similarities for sampled
pairs of tracks from the Da-Tacos-voice are displayed in
Figure 2. While the majority of same-clique pair lyrics
and tonal similarities are significantly higher than non-
matching pairs, there are multiple cases where one modal-
ity seems more indicative than the other. Level curves of
sfus are also displayed illustrating most pairs being lin-
early separable in the combined modality plane.

5.3 ANN results

We first evaluate the impact of pruning results to the first
100 candidates by computing the MAP@100 of the fused
system on the Da-Tacos test dataset. A small decrease
is observed with a MAP@100 of 62.4% (0.3). After ap-
plying an ANN to our fused system, results remain the
same with a MAP@100 of 62.4% (0.3) . This result
can be explained as the recall of the HNSW for both a
tonal-based and lyrics-recognition system being more than
99.5%. Thus, the scalability of our system is assured while
maintaining the cover detection performances.

5.4 Impact of the SVR framework

A detailed analysis of failing samples of the lyrics-
recognition based system shows that the main cause for
failure is the low quality of the transcriptions. To fur-
ther investigate this impact, we introduce two baselines by
changing the SVR framework part of our system. In the
first, an alternative Connectionist Temporal Classification
(CTC) based SVR framework is used. The acoustic model
of this framework is described in [30]. It consists of several
Bidirectional Long Short-Term Memory (BiLSTM) layers,
is trained on a multilingual subpart of the DALI dataset
with a CTC algorithm and relies on a pre-processing step
of singing voice separation. The language model used is
the same as the one described in Section 3.1. Decoding
is performed, after tuning the language model weight and
insertion penalty value using a validation dataset, with a
CTC beam search decoding tooklit 5 . The transcription
of the results obtained on Jamendo dataset [19] are sig-
nificantly lower than our current singing voice recognition

5 https://github.com/parlance/ctcdecode

framework with a WER of 84.4%. We thus expect this
CTC-baseline to obtain results far below our system for
cover detection tasks.

In the second baseline, we simulate an "ideal" SVR
framework outputting an exact transcription. It can be
considered as an oracle system, yielding an upper bound
for performances of lyrics-recognition based systems. To
compare these three systems, we retrieve the lyrics text in-
formation for part of the Da-Tacos test. The subset ob-
tained is labeled Da-Tacos-lyrics and is composed of 3467
tracks for which we found matching lyrics. Considering
that this subset only contains non-instrumental tracks, we
discard the instrumental detector for this section. Again,
tracks from single-song cliques are not queried and are
used as noise songs.

The results obtained on Da-Tacos-lyrics are given in
Table 3. These results confirm the intuition that the lyrics-
recognition system’s strength for covering detection task
directly depends on the quality of the lyrics transcription.
Ranking performances on Da-Tacos-lyrics for these sys-
tems are conserved after fusing them with the tonal-based
branch. In comparison to the oracle system, our fused sys-
tem shows excellent results even if there is still some room
for improvement. With the transcription performances of
our SVR framework being as low as 62% WER, it certainly
indicates that a perfect transcription is not needed for the
cover detection task. Interestingly, even an oracle system
informed by the true lyrics benefits from being fused with
a tonal-based one. This, once again, demonstrates both
branches are acutely complementary to address the cover
song detection problem. Future works will extend our sys-
tem to take into account cases where lyrics are available
for a part of the dataset.

6. CONCLUSION

Using only audio, we have proposed a framework that ex-
plicitly leverages two types of similarities, tonal and lyrics
based, and reach high accuracy levels while remaining
simple and scalable. With that said, work on more diverse
data still remains to be done, notably on non-English tracks
where performances seem to be limited.

Future work will include replacing the current mono-
lingual lyrics recognition with a multilingual framework.
A multilingual similarity, capable of detecting the similar-
ity of two texts based on their semantic content, indepen-
dently of their language, will also be defined and evaluated.
More generally, the Da-Tacos dataset is quite biased to-
wards popular western music. Additional experimentation
on a wider range of genres, notably none western music,
and cover types (e.g. karaoke, renditions, etc.) remains
to be conducted. Finally, we will explore more elaborate
fusion schemes, specifically, a mid-level fusion which can
be further optimized and possibly lead to improved perfor-
mance.
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ABSTRACT

BERT has proven to be a powerful language model in
natural language processing and established an effective
pre-training & fine-tuning methodology. We see that mu-
sic, as a special form of language, can benefit from such
methodology if we carefully handle its highly-structured
and polyphonic properties. To this end, we propose Muse-
BERT and show that: 1) MuseBERT has detailed spec-
ification of note attributes and explicit encoding of mu-
sic relations, without presuming any pre-defined sequential
event order, 2) the pre-trained MuseBERT is not merely a
language model, but also a controllable music generator,
and 3) MuseBERT gives birth to various downstream mu-
sic generation and analysis tasks with practical value. Ex-
periment shows that the pre-trained model outperforms the
baselines in terms of reconstruction likelihood and genera-
tion quality. We also demonstrate downstream applications
including chord analysis, chord-conditioned texture gener-
ation, and accompaniment refinement.

1. INTRODUCTION

BERT [1] has proven to be one of the leading language
models in natural language processing, which learns nat-
ural language representation in an unsupervised manner
and achieved state-of-the-art results in many downstream
language understanding tasks. The methods involved in
BERT are not unfamiliar in the music domain. For ex-
ample, the “masked language model” (MLM) objective
in BERT is similar to the Bach chorale inpainting stud-
ies [2–4], where the grids in a four-part piano-roll are ran-
domly masked and the model is trained to reconstruct them
from context. The Transformer architecture has also been
applied to different styles of music generation [5, 6].

We aim to develop a pre-trained music-domain BERT
for better music understanding and generation. A straight-
forward approach is to use existing music representations
used in existing Transformer-based models, such as MIDI-
like representations [5,7], REMI [6], or CP [8], and simply
train the original BERT model. However, we argue that

© Z. Wang, and G. Xia. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Z. Wang, and G. Xia, “MuseBERT: Pre-training of Music Representation
for Music Understanding and Controllable Generation”, in Proc. of the

22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

such approach overlooks major distinctions between mu-
sic and natural language. Firstly, unlike natural language,
music (especially polyphony) does not follow a unique se-
quential order; abruptly flatten music into a 1-d sequence
imposes extra protocol and often undermines the local
structure of music, adding extra burden to the model. Sec-
ondly, music involves rich relations and contexts. A single
music event is barely meaningful, and common music con-
cepts such as rhythmic patterns and harmonies are estab-
lished upon relative positions of notes. However, current
sequential models, in particular Transformer-based mod-
els, still struggle to capture these relations [9].

To overcome the limits above, we propose MuseBERT,
a Transformer-based pre-trained model with tailored han-
dling of music positional information and music rela-
tions. 1 Since the innate music positions are expressed in
the time-frequency space, we use onset and pitch infor-
mation as the absolute positional encoding, which can be
masked at the input and then reconstructed at the out-
put. Moreover, multiple musical relations are represented
via the design of generalized relative positional encoding
(RPE) modified from the original RPE design [10]. In
our implementation, we find the traditional sequential po-
sitional encoding unnecessary, and thus our model does not
rely on any pre-defined sequential assumptions.

Under such tailored design, we show the pre-trained
MuseBERT is not merely a language model but also a
controllable music generator. In the fine-tuning stage,
the model naturally empowers a wide spectrum of fine-
tuning tasks, involving both music analysis and genera-
tion. Specifically, we showcase that MuseBERT can per-
form polyphonic music generation controlled by chord and
texture, chord extraction, and accompaniment refinement.
In summary, the contributions of this paper are:

• We demonstrate the possibility and importance of
training a Transformer-based music language model
in an unordered approach.

• We develop generalized RPE for BERT-like models,
which not only reveals music relations from multiple
perspectives but also has a potential to be adopted to
other domains.

• We show MuseBERT, as a controllable music gener-
ator, giving the fine-tuning procedure practical mu-
sic meanings.

1 Code and demos can be accessed via https://github.com/
ZZWaang/musebert.
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2. DATA REPRESENTATION

Unlike natural language processing, there is not a common
way to tokenize symbolic music. A music piece is gen-
erally considered as a combination of note events, where
each note event is a tuple of attributes. Note-based to-
kenization is commonly seen in music-tailored packages
[11, 12], softwares [13–15], and researches [8, 16, 17]. On
other occasions, mainly for the ease of neural network
modeling, music is also simplified as a sequence of con-
trols with pre-defined order, such as MIDI-like event rep-
resentation [5,7] (including its follow-up methods [6]), and
frame-wise piano-roll representations [2, 18–20].

In MuseBERT, we consider note-based tokenization
without presumption of any sequential order. Specifically,
we invent two note-based music representations for Muse-
BERT: basic data representation and factorized data rep-

resentation, denoted by Rbase and Rfac respectively. A mu-
sic input is first encoded as Rbase, and then converted into
Rfac, serving as the input format to MuseBERT.

In this paper, we primarily consider 2-bar music seg-
ments in 4/4 time signature. Longer music and richer time
signatures can be generalized and we leave it for future
study.

2.1 Rbase and Rfac

Rbase represents a music segment X as an unordered set

of note events {xi}Ni=1, and a note event xi 2 X consists
of three attributes: onset (o), pitch (p), and duration (d),
where o 2 [0..31] and d 2 [0..32] are counted by semi-
quavers, and p 2 [0..127] is the MIDI note number. 2 We
denote the attribute set of Rbase by Abase := {o, p, d} and
use xi.a, a 2 Abase to indicate the attribute a of a note
event xi.

Rbase is not the MuseBERT input data format because
the representation is ambiguous for BERT-like models to
reconstruct well. Consider, for example, two simultaneous
quarter notes in a music segment that are unordered (by
definition of Rbase) and whose attributes except p are the
same. When their pitch attributes are masked at the input,
the two tokens have completely the same encoding and are
unable to be distinguished by BERT, in which case BERT
will yield the same output distributions.

We therefore invent Rfac which is unambiguous for
MuseBERT (proved in section 4). Rfac also represents a
music segment as an unordered set of note events, but it
uses a more detailed attribute set Afac (discussed in sec-
tion 2.2), and contains a stack of relation matrices storing
pairwise note relations (discussed in section 2.3).

2.2 Factorized Attributes

In Rfac, onset, pitch, and duration, due to their hierarchical
nature [21,22], are regarded as meta-attributes to be factor-
ized. The factorization operation we will introduce is anal-
ogous to storing a number by its digits (e.g., 49 7! [4, 9]),

2 We use [a..b] to denote the integer interval {x|a  x  b, x 2 Z}
including both endpoints.

so that we can mask partial information at certain hierar-
chy (e.g., [4, MASK]) and the remaining information is still
retained. In music, musicians sometimes prefer to interpret
49 as 50� 1 rather than 40 + 9, depending on the context.
Such subtlety is welcomed by our design.

2.2.1 Onset and Duration Factorization

We factorize onset (o) into beat position (o_bt 2 [0..8])
and subdivision (o_sub 2 [0..4]), and duration d into half

note counts (d_hlf 2 [0..4]) and the remainder semiqua-

ver counts (d_sqv 2 [0..7]), satisfying

o = (4⇥ o_bt+ o_sub), (1)
d = (8⇥ d_hlf+ d_sqv). (2)

We allow o_sub to take both positive and negative values,
since a subdivision can be interpreted as an “off-beat” of
the current downbeat, or an “upbeat” preceding the next
downbeat. Consequently, the o attribute can be mapped to
multiple {o_bt, o_sub) pairs, e.g., {o :1} maps to {o_bt :
0, o_sub :1} or {o_bt :1, o_sub :�3}.

In our implementation, we non-deterministically sam-
ple one of the factorizations. In the future, a posterior dis-
tribution of p(o_bt, o_sub|o, X) can be explored in finer
detail.

2.2.2 Pitch Factorization

We factorize pitch in a similar fashion into three attributes:
1) pitch highness (p_hig 2 [0..6]): voice types (e.g.,
SATB), 2) pitch register (p_reg 2 [0..2]): the relative oc-
tave given p_hig, and 3) pitch degree (p_deg 2 [0..11]),
satisfying:

p =

8
>><

>>:

24 + 12⇥ (p_hig+ p_reg)
+p_deg,

0  p_hig  4

12⇥ p_reg+ p_deg, p_hig = 5

108 + 12⇥ p_reg+ p_deg, p_hig = 6.
(3)

Here, 0  p_hig  4 corresponds to the pitch range of a
standard piano (MIDI pitch 24-107), and p_hig = 5 and
p_hig = 6 handles the extra-low or extra-high regions,
respectively. Similar to onset, pitch factorization is also
handled non-deterministically, since a pitch can be inter-
preted as a lower voice type having a high register, or a
higher voice type having a low register.

To summarize, Rfac uses the attribute set:

Afac := {o_bt, o_sub, p_hig, p_reg,
p_deg, d_hlf, d_sqv}. (4)

2.3 Note Event Relations

Music is rich in relations and we explicitly represent the
most fundamental relations in Rfac. We consider less-than,
equal-to, and greater-than relations on a subset of attributes
S := {o, o_bt, p, p_hig}. Specifically, 8a 2 S , we de-
fine a mapping �a from an input note event pair (xi, xj) to
their relation symbol: 3

3 When a = o, xi.o is a shorthand notation interpreted as the return
value of Eqn (1). A similar case holds when a = p.
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Figure 1. The workflow of MuseBERT pre-training.

�a(xi, xj) =

8
><

>:

<a, xi.a < xj .a

⌘a, xi.a ⌘ xj .a

>a, xi.a > xj .a.
(5)

The relation symbols are stored using a stack of N ⇥N
relation matrices, denoted by RS := {Ra|a 2 S}, where
Ra = {raij} and raij = �a(xi, xj).

3. PRE-TRAINING MUSEBERT

Figure 1 shows the overall pre-training stage. A music data
is first read as Rbase format as Xbase, and then stochasti-
cally converted to Rfac consisting of unordered note events
X fac and relation matrices RS . Similar to BERT, the
pre-training stage uses “masked language model” (MLM)
training objective, where X fac and RS will be corrupted
before fed into MuseBERT, which is trained to reconstruct
the original music segment.

3.1 Data Corruption

The original BERT randomly selects a part of the input
tokens to be corrupted. In MuseBERT, data corruption has
finer controls: 1) it operates on individual attributes of a
note event rather than an entire token, and 2) it corrupts
relation matrices as well.

For note events X fac, the corrupter randomly selects
15% of the note events C ⇢ X , and corrupts their at-
tributes {xi.a|xi 2 C, a 2 Afac} in one of the three ways:
1) masked with [MASK]a 80% of the time, 2) replaced with
a random token 10% of the time, and 3) kept unchanged
10% of the time. Each attribute is corrupted independently
of the choice of the other attributes. For relation matrices
RS , each matrix entry will be masked 30% of the time in-
dependently. Before corruption, a re-computation of the

matrix may be required so as to maintain matrix symmetry
and align with the attributes that are replaced with other
values.

We denote the representation after corruption as R⇤
fac,

and the resulting note events and relation matrices as X⇤

and R⇤
S , respectively.

3.2 Overall Model Architecture

The model adopts the bi-directional Transformer encoder
architecture based on the original Transformer implemen-
tation described in [23]. The input to the model is the
embedding of a corrupted music segment X⇤ = {x⇤

i }Ni=1.
The embedding is computed as the sum of all attribute em-
beddings:

Emb(x⇤
i ) =

X

a2Afac

Emba(x⇤
i .a). (6)

Here Emba(·) are linear embedding layers and the de-
fault absolute positional encoding is not applied due to un-
orderedness. R⇤

S is fed into the model as generalized rel-

ative positional encoding to be discussed in detail in sec-
tion 3.3.

The output is a distribution of reconstructed note events
in Rfac, denoted by X̂ = {x̂i}Ni=1. Specifically, let h1:N

be the last hidden vector of the Transformer encoder, each
note attribute is reconstructed by a separate linear transfor-
mation normalized with a softmax layer:

pmodel(x̂i.a|X⇤, R⇤
S) = softmax(FFNa(hi)). (7)

The training loss is the mean of the negative log-likelihood
on corrupted attributes {xi.a|xi 2 C, a 2 Afac} only:
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L(X̂|X⇤, R⇤
S) =

� 1

|C|
X

{i|x⇤
i 2C}

⇣ X

a2Afac

log pmodel(x
fac
i .a|X⇤, R⇤

S)
⌘

, (8)

From the denoising autoencoder perspective [24], we
define the reconstruction distribution precon(X̂|X⇤, R⇤

S) in-
duced from Eqn (7) for later analysis purposes:

precon(X̂|X⇤, R⇤
S) :=

NY

i=1

precon(x̂i|X⇤, R⇤
S), where

precon(x̂i|X⇤, R⇤
S) :=

Y

a2Afac

precon(x̂i.a|X⇤, R⇤
S) and

precon(x̂i.a|X⇤, R⇤
S) :=

(
pmodel(x̂i.a|X⇤, R⇤

S), xi 2 C

{x̂i.a⌘x⇤
i .a}, otherwise.

(9)

In other words, during inference, we sample from pmodel
for corrupted tokens while simply keeping the uncorrupted
tokens.

3.3 Generalized Relative Positional Encoding

Let h1:N be the hidden vectors at any Transformer layer.
We add additional key-relation embeddings EmbKS (·) of
the relations in the query-value product term by

eij =
hiWQ

⇣
hjWK +

P
a2S EmbKa (raij)

⌘T

p
dz

, (10)

where dz is the hidden vector size of attention heads,
WQ,WK are query and key transformations, and eij is
used to compute attention weights.

Similarly, we also add value-relation embeddings

EmbVS (·) in the attention weight application:

zi =
NX

j=1

↵ij

⇣
hjW

V +
X

a2S
EmbV

a (r
a
ij)

⌘
, (11)

where ↵ij = softmaxj(eij), WV is the value transforma-
tion, and zi is fed into the position-wise feed-forward sub-
layer to compute the next layer’s hi.

In our implementation, both key-relation embeddings
and value-relation embeddings are linear transforms. In
addition, for different attention layers and attention heads,
we train different embeddings.

We call the above operation generalized relative po-
sitional encoding (RPE) because the summation of key-
relation and value-relation embeddings allows us to hint
the MuseBERT from multiple musical perspectives (at-
tribute relations), which is not considered in the original
RPE implementation [10].

4. THEORETICAL ANALYSIS

In this section, we first show that Rfac and generalized rel-
ative positional encoding are theoretical necessities for a

BERT model to handle unordered data. We further show
that MuseBERT is a powerful controllable music genera-
tor, giving birth to various fine-tuning tasks with musical
merits.

4.1 Well-definedness of MuseBERT

The fundamental assumption made in MuseBERT is the
refusal of traditional sequential positional encoding. In
return, the mathematical property of MuseBERT we gain
is permutation invariance, i.e., the input order will not
change the model output. On the other hand, a natural
downside of a permutation invariant model is ambiguity:
without extra efforts, masked tokens will have the same
output distributions and hence not distinguishable.

The problem is solved by factorized data representa-
tion and generalized RPE because the former allows us
to specify music in more detail. We summarize the dis-
cussion with the well-definedness theorem of MuseBERT.
Part one of the theorem is maintained by the property of
Transformer [25], and part two is self-evident from the dis-
cussion so far.

Theorem 1 (Well-definedness) Pre-training MuseBERT

is well-defined: Let (X⇤, R⇤
S) be a corrupted music seg-

ment in Rfac:

1) (Permutation invariance) Let �(·) be an arbitrary per-

mutation. The reconstruction distribution is unchanged af-

ter permutation:

precon(X̂|X⇤, R⇤
S) ⌘ precon(�(X̂)|�(X⇤),�(R⇤

S))

2) (Unambiguity) For arbitrary pair of xi, xj 2 X⇤
, whose

attributes are corrupted but their note relations are not,

the reconstruction distributions of the two tokens are not

always the same, i.e., there exists a set of model parameters

such that

precon(x̂i|X⇤, R⇤
S) 6= precon(x̂j |X⇤, R⇤

S).

4.2 MuseBERT as a Music Generator

The operations of MuseBERT can be regarded as a sin-
gle round of a Markov chain transition which alternatively
adds noise and denoises (as shown in Figure 1), consisting
of four steps: 1) stochastic data conversion to Rfac, 2) data
corruption, 3) MuseBERT reconstruction, and 4) determin-
istic data conversion to Rbase.

Benjio et al. [26] showed such transition induced from
denoising autoencoder is a special type of Generative
Stochastic Network and proved that under mild condition,
the transition operations form a Markov Chain whose sta-
tionary distribution is the true data distribution. Hence, we
conclude the pre-training MuseBERT can be used as the
MCMC transition operator, and generates music via itera-
tive sampling.

4.3 Controllability of MuseBERT

Moreover, we show that MuseBERT is a Constraint Op-
timization Problem (COP) solver [27] by regarding uncor-
rupted attributes or relations as unary or binary constraints,
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respectively. The COP has the form:

max
X̂

precon(X̂|X⇤) (12)

s.t. x̂i.a = x⇤
i .a, 8x⇤

i /2 C, a 2 Afac

�a(xi, xj) = �a(x
⇤
i , x

⇤
j ),

8a 2 S if �a(x⇤
i , x

⇤
j ) uncorrupted.

Apparently, music continuation and in-painting can be
formalized as a special COP problem, and monophony,
melodic directions, rhythmic patterns, texture, etc. are all
expressible concepts by MuseBERT constraints. Hence,
MuseBERT, as a music generator, is also controllable,
which can be fine-tuned to solve problem-specific gener-
ation tasks and controls.

5. FINE-TUNING MUSEBERT

By defining problem-specific data corrupters, we can fine-
tune the model for a wide spectrum of conditioned music
generation tasks, such as music continuation, inpainting,
rhythm or texture-conditioned music generation. In this
section, we in turn show two less obvious applications by
fine-tuning, in which we extend the vocabulary of Rfac to
represent chord and vocal tracks, and apply MuseBERT for
both generation and analysis.

5.1 Case 1: Texture Generation and Chord Analysis

MuseBERT can be fine-tuned for chord and texture con-
trols, which are commonly-studied controlling factors in
automatic music generation [28, 29]. The fine-tuning task
is set by slight modification from the pre-training stage
in two steps: 1) We represent chord progression as Rfac
events and prepend it to the music segment. Specifically,
we define p_hig = 7 for chord event, with p_reg =
0, p_reg = 1, p_reg = 2 for chord root, chroma, and
bass, respectively. 2) We apply an additional “in-chord”
inter-relation to indicate whether a note event is a chord-
tone or not. The conditioned generation can be trained by
masking all the attributes from the music segment while
keeping the chord attributes and all relations. Figure 2
shows an example of music generation conditioned on the
texture in Figure 2(a) and the chord F major. The gener-
ated segment keeps the textural property and deals with
inner voices smoothly (shown by the red boxes).

Similarly, by corrupting the chord events and “in-
chord” relation, while maintaining the music segment and
the other relations, the model can learn to extract chord
progressions from a given piece. The fine-tuning result
on POP909 [30] shows the model has a 99.35% accuracy
on token-wise (MIDI) chord extraction (99.37% for root,
99.05% for chroma and 99.35% for bass).

5.2 Case 2: Accompaniment Refinement

In the accompaniment refinement task, we want to refine
an imperfect accompaniment according to a given lead
melody. To achieve this, we represent the melody and
the accompaniment both as Rfac and concatenate them

Figure 2. An example of controlled generation by speci-
fying chord and texture.

together. We then randomly corrupt some accompani-
ment attributes while keeping the melody and relations
unchanged during training. Figure 3 shows an example
of accompaniment refinement from a corrupted sample
Figure 3(a). In (a), the red note heads mark the note being
replaced and the masked notes are replaced by rests. The
result shows that the generated piece is more consistent
with the melody while keeps the original musical content.

Figure 3. An example of accompaniment refinement con-
ditioned on melody.

6. EXPERIMENTAL RESULT

6.1 Dataset and Training

We collect around 5K classical and popular piano pieces
from Musicalion 4 and the POP909 dataset [30]. We only
keep the pieces with 2/4 and 4/4 meters and cut them into
8-beat music segments. In all, we have 19.8K samples. We
randomly split the dataset (at song-level) into training set
(90%) and test set (10%). All training samples are further
augmented by transposing to all 12 keys.

We pre-train our MuseBERT using 12 Transformer lay-
ers with 8 attention heads, 0.1 dropout rate, and GELU ac-

4 Musicalion: https://www.musicalion.com.
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tivation [31]. The hidden dimensions of self-attention and
position-wise feed-forward layers are dmodel = 256 and
dff = 512. We train with a batch size of 128 and Adam op-
timizer with learning rate of 5e-4 and linear learning rate
decay to 5e-6 after 15K warmup steps. The pre-training
takes 20 epochs to converge.

In fine-tuning tasks, we kept the same hyperparameters
except the initial learning rate is 2e-4 without warmup. The
epochs to fine-tune the model are task-specific, approxi-
mately 4 epochs on average.

6.2 Objective Evaluation

Given that Rfac and data corruption are stochastic, we eval-
uate the expectation of reconstruction likelihood in terms
of token-wise onset, pitch and duration, similar to the algo-
rithm in [4]. We compare among 1) the pre-trained Muse-
BERT, 2) the fine-tuned models using attribute-specific
data corrupters, and three baseline models ablating the use
of factorized attributes Afac and binary relations. Table 1
summarizes the results where we see our pre-trained model
outperforms the baselines on all three criteria and the fine-
tuned model can perform even better. The use of Afac and
binary relations not only makes the model well-defined,
but also are crucial for high-quality reconstruction.

Models Onset Pitch Duration
Afac w/ rel (ours) 0.902 ± 0.002 0.813 ± 0.003 0.815±0.003
Afac w/o rel⇤ 0.472 ± 0.002 0.740 ± 0.004 0.743 ± 0.003
Abase w/ rel 0.856 ± 0.001 0.785 ± 0.004 0.785 ± 0.003
Abase w/o rel⇤ 0.488 ± 0.003 0.733 ± 0.003 0.733 ± 0.002

Afac w/ rel (fine-tuned) 0.958 ± 0.001 0.924 ± 0.002 0.927 ± 0.002

Table 1. Objective evaluation of the expectation of recon-
struction likelihood. Here, “w/ rel” and “w/o rel” indicates
whether generalized RPE is applied, and “⇤” indicates the
ill-defined models.

6.3 Self-attention Visualization

We observe that different attention heads of multiple lay-
ers in the pre-trained MuseBERT captures high-level mu-
sic knowledge. As shown in Figure 4, metrical structure
is revealed in (a) & (b), and voice-leading can be seen in
(c) & (d). We show the attention matrices on a piano-roll
for better interpretability, where an arrow xi ! xj shows
the (j, i) entry and the brightness indicates the attention
strength.

6.4 Subjective Evaluation of Music Generation

We invite people to subjectively rate the generation qual-
ity of the pre-trained model through a double-blind on-
line survey. During the survey, the subjects listen to 8
groups of samples, each containing 4 generated segments
together with a ground-truth human composition. The gen-
erated segments come from the four models (the same as
in Table 1 excluding the fine-tuned model) with the same
initial corruption state (60% of the total tokens) from the
original piece. Both the order of groups and the sample
order within each group are randomized. After listening

Figure 4. Visualization of attention matrices on selected
self-attention layers in pre-trained MuseBERT.

Figure 5. Subjective evaluation results on pre-trained
MuseBERT.

to each sample, the subjects rate them based on a 5-point
scale from 1 (very low) to 5 (very high) according to three
criteria: creativity, naturalness and musicality.

A total of 37 subjects (15 females and 22 males) with
different musical backgrounds have completed the survey.
The aggregated result (as shown in Figure 5) shows that
the pre-trained models considering music relations (the
well-defined models) are significantly better than the mod-
els without relations (the ill-defined models) (with p-value
< 0.005), and are marginal to the human composition
(with p-value > 0.05).

7. CONCLUSION

In conclusion, we contributed MuseBERT, a full treatment
of BERT in the music domain as a powerful music un-
derstanding and generation model. The main novelty lies
in the proposed generalized relative positional encoding,
which successfully reveals the non-sequential, polyphonic
structure of music and at the same time turns the masked
language model objective into a well-defined controllable
generative framework. Also, with the music-tailored fac-
torized data representation, the controls are fine-grained.
Furthermore, by fine-tuning MuseBERT, we demonstrate
that the model is general purpose, capable of various
downstream tasks such as chord analysis, accompaniment
generation and refinement etc. as long as the constraints
can be expressed via binary relations of different music at-
tributes.
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ABSTRACT

Music structure analysis (MSA) methods traditionally
search for musically meaningful patterns in audio: homo-
geneity, repetition, novelty, and segment-length regularity.
Hand-crafted audio features such as MFCCs or chroma-
grams are often used to elicit these patterns. However,
with more annotations of section labels (e.g., verse, chorus,
bridge) becoming available, one can use supervised feature
learning to make these patterns even clearer and improve
MSA performance. To this end, we take a supervised met-
ric learning approach: we train a deep neural network to
output embeddings that are near each other for two spec-
trogram inputs if both have the same section type (accord-
ing to an annotation), and otherwise far apart. We propose
a batch sampling scheme to ensure the labels in a train-
ing pair are interpreted meaningfully. The trained model
extracts features that can be used in existing MSA algo-
rithms. In evaluations with three datasets (HarmonixSet,
SALAMI, and RWC), we demonstrate that using the pro-
posed features can improve a traditional MSA algorithm
significantly in both intra- and cross-dataset scenarios.

1. INTRODUCTION

In the field of Music Structure Analysis (MSA), most algo-
rithms, including many recent and cutting-edge ones [1–3],
use conventional features such as MFCCs and Pitch Class
Profiles (PCPs). Devising a suitable feature for MSA is
challenging, since so many aspects of music—including
pitch, timbre, rhythm, and dynamics—impact the percep-
tion of structure [4]. Some methods have aimed to com-
bine input from multiple features [5], but this requires care:
MSA researchers have long been aware that structure at
different timescales can be reflected best by different fea-
tures (see, e.g., [6]).

A common story in MIR in the past decade is that us-
ing feature learning can improve performance on a task.
Although this wave of work arrived late to MSA, we have
already seen the benefits of supervised learning to model,
for instance, ‘what boundaries sound like’ [7], or ‘what
choruses sound like’ [8]. One drawback of these two meth-

© J.-C. Wang, J. B. L. Smith, W.-T. Lu, and X. Song. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: J.-C. Wang, J. B. L. Smith, W.-T. Lu, and
X. Song, “Supervised Metric Learning for Music Structure Features”, in
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Figure 1. The training pipeline.

ods was that they were not compatible with existing MSA
pipelines: new post-processing methods had to be con-
ceived and implemented. Also, each one solved a limited
version of MSA: segmentation and chorus detection, re-
spectively. Developing a supervised approach that can ex-
plicitly minimize the losses of segmentation and labeling
tasks at the same time remains a challenge.

In [9], unsupervised training was used to create a deep
embedding of audio based on a triplet loss that aimed to re-
flect within-song similarity and contrast. The embedding
vectors, treated as features, can directly replace traditional
features in existing MSA pipelines, making it possible to
leverage large, unannotated collections for MSA. This ap-
proach demonstrates the promise of learning features with
a deep neural network (DNN) for MSA.

An unsupervised approach has so far been sensible,
given how few annotations exist, and how expensive it is
to collect more. However, the appeal of supervised learn-
ing has grown with the introduction of Harmonix Set [10],
containing 912 annotated pop songs. Although Harmonix
Set is smaller than SALAMI [11] (which has 1359 songs),
it is much more consistent in terms of genre, which raises
our hopes of learning a useful embedding. A model trained
on SALAMI alone would have to adapt to the sound and
structure of pop music, jazz standards, piano concertos,
and more; a model trained on Harmonix Set has only to
learn the sound and structure of pop songs. In short, the
time is right to pursue a supervised approach.

In this paper, we propose to use supervised metric learn-
ing to train a DNN model that, for a given song, will em-
bed audio fragments that lie in different sections far apart,
and those from the same section close. (See Fig. 1 for
an overview of the training pipeline.) This approach can
help the model to capture the homogeneity and repetition
characteristics of song structure with respect to the sec-
tion labels (e.g., verse, chorus, and bridge). We also pro-
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pose a batch sampling scheme to ensure the labels in a
training pair are interpreted meaningfully. Given several
relevant open-source packages that can help achieve this
work, we introduce a modular pipeline including various
metric learning methods and MSA algorithms, and make
clear what parts of the system can be easily changed. By
using the embeddings as features for an existing MSA al-
gorithm, our supervised approach can support both seg-
mentation and labeling tasks. In experiments, we leverage
Harmonix Set, SALAMI, and RWC [12] to investigate the
performance in intra- and cross-dataset scenarios.

2. RELATED WORK

Many MSA approaches (see [13] for an overview) are su-
pervised in the sense of being tuned to a dataset—e.g., by
setting a filter size according to the average segment du-
ration in a corpus. An advanced version of this is [14],
in which a recurrence matrix is transformed to match the
statistics of a training dataset. However, supervised train-
ing has only been used in a few instances for MSA.

The first such method used supervision to learn a notion
of ‘boundaryness’ directly from audio [7]; the method was
refined to use a self-similarity lag matrix computed from
audio [15]. Similarly, [8] used supervision to learn what
characterizes boundaries as well as “chorusness” in audio,
and used it in a system to predict the locations of choruses
in songs, which is a subproblem of MSA. Although these
3 systems all have an ‘end-to-end’ flavor, in fact they re-
quired the invention of new custom pipelines to obtain es-
timates of structure, e.g., a peak-picking method to select
the likeliest set of boundaries from a boundary probabil-
ity curve. The post-processing is also complex in [16], in
which a boundary fitness estimator similar to [15] is com-
bined in a hybrid model with a trained segment length fit-
ness estimator and a hand-crafted timbral homogeneity es-
timator. In our work, we aim to arrive at a feature repre-
sentation that can be used with existing pipelines.

Taking the converse approach, [2] used supervision to
model how traditional features (MFCCs, CQT, etc.) relate
to music structure, using an LSTM combined with a Hid-
den semi-Markov Model. Since our approaches are com-
plementary, a combined approach—inputting deep struc-
ture features to the LSTM-HSMM—may prove successful,
and should be explored in future work.

As noted in the previous section, metric learning was
previously applied to improve MSA by [9], but that work
took an unsupervised approach: audio fragments in a piece
were presumed to belong to the same class if they were
near each other in time, and to different classes otherwise.
This is a useful heuristic, but by design we expect it to
use many false positive and false negative pairs in training.
Also, that work did not report any evaluation on whether
the learned embeddings could help with the segment label-
ing task, nor on the impact of many choices made in the
system that could affect the results: the model architec-
ture, loss function, and segmentation method. In this work,
we conduct evaluations on the segmentation and labeling
tasks, and investigate the impact of these design choices.

The supervision strategy in this work differs from prior
art, and to our knowledge, this work represents the first
attempt to develop supervised feature learning with a goal
of improving existing MSA algorithms.

3. SYSTEM OVERVIEW

The training pipeline of our proposed system is illustrated
in Fig. 1, and is divided into three stages: (1) feature ex-
traction, (2) mining and training, and (3) validation.

The feature extraction stage consists of two modules.
Following most state-of-the-art MSA algorithms [13], we
synchronize the audio features with beat or downbeats. We
use madmom [17] to estimate the beats and downbeats, and
use these to create audio inputs to train a DNN; details of
this are explained in Section 4.1. The network outputs the
embedding vectors of a song for a subsequent algorithm to
complete the task.

The mining and training stage covers four modules:
batching, which we define ourselves, followed by miner,
loss and distance modules, for which we use PML
(pytorch-metric-learning 1 ), an open-source package with
implementation options for each.

Batching: The training data are split into batches with a
fixed size. To allow sensible comparisons among the train-
ing examples within a batch, we propose a scheme that en-
sures a batch only contains examples from the same song.

Miner: Given the embeddings and labels of examples
in a batch, the miner provides an algorithm to pick infor-

mative training tuples (e.g., a pair having different labels
but a large similarity) to compute the loss. Conventional
metric learning methods just use all tuples in a batch (or,
sample them uniformly) to train the model. As the batch
size grows, using an informative subset can speed up con-
vergence and provide a better model [18].

Loss: PML provides many well-known loss func-
tions developed for deep metric learning, such as con-
trastive loss [19] and triplet loss [20]. We instead use
MultiSimilarity loss [18] (see Section 4.4), a more gen-
eral framework that unifies aspects of multiple weighting
schemes that has not yet been used in an MIR application.

Distance: The distance metric defines the geometrical
relationship among the output embeddings. Common met-
rics include Euclidean distance and cosine similarity.

For the validation stage, an MSA algorithm is adopted
to generate the boundary and label outputs and validate the
model learning status in terms of music structure analy-
sis. The open-source package MSAF has implemented a
representative sample of traditional algorithms [21]. An
algorithm for a different task could be inserted here to tie
the training to a different objective.

4. TECHNICAL DETAILS

4.1 Deep Neural Network Module

The input to the DNN module is defined to be a window
(e.g. 8 second) of waveform audio, and the output to be a

1 https://github.com/KevinMusgrave/pytorch-metric-learning
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Figure 2. Each red box presents a window mode.

multi-dimensional embedding vector. We use a two-stage
architecture in which the audio is transformed to a time-
frequency representation before entering the DNN, but a
fully end-to-end DNN would be possible.

In this work, we study two existing two-stage model
architectures: Harmonic-CNN [22] and ResNet-50 [23].
These open-source architectures have shown good perfor-
mance in general-purpose music audio classification (e.g.,
auto-tagging [22]), so we believe they can be trained to
characterize useful information related to music sections.
We replace their final two layers (which conventionally
consist of a dense layer plus a sigmoid layer) with an em-

bedding module, which in turn contains a linear layer, a
leaky ReLU, a batch normalization, a linear layer, and a
L2-normalization at the output. The input and output di-
mensions of this module are 256 and 100, respectively.

Any model with a similar purpose could be used for the
DNN module in the proposed general framework. We have
chosen the above architectures for their convenience, but
they could be unsuitably complex given the small size of
the available MSA training data. Developing a dedicated,
optimal architecture is a task for future work.

4.2 Audio Input, Alignment, and Label

In order to synchronize the output embeddings with down-
beats, we align the center of an input window to the center
of each bar interval. The same procedure applies if align-
ing to beats. Typically, the input window is much longer
than the duration of a bar, so there is additional context au-
dio before and after the downbeat interval. We try three
windowing methods that weight this context differently,
also as illustrated in Fig. 2: center-mode, where the win-
dow is unaltered; alone-mode, where the context audio is
zeroed out; and Hann-mode, where a Hann-shaped ramp
from 0 to 1 is applied to the context audio. In our pilot
studies, Hann-mode performed best, indicating that some
context is useful, but the model should still focus on the
signal around the center.

Annotations of structure contain, for each section, two
timestamps defining the interval, and a label. These labels
may be explicit functions (e.g., intro, verse, chorus) or ab-
stract symbols (e.g., A, A0, B, and C) indicating repetition.
A training example is assigned with a label according to

Algorithm 1: One epoch of learning procedure.

Input: {[sji ]
mj

i=1}Mj=1 , model ⇥, and batch size �

Output: Learned model ⇥̂
1 for j = 1 to M do
2 [sji0 ]

mj

i0=1  shuffle sequence [sji ]
mj

i=1

3 n dmj/�e // number of batches
4 if n > 1 then
5 r  n� �mj // space in batch

6 [sji0 ]
n�
i0=1  concat [sji0 ]

mj

i0=1 and [sji0 ]
r
i0=1

7 for k = 1 to n do
8 B  {sji0}, i0 = �(k � 1) : min(�k,mj)

9 ⇥̂ update ⇥ with loss computed on B

the label of the exact center in the input audio. We denote
a training example aligned with the ith beat/downbeat of
the jth song by sji = (xj

i , y
j
i ), where x and y are the audio

and label, respectively.

4.3 Batch Sampling Scheme

Let a dataset be denoted by {[sji ]
mj

i=1}Mj=1, where the jth

song has mj examples. The proposed batch sampling
scheme ensures that no cross-song examples are sampled
in a batch. Therefore, when comparing any examples
within a batch, the labels are meaningful for supervision.
For example, we do not want a chorus fragment of song A
to be compared with a chorus fragment of song B, since
we have no a priori way to know whether these should be
embedded near or far in the space.

Algorithm 1 gives the procedure for one epoch, i.e., one
full pass of the dataset. We shuffle the original input se-
quence (line 2) to ensure that each batch is diverse, con-
taining fragments from throughout the song. Lines 4–6
ensure, when more than one batch is needed for a song, the
last batch is full by duplicating examples within the song.
Once a batch is sampled (line 8), we can run a miner to
select informative pairs from the batch to calculate the loss
to update the model.

4.4 Miner and Loss

The MultiSimilarity framework [18] uses three types of
similarities to estimate the importance of a potential pair:
self-similarity (Sim-S), positive relative similarity (Sim-P),
and negative relative similarity (Sim-N). The authors show
that many existing deep metric learning methods only con-
sider one of these types when designing a loss function. By
considering all three types of similarities, MultiSimilarity
offers stronger capability in weighting important pairs, set-
ting new state-of-the-art performance in image retrieval.
From our experiments, it also demonstrates better accuracy
over other methods.

For an anchor sji , an example sjk will lead to a posi-
tive pair if they have the same label (i.e., yji = yjk), and
a negative pair otherwise (i.e., yji 6= yjk). At the minor
phase, the algorithm calculates the Sim-P’s for each pos-
itive/negative pair against an anchor, and selects the chal-
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Figure 3. Four SSMs using different features for a test song Avril Lavigne - Complicated: two versions of the proposed
embeddings (left), and two standard features (right). Below the SSMs are the segments and labels for the ground truth
analysis, plus the estimated analyses from three algorithms. The block colors indicate the label clusters within a song.

lenging pairs when certain conditions are satisfied. At the
loss phase, it uses the Sim-S’s and Sim-N’s to calculate the
weights for the positive and negative pairs, respectively,
where the weights are actually the gradients for updating
the model. To summarize, MultiSimilarity aims to mini-
mize intra-class dissimilarity at the mining stage, and to
simultaneously maximize intra-class similarity and mini-
mize inter-class similarity at the loss stage. In musical
terms, the desired result is that fragments with the same
section type will be embedded in tight clusters, and that
clusters for different sections will be far from one another.

4.5 MSA Algorithms

The typical input to an MSA algorithm [21] is a sequence
of feature vectors. Then, the algorithm outputs the pre-
dicted timestamps and an abstract label for each segment.

Fig. 3 presents four self-similarity matrices (SSMs) of
the same test song using different features. We compute
the pairwise Euclidean distance matrix and then apply a
Gaussian kernel (see [1] for details) to derive the pairwise
similarity. The left two matrices are based on a Harmonic-
CNN trained with the MultiSimilarity miner and loss; the
right two matrices are based on two traditional features,
MFCCs and PCPs. We see that, compared to traditional
features, the learned features can enhance the blocks con-
siderably in the images, reducing the complexity faced by
the MSA algorithm.

We picked three MSA algorithms to study here: spec-
tral clustering (scluster) [1], convex-NMF (cnmf ) [24], and
foote+fmc2d (using Foote’s algorithm [25] for segmenta-
tion and fmc2d [26] for labeling). Note that each is based
on analyzing some version of an SSM. As these algorithms
were developed using traditional features, we need to ad-
just their default parameters in MSAF to be more suitable
for a SSM with prominent but blurry blocks, rather than
a sharp but noisy SSM typically treated with a low-pass
filter to enhance the block structure. Also, some MSA
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Figure 4. Validation loss vs. MSA (scluster) performance.

algorithms can be sensitive to temporal resolution, which
prefers beat- to downbeat-synchronized features.

How the model training criterion improves an MSA al-
gorithm can be explained in a theoretical way. For exam-
ple, in scluster, small (e.g., one-bar) fragments of music
that have the same labels are considered to be mutually
connected in a sub-graph. When the metric learning loss
is minimized, scluster is more likely to produce a clear
sub-graph for each segment in a song, making the graph
decomposition more accurate. As Fig. 4 illustrates, the
evolution of the validation loss is consistent with the per-
formance of scluster when it is fine-tuned to fully exploit
the embeddings. This technique provides a guideline to
adjust the parameters of an MSA algorithm for most cases.

5. EXPERIMENTS

5.1 Datasets

We use three datasets to study the performance: Harmonix
Set [10], SALAMI [11], and RWC (Popular) [12].

The Harmonix Set covers a wide range of western pop-
ular music, including pop, electronic, hip-hop, rock, coun-
try, and metal. Each track is annotated with segment func-
tion labels and timestamps. The original audio to the an-
notations is not available, but a reference YouTube link is
provided. We searched for the audio of the right version
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and manually adjusted the annotations to ensure the labels
and timestamps were sensible and aligned to the audio.

In SALAMI, some songs are annotated twice; we treat
each annotation of a song separately, yielding 2243 anno-
tated songs in total. We also use a subset with 445 an-
notated songs (from 274 unique songs) in the “popular”
genre, called SALAMI-pop, for cross-dataset evaluation.

The Popular subset of RWC is composed of 100 tracks.
There are two versions of the ground truth: one originally
included with the dataset (AIST), and the other provided by
INRIA [27]. The INRIA annotations contain boundaries
but not segment labels.

Table 1 lists some properties of the datasets. “Num”
is the number of annotated songs. The number of unique
labels per song (“Uni”) ranges between 5.7 and 7.8, indi-
cating that the segment labels are not too repetitive nor too
diverse and thus can offer adequate supervision for metric
learning. Additional statistics like the number of segments
per song (“Seg”) and the mean duration per segment in
second (“Dur”) are all within a proper range. Three of the
datasets are employed in MIREX, so we can compare our
systems with historical ones.

5.2 Evaluation Metrics

We focus on flat annotations (i.e. non-hierarchical) in our
experiments. The evaluation metrics for MSA have been
well-defined, and details can be found in [13]. We use the
following: (1) HR.5F: F-measure of hit rate at 0.5 seconds;
(2) HR3F: F-measure of hit rate at 3 seconds; (3) PWF: F-
measure of pair-wise frame clustering; (4) Sf : F-measure
of normalized entropy score. Hit rate measures how accu-
rate the predicted boundaries are within a tolerance range
(e.g., ± 0.5 seconds). Pair-wise frame clustering is related
to the accuracy of segment labeling. Normalized entropy
score gives an estimate about how much a labeling is over-
or under-segmented.

5.3 Implementation Details

PyTorch 1.6 is used. We adopt audio windows of length 8
seconds, which we found better than 5 or 10 seconds. The
audio is resampled at 16KHz and converted to log-scaled
mel-spectrograms using 512-point FFTs with 50% over-
lap and 128 mel-components. We follow [28] and [29] to
implement Harmonic-CNN and ResNet-50, respectively.
For the miner and loss in pytorch-metric-learning, the de-
fault parameters suggested by the package are adopted.
We employ the Adam optimizer to train the model, and
monitor the MSA summary score, defined as 5

14 (HR.5F) +
2
14 (HR3F) + 4

14 (PWF) + 3
14 (Sf), to determine the best

model. The weights were chosen intuitively, but could be
optimized in future work. We use a scheduled learning
rate starting at 0.001, and then reduced by 20% if the score
is not increased in two epochs. We train the models on
a Tesla-V100-SXM2-32GB GPU with batch sizes of 128
and 240 for Harmonic-CNN and ResNet-50, respectively.

Regarding fine-tuning the parameters for MSAF, we run
a simple grid search using a limited set of integer values
on the validation set. As mentioned, the parameters are

Dataset Num Uni Seg Dur MIREX
Harmonix Set 912 5.7 10.6 21.7 7
SALAMI 2243 5.9 12.5 24.2 3
SALAMI-pop 445 6.4 13.2 18.0 7
RWC-AIST 100 7.8 15.3 15.2 3
RWC-INRIA 100 - 15.3 15.0 3

Table 1. Dataset and segment label statistics.

Model System HR.5F HR3F PWF Sf

Base
cnmf/B .183 .453 .498 .566
ft+fmc2d/B .242 .584 .536 .592
scluster/B .263 .547 .586 .641

Harm
cnmf/B/eu/mul .352 .679 .647 .681
ft+fmc2d/B/eu/mul .395 .713 .580 .630
scluster/B/eu/mul .466 .728 .689 .737

ResN
cnmf/B/eu/mul .339 .637 .618 .661
ft+fmc2d/B/eu/mul .373 .685 .572 .634
scluster/D/eu/mul .433 .720 .673 .728

Harm

scluster/D/eu/mul .497 .738 .684 .743
scluster/D/co/mul .474 .706 .668 .727
scluster/D/eu/tri .454 .713 .669 .722
scluster/D/co/tri .448 .693 .659 .713
scluster/D/eu/con .435 .682 .635 .698

Table 2. Cross-validation result on the Harmonix Set. Top
9 rows: Comparison of different models {‘Base’: baseline,
‘Harm’: Harmonic-CNN, ‘ResN’: ResNet-50} and MSA
methods at beat-level (‘B’). Bottom 6 rows: comparison
of different distances {‘eu’: Euclidean, ‘co’: cosine} and
losses {‘mul’: MultiSimilarity, ‘tri’: TripletMargin, ‘con’:
Contrastive} options, at downbeat-level (‘D’). ‘ft’ stands
for Foote [25].

mostly different from the defaults. For instance, in scluster,
we set (“evec_smooth”, “rec_smooth”, “rec_width”) as (5,
3, 2), which were (9, 9, 9) by default. Also, scluster was
designed to use separate timbral and harmonic features, but
we use the same proposed features for both.

5.4 Result and Discussion

We present three sets of evaluations: (1) a comparison of
many versions of our pipeline to establish the impact of the
choice of modules; (2) a cross-dataset evaluation; and (3) a
comparison of our system with past MIREX submissions.

First, we study the effect of several options for the pro-
posed pipeline: (1) beat or downbeat alignment for in-
put audio; (2) distance metric for the learned features; (3)
miner and loss for metric learning. For (3), we use the pro-
posed MultiSimilarity approach and TripletMargin miner
and loss [20]; we also test Contrastive loss [19] with a
BaseMiner, which samples pairs uniformly. Each version
of the feature embedding is trained and tested on the Har-
monix Set using 4-fold cross-validation.

We compare the success of three MSA algorithms when
using the proposed features and when using conventional
features. In all cases, we synchronize the features to
the beats/downbeats estimated by madmom; for the pro-
posed features, we use the ground-truth beats/downbeats
for training and the estimated ones for testing. For a
fair comparison, we fine-tune the algorithm parameters for
each algorithm-feature combination (including the conven-
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Model System HR.5F HR3F PWF Sf

Base

cnmf/B .259 .506 .485 .521
ft+fmc2d/B .319 .593 .521 .551
scluster/B .305 .553 .545 .572

Harm

cnmf/B/eu/mul .301 .573 .588 .601
ft+fmc2d/B/eu/mul .358 .599 .538 .581
scluster/B/eu/mul .378 .613 .621 .644
scluster/D/eu/mul .447 .623 .615 .653

Table 3. Cross-dataset result on SALAMI-pop (trained on
Harmonix Set); and “ft” stands for Foote.

AIST INRIA
System HR.5F HR3F PWF Sf HR.5F HR3F
OLDA+fmc2d .255 .554 .526 .613 .381 .604
SMGA2 (2012) .246 .700 .688 .733 .252 .759
GS1 (2015) .506 .715 .542 .692 .697 .793
scluster/D/eu/mul .438 .653 .704 .739 .563 .677

Table 4. MIREX-RWC (cross-dataset) result.

tional features) by running a grid search and optimizing the
MSA summary score on the training set.

Table 2 presents the results. They show that every MSA
algorithm is improved by using the learned features instead
of the baseline ones, by a wide margin: HR.5F nearly dou-
bles in most cases when switching to learned features. The
performance differences for each algorithm (e.g., ‘Base
scluster/B’ versus ‘Harm scluster/B/eu/mul’) are signifi-
cant with p-values < 10�5 for every metric. The top MSA
algorithm overall is scluster, which performs the best on
boundary hit rate when synchronized with downbeats, but
performs slightly better on PWF when synchronized to
beats. Comparing the two architectures, Harmonic-CNN
performs better than ResNet-50 in general, perhaps be-
cause the deeper ResNet model requires more data.

Regarding the other training settings, we find that using
Euclidean distance was consistently better than using co-
sine distance, and that the MultiSimilarity loss gave con-
sistently better results than the other loss functions. While
running the experiments, we notice that with Euclidean
distance, the validation loss evolved in a more stable way.

Second, we study cross-dataset performance by using
the best trained model on Harmonix Set to make predic-
tions for the songs in SALAMI-pop. This tests the model
ability to avoid overfitting to one style of annotations. In
Table 3, we see that the scluster algorithm again performs
the best, and again improves significantly when using the
learned features (p-value < 10�10). However, the improve-
ment margins are smaller for cnmf and foote+fmc2d (e.g.,
for cnmf, HR.5F increases by 0.042; before, it increased by
0.169). Perhaps the MSA parameters for these two algo-
rithms are over-tuned to the training data; or, it may be that
the learned features overfit the style of pop in Harmonix
Set, but that scluster is more robust to this.

Finally, we collect previous MIREX results to compare
our system to others. For the RWC (popular) task, we use
the same model (trained on Harmonix Set) from the pre-
vious experiment on SALAMI-pop. The results are shown
in Table 4 alongside those of three of the strongest MIREX
submissions. We omit some, like SMGA1, that are re-

System HR.5F HR3F PWF Sf
cnmf (2016) .228 .427 .527 .543
foote+fmc2d (2016) .244 .503 .463 .549
scluster (2016) .255 .420 .472 .608
OLDA+fmc2d [14, 31] .299 .486 .471 .559
SMGA1 (2012) [32] .192 .492 .581 .648
Segmentino [33, 34] .209 .475 .551 .612
GS1 (2015) [15, 35] .541 .623 .505 .650
cnmf/D/eu/mul .318 .506 .587 .578
foote+fmc2d/B/eu/mul .289 .519 .558 .563
scluster/D/eu/mul .356 .553 .568 .613

Table 5. MIREX-SALAMI result.

lated to or based on the same approach as others listed but
perform worse. Our system can outperform the state-of-
the-art (SMGA2) in terms of PWF and Sf. Regarding its
segmentation performance, it is still competitive, outper-
forming OLDA (the top-performing segmenter offered by
MSAF) by a large margin (HR.5F/3F).

For the SALAMI task, the identity of the songs used
in MIREX is private, but 487 songs (with 921 annota-
tions) have been identified [30]. We use this portion as
the test set, and the remainder of SALAMI (1322 anno-
tations of 872 songs) as the sole training and validation
set. The results are shown in Table 5, along with other
MIREX competitors, including OLDA+FMC2D, SMGA1,
and GS1 (which uses a CNN trained to directly model the
boundaries [15]). As SALAMI is more diverse than Har-
monix Set, the model sees fewer examples per style com-
pared to when it was trained on Harmonix Set. Thereby,
we can expect the learned features to be less successful.
However, we once again see that each model in MSAF is
improved on all metrics when using the learned features,
particularly in terms of PWF. In fact, our model boosts
cnmf—already third-best among the baseline algorithms
shown here—to outperform the state-of-the-art (SMGA1).

The MSAF algorithms are improved with the learned
features, but they still lag behind GS1. This is reasonable,
since the training of that model directly connects to the loss
of boundary prediction, and ours does not. Nonetheless,
“scluster/D/eu/mul” can outperform all the other systems
except GS1 by a large margin on both HR.5F and HR3F.

6. CONCLUSION AND FUTURE WORK

We have presented a modular training pipeline to learn the
deep structure features for music audio. The pipeline con-
sists of audio pre-processing, DNN model, metric learning
module, and MSA algorithm. We have explained the func-
tionality for each component and demonstrated the effec-
tiveness of different module combinations. In experiments,
we have found that using the learned features can improve
an MSA algorithm significantly.

However, the model is not yet fully end-to-end: the
MSA outputs (boundaries and labels) are not directly back-
propagated to the DNN model. We plan to explore ways
to change this in future work—e.g., by exploring self-
attention models like the Transformer [36, 37] to build a
deep model that directly outputs the segment clusters. This
would eliminate the need to fine-tune MSA parameters.
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ABSTRACT

Learning symbolic music representations, especially dis-
entangled representations with probabilistic interpreta-
tions, has been shown to benefit both music understanding
and generation. However, most models are only applica-
ble to short-term music, while learning long-term music
representations remains a challenging task. We have seen
several studies attempting to learn hierarchical representa-
tions directly in an end-to-end manner, but these models
have not been able to achieve the desired results and the
training process is not stable. In this paper, we propose
a novel approach to learn long-term symbolic music rep-
resentations through contextual constraints. First, we use
contrastive learning to pre-train a long-term representation
by constraining its difference from the short-term represen-
tation (extracted by an off-the-shelf model). Then, we fine-
tune the long-term representation by a hierarchical predic-
tion model such that a good long-term representation (e.g.,
an 8-bar representation) can reconstruct the corresponding
short-term ones (e.g., the 2-bar representations within the
8-bar range). Experiments show that our method stabilizes
the training and the fine-tuning steps. In addition, the de-
signed contextual constraints benefit both reconstruction
and disentanglement, significantly outperforming the base-
lines.

1. INTRODUCTION

Deep music representation learning have been proven to
be a powerful tool for high-quality symbolic music gen-
eration [1]. The learned representations can be directly
fed into downstream predictive models such as LSTMs [2]
and Transformers [3] to achieve more coherent results than
note-based or event-based generation [4–6] Furthermore,
when a representation learning model has a probability in-
terpretation, the representation can then be easily interpo-
lated or resampled to create new music pieces. Recently,
several studies further disentangle music representations
into interpretable factors (such as pitch, rhythm, chord and
texture) to achieve a more controllable and interactive mu-
sic generation [5,7,8]. For example, we can keep the pitch
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Attribution 4.0 International License (CC BY 4.0). Attribution: Shiqi
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factor of a melody while resampling its rhythm factor to
achieve theme variation. We can also interpolate the pitch
factor for a smooth music morphing [7].

Despite the above mentioned progress [9–11], most ex-
isting work applies only to short music segments with a
length of several beats, while learning long-term repre-
sentations remains a challenging task. In particular, stud-
ies have shown that even for monophonic melodies, "flat"
model designs (e.g., using long-range sequential encoders)
have difficulty remembering a complete music phrase at
once. Some other studies have attempted to solve this
problem by building another layer of hierarchy on top
of short-range flat models, learning short-term and long-
term representations simultaneously in an end-to-end man-
ner [1, 12]. However, as the model expressivity increases
with the number of layers, models also become much more
difficult to train.

We argue that the main problem with current methods
is the lack of proper inductive bias, and in this paper we
propose a new method for learning long-term, phrase-level
symbolic music representations through contextual con-
straints. The method consists of two stages pre-training
and fine-tuning, with two steps in each stage. In the pre-
training stage, we first adopt EC2-VAE [7] to learn bar-
level, disentangled latent pitch and rhythm representations.
Then, we apply the same model to learn phrase-level repre-
sentation but with contrastive losses to constrain the differ-
ence between phrase-level and bar-level representations. It
is indeed difficult to learn phrase-level representations di-
rectly using bar-level models, but the additional contrastive
constraint can serve as a useful inductive bias to help find a
reasonable solution that can subsequently be improved by
fine-tuning. During the fine-tuning stage, we replace the
pre-trained decoder with a hierarchical prediction model
that forces the phrase-level representation to reconstruct
the bar-level ones. This is achieved by first tuning only
the new hierarchical decoder (while fixing the pre-trained
encoder) and then tuning the whole network. During these
two steps, structured contrastive loss is applied to stabilize
the learning process.

Experiments show that the proposed method signifi-
cantly outperforms the baselines and successfully learns
disentangled pitch and rhythm representations for 8-bar
long phrases (32 beats in 4/4 meter) without increasing the
latent dimensionality. To our knowledge, this is also the
first generative model that achieves phrase-level compo-
sition style transfer, latent factor interpolation, and theme
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variation. In sum, our contributions are as follows:

• We demonstrate the importance of structured contextual
constraints in learning long-term disentangled represen-
tations. Our approach only requires reasonable amount
of data to train and could learn compact latent represen-
tation.

• We show that the proposed Structured InfoNCE loss ef-
fectively expresses the contextual constraints, stabilizes
the training of long-range models and helps the model
converge faster.

• Our model achieves phrase-level music style transfer, la-
tent factor interpolation, and theme variation.

2. RELATED WORK

We review two realms of research related to our work
on long-term music-representation learning: contrastive
learning, which is the main method to stabilize the training
process, and hierarchical music modeling, which is related
to our fine-tuning model.

2.1 Contrastive Learning

Contrastive learning (CL) is an efficient method in self-
supervised learning [13–15], serving as regularization to
latent representations. For example, NCE-based con-
trastive losses [16,17] have been widely used and achieved
good results in natural language processing. Contrastive
predictive coding (CPC) [18] and Deep Infomax (DIM)
[19] explore the relation between minimizing a contrastive
learning loss and maximizing a lower bound of the mu-
tual information. In DIM, global feature is connected with
local feature to learn more abstract and informative repre-
sentations.

2.2 Hierarchical Music Representation Learning

The hierarchical nature of music has been studied for a
long time [20–23]. Recently, we see some efforts on
learning long-term music representations using hierarchi-
cal modeling [12, 24, 25]. The basic idea is that since a
flat model design can only effectively learn shot-term rep-
resentations, we can stack more layers on top of the short-
term representations module for long-term representations.
Existing works include MusicVAE [1], Music Transformer
VAE [12], Jukebox [26], etc. However, experiments show
that unless we have a huge amount of data, the model is
in general very difficult to train. In this study, we pro-
vide a two-stage algorithm with contrastive loss as a better
learning strategy. Also, no model so far has achieved dis-
entanglement for long-term representation as done in this
study.

3. METHODOLOGY

In this section, we introduce our algorithm in detail. Con-
ceptually, it consists of two stages, each with two steps.The
first stage is pre-training:

• In step 1, we simply adopt EC2-VAE [7], an exist-
ing music representation disentanglement model, to
extract short-term pitch and rhythm representations.

• In step 2, we build Long-EC2-VAE, a long-term ver-
sion of the model and train it with an extra contextual
constraint using the proposed Structured InfoNCE
loss. Intuitively, this loss prevents the learned long-
term representations from deviating too far from cor-
responding well-trained short-term representations.

The second stage is fine-tuning, in which we build a hierar-
chical representation-learning model by combining the en-
coder of Long-EC2-VAE with a hierarchical decoder. We
name this model after Hierarchical-EC2-VAE.

• In step 1, we only train the hierarchical decoder to
ensure the predictive power of the long-term repre-
sentation.

• In step 2, we train the whole hierarchical network for
a better long-term pitch-rhythm disentanglement.

3.1 Pre-training by Contrastive Learning

The model of the pre-training stage, Long-EC2-VAE, is
shown in Figure 1. It is built upon an off-the-shelf music
representation model, EC2-VAE [7], which can effectively
disentangle pitch and rhythm factors for short music seg-
ments by cutting the latent representation into two parts
and pairing one part with a local rhythm decoder. In Fig-

Figure 1: The model architecture of Long-EC2-VAE in
the pre-training stage, where the right-hand-side is short-
term model with parameter fixed and the left-hand-side
is the long-term model. The dotted lines denote con-
trastive losses, whose weighting matrices are joined opti-
mized with the parameters on the left-hand-side networks.

ure 1, the right-hand-side part is a literal copy of the EC2-
VAE encoder (with parameters fixed) to extract short-term
representations, while the left-hand-side part is a simple
adaptation of EC2-VAE for long-term music by lengthen-
ing its temporal receptive field. Note that the left part alone
is not able to learn long-term representations, and our goal
is to assist it using contrastive learning. Formally, the loss
function of Long-EC2-VAE is:

L = LLong-EC2-VAE + LStructured InfoNCE, (1)

where LLong-EC2-VAE is the same as in the original EC2-
VAE model (which contains the KL loss, the rhythm loss
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Figure 2: The model architecture of Hierarchical-EC2-VAE in the fine-tuning stage. The training follows two steps.

and the overall reconstruction loss). The Structured In-
foNCE loss expresses the contextual constraint. It is de-
veloped from InfoNCE [18] loss, and it is structured since
the compared representation pairs are extracted from mu-
sic segments of different length, one is long term and the
other is short term. Formally:

LStructured InfoNCE =

− ln
exp

(

zTL,fWẑ+S,f/τ
)

exp
(

zTL,fWẑ+S,f/τ
)

+
∑K

i=1 exp
(

zTL,fWẑ−S,f/τ
) ,

(2)

where zL,f and W are the normalized long-term represen-
tations and weighing matrix we need to learn. f = {p, r}
indicates whether it is the pitch or rhythm factor. Like-
wise, we use ẑS,f to denote the short-term representations
extracted by right-hand-side model. K and τ are hyper-
parameters. K is the amount negative samples and τ is the
temperature parameter.

In specific, the short-term melodies are half as long as
long-term ones. The positive samples ẑ+S,f are in the cases
that the corresponding short-term melody is a part of the
long-term melody and f takes the same value as in zL,f ,
while the negative samples are not in this case. Also, the
long-term and short-term representations share the same

dimensionality.

3.2 Fine-tuning with Hierarchical Generation

Figure 2 shows the architecture of the fine-tuning model,
Hierarchical-EC2-VAE, where the two subfigures illustrate
the two training steps. Here, the encoder design is the same
as in the Long-EC2-VAE model, while the decoder is a hi-
erarchical predictive model with three layers. The first two
layers are new designed and the last layer is an aggregation

of several EC2-VAE decoders sharing the same parame-
ters. Given the disentangled long-term (phrase-level) rep-
resentations, it first decodes intermediate-level representa-
tions, then decodes bar-level representations, and finally
reconstructs concrete rhythm and music tokens.

Compared to the phrase-level representation, the tem-
poral receptive fields of the intermediate-level represen-
tations all shrink to a half, but at the same time their
number doubles in order to cover the same range of mu-
sic. The same relationship holds between intermediate and
bar-level representations. In particular, a phrase means
8 bar (in 4/4 meter, 32 beats) in our design, so that
the intermediate-level and bar-level mean 4-bar and 2-bar
melody segments (a length which the original EC2-VAE
model can handle), respectively. All levels of latent repre-
sentations share the same dimensionality.

In the first step of training (Figure 2(a)), the encoder is
a literal copy from the Long-EC2-VAE model and we only
train the hierarchical decoder. Formally, the loss function
is:

Lstep1 = LHierarchical−EC2-VAE Decoder + LInfoNCE, (3)

where the first term refers to the reconstruction losses
adopted from the EC2-VAE model, and the second term
is defined as:

LInfoNCE =

− ln
exp

(

zTl,fWẑ+l,f/τ
)

exp
(

zTl,fWẑ+l,f/τ
)

+
∑K

i=1 exp
(

zTl,fWẑ−l,f/τ
) ,

(4)

where zl,f are the normalized hierarchical representations
we need to learn with l = {intermediate, bar} indicating
the level of representation and other notations follow the
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same meaning as in Eq.(2). Here, both positive ẑ+l,f and

negative ẑ−l,f samples are normalized representations com-

puted from a pre-trained EC2-VAE, in which the positive
samples are in the cases that the ẑ+l,f and zl,f are computed
based on the same music segment and have the same value
of l and f , while ẑ−l,f are not in this case.

After the first step achieves a reasonable accuracy, we
proceed to step 2 (Figure 2(b)), unfreezing the encoder
and training the whole hierarchical representation-learning
model with:

Lstep2 = Lstep1 + LStructured InfoNCE

+ βLKLphrase,
(5)

where the first two terms are defined in Eq. (3) and Eq. (2)
respectively. LKLphrase is KL divergence to only regular-
ize the phrase-level representations by a normal distribu-
tion. The value β controls the degree of KL divergence
penalty.

4. EXPERIMENTS

4.1 Dataset and data format

We train our model on Nottingham Database [27] and
POP909 database [28]. Our dataset contains 2154
melodies (at song level) in total. We randomly split these
pieces into 2 subsets: 90% songs for training and 10%
songs for test. The data format is designed as the same
as in [7] in which 4 bar or 8 bar melodies are formalized
as sequences of 130-dimensional one-hot embedding vec-
tors and 16-beat and 32-beat rhythm pattern is represented
by a sequence of 3-dimensional one-hot embedding vec-
tors. Each vector in the melody sequence denotes a 1

4
-beat

unit. The first 128 dimensions of this vector denote 128
MIDI-format pitches from 0 to 127, the 129th dimension
is the holding state for longer note duration, and the last
dimension is kept for rest. The three dimensions of rhythm
pattern vectors represent the onset of any pitch, a holding
state, and rest, respectively.

4.2 Implementation Details

All of our models are trained using Adam optimizer [29]
with a scheduled learning rate from 1e-3 to 1e-5. The batch
size is 128 in the pre-training stage and is 64 in the fine-
tuning stage. We do normalization on representations in
Eq.(2) and (4) to make the training process more stable.
The representations fed into decoders are original repre-
sentation without normalization.

4.2.1 Pre-training

In the pre-training stage, we simply adopt the structure of
EC2-VAE [7] to model 4 bar and 8 bar EC2-VAE. Each
model comprises an encoder with a bi-directional GRU
layer, a rhythm decoder with a GRU layer, and a global
decoder with a GRU layer. We set the hidden dimension of
the GRU in the encoder and decoders to 2048. The latent
dimension is 128 for disentangled pitch representations
and 128 for disentangled rhythm representations for each
range model. For LStructured InfoNCE depicted in Eq. (2), we
set K to 512 and τ to 1. The positive samples for Eq. (2)

and Eq. (4) are the representations of 1-4th, 3-6th and 5-8th
bar from well-trained 4 bar EC2-VAE. Actually, even when
training the 4-bar EC2-VAE (right-hand side of Figure 1),
we use a similar constrastive loss as in Eq. (2) where the
positive samples are representations of 1-2th, 2-3th, 3-4th
bar from well-trained 2 bar (original) EC2-VAE [7] .

4.2.2 Fine-tuning

Hierarchical-EC2-VAE model consists of a long-term (8
bar) EC2-VAE encoder, 4 GRU layers, and an aggregation
of 2 bar EC2-VAE decoders. We first train the hierarchical
model with fixed 8 bar EC2-VAE encoder from pre-trained
stage for around 25 epochs. Then we train the whole model
without fixing parameters. We set the hidden dimension of
4 GRU layers to 1024. We set K to 256 and τ to 1 for both
Structured InfoNCE loss and InfoNCE loss and set β to 0.1
in Eq. (5).

4.3 Objective Evaluation

We objectively evaluate the model in terms of reconstruc-
tion accuracy, training stability, and disentanglement.

4.3.1 Reconstruction Accuracy

Table 1 shows that the reconstruction accuracy of the pro-
posed models (2nd an 3rd rows) significantly outperform
the baseline, a vanilla EC2-VAE applied to 8-bar melody
(first row). The last two rows show the results of two ab-
lation settings of Hierarchical-EC2-VAE: one without the
contrastive loss and the other without first fixing the pa-
rameters of encoder and directly train the model end-to-
end. We see that the proposed Structured InfoNCE or In-
foNCE losses play a vital role for an accurate reconstruc-
tion and the two-step training strategy improves the result
marginally.

Method Recon.Acc Rhythm Recon.Acc

Baseline 0.772 0.847
Long-EC2-VAE 0.992 0.995

H-EC2-VAE(ours) 0.997 0.995
H-EC2-VAE(w-o CL) 0.584 0.599

H-EC2-VAE(w-o fixed) 0.991 0.989

Table 1: A comparison on reconstruction accuracy of dif-
ferent models.

4.3.2 Training stability

Figure 3: Experimental results of overall reconstruction
and rhythm accuracy on the test set.
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Comparing the accuracy curves of the proposed Long-
EC2-VAE with the baseline as illustrated in Figure 3, we
find that the proposed Long-EC2-VAE converges more
quickly during training. This indicates that the proposed
training strategy leads to a better initialization and makes
the performance of the model fluctuate less during training.

4.3.3 Disentanglement Evaluation

We evaluate the disentanglement performance of models
using a disentanglement evaluation method adopted in [7]
and [30]. The method randomly transposes all the notes
of the input data by i(i ∈ [1, 12]) semitones while keep-
ing the rhythm and underlying chord unchanged and then
measures the variation of disentangled representations.We
denote Σ|∆zp| and Σ|∆zr| as the variation of zp and zr .

(a) Baseline model (8 bar)

(b) Long-EC2-VAE model (8 bar)

(c) Hirarchical-EC2-VAE model (8 bar)

Figure 4: The comparison between Σ|∆zp| and Σ|∆zr| af-
ter transposition. The numbers show the pitch augmented
by 12 semitones in each sub-figure from left to right.

As shown in Figure 4, values of Σ|∆zp| of the pro-
posed Hierarchical-EC2-VAE are relatively high while
Σ|∆zr| maintains in a significantly low level. This indi-
cates that the pitch and rhythm representations of the pro-
posed Hierarchical-EC2-VAE are well-disentangled as the
change of notes has a tiny impact on zr. Similarly, we can
intuitively find in the figure that the disentanglement per-
formance of the proposed Hierarchical-EC2-VAE is much
better than the baseline and also outperforms the proposed
Long-EC2-VAE.

4.4 Music generative examples

In this section, we show some music generation results
by manipulating the disentangled phrase-level pitch and
rhythm representations in three different ways: style trans-
fer via swapping the representation, rhythm morphing via
interpolating the representation, and theme variation via
representation posterior sampling.

4.4.1 Phrase-level composition style transfer

We cross-swap the disentangled pitch and rhythm factors
zp and zr of two 8-bar melodies A and B and then ob-
tain generative pieces C and D. The results are shown in
Figure 5, in which we see that both of the two generative
pieces perfectly inherit target rhythm patterns. Besides,
these generative melodies vary slightly from the source
melody and these variations tend to sound creative, i.e. the
appearance of embellished notes.

(a) Melody A

(b) Melody B

(c) Generated by 𝑧𝑝 from A and 𝑧𝑟 from B

(d) Generated by 𝑧𝑝 from B and 𝑧𝑟 from A

Figure 5: Style transfer examples by hierarchical-EC2-
VAE model.

4.4.2 Latent zr interpolation

We interpolate rhythm representations zr of two phrases
using SLERP [31] while keeping the pitch and chord un-
changed. The interpolated latent representations can then
be “re-synthesized” using Hierarchical-EC2-VAE.

As shown in Figure 6, we interpolate zr of the piece A
and B with different SLERP weights. The results exhibit a
surprising sense of coherence of pitch and rhythm in gener-
ative melodies, even in the transition between consecutive
bars.This implies that a longer-term representation is also
adept at modeling short-term generation and even contains
more global harmonic information than a short-term repre-
sentation.

4.4.3 Theme variation

We can also achieve theme variation by adding a Gaus-
sian noise to zr while keeping zp unchanged . As a sam-
ple shown in Figure 7, we find that as the variance of the
noise grows larger, the pitch and rhythm of the generative
melody are still reasonable smooth, implying that the long-
term representations contain the coherence of contextual
information and can “control” the generation process.
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(a) Source Melody A

(b) Target rhythm B

(c) Interpolated on  𝑧r from A to B with more weight on A

(d) Interpolated on  𝑧r from A to B with more weight on B

Figure 6: Interpolation examples.

(a) Source Melody A

(b) Rhythm representation Posterior sampling with 𝜎2 = 0.8

(c) Rhythm representation Posterior sampling with 𝜎2 = 1.3

Figure 7: Rhythm representation posterior sampling ex-
amples.

4.5 Subjective Evaluation

One may wonder what are the advantages of learning long-
term representations since we can always generate the mu-
sic bar by bar using short-term models and just concate-
nate the generated samples together. One merit lies in the
coherency in controlled music generation. For example,
when sampling the long-term rhythm representation, the
overall rhythm pattern of a phrase is controlled as an or-
ganic whole, while individually sampling the rhythm of
different bar may easily lose the rhythm coherency. To bet-
ter illustrate this idea,we conduct a survey on theme vari-
ation (as in Section 4.4.3) to compare the performance of
the proposed 8-bar Hierarchical-EC2-VAE and baseline 2-
bar EC2-VAE.

4.5.1 Survey Configuration

In our survey, each subject is given 5 groups of
pieces. Each group contains three 8 bar pieces: a
human-composed piece from Nottingham dataset and 2
theme variations generated by a 2-bar EC2-VAE and
Hierarchical-EC2-VAE, respectively. In each group, the
generated pieces use zp of the human-composed piece and
the sampled zr.

Each subject listens to five randomly arranged groups
in turn and is required to rate each melody ranging from
1 (very low) to 5 (very high) according to three aspects:
creativity, naturalness (how human-like the composition
is) and overall musicality.

4.5.2 Results

A total of 29 subjects ( 18 females and 11 males) partici-
pated in the survey. Experimental results depicted in Fig-
ure 8 demonstrate that people prefer melodies generated
by the proposed Hierarchical-EC2-VAE to those generated
by the 2 bar EC2-VAE [7], implying the effects of a long-
term coherence learned by our model. The heights of bars
represent means of the ratings and the error bars represent
the MSEs computed via within-subject ANOVA [32]. The
results show that our model performs significantly better
than the 2 bar EC2-VAE in terms of all three dimensions(p
< 0.05). Besides, the qualities of melodies generated by the
proposed Hierarchical-EC2-VAE reach a competitive stan-
dard compared to the human-composed pieces, especially
in creativity.

Figure 8: The results of the subjective evaluation.

5. CONCLUSION

In conclusion, we contribute a pipeline of algorithms to
learn long-term and disentangled music representations.
The main novelty lies in the proposed two inductive biases
which constrain the long-term representations using con-
textual information. The first one requires long-term rep-
resentation to be not too different from the short-term ones
which represent a part of the long-term sequence, and we
demonstrate contrastive loss is well-suited for such rough
constraint. The second inductive bias is that a good long-
term representation should be able to reconstruct the cor-
responding short-term ones, and we use a hierarchical pre-
dictive model to realize this constraint. Unlike most hier-
archical models, our purpose is not prediction for its own
sake, but rather to leverage the prediction power to learn a
well-disentangled long-term representation. Experimental
results show that our approach is quite successful, capa-
ble of disentangling pitch and rhythmic factors for phrase-
level (32 beats) melody without increasing the dimension-
ality of latent representation compared to bar-level models.
Moreover, the learned representations enable high-quality
phrase-level style transfer via representation swapping and
theme variation by representation interpolation and poste-
rior sampling.
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ABSTRACT

Chroma or pitch-class representations of audio recordings
are an essential tool in music information retrieval. Tra-
ditional chroma features relying on signal processing are
often influenced by timbral properties such as overtones
or vibrato and, thus, only roughly correspond to the pitch
classes indicated by a score. Deep learning provides a
promising possibility to overcome such problems but re-
quires large annotated datasets. Previous approaches there-
fore use either synthetic audio, MIDI-piano recordings, or
chord annotations for training. Since these strategies have
different limitations, we propose to learn transcription-like
pitch-class representations using pre-synchronized score–
audio pairs of classical music. We train several CNNs with
musically inspired architectures and evaluate their pitch-
class estimates for various instrumentations including or-
chestra, piano, chamber music, and singing. Moreover, we
illustrate the learned features’ behavior when used as in-
put to a chord recognition system. In all our experiments,
we compare cross-validation with cross-dataset evaluation.
Obtaining promising results, our strategy shows how to
leverage the power of deep learning for constructing robust
but interpretable tonal representations.

1. INTRODUCTION AND RELATED WORK

In the field of music information retrieval (MIR), many al-
gorithms rely on pitch-class or chroma representations for
analyzing audio recordings. Such representations capture
the signal’s energy distribution over the twelve chromatic
pitch classes (ignoring octave information) and, thus, al-
low for a direct musical interpretation. Chroma features
have been successfully used for different MIR tasks such
as chord recognition [1–4], key estimation [5], structure
analysis [6], or audio retrieval [7, 8] especially for West-
ern music. While traditional chroma features were de-
signed in a handcrafted fashion based on signal processing
techniques [9–12], such features exhibit several drawbacks
caused by audio-related artifacts such as timbral charac-
teristics, overtones, vibrato, or transients. Moreover, the
relative loudness of a note directly influences the feature
representation.

© C. Weiß, J. Zeitler, T. Zunner, F. Schuberth, and M.
Müller. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: C. Weiß, J. Zeitler, T. Zunner, F.
Schuberth, and M. Müller, “Learning Pitch-Class Representations from
Score–Audio Pairs of Classical Music”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

Figure 1. Illustration of the pitch-class training strategy
with an example from Schubert’s Winterreise [13]. (a)
Score. (b) Audio recording. (c) Pitch-class estimates of the
CNN. (d) Pitch-class labels derived from aligned score.

Over the years, a number of solutions for these prob-
lems were proposed involving spectral whitening [14],
peak picking [12], overtone removal [3, 15], or timbre ho-
mogenization [16]. Most of these techniques led to im-
proved results for tasks such as chord recognition [1–4] or
audio retrieval [7]. However, the problem remains chal-
lenging since improvements for one task may deteriorate
another—a good chroma for music synchronization [16]
might be worse for chord recognition [2], or removal of
harmonics might introduce sub-harmonic artifacts [3]. Fi-
nally, chroma features are often noisy compared to the
pitch classes in the score, limiting their interpretability by
musicologists as well as their potential for visualization
and cross-modal retrieval and analysis applications.

To overcome such problems, more recent strategies
make use of deep neural networks for learning chroma rep-
resentations from data [17–21]. For the successful train-
ing of high-capacity networks, large amounts of annotated
recordings are necessary. Since manual creation of pitch-
class annotations is tedious and requires expert knowl-
edge, there are several alternative strategies, all of which
have their benefits and limitations. Early approaches to a
“deep chroma” make use of chord labels to derive pitch-
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Table 1. Datasets and annotations used in this work (“Perf.”: number of performances per piece).
ID Dataset Name Instrumentation Pitch annotation type Chords Tracks Pieces Perf.1 hh:mm

SWD Schubert Winterreise [13] Piano, voice Aligned scores yes 216 24 9 10:50
BSD Beethoven Piano Sonatas [25]2 Piano Aligned scores yes 192 32 6 62:30
WaR Wagner Ring [26]2 Orchestra, voice Aligned scores no 33 11 3 43:13
MuN MusicNet [27] Piano, strings, winds Aligned scores no 330 330 1 34:08
SMD Saarland Music Data [22] Piano MIDI piano / Disklavier no 50 50 1 4:43

class annotations [17, 18]. As shown in [17], this leads
to a chroma extractor that has a strong bias towards the
chords’ pitch classes (in [17], these are triads) and does
not actually detect the pitch classes notated in the score,
thus limiting interpretability, generalization to other chord
vocabularies and genres, and applicability to other tasks.
As an alternative strategy for obtaining training data, sym-
bolic music representations were used to render synthetic
audio recordings together with the corresponding annota-
tions [19]. While this is pragmatic, systems trained on syn-
thetic data often show limited generalization to recorded
audio. Another strategy makes use of MIDI-fied instru-
ments (e. g., Disklaviers) for capturing pitch information,
which led to a number of comprehensive piano transcrip-
tion datasets [22–24]. However, these approaches are lim-
ited to piano or MIDI-fied instruments, and the use of the
sustain pedal constitutes a problem for determining the per-
ceptually relevant duration of a note.

In this paper, we target a pitch-class representation
that relates to the task of multi-pitch estimation (MPE)
or framewise transcription [28]. Concretely spoken, we
aim for detecting the framewise activity of all pitch classes
indicated by the score (multi-pitch-class estimation, see
Figure 1c). In an ideal scenario, such a representation
helps to close the gap between audio- and symbolic-based
MIR and, as a consequence, is well-interpretable and capa-
ble of generalizing to different music genres, instrumenta-
tions, and MIR tasks. For this purpose, we propose an al-
ternative training strategy using score–audio pairs of clas-
sical music that are pre-aligned using music synchroniza-
tion techniques [29]. As an alternative to this, weakly-
annotated score–audio pairs were recently used for train-
ing using an attention mechanism [30], the CTC loss [20],
or a multi-label CTC variant that can deal with polyphonic
pitch-class representations [21]. A (strong) aligment strat-
egy similar to ours was successfully applied for multi-
instrument music transcription with the MusicNet dataset
[27], which we include in this paper. We prepare three
further classical music datasets comprising several perfor-
mances of Schubert’s song cycle Winterreise [13], the first
movements of Beethoven’s piano sonatas [25], and Wag-
ner’s four-opera cycle Der Ring des Nibelungen [26]. We
generate pitch-class annotations for these datasets using
symbolic scores, manual measure annotations [26], and
music synchronization techniques [29]. The data com-
prises various styles and instrumentations including piano,
orchestra, chamber music, as well as singing voice.

As our first contribution, we use this data for supervised
learning of a transcription-like pitch-class representation
with a medium-sized, musically motivated convolutional

neural network (CNN) inspired by [20,31,32]. We test the
network’s pitch-class estimates using evaluation measures
from music transcription. Second, we compare this CNN
with other architectures such as wider and deeper net-
works, inception blocks, and residual connections. Third,
we test the benefit of the learned features for harmony anal-
ysis, specifically chord recognition for classical music. To
systematically assess the role of the input features, we em-
ploy a controlled and well-understood chord recognition
approach based on hidden Markov models (HMMs) [2, 4].
We compare the novel features with traditional chroma
features and idealized pitch-class representations derived
from the score. In all stages, we compare cross-validation
results on individual datasets with cross-dataset results to
systematically test generalization [33].

The remainder of paper is organized as follows. In
Section 2, we introduce the datasets used for our experi-
ments. Section 3 describes our CNN-based feature learn-
ing. In Section 4, we evaluate the learned pitch-class fea-
tures. Section 5 discusses chord recognition results using
the learned features. Section 6 concludes the paper.

2. DATASETS

As mentioned in Section 1, the limited availability of an-
notated data is a major issue for multi-pitch and pitch-class
estimation—a “key challenge” of music transcription [34].
Since manual annotation is tedious and requires expert
annotators, several workarounds were proposed [35]. A
common approach involves the use of MIDI-fied pianos
(Disklaviers) for simultaneously generating audio and an-
notations, leading to piano transcription datasets such as
SMD [22], MAPS [23], or MAESTRO [24].

Beyond the solo piano scenario, there are only few
and small datasets with pitch annotations such as Bach10
[36], TRIOS [37], or PHENICX-Anechoic [38] (all 10
pieces), which often involve multi-track recordings to sim-
plify the manual annotation process [36–38] or to automat-
ically generate annotations using a monophonic F0-tracker
as done for MedleyDB [39]. Since this leads to F0 annota-
tions following the performed frequencies rather than the
pitches in the score, we do not use MedleyDB here.

As a further strategy, score–audio pairs of classical mu-
sic can be exploited to generate pitch (class) annotations.
This requires score–audio synchronization methods [29].
A dataset created with this strategy is MusicNet (MuN)
[27], which comprises pitch annotations for 330 audio
recordings of piano and chamber music. For our experi-
ments, we reduce the pitch annotations to the pitch-class
level. As another score–audio dataset, we make use of
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Figure 2. Illustration of the CNN architecture (Basic).

the Schubert Winterreise Dataset (SWD) [13], which com-
prises recorded performances (two of nine freely avail-
able), scores, measure positions, and chord annotations.
We use the scores (MIDI files) and measure annotations
together with a synchronization algorithm [29] based on
dynamic time warping (DTW) to generate pitch-class an-
notations. 1 Using the same strategy, we create two fur-
ther private 2 datasets: The Beethoven Sonatas Dataset
(BSD) comprises the 32 first movements of Beethoven’s
piano sonatas in six versions. Using DTW-based align-
ment [29], we generate pitch-class annotations from cor-
responding scores and chord labels based on the annota-
tions by Chen and Su [25]. In a similar fashion, we create
pitch-class annotations for Wagner’s four-opera cycle Der
Ring des Nibelungen (WaR) based on manual measure an-
notations [26] and a full score (first act of Die Walküre)
or a piano-reduced score (remaining acts), respectively.
Table 1 gives an overview of the datasets used in this paper.

3. DEEP-LEARNING METHODS

In this section, we describe our CNN-based approach for
extracting pitch-class representations and discuss our de-
sign choices, motivated by related work. Previous deep-
learning approaches for pitch-class representations use a
variety of architectures including fully-connected [17, 40]
and convolutional neural networks (CNNs) [17, 19, 20],
where the latter often exhibit large kernels in the last lay-
ers to aggregate harmonic information. Due to the lower
number of parameters, we pursue a CNN-based approach
inspired by [20, 32], summarized in Figure 2 and Table 2.

Input representation. As network input, spectral rep-
resentations are used most frequently, either generated by
a short-time Fourier transform [17] or a constant-Q trans-
form (CQT) [40]. The CQT can be extended to a har-
monic CQT (HCQT) with CQTs in harmonic frequency
ratios stacked on top of each other, thus allowing for con-
volutions across harmonics (overtones) along the channel
axis [32]. As our input representation, we use such a
HCQT with five harmonics (no sub-harmonic). Based on
audio sampled at 22050 Hz, we use a CQT hopsize of 384
samples resulting in a feature rate of roughly 57.4 Hz. 3

Our HCQT spans 72 semitones (6 octaves) starting at C1
and a resolution of three bins per semitone. We choose a

1 With this paper, we publish pitch and pitch-class annotations for the
SWD, to be found at https://zenodo.org/record/5139893/.

2 These datasets cannot be published due to copyright issues.
3 As the only parameter, the CQT is determined by the hopsize, which

must be an integer multiple of powers of two.

Table 2. Musically informed CNN architecture (Basic).
Function Kernel size, # Stride Output Shape Activ.

Prefiltering (P):

LayerNorm 216⇥75⇥5
Conv2D 15⇥15, N0 (1, 1) 216⇥75⇥N0 LReLU
MaxPool (1, 2) 216⇥37⇥N0
Dropout

Binning to MIDI pitches (B):

Conv2D 3⇥3, N1 (3, 3) 72⇥12⇥N1 LReLU
MaxPool (1, 2) 72⇥6⇥N1
Dropout

Time reduction (T):

Conv2D 1⇥6, N2 (1, 1) 72⇥1⇥N2 LReLU
Dropout

Chroma reduction (C):

Conv2D 1⇥1, N3 (1, 1) 72⇥1⇥N3 LReLU
Dropout
Conv2D 61⇥1, 1 (1, 1) 12⇥1⇥1 Sigmoid

centering strategy with bins corresponding to integer MIDI
pitches placed between the two surrounding bins.

Context frames. To accurately predict a frame, a net-
work needs information about the context surrounding the
target frame. When using a single-stage system, this can be
done by feeding multiple time frames of the spectral repre-
sentation to the network [17, 19, 32]. For our network, we
feed the network with 75 context frames (37 to each side of
the target frame), corresponding to 1.3 sec at a frame rate
of 57.4 Hz. Thus, we feed the network with an input ten-
sor of shape 216⇥75⇥5 to predict a pitch-class activation
vector of size 12 (see Table 2).

Basic CNN architecture. Our proposed CNN filters
the input data in a musically meaningful way. Table 2 gives
detailed information about the proposed model; Figure 2
provides a schematic illustration. First, we perform layer
normalization to ensure zero mean and unit variance for
each input sample followed by a (trainable) linear transfor-
mation of the normalized input tensor. Next, N0 (default
20) feature maps are extracted in the Prefiltering layer (P).
Using a kernel size of 15⇥15 allows the network to de-
tect, e. g., vibrato for singing. The second convolutional
layer performs a Binning to MIDI pitches (B) by mov-
ing a 3⇥3 kernel with stride 3 and no padding along the
pitch axis, so that each output bin corresponds to an integer
MIDI pitch. We learn N1 (default 20) feature maps. Third,
a convolution across time performs a Time reduction (T),
resulting in N2 (default 10) feature maps with 72 bins each.
Fourth, we perform pitch-class or Chroma reduction (C):
After reducing the representation to N3 (default 1) chan-
nels with a 1⇥1 convolution, we move a kernel with length
72�11=61 along the pitch axis. In all convolutional lay-
ers, we use LeakyReLU activation (negative slope 0.3) to
prevent vanishing gradients. MaxPooling along time re-
duces the number of parameters and forces generalization.
Dropout (rate 0.2) hampers overfitting while retaining a
large amount of information. We use sigmoid activation
in the final layer and train with binary cross-entropy loss
between predicted pitch-class vectors p 2 [0, 1]12 and bi-
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Figure 3. Pitch-class estimation results (Basicmodel) for different datasets (train/test subsets of each dataset are disjoint).

nary, multi-hot target vectors t 2 {0, 1}12, obtained from
the score’s note occurrences without weighting (Figure 1).

Larger CNN architectures. In addition to this ba-
sic CNN architecture (denoted as Basic in the follow-
ing) with roughly 27k convolutional parameters (plus the
parameters of layer normalization), we test a number of
extended network architectures. A simple strategy is to
increase the number of learned feature maps (N0 . . . N3).
For the architecture BasicLast10, we increase the last
layer to N3=10 (28k conv. params.). For the architecture
Wide, we increase the number of channels in all layers by
a factor of five so that N0 =N1 = 100, N2 = 50, N3 = 5
(233k conv. params.). Since the choice of the prefiltering
kernel size is difficult, we adopt the concept of inception
blocks [41], where the input is filtered by kernels with dif-
ferent sizes in parallel. For this WideInception archi-
tecture, we use kernel sizes 3⇥3, 9⇥9, 15⇥15, and 27⇥27,
leaving the total number of kernels as in Wide. As an al-
ternative, we test a Deep architecture with more hidden
layers, replicating the first layer (P) five times. All remain-
ing layers and parameters are identical to Basic. Since
training deep architectures is difficult due to vanishing gra-
dients, we test the DeepResNet architecture with resid-
ual connections [42]. We add shortcut connections to the
five P layers, leaving the remainder identical to Deep. 4

4. EVALUATING PITCH-CLASS ESTIMATION

In the following, we evaluate the pitch-class estimates of
different networks, trained and tested on various datasets.
We measure the frame-wise precision, recall, and F-
measure (F) using a threshold of 0.5 (motivated by the
sigmoid activation) as well as the cosine similarity (CS)
between targets and non-thresholded predictions.

Evaluating general settings. We start with several ex-
periments in a cross-validation on SWD (train on seven,
test on two performances i. e., a version split [33]), which
serves as our development set to decide on general settings.
We train all networks with Adam [43] on mini-batches of
size 25 using learning rate scheduling and early stopping.
For the Basic architecture (as described in Section 3), we
obtain F=0.832 and CS=0.836 on the test versions of SWD,
which is already a promising result. Precision (0.850) is
slightly higher than recall (0.814). Since the choice of the
input HCQT’s frame rate is important, we compare this re-
sult (with a frame rate of 57.4 Hz) to the use of a smaller

4 Our source code (Keras) and pre-trained models are available under
https://github.com/christofw/pitchclass_cnn/.

rate (10.1 Hz) while holding the (physical) amount of con-
text constant by adjusting CNN kernel shapes accordingly.
With this smaller frame rate, we obtain slightly worse re-
sults of F=0.820 and CS=0.833. Thus, we use the finer
resolution of 57.4 Hz in the following. Next, we test the
influence of context frames: Reducing the original context
of 75 frames (roughly 1.3 sec) to 51 frames (0.9 sec) leads
to decreased results of F=0.827, with 25 frames to a further
decrease of F=0.823. We thus opt for the larger context of
75 frames. Finally, we test different kernel sizes in the first
layer (prefiltering P). Compared to Basic with 15⇥15
kernels, 9⇥9 kernels lead to F=0.835, and 5⇥5 kernels to
F=0.824. Though the 9⇥9 kernels perform slightly bet-
ter than the 15⇥15 kernels, we choose the larger kernel
size since it spans a larger pitch range and may be better
capable of, e. g., detecting vibrato.

Evaluating different datasets. With these parameter
choices, we now perform a cross-dataset experiment. In
addition to the SWD dataset (two versions for test), we use
MuN (50 pieces test, 280 pieces train/val), BSD (two ver-
sions test, four versions train/val), and WaR (test on Die
Walküre, 1st act, train/val on all other acts). We further
compile a Mix train set, which encompasses the train sub-
sets from MuN, BSD, and WaR to equal parts (using sub-
sampling). Note that train subsets of a dataset are never
used for testing (and vice versa) even for cross-dataset
splits. Figure 3 shows the pitch-class estimation results for
all train/test combinations. Using the same source for train
and test set (MuN–MuN, BSD–BSD, WaR–WaR), the respec-
tive combination yields best results. In those cases, the
Mix train set always achieves second-best results. In the
case of a completely unknown test set (SWD), the diverse
train data in Mix yields best results, slightly worse than the
cross-validation results in the previous paragraph.

Evaluating CNN architectures. We now compare the
Basic model to the larger architectures introduced in
Section 3. Figure 4 illustrates the respective results using
the same test datasets as for the previous experiment and
the Mix training set. Compared to the Basic architec-
ture, BasicLast10 has an increased number of channels
in the final layer (N3=10), which yields slightly better re-
sults than Basic with only about 600 more parameters.
In comparison, the Wide, WideInception, Deep, and
DeepResNet architectures increase the number of pa-
rameters by a factor of roughly ten. All of them yield better
results than Basic, except for the WaR test set. Although
we can achieve minor improvements by the use of incep-
tion blocks and skip connections, the performance metrics
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Figure 4. Pitch-class estimation results for different architectures trained on Mix dataset (subsets of BSD, MuN, WaR).

of the four most complex architectures are quite similar.
Comparing these networks’ results on SWD (cross-dataset)
with our first experiment—a cross-validation on SWD with
F=0.832 and CS=0.836—, we notice almost identical re-
sults. From this, we draw the important conclusion that
a larger, diverse training set (e. g., Mix) together with a
high-capacity network (e. g., Wide) can compensate for
not “knowing” the particular dataset (here the style of Win-
terreise and the combination of piano and singing). We
therefore use the Wide network trained on mixed datasets
for the following chord recognition experiment. 5

5. APPLICATION FOR CHORD RECOGNITION

Besides visualization purposes, pitch-class representations
serve as front-end features for various MIR applications.
To examine the effectiveness of our learned features for the
important task of chord recognition, we present systematic
experiments using the chord annotations of SWD and BSD.
Rather than optimizing the chord recognition performance,
we want to analyze the features’ influence and test the hy-
pothesis that our learned features behave similar to features
derived from the score (the training targets for our CNNs).
To gain these insights, we do not use an end-to-end chord-
recognition approach but opt for a traditional yet effective
method based on HMMs and Gaussian chord models [4].
For train/test of the HMM, we again compare cross-dataset
results with cross-validation results on each dataset, mak-
ing sure that neither a specific song nor a specific perfor-
mance are seen during training (neither split) to avoid the
kind of “musical overfitting” observed in [33].

Chord recognition method. On the training set, we
learn multivariate Gaussian chord models in the pitch-class
space R12. We cyclically shift and average the models of
each chord type in order to obtain transposition-invariant
models, which we use for generating the HMM’s emission
probabilities. Inspired by [4], we apply a uniform transi-
tion matrix with a high self-transition probability, which
we optimize on the validation set together with other hy-
perparameters (log compression strength and pre-filtering
length for the input features). We simplify the chord an-
notations of SWD and BSD to three common chord vocabu-

5 For training large networks, a sufficient amount of data is necessary
to prevent overfitting. Our largest model has roughly 550k parameters
(including layer normalization). As a comparison, 550k frames of train-
ing data sampled at 50 Hz give a dataset of about three hours. The amount
of data in MuN (34 hours), for example, is large compared to the number
of parameters, which is even more the case for the larger Mix dataset.

laries: MajMin comprises the 24 major and minor triads,
Triads adds the 12 diminished and 4 augmented triads
resulting in 40 chords, and Sevenths further adds five
types of seventh chords (dom7, maj7, min7, half-dim7,
dim7) amounting to 91 chords. 6

Evaluating feature variants. First, we assess the ef-
fectiveness of our pitch-class features (denoted as PCNN)
and compare those with other feature variants. To ob-
tain PCNN, we train the Wide model in a cross-dataset
split (train data similar to Mix but leaving out the target
dataset): For SWD, we train on BSD, MuN, and WaR; for
BSD, we train on SMD, MuN, and WaR (we replace BSD
with SMD to include a piano dataset). The resulting fea-
tures are re-sampled to 10 Hz. For comparison, we con-
sider three traditional chroma variants based on a CQT
(PCQT), an STFT (PSTFT), and an IIR filterbank (PIIR),
respectively. 7 As baseline, we use an idealized binary fea-
ture (PScore) derived from the aligned score (the CNN’s
training targets). We train and validate the HMM in a
cross-validation setting, making sure that neither test per-
formances nor pieces are seen during training [33].
Figure 5 shows the results, reporting chord-symbol recall
(which equals the F-measure and accuracy when ignor-
ing no-chord frames). Looking at the traditional feature
variants (PCQT, PSTFT, PIIR), we observe varying perfor-
mance, with best results for PCQT on SWD and for PSTFT

on BSD. Over all datasets, our CNN-based feature PCNN

systematically outperforms the traditional variants with
substantial improvements for the more complex vocabu-
laries Triads and Sevenths. Most remarkably, PCNN

almost reaches the performance of the idealized chroma
PScore. This is a promising result, indicating that for the
task of chord recognition, the signal-processing challenge
of extracting pitch-class information from audio record-
ings can be approached in a suitable way using deep learn-
ing, while the remaining challenge mainly lies in the map-
ping of pitch-class information to chord labels.

Evaluating train/test splits. Next, we test the gen-
eralization behavior of the chord recognition system
(Figure 6). To this end, we compare the cross-validation
of the previous experiment with cross-dataset evaluation
where we train and test on the other dataset, respectively
(note that we speak of training chord recognition—the fea-

6 We do not discriminate between chords that are identical on the pitch-
class level, e. g., C aug and E aug or C dim7 and E[ dim7.

7 For implementation details, please see https://librosa.org/.
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Figure 5. Chord recognition results based on different pitch-class features for SWD (left) and BSD (right), trained/tested
with cross-validation using different chord vocabularies.

Figure 6. Chord recognition results using features PCQT and PCNN for SWD (left) and BSD (right), trained/tested with
cross-validation (blue) and cross-dataset evaluation (red).

tures PCNN are always trained in a cross-dataset split).
Using the traditional feature PCQT (left), we observe a
clearly worse performance for the cross-dataset experi-
ment (red), which is musically more challenging. When
using PCNN (second plot), this drop does not occur—we
observe almost identical results for cross-validation and
cross-dataset. Testing on BSD (right plots), this tendency
is weaker. Still, we conclude that our score-based feature
PCNN not only leads to better but also to more robust chord
recognition systems, which are widely capable of general-
izing to unseen music.

Comparing score- and chord-based pitch classes.
Overall, our chord recognition results are not as high com-
pared to, e. g., recent results for pop music [17–19]—even
for our baseline feature PScore. On the one hand, this
might be due to the simpler system (HMM) we use com-
pared to recent approaches. As a main difference, how-
ever, the methods of [17, 18] directly use the chord labels
to train a chord-related pitch-class representation (instead
of a score-oriented one). To test the potential of this strat-
egy, we use another baseline feature (PChord) derived from
the chord annotations (without any reduction to a smaller
vocabulary), thus capturing idealized, binary activities of
the chords’ pitch classes. As Figure 7 indicates, we ob-
serve a large increase for both datasets. This is of course
expected (confirming a similar baseline experiment for pop
music in [17]). The comparison of PChord with PScore and
PCNN tells us that the main challenge of chord recogni-
tion (at least for our datasets) is a musical one: Even when
knowing the pitches from the score, it is difficult to de-
cide on which pitches are relevant for the annotated chords.
This is of course not trivial and touches questions of mu-
sical style, music theory concepts, and annotator subjec-
tivity [33,44,45]. Therefore, deep-learning approaches for
mapping score information to chord labels such as [17,18]
are promising. We think that such methods could benefit
from using our score-based features as input, thus helping
to improve generalization. Beyond that, we want to again

Figure 7. Chord recognition based on PCNN compared
with score (PScore) and chord-label (PChord) baselines.

emphasize that our aim is not to improve chord recognition
itself but to obtain a pitch-class representation that helps
to close the gap between audio- and symbolic-based ap-
proaches to, e. g., harmony analysis and generalizes to un-
seen recordings. As our experiments indicate, deep learn-
ing allows us to take a crucial step towards this goal.

6. CONCLUSIONS

We presented a CNN-based approach for extracting
transcription-like pitch-class representations from music
audio recordings. As our main contribution, we proposed
a novel strategy for training CNNs with pre-aligned score–
audio pairs of classical music. We tested the effectiveness
of this approach for pitch-class estimation by comparing
different CNN architectures and dataset splits. Using the
features as input to a traditional chord recognition sys-
tem led to improved results and generalization compared
to traditional features and is almost on par with symbolic
pitch-class features. We conclude that the signal process-
ing challenge of extracting pitch-class information from
audio recordings can be successfully approached with deep
learning, thus serving as an excellent basis to approach the
musical challenge of finding the relevant pitch classes for
chords and other harmonic structures—an interesting ob-
servation that should be verified for genres beyond Western
classical music in future work.
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TRAINING DEEP PITCH-CLASS REPRESENTATIONS WITH A
MULTI-LABEL CTC LOSS
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ABSTRACT

Despite the success of end-to-end approaches, chroma (or
pitch-class) features remain a useful mid-level represen-
tation of music audio recordings due to their direct in-
terpretability. Since traditional chroma variants obtained
with signal processing suffer from timbral artifacts such
as overtones or vibrato, they do not directly reflect the
pitch classes notated in the score. For this reason, train-
ing a chroma representation using deep learning (“deep
chroma”) has become an interesting strategy. Existing
approaches involve the use of supervised learning with
strongly aligned labels for which, however, only few
datasets are available. Recently, the Connectionist Tempo-
ral Classification (CTC) loss, initially proposed for speech,
has been adopted to learn monophonic (single-label) pitch-
class features using weakly aligned labels based on corre-
sponding score–audio segment pairs. To exploit this strat-
egy for the polyphonic case, we propose the use of a multi-
label variant of this CTC loss, the MCTC, and formal-
ize this loss for the pitch-class scenario. Our experiments
demonstrate that the weakly aligned approach achieves al-
most equivalent pitch-class estimates than training with
strongly aligned annotations. We then study the sensitivity
of our approach to segment duration and mismatch. Fi-
nally, we compare the learned features with other pitch-
class representations and demonstrate their use for chord
and local key recognition on classical music datasets.

1. INTRODUCTION AND RELATED WORK

The Pitch Class Profile (PCP) or chroma is one of the most
frequently used audio feature in Music Information Re-
trieval (MIR). Chroma features are typical for MIR for
several reasons: First, they were developed specifically for
music [1] as opposed to other features which were inher-
ited from speech processing (such as MFCCs). Second,
despite the success of end-to-end-systems, PCP or chroma
features are still used today due to their semantic mid-level
nature, being musically interpretable as energy distribution
over the twelve chromatic pitch classes in an audio sig-
nal (see Figure 1). Because of this, PCPs directly relate to
musical harmony, therefore being used for chord and key

© C. Weiß and G. Peeters. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
C. Weiß and G. Peeters, “Training Deep Pitch-Class Representations With
a Multi-Label CTC Loss”, in Proc. of the 22nd Int. Society for Music In-
formation Retrieval Conf., Online, 2021.

Figure 1. Training a CNN with weakly aligned targets
(schematic). Song No. 23 from Schubert’s Winterreise
sung by R. Trekel. (a) Waveform. (b) Pitch-class estimates.
(c) Non-aligned Targets derived from the score. (d) Score.

estimation or audio matching (cover song retrieval) tasks.
Chroma features based on signal processing. Early

approaches [2,3] to chroma are based on signal processing
and map a time–frequency representation such as the Short
Time Fourier Transform (STFT) [2] or the Constant-Q-
Transform (CQT) [3] to the twelve pitch classes. However,
due to timbral characteristics such as overtones (which
correspond to different pitch classes), transient note on-
sets, or vibrato, these chroma features do not directly re-
flect the pitch classes notated in the score, thus limiting
their interpretability. This motivated sophisticated while
still hand-crafted features, which aim at reducing the in-
fluence of timbre [4–6], at making this influence equal for
all instruments [7], or at equalizing loudness variation and
transient components [8]. To study the effect of these im-
provements for chord recognition, Cho et al. [9] present an
in-depth comparison, concluding that suitable chroma fea-
tures largely redeem the benefits of complex chord models.

Pitch-class representations based on deep learning.
Recently, deep learning of pitch-class features from data
has become a promising direction. Yet, prior works on
“deep chroma” have a concrete application task in mind
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and do not directly evaluate the obtained pitch-class rep-
resentations: Humphrey et al. [10] trained a Convolu-
tional Neural Network (CNN) to estimate a Tonnetz rep-
resentation and use this representation to estimate chords.
Later works [11,12] extend this to end-to-end (CQT-based)
chord recognition. In a similar fashion, more recent ap-
proaches [13, 14] train pitch-class extractors using annota-
tions derived from chord labels. While this led to promis-
ing results for chord recognition and other tasks [15], Ko-
rzeniowski et al. [13] showed that the learned represen-
tations strongly focus on chord-like structures and do not
actually represent the pitch classes notated in the score,
thus limiting their interpretability and generalization ca-
pability. As an alternative, Wu et al. [16] estimate pitch
classes by training with audio and annotations synthesized
from MIDI files (which are available in large quantity).
The trained features are used for chord recognition with
good results, improved in a follow-up work [17]. While
this strategy is interesting , systems trained on synthetic
data show limited generalization to real audio.

Training with aligned scores. To overcome this prob-
lem, large amounts of real audio recordings with pitch-
class annotations are needed. Annotation can be done with
MIDI-fied instruments [18], which led to several transcrip-
tion datasets such as MAPS [19], SMD [20], or MAE-
STRO [21]—all limited to the piano. For other instru-
ments, there are only few pitch-annotated datasets such
as Bach10 [22], TRIOS [23], or PHENICX-Anechoic [24]
(all 10 pieces), which often involve multi-track record-
ings to simplify annotation. As an alternative, symbolic
scores can be used to semi-automatically generate pitch-
class annotations. While such scores are considered only
“weak labels” for popular music [25], the correspondence
between score and audio is clearly higher for professional
recordings of classical music. For exploiting such score–
audio pairs (as done for the MusicNet dataset [26]), au-
tomated music synchronization technology such as [27] is
required in order to generate a so-called strong alignment.
While this training strategy leads to effective pitch-class
representations [28], the necessary synchronization consi-
tutes a costly and challenging pre-processing step.

Motivation of our work. To simplify and improve this
procedure, synchronisation between audio and labels can
be done either within the network using attention mod-
els [29] or transformers [30], or within the loss com-
putation using the Connectionist Temporal Classification
(CTC) loss [31] for sequence-to-sequence training. CTC
was successfully applied by Zalkow et al. [32] to train
a monophonic deep-chroma representation from weakly
aligned data, which they use for cross-modal retrieval.
Yet, since CTC applies to single-label outputs, only mono-
phonic pitch-class representations can be trained this way.

Proposal and paper organization. To overcome this
limitation, we propose to use a multi-label variant of CTC
(denoted MCTC), recently introduced for handwritten text
and optical music recognition [33]. Based on our previous
work on MCTC for multi-pitch estimation [34], we apply
this loss to train a polyphonic pitch-class representations

from score–audio pairs of general correspondence (weak
alignment) without the need for pre-computing strong
alignments. Using MCTC, we train a network to detect
the framewise activity of pitch classes as indicated by the
score (multi-pitch-class estimation, see Figure 1).

Our main contributions are as follows: First, we re-
formalize the MCTC loss to be applicable for PCP. Sec-
ond, we use this loss to train a musically-motivated CNN
inspired by [28] for extracting pitch-class representations.
Using several public datasets, we perform experiments to
analyze their efficacy and robustness against input modi-
fications. Third, we propose a set of performance mea-
sures to directly evaluate the PCP quality without a side-
task. Fourth, we demonstrate the potential of our MCTC-
based features for visualization and for two downstream
tasks: local key and chord estimation. We compare our
features to several baselines including features trained with
strongly aligned scores. All results indicate that MCTC is
a promising tool for training efficient pitch-class represen-
tations with weakly aligned score–audio pairs.

2. MCTC LOSS FOR PITCH CLASS ESTIMATION

In the following, we describe and formalize the MCTC loss
for training deep pitch-class features, closely following the
descriptions in [33, 34] for comparability.

CTC. We consider a Neural Network (NN) which maps
an input sequence x:=(x1, . . . ,xU ) to an output sequence
y:=(y1, . . . ,yT ) with U possibly larger than T due to ad-
ditional context frames. The CTC loss, initially proposed
for speech recognition [31], allows to map the output se-
quence y to a target sequence (or label) l of length S⌧T ,
l :=(l1, . . . , lS). l consists of characters ls 2 L where L
is an alphabet. A path ⇡ is a possible alignment between
the two sequences y and l. To compute the probability of
l given x, p(l|x), we need to consider all possible (valid)
paths ⇡ between y and l. CTC requires an extra character
blank (or “–”), which stands for either no symbol being
active or a repetition of the previously active symbol. This
results in an extended alphabet L0 = L [ {blank}. We
then define a mapping function B : L0T ! LST , which
transforms a path ⇡ = (⇡1 . . .⇡t . . .⇡T ) 2 L0T to a la-
bel l = (l1, . . . , lS) 2 LS by removing repeated and then
blank symbols. 1 Given a target sequence l, the inverse of
B or pre-image B�1(l) provides the set of all valid paths
⇡ that collapse to l. In practice, yt is the output of a NN
at time t with a softmax activation giving the likelihood of
each character k 2 L0 at time t. The probability of a given
path ⇡ is the product of the relevant probabilities over time:QT

t=1 y
t
⇡t . The probability of observing the label l is the

sum over all its valid paths ⇡ 2 B�1(l):

p(l|x) =
X

⇡2B�1(l)

TY

t=1

yt⇡t (1)

CTC allows to compute this efficiently using dynamic pro-
gramming and was used for MIR tasks such as lyrics align-
ment [35] or monophonic pitch-class representations [32].

1 For example, if T =5 and L={a, . . . , z}, B(a� ab�) = B(aa�
ab) = B(�a� ab) = aab.
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Multi-label CTC (MCTC). The CTC loss is a useful
tool for single-label problems. However, polyphonic pitch-
class estimation is a multi-label problem, where an input
x needs to be mapped to several (non-mutually exclusive)
target labels yk. An extension of the CTC loss to the multi-
label case has been proposed by Wigington et al. [33] for
handwritten text recognition (letters with accents) and ap-
plied to multi-pitch estimation in our previous work [34].

In the case of PCP, any combination of pitch-classes is
allowed to be simultaneously active (see Figure 1). Mod-
eling all combinations as individual symbols would be
possible in theory but leads to a large network output
(212 = 4096), thereby not accounting for the high inter-
dependency of similar combinations, and is therefore not
adequate for the problem. Following [34], we thus con-
sider the 12 pitch classes qi 2 {C,C] . . . , B} as different
categories Ci, i 2 {1, . . . , 12}, each of which comprises
the same set of components: 0 (absence of this pitch-class),
1 (presence) together with the blank symbol. This leads to
the alphabet {blank, 0, 1}. A character k is then the union
(a tuple) of components from different categories, i. e. in
our case, a multi-hot target vector denoting pitch-class ac-
tivities k 2 {0, 1}12 denoting the co-occurrence of several
pitch classes. The label l is a sequence of characters with
vocabulary L (all binary pitch-class vectors). It can be
decomposed into component-level label sequences li with
vocabulary Li. In the same spirit, at the path-level, we can
define a character-level path ⇡ with vocabulary L0 and a
component-level path ⇡i with vocabulary L0

i. We now de-
scribe the realization of these sets for different multi-label
variants of CTC proposed in [33].

Separable CTC Loss (SCTC). Assuming that pitch-
classes occur independently of each other (which is of
course a wrong assumption since e. g., the pitch classes of a
chord are tied together), there is a trivial approach in which
each category Ci is considered by an individual CTC loss.
The individual losses are then multiplied:

p(l|x) =
12Y

i=1

X

⇡i2B�1(li)

TY

t=1

yti,⇡t
i
. (2)

For applying SCTC to pitch classes, Ci = L0
i =

{blank, 0, 1} and Li={0, 1}, resulting in |C|=12 distinct
categories. The input to the loss, which is the output of the
network, is a tensor yti2{1...12},ki2{blank,0,1} 2 [0, 1]12⇥3

with softmax activation along the second dimension. It
represents the probability of observing blank, not observ-
ing pitch-class qi, or observing qi at time t. Treating
each pitch class as an independent sequence of components
2 {blank, 0, 1} makes their alignment difficult (no explicit
modelling of pitch-class co-occurence). We thus do not ex-
pect SCTC to work well in accordance with [33, 34].

MCTC Loss Without Epsilon (MCTC:NE). For cor-
rectly modelling the joint occurrence of pitch classes, we
introduce the MCTC loss in its simplest form, the “no ep-
silon” variant MCTC:NE (details in the following). In this
case, we have an individual blanki symbol for each cat-
egory so that Ci = L0

i = {blanki, 0, 1}. Then, the set of
all possible characters is L0 = L0

1⇥L0
2⇥ . . .⇥L0

12. The

Table 1. CNN architecture. Depending on the loss used,
we choose Q 2 {1, 2, 3} and P 2 {0, 1} appropriately.

Layer Kernel size Output shape # Parameters

Layer norm. (T+74, 216, 6) 2592
Conv2D, MaxPool 15⇥ 15 (T+74, 216, 20) 27020
Conv2D, MaxPool 3⇥ 3 (T+74, 72, 20) 3620
Conv2D 75⇥ 1 (T, 72, 10) 15010
Conv2D 1⇥ 1 (T, 72, 1) 11
Conv2D 1⇥ 61 (T, 12+P,Q) Q(62+73·P )

Total 48253
+Q(62+73·P )

overall blank character is the combination of the blank
components: blankMCTC = (blank1, . . . , blank12). We
compute the probability ytk of a character k at time t as the
product of all its component probabilities ytk =

Q12
i=1 y

t
i,ki

:

p(l|x) =
X

⇡2B�1(l)

TY

t=1

12Y

i=1

yti,⇡t
i
. (3)

In practice, we do this only for the characters k within the
training batch. The input to the loss is a yt 2 [0, 1]12⇥3

with softmax activation over the second dimension.
MCTC Loss With Epsilon (MCTC:WE). In the pre-

vious variant, the network has to simultaneously predict
blank for all components individually in order to predict
the blankMCTC character. As proposed in [33], there
is a more elegant way of dealing with repetitions of the
complete character (pitch-class vector): using an extra
category. We therefore define the new category C1 =
{blank, not blank}. The remaining categories C2 . . . C13

correspond to the 12 pitch classes, as before. To ignore
these categories when computing the blankMCTC proba-
bility, we introduce for them an additional " symbol. This
leads to L0

i = {0, 1, "} for C2 . . . C13. Please note that
" does not correspond to a network output but is only
defined for mathematical convenience. In this scenario,
the blankMCTC character is defined as blankMCTC =
(blank, ", . . . , ") and all other characters are of the form
k = (not blank, 0/1, . . . , 0/1). Using this variant, it is
also possible to explicitly model silence using the character
k=(not blank, 0, . . . , 0). We therefore compute

ytk =

(
yt1,blank k = blankMCTC

yt1,not blank ·
Q13

i=2 y
t
i,ki

otherwise.
(4)

In this variant, blankMCTC can be used to repeat the whole
character. Its probability is computed ignoring the other
categories’ probabilities ("). Here, the input to the loss is
a tensor yt 2 [0, 1]13⇥2 with softmax activation along the
second dimension, 2 where the first category corresponds
to blank and the other 12 categories to the pitch classes.

3. DEEP-LEARNING METHOD

To investigate the benefit of MCTC for training, we do nei-
ther use complex architectures such as CRNNs [36] or U-
Nets [37] nor data augmentation strategies [38] but instead

2 A 73⇥2 tensor with sigmoid activation is equivalent; softmax allows
for using the numerically stable logsoftmax implementation of Pytorch.
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Table 2. Overview of the datasets used in this work.
ID Name Instrum. Annot. Strategy hh:mm

Mae MAESTRO [21] v3.0.0 Piano MIDI piano 198:39
B10 Bach10 [22] Violin, wind Multitrack 0:06
Tri TRIOS [23] Chamber m. Multitrack 0:03
PhA PHENICX-Anechoic [24] Orchestra Multitrack 0:10
MuN MusicNet [26] Chamber m. Aligned scores 34:08
SWD Schubert Winterreise [41] Piano, voice Aligned scores 10:50

use a simple 5-layer CNN (Table 1). Inspired by [32, 39],
we use a Harmonic Constant-Q Transform (HCQT) as
input representations, with five harmonics and one sub-
harmonic (six input channels). The audio sample rate is
22050 Hz, the CQT has a hopsize of 512 samples (roughly
43.07 Hz), and three bins per semitone over six octaves
(3 · 6 · 12 = 216 bins). We use the librosa implementa-
tion of the CQT, which includes tuning estimation. 3 The
input is a HQCT tensor x of shape (T +74, 216, 6) (with
74 context frames, U = T +74) processed with log com-
pression (�=10) and layer normalization [40].

To simulate the weakly aligned target label sequences
l := (l1, . . . , lS), we use strongly aligned target vectors
(y1, . . . ,yT ) and remove repeated vectors (see Figure 1c).

Following [28], we use a musically motivated architec-
ture where the first layer performs pre-filtering using small
rectangular kernels, followed by binning to the 72 pitches
and temporal reduction (removing context frames). Next,
we merge the channels with 1⇥1 convolutions. The final
convolution reduces the 72 pitches to 12 pitch classes using
a kernel of length 61. The exact output size depends on the
loss used and is parameterized by P and Q: For our base-
line (strongly aligned targets), we use the same architecture
with binary cross entropy (BCE), then P = 0, Q = 1 and
sigmoid activation for the output (see Table 1). For SCTC
and MCTC:NE, we use P = 0, Q = 3 and softmax acti-
vation over the last dimension. For MCTC:WE, we need
a further output dimension for the blankMCTC, thus using
P =1 and Q=2. Resulting from this, our network has
roughly 48k parameters, slightly varying according to the
loss used. We use LeakyReLU activations, max pooling,
stochastic gradient descent with momentum (as in [38]),
and learning rate scheduling. For strongly aligned training,
we use mini-batches of size 25 and length T=1 or U=75.
For MCTC, we use only one example (x, l) per batch but
of a considerably higher length (default T =500 frames). 4

4. DATASETS

For our experiments, we consider several datasets
(Table 2) representing the annotation strategies introduced
in Section 1. As a MIDI-piano dataset, we consider a
subset (1/6) of MAESTRO (Mae). Moreover, we include
the multi-pitch datasets Bach10 (B10), TRIOS (Tri), and
PHENICX-Anechoic (PhA), whose pitch annotations are
reduced to the pitch-class level. Furthermore, we use
two datasets based on aligned scores: MusicNet (MuN),
which comprises pitch annotations for 330 chamber music

3 https://librosa.org/.
4 Code: https://github.com/christofw/pitchclass_mctc/.

Table 3. Comparison of MCTC variants, trained on the
dataset SWD in a performance (or version) split.

Model/Loss P R F CS AP

All-Zero 0 0 0 0.486 0.211
CQT-Chroma 0.512 0.681 0.579 0.701 0.594

CNN – SCTC 0.850 0.048 0.090 0.520 0.416
CNN – MCTC:NE 0.747 0.775 0.758 0.802 0.798
CNN – MCTC:WE 0.762 0.853 0.802 0.830 0.851

CNN – Strong alignment 0.850 0.790 0.818 0.860 0.886

recordings, and the Schubert Winterreise Dataset (SWD),
which comprises several performances, scores, and anno-
tations of Franz Schubert’s song cycle Winterreise. For
SWD, we use MIDI files and measure annotations together
with a synchronization algorithm [27] to generate pitch-
class annotations. 5 For MCTC-based training, we do not
need these strongly aligned pitch-class annotations but re-
duce the pre-aligned targets to a sequence of non-repeating
vectors (see Figure 1c). For baseline experiments and for
evaluation, we use the strongly aligned targets.

5. EXPERIMENTS

In the following, we present several experiments to assess
the effectiveness of MCTC for pitch class estimation.

5.1 Evaluation Measures

All models output frame-wise probabilities ŷtk (frame rate
43.07 Hz) for the activity of the twelve pitch classes. To
directly measure the similarity between targets yt and pre-
dictions ŷt without a threshold (continuous-valued), we
took inspiration from other music transcription tasks by
using their Cosine Similarity (CS) and their Average Preci-
sion (AP) 6 as in [38]. We also binarize ŷt using a thresh-
old of 0.5 (motivated by the sigmoid/softmax outputs) to
compute precision (P), recall (R), and F-measure (F).

5.2 Comparing MCTC Variants

First, we run a number of experiments to compare the dif-
ferent variants of MCTC (Table 3). To test generalization
to new acoustic conditions, we consider a “version split” of
the SWD [42,43] with seven performances used for training
and validation and two (HU33, SC06) for testing. To assess
the effectiveness of MCTC, we consider several baselines:

All-zero: Since the majority of pitch classes are inac-
tive more often than active, we compute our evaluation
measures for an all-zero output. We obtain a cosine simi-
larity of CS=0.486 and an average precision of AP=0.211.

CQT-Chroma: Next, we evaluate a CQT-based chroma
as implemented in librosa (1 bin per semitone), followed
by max-normalization and thresholding. This already leads
to CS=0.701 and AP=0.594 as well as F=0.579.

CNN – Strong alignment: This is our central baseline,
relying on the supervised training with pre-aligned annota-

5 https://zenodo.org/record/5139893/.
6 Average precision corresponds to the area under the precision–recall

curve—a concept similar to Receiver-Operator-Characteristics (ROC).
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Figure 2. Pitch-class estimation results for different dura-
tions of MCTC training segments.

Figure 3. Estimation results for weakly corresponding tar-
get segments (until three times the input length).

tions and BCE loss. For this approach, we obtain F=0.818,
CS=0.860 and AP=0.886, which are promising results.

Now, we train our CNN described in Section 3 with
the different MCTC losses, feeding segments of length
T = 500 frames (roughly 12 sec) plus context to the net-
work, together with the unaligned pitch activity vectors
of the segment as targets l. Similar to [33, 34], SCTC
leads to poor performance—in our case with a very low
recall and CS=0.520, only slightly above the all-zero base-
line, which means that the network mostly predicts zero.
For MCTC:NE, the results are better with CS=0.802 and
AP=0.798. As in [33, 34], the MCTC:WE variant with
an explicit blankMCTC produces the best results with
F=0.802, CS=0.830, and AP=0.851. Though all results
with MCTC:WE are below the strongly aligned baseline,
the gap between the two approaches is small. We thus con-
sider the MCTC:WE as a promising tool, which only re-
quires weakly aligned data for training (and allows to scale
up data more easily). For the following experiments, we
only use the MCTC:WE variant (from now on: MCTC).
Training time (per epoch) is longer for MCTC (by a factor
of roughly 20) compared to strongly aligned training while
convergence was faster with MCTC.

5.3 Sensitivity of MCTC-based Training

To investigate the behavior of MCTC-based training, we
conduct two further systematic experiments.

Sensitivity to segment duration. First, we test the
influence of the input segment length T (previously 500
frames or 12 sec). Since boundaries of input and target
segments are musically corresponding, we expect shorter
segments to result in a simpler alignment task for the loss,
but longer segments to give more freedom for alignment.
The results in Figure 2 confirms this assumption—a seg-
ment length of 10 sec is beneficial compared to 5 sec, and

Figure 4. Results for the cross-dataset experiment.

the training behavior is quite stable until 30 sec length. For
longer segments, the scores slowly drop. However, even a
segment of 3 minutes length leads to a meaningful model,
still outperforming the CQT baseline in Table 3. This en-
couraging result suggests that long score–audio segments
of general correspondence can be used with MCTC, i. e.
for classical music, short pieces or sections of long ones.

Sensitivity to segment mismatch. Next, we investi-
gate the sensitivity of training when the boundaries of in-
put x and target l segment are not perfectly corresponding
(Figure 3). To this end, we use a target segment that cor-
responds to a longer input segment while the actual input
segment is kept at a constant length of T =500 frames. For
a factor of 1.1 (target length 550 frames), performance only
slightly decreases. In absolute time, this means that the tar-
get has one second more “pitch class information” than the
network’s input. This scenario can be handled successfully
by MCTC, which means that “even more weakly” aligned
pairs are possible. For longer targets, performance drops—
though training does not break down until a target context
of three times the input segment length. We conclude that
MCTC allows for quite some imprecision in the correspon-
dence of the segment boundaries (up to one second).

5.4 Cross-Datasets Evaluation

Next, we test our MCTC training procedure on all datasets
described in Section 4, covering various instrumentations
and annotation strategies. Figure 4 shows the correspond-
ing results. For the first four datasets (SWD, B10, Tri,
PhA), we train on MuN and Mae. For SWD, these cross-
dataset results are slightly worse than the results reported
for cross-validation in Table 3. Evaluating on MuN (train-
ing on all others) leads to slighly worse CS; evaluating
on Mae works better. For the larger datasets (SWD, MuN,
Mae), strongly aligned training is superior to MCTC-based
training. For the smaller transcription datasets (B10, Tri,
PhA), the MCTC-based strategy obtains slightly better re-
sults. However, all differences are small. This is encourag-
ing since with MCTC, larger training datasets can be easily
achieved so that using larger networks is promising. In pre-
liminary experiments with a larger CNN (more channels,
600k parameters), we already observed improved results.

5.5 Application: Visualization

As said, we aim at training a transcription-like representa-
tions capturing the pitch classes as indicated by the score.
To illustrate this, we provide a visual example without
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Figure 5. Example pitch-class features for an excerpt of
Schubert’s Winterreise (Song No. 23 sung by R. Trekel).
(a) Pitch-class annotations from aligned score. (b) CNN’s
pitch-class predictions trained with strongly aligned targets
and (c) trained with MCTC. (d) CQT chroma features.

thresholding the outputs (Figure 5). Both strongly and
weakly (MCTC) aligned training (on other tracks of SWD)
lead to visualizations (Figure 5b+c) close to the score-
based one (a), with the strongly aligned representation (co-
sine similarity 0.948 with the score) marginally “cleaner”
than the MCTC one (CS=0.930). In contrast, the CQT
chroma (Figure 5d) is less clear (CS=0.714) and exhibits
the typical artifacts: First, a singer vibrato (e. g., for C] at
10 sec); second, overtones (e. g., B as overtone of E at 9
sec), and third, transient piano onsets (e. g., at 8 sec). All
of these artifacts are suppressed by the trained CNNs.

5.6 Application: Chord and Local Key Estimation

Finally, we test the usefulness of our learned features for
two harmony analysis tasks: chord recognition (for the 24
major and minor chords) [9] and local key estimation [42]
using the respective annotations of SWD [41]. Having a
score-like and interpretable feature at hand, we opt for a
traditional system based on simple templates (thus allow-
ing for defining chord or key templates only through music
theory knowledge) and a Hidden Markov Model (HMM)

Figure 6. Chord (upper) and local key (lower) estimation
results on SWD using different pitch-class features.

for context-sensitive smoothing (with uniform, diagonal-
enhanced transition matrix, see [9]). This system does not
require any pretraining. For both tasks, we compute the
HMMs emission probabilities using the cosine similarity
between PCP and templates. We downsample all pitch-
class features to roughly 10 Hz.

Chord recognition. For this task, we set the HMM self-
transition probability to ai,i = 0.1 (i. e. ai,j 6=i = 0.9/23
for all other transitions) and use binary chord templates
(1 at the triad’s pitch classes, 0 otherwise). The results
in Figure 6 (upper plot) are promising for such a simple
system: The learned features (CNN–MCTC and CNN–
Strong) outperform the CQT-based chroma and show a
promising improvement towards score-based pitch classes
(which are the targets yt of our CNN training). Also,
MCTC-based results are close to strongly aligned ones.

Local key estimation. For this task, we use log com-
pression and median filtering (filter length 10 seconds)
for pre-processing the PCPs, together with a higher self-
transition probability ai,i = 0.5. The key templates are
simply based on music-theory (1 for scale pitch classes, 2
for the tonic triad, 0 otherwise). Again, learned features
(CNN-MCTC and CNN-Strong) outperform CQT, now al-
most closing the gap towards the score-based features, and
MCTC-based results are close to strongly aligned ones.

While these results do not reach the state of the art for
both tasks (e. g. [14, 42]), they are promising for a purely
hand-crafted system. Most remarkably, this strategy allows
for an “objective” analysis since the systems’ parameters
are specified in an explicit, musically motivated way.

6. CONCLUSION

In this paper, we presented a novel strategy for train-
ing pitch-class representations with weakly aligned score–
audio pairs. To this end, we adapted a multi-label CTC
loss, which led to a successful training close to the train-
ing with strongly aligned scores. Though being computa-
tionally more expensive, MCTC-based feature learning is a
very promising direction since weakly aligned annotations
for long segments of music can be created with much less
effort, thus enabling an easier scalability to larger datasets,
which allows for training more complex networks.
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ABSTRACT

With increasing amounts of music being digitally trans-
ferred from production to distribution, automatic means of
determining media quality are needed. Protection mech-
anisms in digital audio processing tools have not elimi-
nated the need of production entities located downstream
the distribution chain to assess audio quality and detect de-
fects inserted further upstream. Such analysis often relies
on the received audio and scarce meta-data alone. Delib-
erate use of artefacts such as clicks in popular music as
well as more recent defects stemming from corruption in
modern audio encodings call for data-centric and context-
sensitive solutions for detection. We present a convolu-
tional network architecture following end-to-end encoder-
decoder configuration to develop detectors for two exem-
plary audio defects. A click detector is trained and com-
pared to a traditional signal processing method, with a dis-
cussion on context sensitivity. Additional post-processing
is used for data augmentation and workflow simulation.
The ability of our models to capture variance is explored
in a detector for artefacts from decompression of corrupted
MP3 compressed audio. For both tasks we describe the
synthetic generation of artefacts for controlled detector
training and evaluation. We evaluate our detectors on the
large open-source Free Music Archive (FMA) and genre-
specific datasets.

1. INTRODUCTION

In recent decades, digital means of media delivery have
become increasingly popular, not least with the advent of
high-speed internet and the ubiquity of digital playback
and recording devices ranging from studio digital signal
processing hardware to MP3 players and mobile phones.
The greater availability of technology required to produce
digital media now allows for small-scale studios to create
high quality content and instantly transfer it to distributors
such as music labels.

Digital media files can suffer from various degradations
that occur during transport and processing of the media.
Automatic means exist for detection and correction of cer-
tain data errors in uncompressed audio, but many complex

© Daniel Wolff, Rémi Mignot and Axel Roebel. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Daniel Wolff, Rémi Mignot and Axel Roebel, “Audio
Defect Detection in Music with Deep Networks”, in Proc. of the 22nd Int.

Society for Music Information Retrieval Conf., Online, 2021.

defects remain untackled. In this paper, we explore the effi-
cacy of applying a data-driven machine learning approach
using Deep Neural Networks to two audio defects, which
music labels are confronted with in quality assurance of
incoming media.

For our first scenario, we define clicks as discontinu-
ities affecting a few signal samples, resulting in very short
broadband impulses. A prominent source of similar arte-
facts are buffer under-runs, where, due to synchronisation
issues during digital audio processing, a few samples of
an old or zeroed signal are transmitted instead of the cur-
rent signal. Although existing mastering software offers
methods to remedy similar artefacts such as clicks, crackle
and clipping, restoration often requires manual selection of
noise profile, target segments or thresholds. This is due to
ambiguities introduced by e.g. signal quality or, depend-
ing on the genre, degradations voluntarily applied to audio
as effects, rendering current methods costly in large-scale
application.

Our hypothesis is that, using a data-driven approach,
our network can distinguish deliberate clicks (such as elec-
tronic snare drums) from defects, and thereby enable auto-
matic processing of large electronic music corpora. This
is an essential challenge in our scenario, where manual in-
spection may not be feasible because of operational con-
straints.

In our second scenario, we aim to detect corruption of
binary MP3 1 data via the artefacts audible after decod-
ing such files. The MP3 audio encoding family uses a
psychoacoustic model to guide data reduction. Due to the
transformations applied to data during MP3 decoding, a
large variation of effects is possible, ranging from added
whistling noise over various missing frequency bands to
broadband noise. In contrast to noise normally added dur-
ing the process of lossy encoding itself, the artefacts stem-
ming from unnoticed corruption have not been approached
for detection yet.

Such MP3 corruption may happen within a production
chain where manual transcoding is performed by differ-
ent production agents, as illustrated with the following use
case: A distributor receives a sound file in lossless for-
mat (e.g. pulse-code modulation format .wav) as a studio
quality delivery from a production entity. A degradation
is detected at this point by listening to the audio. During
discussion of this defect, it is found that the production en-
tity sent a transcoded file they prepared for checking an

1 See standards https://www.iso.org/standard/19180.
html and https://www.iso.org/standard/31537.html
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earlier, defect MP3 delivery. The decoded MP3 was trans-
mitted rather than the original .wav file intended for the
delivery. Having no dependable meta-data on intermediary
processing, the distributor can only rely on the audio itself
for quality assurance. We found the above case to have
practical relevance in the music industry, and designed our
method to aid error detection in similar circumstances.

Our two detection scenarios are chosen to benefit from
our data-driven approach: while the click detection may
make use of signal context to determine the “musicality”
of a click candidate, the MP3 glitch detector can bene-
fit from the network’s ability to capture the variation of
artefacts during training. In contrast to the click artefacts,
the artistic use of the MP3 glitch artefacts is currently lim-
ited, reducing the chance to confuse such intentional use as
degradation. The resulting models are designed for robust
scanning of large media libraries in an unsupervised batch
processing scenario.

In the following we present: an adaptation of the Wave-
U-Net deep architecture to the detection and localisation
of audio defects, two separate detectors built upon this to
respectively detect clicks and MP3 glitches, methods for
simulation of these artefacts assuring significance of in-
serted defects, and a large-scale evaluation against several
music datasets.

2. RELATED WORK

Traditional methods for detecting clicks and similar non-
stationary noise in audio aim at detecting discontinuities,
using autoregressive modelling in the raw audio or sparse
optimisation in the spectral domain [1, 2]. For restoration
of analog media, where issues like clicks, overload and
high frequency noise are common, wavelet-based imple-
mentations are used in commercial noise removal software
[3,4]. Recently, Deep Neural Networks have been used for
noise and obstruction removal mostly in images but also
for audio and other time-based signals [5–7]. Removal of
obstructions from images is a task particularly close to our
task as it deals with less stationary noise [8, 9]. Matsui et
al. [10] use a convolutional neural network similar to our
architecture to remove fences from images. Restoration
methods differ from our detection task in that explicit de-
tection reporting and evaluation of false positives are not
needed when applied as an audio de-noising effect.

For lossy audio encodings such as MP3, the artefacts
arising during encoding, mainly as a trade-off between
quality and bitrate, vary with methods and encoders and
have been extensively discussed for the MP3 format [11].
Nevertheless, corruption of files introduces new, different
artefacts that may remain unnoticed during decoding and
thus are the subject of our detector.

Research in the related field of Computational Auditory
Scene Analysis (CASA) concerns itself with the detection
and labelling of events in an audio stream. Deep Neural
Networks are now being increasingly used in this field, of-
ten with a spectral feature extraction pre-processing step.
Mesaros et al. [12] report the detection of “clicks” as one
of 61 classes in a detection task on their private dataset,

with a recognition rate of around 65 percent. It is not
clear how these clicks compare to the clicks stemming
from digitally signal failures which we tackle in this pa-
per. The focus in CASA is to detect recorded sounds while
being robust to noise in the recording, thus clicks to be de-
tected would relate to physical events (see "mouse click"
in the CASA dataset [13]). From a CASA perspective, in-
tentional clicks, as frequently found in electronic music,
would not necessarily be distinguished from those stem-
ming from defects.

This difficulty of ambiguity in audio defect annotation
is noted by Alonso-Jiménez et al. [14] who describe their
implementation and evaluation of established audio-defect
detection algorithms. Their optimised algorithms detect a
significant number of audio defects in a database from a
commercial streaming service, noting that there may be a
long tail of likely, but undetected degradations. In our ex-
periments (Section 6.1) we evaluate their click detector im-
plementation after Vaseghi [15], complementing their re-
sults with accuracy metrics on a large dataset containing
synthesized defects.

Research on error concealing scenarios, where defects
are already identified, e.g. due to missing packets at the
network layer during transport of an audio stream [16], can
inform us of the complexity and artefacts resulting from
such failures. Deep convolutional networks have been re-
cently introduced into the field of audio inpainting - fill-
ing a gap in audio in such a way that the error is con-
cealed - to great effect [17,18]. Their ability to encode and
model variation in large datasets results in more intelligi-
ble speech reconstruction, when compared to conventional
concealment approaches.

We aim to exploit gains from training with large
datasets for our detectors. Although large datasets of mu-
sic, such as the FMA dataset, are available, we are not
aware of any open datasets with audio defect labels. This
may be due to the fact that defects are mainly corrected in
production, and are - in terms of playback time - very rare.
The task of audio anomaly detection deals with this issue
using unsupervised learning to model usual/common sig-
nals on unlabeled data. Autoregressive networks [19] and
autoencoders [20] have recently been used to detect un-
usual acoustic events via their high reconstruction loss af-
ter such training. Our architecture is similar to the above,
in that it shares an information bottleneck to learn repre-
sentations, but we use a supervised learning approach with
synthetic examples similar to the work in [21] to better
control the type of artefacts detected, avoiding the detec-
tion of e.g. new instruments or audio samples as anoma-
lies.

Ronneberger et al. [22] originally presented the U-Net
as a deep convolutional neural network for the task of seg-
menting biomedical images. The network structure allows
for efficient learning of spatial, or - in the case of audio -
temporal and frequency patterns. It has since been used for
various end-to-end audio transformation tasks [23]. Stoller
et al. [24] modified this structure to work directly on the
one-dimensional audio signal as input, resulting in the
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Wave-U-Net. In their source-separation task, they employ
the network on overlapping excerpts of the original signal
at a low 8kHz sample rate.

3. MODEL ARCHITECTURE

In this paper we introduce the Hook-Net as a novel adap-
tation of the Wave-U-Net for the task of detecting artefacts
in audio signals. We apply this model as an end-to-end ap-
proach, feeding raw waveform segments into the network
to receive a time series of classification results. After ini-
tial experiments with a U-Net on spectrogram features, we
found training to be more effective when using raw audio
input, which may be due to the extreme brevity of our de-
fects. The time-aligning horizontal connections of input
and output promise to help capture the context of distor-
tions in the input waveform.

Our network takes as input segments 16384 samples of
audio (at 44100Hz sample rate) and outputs a time series
of 128 output samples that are individually quantised to
the binary decision on original vs. degraded. The original
Wave-U-Net implies that input and output share the same
sampling rate. To reduce computational cost while operat-
ing at source input sample rates, the Hook-Net introduces
an imbalance: the output time resolution is reduced by a
factor of 128 with regards to the input sample rate, result-
ing in a classification sample rate of 344.5Hz. 2

Figure 1. Architecture of the Hook-Net

This is reflected in the network structure as displayed in
Figure 1. Our contracting (left side) path consists in blocks
comprising two sequences of (zero-padded convolution –
batch-norm – activation) layers followed by max-pooling.
Here, the temporal resolution is halved every block, while
the number of filters increases. An expanding block con-
sists of an upscaling operation, followed by concatenation
of the skip connection from the contracting path and a reg-
ular convolution layer. In our model, resolution of the axis
mapped to time in our output is only doubled every second
block - resulting in a reduced temporal resolution at the
network output.

For the upscaling operation we follow the original U-
Net [22], but employ transposed convolution of stride 2
only every second layer, and stride 1 otherwise. Thereby
some steadiness remains in the growth of resolution across

2 This also allows comparisons with spectrogram-based models, which
did not perform as well and are omitted for brevity.

the expanding path, despite the reduced final output res-
olution. For the horizontal skip-connections, connecting
the contracting and expansive path, we use max-pooling to
adapt the time resolutions between the corresponding lay-
ers. We furthermore add vertical skip connections on the
contracting path, bridging every block of two convolutions.
This strategy is motivated by the training benefits reported
in residual networks [25].

In the following we describe the generation of click and
MP3 glitch artefacts.

4. CLICK ARTEFACT GENERATION

Within the scope of this paper, a click degradation corre-
sponds to a fault in the already digitised signal: we de-
fine a click as a discontinuity, where the signal changes
sharply to a random value for 1-3 samples but then contin-
ues unchanged. With this definition we aim to cover and
simulate defects from digital signal transport, commonly
resulting from buffer under-run during playback or mix-
ing in a DAW or timing errors during digital transport over
wire.

Clicks are inserted on-the-fly into the network input au-
dio segments for training, validation and test scenarios.
The position of the click is randomised, and one click is
inserted with a probability of 0.1 per audio segment, with a
small variation in length. The amplitude value of the click
is calculated as a random offset of the current signal, from
a uniform distribution within [0.3, 1). Each initial offset
sign is chosen randomly, then signs that would create clip-
ping are inverted.

The minimum amplitude offset (0.3) of the inserted
clicks’ amplitudes is introduced to assure that the signal
change and resulting degradation is significant. In absence
of perceptual data on the acoustic salience of inserted arte-
facts, this heuristic should create clicks that are likely to be
audible, where they are not perceptually masked by close
preceding transients or loud broad-band noise.

4.1 Audio post-processing via SoX

In order to simulate potential post-processing effects that
may have occurred on audio signals with previously un-
detected clicks, we use the SoX 3 sound processor to
slightly alter the audio segments after the click-insertion
steps. Segments are post-processed regardless of whether
a click has actually been inserted. A random combination
of reverb, two-band EQ and compression is applied, and
strength and filter parameters are chosen randomly within
ranges that apply only mild changes to the signal. In Sec-
tion 6.1 we report results for click detector training and
detection with and without post-processing.

4.2 Click target vector

The target vector for training and testing of the detector is
a 128-component floating point vector that is set to 1 on
the (resampled) position corresponding to the location of

3 http://sox.sourceforge.net/
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an inserted click, and 0 otherwise. In our experiments we
simulate the problem of rare clicks that may be overlooked
during production. There is at most 1 click per input seg-
ment.

5. MP3 GLITCH ARTEFACT GENERATION

This use-case tackles degradations that result from data
corruption in the commonly used MPEG-1/2 Audio Layer
III (MP3) lossy audio compression format. We will refer
to these as glitch defects. This degradation is interesting as
it can easily be “overlooked” in quality assurance. More-
over, the generation approach described below can be gen-
eralised to other audio codecs.

Figure 2. Typical example of glitch degradation. Top:
linear frequency spectrogram of original signal. Bottom:
same for signal with two degradations at frame 0 (inter-
mittent) and frame 80 with binary ground truth annotations
from spectrogram comparison.

The acoustic shape of the degradation varies strongly
and often depends on the content and amplitude of the sur-
rounding audio data. Fig.2 displays a typical glitch arte-
fact: the degradation consists in added high-frequency con-
tent. This effect appears when comparing the original (top)
and degraded (bottom) spectrogram contents between 80-
100 frames. The same example features another glitch
effect at the start of the frame, affecting a lower part of
the spectrum. Acoustically, the effect is similar to a short
whistle. An audio example demonstrating glitch artefacts
is available online 4 . Note that the overall signal energy
does not always change. The often well-embedded and
adaptive nature of these glitches render automatic detec-
tion difficult.

5.1 Simulation of data corruption

Unlike the click degradations, which can be inserted on-
the-fly as in Section 4, MP3 glitch degradations are calcu-
lated on a per-piece basis before training due to the less
easily indexable file format of MP3 which hinders exact
seeking.

4 https://osf.io/uqner/?view_only=
042774933537440299dd48a4083305b1

In order to simulate data corruption in the compressed
format, we modify MP3 encoded data during a decoding
process which we survey on a frame by frame basis: the
MP3 format encodes an audio stream into a series of MP3
frames. Each of these frames contains a header, containing
format information and parameters of the MP3 encoding
process itself. An optional integrity check for the header
is often omitted to save bitrate. The lame 5 encoder used
in the present study does not include CRC checking. The
header is followed by the encoded audio data, the size of
this block being determined by the bitrate used for the
frame during encoding. If a corrupted file remains unde-
tected before and during decoding, introduced errors may
be audible as glitches in playback, but become (from a data
integrity point of view) undistinguishable from the original
signal. This may easily happen if a command-line decod-
ing tool only issues a warning in case of a data corruption
which the decoding process can recover from in successive
frames.

We generate glitches as follows: First, the input audio
is transcoded to 128kbps mono MP3 files. During the fol-
lowing decoding, frames are randomly selected for glitch
insertion given a probability of Pglitch = 0.05. In contrast
to click generation we control glitch likelihood per MP3
frame. The data in these frames is then partially overwrit-
ten with random data of a randomised length. We found an
average overwritten range of 120 bytes (an average frame
contains 418 bytes) with a standard deviation of 60 bytes
to give realistic results. No distinction was made between
the header and data sections of the MP3 frame. In the
rare case that the decoding of the degraded frame is not
possible, the original MP3 frame is decoded and treated
as non-degenerated. The same method is used where the
decoded data is of a different length than the original un-
degraded signal. Frames not selected for glitch insertion
are decoded inbetween such that the degraded decoding of
the MP3 data results in a file with the same length as the
original.

5.2 MP3 glitch target vector

MP3 glitches are inserted during pre-processing. To iden-
tify the actual parts of the decoded wave signal affected by
the glitch artefact after decoding and segmentation, we em-
ploy a spectral distance measure comparing the degradedly
decoded audio to a clean decoding of the audio. Using a
frame wise thresholded difference of a power spectrogram
at the frame rate of the network output (128 spectrogram
frames), we determine whether significant degradation has
taken place for each of the 128 output values. Fig. 2 (bot-
tom) shows a resulting glitch classification target.

6. EXPERIMENTS

We compare our detectors on the Creative-Commons
licensed FMA-Large 6 dataset, containing roughly 30-
second snippets of 106,574 tracks from 16341 artists

5 https://linux.die.net/man/1/lame
6 Online at https://github.com/mdeff/fma/.
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within 161 genres, the most frequent being "Experimen-
tal", "Electronic", and "Rock" [26]. The music is stored in
320kbps stereo MP3 format.

Depending on the scenario, the data is either decom-
pressed and degraded on-the-fly, or, as in the MP3 glitch
scenario, data is already pre-processed with degradations
added, and loaded as raw waveform alongside correspond-
ing ground truth data. The Hook-Net models take as in-
put audio segments of 16384 samples at a sampling rate of
44.1kHz, corresponding to 0.37 seconds.

Degraded (as well as non-degraded) audio and target
data are then used for network training, using a batch
size of 200 segments. During configuration of the Hook-
Net, we tested variations on general parameters such as
numbers of filters and found the models with 13 contract-
ing/expanding blocks (see Section 3), 15 filters per con-
traction and 5 filters per expansion, totalling at 27,307,633
trainable parameters, performing well for our tasks at hand.
Initial experiments consistently showed reduced precision
in smaller models. Training is performed in Tensorflow,
using the ADAM [27] optimiser, on single Nvidia V100
GPU.

6.1 Click detection

We selected a subset of 57,928 pieces from FMA-Large
for training and evaluation of our click detector Hook-
Net. Pieces were separated into non-overlapping training
(40,000 pieces), validation (8964 pieces), and test (8964
pieces) sets. For each piece, 50 consecutive audio seg-
ments (18.6s in total) were extracted with no overlap, re-
sulting in 2,000,000 training segments and 448,200 vali-
dation and 448,200 test segments. In the above datasets,
0.078% of the individual target values is set to 1 (on av-
erage, in every 10th segment, one value in the target vec-
tor is marked as containing a click), which is reflected in
the initial setting of the network outputs’ activation biases.
Evaluation is performed on the target values as smallest
units, not summarised at the segment level. The model was
trained using a root mean square loss weighted towards the
“click” class with a learning rate of 0.001. We report re-
sults from models of the epoch with best validation set ac-
curacy.

As a baseline for the click detection task we apply a
generic click detector (SigClick) as implemented 7 in the
open source Essentia library [28] to the data segments. To
apply this to our segments of 16384 samples, we add an
additional sub-segmentation step, using sub-segments of
4096 samples length, with an overlap of 2048 samples.
Click positions returned by SigClick are transformed into
a binary output vector of 128 samples.

Table 1 compares the test set performance of the Hook-
Net to that of the best performing (by highest validation
set accuracy) configuration (threshold 35) of the SigClick
detector between tested thresholds of 30(default), 33, 35,
40, and 50. The Hook-Net models were selected by high-
est validation set accuracy, which was achieved after 13

7 https://essentia.upf.edu/reference/std_
ClickDetector.html

test data acc_t pr_t rec_t f1_t
Hook-Net FMA 99.9993 99.77 99.24 99.47
SigClick FMA 99.95 84.39 90.52 84.60
Hook-Net FMApost 99.9991 99.70 99.02 99.32

Hook-Netpost FMApost 99.9995 99.86 99.11 99.46
SigClick FMApost 99.97 85.52 81.04 80.62

Table 1. Click detector performances for plain (top) and
post-processed (bottom) click-degraded data (higher is bet-
ter, best per dataset in bold): test-set accuracy (acc_t), test
precision(pr_t), recall(rec_t) and f-measure (f1_t) for click
detection. In percent.

epochs (36 total) for the click data (Hook-Net) and 10
epochs (14 total) for training with post-processed click
data (Hook-Netpost).

Due to the bias of the dataset and target vectors towards
0 (no click), we concentrate on precision and recall which
is reported for the click class. For the application of find-
ing defects in large commercial databases, the precision
of click detection is of great importance. Top of Table 1
shows the Hook-Net achieves significantly better precision
and recall of clicks. The bottom of the table confirms this
using post-processed click data as test set. Added vari-
ation from post-processing results in lower recall values,
particularly with SigClick. The difference in training with
(Hook-Net post) and without (Hook-Net) post-processing
shows good generalisation from the generated click arte-
facts to the diverse post-processed artefacts.

These results highlight a critical difference in the data-
driven paradigm applied in network training versus the
more generalistic detection in SigClick: while the assump-
tion for a general click detector is to detect any existing
click (given other preconditions e.g. sufficient distance to
the preceding one), the Hook-Net has been trained to de-
tect our inserted clicks while ignoring other click instances
in the music. Note that we do only compare the perfor-
mances on our clicks simulating digital defects such as
buffer under-run and timing errors. The SigClick detec-
tor may detect a wider range of clicks, but for this initial
experiment we refrained from training more generic mod-
els due to the lack of datasets with clicks stemming from
defects in music production, as we aim to minimise false
positives.

Manual verification showed that the FMA dataset does
feature many examples of electronic “glitch” music with
intentional or expected clicks. The goal of our detector
is to differentiate such clicks from the ones added due to
signal failures.

We validate this relation to musical genre in Table 2 by
applying the above model and SigClick on three smaller
genre-consistent datasets of 11400 (electronic), 10000
(pop rock) and 31600 (classical) segments not included in
the former training. Following the hypothesis that the elec-
tronic genre features more intentional click samples than
the classical genre, we see the precision of SigClick very
high for the classical data but significantly dropping in the
rock/pop and electronic genres, while the Hook-Net main-
tains high precision with only little difference. The values
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dataset acc_t pr_t rec_t f1_t
Hook-Net electronic 99.9997 99.91 99.74 99.82
SigClick electronic 99.94 80.34 98.06 84.94
Hook-Net rock pop 99.99992 100.0 99.90 99.95
SigClick rock pop 99.99 92.08 94.37 92.05
Hook-Net classical 100.0 100.0 100.0 100.0
SigClick classical 99.992 92.47 99.11 95.34

Table 2. Click performance in control datasets. Test-set
accuracy (acc_t), test precision(pr_t), recall(rec_t) and f-
measure (f1_t).

ep. acc_v acc_t pr_t rec_t f1_t
Hook-Net 31 98.52 98.46 92.83 88.04 90.37

Table 3. Glitch detection performance. Epoch with great-
est validation-set accuracy, validation accuracy (acc_v),
test-set accuracy (acc_t), test precision(pr_t), recall(rec_t)
and f-measure (f1_t) for glitch detection. In percent.

for post-processed data not reported here due to space lim-
itations confirm this effect.

6.2 MP3 glitch detection

For this task, pre-caching of degraded audio allows us to
use larger subsets of FMA for training (66476 pieces), val-
idation (14244 pieces) and test (14244 pieces).

For each piece, 50 consecutive audio segments were ex-
tracted as above, resulting in 3,323,800 training segments
and 712,200 validation and test segments. Segments were
randomised within each of the above datasets. While a
click only results in 1 target value to be set to 1, glitches af-
fect multiple target values per segment due to whole MP3
frames being affected by each corruption. This results in
train and validation datasets containing 8.04% of the target
values marked as glitched (test set: 8.19%).

Training is performed using root mean square loss, with
initial learning rate of 0.001 and reduction-on-plateau (fac-
tor 0.1, patience 10 epochs) of the learning rate. Across
40 training epochs, the best model was selected based on
its validation accuracy (acc_v) measure. Table 3 shows the
performance of this best model. Given the bias towards the
non-degraded class we report f-measure and precision re-
garding the glitched class due to their relevance for our ap-
plication scenario. The Hook-Net glitch model generalises
well from the validation to the test set, with an f1-measure
of 0.9037.

7. CONCLUSIONS AND FUTURE WORK

We presented the Hook-Net convolutional neural network
architecture with two novel applications to detect click and
data corruption errors in digital audio recordings. The de-
sign goal of the architecture is to capture the typical shape
and variation of artefacts in the direct audio signal, with
respect to their acoustic context. The detectors localise er-
rors with a time resolution of less than 10 milliseconds.

For click detection, we demonstrated an end-to-end
simulation, post-processing and detector training method.
Our evaluation shows the resulting detector outperforms a

state-of-the-art baseline on the large FMA popular music
dataset, using synthetically generated defects. A genre-
specific evaluation experiment shows the practical rele-
vance of inclusion of context and the capability of our
model to capture this: discontinuities resembling clicks in
audio may represent intentional music content depending
on their context. The achieved precision (> 99.77%) ren-
ders the detector suitable for the testing of large commer-
cial music databases.

Our second proposed application is aimed to filter
degradations in modern compressed audio from persisting
unnoticed in subsequent use of the defect audio. We de-
scribe the MP3 decoding glitch as a relatively novel type
of audio degradation for which detection is difficult due to
its variation. Our evaluation shows that our detector gen-
eralises well on common glitch artefacts. The proposed
training tasks come with a bias towards non-defective au-
dio, which we assume to be strong in real-world applica-
tions. This is tackled using large training and validation
datasets with synthesised artefact insertion. The simula-
tion of data corruption with subsequential MP3 decoding
promises a stronger realism of the artefacts synthesized in
this task. This process is applicable to other audio codecs,
depending on decoder robustness and consistency checks.

In future work we plan to extend the range of lossy com-
pression defects simulated and apply our architecture to
further and more generalised local audio degradations. We
also aim to reduce model complexity without negatively
affecting performance.
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ABSTRACT

We present Music Tagging Transformer that is trained
with a semi-supervised approach. The proposed model
captures local acoustic characteristics in shallow convolu-
tional layers, then temporally summarizes the sequence of
the extracted features using stacked self-attention layers.
Through a careful model assessment, we first show that
the proposed architecture outperforms the previous state-
of-the-art music tagging models that are based on convolu-
tional neural networks under a supervised scheme.

The Music Tagging Transformer is further improved
by noisy student training, a semi-supervised approach that
leverages both labeled and unlabeled data combined with
data augmentation. To our best knowledge, this is the
first attempt to utilize the entire audio of the million song
dataset.

1. INTRODUCTION

Automatic music tagging is a classification task whose ob-
jective is computational understanding of music seman-
tics. From a given audio excerpt, a trained music tagging
model predicts relevant tags (e.g., genre, mood, instru-
ment, decade, region) based on its acoustic characteristics.
The task has attracted music information retrieval (MIR)
researchers due to its wide pragmatic usages in many ap-
plications. Especially, there is a strong demand from in-
dustries that have music recommendation services from
large-scale music libraries. Thanks to the recent advances
in deep learning, mostly convolutional neural networks
(CNNs) [1], the performances of music tagging models
have been significantly enhanced by leveraging large-scale
data with various deep architectures [2–5]. However, there
still are two limitations in the current music tagging re-
search: i) chunk-based prediction and ii) a limited amount
of labeled data for supervised learning.

Music signals are in the form of sequential data. In this
sequence, regarding typical tags, some acoustic character-
istics may appear locally (e.g., instruments) while some
others may span over the sequence (e.g., mood, genre).
This means a successful music tagging model needs to be

© Minz Won, Keunwoo Choi, and Xavier Serra. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Minz Won, Keunwoo Choi, and Xavier Serra, “Semi-
Supervised Music Tagging Transformer”, in Proc. of the 22nd Int. Society
for Music Information Retrieval Conf., Online, 2021.

able to extract both local and global features. Fully con-
volutional network [2], one of the very early deep learning
models for music tagging, was designed to capture both
local and global features by increasing the size of the over-
all receptive fields with max-pooling. More recently, how-
ever, it is shown that training with a smaller hop size with
shorter audio chunks is beneficial for music tagging [6].
This approach has been adopted in many CNN-based mod-
els [3–5], where the models are trained with short audio
chunks (3 to 5 second long), densely striding max-pooling,
and a global pooling layer. To predict music tags of a 3-
minute song, for example, the audio is split into multiple
short audio chunks, and the model makes predictions on
each chunk. Then, the predictions are aggregated through
majority vote or global average-/max-pooling. This means
that on a track level, the current music tagging models
are performing like a bag-of-features model [7] instead of
modeling music representation as a sequence.

Another limitation of the current music tagging research
is a limited amount of labeled data. The Modern deep
learning models are data-hungry. However, manually la-
beling music tags is time-consuming and requires domain
expertise. In pursuit of large-scale research, the million
song dataset (MSD) [8], which literally includes a mil-
lion songs in it, became popular in music tagging research.
Among the million songs, however, only about 24% are
labeled with at least one of the top-50 music tags. Most
of the previous music tagging research has only utilized
the labeled data while discarding 76% of the songs in the
dataset. This type of setup (i.e., a small labeled dataset
along with a large unlabeled dataset) is not limited to the
MSD but can be found often in the real world regard-
less of the domain. To leverage the unlabeled data, self-
supervised [9–13] and semi-supervised [14–16] learning
have been actively explored in computer vision and natural
language processing.

In this paper, we present Music Tagging Transformer
that is trained with a semi-supervised approach. Our main
contribution is three-fold: (i) through a careful model as-
sessment, we show that our Music Tagging Transformer
outperforms the previous works, (ii) we show that we can
use unlabeled data to improve music tagging performances
via semi-supervised learning, (iii) we provide a new split
of the MSD to solve known issues of the previous one. Re-
producible code is available online. 1

1 https://github.com/minzwon/semi-supervised-music-tagging-
transformer
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2. RELATED WORKS

2.1 Music Tagging

2.1.1 CNN-based models

The research using CNNs accelerated the improvement of
music tagging models. Choi et al. proposed to adopt CNNs
for music tagging [2]. Pons et al. intended to inject domain
knowledge in their architecture by designing vertically and
horizontally long filters so that the network can capture
timbral and temporal features, respectively [3]. Lee et al.
formalized music tagging as a fully end-to-end process by
using a 1D CNN and raw audio inputs [4]. Won et al.
proposed to use a learnable harmonic front end for a 2D
CNN [5]. More recently, the authors of [6] evaluated all
these CNN-based music tagging models under the same
experimental environment. Two of the main conclusions
of [6] are to recommend (i) using mel spectrogram inputs,
and (ii) using the most granular 2D filters (i.e., 3 ⇥ 3 con-
volution) instead of manual design choices. That means,
a simple 2D CNN with mel spectrogram inputs, which is
prevalent and sometimes referred to as vgg-ish model, is
still outperforming the other music tagging models.

2.1.2 Multiple instance learning

Music tagging can be seen as a multiple instance learning
(MIL) [17] problem. A given music signal (a bag of mul-
tiple instances) will be labeled with a tag if a part (an in-
stance) of the signal has a certain, relevant acoustic charac-
teristic. The acoustic characteristic may span across the en-
tire sequence (e.g., mood) or appear partially (e.g., instru-
ments). There are two approaches of handling this aspect
in music tagging. One is to train an instance-level model
then aggregate the instance-level predictions; the other is
to handle multiple instances in a single model.

The first approach has been used in many systems [3–5].
This approach is justified by our intuition – humans can
predict music tags within just a few seconds. For example,
people would not spend 3 minutes to determine whether a
track is rock. In this approach, during the evaluation phase,
the instance-level predictions are aggregated with a method
such as majority vote, global max pooling, global average
pooling, or adaptive pooling [18].

The second approach, the single model one, tackles the
MIL problem in an end-to-end fashion. Fully convolu-
tional network [2], an early music tagging model using
CNN, models the entire 30-second mel spectrogram in-
puts. However, this model has to stick to a fixed input
size and shows a relatively lower performance compared
to other models that are trained with short audio chunks.
To take the global structure into account while not loosing
local features, sequential modeling was added to the deep
learning architectures. Convolutional recurrent neural net-
work (CRNN) [19] is designed to capture local acoustic
characteristics in a CNN front end and to summarize the
sequence of the extracted features using an RNN back
end. Similarly, another previous work [20] adopted a se-
quence model from the natural language processing field,
the Transformer [21].

2.2 Transformers

2.2.1 Overview

Transformer [21, 22] has shown its ability in sequence
modeling, establishing itself de facto state-of-the-art in
natural language processing. The structure of Transformer
is a deep stack of self-attention layers. In each layer, by
self-attention mechanism, the pairwise attention scores be-
tween every time step are calculated to output another se-
quence which includes a better context in each time step.
In detail, the self-attention score is calculated as:

Attention(Q,K, V ) = softmax

✓
QKT

p
dk

◆
V, (1)

where dk is the dimension of the key and Q, K, and V
are query, key, and value, respectively. Based on the rel-
evance of key and query (i.e., relationship between two
items), how much of value to be passed to the next layer
is decided. Since Transformer has direct paths between
each time step, it does not suffer from vanishing gradi-
ent, which is a critical problem of RNN families when
modeling long sequences. However, Transformer may suf-
fer from its memory complexity which is quadratic to the
length of the sequence.

Due to its receptive field, which is unlimited within the
input sequence, Transformer has become extremely popu-
lar in sequential data modeling such as text [21], symbolic
music [23], and video [24]. It even demonstrated its repre-
sentation power in non-sequential data such as image [25].

2.2.2 Self-attention in music tagging

Hereinafter, we refer to the previous work [20] as CNNSA
(acronym of convolutional neural network with self-
attention) so that we can distinguish it from the proposed
Music Tagging Transformer. The CNNSA model is the
first music tagging model that uses Transformer. The
model consists of a CNN front end and a Transformer
back end. The CNN front end captures local (0.03 to
2.6 seconds) acoustic characteristics and the Transformer
back end temporally summarizes the sequence of the fea-
tures. Based on previous works, the CNNSA investigated
two types of CNN front end which have two very dif-
ferent motivations. One is based on hand-crafted verti-
cally and horizontally long filters [3] to capture timbral
and temporal characteristics, respectively. The other is a
more flexible, data-driven approach by using 1D CNN [4]
with raw audio inputs. The CNNSA showed comparable
results in music tagging but did not outperform other pre-
vious CNN approaches. Nevertheless, it demonstrated the
Transformer’s sequence modeling ability and better tem-
poral interpretability.

2.3 Semi-supervised Learning

With the advances of scalable hardware and training al-
gorithms, the demand for labeled data has outpaced the
progress of the size of datasets in many fields. As a solu-
tion, researchers started to develop methods that can take
advantage of unlabeled data. Self-supervised [9–12] and
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semi-supervised learning [14–16] aim at leveraging the
abundant unlabeled data and have shown strong perfor-
mances in various domains including computer vision and
natural language processing.

In many self- and semi-supervised learning approaches,
the models are trained to return noise-invariant predic-
tions [11, 12, 15]. When there is an apple on the table,
for example, it is always an apple even if we take a look
at it from a different angle or a different distance, under
different lights, or through glass. This ‘noise’ is usually
realized in a form of data augmentation. In detail, with a
self-supervised learning scheme, models are trained to op-
timize the agreement between different views of the same
input [11, 12].

On the contrary, semi-supervised learning takes advan-
tage of both existing labeled data and unlabeled data. One
effective way of handling the data is to formalize the prob-
lem as teacher-student learning [15, 26, 27]. In teacher-
student learning, a teacher model is first trained with la-
beled data in a supervised scheme and then, a student
model is trained to mimic the teacher’s behavior by pre-
dicting pseudo-labels [28] that are generated by the teacher
model. The teacher-student training has been actively ex-
plored with the purpose of domain adaptation [26], knowl-
edge distillation [29], and knowledge expansion [15]. Es-
pecially, noisy student training [15] successfully takes ad-
vantage of the teacher-student training with the aforemen-
tioned noise invariance.

3. MODELS

3.1 Short-chunk ResNet

As a simple 2D CNN with mel spectrogram inputs out-
performs other music tagging models [6], we use a short-
chunk ResNet model as our baseline. The model is trained
with 3.69-second short audio chunks (instance-level), then
the predictions are later aggregated by averaging them in
the evaluation phase. It is a seven-layer CNN and each
layer comprises of 3 ⇥ 3 convolution with residual con-
nection [30], batch normalization [31], rectified linear unit
(ReLU) non linearity, and 2 ⇥ 2 max pooling. This is a
variant of the prevalent vgg-ish model, but due to its spe-
cific characteristics (i.e., short-instance-level training and
densely striding max pooling), it is referred to as short-
chunk ResNet [6]. We used a publicly available imple-
mentation 2 .

3.2 Music Tagging Transformer

The proposed Music Tagging Transformer consists of two
parts: a CNN front end and a Transformer back end as in
Figure 1. On a high level, our structure is similar to the
previous CNNSA [20] where CNN captures local spectro-
temporal features and Transformer globally summarizes
the sequence of the extracted features. However, there are
two main differences in the front end: the CNN architec-
ture and the reshaping layer.

2 https://github.com/minzwon/sota-music-tagging-models

…
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Figure 1: Proposed Music Tagging Transformer.

layer output shape

Input B ⇥ 1⇥ F ⇥ T
Conv (3⇥ 3) B ⇥ C ⇥ F ⇥ T
MaxPool (2⇥ 2) B ⇥ C ⇥ F/2⇥ T/2
Conv (3⇥ 3) B ⇥ C ⇥ F/2⇥ T/2
MaxPool (2⇥ 2) B ⇥ C ⇥ F/4⇥ T/4
Conv (3⇥ 3) B ⇥ C ⇥ F/4⇥ T/4
MaxPool (2⇥ 1) B ⇥ C ⇥ F/8⇥ T/4
Reshape B ⇥ (C · F/8)⇥ T/4
Fully-connected B ⇥ C 0 ⇥ T/4

Table 1: Front end CNN of Music Tagging Transformer.

The CNNSA [20] investigated two different CNN front
ends that are from two opposite motivations. One is us-
ing hand-crafted filter design on mel spectrogram inputs to
leverage domain knowledge [3], the other is, with a fully
data-driven spirit, one that learns from raw audio in an end-
to-end fashion [4]. However, we follow a suggestion from
a more recent work [6] – we use 3 ⇥ 3 convolution filters
with residual connections [30] on mel spectrogram inputs.
Table 1 outlines our 3-layered CNN front end where B is
the batch size, C is the number of convolution channels,
F is the number of mel bins, T is the number of frames,
and C 0 is the number of attention channels of Transformer.
This CNN front end i) helps the model to capture local rep-
resentations and ii) reduces the time resolution of the input
so that it is feasible to train the following back end.

At the end of the CNN, the second and the third dimen-
sions are reshaped into a single dimension. This flatten-
ing is motivated by Vision Transformer (ViT) [25] which
reshapes a 2D image patch into a one-dimensional array.
As a result, the output of the CNN is a sequence of short-
chunk audio features where a chunk corresponds to ap-
proximately 0.1 second. It is input to the back end Trans-
former. This is in contrast to the CNNSA [20] that used the
frequency-axis max-pooling at the end of its front end. In
other words, in Music Tagging Transformer, the attention
layers are given more detailed spectral information.

Our back end Transformer architecture is nearly iden-
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tical to the previous works [20, 21] except for the number
of parameters and input lengths. After a hyperparameter
search, we chose 4 layers, 256 attention dimensions, and
8 attention heads. At the input stage, positional embed-
ding [21] is applied and a special token embedding E[CLS]
is inserted so that the Transformer can perform sequence
classification (Figure 1) as a downstream task.

3.3 Noisy Student Training

To leverage unlabeled data, we investigate noisy student
training [15], a successful semi-supervised learning ap-
proach. Table 2 provides an overview of noisy student
training with pseudocode. First, we train a teacher model
T with a conventional supervised learning approach (line
1–6). Then, we train a student model S with two types of
losses. The first loss, l1, is coming from the typical super-
vised approach with labeled data (line 10–11) as done for
the teacher model. The other loss, l2, is from unlabeled in-
puts and the corresponding pseudo-labels provided by the
teacher model (line 12–15). In order to make the student
model perform beyond mimicking the teacher model, data
augmentation is applied (line 13). Both hard and soft la-
bels can be used for the pseudo-labels [15] and we use soft
labels in our work. If the training is successful, the trained
student model would outperform the teacher model. Fur-
thermore, the whole training process can be done itera-
tively by using the student as a new teacher model and
training another student model to obtain an even better per-
forming model. For a stronger teacher model, we used data
augmentation in our supervised learning pipeline as well
(line 1–6 and 10–11). As a result, the only pipeline with-
out data augmentation is pseudo-label generation (line 12).

The size of the student model can be identical or larger
than the teacher model. In this case, one can interpret the
training process as knowledge expansion [15], meaning the
knowledge in the teacher model is upgraded in the student
model. One can also design the student model to be smaller
than the teacher model, making the process knowledge dis-
tillation [32]. Knowledge expansion and knowledge distil-
lation are complementary; depending on the use-case, one
could pursue either performance or efficiency. We investi-
gate both directions in this paper.

3.4 Data Augmentation

Data augmentation is a key to success in noisy student
training. In our experiments, we take advantage of Au-
dio Augmentations library [33] which is easily integrated
to PyTorch data pipeline. The applied data augmentation
methods are as follows:

• Polarity inversion.

• Additive noise by ksnr 2 {0.3, 0.5}.

• Random gain by A 2 {�20,�1} dB.

• High-pass filter by fH 2 {2200, 4000} Hz.

• Low-pass filter by fL 2 {200, 1200} Hz.

Noisy Student Training

Input labeled data X , labels Y , unlabeled data Z
Models teacher model T , student model S
Functions loss function L, data augmentation A,

back propagation B
Train
1 for x 2 X , y 2 Y
2 do
3 p � T (x) // predict
4 l � L(p, y) // get loss
5 T  � B(T , l) // update teacher model
6 end do
7 end for
8 for x 2 X , y 2 Y , z 2 Z
9 do
10 p1  � S(x) // predict
11 l1  � L(p1, y) // get supervised loss
12   � T (z) // generate pseudo-label
13 ẑ � A(z) // data augmentation
14 p2  � S(ẑ) // predict
15 l2  � L(p2, ) // get semi-supervised loss
16 S  � B(S, l1 + l2) // update student model
17 end do
18 end for

Table 2: Pseudocode of noisy student training.

• Delay by t 2 {200, 500} ms.

• Pitch shift by n 2 {�7, 7} semitones.

• Reverb by room size s 2 {0, 100}.

Each augmentation method is activated independently with
a probability p 2 {0.3, 0.7}.

4. DATASET

We use the million song dataset (MSD) [8] which consists
of one million songs with audio features and metadata.
Most of the previous works [2–6] relied on the Last.fm
tags, a set of crowdsourced music tags, as ground truth. A
popular approach is to take the most frequent 50 tags and
select tracks that have at least one of the tags. This results
in 242k songs, which are split into train, validation, and
test sets. 3 Hereinafter, we refer to this as a conventional
(MSD) split. Since this split has been widely used, we use
it to benchmark the proposed Music Tagging Transformer
against the previous works.

We also suggest a new split to alleviate some known
problems of the conventional split. There are two prob-
lems – First, since the MSD music tags are collected from
users, some of them are very noisy, and that may lead to
noisy (and incorrect) evaluation [34]. Second, a strict split
of music items requires taking the artist information into
consideration since often, songs and labels from the same

3 https://github.com/keunwoochoi/MSD_split_for_tagging
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artist heavily resemble each other. However, the conven-
tional split was done without such consideration, having
caused unintended information leakage between the train-
ing and evaluation sets. Ultimately, this would cause an
overly optimistic evaluation. As a solution, we use manu-
ally cleaned data from a previous work [35] and take the
top 50 tags. We also propose a new split of MSD that does
not share any artist among training/validation/test sets and
is extended to more tracks. We name this ‘CALS split’
(cleaned and artist-level stratified split). CALS split con-
sists of 233k labeled tracks and 516k unlabeled tracks. To
the best of our knowledge, this is the first attempt to utilize
the entire MSD audio, although we have to discard the rest
250k tracks to avoid information leakage by shared artists.

When noisy student training is used, it is common to
have an unlabeled set that is significantly bigger than the
labeled set. For example, in computer vision, 81 million
unlabeled items were used along with 1.2 million labeled
items [15], making the ratio of the semi-supervised set to
be 67.5 (81/1.2). However, with 233k labeled items and
516k unlabeled items, our ratio is only around 2.3. This
might be a factor that limits us from fully exploring the
potential advantage of semi-supervised learning as we will
discuss in Section 5.

5. EXPERIMENT

We use the MSD that was introduced in detail in Section 4.
All the audio signals are pre-processed to 22,050 Hz sam-
ple rate and converted to short-time Fourier transform rep-
resentations with a 1024-point FFT and 50%-overlapping
Hann window. Finally, we convert them to log mel spec-
trograms with 128 mel bins.

All models that are used or introduced in this paper are
optimized using Adam [36] with a learning rate of 0.0001.
The best model is selected based on the binary cross en-
tropy loss of the validation set and early stopping is applied
when the validation loss does not improve for 20 epochs.

Music tagging models are typically evaluated with Area
Under Receiver Operating Characteristic Curve (ROC-
AUC). However, it is known that ROC-AUC may report
overly optimistic results with highly skewed data [37].
Therefore, as our main evaluation metrics, we use not only
ROC-AUC but also Area Under Precision-Recall Curve
(PR-AUC).

5.1 Performance with the conventional split

Table 3 summarizes the performance of previous sys-
tems and the proposed model using the conventional split.
The ROC-AUC and PR-AUC of the many previous mod-
els have been under 0.89 and 0.33, respectively. Our
model, Music Tagging Transformer, outperforms the pre-
vious state-of-the-art models, harmonic CNN and short-
chunk ResNet. The improvement, especially on PR-AUC,
is non-trivial and even larger with data augmentation.

The front end of our Music Tagging Transformer takes
a sequence of chunks, where each of which represents a
very short duration of the signal (⇡0.1 second) [6]. Be-

Models ROC-AUC PR-AUC

FCN [2] 0.8742 0.2963
Musicnn [3] 0.8788 0.3036
Sample-level [4] 0.8789 0.2959
Sample-level+SE [38] 0.8838 0.3109
CRNN [19] 0.8460 0.2330
CNNSA [20] 0.8810 0.3103
Harmonic CNN [5] 0.8898 0.3298
Short-chunk CNN [6] 0.8883 0.3251
Short-chunk ResNet [6] 0.8898 0.3280

Transformer (proposed)§ 0.8916 0.3358
Transformer (proposed) + DA† 0.8972 0.3479

Table 3: Performance comparison using the conventional
MSD split for top-50 music tagging. The § and † marks
mean they are based on the identical model architecture
and training strategy; compared to the same, marked mod-
els in Table 4, only the dataset split is different.

Models #param ROC-AUC PR-AUC

ResNet [6] 13.5m 0.9098 0.3525
ResNet+DA 13.5m 0.9141 0.3705
ResNet+DA+KE 13.5m 0.9165 0.3728
ResNet+DA+KD 3.4m 0.9171 0.3742

Transformer§ 4.6m 0.9188 0.3775
Transformer+DA† 4.6m 0.9191 0.3845
Transformer+DA+KE 4.6m 0.9204 0.3839
Transformer+DA+KD 0.5m 0.9217 0.3889

Table 4: Performance comparison using the CALS MSD
split for music tagging.

cause 0.1 second would be too short to represent musical
characteristics alone, we interpret that the experimental re-
sults would mean our Transformer back end plays a role of
sequential feature extractor beyond simple bag-of-feature
aggregation. This may be an important aspect of the pro-
posed model since sequential modeling is what the self-
attention mechanism is the best suit.

The data augmentation we adopted contributes to im-
provements of 0.0056 ROC-AUC and 0.0119 PR-AUC.
These are bigger than many of the improvements we have
seen between different architecture choices. This empha-
sizes that data augmentation should be considered when
developing a music tagging model.

5.2 Performance with the CALS split

For a deeper and more accurate analysis of the proposed
models and methods, we use the proposed CALS split
and run experiments with various configurations. Table 4
presents the experimental results of short-chunk ResNets
(baseline architecture) and Music Tagging Transformers.
For both of the models, it also summarizes the results
of supervised models (the baseline among training meth-
ods), models with data augmentation (DA), models with

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

773



R
O

C
-A

U
C

0.89

0.898

0.905

0.913

0.92

Input length
5s 10s 20s 30s

Transformer ResNet

PR
-A

U
C

0.34

0.353

0.365

0.378

0.39

Input length
5s 10s 20s 30s

Figure 2: Performance with different input lengths.

width depth ROC-AUC PR-AUC

32 4 0.9118 0.3528
64 4 0.9178 0.3754

128 4 0.9194 0.3776
256 4 0.9191 0.3845
512 4 0.9177 0.3788
768 4 0.9162 0.3707
1024 4 0.9174 0.3736

256 1 0.9180 0.3736
256 2 0.9193 0.3805
256 4 0.9199 0.3814
256 8 0.9181 0.3826
256 12 0.9165 0.3780
256 16 0.9169 0.3785

Table 5: The performance of Music Tagging Transformer
with varying width and depth of the attention layers.

DA and knowledge expansion (KE), and models with DA
and knowledge distillation (KD). Note that the two bottom
rows of Table 3 correspond to the 5th and 6th rows of Ta-
ble 4 as marked with § and †.

For both short-chunk ResNet [6] and the Music Tagging
Transformer, we observe constant improvements when
data augmentation and noisy student training (knowledge
expansion) are applied accumulatively. This shows that for
both of the architectures, the size of the dataset is a factor
that limits the performance of the models.

In Section 4, we mentioned that our ratio of the semi-
supervised set is relatively small. There are two observa-
tions that may be related to it. First, unlike a previous work
in computer vision [15], we could not observe any perfor-
mance gain by iterating the noisy student training (i.e., re-
peating to use a student model as the next teacher model).
Second, interestingly, the student model with smaller pa-
rameters (models with DA and KD) showed better perfor-
mance than larger models (models with DA and KE). This
would be explained more clearly if the models are trained
with a significantly richer dataset, one that is bigger and/or
has more diverse data. Unfortunately, we could not run
such an experiment due to the lack of a suitable dataset.

5.3 More Hyperparameter Search

In this section, we present the experiment results with vari-
ous model configurations. First, we trained our Music Tag-

ging Transformer and short-chunk ResNet with varying in-
put lengths to assess our proposed model’s ability to handle
long sequences. As shown in Figure 2, on both of the met-
rics, short-chunk ResNet shows a noticeable performance
degradation as the audio input gets longer. This shows that
the global max pooling in the short chunk ResNet is not
perfectly suitable for a long signal. Meanwhile, the Mu-
sic Tagging Transformer shows consistent performances in
general. An exception is when the input is 30-second long.
We suspect the performance drop of the Music Tagging
Transformer happens because the model cannot take ad-
vantage of random cropping data augmentation effect since
the 30-second is the full length of the MSD previews.

Second, we investigate different Transformer parame-
ters to figure out the best performing setup. As summa-
rized in Table 5, Transformer achieved the best perfor-
mance with attention channels (width) at 128 and 256, and
their depth of 4 and 8 layers. However, these optimal pa-
rameters are dataset-dependent; as generally observed, a
larger network structure would perform better if a larger
amount of training data is provided.

6. CONCLUSION

In this paper, we proposed a new architecture, Music Tag-
ging Transformer, and improved its tagging performance
with a semi-supervised scheme: noisy student training.
Experimental results showed that the proposed architecture
outperforms the previous state-of-the-art models in super-
vised music tagging using the MSD [8]. The results also
indicate that the tagging models can be further enhanced
using noisy student training – with either knowledge ex-
pansion and knowledge distillation. We also provided an
analysis result that shows Music Tagging Transformer can
handle long audio inputs better than the previous CNN ar-
chitectures do.

In future work, our Transformer can be further utilized
in various MIR tasks. Since Transformer can perform both
sequence-level and token-level classification, it can be used
in not only music tagging but also tasks such as beat de-
tection and melody extraction. Finally, by combining the
multiple MIR tasks in a multi-task learning scheme, Trans-
former can be trained as a general purpose music represen-
tation learning model.

Another important direction to explore is self-
supervised learning. Our Music Tagging Transformer can
be pre-trained in a self-supervised scheme such as masked
embedding prediction [21] or contrastive learning [11–13].
Finally, the pre-trained model can be optimized together
with semi-supervised learning to further improve the per-
formance [16].
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ABSTRACT

Content creators often use music to enhance their stories,
as it can be a powerful tool to convey emotion. In this pa-
per, our goal is to help creators find music to match the
emotion of their story. We focus on text-based stories that
can be auralized (e.g., books), use multiple sentences as
input queries, and automatically retrieve matching music.
We formalize this task as a cross-modal text-to-music re-
trieval problem. Both the music and text domains have ex-
isting datasets with emotion labels, but mismatched emo-
tion vocabularies prevent us from using mood or emotion
annotations directly for matching. To address this chal-
lenge, we propose and investigate several emotion embed-
ding spaces, both manually defined (e.g., valence/arousal)
and data-driven (e.g., Word2Vec and metric learning) to
bridge this gap. Our experiments show that by leveraging
these embedding spaces, we are able to successfully bridge
the gap between modalities to facilitate cross modal re-
trieval. We show that our method can leverage the well es-
tablished valence-arousal space, but that it can also achieve
our goal via data-driven embedding spaces. By leverag-
ing data-driven embeddings, our approach has the poten-
tial of being generalized to other retrieval tasks that require
broader or completely different vocabularies.

1. INTRODUCTION

Content creators, both amateur and professional alike, of-
ten use music to enhance their storytelling due to its pow-
erful ability to elicit emotion 1 . For example, when dis-
sonant music is added to a horror movie, it can amplify
the scary mood of the story line. Similarly, cheerful music
can emphasize the excited mood in a scene of a birthday
party. Matching text and music to create a narrative, typi-
cally requires tediously browsing large-scale music collec-
tions, significant experience, and musical expertise. In this

1 We use the terms emotion and mood interchangeably following pre-
vious work [1].
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The children stood on tiptoe and 
shouted "hurrah," with joy; altogether 

it was a very splendid affair.

happy music

Figure 1: Cross-modal text-to-music retrieval using an
aligned, multimodal embedding space.

paper, we therefore address the problem of automatically
matching music to text as shown in Figure 1.

We formalize this task as a cross-modal retrieval prob-
lem [2] and focus on matching long-form text (multiple
sentences, paragraphs) to music. For queried sentences
like books and scripts, we seek to retrieve matching mu-
sic for applications such as podcasts, audio books, movies,
and film. To facilitate cross-modal retrieval, a common ap-
proach is to first perform feature extraction to convert each
data modality into an embedding space. Then, the different
embedding spaces must be matched to bridge the modality

gap by somehow aligning their different distributions [2].
Once aligned, (fast) nearest neighbor search can be used
for retrieval.

Various methods have been proposed for cross-modal
feature extraction and alignment. For example, canonical
correlation analysis has been used to bridge the modality
gap [3] as well as modern deep learning techniques that
learn common representation spaces [4, 5]. Such meth-
ods can be categorized into four groups: unsupervised,
pairwise-based, rank-based, and supervised methods [6].
Among these, supervised methods are the most straightfor-
ward and in theory can take advantage of existing labeled
datasets (e.g., labels of happy, sad) and themes (e.g., party,
wedding with corresponding text and music). Difficulties,
however, immediately arise because of mismatched dataset
taxonomies (vocabularies) per modality, making it chal-
lenging to use standard techniques directly.

Therefore, in this work we focus on the task of emotion-
based text- (e.g. sentences, paragraphs) to-music retrieval,
and investigate how we can best perform cross-modal re-
trieval with heterogeneous dataset taxonomies. To the best
of our knowledge, this problem has not been previously ad-
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dressed and could be beneficial to media content creation
applications. We propose six different deep learning strate-
gies to extract relevant features and bridge the modality
gap between text and music including (1) classification (2)
multi-head classification (3) valence-arousal regression (4)
Word2Vec regression (5) two-branch metric learning and
(6) three-branch metric learning. We then evaluate each
approach on multiple text and music datasets, report objec-
tive results via precision at five and mean reciprocal rank,
and conclude with qualitative analysis and discussion. Our
results show that our valence-arousal-based method is a
powerful baseline for emotion-based cross-modal retrieval,
but that our three-branch metric-learning approach is com-
parable, more general, and does not require manually en-
gineered valence and arousal mappings.

2. RELATED WORK

2.1 Text Emotion Classification

Text emotion classification methods or the task of pre-
dicting emotion from text can be divided into three cate-
gories: lexicon-based models, traditional machine learning
models, and deep learning models. Lexicon-based mod-
els take advantage of pre-defined emotion lexicons, such
as NRC EmoLex [7] and WordNet-Affect [8] to match
keywords. Traditional machine learning approaches rec-
ognize emotions using algorithms such as support vector
machine (SVM) [9] and Naive Bayes [10]. Finally, deep
learning models use deep sequence models such as gated
recurrent unit (GRU) [11], bidirectional long-short term
memory (BiLSTM) [12], and Transformers [13]. Most
recently, Transformer models [14–16] have become quite
prevalent. Such models take advantage of transfer learn-
ing, are commonly pre-trained to learn language repre-
sentation with large datasets, and then applied to various
downstream tasks including question and answer systems
as well as emotion recognition [13].

2.2 Music Emotion Classification

Music emotion classification or the task of predicting emo-
tion from music audio is commonly divided into conven-
tional feature extraction and prediction approaches [17–
19], and end-to-end deep learning approaches [20, 21].
Deep learning approaches have become most prevalent
and commonly frame emotion recognition as a multi-class
or multi-label auto-tagging classification problem [22–26].
Recently, multiple music tagging models were evaluated
in a homogeneous evaluation pipeline [27] and found
three design recommendations for automatic music tag-
ging models: (1) use mel-spectrogram inputs, (2) use 3⇥3
convolutional filters, and (3) use short-chunk audio in-
puts with small hop sizes and max-pooling. Based on
this, a model using mel-spectrogram inputs and convolu-
tional neural networks with focal loss [28] won the Me-
diaEval 2020 Emotion-and-Theme-Recognition-in-Music-
Task 2 [29].

2 https://multimediaeval.github.io/2020-Emotion-and-Theme-
Recognition-in-Music-Task

Tag GoogleNews Domain-specific [35]

Chill
chilly, cold, chilled,

chills, shivers, shiver, warm,
frigid, frosty, balmy

chill_out, relax, chilled,
kick_back, relaxing, chill-out,

chilled_out, downtempo,
down_tempo, unwind

Table 1: Nearest words in GoogleNews and domain-
specific word embeddings [35]. Music-related words are
highlighted in bold.

2.3 Valence-arousal Regression & Word Embeddings

Beyond classification, previous works [30,31] suggest that
regression approaches can outperform classification ap-
proaches in music emotion recognition. Here, researchers
use the well-known valence-arousal emotion space [32,33]
where valence represents positive-to-negative emotions,
and arousal indicates the intensity of the emotions. These
annotations can be collected by human annotators di-
rectly [30] or by mapping existing mood labels into the
valence-arousal space using pre-defined lexicons [21, 34].

As an alternative to using the manually annotated
valence-arousal space, we can obtain tag (mood) embed-
dings in a more data-driven fashion. Pre-trained word em-
beddings, such as Word2Vec [36] and GloVe [37], repre-
sent words as vectors by learning word associations from
a large corpus. These embedding spaces use the cosine
similarity as a measure of semantic similarity. Recent
works [35,38] show the suitability of pre-trained word em-
bedding in music retrieval and that the embedding can in-
clude more music related context by training it with music
related documents [35, 39]—see Table 1.

2.4 Cross-modal Retrieval

Instead of targeting a pre-defined embedding space, mul-
timodal metric learning models aim at learning a shared
embedding space in which semantically similar items are
close together while dissimilar items are far apart in the
embedding space. Unsupervised approaches leverage co-
occurrence information. For example, when we collect
user-created video from the web, the video and audio
streams are synchronized, and this correspondence can be
exploited for representation learning [40,41]. On the other
hand, supervised methods learn discriminative representa-
tions by exploiting annotated labels. Here, data from dif-
ferent modalities are used to train models such that data
points with the same label should be close while data with
different labels should be far apart. Metric learning is also
used for bridging the modality gap between text and au-
dio, such as keyword spotting [42], text-based audio re-
trieval [43, 44], and tag-based music retrieval [35, 38] in
both supervised and unsupervised ways.

Two branch metric learning [45] is one of the most
prevalent architectures for cross-modal retrieval. It con-
sists of two branches where each branch extracts fea-
tures from each modality and maps them into a shared
embedding space. When optimized with a conventional
triplet loss (e.g. anchor text, positive song, negative song),
however, the model loses neighborhood structure within
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modalities. To alleviate this issue, previous work [46]
added structure-preserving constraints by using additional
triplet losses within modalities (e.g., anchor text, positive
text, negative text).

3. MODELS

Cross-modal retrieval comprises two parts: feature extrac-
tion and bridging the modality gap. Our text and music
embeddings, Etext and Emusic respectively, are defined as
follows:

Etext = M(Ptext(x))
Emusic = M(Pmusic(x))

(1)

where P is a pre-trained model to extract features from
each modality and M is a multilayer perceptron (MLP) to
map them to a multimodal embedding space.

3.1 Pre-trained Models for Feature Extraction

In our work, we leverage the DistilBERT [16] transformer
model for text analysis, which is a compact variant of the
popular BERT transformer model [14, 16]. We use a pre-
trained model from the Huggingface library [47].

For the music representation model Pmusic, we use a
CNN with residual connections that are trained with mel-
spectrograms (ResNet) [27]. Due to its simplicity and high
performance, it is a broadly used architecture not only in
music but also in general audio representation learning.
Our ResNet consists of 7 convolutional layers with 3 ⇥ 3
filters followed by 2 ⇥ 2 max-pooling. The model is pre-
trained with the MagnaTagATune dataset 3 [48]. Both pre-
trained models are updated during the training process so
that they can adapt to the data.

3.2 Embedding Models to Bridge the Modality Gap

3.2.1 Classification

As a starting point, we train two separate mood classi-
fication models for text and music (Figure 2-(a)). Then
the model returns mood predictions and their likelihood
with softmax. From the predicted text mood, songs are
re-ranked based on their likelihoods of the text mood.
However, this classification approach has an inherent
limitation- the model cannot bridge the modalities when
they have different mood taxonomies.

3.2.2 Multi-head Classification with Shared Weights

Multi-head model is similar to the classification model but
it shares a 3-layered MLP for multimodal fusion in it (Fig-
ure 2-(b)). Since the model shares the weights across dif-
ferent modalities, it can predict the mood in different tax-
onomies by switching the classification head. We included
this model to see if the shared MLP can generalize across
modalities.

3 We use the pre-trained model from this open source repository:
https://github.com/minzwon/sota-music-tagging-models

3.2.3 Regression

Following previous work [21], we reformulate the clas-
sification task as a regression problem. By using NRC
VAD Lexicon [34], emotion labels can be mapped to the
valence-arousal space. However, this mapping process is
hand-crafted and also they cannot handle bi-grams or tri-
grams since the lexicon was created in a word-level. In
addition to leveraging the valence-arousal space, we also
experiment with a Word2Vec [36] embedding which was
pre-trained with music related text [35]. This data-driven
space supports a larger vocabulary, including bi-grams and
tri-grams, and is thus more flexible.

Regression models are trained separately for each
modality (Figure 2-(a)). Then the nearest items are re-
trieved based on their distance in the embedding space.
Note that, distance metrics are Euclidean distance for
the valence-arousal space, and cosine distance for the
Word2Vec space. However, regression is a one-way opti-
mization, i.e., optimizing text or mood into the pre-defined
word embedding space. In this case, neighborhood struc-
ture within each modality can be ignored. For example,
music with angry and exciting can share similar acoustic
characteristics. However, if two words are far apart in
Word2Vec space, this similarity cannot be considered by
regression. This obstacle motivates us to learn a shared em-
bedding space in a data-driven fashion using metric learn-
ing.

3.2.4 Metric Learning

Finally, we explore metric learning, which is a fully data-
driven approach that solves the cross modal text-to-music
retrieval in an end-to-end manner. Metric learning is opti-
mized to minimize a triplet loss T :

T (Ea, Ep, En) = [D(Ea, Ep)�D(Ea, En) + �]+
(2)

where D is a cosine distance function, � is a margin, and
Ea, Ep, En are embedding of anchor, positive, and neg-
ative examples, respectively. [·]+ is rectified linear unit.
Following conventional metric learning models for cross-
modal retrieval, we implement a two-branch metric learn-
ing model [45] (Figure 2-(c)) that optimizes the loss func-
tion L,

L = T (Ea
text, E

p
music, E

n
music). (3)

However, with the triplet function, neighborhood struc-
ture or data distribution within modalities can be lost.
Structure-preserving constraints [46] can alleviate the is-
sue but our problem is different from the case, since we
have different taxonomies across the modality which in-
cludes many non-overlapped moods.

To take advantage of different mood distribution of dif-
ferent modalities, we investigate metric learning model
with three branches (Figure 2-(d)) that results in three
triplet loss functions. Each loss function is designed to op-
timize tag-to-text, tag-to-music, and text-to-music triplet
losses as following:
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DistillBERT ResNet

MLP MLP

Text Audio

Tag or VA/W2V Tag or VA/W2V

DistillBERT ResNet

MLP MLP

Triplet loss

Text Audio

(a) (c) (d)(b)

Text tag Music tag

DistillBERT ResNet

Shared MLP

Text Audio

MLP MLP

Word2Vec DistillBERT ResNet

MLP MLP MLP

Triplet loss

Text AudioTag

Figure 2: Model architectures. (a) Classification and regression models (b) Multi-head classification model with shared
weights (c) Two-branch metric learning (c) Three-branch metric learning.

Ltext = T (Ea
tag, E

p
text, E

n
text),

Lmusic = T (Ea
tag, E

p
music, E

n
music),

Lcross = T (Ea
text, E

p
music, E

n
music).

(4)

The model learns a shared mood space between Word2Vec
embedding and text embedding with a loss Ltext, and a
shared mood space between Word2Vec embedding and
music embedding with a loss Lmusic. Finally, they are
bridged together with a cross-modal triplet loss Lcross. We
refer to this model as three-branch metric learning.

Since text and music have different vocabularies in
our scenario, for both two-branch and three-branch met-
ric learning, we regard the nearest tags in pre-trained
Word2Vec space as positive pairs in cross-modal triplet
sampling (Table 2). We used distance-weighted sam-
pling [49] for more efficient negative mining following
previous work [35].

4. EXPERIMENTAL DESIGN

4.1 Text Datasets

Alm’s affect dataset [50] includes 1,383 sentences col-
lected from books written by three different authors: B.
Potter, H.C. Andersen, and the Brothers Grimm. 1,207
sentences in the dataset are annotated with one represen-
tative emotion among five: angry, fearful, happy, sad, and
surprised. To avoid unintended information leakage, we
decided to split data in an author-level. 1,040 sentences
by the Brothers Grimm and H.C. Andersen were used for
training and 167 sentences by B. Potter were used for val-
idation and test.

ISEAR dataset [51] is a corpus with 7,666 sentences
that are categorized into one of seven emotion: anger, dis-

gust, fear, joy, sadness, shame, and guilt. Each sentence
describes certain antecedents and those are associated with
according reactions (emotions). We split the dataset in a
stratified manner with ratio of 70% train, 15% validation,
and 15% test set.

4.2 Music Dataset

There are multiple datasets for music emotion recognition
such as the Million Song Dataset (MSD) subset [52], the
MTG-Jamendo mood subset [53], and the AudioSet mood
subset [54]. Before we choose our dataset, we run classi-
fication experiments for each subset. AudioSet subset re-
turned the highest accuracy, which means the labeled emo-

Original VA W2V Manual

anger angry angry angry
fearful sad scary scary
happy happy happy exciting, funny, happy

sad sad sad sad
surprised exciting happy exciting

anger angry angry angry
disgust angry angry angry, scary

fear angry angry scary
guilt sad angry angry, sad
joy exciting tender exciting, funny, happy

sadness sad tender sad
shame angry sad angry, sad

Table 2: Similar moods from Alm’s dataset (upper) and
ISEAR dataset (lower). Original is from text mood taxon-
omy and mapped tags are from music dataset.

tions are predictable with our ResNet model. One pos-
sible reason for this result is that unlike other datasets,
emotion labels of AudioSet subset are exclusive, having
a single emotion label per song. This is also beneficial
since we can map each song directly to the valence-arousal
space or word embedding space using emotion lexicons or
Word2Vec model, respectively. Otherwise, to handle mul-
tiple tags, we need to average their embedding vectors as
previous researchers did [21]. For these simplicity and re-
liability reasons, we use AudioSet mood subset.

AudioSet [54] mood subset consists of 16,995 music
clips collected from YouTube and each audio clip is 10-
second long. The dataset is categorized into 7 mood cat-
egories: happy, funny, sad, tender, exciting, angry, and
scary. The dataset is provided with a training set of 16,104
clips and an evaluation set of 540 clips.

4.3 Evaluation

We use two evaluation metrics: Precision at 5 (P@5) and
Mean Reciprocal Rank (MRR). However, since our text
and audio datasets use different taxonomies, we need a
mapping between the different vocabularies in order to
compute the metrics directly. Thus, we map the text emo-
tion taxonomy to the music emotion taxonomy — see Ta-
ble 2. We introduce three possible mappings: (1) mapping
based on the Euclidean distance between emotion labels in
the valence-arousal space (VA), (2) the cosine distance be-
tween emotion labels in Word2Vec space (W2V), or (3) di-
rect manual mapping of emotion labels. Given these map-
pings, we compute P@5 and MRR. Another challenge is
the label distribution in our datasets, which is unbalanced.
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Methods
Alm’s dataset ISEAR dataset

VA W2V Manual VA W2V Manual

P@5 MRR P@5 MRR P@5 MRR P@5 MRR P@5 MRR P@5 MRR

Classification 0.2161 0.2436 0.1861 0.2157 0.2161 0.2436 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Multi-head Classification 0.2819 0.4181 0.1271 0.1381 0.3446 0.5304 0.3440 0.5084 0.3325 0.3625 0.3551 0.4803
V-A Regression 0.4325 0.6282 0.4125 0.5749 0.6100 0.7398 0.3018 0.5247 0.1866 0.3709 0.6218 0.7075
W2V Regression 0.3960 0.5010 0.4613 0.5591 0.5413 0.6363 0.3008 0.3829 0.4164 0.4908 0.5527 0.7668
Metric Learning (2-branch) 0.3399 0.3778 0.4897 0.5239 0.5374 0.5579 0.2695 0.3287 0.3951 0.4336 0.4438 0.6175
Metric Learning (3-branch) 0.3574 0.4348 0.5095 0.5863 0.5156 0.5880 0.2591 0.3445 0.4317 0.4953 0.6019 0.6675

Table 3: Retrieval scores

This can lead to over-optimistic results if the model per-
forms well on the majority class, even if it performs very
poorly on less common labels in the test dataset. To allevi-
ate this problem, we compute the macro-P@5 and macro-
MRR, i.e., we compute the metrics per class (emotion la-
bel) then average the per-class results. Henceforth we will
use P@5 and MRR to denote macro P@5 and MRR, re-
spectively.

Regression models are optimized to reduce mean
squared error and metric learning models are optimized
with the triplet losses detailed in Section 3.2.4. We use
the Adam optimizer with learning rate 0.0001 for all mod-
els. Audio inputs are resampled into 16 kHz and then con-
verted to 128-bin mel-spectrograms via a 512-point FFT
with 50% frame overlap. Implementation details are avail-
able online 4 .

5. RESULTS

5.1 Quantitative Results

The retrieval results for the different proposed models, us-
ing our three different proposed vocabulary mappings (VA,
W2V, Manual), for our two text datasets, are presented in
Table 3. First, we see that the classification model fails
in cross-modal retrieval. Since there are only two emo-
tions in common between Alm’s dataset and AudioSet (i.e.,
happy and sad), text inputs with other emotions will not
have any retrieval result. Furthermore, there’s no com-
mon emotion between ISEAR dataset and AudioSet, hence
P@5 and MRR are zero in this case. Classification models
can be powerful when there are exactly identical or par-
tially overlapped vocabularies, but since it is less likely in
real-world data, classification approach is less desirable for
cross-modal retrieval.

The multi-head classification model also performs
worse than other regression and metric learning models.
Some metrics look optimistic but when we check the con-
fusion matrix of the multi-head classification model, it
constantly predicts one or two specific emotions (e.g., pre-
dict angry for any type of input) no matter what the input
is. This means the shared MLP cannot generalize across
different modality heads.

The regression model using valence-arousal consis-
tently shows the best metrics as already proven in previous
single-modality emotion recognition works [30,31]. Since

4 https://github.com/minzwon/text2music-emotion-embedding.git

the space is carefully designed and the tag-to-space map-
ping process has been done manually [34], the valence-
arousal regression suits our cross-modal retrieval task.
However, this method cannot generalize to other datasets
that possibly have some tags that do not have manual tag-
to-space mapping. Word2Vec regression is suitable in that
case. It shows slightly lower but comparable retrieval per-
formance and it can handle abundant vocabulary, even bi-
grams and tri-grams, without a manual mapping process.

Finally, we assess the performance of metric learning.
Instead of predicting manually defined or pre-trained em-
beddings, metric learning aims at learning a shared embed-
ding space across different modalities. Both two-branch
and three-branch approaches claim their suitability for
cross-modal retrieval, and the three-branch metric learning
model consistently outperforms the two-branch model by
leveraging the relationship of tag-to-text and tag-to-music
within each modality.

5.2 Qualitative Results

To further investigate the characteristics of various em-
bedding spaces, we visualize them with 2D projection—
Figure 3. Due to limited space, we only visualize em-
bedding spaces with Alm’s dataset and AudioSet mood
subset. Note that they are all predicted embeddings us-
ing the test set. Except valence-arousal space (first row),
which is already 2D, high dimensional embedding spaces
are projected to a 2D space using the uniform manifold ap-
proximation and projection (UMAP) [55]. We use UMAP
since it preserves more of the global structure compared
to tSNE [56]. In the projection process, we first fit the
UMAP with one modality (in our figure: music), then pro-
jected other embeddings (in our figure: tag and text) into
the fitted 2D space.

First of all, for both the Word2Vec embedding space
and the metric learning space, relevant moods from differ-
ent taxonomies are neighboring together in the embedding
space. This is natural for the Word2Vec space because each
modality is fitted to optimize the pre-defined word embed-
dings. But this neighboring also can be found in metric
learning space. In Figure 3-(g) and (h) for example, anger

from text and angry from music are together, and fearful

from text and scary from music are together. Note that
Figure 3-(e) and (f) do not have word embeddings since the
two-branch metric learning model does not have a branch
to map the mood tags into the embedding space.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

781



Model Retrieval Distribution Mapping

Classification fail . .
Multi-head classification fail . .
V-A regression success continuous manual
W2V regression success discriminative data-driven
Metric learning (2 branch) success discriminative data-driven
Metric learning (3 branch) success continuous data-driven

Table 4: Characteristics of different models

One of our main motivations to use metric learning with
three branches is to preserve neighborhood structure within
modalities. Since Word2Vec regression is a one-way opti-
mization, their embeddings are very discriminative (Fig-
ure 3-(c)). Also, the two-branch neural network does not
have any means to learn the neighborhood structure of each
modality. Especially, as shown in Table 2, when two-
branch metric learning uses the mapping of Alm’s mood
into AudioSet mood with Word2Vec similarity, exciting

and tender from music are not being used in training. If
we compare Figure 3-(f) and (h), exciting music in (h) are
more continuously distributed between angry and happy

while they are simply with happy in (f). Also, when we
compare text embeddings (see (e) and (g)), surprised is
continuously distributed between anger and happy in (g)
but not in (e). This continuity between music and text
can be found in the manually annotated valence-arousal
space (see (b) and (a), respectively), which means the pro-
posed three-branch metric learning model preserves neigh-
borhood structure within modalities in the learned multi-
modal embedding space. We summarize all the introduced
characteristics in Table 4.

6. CONCLUSION

In this work we tackled the task of matching music to text
with the goal of allowing users to enhance their text-based
stories with music that matches the mood of the text. We
formulated the problem as a cross-modal text-to-music re-
trieval problem, and identified the lack of a shared vo-
cabulary as a key challenge for bridging the gap between
modalities. To address this challenge, we proposed and in-
vestigated several emotion embedding spaces, both manu-
ally defined (valence/arousal) and data-driven (Word2Vec
and metric learning), to bridge between the text and mu-
sic modalities. Our experiments showed that by leveraging
these embedding spaces, we were able to facilitate cross
modal retrieval successfully. We showed that the care-
fully designed valence-arousal space can bridge different
modalities, but this can be also achieved via data-driven
embedding spaces. Especially, our proposed three-branch
metric learning model preserves the neighborhood struc-
ture of emotions within modalities. By leveraging data-
driven embeddings, our approach has the potential of being
generalized to other cross-modal retrieval tasks that require
broader or completely different vocabularies.

(a) Alm's text V-A (b) AudioSet music V-A

(c) Alm's text W2V (d) AudioSet music W2V

(e) Alm's-AudioSet text two-branch (f) Alm's-AudioSet music two-branch

(g) Alm's-AudioSet text three-branch (h) Alm's-AudioSet music three-branch

Figure 3: Valence-arousal embedding (first row), UMAP
of Word2Vec embedding (second row), UMAP of shared
embedding space from two-branch metric learning (third
row), and UMAP of shared embedding space from three-
branch metric learning (fourth row).
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ABSTRACT

When writing pop or hip-hop music, musicians sometimes

sample from other songs and fuse the samples into their

own music. We propose a new task in the symbolic music

domain that is similar to the music sampling practice and a

neural network model named CollageNet to fulfill this task.

Specifically, given a piece of melody and an irrelevant ac-

companiment with the same length, we fuse them into har-

monic two-track music after some necessary changes to the

inputs. Besides, users are involved in the fusion process

by providing controls to the amount of changes along sev-

eral disentangled musical aspects: rhythm and pitch of the

melody, and chord and texture of the accompaniment. We

conduct objective and subjective experiments to demon-

strate the validity of our model. Experimental results con-

firm that our model achieves significantly higher level of

harmony than rule-based and data-driven baseline meth-

ods. Furthermore, the musicality of each of the tracks does

not deteriorate after the transformation applied by Colla-

geNet, which is also superior to the two baselines. 1

1. INTRODUCTION

Recent years witnessed growing interest in symbolic multi-

track music generation with the development of deep neu-

ral networks [1–3]. In particular, generating an accompa-

niment for a given melody has been a topic of interest [4].

Current deep learning models for accompaniment genera-

tion and music arrangement focus on the generation qual-

ity. Only a few methods incorporate user control into the

generation process [5, 6].

In this work, we present a new task in the scope of

multi-track music generation, specifically, music fusion.

1 Code is available at https://github.com/urkax/CollageNet
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tion Retrieval Conf., Online, 2021.

Taking multiple unrelated music tracks as input, the task

is to fuse them into a harmonic multi-track music piece,

with some necessary changes to the input tracks; To in-

volve users into the fusion process, users can control how

much and on what aspects each input track can be changed.

This task is similar to the music sampling practice, which

started from hip-hop, and has been influencing pop and

electronic music writing as well [7, 8]: Musicians sam-

ple melodies, rhythmic patterns, or other musical elements

from other songs and fuse them into a new composition

after certain changes [9, 10]. Our proposed task can be

viewed as the first step towards the automation of the sam-

pling practice. This task opens new possibilities in music

arrangement and style fusion, and may lead to many cre-

ative applications involving user interaction into the music

generation process.

In this paper, we concentrate on the fusion of a mono-

phonic melody and an irrelevant polyphonic accompani-

ment with the same length. Specifically, we propose a

neural network model named CollageNet to fuse the two

tracks. We use two pretrained VAEs [11], one for the

melody and the other for the accompaniment. The melody

VAE computes a latent representation that disentangles

pitch and rhythm, while the accompaniment VAE com-

putes a latent representation that disentangles chord and

texture [12, 13]. We then use adversarial training [14, 15]

to train an actor model G to apply necessary transforma-

tions to the latent representations and decode them back

to musical notes, to achieve a harmonic fusion of the two

tracks while preserving a similarity to their original con-

tent. Because the latent representations are disentangled,

the G model allows users to control the amount of changes

along the disentangled musical aspects relatively indepen-

dently by manipulating their corresponding latent vectors.

An example of the input and output of the fusion process

is displayed in Figure 1.

As this is a new task, there is no existing method

to compare with. We therefore design two baselines, a

rule-based method and a data-driven method. Objective

and subjective experiments show that CollageNet signifi-

cantly improves the harmony between the two tracks while
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maintaining the similarities with the original input along

user specified aspects. The achieved level of harmony is

close to that of human-composed songs and is significantly

higher than that of the two baselines. Besides, results also

show that the musicality of each individual track does not

deteriorate after the fusion.

The key contributions of this paper are as follows:

• We put forward a new task on symbolic multi-track

music fusion, which is similar to the music sampling

practice in music writing of modern genres.

• We propose a neural method, which allows users to

control the degree of changes along several disentan-

gled aspects of the input tracks in the fusion process.

• Objective and subjective experiments show that our

proposed method outperforms two baseline methods

in terms of harmony and musical quality.

2. RELATED WORK

2.1 Multi-track Music Generation

Multi-track music generation aims at generating music

containing several tracks (parts) with different musical

characters but constituting a pleasing whole. Some re-

search focuses on harmonizing or accompanying a music

track in an offline fashion [16] or an online fashion [17,18],

while others focus on learning the representation of multi-

track music [19–23]. DeepBach was proposed to gener-

ate Bach chorales using a graphical model [20]. Yan et

al. proposed a part-invariant neural model to learn a rep-

resentation of multi-part music [21]. Dong et al. proposed

three models in different scenarios for multi-track genera-

tion using the GAN framework [22]. Simon et al. used a

hierarchical VAE to model multi-track music [23].

2.2 Controllable Music Generation

There has been much attention to controllable genera-

tion in the image domain, such as CVAE [24, 25] and

CGAN [26]. In recent years, there are also growing re-

search interest in controllable symbolic music generation.

Researchers proposed models to control quantifiable low-

level musical attributes like note density, etc. Hadjeres et

al. proposed a constrained method to train a VAE model

with a regularized latent space [27]. Similarly, Pati et al.

used a regularization loss within a mini-batch to train a

controllable VAE model [28]. As for high-level musical

features like musical arousal, Tan et al. proposed Music

FaderNets to control them by sliding the corresponding

low-level attributes. Music FaderNets are trained by first

modelling the low-level attributes and learn the high-level

features through semi-supervised clustering. [29].

2.3 Latent Space Transformations

There have been some studies in the image and text domain

that learn transformations in the latent space. Engel et al.

proposed to impose attributes on generated images through

transformations in the VAE latent space [15]. Similar idea

was applied in music domain for connective fusion [30].

Shen et al. proposed to disentangle textual content from

style by learning a shared content latent space for texts in

different style [31]. Mueller et al. proposed to improve the

input sequence by optimizing its latent vector of VAE [32].

3. PROPOSED METHOD

In this paper, we propose a new user-guided method that

can transform and combine a two-measure-long melody

and an unrelated accompaniment into harmonic two-track

music while maintaining a similarity to their original con-

tent. Specifically, we encode the melody and the accom-

paniment with the encoders of two disentangled VAEs re-

spectively. Then an actor model applies necessary trans-

formations to the pairs of latent representations, and the

decoders of the VAEs decode them back to musical notes.

The actor model G is trained against the critic model D
with adversarial training.

3.1 Model Architecture

Our model is based on the disentangled VAE frame-

work [12, 13], where the encoder takes an input x and

outputs a posterior q(z|x) for the latent vector z to sam-

ple from, and the decoder p(x|z) reconstructs the input.

The latent vector z disentangles different musical aspects,

each of which is encoded by a certain part of the vector.

Given a pair of melody and accompaniment, we use the

encoders of two VAEs to encode each to a latent vector.

Specifically, we use EC2-VAE [12] to encode the melody

input. The disentangled latent vector zmel is a concatena-

tion of a vector for pitch zp and a vector for rhythm zr, i.e.,

zmel = zp ⊕ zr
2 . For the polyphonic accompaniment,

we use the disentangled VAE in [13] to compute the latent

vector zacc, which is a concatenation of a chord vector zc
and a texture vector zt, i.e., zacc = zc ⊕ zt..

After encoding the pair of melody and accompaniment

into latent vectors zmel and zacc, we feed them to the actor

model G which transforms them into another latent vector

pair ẑmel and ẑacc. The actor model applies changes to the

latent vectors to achieve transformations on the music con-

tent and the pair is supposed to be more harmonic. By ap-

plying different amount of changes to different parts of the

latent vectors, the degree of transformations is controlled

along the different music aspects. The inference process is

displayed in Figure 2 (b).

While the encoders and decoders are pre-trained, the

actor model G is trained under an adversarial framework

together with a critic model D. The critic model is a bi-

nary classifier to distinguish positive samples and negative

samples of the latent vectors. The definition of the posi-

tive and negative samples is described in Section 3.2. It is

noted that the D model is not used in the inference process.

3.2 Training

Firstly, we pre-train the two VAEs for melodies and accom-

paniments. They are specially designed to learn a seman-

2 ⊕ denotes for concatenation
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Melody

Accompaniment

Adding rests

Changing pitch class

Rising contour playing with 
the long-duration note of melody

CollageNet

Figure 1. Example fusion result of CollageNet. An irrelevant pair of melody and accompaniment (left) is fused into a

more harmonic pair while similarities to the input tracks are maintained. The control parameters are set to cmp = 0, cmr =
1, cac = 0.8, cat = 0, so that rhythm of melody and chord of accompaniment are more preserved, while pitch of melody

and texture of accompaniment are more altered. The bar lines are for clear visualization, not musically meaningful.

tically disentangled latent space, but fundamentally, they

are both trained to maximize the evidence lower bound

(ELBO) [12,13]. The posterior q(z|x) of VAE is trained to

be close to the prior p(z), which is the standard normal dis-

tribution. We obtain prior samples utilized for adversarial

training by sampling latent vectors from p(z).
Afterwards, we adversarially train the G and D mod-

els in the latent space. The training diagram is given in

Figure 2 (a). Our dataset consists of two-track music seg-

ments, each of which has a monophonic melody track and

a polyphonic accompaniment track. Suppose there are N

music segments {x(i)
mel, x

(i)
acc}Ni=1, with the i-th melody seg-

ment indicated as x
(i)
mel and the i-th accompaniment seg-

ment indicated as x
(i)
acc. We define a pair of melody and

accompaniment with the same data index as a harmonic

pair {x(i)
mel, x

(i)
acc}, and define the set of harmonic pairs as

the harmonic pair set Ωh. To create disharmonic pairs ac-

cordingly, we randomly pick a melody x
(i)
mel and an ac-

companiment x
(j)
acc from the dataset with different data in-

dexes (i "= j). The disharmonic pair is indicated as

{x(i)
mel, x

(j)
acc}, and the disharmonic pair set is denoted as

Ωdh.

As discussed in Section 3.1, the D model is trained to

distinguish between positive samples and negative sam-

ples. Positive samples are latent vectors of the harmonic

pairs, indicated as {zmel, zacc} ∼ Ωz
h. Negative sam-

ples include: (1) latent vectors of the disharmonic pairs

{zmel, zacc} ∼ Ωz
dh, (2) latent vectors sampled from prior

{zmel, zacc} ∼ p(z), and (3) latent vectors produced by

the actor model G(zmel, zacc). Following [15], we intro-

duce the shorthand:

Lc=1(zmel, zacc) ! − log(D(zmel, zacc)),

Lc=0(zmel, zacc) ! −(1− log(D(zmel, zacc))).
(1)

The training loss of the critic model D is as follows:

LD = E
{zmel,zacc}∼Ωz

h

[Lc=1(zmel, zacc)]

+ E
{zmel,zacc}∼Nz

[Lc=0(zmel, zacc)]

+ E
{zmel,zacc}∼Nz

[Lc=0(G(zmel, zacc))],

where Nz = Ωz
dh ∪ p(z).

(2)

The actor model G is trained to transform disharmonic

latent vector pairs into a more harmonic pair. In other

words, it is trained to fool the D model. For simplic-

ity, we omit user control for this subsection, and we have:

{ẑmel, ẑacc} = G(zmel, zacc). The outputs {ẑmel, ẑacc}
are expected to be close to the inputs {zmel, zacc} to pre-

serve a similarity on musical content. Therefore, the train-

ing loss of the actor model G consists of both an adversar-

ial loss LGa and a distance loss LGd. The adversarial loss

is:

LGa = E
{zmel,zacc}∼Nz

[Lc=1(G(zmel, zacc))]. (3)

The distance loss is to constrain the distance between the

output and the input of the G model. For clarity, we define

a distance function ρ(ẑ, z) ! 1
dz
‖ 1
σ̄2
z

log(1 + (ẑ − z)2)‖1

for two latent vectors z and ẑ in Rdz . The σ̄z is the av-

eraged scale of distribution q(z|x) over the training set:

σ̄z = 1
N

∑
n σz(xn). We scale the distance penalty by the

reciprocal of σ̄2
z because latent vector dimensions with a

smaller average scale contribute more to the identity of de-

coded data samples x [15]. Ignoring user control here, the

distance loss is defined as follows:

LGd = ρ(ẑmel, zmel) + ρ(ẑacc, zacc),

where {ẑmel, ẑacc} = G(zmel, zacc).
(4)

The loss of the G model is the sum of these two parts, with

distance penalty scaled by λ:

LG = LGa + λLGd. (5)

3.3 User Control

As discussed in Section 3.1, the latent vectors of melodies

and accompaniments are disentangled into shorter vec-

tors related to particular musical aspects. Specifically,

zmel = zp ⊕ zr, and zacc = zc ⊕ zt. Users can control

the amount of changes along these four musical aspects

during the fusion process. To achieve that, aside from

{zmel, zacc}, the input of the G model is extended with

four scalars cmp, cmr, cac, cat ∈ [0, 1]. These scalars re-

spectively control pitch and rhythm of melodies, chord and

texture of accompaniments.
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Figure 2. The training diagram of the G and D model and

the inference diagram. The qm(z|x) and pm(x|z) are the

encoder and decoder of the VAE for melodies. The qa(z|x)
and pa(x|z) are from the VAE for accompaniments.

To impose such constraints on the G model, we ran-

domly sample the scalars from the standard uniform distri-

bution U(0, 1) for each data sample during training. The

distance penalty of latent vectors is scaled by the corre-

sponding scalars. Therefore, the distance loss in Eqn (4)

becomes:

L′
Gd = cmp · ρ(ẑp, zp) + cmr · ρ(ẑr, zr)

+cac · ρ(ẑc, zc) + cat · ρ(ẑt, zt),

where {ẑp ⊕ ẑr, ẑc ⊕ ẑt} =

G(zp ⊕ zr, zc ⊕ zt, cmp, cmr, cac, cat).

(6)

After being trained with distance loss L′
Gd, the actor

model G can respond differently to the control input. For

instance, if the user adjusts cmp to a large value, then the

G model will produce ẑp close to the input zp. Thus the

pitch feature of the melody will hardly change after the

transformation.

3.4 Implementation Details

For the disentangled VAEs, we use the same settings as

original papers [12, 13], except that for EC2-VAE we do

not use conditional information. The data representation

for melodies and accompaniments also follow the VAE pa-

pers. Both the G and D model take in latent vectors zmel

and zacc. Different from [30], we sample from q(z|x)
to get latent vectors. Before concatenation, each of zmel

and zacc are passed through linear layers and ReLU ac-

tivation. Then the concatenated vector is passed through

8-layer blocks made up of linear layers with 1024 outputs,

ReLU activation, and dropout layers with rate of 0.5. For

the output of the G model, we use the gate mechanism fol-

lowing [15]. The G and D models are trained using the

Adam optimizer [33], with learning rate of 3e-5, β1 of 0,

and β2 of 0.9.

4. EXPERIMENTS

4.1 Dataset

We use the POP909 dataset [34], which contains melodies

of 909 popular songs. Professional musicians composed

piano accompaniments for them. We choose the songs

with the time signature of 4/4 and randomly split them into

80%:10%:10% for training, validation, and test sets. Then

we extract 8-beat long segments from them with a stride of

1 beat. We randomly select 40k segments for the training

set, 5k segments for the validation set and 5k for the test

set. We quantize time to 16th notes, so each segment is 32

steps long and we augment the training data by transposing

them to all 12 keys.

4.2 Baseline Methods

As this is a new task, there is no existing methods to com-

pare with. Therefore, we design a data-driven method and

a rule-based method as baselines.

The data-driven baseline is derived from the proposed

method. It also trains a critic model D to distinguish be-

tween harmonic pairs and disharmonic pairs. However,

different from the proposed method, the D model in the

data-driven baseline is pre-trained without the terms in-

volving G. During the inference process, we use the

pre-trained D model to implement gradient optimiza-

tion GradientDescent(zmel, zacc;Lc=1(zmel, zacc)). In

other words, we optimize the inputs zmel and zacc to max-

imize the output of the pre-trained D model. We use the

Adam optimizer [33] and the learning rate of 0.005 for both

zmel and zacc.

The rule-based baseline applies revisions to the pitches

and onsets of the melodies. According to music theory, to

create a harmonic accompaniment for a melody, their notes

should be on the same scale [35]. Besides, they need to be

composed of matched rhythm. To fuse a pair of unrelated

melody and accompaniment, the rule-based baseline tries

to make their pitch class histogram similar and put their

notes on the same onsets. At the same time, the revisions

should be minor to preserve the identity of the inputs. The

rule-based baseline only changes the input melody. For

every note of the melody, we find the closest pitch class

of the accompaniment notes. If the pitch distance is be-

low the threshold of one semitone, we change the melody

pitch to that pitch class. For example, if the pitch classes of

the accompaniment notes are { C, E, F}, and a note of the

melody is C#4. The closest pitch class is C, and the dis-

tance is below the pitch threshold of one semitone, then we

change the C#4 to C4. As for rhythm, we move the notes

of the melody to the same onsets of the accompaniment if

the time distance is under the onset threshold of two steps.

Besides, there is a 20% chance that a note retains even if it

is changeable.

4.3 Evaluation of Harmony

We aim to fuse disharmonic pairs of melodies and accom-

paniments into harmonic pairs. In this subsection, we eval-

uate the level of harmony of the outputs of CollageNet and
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harmony rate ρ(ẑmel, zmel) ρ(ẑacc, zacc)
Ωdh 10.10% - -

Data-driven baseline 61.70% 1.12 1.36

Rule-based baseline 67.27% 1.28 -

CollageNet-vanilla 92.59% 0.98 1.75

CollageNet (λ = 0.1) 92.71% 0.92 1.89

CollageNet (λ = 0.5) 89.58% 0.69 1.56

CollageNet (λ = 1.0) 89.56% 0.66 1.35

CollageNet (λ = 2.0) 84.58% 0.52 1.27

Table 1. Harmony rates of the disharmonic test set

Ωdh, and output from CollageNet (with different distance

penalty λ) and two baseline methods, which take data from

Ωdh as inputs. Besides, the average latent space distances

of melodies and accompaniments between the outputs ẑ
and inputs z of the methods are also reported.

baseline methods. It is hard to design exhaustive metrics

to evaluate the level of harmony. We use both the deep-

learning model and musical statistics to evaluate the level

of harmony.

We train a deep-learning evaluation model to discrimi-

nate between harmonic pairs and disharmonic pairs. The

evaluation model uses a PianoTree encoder [36] to encode

the polyphonic accompaniments, and a bidirectional GRU

to encode the monophonic melodies. Then the encoded

vectors are concatenated and passed through a multilayer

perceptron (MLP) to produce a score between 0 and 1 for

each pair of samples. The binary cross-entropy loss is used

to train the evaluation model with the data from Ωh and

Ωdh. After training, the accuracy is about 90% in the test

set. We define harmony rate as the proportion of samples

identified as positive by the evaluation model.

The harmony rates of the four methods are displayed in

Table 1. The latent space distances ρ(ẑ, z) between outputs

ẑ and inputs z of the methods are also displayed. We report

the results of CollageNet with different distance penalty λ.

In addition to CollageNet and two baselines, we also eval-

uate Collagenet-vanilla, which utilizes vanilla VAEs [36]

instead of disentangled VAEs. According to the results,

CollageNet can produce music with higher harmony rates

while making fewer changes to the inputs. Besides, with

a higher distance penalty, the performance of CollageNet

degrades slightly, and the latent space distances reduce. It

is noted that CollageNet and CollageNet-vanilla achieve

comparable harmony rates, but the disentangled VAEs in

CollageNet provides user control in the fusion process as

described in Section 3.3 and validated in Section 4.5.

Although the deep-learning model evaluates more com-

prehensively, it is agnostic. Inspired by [37, 38], we adopt

several musical statistics to evaluate the level of harmony

of each pair of melody and accompaniment. Firstly, we

extract several features from both melodies and accompa-

niments. PCH is the pitch class histogram with 12 bins.

OH is the onset histogram with 32 bins corresponding to

32 time steps. RE is the rhythm pattern, a 32-dimensional

vector denoting states of every time step, including onsets,

holding states of any pitch, and rests. The PCH feature

reveals the pitch pattern of melodies and accompaniments,

while OH and RE reveal the rhythm pattern. For PCH and

PCH OH
RE↑

KLD↓ OA↑ KLD↓ OA↑
Ωh 0.96 0.578 2.171 0.471 0.643

Ωdh 5.02 0.292 4.522 0.299 0.457

Data-driven baseline 2.69 0.397 3.421 0.377 0.531

Rule-based baseline 1.91 0.459 1.831 0.464 0.662

CollageNet 1.38 0.588 2.228 0.476 0.612

Table 2. The musical statistics averaged over datasets

for harmony evaluation. The Ωh is the harmonic test set.

Two baseline methods and CollageNet take data from the

disharmonic test set Ωdh as inputs. The arrows indicate a

better direction.

OH, we calculate the Kullback-Leibler Divergence (KLD)

and Overlapping Area (OA) between the melody and ac-

companiment of each pair. For RE, we calculate the ratio

of the same pattern between the melody and accompani-

ment. The average values of these statistics are in Table 2.

According to the results, the outputs of the three methods

get closer to the harmonic test set Ωh than inputs from

Ωdh. CollageNet is significantly better in most metrics.

The rule-based baseline is better than the data-driven base-

line because it directly optimizes these metrics.

4.4 Evaluation of Music Quality

To fuse a pair of unrelated melody and accompaniment,

CollageNet and baseline methods change the inputs. The

fusion process may destroy the musicality of each of the in-

put tracks. Thus, we compare several musical statistics be-

tween created datasets and the original dataset to evaluate

the quality of transformed melodies and accompaniments

respectively. The datasets whose statistics are closer to the

test set are more similar to human-made music [37]. Dif-

ferent from Section 4.3 where the comparison is between

each pair of melody and accompaniment, the comparison

happens between two datasets in this subsection.

We calculate PC (pitch count), PI (pitch interval), and

IOI (inter-onset-interval) as in [37] from melodies and ac-

companiments respectively. Table 3 shows the results. Ex-

cept for CollageNet and baseline methods, we also calcu-

late the statistics of music generated by VAEs. The VAEs

generate music by sampling latent vectors from the prior

p(z) and decoding them to musical notes. According to

the results, although the rule-based baseline outperforms

the data-driven baseline in Table 1 and Table 2, its outputs

are very different from the real data. As for CollageNet,

the musicality of melodies and accompaniments does not

deteriorate after the transformation. The musical statistics

of CollageNet are closest to the test set.

4.5 Subjective Experiment

We implement subjective experiments to evaluate Colla-

geNet and the rule-based baseline methods. Before the

test, we ask the subjects three questions following [18]:

Do you master any musical instruments? Have you re-

ceived vocal training before? Have you learned music the-

ory systematically before?
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melody accompaniment

PC PI IOI PC IOI

test set 10.7 0.024 3.1 31.6 2.02

VAE -0.30 +0.054 +0.05 -3.7 +0.00

Data-driven baseline -0.99 +0.099 +0.33 -2.3 +0.14

Rule-based baseline -1.33 +0.102 +0.33 - -

CollageNet -0.10 +0.010 +0.03 -1.2 +0.01

Table 3. The average musical statistics of melodies and

accompaniments in the test set Ωh. For four methods, we

report the difference of their outputs from the test set. The

rule-based baseline does not alter accompaniments.

We denote the subjects who answer yes to any of these

questions as trained, other subjects as not-trained. We in-

vite 38 people to complete the survey. Among them, 20

people are trained and 18 people are not-trained.

Each subject listens to 16 randomly shuffled and anony-

mous music pieces, comprising of 4 pieces from the dishar-

monic pair set Ωdh, 4 pieces from outputs of the rule-

based baseline, 4 pieces from outputs of CollageNet, and

4 pieces from the harmonic pair set Ωh. Therefore, 142

pieces of each kind of data are evaluated in total. The mu-

sic pieces are rendered using violin for melodies and pi-

ano for accompaniments. The subjects rate the harmony of

these pieces on a 5-point scale where “1” indicates “dishar-

monic” and “5” indicates “harmonic”. They are told to

concentrate on the coherence of melodies and accompani-

ments. Figure 3 (a) illustrates the average harmony score.

The outputs of CollageNet are rated as more harmonic than

the rule-based baseline.

Then each subject is asked to listen to four pieces of

melodies from outputs of the rule-based baseline, outputs

of CollageNet, and Ωh each; four pieces of accompani-

ments from outputs of CollageNet and Ωh each (the rule-

based baseline does not revise accompaniments). They

judge whether each piece is composed by humans or gen-

erated by machine. Figure 3 (b) illustrates the average per-

centage of pieces rated as human-made by the subjects.

Although the rule-based baseline can fuse the disharmonic

inputs, nearly half of the output melodies of the rule-based

baseline are regarded as machine-made. CollageNet pro-

duces both harmonic and high-quality music. Such obser-

(a) harmony score
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(b) human-made percentage
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Figure 3. Average harmony score for two-track segments

from four datasets are displayed. And human-made per-

centage are calculated for melodies and accompaniments

respectively, which are from three datasets. The scores of

trained subjects and not-trained subjects are displayed.
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Figure 4. All similarity scores on a 5-point scale given by

subjects for melodies and accompaniments. The melodies

and accompaniments are produced by CollageNet with dif-

ferent user control cmel&acc. Each circle represents all the

songs with the specific melody score and accompaniment

score. The size of the circles indicates the number of the

songs, and the color of the circles indicates the average

cmel&acc of the songs.

vation is consistent with the conclusions of Section 4.4.

To demonstrate the validity of CollageNet’s user con-

trol, the subjects listen to the output melodies and ac-

companiments respectively of CollageNet with sliding user

control inputs. And the subjects rate the similarity of each

output melody and accompaniment to the inputs. We de-

fine the term cmel&acc = cmp = cmr = 1− cac = 1− cat.
Each subject rates two groups of songs, with each group

consists of six melodies and accompaniments produced

with different cmel&acc sliding from 0 to 1. The scores

are on a 5-point scale where “1” indicates “similar” and

“5” indicates “different”. Figure 4 displays all the scores.

As the cmel&acc increases, the output melodies are consid-

ered more similar to the input, while the output accompa-

niments are the opposite.

5. CONCLUSION

In this paper, we presented a new task and a neural ap-

proach on multi-track music fusion, which is similar to the

music sampling practice. Specifically, given an unrelated

pair of melody and accompaniment of the same length, the

proposed approach fuses them to produce harmonic two-

track music while maintaining their musical identity. Be-

sides, users can control the magnitude of changes along

disentangled musical aspects. We conducted objective and

subjective experiments and compared the proposed ap-

proach with rule-based and data-driven baseline methods.

Experimental results showed that the proposed method

achieved significantly higher level of harmony than that of

baselines, with musically high-quality outputs.

For future work, CollageNet can be extended to arbi-

trary tracks and longer music pieces. Besides, similar ideas

and systems can be explored in the audio domain.
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HUMAN-IN-THE-LOOP ADAPTATION
FOR INTERACTIVE MUSICAL BEAT TRACKING

Kazuhiko Yamamoto
YAMAHA Corporation

ABSTRACT

In music information retrieval (MIR), beat-tracking is one
of the most fundamental and important task. However, a
perfect algorithm is difficult to achieve. In addition, there
could be a no unique correct answer because what one in-
terprets as a beat differs for each individual. To address
this, we propose a novel human-in-the-loop user interface
that allows the system to interactively adapt to a specific
user and target music. In our system, the user does not
need to correct all errors manually, but rather only a small
portion of the errors. The system then adapts the internal
neural network model to the target, and automatically cor-
rects remaining errors. This is achieved by a novel adaptive
runtime self-attention in which the adaptable parameters
are intimately integrated as a part of the user interface. It
enables both low-cost training using only a local context of
the music piece, and by contrast, highly effective runtime
adaptation using the global context. We show our frame-
work dramatically reduces the user’s effort of correcting
beat tracking errors in our experiments.

1. INTRODUCTION

Musical beat is among the most important factor in mu-
sic [1]. Many MIR systems first analyze the beats as the
starting point, assume the results would be correct, and use
them as a unit for further processing [2–4]. However, al-
though the performance of many MIR algorithms, includ-
ing beat tracking, has improved dramatically through re-
cent deep learning-based approaches [5–10], a perfect al-
gorithm is difficult to achieve in principle, and errors are
bound to occur. In addition, what one interprets as a beat
differs for each individual. There is thus no unique answer
to the question “What is the correct beat?” for a music.
Many existing music pieces also show that the beats we
want vary from time to time [11, 12]. This means that the
ideal beat tracking system needs to produce different out-
puts from a single input depending on the situation. This
is difficult to deal with using machine learning systems.

To address this, we propose an interactive beat-tracking
interface for adapting to a specific user and target music
using a human-in-the-loop approach (Figure 1). In this
system, the user provides feedback for the temporal result

c© Kazuhiko Yamamoto. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Kazuhiko Yamamoto, “Human-in-the-Loop Adaptation for Interactive
Musical Beat Tracking”, in Proc. of the 22nd Int. Society for Music In-
formation Retrieval Conf., Online, 2021.

Compute the beat activation function with DNN

Compute the most plausible tempo trajectory

Partial corrections by the user

Update the Tempo Model

Update the DNN

A temporal result
Human in the Loop

Human

Computer

Input (features at each frame)

Figure 1. An overview of the system.

of the system by correcting the error, and the system then
computes the output again. By iterating this interaction
between the user and computer, the system adapts the in-
ternal neural network model (DNN) to the user, allowing
it to produce more desirable results for the user. The user
does not need to correct all errors manually, but rather only
a small portion of the errors that are noticed. The system
adapts the internal DNN to follow the user’s intention and
automatically corrects the remaining errors that the user
has not corrected directly. This enables a dramatic reduc-
tion in the user’s effort to obtain the desired result1 .

To achieve such an online adaptation, we present a
novel adaptive runtime self-attention model (ARSA), in
which the adaptable parameters are intimately integrated
as a part of the interactive user interface. This is a variant
of the self-attention mechanism [13], and similarly to other
models, it connects the entire input sequence (intermedi-
ate feature sequence) globally throughout the target music
piece by the attention map. However, the most significant
difference in the ARSA is not to be pre-trained at all. We
embed the ARSA into an another pre-trained neural net-
work only at runtime and use it for adaptation. This means
that our model architecture changes between the training
and runtime.

Our model is trained using only a local context for the
training dataset and adapts to the user using the global con-
text at runtime. This locally-aware learning reduces the
computational cost during training, and the globally-aware
runtime adaptation allows the effects of locally modified
user feedback to be distributed throughout the entire piece
of music. This strategy is based on our assumption that
the amount of local feedback that the user can practically
provide could be insufficient for adaptation. To assess the
feasibility and effectiveness of the proposed system, we
validate it through a simulation environment and a user
study. In addition, we show the extent to which the pro-
posed system improves the efficiency of error correction in
beat tracking.

1 The supplemental materials: www.yamo-n.org/hilbeats
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2. RELATED WORK

2.1 Musical Beat Tracking

The state-of-the-art techniques in beat tracking are ma-
chine learning-based, and use a two-stage processing.
They first compute the beat activation function by a DNN,
which is a probability-like representation of the beat dis-
tribution, from which they then determine the actual beats
by estimating the most plausible tempo trajectory through-
out the target music. Böck and Schedl [6] use a bidirec-
tional long short-tern memory neural network (BLSTM) to
compute the beat activation function. Davies and Böck [5]
use temporal convolutional networks (TCN) to improve the
computational efficiency and the quality of the activations.
To determine the actual beat positions from the beat activa-
tion function, Krebs et al. [14] use a dynamic Bayesian net-
work (DBN), which is approximated as a hidden Markov
model (HMM) solved using the Viterbi algorithm. Some
studies have also reported that the combined modeling of
the beat, downbeat, and tempo improves the beat track-
ing quality [7, 9]. The desired beat tends to depend on
the genre. Böck et al. [8] use multiple pre-trained mod-
els adapted to different types of musical genres, and select
one of them at runtime to the most plausible result. How-
ever, it is difficult to guarantee whether the classification
of the genre would be appropriate.

2.2 Human-in-the-Loop System in MIR

The concept of human-in-the-loop involves humans as a
part of the system. Sonic Visualizer [15] and Dixon [16]
present interactive editing tools for beat tracking. They vi-
sualize the beats, and the user manually corrects the errors.
However, such manual corrections are a burden to the user.
Driedger et al. [17] propose a hybrid method for annotat-
ing beats by manual tapping and through the use of an au-
tomatically computed beat activation function. They cor-
rect the inaccurate tap to be closer to the activation func-
tion. However, this would be difficult to use if the activa-
tion is not sufficiently close to the desired result. Nakano
et al. [18] attempt to improve the accuracy of the singing
voice separation from mixed audio by fine-tuning a trained
DNN at runtime. They use the user-corrected F0 curve as
the new training data for the DNN. This concept is similar
to that of our ours. However, using only a local correction
that the user can provide through practical means might be
insufficient for proper model adaptation.

Songle [19] provides a web-based error correction tool
for several musical factors, including beats, by using
crowdsourcing contributions. HumanGAN [20] also uses
crowdsourced human evaluations as an evaluation function
to determine whether a voice is realistic or not when it
trains a singing voice synthesis DNN. However, we can
not obtain the desired result for a specific user by apply-
ing these approach. Bryan et al. [21] propose an interac-
tive sound source separation method by masking the spec-
trograms on the GUI. The system uses paintable masks to
adapt the internal algorithm. Bazin et al. [22] also present
an inpainting-based control on the spectrogram for sound
synthesis using token-masked Transformers [13] and VQ-
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Figure 2. A graphical user interface for the system.

VAE [23]. Zhou et al. [24] use Bayesian optimization to
efficiently explore the latent space of the melody genera-
tive model and obtain the desired output.

Bongjun and Bryan [25] propose an interactive inter-
face for an effective sound event annotation. When the
user makes a selection, several similar candidate positions
are presented. The user listens to them and labels them
as positive if they are actually the target, and otherwise
labels them as negative. The system uses this feedback
to update the similarity search model such that it shows
more similar candidate locations. Our approach is partly
inspired by them, and uses a similar method for treating
the beats that are expected to be significantly affected by a
user-modification (§.5.3).

3. USER INTERFACE

When the user inputs the target music, the system first dis-
plays the result of the beat tracking on the UI screen as
the initial state (Figure 2). On the screen, the waveforms
of the entire piece of music (top row) and a focused area
(bottom row) are displayed. The user can zoom into/out
of the arbitrary range by pinching in/out on the trackpad
of the PC and check the results by playback. During play-
back, the system represents the beat by making a clicking
sound when the playhead reaches a beat location. The user
listens to it, and if the user finds an error or undesired re-
sult, the user can modify it. After certain modifications, the
user presses the “Re-Opt” button (the blue button), and the
system then starts the adaptation. The progress of the opti-
mization process is displayed on the screen and updated at
each iteration. The user can stop the process at an arbitrary
timing.

To correct the errors by the user, we provide sev-
eral options. These tools are categorized into three
types. The first type is simply editing the beat directory
(Move/Insert/Remove/Lock/Tap). The move tool allows
the movement of the beat position by dragging the mouse.
The insert and remove tools are used to add a new beat and
remove an existing beat. The lock tool is used to fix the
beat positions. By using a tap tool, the user can specify the
beat directly during playback by taping a key on the PC
keyboard.

The second tool type constrains the tempo trajectory,
which affects the distribution of the beats throughout the
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entire piece of music (§.5.4). There are two tools. First, the
Tempo Range Limit Setting Tool allows the upper and
lower limits of the tempo search range to be set by a curve
editor. The user can add keyframes at arbitrary points and
set the tempo range using Bezier curves. The system then
excludes tempos that fall outside of this range from the
search. Next, the Tempo Change Flexibility Slider de-
termines the stability of the tempo tracking. The higher
the value is, the more the system allows the tempo to vary
widely throughout the music. For example, for rock and
pop songs, where the tempo often remains almost constant,
this value can be set to a low value, whereas for classical
music, where the tempo often changes significantly, a high
value can often achieve better results.

The last type is a special compared with the two above.
This is the Label Annotation Tool that is used to provide
the user’s feedback to the system and improve the adapta-
tion ability. This tool can be used only after a beat mod-
ification using the first tool type. When the user edits a
beat, it recommends beats that have the possibility to be
significantly affected by the user’s modification by apply-
ing question marks, as below.

An edited beat

?: recommendationsP: positive label N: negative label

Figure 3. The label annotation tool.

In the above figure, the red beat is the beat currently edited
the user. The user listens to some (not necessarily all) of
the recommended locations (question marks) and judges
whether they really need to be modified or not. If a cor-
rection is necessary, the user assigns a positive label to
the location;, otherwise the label is negative. This can be
achieved by clicking on the label mark with the mouse.
Each time the user clicks on the same mark, the positive
and negative labels are alternately switched. The user can
also directly modify the recommended beat, but does not
have to correct it and leave. This is an important aspect.
The effort of this labeling is minimal, whereas the effort
required to edit a user’s beat manually is significant. This
is because it only takes a moment to listen to the specified
portion and judge whether it needs to be modified. In ad-
dition, this also has a merit in that we can fix the location
of the negative labeled beat at this point. The system uses
these assigned labels to compute the attention map in the
ARSA (§.5.3).

4. BEAT TRACKING

Our beat-tracking algorithm basically follows the state-of-
the-art algorithm [5]. First, we divide the target music
into small frames and obtain the features for each frame.
We use the time difference of the mel-frequency cepstrums
(MFCCs) for the feature (one can also use alternative fea-
tures such as CQT [26]). We used 44.1kHz for the sam-
pling rate, W = 4096 samples for the Hanning window
lengths, and W/2 for the hop size. We then input this fea-
ture series of T frames into the DNN and compute the beat
activation function for each frame. As described in §.1,
we train this DNN using only a local context of the mu-

0 100 200 300 400 500 600 700 800

0

0.5

current frame t

The beat activations at each frame

feature frames

TCN

Linear Layers + ReLU

past frames future frames

time

Figure 4. Our DNN is trained with a local manner.

The corrected beat

The user moves a beat position

bibi−1 bi+1 frame

New loss frames

t

Beat Activation Function

The target function shape of the beat activation function

The next beatThe previous beat

Figure 5. The target function shape of the beat activation.

sic piece. We use three serial connected TCN blocks [5]
(five layers with {1, 2, 4, 8, 16} dilations and the gated
activations [29]), followed by three linear layers with the
ReLU (Figure 4). We note that the figure shows only a sin-
gle TCN block for simplicity. TCN is a variant of a dilated
convolutional neural network that is inspired by WaveNet
[29]. It takes the past and future frames around the focused
frame. We use the frames for approximately 2.4 seconds
for past and future frames. To train this DNN, we used four
types of datasets: GTZAN [31–33], the RWC popular and
genre dataset [34,35], and an in-house dataset of 400 musi-
cal pieces of various genres purchased from Amazon Mu-
sic [36] and annotated by a vendor. Note that although our
DNN architecture is slightly different from [5], we could
not observe significant differences in our experiments.

To determine the actual beat positions from the beat
activation function, we use the the hidden semi-Markov
model (HSMM) [27, 28], which applies the activation as
the observation state and the tempo as the hidden state.
It estimates the most plausible trajectory throughout the
entire piece of music by solving the Viterbi algorithm.
Our method is basically similar to the state-space tempo
model [8, 14] that uses the HMM. As a significant differ-
ence, our HSMM treats the midway phase of each tempo
as the hidden state (Figure 6: Right). This HSMM divides
the duration of a beat of each tempo into microphases, and
gradually moves through the intermediate states sequen-
tially until it reaches the next beat head. Only when the
state reaches the beat head state, it is allowed to transit to
a different tempo.

5. ADAPTATION ALGORITHM

5.1 Loss Making from the User’s Corrections

We treat the user-modified beat and the two adjacent beats,
for a total of three beats, as a unit. We describe the situa-
tion in which the user moves a beat position as an example
here, but the basic idea is similar to other editing meth-
ods. Assuming that the user-modified beat position is bi
and the beat positions before and after it are bi−1, bi+1, we
make the DNN output to be close to one at bi, and zero at
the midpoint b−i = bi+bi−1

2 and b+i = bi+bi+1

2 , (Figure 5).
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Figure 6. Left: At runtime, we split the pre-trained model into two blocks and insert the adaptive runtime self-attention
block between them (§.5.2). Right: Hidden semi-Markov model for estimating the most plausible tempo trajectory (§.5.4).

Therefore, we define the loss function at an orange color
frame t (referred to as the loss frame in the figure) as,

L(t) =

∣∣∣∣DNN(t)−
(
1−min(1.0,

|bc − t|
W

)

)∣∣∣∣
2

(1)

where bc and W denote the closest beat from the frame t
and the window size, respectively. We minimize the sum
of the loss functions at all the loss frames by a gradient
descent, such as Adam [37], to adapt the DNN.

5.2 Adaptive Runtime Self-Attention

As described, our DNN is trained using only a local con-
text during pre-training, taking approximately 2.4 seconds
of each past and future frame around the interest frame
as input, and shifting the frames individual. By contrast,
at runtime, we split the DNN into two parts, the first half
(three blocks of TCNs) and the second half (three layers of
linear layers and ReLU activations), and insert the ARSA
between them (Figure 6:Left). This means that the model
architecture itself has changed. The ARSA connects all
of the intermediate features (the outputs of the first block)
throughout the entire piece of the music and outputs the
input for the second block at time frame t. This new type
of DNN model achieves a better balance between the re-
duced computational cost during pre-training and an im-
provement of the runtime adaptation capability that dis-
tributes locally modified user feedback to throughout the
entire piece of music.

Now supposing that the series of the outputs of the first
block (intermediate features) {f1, f2, ..., fT }, f t ∈ RD,
similar to general attention, the ARSA first computes three
parameters at each frame t as: Queryt = WQ · f t,
Keyt = WK · f t, V aluet = WV · f t, where WQ, WK ,
and WV ∈ RD×D are the matrices that are initialized as
identity matrices. General attention uses the inner prod-
ucts between queries and keys to construct the attention
map. Alternatively, we use the weighted inner product of
the Queryt and Keyi as,

d(t, i) = (wt ⊗Queryt) · (Pe(|t− i|)⊗Keyi), (2)

where wt ∈ RD is the weight that is interactively deter-
mined by the user’s label annotation (§.3). We describe this
in §.5.3. Pe(δt) ∈ RD, Pe(δt)k = sin(ωnδt), if k = 2n;
otherwise, cos(ωnδt), where ωn = 1.0/0.00012n/

D
2 , de-

notes the relative positional encoding [13] that represents
how apart the frame i is from the frame t. This d(t, i) be-
comes the attention map at the frame t toward the frame i

in the ARSA. After sorting this attention map d(t, i) with
respect to i, we then sample N frames in descending or-
der in a manner of an importance sampling, and store them
into Ct (we use N=512). Then, the output of the ARSA at
frame t can be formulated as follows,

yt = (1− α) · V aluet +

α
∑

i∈Ct

exp(d(t, i))∑
j∈Ct

exp(d(t, j))
· V aluei, (3)

where α denotes the weight as a hyperparameter (we set
0.5 in our experiment).

5.3 Interactively Adapting the Attention

The weight wt in Eq.2 is a unique parameter of ARSA
that is computed using the user’s interactive feedback. As
described in §.3, when the user edits a beat, the label anno-
tation tool first shows the beats that are expected to be sig-
nificantly affected by the modification (the question marks
in the Figure 3). These locations can be derived naturally
from the original principles of the attention mechanism.
The fact that the attention map d(t, i) is larger means that
the frame t is more focused on the frame i. In other words,
the amount of back propagation from a given loss in frame
t would be distributed more to frames with larger d(t, i).
Therefore, we can state that the beats within the vicinity of
frames with large attention map values tend to be more sus-
ceptible to the user modification. Thus, the system shows
these beats to correct the user feedback.

For the recommended beats, the user judges whether
they really need to be corrects, and assigns posi-
tive/negative labels to them. The assigned label on a beat
is redistributed to the neighboring frames, as shown in the
following figure.

frames

An edited beat A positive labeled beatA negative labeled beat

PositiveNegative

ta b c d

Figure 7. The labels are distributed to the neighbor frames.

These distributed labels are used to determine the relation-
ship between each frame and the interest frame t. For ex-
ample, in Figure 7, the frames {a, b} are negative for t, and
{c, d} becomes positive for t. Using these relationships of
the frames for the interest frame t, we then compute the
Fisher’s criterion [25, 38] as

wt =
(avg(At,pos)− avg(At,neg))2

std(At,pos)2 + std(At,neg)2
, (4)

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

797



where At,pos and At,neg represent Queryt ⊗Pe(|t− i|)⊗
Keyi in the positive and negative frames i for the interest
frame t, respectively. Note that if no feedback from the
user is obtained, we set wt = 1. This weight reduces the
effects from the user’s modification on the frames that the
user does not want to be changed, and conversely increases
the effects simultaneously on the frames that the user wants
to more aggressively modify. It is therefore expected to
improve the adaptation speed.

5.4 HSMM with The User’s Constraints

We also apply the user’s modifications to the HSMM as
constraints using two approaches during the forward path
in the Viterbi algorithm. The first approach is to simply
reduce the likelihoods of the undesired phases directly.
For example, in Figure 6:Right, it is undesirable to pass
through the phase states other than the beat head states at
the destination frame where the user has moved the beat.
Therefore, we prevent such undesired paths by reducing
the likelihoods on the undesired grids (the blue circles).

The second approach is to weight the likelihoods at each
beat-head state, where the tempo transition occurs. We
apply a similar idea to that in §.5.1. First, we prepare a
weighting array U ∈ RT and initialize it by 1. We set
Ut = 1 + (1 − |t − bi|/W ) for the frames near the edited
beat and its neighbors, and Ut = 1− (1− |t− b±i |/W ) for
the frames around their midpoints. Then, our formulation
of the integrated likelihood at the beat-head state hi of the
tempo i at the frame t becomes

G(t, hi) = maxj{ G(t− 1, ej) +

F (t, j, i)Pt−njUt−njΓj,iPtUt}, (5)

where ej denotes the phase state just before the beat head
of the tempo j. Γj,i and Pt are the transition probabilities
from tempo j to i, and the observable state (the outputs of
the DNN). nj is the number of phase divisions of tempo
j. F (t, j, i) constrains the tempo range and flexibility that
are set by the tempo-setting tools in §.3. If the tempo i ex-
ceeds the upper tempo limit or falls the lower tempo limit,
F (t, j, i) = 0; otherwise, F (t, j, i) = 1. In addition, if
ni/nj > flext or ni/nj < 1/flext, F (t, j, i) = 0; other-
wise, F (t, j, i) = 1, where flext ∈ [0, 1], is the flexibility
of the tempo change (the slider value).

6. EVALUATION

6.1 Validation through Simulation

We first conducted a validation using a simulation environ-
ment. We compared the results with and without ARSA.
This comparative method without ARSA is equivalent to
fine-tuning, which corresponds to Nakano et al. [18]. In
this experiment, we used the SMC MIREX dataset [39],
which includes 217 musical pieces of various genres with
annotations of the beat positions. The lengths of all the
pieces were aligned to a length of 40 seconds. We used
a laptop PC (CPU: 2.9 GHz 6-Core Intel Core i9, RAM
32GB, GPU: Radeon Pro Vega 20) for equipment. We im-
plemented all the our system including the DNN in C++.
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200

400

0 20 40 60 80 100 120 140 160 180 200

#iteration #iteration

#Music ID

MSE (normalized by the number of containing beats)

Ours without ARSA

Adaptation speed differences

0.6

0.4

0.2

#diff

Error

Figure 8. The result in a simulated experiment. The top
row shows the transitions of the MSE losses throughout the
entire musics. The bottom row shows a comparison of how
quickly the adaptation converged in both methods.

The experimental procedure was as follows. We first
found the three adjacent beats that have the highest er-
rors (MSE loss), and automatically corrected them (treat-
ing three adjacent beats as a single unit, as described in
§5.1). The system then iterated the adaptation iterations
100 times. The system repeated this procedure 5 times. We
then obtained totally 5 error corrections and 500 adapta-
tion iterations for each piece. For ARSA label annotations,
we automatically assigned a positive label if the recom-
mended beat position was sufficiently close to the correct
beat annotation, and otherwise assigned a negative label.
We added five labels for each error correction. Following
to Dixon [40], we considered that an analyzed beat is ac-
curate if it falls within a ±70 ms tolerance window around
the correct position. For adaptation, we updated the param-
eters in the second block and the ARSA while keeping that
of the first block in Figure 6:Left. We found this achieves
a better balance between the computational cost and the
adaptation ability in our experiments.

Figure 8 shows the result. The top row indicates the
transitions of the mean squared errors (MSE loss) through-
out the entire piece of music We note that these errors
are normalized by the number of beats contained in each
piece. Clearly, we can see that the errors in our method
tend to converge to small values, and that our method has
an ability to adapt throughout the entire song from only
the local corrections. By contrast, with the comparative
method, although the error itself tends to be reduced, but
it does not converge well, and we can see that it strug-
gles to adapt to the entire piece of music. The bottom
row in figure 8 shows a comparison of how quickly the
adaptation progresses with both methods. Suppose that
the number of iterations when our method reaches an F1-
measure of over 0.8 for the first time is NA, and for the
comparative method is NB , the figure plots the difference,
NB −NA. Then, a larger the positive value indicates that
our method reaches the F1-measure faster than the exist-
ing method (blue), whereas a smaller negative value indi-
cates that it achieves it at a slower rate (red). Statistically,
in the 156/217 pieces (p < 0.05 by chi-squared test), our
method reached to the goal significantly faster. For that
computational cost, this simulation experiment (a total of
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Figure 9. Improvements of the scores by 5 participants.

217 musical pieces) took 5.5 hours for our method and 5
hours for the comparative method. This approximately 8
seconds increases in cost per music on average is a neg-
ligible compared to the actual time the user requires for a
manual correction in practical.

6.2 User Study

We conducted a user study to evaluate how the proposed
interface improves the efficiency of the correction. We
measured the working time for correcting the errors con-
tained in the test target music. We set the baseline of this
working time as the duration of the music. The reasons for
this are as follows: Naturally, the fastest way to annotate
the beats is to accurately tap throughout the entire piece of
music if it is possible (although it is hard). The ideal work-
ing time for this method is equal to the duration. There-
fore, our experiment determines whether our interface can
reduce the working time to less than this baseline.

We hired 5 participants, all skilled users of sound edit-
ing software (e.g., Cubase [41] and Audacity [42]; DAW).
The experiment consisted of three parts. The first part was
to practice using our interface (45 minutes). We described
how to use the interface, and each subject trained the sys-
tem. The second part was a time trial (45 minutes). Each
subject was asked to correct as quickly as possible the er-
rors of the beats in the two pieces of target music using our
interface. For the targets, we selected 2 pieces from the
RWC Jazz dataset [34]. The first one is No.40, which has
a duration of 7 minutes and 41seconds, and contains 481
beats, and the second one is No.41, which has a duration
of 6 minutes and 6 seconds, and contains 637 beats. Both
pieces were selected because they have appropriate dura-
tions and contain many errors from the initial analysis that
are impractical to fix manually. Finally, the last part was a
survey interview about their experience (10 minutes).

In the second part, each participant processed two
pieces of target music. To avoid different interpretations of
the beat by different people, we prepared an “answer” mu-
sic file containing click sounds. We first asked the partici-
pants to listen to this answer entirely once through. Next,
we asked the subjects to correct the beats as quickly as pos-
sible. We monitored the working times and progress of the
F1-measure. When the F1 reached above 0.9 stably, we
stopped the task even if they had not yet checked the entire
piece of musics. Although each subject was allowed to use
all tools prepared in §.3, however, we prohibited the use of
only the tap tool for more than 5 seconds in a row. We also
asked them to press the Re-Opt button as much as possible
after each operation.

Figure 9 shows the result of improvements of the F1-
measure (vertical axis) for each participants with the pas-
sage of the working time (horizontal axis). The vertical
dotted lines represents the duration of each music. As the
results show, 4/5 and 3/5 of the subjects completed the task
in less time than the durations for pieces No. 40 and No.
41, respectively, and the remaining subjects also completed
the task at slightly after the target duration. This means that
most of the subjects completed the task without realizing
it, despite not listening to the entire piece of music. Of
course, when we really use our interface, we have to check
the entire piece of music at the end. Therefore, the working
time can not be less than the duration of the music piece.
Therefore, albeit conditionally, we can conclude that our
interface improves the efficiency of the error corrections.

Finally, we conducted an interview with each partici-
pant. We prepared two predetermined questions. The first
question is “Would you like to use this interface if it is im-
plemented on DAW?”. For this question, all the partici-
pants answered “Yes”. The second question is “Did you
have any problems in using the system?”. For this ques-
tion, some participants commented that A. they were con-
fused about which tool to use for their facing beat error
because the system provides many options for modifica-
tion. Other participants also mentioned that B. they were
unsure how soon the optimization loop should be stopped.

For the comment A, it is expected to be alleviated as
the user becomes more proficient with the interface. How-
ever, as a better solution, the system could understand the
current situation and recommend the most effective tool.
This remains an area for a future work. For the comment
B, because the concept of optimization through iterations
is difficult for the common users to understand, we would
need to find a criterion for the system to automatically ter-
minate the iteration. However, because our adaptation pro-
cess does not uniquely converge, it is difficult to find such
a criterion. Therefore, this is a challenge for the future. As
a similar problem, because of the iterative adaptation, the
overall error rate frequently increases even if the user has
corrected the error. This is not intuitive and is disconcert-
ing for the user and should be improved.

7. CONCLUSION

In this paper, we proposed an interactive beat-tracking in-
terface for adapting to a specific user and a targeted piece
of music using a human-in-the-loop approach. To achieve
this, we introduced a novel adaptive runtime self-attention
that achieves a better balance between the lower compu-
tational cost during training and the high runtime adapta-
tion ability that distributes the local modifications by the
user to throughout the entire input sequence globally. We
validated the feasibility and effectiveness of our method
through several experiments, including a user study with
the potential users of our interface. Beyond beat tracking,
by training the machine learning model using only a local
context and adapting it to a specific target using the global
context at runtime, our method is expected to be useful
for other broad domains such as chord recognition, singing
voice synthesis, and sound source separation.
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ABSTRACT

This paper studies composer style classification of piano
sheet music, MIDI, and audio data. We expand upon
previous work in three ways. First, we explore several
musically motivated data augmentation schemes based on
pitch-shifting and random removal of individual notes or
groups of notes. We show that these augmentation schemes
lead to dramatic improvements in model performance, of
a magnitude that exceeds the benefit of pretraining on all
solo piano sheet music images in IMSLP. Second, we de-
scribe a way to modify previous models in order to enable
cross-model transfer learning, in which a model trained
entirely on sheet music can be used to perform composer
classification of audio or MIDI data. Third, we explore the
performance of trained models in a 1-shot learning context,
in which the model performs classification among a set of
composers that are unseen in training. Our results indicate
that models learn a representation of style that generalizes
beyond the set of composers used in training.

1. INTRODUCTION

This paper studies composer style classification based on
sheet music, audio, and MIDI data. Given a previously
unseen page of sheet music or fragment of audio/MIDI, the
goal is to predict which one of a fixed set of C composers
composed it based on its compositional style.

Previous works on composer classification generally
fall into one of three categories. The first category of ap-
proaches extract manually designed features from the data
and feed them to a classifier. Some features that have
been explored include chroma [1, 2], expert musicologi-
cal features [3–5], musical intervals or counterpoint char-
acteristics [6, 7], piece-level statistics or features describ-
ing piece structure [2, 8], and pre-defined feature sets like
the jSymbolic toolbox [9, 10]. Many standard classifi-
cation algorithms have been used, such as decision trees
(e.g. [7, 9]), KNN (e.g. [11]), logistic regression (e.g. [5]),
SVMs (e.g. [3, 9]), and neural networks (e.g. [2, 12]). The
second category of approaches train one sequence-based
model for each composer and then select the model that has

c� D. Yang, T. Tsai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
D. Yang, T. Tsai, “Composer Classification With Cross-Modal Transfer
Learning and Musically-Informed Augmentation”, in Proc. of the 22nd
Int. Society for Music Information Retrieval Conf., Online, 2021.

the highest likelihood for a given query sequence. These
sequence-based models include n-gram language models
[8, 13–15] and several variants of Markov models [16, 17].
These models are typically fed with a very low-level rep-
resentation of the data, such as sequences of note values
or intervals between consecutive notes. The third cate-
gory of approaches train a neural network classifier in an
end-to-end fashion. Rather than relying on manually de-
signed features, this approach tries to automatically learn
a suitable feature representation from the raw data that is
effective for classification. This paradigm was explored
early on in [18], and many recent works have focused on
convolutional neural networks trained on piano roll-like
data [19–21].

The above works generally assume that the data is avail-
able in a symbolic format such as MIDI, MusicXML, or
**kern. Recent works [22, 23] have explored the com-
poser classification task based on raw sheet music images.
While this makes the problem more challenging due to the
high-dimensional nature of images, it also provides a very
distinct advantage: there is an enormous amount of sheet
music data available through the International Music Score
Library Project (IMSLP). 1 These works first convert each
sheet music image into a sequence of musical words based
on the bootleg score feature representation [24], and then
treat the problem as one of text classification. They in-
corporate best practices from natural language processing,
such as pretraining a language model on a large set of unla-
beled data, and then finetuning a classification model based
on a small set of labeled data.

This paper expands upon [22] in three different direc-
tions. 2 First, we explore several different forms of data
augmentation for the bootleg score representation. These
include pitch shifting of noteheads relative to the staff lines
and several different forms of dropout that are musically
motivated. Second, we explore cross-modal transfer learn-
ing, in which a model is first trained entirely on sheet mu-
sic, and then used for composer classification of audio and
MIDI data. Third, we explore the performance of trained
models in a 1-shot learning context, in which the goal is
to perform classification among a set of unseen composers
given only one representative piece from each composer.

This paper has three main contributions, which corre-
spond directly with the three directions above.

1
https://imslp.org

2 Code can be found at https://github.com/HMC-MIR/

ComposerID.

802



• We propose several forms of data augmentation for
the bootleg score representation and evaluate their
impact on the composer classification task. We
demonstrate enormous performance improvements
(37.3% to 63.9% accuracy) which are even larger
than the benefit of pretraining on all IMSLP piano
sheet music (37.3% to 57.5%). Both can be com-
bined to achieve even greater gains (89.0%). We
share our optimal settings and selection of augmen-
tation methods, which may be useful for tasks using
symbolic data or any piano roll-like representation.

• We successfully demonstrate cross-modal transfer
learning. By making a minor modification to the
bootleg score representation, we show that it is
possible to train a model on sheet music and use
it for composer classification of audio and MIDI
data. This approach may benefit tasks where the
amount of data in one modality is limited or re-
stricted (e.g. due to copyright issues).

• We evaluate the performance of trained models in a
1-shot learning context, in which we use the model’s
penultimate layer activations as a feature embed-
ding. Our results strongly indicate that the models
are learning a more generalizable notion of compo-
sitional style that extends beyond the composers in
training.

We describe each of the three new directions in detail in
the next three sections.

2. DATA AUGMENTATION METHODS

This section explores several data augmentation schemes
for our task. The next five subsections describe the fea-
ture representation (Section 2.1), proposed augmentation
strategies (Section 2.2), experimental setup (Section 2.3),
experimental results (Section 2.4), and analyses (Section
2.5).

2.1 Feature Representation

We first describe how sheet music is converted into a se-
quence of words as proposed in [22]. This forms the back-
drop for our proposed augmentation strategies. This pro-
cess consists of two steps.

The first step is to compute a bootleg score represen-
tation of the sheet music image. The bootleg score is
a mid-level feature representation that encodes the posi-
tion of filled noteheads relative to the staff lines in piano
sheet music [24]. The bootleg score itself is a 62 ⇥ N bi-
nary matrix, where 62 indicates the total number of dis-
tinct staff line positions in both the left and right hand
staves and where N indicates the number of grouped note
events (e.g. a chord containing four notes played simul-
taneously would constitute a single grouped note event).
This representation discards a significant amount of infor-
mation in the sheet music, such as non-filled noteheads,
time signature, key signature, accidentals, note duration,
measure boundaries, octave markings, and clef changes.

Nonetheless, it has been shown to be useful for a variety of
tasks involving sheet music such as sheet-MIDI passage re-
trieval [24], audio-sheet music synchronization [25], sheet
music identification [26], and finding matches between the
Lakh MIDI dataset and IMSLP [27].

The second step is to tokenize the bootleg score. This is
done in two different ways, depending on if the language
model architecture is word-based or subword-based. For
word-based models (e.g. AWD-LSTM [28]), each column
of the bootleg score (62 bits) is represented as a single 64-
bit integer and interpreted as a word. For subword-based
models (e.g. GPT-2 [29], RoBERTa [30]), each column is
represented as a sequence of four 8-bit characters so that
the bootleg score can be expresseed as a length 4N se-
quence of 8-bit characters. Based on a training set of char-
acter sequences, a byte pair encoder (BPE) [31] can be
trained in an unsupervised fashion to learn a vocabulary
of common subwords. The trained BPE can then be used
to tokenize the length 4N sequence of characters into a se-
quence of subwords. The result of the tokenization step is a
sequence of words or subwords that are fed to the language
model.

2.2 Proposed Augmentation Strategies

We explore two different types of data augmentation for
the bootleg score representation. These strategies could be
applied to symbolic data or piano roll representations as
well.

The first type of data augmentation is based on pitch
shifting noteheads in the bootleg score. Similar to other
musically informed representations like chroma and CQT,
shifts in the bootleg score correspond to transpositions in
key. We consider pitch shifts up to ±K positions, where
K is a hyperparameter. When a pitch-shifted notehead falls
off the edge of the bootleg score (i.e. the top or bottom of
the left hand or right hand staff), the notehead is simply
removed. Note that a value of K will result in 2K + 1
times as much data as the original dataset. We consider
pitch-shifting at both training time as well as at test time.
For the latter, we pitch shift a query bootleg score by up
to ±K positions, pass all 2K + 1 bootleg scores through
the trained model, and average the predictions to generate
a single ensemble prediction.

The second type of data augmentation is based on re-
moving noteheads in the bootleg score. This strategy is
based on the simple observation that randomly adding a
note to a column of the bootleg score is unlikely to yield
a musically plausible event, whereas randomly removing
one or more notes from a column of the bootleg score is
likely to yield a musically plausible event. For example,
consider a column in the bootleg score that contains oc-
taves in the left hand and a chord in the right hand. If a
single note or even an entire hand is removed, the result is
still a musically plausible event. We consider three differ-
ent types of removal: randomly dropping each individual
notehead with some probability, randomly dropping an en-
tire hand (i.e. all noteheads in the left or right hand staff)
within a single bootleg score column, or randomly drop-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

803



ping an entire column of the bootleg score. Since these
methods correspond to applying a form of dropout regu-
larization directly to the bootleg score representation, we
refer to these three types of removal as DropNote, Drop-
Hand, and DropColumn regularization, respectively.

2.3 Experimental Setup

We use the same experimental setup as [22] for fair com-
parison. A brief summary is provided below for complete-
ness.

The unlabeled data for language model pretraining con-
sists of all solo piano sheet music images in IMSLP. It con-
tains 29,310 PDFs, 255,539 pages, and 48.5 million boot-
leg score features. We used the precomputed bootleg score
features provided in [26]. We will refer to this unlabeled
dataset as the IMSLP data. During language model pre-
training, 90% of the data is used for training and 10% for
validation.

The labeled dataset for the composer classification task
is a carefully curated subset of the IMSLP data. It contains
one representative sheet music version from every solo
piano piece in IMSLP from nine different classical mu-
sic composers: Bach, Beethoven, Chopin, Haydn, Liszt,
Mozart, Schubert, Schumann, and Scriabin. These PDFs
were manually filtered to remove filler pages like title page,
foreword, etc. The resulting set contains 787 PDFs, 7,151
pages, and 1.47 million bootleg score features. The labeled
data is split by piece into training (4347 pages), validation
(1500 pages), and test (1304 pages) sets.

The labeled dataset was further preprocessed to form a
fragment dataset in order to solve two problems: too lit-
tle data (only 4347 training images) and significant class
imbalance. A fixed number of bootleg score fragments
of length 64 were randomly sampled from each composer.
The resulting fragment dataset contains 32400, 10800, and
10800 fragments for training, validation, and test, respec-
tively.

We report classification results on both the fragment
classification task and the full page classification task. The
fragment dataset is used for training all models, since it has
more training samples and is class-balanced. When eval-
uating a model on the full page task, fragments of length
64 are taken from the query bootleg score with 50% over-
lap, all fragments are passed through the fragment classi-
fication model, and the predictions are averaged to form a
single prediction for the entire page. We report results in
terms of classification accuracy for the fragment classifica-
tion task and macro F1 for the full page classification task
(since the classes are imbalanced with pages).

2.4 Results

Figure 1 compares the performance of several classifica-
tion models on the fragment composer classification task
(left) and full page classification task (right). The results
without data augmentation are shown as black horizontal
lines, and the results with optimal data augmentation set-
tings (described in Section 2.5) are shown as colored bars.
Note that the results without data augmentation correspond

Figure 1. Results for sheet music composer classifica-
tion of fragments (left) and full pages (right). The col-
ored bars show performance with optimal data augmenta-
tion settings, and the horizontal black lines show perfor-
mance without any data augmentation.

to the results reported in [22]. Results are reported for four
different classification models and across three different
pretraining conditions. The four model architectures are a
CNN model (based on [19]) that has two convolutional lay-
ers followed by global pooling across the time dimension
and a final output layer, AWD-LSTM [28], RoBERTa [30],
and GPT-2 [29]. The three pretraining conditions are: (a)
no pretraining, in which models are trained from scratch
only on the labeled fragment dataset, (b) target pretrain-
ing, in which language models are pretrained on the la-
beled data and then finetuned for the classification task,
and (c) IMSLP pretraining, in which we pretrain the lan-
guage models on the IMSLP data, finetune the language
model on the labeled data, and then finetune the classifier
on the labeled fragment dataset.

There are a few things to notice about Figure 1. Across
all models and all pretraining conditions, there is an ex-
tremely large benefit to using data augmentation. In all
cases, the benefit of data augmentation is larger than the
benefit of pretraining. For example, for the RoBERTa
model, data augmentation improves performance on the
full page classification task from 0.44 to 0.88 macro F1
(without any pretraining), while pretraining on IMSLP
improves performance from 0.44 to 0.64 (without any
data augmentation). When both data augmentation and
pretraining are combined, the benefit is enormous: the
RoBERTa model increases from 36.8% accuracy to 84.7%
and from 0.44 macro F1 to 0.93.

2.5 Analysis

Figure 2 shows the benefit of adding a single type of
training data augmentation in isolation. The results on
the fragment classification task on the validation set are
shown at left, and the results on the full page classifica-
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Figure 2. Effect of adding a single type of data augmenta-
tion in isolation to the GPT-2 model. Individual bars within
each group show the effect of different hyperparameter set-
tings. The leftmost standalone bar shows the performance
without data augmentation for comparison.

tion task are shown at right. Within each figure, the left-
most (standalone) bar shows the performance of the GPT-2
model without data augmentation for reference. The four
groups of bars correspond to four different types of train-
ing data augmentation: pitch shifting, DropNote, Drop-
Hand, and DropColumn. Within each group, individual
bars show the performance with different hyperparame-
ters settings (e.g. K = 1, 2, 3, 4, 5 for pitch shifting and
p = 0.1, 0.2, 0.3, 0.4, 0.5 for the dropout variants). We can
see that pitch shifting seems to be the most effective form
of data augmentation, followed by DropNote, DropHand,
and then DropColumn. The optimal amount of pitch shift-
ing seems to be K = 4, above which the results get slightly
worse. Most likely this is because large pitch shifts result
in many noteheads simply being removed from the bootleg
score canvas.

Figure 3 shows the benefit of adding various forms of
data augmentation cumulatively. Again the leftmost (stan-
dalone) bar shows the performance without data augmen-
tation. The first (leftmost) group of bars shows the perfor-
mance with only training pitch shift augmentation. These
results are identical to those shown in Figure 2. The second
group of bars shows the performance with training pitch
shift augmentation (K = 4) and DropNote with various
values of p. Each successive group adds an additional form
of augmentation with the optimal settings of previous aug-
mentation types. This figure allows us to see the cumula-
tive benefit of adding multiple forms of data augmentation.
We see dramatic improvements from adding the most ef-
fective forms of augmentation, and modest but nontrivial
improvements after that. The optimal settings are train-
ing pitch shifting with K = 4, DropNote with p = 0.3,
DropHand with p = 0.3, DropColumn with p = 0.3 and
test-time pitch shifting with K = 4. These are the settings
used in the results shown in Figure 1.

Figure 3. Effect of adding each type of data augmentation
cumulatively to the GPT-2 model. Each group uses the
optimal settings from previous augmentation types.

3. CROSS-MODAL TRANSFER LEARNING

This section describes our exploration into cross-modal
transfer learning, in which a model trained entirely on
sheet music is used to perform composer classification of
audio and MIDI data. In the next three subsections, we de-
scribe the methodology (Section 3.1), experimental setup
(Section 3.2), and experimental results (Section 3.3).

3.1 Methodology

The key to cross-modal transfer learning is representing
audio, MIDI, and sheet music in a common feature space.
That feature space is a modified bootleg score representa-
tion. Below, we describe a way to bridge the gap between
MIDI and sheet music using this modified bootleg score
representation. For audio performances of piano music,
we first apply an automatic music transcription (AMT) sys-
tem [32], and then follow the procedure below.

We can extract a bootleg score from MIDI by map-
ping MIDI note onset events to staff line positions in sheet
music using the conventions of Western musical notation.
However, there are two obstacles that prevent a MIDI-
generated bootleg score and a sheet music-generated boot-
leg score from being directly comparable. First, there is
ambiguity about left/right hand attribution. For example,
if a C4 note onset occurs in a MIDI file, it could appear in
the left hand staff (one ledger line above the topmost staff
line) or the right hand staff (one ledger line below the bot-
tom staff line). In the sheet music, it will only appear in one
of these locations. Second, there is ambiguity about enhar-
monic representations. For example, a MIDI note number
61 could appear in the sheet music as a C-sharp or a D-flat,
and these correspond to two different staff line positions.

These two ambiguities can be resolved in different
ways. To handle the ambiguity due to left/right hand attri-
bution, we can simply place noteheads in the middle regis-
ter in both the left hand and right hand staves. For exam-
ple, if the sheet music contains a notehead one ledger line
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below the right hand staff (i.e. C4 in treble clef), an ad-
ditional notehead will be placed one ledger line above the
left hand staff (i.e. C4 in bass clef). Likewise, a MIDI note
onset at C4 will result in two noteheads at the same two
locations in the MIDI-generated bootleg score. By making
this modification to the bootleg score representation, the
MIDI-generated bootleg score and sheet music-generated
bootleg score will match. To handle the ambiguity due
to enharmonic representations, we can generate two dif-
ferent versions of the MIDI bootleg score: one in which
all black keys on the piano are interpreted as sharps, and
one in which all black keys on the piano are interpreted as
flats. We can then pass both versions of the MIDI boot-
leg score through our classification model and average the
resulting predictions. This method for bridging the gap be-
tween MIDI and sheet music was first proposed in [27] for
a MIDI-sheet retrieval task. Here, we use the same tech-
nique for cross-modal transfer learning in composer clas-
sification.

Cross-modal transfer learning thus requires two
changes to the system described in Section 2. The first
change is to use the modified bootleg score representation
when converting sheet music to a sequence of words. The
models are otherwise trained exactly as before. The sec-
ond change is to consider both sharp and flat versions of
the MIDI-generated bootleg score during inference, and to
average the model’s predictions from both.

3.2 Experimental Setup

In order to assess the effectiveness of cross-modal trans-
fer learning, we need to introduce additional datasets of
MIDI and audio for the composer classification task. These
datasets are derived from the MAESTRO dataset [33],
which contains MIDI and audio files of real piano perfor-
mances. We preprocess the dataset in the following man-
ner. First, we take all MIDI performances of pieces com-
posed by the same nine composers in our labeled sheet
music dataset. Because some pieces are performed many
times, we take one representative performance for each
piece to avoid overemphasizing a small set of popular
pieces. Second, we randomly sample X = 5000 frag-
ments of length Y seconds from each composer, spread
evenly across the composer’s pieces. This sampling strat-
egy produces a dataset of fragments that is class-balanced,
and it allows us to study the effect of fragment length
on model accuracy. Because we are not doing any addi-
tional training or finetuning, we use all of the MIDI data
as a test set. This constitutes our MIDI fragment com-
poser classification dataset. A corresponding audio frag-
ment composer classification dataset can be generated us-
ing the same methodology.

Note that the above dataset contains many pieces that
were in the labeled sheet music dataset, albeit in a dif-
ferent modality. To further study the generalizability of
our trained models, we constructed two different versions
of the audio/MIDI fragment classification datasets: one
in which all of the data is present, and another in which
pieces that were in the labeled sheet music training data

Figure 4. Results for composer classification of MIDI
(colored bars) and audio (horizontal black bars) on the full
(left plot) and reduced (right plot) datasets. The results are
with a GPT-2 model trained only on sheet music.

are excluded. Because the latter has many fewer pieces,
we reduce the number of fragments per composer to X =
500. The number of pieces for each composer in the
full/reduced datasets are: Bach – 101/27, Beethoven 87/21,
Chopin – 101/31, Haydn – 29/13, Liszt – 108/25, Mozart
– 36/12, Schubert – 103/33, Schumann – 32/8, Scriabin –
25/1. In total, there are 622 pieces in the full dataset and
171 pieces in the reduced dataset.

3.3 Results

Figure 4 compares the performance of four different mod-
els on the MIDI and audio fragment classification tasks.
The left plot shows performance on the dataset contain-
ing all pieces, and the right plot shows performance on
the dataset that excludes pieces in the sheet music training
dataset. The performance on the MIDI fragment classifi-
cation task is shown by colored bars, and the performance
on the audio fragment classification task is indicated with
horizontal black lines. The four models shown are the
best version of each model architecture from Figure 1: the
CNN, AWD-LSTM, RoBERTa, and GPT-2 models with
optimal data augmentation settings and IMSLP pretraining
(for the language models). The four groups of bars in each
plot correspond to the four different models. Within each
group, the individual bars show the model performance for
different durations of the audio/MIDI query. Similar to the
full page sheet music classification task, we convert each
audio/MIDI query to a bootleg score, take fragments of
length 64 with 50% overlap, pass each fragment through
the classification model, and average the predictions from
all fragments. When processing audio queries, the Onsets
& Frames AMT system [32] is used to convert the audio to
an estimated MIDI representation.

There are four things to notice about Figure 4. First, the
results do clearly demonstrate effective cross-modal trans-
fer learning. Because the datasets are balanced by class,
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random guessing would correspond to an accuracy of 11%.
In contrast, the GPT-2 model is predicting the correct com-
poser of 60-second MIDI fragments 83% and 76% of the
time on the two versions of the MIDI classification data.
This shows that we can train a model on sheet music data,
and then use it to classify MIDI and audio data without
any additional training or finetuning. Second, there is a
6-8% difference in accuracy between the two versions of
datasets (i.e. comparing the left plot to the right plot). This
reflects the benefit of having seen a piece before in train-
ing in a different modality. But even when a piece has
never been seen before – in any modality – the results in
the righmost plot show that the models still perform well.
Third, there is a 4-6% difference in accuracy between the
MIDI classification task and the audio classification task
(i.e. comparing colored bars to the black horizontal lines).
This gap comes from failures in the AMT system when
converting from audio to MIDI. Fourth, the query duration
strongly affects model performance for shorter queries, but
plateaus at a duration of about 50 seconds (i.e. comparing
individual bars within each group). This suggests that 40-
50 seconds is enough context to recognize the style of a
piece, and that using more context beyond that is unlikely
to help much.

4. ONE-SHOT LEARNING

This section describes our exploration of using trained
models in a 1-shot learning context, in which the model
is expected to classify pieces from a set of C unseen com-
posers given only a single representative piece from each
composer. In the next three subsections, we describe our
methodology (Section 4.1), experimental setup (Section
4.2), and experimental results (Section 4.3).

4.1 Methodology

For 1-shot learning, we use our trained classification mod-
els as a feature extractor that projects sheet music into an
embedding space that captures some notion of composi-
tional style. We take the penultimate layer activations of
the model as our feature representation. When processing
a MIDI or audio performance, we first compute the bootleg
score (using AMT to convert the audio to MIDI, if neces-
sary), take multiple bootleg score fragments of length 64
with 50% overlap, and then extract the embedding features
from each fragment. On training data, each fragment’s em-
bedding serves as a single sample in our KNN database.
For a given test bootleg score fragment, we find the K = 3
closest samples in Euclidean distance from each composer,
and then rank composers by their average KNN distance.

4.2 Experimental Setup

Our data for 1-shot classification experiments also comes
from the MAESTRO dataset. We exclude the original nine
composers used in training and identify nine other com-
posers with sufficient data: Rachmaninoff, Debussy, Scar-
latti, Mendelssohn, Brahms, Mussorgsky, Tchaikovsky,
Clementi, and Handel. We sample five pieces from each

Model MIDI Audio
Acc Std Acc Std

Random 16.6% 2.2% 13.9% 2.0%
CNN 39.1% 2.1% 38.2% 3.7%
AWD-LSTM 45.5% 2.2% 42.8% 4.2%
RoBERTa 50.3% 3.1% 49.1% 3.4%
GPT-2 52.8% 3.9% 52.7% 3.1%

Table 1. Results for 1-shot learning experiments on com-
poser classification of MIDI (left) and audio (right) frag-
ments. The trained models are used to classify among
C = 9 unseen composers given a single representative
piece from each composer.

composer to ensure equal representation. For each episode,
we randomly select one of the five pieces from each com-
poser to serve as our training data, and use the remain-
ing data for testing. Each test query is a single boot-
leg score fragment of length 64 extracted from one of the
9 ⇥ 4 = 36 test pieces (with 50% overlap between frag-
ments). For each episode, we calculate the classification
accuracy across the test queries. We ran 30 episodes with
different train/test splits, and report the mean and standard
deviation of the classification accuracy across the episodes.

4.3 Results

Table 1 shows the results of our 1-shot classification exper-
iments. We report results with the best versions of each of
the four model architectures. We also include the perfor-
mance of a random guessing baseline as reference.

There are three things to notice about these results.
First, all models perform much better than the random
guessing baseline. This strongly indicates that the models
are learning a more generalizable notion of compositional
style that goes beyond the original nine composers in the
training data. Second, we see the same relative ordering of
performance as before: GPT-2 performs best, followed by
RoBERTa, AWD-LSTM, and the CNN model. This sug-
gests that better results on the original composer classifi-
cation task are indicative of a more useful representation
in the style embedding space. Third, we again observe a
consistent difference in performance between 1-shot MIDI
and 1-shot audio classification due to AMT errors.

5. CONCLUSION

This paper expands upon composer classification models
in three ways. First, we propose several forms of data
augmentation that lead to dramatic improvements in model
performance. Second, we show that it is possible to mod-
ify previous models in order to enable cross-modal transfer
learning, in which a model trained entirely on sheet music
is used to perform composer classification on audio and
MIDI data. Third, we show that trained models are effec-
tive in a 1-shot learning context, indicating that the models
learn a representation of style that generalizes beyond the
original composers used in training.
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ABSTRACT

This paper explores an application that would enable a
group of musicians in quarantine to produce a performance
of a chamber work by recording each part in isolation in a
completely unsynchronized manner, and then generating a
synchronized performance by aligning, time scale modify-
ing, and mixing the individual part recordings. We focus
on the main technical challenge of aligning the individ-
ual part recordings against a reference “full mix” record-
ing containing a performance of the work. We propose
an iterative subtractive alignment approach, in which each
part recording is aligned against the full mix recording and
then subtracted from it. We also explore different feature
representations and cost metrics to handle the asymmet-
rical nature of the part–full mix comparison. We evalu-
ate our proposed approach on two different datasets: one
that is a modification of the URMP dataset that presents
an idealized setting, and another that contains a small set
of piano trio data collected from musicians during the pan-
demic specifically for this study. Compared to a standard
pairwise alignment approach, we find that the proposed ap-
proach has strong performance on the URMP dataset and
mixed success on the more realistic piano trio data.

1. INTRODUCTION

This paper explores an application that would enable a
group of musicians in quarantine to produce a performance
of a piece of chamber music through asynchronous musical
collaboration. Asynchronous musical collaboration is usu-
ally done with musicians performing their parts synchro-
nized to a reference “click” track. This paradigm works
well for many genres of music where the tempo is rela-
tively constant (e.g. pop music) or the musicians are ex-
pected to follow a conductor (e.g. choral music). However,
this paradigm does not work well with genres of music
where musicians are constantly adapting to and influenc-
ing one another. As a representative example of the latter,
we focus in this paper on the genre of piano trio music,
which is ill-suited to a click track paradigm for several

c� D. Yang, K. Ji, and T. Tsai. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: D. Yang, K. Ji, and T. Tsai, “Aligning Unsynchronized Part
Recordings to a Full Mix Using Iterative Subtractive Alignment”, in Proc.

of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

reasons: the tempo is constantly changing and may vary
widely across a single movement, the main melodic line
is carried by different instruments at different times and
may be shared by two or more instruments, parts may con-
tain extended periods of silence, and each instrument is
given considerable latitude for individual musical expres-
sion. Our goal is to allow each musician the freedom to
perform their part as they wish, while still allowing for
asynchronous musical collaboration.

Our approach to this problem is to allow the recording
of individual parts to be unsynchronized, and to use MIR
tools to achieve synchronization post-recording. Figure 1
shows a high-level overview of this paradigm for a piano
trio. The primary inputs to the system are three recordings:
a recording of the piano part only, a recording of the cello
part only, and a recording of the violin part only. These will
be referred to as “part” recordings, since they only contain
the performance of a single part. The first step (bottom-
most block) is to determine the alignment between the part
recordings. Because the part recordings are not directly
comparable to one another (i.e. they may be playing differ-
ent notes), we can provide a reference “full mix” recording
(e.g. by finding a YouTube video of the piece) that con-
tains all parts played in synchrony, and then use the full
mix as additional information to assist our estimate of the
joint alignment among the three part recordings. Once we
have estimated the alignment among the part recordings,
we can then use time scale modification (TSM) to adjust
the tempos in each part to produce time scale modified,
synchronized part recordings. 1 These synchronized part
recordings can be mixed together to produce the final per-
formance. TSM is a well-studied problem [1], and there
are effective approaches based on phase vocoding and var-
ious overlap-add methods (e.g. [2–4]). The main techni-
cal challenge in Figure 1, therefore, is the joint alignment
problem among the part recordings and the full mix. We
will focus on this technical problem in the remainder of
this paper.

Alignment tasks have long been a topic of interest to
the MIR community due to their applications in score fol-
lowing, retrieval, and synchronization of various forms of
music data. An exhaustive survey of alignment research is
beyond the scope of this paper, but here we simply point

1 Note that the reference recording is only used to assist in the joint
alignment estimation problem. Once we have estimated the joint align-
ment, we can time scale modify the part recordings however we wish
(e.g. modifying two part recordings to match the third part recording).
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Figure 1. Overview of asynchronous musical collabora-
tion with unsynchronized part recordings. Each musician
records their part in isolation in a completely unsynchro-
nized manner, and the part recordings are modified and
mixed to produce a synchronized performance.

out current trends in the MIR alignment literature in order
to situate our current work in proper context. Recent works
on alignment tasks in the MIR literature tend to fall into
one of three groups. The first group focuses on alignment
across different modalities of music data. The main chal-
lenge here is to find a feature representation that enables a
direct comparison of similarity between different modali-
ties. Some recent examples of this include aligning lyrics
and audio [5, 6], aligning sheet music images and audio
[7–9], and aligning sheet music images and MIDI [10,11].
The second group focuses on performing alignment under
a different set of assumptions or conditions than traditional
dynamic time warping (DTW). Some examples include
handling discontinuities due to jumps or repeats [12–14],
handling completely unconstrained jumps such as might be
observed in a practice session [15, 16], or aligning two au-
dio mixtures containing a non-disjoint subset of parts from
a common piece of ensemble music [17]. The third group
focuses on issues of scalability and efficiency of align-
ment techniques. DTW has quadratic cost in memory and
computation, which limits its utility in dealing with long
sequences. Previous works have proposed alignment ap-
proaches that operate at multiple scales [18,19], and recent
works explore ways to reduce the memory cost [20, 21] or
total runtime through parallelization [22].

The alignment problem shown in Figure 1 falls into the
second group above — it frames the alignment problem
with a different set of assumptions and context. There
are at least three significant differences between our pro-
posed scenario and a typical audio–audio alignment sce-
nario. First, we are aligning each part recording against a
full mix containing all three parts, so the alignment must
be estimated in the presence of other significant sound
sources. If we assume that each part has equal volume and
interpret the other parts as highly correlated additive noise,
we are effectively estimating an alignment in the regime
of 10 log10

1
2 = �3 dB SNR. In a typical audio–audio

alignment scenario, we might align two full mix record-
ings of the same piece, which corresponds to a high SNR

regime. 2 Second, we are estimating the alignment be-
tween a set of part recordings and a full mix recording,
rather than considering a single isolated pairwise align-
ment. Because we know that the full mix is a mixture of
all three parts, the knowledge of one part–full mix align-
ment is relevant to our estimate of the other alignments.
Third, the part recordings may be sparse — they may con-
tain extended periods of silence where the instrument is not
playing. In typical audio–audio alignment scenarios, both
recordings are usually assumed to be “dense” recordings
that contain musical information at all times. Because of
the characteristics above, we will refer to the problem in
Figure 1 as the part–full mix joint alignment problem.

Our approach to the part–full mix joint alignment prob-
lem has two distinct characteristics. First, we adopt an it-
erative subtractive approach, in which we align each part
recording to the full mix, time scale modify the part record-
ing to match the full mix, and then subtract the part record-
ing from the full mix. Second, we explore different cost
metrics that have the desired asymmetric behavior: we do
not want to penalize the full mix for having spectral peaks
that are not present in the part recording (since these peaks
may come from the other parts), but we do want to reward
the part recording for “explaining” spectral peaks that are
observed in the full mix.

This paper has two main contributions. First, we pro-
pose and motivate a part–full mix joint alignment prob-
lem that would allow musicians to produce chamber music
performances without any synchronization or communica-
tion, and we present two different datasets to enable its sys-
tematic study. One dataset is a modification of the URMP
dataset [23], which contains ensemble works of various in-
strumentation. The other dataset is a small set of real world
data that serves as a case study for our application of in-
terest. It was collected during the pandemic specifically
for this study and contains multiple performances of a sin-
gle piano trio work. Second, we propose an iterative sub-
tractive alignment approach, in which each individual part
recording is aligned against a reference full mix recording
and then subtracted from it. We explore several different
cost metrics to account for the asymmetrical nature of the
part–full mix comparison. We find that the proposed ap-
proach has strong performance on the URMP benchmark
and mixed success on the more realistic piano trio data.
We present experimental results on both datasets to pro-
vide more insight into the performance of our proposed
approach. 3

2. SYSTEM DESCRIPTION

Figure 2 shows an overview of our proposed iterative sub-
tractive alignment approach. There are two key steps
which are repeated multiple times: aligning a single part
to the full mix and subtracting the part from the full mix.

2 In this case, the primary distortion (apart from the time warping)
comes from differences in the instrument, the performer’s interpreta-
tion & articulation, and recording conditions. These distortions are also
present in our scenario.

3 Code and data can be found at https://github.com/

HMC-MIR/PianoTrioAlignment
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Figure 2. Overview of the subtractive alignment approach
to solve the part–full mix joint alignment problem.

These two steps will be described in the next two subsec-
tions.

2.1 Aligning a Single Part

The first key step is to align a single part to the full mix. If
we were aligning two full mix recordings, we could sim-
ply use standard chroma features combined with a cosine
distance metric. In our case, however, the full mix con-
tains a mixture of parts, only one of which matches the
part recording. In computing a pairwise cost C[i, j] be-
tween part frame i and full mix frame j, we do not want to
penalize the full mix for containing energy at frequencies
not found in frame i of the part recording. This motivates
the need for a different feature representation and cost met-
ric. We explore two different methods to account for this
asymmetry.

The first method is based on a constant Q transform
(CQT). We first compute a CQT on the full mix and part
recording using 12 bins per octave between C1 to C10. Let
xi 2 R109 be the CQT values for the ith frame in the part
recording and let yj 2 R109 be the CQT values for the
jth frame in the full mix. We compute the pairwise cost
between xi and yj as

C[i, j] = �sum(min(xi, yj))/sum(xi)

where the min operator computes the elementwise mini-
mum between two vectors and the sum operator sums the
elements in a vector to produce a single scalar. The numer-
ator term sum(min(xi, yj)) is a single scalar that indi-
cates how much of the CQT energy in yj is “explained” by
xi. The denominator term sum(xi) normalizes this value
by the total amount of energy in xi. 4 Therefore, this cost
metric rewards xi for explaining the spectral peaks in yj ,
but does not penalize yj for having more energy than xi

in a frequency bin. This exhibits the type of asymmetrical
behavior we desire in our scenario. Note that C[i, j] will
always be in the range [�1, 0], where �1 indicates a strong
agreement between xi and yj .

The second method is based on a binarized constant Q
transform (BCQT). We binarize the part CQT and the full
mix CQT by applying a hard threshold �k to the kth CQT
frequency bin. The threshold �k is determined by consider-
ing 6 bins above and below the kth frequency bin, treating

4 We do not square the elements in order to avoid too heavily penaliz-
ing large differences.

the resulting 13⇥N matrix as a grayscale image (where N
is the number of frames in the CQT), and applying the tri-
angle binarization algorithm to determine a threshold [24].
Let xi 2 {0, 1}109 be the BCQT values for the ith frame
in the part recording and let yj 2 {0, 1}109 be the BCQT
values for the jth frame in the full mix. We compute the
pairwise cost between xi and yj as the negative normalized
inner product C[i, j] = �xT

i yj/sum(xi) where the sum
operator sums the elements of a vector to produce a scalar.
Again, C[i, j] will be in the range [�1, 0], where �1 indi-
cates a strong agreement between xi and yj . Note that the
first method weights the importance of each frequency bin
according to the amount of energy in it, whereas the bina-
rized approach gives all frequency bins equal importance.

Once we compute the pairwise cost matrix, we use
DTW to estimate the alignment between the part record-
ing and the full mix. Because some parts may not be active
at the beginning of the piece, we use subsequence DTW
to estimate the alignment. Subsequence DTW is a vari-
ant of DTW that finds the best alignment between a short
query sequence and any subsequence in a longer reference
sequence. This allows the alignment path to begin and end
anywhere in the full mix, rather than assuming that the full
mix and part recording both begin and end at the same
time. We allow for (part, full mix) transitions of (1, 1),
(1, 2), and (2, 1) with multiplicative transition weights of
1, 1, and 2, respectively.

At the end of the first key step, we have an estimated
alignment between a single part and the full mix record-
ing. This estimated alignment is passed to the subtraction
block, which we describe in the next subsection.

2.2 Subtracting a Single Part

The second key step is to subtract the part recording from
the full mix. This is done on the CQT representation
through spectral subtraction. This process consists of four
substeps, which are described in the next four paragraphs.

The first sub-step is to time warp the part recording to
match the timing of the full mix. This can be done very
easily by using the estimated alignment between the part
recording and full mix. For example, if frame yk 2 R109 in
the full mix CQT is aligned to frame xi 2 R109 in the part
CQT, then frame x̃k in the time-warped part CQT will be
x̃k = xi. When there are (1, 2) transitions in the estimated
alignment, we can estimate “missing” frames through in-
terpolation. In order to handle frames that fall outside the
estimated alignment (e.g. the part recording begins match-
ing the full mix 20 seconds into the performance), we sim-
ply pad additional frames with zeros at the beginning and
end as needed. At the end of this first substep, we have a
time-warped part CQT X̃ which has the same dimensions
as the full mix CQT Y .

At this point, we could simply subtract the time-warped
part CQT from the full mix CQT. However, this does not
account for volume differences between the two record-
ings. For example, a violin part recording containing a
single solo violin player may be much louder than the vio-
lin signal in the full mix recording. These differences may

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

812



be global differences due to microphone recording levels
or local differences due to musical interpretation (e.g. the
recording levels are the same, but one violinist prefers to
play a particular section more softly than the other violin-
ist). In order to account for these volume differences, we
break the part recording into segments and estimate a vol-
ume gain factor for each segment.

The second substep, then, is to break the part recording
into segments. We do this by performing silence detection
on the part recording, and then consider contiguous regions
of silence or non-silence as segments. Because the part
recording only contains a single instrument, the silence
detection is relatively straightforward, and we use a sim-
ple energy-based approach. We first compute the amount
of energy in windows of length 0.75 seconds across the
entire recording. We then model the distribution of log
energy (within a single window) with a Gaussian mixture
model with 3 mixtures. We interpret the Gaussian with
the smallest mean as a model for silence in the record-
ing. We compute the probability that a frame is silence
P (silence|log energy) using Bayes’ rule and threshold at
0.5. We find this energy-based silence detection approach
to be sufficiently robust for our application. Because the
piano part is playing throughout the entire piece, we use
a very simple scheme for segmenting the piano recording:
we simply break it up into non-overlapping 5 second seg-
ments.

The third substep is to estimate a volume gain factor
for each (time-warped) segment. We estimate the optimal
volume gain factor ↵⇤ in the following manner. Let X̃s 2
R109⇥L be the CQT representation of a single time-warped
segment of length L frames, and let Ys 2 R109⇥L be the
CQT representation for the corresponding section of the
full mix. We calculate the optimal gain factor ↵⇤ as

↵⇤ = argmax
↵

sum(min(X̃s↵, Ys)�max(X̃s↵�Ys, 0))

where the min and max operators are performed elemen-
twise between two matrices and the sum operator sums
all elements in a matrix to produce a single scalar. The
min(X̃s↵, Yseg) term indicates how much of the CQT en-
ergy in the full mix segment is explained by the volume-
scaled & time-warped part recording. The max(X̃s↵ �
Yseg, 0) term is a penalty for overestimating the energy in
the full mix CQT. To approximately solve this optimiza-
tion problem, we simply consider a range of values for ↵
between 0.1 and 100 and use the value that maximizes the
objective function. After this third substep, we have a vol-
ume gain factor ↵⇤ for every segment in the part recording.

The fourth substep is to perform the spectral subtrac-
tion. For each segment, we subtract the volume-scaled &
time-warped part CQT from the full mix CQT as

Ys,mod = max(Ys � X̃s↵
⇤, 0)

where the max operator is performed elementwise. The
max operator ensures that the modified full mix CQT re-
mains a non-negative matrix. The output of the subtraction
block in Figure 2 is the modified full mix CQT with the
part recording subtracted out.

Recording Type # Recordings Duration
Train Test Train Test

Piano only 2 2 21.8m 22.4m
Violin only 2 2 17.5m 18.9m
Cello only 2 2 19.0m 18.9m
Full mix (YouTube) 2 2 19.1m 21.2m
Total 8 8 77.3m 81.3m

Table 1. Summary of the Mendelssohn piano trio data col-
lected from musicians in quarantine. All possible combi-
nations of the recordings are considered, resulting in 16
training episodes and 16 test episodes.

2.3 Aligning Multiple Parts

Once the first part has been aligned and subtracted out from
the full mix CQT, we repeat the entire process with the next
part recording. At each iteration of this process, we always
use the most updated version of the full mix CQT with pre-
vious parts subtracted out. The final output of the system
is an estimated alignment between each part recording and
the full mix recording.

3. EXPERIMENTAL SETUP

Doing a rigorous empirical study of our proposed applica-
tion of interest presents several significant challenges. As
with constructing any alignment dataset, annotating beat
timestamps is a very time-consuming task. But even be-
yond that, simply collecting suitable audio data for our ap-
plication is an even more significant challenge. Because
musicians don’t have any incentive to record themselves
playing a single part of a chamber work, such data is not
readily available in the wild. Because of the challenges
of getting realistic data, we opted for a two-pronged ap-
proach: we collected a small amount of data that is specif-
ically tailored to our application to serve as a case study,
and we also modified an existing dataset to study the same
alignment problem in an idealized setting.

The application-specific data was collected in the fol-
lowing manner. In the midst of the pandemic, we recruited
three musicians to participate in our study: a cellist and
a violinist in the Claremont Colleges Orchestra and a pi-
anist who has studied privately in college. Based on the
expressed preferences of all three musicians, they agreed
to learn the first movement of the Mendelssohn piano trio
no. 1 in D minor. The musicians were asked to learn their
parts and then record themselves playing their part in isola-
tion. During the period when the musicians were learning
their parts, they had no joint practices together and did not
have any communication about their interpretation of the
piece (e.g. at what tempo to play the piece). Each musician
used a cell phone to record themselves playing their part
four times from beginning to end, including counting out
measures of rest. In addition to the individual part record-
ings, we also found four different performances of the
Mendelssohn piano trio on YouTube. These YouTube per-
formances serve as the reference full mix recording shown
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Piece Type # Pieces Duration
Train Test Original Modified

Duos 6 5 20.8m 215.0m
Trios 6 6 17.7m 181.8m
Quartets 6 8 27.5m 285.8m
Quintets 2 5 14.2m 149.0m
Total 20 24 80.2m 831.6m

Table 2. Summary of the URMP data used as an ad-
ditional evaluation benchmark. The full mix recordings
were randomly modified in tempo to generate 10 episodes
per piece, resulting in 200 training episodes and 240 test
episodes.

at left in Figure 2. Put together, the piano trio data contains
a total of 16 recordings and 159 minutes of data.

After this data had been collected, we asked each musi-
cian to annotate the downbeats in all 16 audio recordings
using SonicVisualizer. Because there are many extended
periods of silence in the cello and violin part recordings,
the musicians were asked to selectively annotate only those
downbeats that they felt could be reasonably inferred. We
collected all 16 ⇥ 3 = 48 annotation files (23, 274 total
beat annotations) and merged them by taking the average
of annotated timestamps for all downbeats containing three
annotations. Downbeats with less than three annotations
were discarded. The result of this merging process is a set
of 16 ground truth annotation files for the 16 audio record-
ings.

In summary, the application-specific data consists of
16 audio recordings containing 4 violin part recordings, 4
cello part recordings, 4 piano part recordings, and 4 full
mix recordings. All 16 recordings are unsynchronized, and
each recording has ground truth annotations of downbeats.
We will refer to this dataset as the piano trio data. Table 1
shows an overview of this dataset. As discussed above, it
has the benefit of being real world data that is collected in
the exact application scenario of interest, but has the draw-
back of being very limited in diversity (only one piece and
one set of performers). The results on this dataset should
therefore be seen as a case study.

We evaluated system performance in the following
manner. We set apart two violin part recordings, two cello
part recordings, two piano part recordings, and two full
mix recordings for training, and we consider all possible
combinations of training recordings, resulting in 2⇥2⇥2⇥
2 = 16 different training episodes. For test evaluation, we
likewise consider all possible combinations of test record-
ings, resulting in 16 test episodes. For each episode, we
evaluate the accuracy of the predicted alignment between
each part recording and the full mix recording. We cal-
culate the percentage of annotated downbeats whose pre-
dicted alignment error is greater than a maximum allow-
able error tolerance, and we calculate this error rate for
several different error tolerances. Because the alignment
accuracy of different instruments varied widely, we report
results for each instrument separately (i.e. piano–full mix,

Figure 3. Results on the URMP dataset. Colored bars in-
dicate the error rate at an error tolerance of 200 ms, and
the horizontal bars above and below each colored bar in-
dicate the error rate at error tolerances of 100 ms and 400
ms, respectively. Results are separated by piece type.

cello–full mix, and violin–full mix).
In parallel with the piano trio data, we also constructed

a benchmark using the URMP dataset [23] to study the
same alignment problem, albeit in an idealized setting.
The URMP dataset contains recordings of 44 different en-
semble works of various instrumentation and ranging from
duos up to quintets. For each piece, the dataset contains
recordings of each individual part played in isolation, as
well as a full mix recording containing all parts mixed to-
gether. When recording the data, the musicians listened to
a reference track on earphones, so all part recordings are
synchronized. The full mix recording was generated syn-
thetically by mixing the individual part recordings together
with appropriate offset. The dataset contains a symbolic
score for each piece, annotations of F0 trajectories, and
timestamps for note onsets.

We modify the URMP dataset to study the part–full mix
joint alignment problem. Because each part recording is al-
ready synchronized with the full mix recording, the align-
ment problem is trivial. To make the problem non-trivial,
we modify the full mix recording in the following way.
First, we split the full mix recording into three segments of
equal length. For each segment, we use time scale modi-
fication to change the tempo by a constant, random factor
while preserving the pitches of all parts. We use the phase
vocoder implementation in [25] to perform the time scale
modification. The tempo is uniformly sampled between
0.66rnom and 1.5rnom on a log scale, where rnom indi-
cates the nominal tempo of the full mix segment. Because
this process is probabilistic, we generate 10 different mod-
ified full mix recordings for each piece in URMP, which
provides us with 10 episodes per piece.

We evaluate performance on our modified URMP data
in the same fashion as for the piano trio data. We set apart
20 pieces for training and 24 pieces for testing. Because
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ground truth timestamps are provided for note onsets, we
evaluate alignment accuracy at each note onset (rather than
at downbeats). As before, we compute the error rate at
several different error tolerances. The alignment accuracy
varied widely based on the number of parts in the piece,
so we report results for duos, trios, quartets, and quintets
separately. Table 2 provides an overview of the URMP
data used in our experiments.

4. RESULTS

Figure 3 shows the performance of four different sys-
tems on the URMP benchmark. The first system (‘DTW-
chroma’) simply performs an independent pairwise align-
ment between each part recording and the full mix using
chroma features and cosine distance metric. This is can
be considered our baseline, since it is a default choice in
many audio–audio alignment applications. The second and
third systems use the subtractive alignment approach based
on the CQT representation (‘SA-CQT’) and BCQT repre-
sentation (’SA-BCQT’). We also include a fourth system
that uses the subtractive alignment approach with standard
chroma features and cosine distance metric (‘SA-chroma’)
as a way to tease apart the effect of the feature represen-
tation and the iterative subtraction approach. The colored
bars indicate the error rate at an error tolerance of 200 ms,
and the horizontal bars above and below each colored bar
indicate the error rate at error tolerances of 100 ms and
400 ms, respectively. The results are shown separately for
duos, trios, quartets, and quintets.

There are three things to notice about Figure 3. First,
the performance of all systems gets progressively worse as
we move from duos to trios to quartets to quintets. This is
to be expected, since the problem becomes progressively
more challenging as more “noise” sources are added and
the effective SNR becomes lower. Second, the SA-CQT
approach has the best performance by a wide margin, far
outperforming the baseline DTW-chroma system. For ex-
ample, the DTW-chroma baseline has a 44.0% error rate
with 200 ms tolerance on quartet pieces, while the SA-
CQT approach achieves 10.1% error rate. Third, even with
a subtractive approach, the SA-chroma and SA-BCQT ap-
proaches scale poorly with the number of instruments.

Figure 4 shows the results of the same four systems on
the piano trio data. Results are shown separately for each
instrument’s alignments against the full mix. For the sub-
tractive approaches, we use a piano–cello–violin ordering
for spectral subtraction, which we found to work best on
the training data. There are three things to notice about
these results. First, the performance depends a lot on the
instrument: the piano alignments are best by far, and the
cello and violin alignments are much worse. This is per-
haps not too surprising, since the piano part has a much
more distinctive spectral profile due to being a polyphonic
instrument. Second, the subtractive approach potentially
provides a significant improvement for the cello alignment,
but at best only marginal improvements for violin. Third,
SA-CQT is no longer a clear winner as it was on the URMP
data. Instead, we can see that different approaches seem to

Figure 4. Results on the piano trio dataset. Results are
shown separately for each instrument’s alignments against
the full mix. All subtractive approaches use a piano–cello–
violin ordering when performing spectral subtraction.

work best for different instruments: SA-CQT and DTW-
chroma work best for piano, SA-chroma works best for
cello, and SA-BCQT works best for violin. One area that
might be interesting to explore in the future is using dif-
ferent feature representations and cost metrics for different
part recordings in order to exploit the unique characteris-
tics of each instrument.

5. CONCLUSION

This paper envisions an application in which a group of
musicians in quarantine can generate a performance of a
chamber work by recording each part in isolation in a com-
pletely unsynchronized manner, and then aligning, time
scale modifying, and mixing the recordings. We focus on
the main technical challenge of aligning the individual part
recordings. Our approach is to use an auxiliary “full mix”
recording of the piece as a reference, and to align each
part recording against the full mix. We explore an itera-
tive subtractive alignment approach in which each part is
aligned against the full mix and then subtracted from it.
We characterize the performance of several variants of this
approach on two different datasets: one derived from the
URMP dataset that contains ensemble works of various in-
strumentation, and the other consisting of multiple record-
ings of a piano trio collected from musicians in quarantine
during the pandemic. We find that the subtractive align-
ment approach works reasonably well on the URMP data,
but has mixed success on the piano trio data. We present
experimental analysis and suggest directions for future im-
provement.
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ABSTRACT

The state-of-the-art methods for drum transcription in
the presence of melodic instruments (DTM) are machine
learning models trained in a supervised manner, which
means that they rely on labeled datasets. The problem
is that the available public datasets are limited either in
size or in realism, and are thus suboptimal for training
purposes. Indeed, the best results are currently obtained
via a rather convoluted multi-step training process that in-
volves both real and synthetic datasets. To address this
issue, starting from the observation that the communities
of rhythm games players provide a large amount of an-
notated data, we curated a new dataset of crowdsourced
drum transcriptions. This dataset contains real-world mu-
sic, is manually annotated, and is about two orders of mag-
nitude larger than any other non-synthetic dataset, mak-
ing it a prime candidate for training purposes. However,
due to crowdsourcing, the initial annotations contain mis-
takes. We discuss how the quality of the dataset can be
improved by automatically correcting different types of
mistakes. When used to train a popular DTM model, the
dataset yields a performance that matches that of the state-
of-the-art for DTM, thus demonstrating the quality of the
annotations.

1. INTRODUCTION

Automatic drum transcription (ADT) consists of creating a
symbolic representation of the notes played by the drums
in a music piece. Two targets that would benefit from such
transcriptions are musicians, for example when learning
a musical piece, and music information retrieval (MIR),
that can leverage the location of the notes to draw a deeper
knowledge of a music track (e.g., its structure). ADT is
known to be difficult to achieve. In fact, as explained in
a recent state-of-the-art review by Wu et al. [1], it is tack-
led in several manners and with different levels of com-
plexity. The most basic aspect undertaken is the automatic
classification of isolated drum sounds. Here, we are in-
terested in solving the more general and complex task of

© M. Zehren, M. Alunno, and P. Bientinesi. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Zehren, M. Alunno, and P. Bientinesi, “ADTOF: A
large dataset of non-synthetic music for automatic drum transcription”,
in Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

drum transcription in the presence of melodic instruments
(DTM). In DTM, the input consists of polyphonic music
(drums and accompanying instruments); the output is a log
with time stamp and instrument for each drum note. As
Wu et al. argued, much progress has been made recently
in ADT (and, therefore, in DTM) thanks to deep learning
approaches. However, a high volume of annotated data
is needed for neural networks to perform well, and such
data is difficult to obtain, mainly because the annotation
process is labor-intensive. This explains why the publicly
available datasets are usually either small (e.g. [2–4]) or
consist of augmented data (e.g. [5,6]) or synthesized audio
(e.g. [7,8]), both of which are not direct representations but
only estimations of real music. Therefore, current datasets
seem to be suboptimal for DTM either because of quantity
or data authenticity.

In this work, we explore a way to reach both the re-
quired quantity and realism of the data needed for DTM by
using crowdsourced annotations of a high volume of real-
world (not synthetically created) audio tracks. In fact, we
realized that this amount of data can be found in rhythm
games such as RockBand 1 or PhaseShift 2 . In these
games, one of the goals is to correctly play the drum line
of a song on a toy drum kit. Songs come with the game,
but players can also add audio tracks and their own anno-
tations of the drums parts. Because of this feature, a large
online community of players and musicians emerged to ex-
tend the catalog of playable tracks and share custom game
files, also known as “custom charts”. These data have the
advantage of being fundamentally similar to the content of
current ADT datasets and contain the audio source along
with the representation of the notes being played on the
drums.

The outcome of our work is a new methodology to
build a dataset from custom charts. Following our method,
we build a dataset named Automatic Drums Transcription
On Fire (ADTOF) 3 that is composed of a large amount
of realistic data. As mentioned above, the large amount
is achieved through crowdsourcing annotations from a
much larger group of people than previously observed, to
our knowledge. Realism is due, instead, to the use of
real-world as opposed to augmented or synthesized mu-
sic tracks. Yet, quantity and realism are useful only if the

1
https://www.rockband4.com/

2
https://store.steampowered.com/app/865250/

Phase_Shift/

3 The name is a reference to “Frets On Fire”, one of the earliest rhythm
game.
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Dataset Hours Classes Real music
ENST [2] 1.02 20 p

MDB [3] 0.35 21 p

RBMA [4] 1.72 24 p

SDDS [7] 467 14 ⇥
TMIDT [8] 259 18 ⇥
ADTOF (ours) 114 5 p

Table 1. List of datasets for DTM.

annotations contain as few mistakes as possible.
In order to ensure a sufficient quality, we used a sys-

tematic way of curating the data from an online source by
selecting the tracks that are less likely to contain wrong
annotations. In fact, while manually assessing the annota-
tions, we found many discrepancies between the locations
of the annotations and the positions of the actual sound
onsets. To overcome this issue we adapted the automatic
alignment technique described in the work of Driedger et
al. [9] to correct the time precision of the annotations. We
also found many inconsistencies in the labels used to desig-
nate specific instruments of the drum kit, which we solved
by reducing the set of instrument classes to be detected.
Finally, in order to assess how useful the annotations were
after being processed, we evaluated our new dataset as both
a training and test data for the popular convolutional re-
current neural network (CRNN) illustrated in the work of
Vogl et al. [8]. The result is that ADTOF allows for the
direct training of a model that achieves comparable per-
formance to the state-of-the-art model trained on multiple
other datasets. It also provides complementary information
and generalization capability. 4

The rest of this article is organized as follows: Section 2
contains a survey of related works. The data with the anno-
tation and curation process are presented in Section 3, and
the methodology to automatically clean them is detailed in
Section 4. In Section 5, experiments on training and testing
are presented. The results are then discussed in Section 6.
Conclusions are drawn and future works are described in
Section 7.

2. RELATED WORK

Multiple datasets with different characteristics have been
created to solve specific aspects of ADT. Since we deal
with DTM, though, in this section we discuss only datasets
containing polyphonic music (see Table 1).

To our knowledge, the oldest public dataset suitable
for DTM is ENST [2] created in 2006. This dataset con-
tains the recordings of three professional drummers play-
ing along with a variety of musical accompaniments com-
posed for drum kit practicing. More recently, in 2017,
MDB drums [3] was created by adding drum transcriptions
to 23 tracks from MedleyDB [10], and RBMA [4] was
released, with annotations, on the freely available album

4 The set of tools developed to curate and process the annotations as
well as the pre-trained models and complementary material can be found
at https://github.com/MZehren/ADTOF

“Various Assets - Not For Sale: Red Bull Music Academy
New York 2013”. These datasets are standard in DTM,
but they are limited in several ways. First, because of the
difficulties inherent in annotating music, these datasets are
small, with a cumulative time just above three hours. Sec-
ond, the number of occurrences of each instrument in a
drum kit is generally unbalanced, with some instruments
(e.g., crash cymbal, ride cymbal) appearing much less than
others (e.g., bass drum, snare drum). Lastly, in these
datasets, data diversity is largely reduced (e.g., ENST con-
tains audio from a limited number of drum kits, RBMA is
biased toward a few music genres). As a consequence, the
majority of DTM research [4, 5, 11–13] narrows down to
the identification of three main drum classes — kick drum,
snare drum and hi-hat.

As an effort to increase the size of the manual annota-
tions, data augmentation was employed by Vogl et al. [5]
and, more recently, by Jacques and Röbel [6]. In these
studies, data augmentation techniques (e.g., pitch-shifting,
time-stretching the audio) usually increased the perfor-
mances of the model trained on the augmented data. How-
ever, according to some of the authors in a later work [8,
p. 4], this improvement is limited.

Another approach taken to contrast data paucity is the
generation of synthetic datasets which consist of synthe-
sized audio generated from a symbolic representation of
music (i.e. MIDI files). This technique allows to cre-
ate larger datasets because it removes the labor needed
to annotate the audio tracks, since the ground truth is de-
duced from the generation process. Moreover, audio syn-
thesis gives the flexibility to balance instrument distribu-
tion by artificially replacing more common drum classes
with sparser ones.

Following this approach, Cartwright and Bello pro-
posed in 2018 the Synthetic Drum Dataset (SDDS) [7]
that is multiple orders of magnitude larger than the previ-
ous datasets. In their work, the audio has been rendered
from a collection of MIDI drum loops using randomly
selected drum samples, augmented with harmonic back-
ground noise and other data augmentation methods. The
same year, Vogl et al. created another synthetic dataset,
which we refer to as TMIDT [8], by using MIDI files
available online to synthesize both drums and the accom-
paniment parts in such a way that drums classes would
be distributed in a natural and balanced fashion. Both
these works indicate that models trained on a large syn-
thetic dataset alone do not outperform models trained on
small real-world datasets, with still possible performance
improvements for some underrepresented classes when us-
ing TMIDT. Furthermore, Vogl et al. [8, p. 5] raised the
concern that the atypical nature of drum patterns that un-
derwent a balancing process could harm the model and
they showed that this technique is ineffective when mak-
ing evaluation on real-world datasets. In conclusion, re-
sults improve only when real data is somehow involved: by
training with both synthetic and real data [7], or by training
first with synthetic data and then refining the outcome with
real data [8].
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(a) (b) (c)

Figure 1. Digital audio workstation interface used to create the annotations with mouse and keyboard (a). The result is then
playable in-game (b) using a drum-shaped game controller (c). Pictures from http://docs.c3universe.com and [14].

Even though the synthetic datasets are pushing further
the state-of-the-art of DTM by providing more data, they
do not seem to solve completely the need for more real an-
notated audio. In order to tackle this issue, we built the
ADTOF dataset, the first to our knowledge that is both
large and contains real-world audio tracks, with more than
114 hours of annotated music and the transcription of five
different classes of drums.

3. DATASET

To build our dataset, we downloaded openly shared custom
charts made for rhythm games. In this section, we discuss
how the annotations were made and how we selected them.

3.1 Annotation process

The custom charts are created by players and musicians
who desire to play along with their favorite tracks. They
consist of the symbolic annotations of the drum onsets,
usually in a MIDI file with standardized pitches represent-
ing the notes the player is supposed to play on the drums
(we refer to them as GAMEPLAY annotations). In addition
to the transcription, a chart contains beat information, the
track’s meta-data and the audio track to play along with.
All this information is similar to what is found in an ADT
dataset such as those introduced in Section 2. Some of the
charts also contain other labels used to animate in-game
musicians and are known as ANIMATIONS.

To create the annotations while ensuring quality and
consistency in the data, guidelines and tools have been
built by the players community and shared online. 5 These
guidelines specify how to create the annotations in a digi-
tal audio workstation by manually building a grid of beats
filled offline with mouse and keyboard (Fig. 1a). The re-
sult is then packaged with a tool and finally manually con-
trolled in-game (Fig. 1b) and playtested on the game con-
troller (Fig. 1c).

3.2 Data selection

Once the transcription is ready, it is shared on a col-
laborative website such as the popular “Rhythm Gaming
World.” 6 This specific website offers a listing of the tran-
scriptions, a space for users’ feedbacks and comments, and

5
http://docs.c3universe.com/rbndocs/index.php

6
https://rhythmgamingworld.com/

Figure 2. Genre distribution of tracks in ADTOF.

a forum to discuss and report mistakes. At the time of writ-
ing, Rhythm Gaming World lists more than 25,000 tran-
scribed tracks. Most of them contain annotations for drums
(but other instruments such as guitar, keyboards, and bass
are also playable in rhythm games) and are labeled as “Pro
drums”, a tag added by the authors and meaning that the
notes annotated should be all those found in the real song
rather than an approximation or a simplification thereof.
From this repository, we downloaded the top-rated 1700
tracks (the largest number of tracks we could fit into the
local memory of the server used for the evaluation); this is
the dataset we used in this study.

This subset contains an uneven distribution of music
genres with a bias toward “Rock”, possibly the most pop-
ular genre in the rhythm games community (see Fig. 2).
The vast majority of the music is classified as Western with
very few occurrences of “World”, as the former is the most
likely to contain parts for a typical drum kit like those used
in rhythm games.

In order to use this subset of data, we created an open-
source set of tools that automatically convert any custom
charts into a standard format for ADT.

4. AUTOMATIC DATA CLEANSING

The annotations collected from custom charts are not di-
rectly usable for ADT. This is due in part to the crowd-
sourced nature of the annotations, and in part to the specific
target for which the annotations were created, that is, video
games. On the one hand, different people will inevitably
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Figure 3. Deviation of the beats annotation as computed
with the method from [9] and the interpolation used to cor-
rect the drum notes for the first 10 secs of a track.

have different annotation expertise, and on the other hand,
some of the annotations do not aim at being accurate, but at
improving the players’ experience. By conducting a visual
and auditive inspection of random tracks in our dataset, we
identified two recurring issues which could be detrimental
for ADT. In this section we illustrate how such issues can
be corrected automatically.

4.1 Inaccurate timing

The first issue is a lack of time accuracy: We identified
that many annotations are placed in a neighborhood of the
actual notes. This might be due to human imprecision, but
also to the fact that in some tracks the tempo is not constant
(for instance because they come from live performances),
making them especially difficult to annotate. The observed
distance between real and annotated events might be too
extreme for the training of a typical algorithm used for
ADT. For example, the models discussed by Vogl [8] re-
quire the annotations to be roughly within 10 ms from the
actual onset, 7 whereas we usually witnessed discrepancies
around 50 ms.

To improve the alignment of the annotations, we adapt
the work of Driedger et al. [9] whose idea is to correct
human annotations of beats by “snapping” them onto their
most likely position according to a beat tracking algorithm.
The assumption behind this reasoning is that human anno-
tations are meant to correspond to actual events but, due
to human error, they are likely slightly misplaced; instead,
beat tracking algorithms, if successful, locate beats accu-
rately. Then, by comparing human annotations with algo-
rithmically identified beats, it should be possible to correct
wrongly placed human annotations. The beat tracking al-
gorithm used is Böck’s [15], available in the library Mad-
mom [16]. We extend this initial method, originally meant
to correct human taps recorded live, to also correct the an-
notated drum notes occurring in between the beats. To this
end, we interpolate the corrections to intermediate posi-
tions as represented in Fig. 3. We use a linear interpolation
as it is likely to represent the true deviation of the drum
notes.

To further improve the overall quality of the dataset, we
also include an automatic sanity check, to make sure that

7 This is because those models are tuned to work at 100Hz and, thus,
are making a prediction every 10 ms.

ANIMATION GAMEPLAY ADTOF

Bass drum Orange drum BD

Snare drum Red drum SD

Rack tom 1 Yellow drum
TTRack tom 2 Blue drum

Floor tom Green drum

Hi-hat open Yellow cymbal HH
Hi-hat close

Crash 1 Blue and green
cymbal CY + RDCrash 2

Ride Cymbal

Table 2. Classes used for the ANIMATION and GAME-
PLAY annotations (presented in Sec. 3.1), and mapping
onto ADTOF classes.

the majority of the corrected beats align to the algorithmi-
cally detected beats, and that the magnitude of the correc-
tions does not exceed 80ms. A total of 140 tracks that do
not satisfy these requirements were discarded.

4.2 Inconsistent labeling

The second issue we identified in the annotations is the in-
consistent use of labels. This issue is apparent for specific
drums sounds such as the three variants of the toms (i.e.,
yellow, blue, and green drums), which are challenging to
discriminate even within one track. Moreover, since the
same variant of toms might sound drastically different de-
pending on mix and playing style, it is especially difficult
to achieve consistent labeling across tracks. Our solution
consists in merging different classes into one (see Table 2,
2nd and 3rd columns), a simplification which is not un-
common in ADT, as the discrimination of the toms sounds
is not as relevant as correctly identifying their presence.

Another cause of inconsistencies is the fact that some
drums have an ambiguous representation in the toy drum
kit used as game controller. For instance, we found that on
the toy drum kit, the yellow in-game cymbal ambiguously
represents both the open and closed hi-hat; similarly, the
blue and green in-game cymbals are used interchangeably
for crash and ride sounds. For a subset of tracks, these am-
biguities can be resolved by looking at the ANIMATION an-
notations (Table 2, 1st column), which are highly accurate
and span a larger drumset. However, not all the tracks do
have such annotations. In our dataset, we map the vocab-
ularies used in ANIMATION or GAMEPLAY down to five
classes, the largest number of classes for which most am-
biguities are removed.

We also observed that in accordance with the guidelines
for the annotators, to ease the gameplay, specific sounds
that cannot be played on a toy drum kit, have been repre-
sented by combinations of drum hits (e.g., a snare flam is
represented as a hit on both the red and yellow drum; an
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accentuated open hi-hat sound is played on the green cym-
bal). For these cases, we use the ANIMATION annotations,
when available, to detect discrepancies with the GAME-
PLAY annotations, and then we adopt the former as ground
truth.

Finally, aware that the guidelines do not cover all possi-
ble cases and that not all annotators follow the guidelines,
we performed one last check on the 10% tracks with the
lowest prediction score according to a preliminary trained
ADT algorithm. With this extra check, we removed a to-
tal of 88 tracks; among these, there were tracks contain-
ing multiple drums but with annotations for only one, and
tracks with classes outside of the vocabulary wrongly an-
notated.

5. EXPERIMENTS

To evaluate the quality of our dataset (ADTOF), we use it
in two typical tasks, namely the evaluation, and the training
of a DTM model. In the first case, we compare the perfor-
mance achieved by a state-of-the-art algorithm on ADTOF
and on other datasets. Should the performance on ADTOF
be worse than on the other datasets, then we would con-
clude that the ADTOF’s annotations contain errors and/or
that ADTOF’s tracks are especially difficult to transcribe
for the given algorithm. By constrast, a good performance
on ADTOF indicates that the annotations and the algorith-
mic estimations are in good agreement with each other.
Since it is very unlikely that annotations and estimations
agree on mistakes, the agreement is a strong indication that
both are correct. In the second case, one same model is
trained (and tested) on different datasets. By evaluating the
performance that the model trained on ADTOF achieves on
other datasets, we can assess both the quality of ADTOF’s
annotations, and how representative ADTOF’s tracks are
for the task.

5.1 Model selection

The state-of-the-art model we evaluate and train on our
dataset is the convolutional recurrent neural network
(CRNN) presented in the work of Vogl et al. [4, 8]. This
model achieves the best overall results according to the
community evaluation MIREX 8 on their private data, is
well studied, and it has been reproduced [7]. The strength
of this model resides in the two types of building blocks
used in its architecture, namely convolutional and recur-
rent layers (see Fig. 4). The convolutional layers model
the local acoustic features of the onsets, while the recur-
rent layers model the temporal aspect of the drum patterns.
This combination of types of layers has been found to give
the best results.

The input of the neural network is a spectrogram de-
picting the variation of the frequencies over time. Specif-
ically, due to its good performance with this model, the
log-frequency log-magnitude short-time Fourier transform
is used. A window size of 2048 samples and a hop size of

8 Results for “RV3” at the URL https://www.music-ir.org/

mirex/wiki/2018:Drum_Transcription_Results
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Figure 4. Overview of the automatic transcription.

441 samples are used for a target frame rate of 100Hz; the
frequency bins are transformed to a logarithmic scale with
12 triangular filters per octave between 20 to 20,000Hz.
The output of the network is an activation function display-
ing a value between zero and one for the five classes in-
ferred. This value represents the confidence of the network
that a note is played at this specific location. To extract
a symbolic representation from these functions, a simple
peak picking algorithm is used [17]. In the experiments,
we carefully reproduced the whole procedure presented in
Vogl’s work and we implemented this network architecture
with Tensorflow.

5.2 Evaluation

We compare results for ADTOF with three other datasets
(ENST, MDB, RBMA) that contain real music (see Ta-
ble 1) and by mapping their vocabulary onto our five
classes. To carry out the comparison, we trained the CRNN
on three different (combinations of) datasets, resulting in
three different versions of the model. The first version
is trained on ENST, MDB, and RBMA, and represents a
baseline. The second version is first trained on TMIDT,
and then on ENST, MDB, and RBMA; this is our repro-
duction of the state-of-the-art method. The last version is
trained exclusively on ADTOF. In Fig. 5, these three ver-
sions are represented by the blue, orange, and green bars,
respectively.

For each version, we followed a three-fold cross-
validation strategy: testing is done on one split of each
dataset while training and validation are done on the re-
maining splits of the dataset(s) used for training. This
methodology ensures that the test data stays consistent
across all models. When training on multiple datasets at
the same time, we merged the corresponding training and
validation sets together. In practice, for ENST, MDB, and
RBMA, we used the three splits from [8] by iteratively
selecting one as test data and further partitioning the re-
maining two as 15% validation and 85% training data.
Whenever drum solo version of the tracks were available,
they were added with their full mix version as additional
training material, but not when testing. In contrast, since
ADTOF is much larger, we partitioned the data in ten splits
without overlap of artists between them to prevent leakage
of information on similar-sounding tracks. The splits are
used by iteratively selecting one as test data, one as valida-
tion and the remaining eight as training data.

The performance metric used is the well-known F-
measure, computed with the package mir_eval [18] with
a tolerance window of 50 ms to stay consistent with pre-
vious research [1, 7]. We return values by counting the
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Figure 5. Plots representing the overall (SUM) and class-
specific F-measure for multiple training and testing config-
urations.

class specific true positives, false positives and false nega-
tives across all tracks. We also compute an overall “SUM”
value by counting across all tracks and all classes. This
process is repeated three times on the different test sets of
the cross-validations and we report the averaged results.

6. RESULTS

The quality of the ADTOF dataset is assessed by (1)
the performance that a state-of-the-art ADT algorithm
achieves on it, and (2) the performance that a state-of-the-
art ADT model trained on it achieves on multiple datasets.
Fig. 5 depicts the results for both evaluations.

(1) In Fig. 5, the orange bars refer to the performance of
the state-of-the-art algorithm, and different panels refer to
different datasets. By comparing the orange bars in the top
panel (ADTOF) and in the other three panels, we observe
that the algorithm’s performance on our dataset is entirely
comparable with that on the other datasets. In detail, the
classes toms (TT) and crash + ride cymbals (CY + RD) are
difficult to estimate both in our and the other datasets. This
fact is well understood, and typically linked to the spar-
sity of these classes in the training data. We note a slight
increase in the snare drum (SD) performance on ADTOF
compared to the other datasets, possibly meaning that the
snare sounds in our tracks are more easily identified by
the model. On the contrary, the hi-hat cymbal (HH) score
is rather low, suggesting that the specific combinations of
drum hits meant to ease the gameplay (see Sec. 4.2) are not

fully corrected and harm the accuracy.
(2) We now focus on the performance achieved by one

model when trained differently. The green bars refer to the
model trained on ADTOF. Overall, our dataset trains the
model equally well, and possibly better, than the current
state of the art.

In detail, the model trained on ADTOF outperforms the
baseline (blue bars) in the majority of the evaluations, in-
dicating that the increased volume of the training data re-
sulted in improved performance even on datasets unknown
during training. Additionally, this fact suggests that the au-
dio is representative of the task and enables generalization
to other datasets. The model trained on ADTOF, and the
model trained on TMIDT and refined on ENST, MDN, and
RBMA, mostly outperform one another when evaluated on
the same dataset(s) that was used for training; a few excep-
tions occur, in favor of the model trained on ADTOF. On
the one hand, this is an indication that those datasets might
be complementary, i.e., they all contribute useful informa-
tion to the training. On the other hand, the exceptions in
favor of ADTOF suggest that the inclusion of a larger num-
ber of real-world tracks results in better generalization ca-
pability of the model.

7. CONCLUSIONS

One of the main problems in ADT is to find a high volume
of good quality data that the models can use during train-
ing. Unlike the most recent approaches that rely on synthe-
sized and/or augmented audio to gather enough data, we
proposed a new technique that leverages annotated tracks
for rhythm video games. This source of data, to our knowl-
edge unexplored until now in ADT, has the advantage of
both containing authentic audio and being available online
in a large quantity, thanks to the annotation process real-
ized by a broad community of players. However, since the
annotations originate from people with different expertise
and are initially meant for a different purpose than ADT,
they are not readily usable. Therefore, we illustrated a
method to automatically select, transform, and clean the
data. We further demonstrated that an algorithm trained on
this dataset generalizes well and achieves state-of-the-art
results, which is an indication that our method of gather-
ing and curating the data is successful and should be fur-
ther explored.

In future works, we are interested in evaluating repos-
itories of custom charts other than “Rhythm Gaming
World” in order to identify which of them is more suited to
be used to build a dataset with our methodology. As an ex-
ample, since the original tracks included in the video game
RockBand are professionally annotated by the Harmonix
gaming company, they may constitute a good quality set
(because of better annotations) to explore.
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ABSTRACT

The excellence of human singing is an important aspect of
subjective, aesthetic perception of music. In this paper, we
propose a novel approach to tackle Automatic Singing As-
sessment (ASA) task through deep metric learning. With
the goal of retrieving the commonalities of good singing
without explicitly engineering them, we force a triplet
model to map perceptually pleasant-sounding singing per-
formance closer to the reference track compared to oth-
ers, and thus learning a joint embedding space with perfor-
mance characteristics. Incorporating mid-level representa-
tions like spectrogram and chroma, this approach takes ad-
vantage of the feature learning ability of neural networks,
while using the reference track as an important anchor. On
our designed testing set that spans across various styles and
techniques, our model outperforms traditional rule-based
ASA systems.

1. INTRODUCTION

Automatic Singing Assessment (ASA) deals with the task
of assessing singing performances based on audio record-
ings. Ever since the development of Karaoke, a popular
entertainment form and practice means for singers, there
has been a high demand for ASA systems that’s able to
judge the excellence of singing performance just like hu-
man experts do.

However, ASA is not an easy task. Singing quality is
often judged with respect to professional standards, where
music experts rate singing performances based on their
music knowledge and perceptual appeal. These dimen-
sions include basic, objective criteria such as vowel qual-
ity (proper pronouciation of lyrics), accuracy of pitch and
rhythm. Meanwhile, higher-level, subjective dimensions
like singers formant, dynamics and expressiveness, tech-
niques like vibrato and breathing are also taken into ac-
count.

Based on these criteria, some ASA systems compare
a singing performance with a reference such as a profes-

© H. Zhang, Y. Jiang, T. Jian and P. Hu. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: H. Zhang, Y. Jiang, T. Jian and P. Hu, “Learn by Referenc-
ing: Towards Deep Metric Learning for Singing Assessment”, in Proc.
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

sional singing performance [1,2] or melody contours [3,4],
and thus place more emphasis on accuracy and intonation.
On the other hand, unreferenced ASA systems aims to
evaluate singing quality based on only the performance it-
self, addressing voice-related characteristics like voice for-
mants or expressiveness. However, all these rule-based
evaluation systems from hand-crafted indicators can eas-
ily be song- and style-dependent, resulting in poor gen-
eralizability. What’s worse is that sometimes human per-
ception standards seem to conflict with each other. For
example, a good vibrato technique implies pitch instabil-
ity, and an ASA system that’s focused on intonation will
fail on certain songs while human can easily perceive the
trick. Given the vast dimensions of our perception space
of singing quality, we seek data-driven, deep learning so-
lutions.

In this work, we aim to tackle the ASA task through
metric learning. With the goal of retrieving the commonal-
ities of good singing without explicitly engineering them,
we force the model to map perceptually pleasant sound-
ing performances closer to the reference track compared
to others, and thus learning a joint embedding space with
performance characteristics. Section 2 reviews the related
works. In Section 3, we first present our audio represen-
tations that incorporate multi-channel features. Then we
introduce our proposed triplet network in comparison to
other skeleton models for assessing singing quality. Ex-
periment results and discussions are shown in Section 4,
where our proposed architecture achieved the highest cor-
relation with human perception of singing rating on the
mixed testing set, when comparing with existing singing
assessment algorithms.

2. RELATED WORK

Currently, the majority of literature on ASA systems,
whether referenced or unreferenced, largely focused on ex-
traction of perceptually motivated features such as f0 pitch
sequences [3], f0 pitch histogram [5], vibrato rate (peri-
odic fluctuation of f0) [6]. The main issue of these hand-
crafted features is that they only reflect specific aspects of
the singing. Thus, some of the systems [1, 7, 8] will then
feed features into simple machine learning regressors or
classifiers which predict ratings that take advantage of mul-
tiple features.

With the rise of deep learning, deep neural network is
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found to outperform traditional methods in terms of feature
learning. To our knowledge, the only work that tackles
ASA task though end-to-end deep learning without fea-
ture engineering step is [9], which takes in a mid-level
time-frequency representation of singing clips and evalu-
ate singing as binary (good-poor) classification with a bi-
dense neural network. However, this approach does not
incorporate the song reference melody, and thus only as-
sesses the discernible features which are independent of
the particular singer or melody.

How to make use of the song reference information
while taking advantage of deep learning? We observe that
the technique of deep metric learning has recently attracted
much attention in various MIR tasks. As a method of learn-
ing discriminative features by measuring similarities from
samples, most existing studies used Siamese and Triplet
networks to correlate among samples while using shared
weights [10]. In [11–13], these architectures has been ap-
plied to tasks of Singer Identification, Cover Song Detec-
tion and Singing Style Investigation. What’s more, [14]
assesses woodwind instruments performances via a joint
embedding network, confirming the feasibility of learning
a performance-reference joint latent space. In [15], an at-
tempt with deep metric learning was used for assigning
scores for singing tracks, but the foundation was laid with
a classification network.

Compared to previous works, the novelty of our work is
in two folds: 1) We take a deep metric learning approach
for singing assessment, which utilizes reference tracks
(original, accompaniment) while not being constrained by
it. 2) Besides classical time-frequency representation of
audio, we propose a set of mid-level audio representations
which concerns pitch, tempo, timbre and so on. At the
end, we construct a style-mixture testing set that compre-
hensively evaluates systems’ ability in assessing different
dimensions of singing, and provide a detailed discussion.

3. METHODOLOGY

3.1 Audio Representation

Given that we are not explicitly engineering perceptually
motivated features, it is important to present neural net-
work with a comprehensive view of the audio data. In such
comprehensive task like singing assessment, it is unusual
to judge only the pitch accuracy of a performance and ig-
nore tone production, or only care about hitting the right
beat but not pronunciation of the lyrics. Thus, for input
features, we employ five channels of 2-dimensional audio
representations that concern with musical dimensions such
as pitch, rhythm, timbre:

i Log-Mel Spectrogram (Spec): We extract the Log-
Mel Spectrogram for each 3s segment with a hop
size of 512. Given 16kHz sampled audio, the result-
ing representation contains 94 frames and 96 bins.

ii Chroma (Chroma): Chromagram gives us the pitch
class profiles for the clips. Note that in order to
achieve the same dimension (96) with other chan-
nels, we give 6 bins (96 bins / (12 pitch classes)) for

Figure 1. Top: Spec, Chroma, TChroma, F0, Tempo 2D
visualization of a clip that’s labeled as ’good’; Mid: an-
other clip that’s labeled as ’bad’ at the same timestamp;
Bottom: features from their corresponding accompani-
ment clip.

each pitch class.
iii Tonal Shifted Chroma (TChroma): From a func-

tional harmony perspective, pitch G and C are closer
while C! and C differs more. Thus, in this chan-
nel we take inspiration from [16] and rearrange the
rows of chromagram by circle of fifths, in the hope
that the features are more sensitive to non-harmonic
mistakes.

iv F0 (F0): As seen in Section 2, f0 is the most cru-
cial feature for assessing intonation. Pitch extraction
algorithm Crepe [17] is used to obtain an activation
matrix of estimated pitch.

v Tempogram(Tempo): We also extracts the cyclic
tempogram [18] of the clip, representing the esti-
mated tempo that evolves over time.

We adopted Librosa’s [19] implementation for all of the
audio features above except F0. In [20], it was studied that
a short voiced sequence (3-5 sec.) is sufficient for assess-
ing singing quality. Thus, for all of input audio we extract
the features above from 3s clips, with 96×94 in dimension
concatenated together like a 5-channel image. See Figure
1 for comparison of the 5 channel representations of a pair
of 3s clips and their corresponding reference clip.

3.2 Architectures

For the schematic model for embedding, we adopted the
CNNSA (CNN + Self Attention) model proposed in [21,
22]. Originally designed for music-tagging task, the archi-
tecture achieved compelling results in learning local char-
acteristics and temporal representations via interpretable
attention maps.

Structurally, the model employs a front-end / back-end
division of deep neural network for MIR task that was first
proposed by [23] (Figure 2): The front-end consists of a
7-layer CNN with (3× 3) filters with residual connections
[24], aiming to extract local information such as timbre and
pitch. The back-end utilizes stacks of self-attention layers
to achieve temporal summarization like rhythmic patterns,
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melodic contours, and chord progressions. Here, the self-
attention layers are BERT [25] encoders where Q,K, V
are feature maps obtained from front-end.

3.2.1 Baseline: Direct Score

Figure 2. Baseline architecture of deriving score from au-
dio representation, without referencing or contrasting.

As shown in Figure 2, our baseline model is a direct
regression model that learns a mapping between audio rep-
resentations and the labeled score directly. No reference is
used. For the architecture, the five-channel audio represen-
tation is fed into the schematic CNN + self attention model
mentioned in 3.2, with 3 fully connected layers at the end
to output a score that measures the excellence of singing.

3.2.2 Delta Spectrogram

The "delta spectrogram" (Delta) model is a natural ex-
tension of the baseline architecture with a reference clip:
Given the audio representation, we subtract it from the au-
dio representation of reference clip. Given most of our au-
dio inputs have time-frequency attributes, a singing clip
misaligned with pitch or rhythm will be reflected in its
delta with reference clip. In comparison with other archi-
tectures, this method is not attempting to learn a joint latent
space, and can be viewed as extracting local similarities at
the front of the pipeline.

Figure 3. The Delta model, where the notion of dis-
tance with anchor is incorporated as delta at the front of
the pipeline.

3.2.3 Triplet:

The triplet model is our main proposed architecture for
learning a joint embedding space with singing characteris-
tics. The objective of this architecture is to learn a mapping
from audio representation to an embedding space where

good singings are closer to reference while poor singings
are further away in this space. We implement this idea via
a triplet network shown in Figure 4, which takes in (ref-
erence (as anchor), good singng (as positive), poor singing
(as negative)).

Figure 4. Metric learning architecture.

All three towers have the same architecture, but the
two towers of positive and negative singing clips enabled
weight-sharing while the reference tower doesn’t. This
is because the performance tracks and reference tracks
came from different audio domains, and thus benefits from
projecting to different embedding spaces. Afterwards, a
128-dimensional embedding for the performance is learnt
through the model, where we optimize toward Triplet Mar-
gin Loss with Cosine Similarity as distance.

The Triplet Margin Loss is computed by

L(a, p, n) = max{D(a, n)−D(a, p) + α, 0}

where a, p, n denotes anchor, positive, negative respec-
tively, and α is the margin. For the distance metric D we
utilize the inverse of Cosine Similarity, as a larger similar-
ity represents smaller distance:

D(x, y) = − x · y
‖x‖ · ‖y‖

Given the 128-dimension output of the model, the final
assessment output is the cosine similarity between the em-
bedding of the given performance and the embedding of its
reference track. Thus, the score assesses the proximity of
the performance towards reference. For the triplet architec-
ture, we utilized both original singing and accompaniment
as reference tracks, and the experiments are denoted by
Rori (reference with original) and Racc (reference with
accompaniment).
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3.2.4 Embedding Direct Score

With the belief that the joint latent space encodes the char-
acteristics of commonalities of good and poor singing, we
also trained a embedding direct score (EmbDirect) that
takes the assessment as a downstream task after a singing
embedding is learnt from Section 3.2.3.

Specifically, for a given clip, we take the Rori model
pre-trained in previous section and output the clip embed-
ding of 128 dimension. In this system, we train three
fully connected layers with ReLU activation to regress and
match the labelled score. In inference, the final score is ob-
tained from the audio clip through the embedding and final
output layers directly. Thus, this is also an unreferenced
system.

3.3 Data

The training data are collected from the solo singing clips
without accompaniment from WeSing 1 . The singers are
volunteers who were the common users of this application.

For reference tracks used in metric learning, we perform
experiments with both accompaniment tracks and origi-
nal singing tracks, which are the pure singing voice from
the published version of song. The accompaniments are
purchased by WeSing from music production studios, and
original singing tracks are source-separated by Spleeter
[26].

After making sure that the reference track and solo
singing track are exactly aligned, WebRTC vad [27] is used
to detect the voiced segments from the singing clip. Each
3s segment from the voiced segment, along with the ref-
erenced track clip on the same position, is extracted into
audio representation in Section 3.1. Our data preprocess-
ing pipeline is shown in Figure 5.

Figure 5. Preprocessing pipeline

Another question is on how we obtain the "good" and
"poor" singing for deep metric learning. For the clips used
in our training, a quality score within [0, 100] was labeled
by the company’s contractor employees. Note that these
quality scores are very rough as they come from multiple
people’s standards without a detailed listening, and there
is no guarantee for their coherency. We take all clips with
scores ≥ 80 as "good" and < 40 as "poor". In the mash-
up, we randomly align a "good" performance and a "bad"
performance of the same song to form a contrasting pair.

We believe the quality score is not exact in modeling the
excellence of singing, but gives a rough direction on what’s
good and what’s poor. Meanwhile, the weak labelling is

1 https://wesingapp.com/ is a Karaoke application.

actually advantageous to our exploration as they represent
a general perception and prevents our models to overfit to
any specific assessment standard.

In total, we obtained 15487 3s singing clips pairs, and
an equal number of positive and negative data are exactly
aligned. These clips are obtained from 1240 full length
recordings and from 102 songs. All clips were resampled
to 16K Hz. In terms of genre, the songs roughly consists
of 75% of Chinese pop with a variety of tempo and style
(published after 2000), 15% of folk songs, 5% of rock, and
5% of other genres. There are no jazz or classical singing
styles in the training set.

The testing set we designed will be introduced in Sec-
tion 4.

3.4 Experiments

We trained our models on 3 NVIDIA V100 GPUs on a
single machine. For the CNN models, the optimizer of
the triplet loss is ADAM [28] with a learning rate 10−6.
For EmbDirect system, we used learning rate 10−7 as
it only trains 3 linear layers. We used batch size of 128
and trained our models for a maximum of 200 epochs with
early stopping based on validation loss with patience of 5
epochs. We choose α = 1 for the margin in Triplet loss.

Table 1. Characteristics and style analysis of the songs in
testing set.

4. EVALUATION AND DISCUSSION

Our testing set consists of 5 songs with different styles, that
spans over genres like pop, electronic, country and folk, as
summarized in Table 1 2 . The dataset consists of a mix of
songs that spans over various registers, tempo, techniques
and even language; they also attracts different cultural and
age groups. For each of the 5 songs we subjectively choose
9 different performances with various quality, creating a
testing set of 45 recordings.

2 bpm of the songs are estimated using Madmom [29]
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Configuration Reference Used Song1 Song2 Song3 Song4 Song5 Mix

Baseline Direct None 0.785 0.223 0.472 0.528 0.253 0.417

Proposed Delta Original Track 0.718 0.383 0.684 0.288 0.276 0.430
Proposed Rori Original Track 0.912 0.860 0.521 0.839 0.480 0.652
Proposed Racc Accompaniment Track 0.635 0.708 0.853 0.663 -0.222 0.459
Proposed EmbDirect None 0.861 0.503 0.256 0.487 0.753 0.533

Histogram peakBW None 0.875 0.581 0.714 0.872 0.281 0.626
Histogram peakConc50 None 0.651 0.836 0.822 0.736 0.407 0.520
Histogram binning None 0.874 0.776 0.688 0.882 -0.206 0.521
DTWDist pitch MIDI 0.812 0.732 0.907 0.324 0.068 0.589
DTWDist volume Energy Sequence 0.723 0.524 0.761 0.468 0.432 0.467
DTWDist rhythm MIDI 0.361 0.542 0.606 0.042 0.043 0.279

Table 2. Pearson’s correlation between human scoring and algorithm scoring. Correlations among each individual song
and mixture of all songs are shown.

4.1 Subjective Ground Truths

For each of the 45 recordings, we asked 5 professionals
(graduates from music conservatoire with 10+ years of
performance training) to assign them scores based on the
quality of singing. Overall, the scores reached an average
inter-judge correlation of 0.78, and thus we consider them
as valid ground truth. For evaluation of the systems, we
computed the Pearson’s correlation coefficient between the
output scores from the algorithms and the human judge’s
mean score.

4.2 Objective

As mentioned in Section 2, there are plenty of rule-based
methods for singing assessment tasks. We implemented
our version of two existing methods: the pitch histogram
measures proposed in [5] and feature (pitch, dynamics,
rhythm) evaluation method proposed in [3, 30].

4.2.1 Histogram

The pitch histogram method is an unreferenced system that
computes a series of attributes for evaluating unaccompa-
nied singing. With bins of 100 cents within an octave, pitch
histogram represents the distribution of pitch values in a
performance. Good singings will usually have sharp peaks
on specific note values, while poor singings will have dis-
persed distribution as they sing out of tune. Thus, a series
of measurements relating to the spread of peaks in the his-
togram can be used for evaluation. We computed scores
like kurtosis, skewness, peakBW, peakConc50,
peakConc110, kMeans,binning as described in [5],
and listed the best 3 measurements in Table 2.

4.2.2 DTWDist

As specified in [3, 30], we also implemented traditional
Pitch-based Rating, Volume-based Rating,
Rhythm-based Rating. In general, these methods
computes the DTWDist (Dynamic Time Wraping Dis-
tance) between users’ performances with reference (MIDI
note sequence for pitch and rhythm, recording energy se-
quence for volume), and more similar sequences indicates

better singing. We also presents the performance of these
ratings in Table 2.

4.3 Results Discussion

Table 2 shows the comparative performances for all sys-
tems. We are able to make the following observations:

i Performances of deep learning systems. Among
all deep learning systems, our Rori system proved
to correlate the most with human perception of
singing ranking. The models (Direct, Delta)
that don’t incorporate reference tracks were outper-
formed, showing that learning a joint latent space
of singing quality indeed helps with our assessment
goal. Between the deep metric learning systems, we
noticed that Racc doesn’t perform as good as Rori,
since the accompaniment track as anchor does not
provide details on singing, but only helps with judg-
ing the rhythm and tonality.

ii Learnt embeddings are more robust to song vari-
ations. For each individual song, there is at least one
system that reaches 0.75 of correlation with human
perception, but on the mixture of 5 songs the max-
imum correlation we can obtain is 0.65. This con-
firms the concern mentioned in Section 1 , that it’s
difficult for ASA systems to evaluate different songs
on the same scale. The pitch histogram measures,
while performing great among the rating within each
songs, suffers when we cross compare performances
from different songs: The ’spikes’ within the his-
togram are influenced by the number of pitches used,
and some songs are naturally going to achieve a
higher score in their metrics. In comparison, deep
metric learning approaches are more robust. See also
Section 4.4 for more demonstrations.

iii Ability to evaluate on more nuanced techniques.
Song 5 is a Chinese folk style piece that demands
singing techniques such as vibrato. It’s difficult to
hand-craft perception motivated features for such
techniques, and neither of the traditional feature-
based method perform well on this piece. The
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Figure 6. PCA Projection of clip embeddings from the
testing set. 5 colors correspond to songs, and transparency
is scaled with the human evaluation score of performance,
where higher scores are darker. Best viewed in color.

deep learning based models Rori, EmbDirect,
however, both outperform traditional methods on
this song while retaining high performance on other
songs. This confirms the ability of deep neural net-
work to model performance-related features.

iv Does good implies similar? The best perform-
ing model for Song 5 is actually EmbDirect
system (Section 3.2.4), that assesses the singing
through features learnt from the good-poor metric
space without computing the similarity with original
singing directly. Thus, we speculate that there is this
conceptual gap between "Good" and "Similar": For
a given piece, there are multiple ways of perform-
ing it nicely, and they don’t necessarily need to be
similar to the original. The EmbDirect system
demonstrates that the learnt joint embeddding space
encodes singing characteristics and can be used to
tell good or poor singing apart - to learn by refer-
ence while not being constrained by it.

4.4 Embedding Space Visualization

In Figure 6, we take all the 3s clips from 45 singing
performances in the testing set, and project their 128-
dimensional embeddings by PCA. The embedding is
trained from our Rori configuration that obtained the best
cross-song result in Table 2, contrasting good-poor perfor-
mance with original singing. 5 songs are distinguished by
colors, while transparency represents the assessment from
ground truth human judgements, where poorer singing has
a higher transparency.

The embedding space visualization supports our obser-
vations in Section 4.3: In the vocal embeddings, song dif-
ferences are largely eliminated, while the clips from higher
scored performances tends to cluster in the middle and
lower scored performances are dispersed. This demon-
strates that, regardless of songs and references, the em-
beddings capture certain universal characteristics in distin-

Figure 7. Comparison between different input audio rep-
resentations.

guishing excellency of singing voice.

4.5 Ablation Study for Input Audio Representation

To demonstrate the effect of our multi-channel audio rep-
resentation described in Section 3.1, ablation experiments
were performed to show that the combination of audio rep-
resentation indeed achieved better assessment results. For
the Rori architecture, we performed experiments using 4
combinations: Spec, Spect+f0, Spec+f0+chroma, and
all 5 representations together.

Figure 7 shows the performance of different audio rep-
resentation input on 5 songs respectively. Overall, the in-
put that utilized all 5 channels achieved the best result.
Given that Convolutional Neural Network is still one of
the most popular architecture for 2D audio feature learn-
ing nowadays, this idea of presenting a multi-channel view
to deep networks may be applied to other interesting tasks.

5. CONCLUSION AND FUTURE WORK

This paper presents a novel approach of automatic singing
assessment task via metric learning. Through training a
triplet model that anchors at a reference track of the per-
formance, we were able to learn a joint embedding space
where characteristics of good and poor singing were ex-
tracted. Comparative experiments were performed on a de-
signed testing set that evaluates assessment systems across
variety of singing styles and techniques. Results demon-
strate that the proposed system outperforms baseline and
feature-based assessment systems in cross-song ratings
when correlates with human judgments.

Given the intrinsic subjective aspect of human percep-
tion of music performance, singing assessment as well
as broader music assessment has been little investigated
through deep learning approach. Our work demonstrates
that it’s possible to direct deep neural network in learning
performance related characteristics via comparing weakly
labeled data. Future explorations may expand on this
"learn by reference" idea with other paradigm such as con-
trastive learning [31], or apply to neighboring domains like
instrumental assessment. Also, we wish our experiments
with multi-channel audio representations would facilitate
more explorations in musically-motivated input design.
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ABSTRACT

Accompaniment arrangement is a difficult music genera-
tion task involving intertwined constraints of melody, har-
mony, texture, and music structure. Existing models are
not yet able to capture all these constraints effectively, es-
pecially for long-term music generation. To address this
problem, we propose AccoMontage, an accompaniment
arrangement system for whole pieces of music through
unifying phrase selection and neural style transfer. 1 We
focus on generating piano accompaniments for folk/pop
songs based on a lead sheet (i.e., melody with chord pro-
gression). Specifically, AccoMontage first retrieves phrase
montages from a database while recombining them struc-
turally using dynamic programming. Second, chords of
the retrieved phrases are manipulated to match the lead
sheet via style transfer. Lastly, the system offers controls
over the generation process. In contrast to pure learning-
based approaches, AccoMontage introduces a novel hybrid
pathway, in which rule-based optimization and deep learn-
ing are both leveraged to complement each other for high-
quality generation. Experiments show that our model gen-
erates well-structured accompaniment with delicate tex-
ture, significantly outperforming the baselines.

1. INTRODUCTION

Accompaniment arrangement refers to the task of recon-
ceptualizing a piece by composing the accompaniment part
given a lead sheet (a lead melody with a chord progres-
sion). When designing the texture and voicing of the ac-
companiment, arrangers are simultaneously dealing with
the constraints from the original melody, chord progres-
sion, and other structural information. This constrained
composition process is often modeled as a conditioned
generation problem in music automation.

Despite recent promising advances in deep music gen-
erative models [1–7], existing methods cannot yet gen-
erate musical accompaniment while capturing the afore-
mentioned constraints effectively. Specifically, most al-

1 Codes and demos at https://github.com/zhaojw1998/AccoMontage.

© J. Zhao, and G. Xia. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: J. Zhao,
and G. Xia, “AccoMontage: Accompaniment Arrangement via Phrase
Selection and Style Transfer”, in Proc. of the 22nd Int. Society for Music
Information Retrieval Conf., Online, 2021.

gorithms fall short in preserving the fine granularity and
structure of accompaniment in the long run. Also, it is dif-
ficult to explicitly control the generation process. We argue
that these limits are mainly due to the current generation
from scratch approach. In composition practice, however,
arrangers often resort to existing pieces as accompaniment
references. For example, a piano accompanist can impro-
vise through off-the-shelf textures while transferring them
into proper chords, which is essentially re-harmonizing a
reference piece to fit a query lead sheet. In this way, the co-
herence and structure of the accompaniment are preserved
from the reference pieces, and musicians also have control
over what reference to choose.

To this end, we contribute AccoMontage, a generalized
template-based approach to 1) given a lead sheet as the
query, search for proper accompaniment phrases as the ref-
erence; 2) re-harmonize the selected reference via style
transfer to accompany the query. We model the search
stage as an optimization problem on the graph, where
nodes represent candidate phrases in the dataset and edges
represent inter-phrase transitions. Node scores are defined
in a rule-based manner to reveal query-reference fitness,
while edge scores are learned by contrastive learning to
reveal smoothness of phrase transitions. As for the re-
harmonization stage, we adopt the chord-texture disentan-
glement and transfer method in [8, 9].

The current system focuses on arranging piano accom-
paniments for a full-length folk or pop song. Experi-
mental results show that the generated accompaniments
not only harmonize well with the melody but also con-
tain more intra-phrase coherence and inter-phrase structure
compared to the baselines. In brief, our contributions are:

• A generalized template-based approach: A novel
hybrid approach to generative models, where search-
ing and deep learning are both leveraged to comple-
ment each other and enhance the overall generation
quality. This strategy is also useful in other domains.

• The AccoMontage system: A system capable
of generating long-term and structured accompani-
ments for full-length songs. The arranged accompa-
niments have state-of-the-art quality and are signif-
icantly better than existing pure learning-based and
template-based baselines.

• Controllable music generation: Users can control
the generation process by pre-filtering of two texture
features: rhythm density and voice number.
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2. RELATED WORK

We review three topics related to symbolic accompaniment
arrangement: conditional music generation, template-
based arrangement, and music style transfer.

2.1 Conditional Music Generation

Conditional music generation takes various forms, such as
generating chords conditioned on the melody [10,11], gen-
erating melody on the underlying chords [6, 7], and gen-
erating melody from metadata and descriptions [12]. In
particular, accompaniment arrangement refers to generat-
ing accompaniment conditioned on the lead sheet, and this
topic has recently drawn much research attention. We even
see tailored datasets for piano arrangement tasks [13].

For accompaniment arrangement, existing models that
show satisfied arrangement quality typically apply only to
short clips. GAN and VAE-based models are used to main-
tain inter-track music dependency [14–16], but limit music
generation within 4 to 8 bars. Another popular approach
is to generate longer accompaniment in a seq2seq manner
with attention [5, 6, 8], but can easily converge to repeti-
tive textural patterns in the long run. On the other hand,
models that arrange for complete songs typically rely on a
library of fixed elementary textures and often fail to gener-
alize [17–19]. This paper aims to unite both high-quality
and long-term accompaniment generation in one system,
where “long-term” refers to full songs (32 bars and more)
with dependencies to intra-phrase melody and chord pro-
gression, and inter-phrase structure.

2.2 Template-based Accompaniment Arrangement

The use of existing compositions to generate music is not
an entirely new idea. Existing template-based algorithms
include learning-based unit selection [20, 21], rule-based
matching [17, 18], and genetic algorithms [19]. For ac-
companiment arrangement, a common problem lies in the
difficulty to find a perfectly matched reference especially
when the templates contain rich textures with non-chordal
tones. Some works choose to only use basic accompani-
ment patterns to avoid this issue [17–19]. In contrast, our
study addresses this problem by applying the style trans-
fer technique on a selected template to improve the fitness
between the accompaniment and the lead sheet. We name
our approach after generalized template matching.

2.3 Music Style transfer

Music style transfer [22] is becoming a popular ap-
proach for controllable music generation. Through music-
representation disentanglement and manipulation, users
can transfer various factors of a reference music piece, in-
cluding pitch contour, rhythm pattern, chord progression,
polyphonic texture, etc [1,8]. Our approach can be seen as
an extension of music style transfer in which the “reference
search” step is also automated.

3. METHODOLOGY

The AccoMontage system uses a generalized template-
based approach for piano accompaniment arrangement.
The input to the system is a lead sheet of a complete
folk/pop song with phrase labels, which we call a query.
The search space of the system is a MIDI dataset of piano-
arranged pop songs. In general, we can derive the chord
progression and phrase labels of each song in the dataset
by MIR algorithms. In our case, the chords are extracted
by [13] and the phrases are labeled manually [23]. We refer
to each phrase of associated accompaniment, melody, and
chords as a reference. For the rest of this section, we first
introduce the feature representation of the AccoMontage
system in Section 3.1, and then describe the main pipeline
algorithms in Section 3.2 and 3.3. Finally, we show how to
further control the arrangement process in Section 3.4.

3.1 Feature Representation

Given a lead sheet as the query, we represent it as a se-
quence of ternary tuples:

q = {
�
qmel
i , qchordi , qlabeli

�
}
n
i=1, (1)

where qmel
i , the melody feature of query phrase i, is a se-

quence of 130-D one-hot vectors with 128 MIDI pitches
plus a hold and a rest state [24]; qchordi , the chord feature
aligned with qmel

i , is a sequence of 12-D chromagram vec-
tors [1, 2]; qlabeli is a phrase label string denoting within-
song repetition and length in bar, such as A8, B8, etc. [23].
n is the number of phrases in lead sheet q.

We represent the accompaniment reference space as a
collection of tuples:

r = {
�
rmel
i , rchordi , racci

�
}
N
i=1, (2)

where rmel
i , and rchordi are the melody and the chord fea-

ture of the i-th reference phrase, represented in the same
format as in the query phrases; racci is the accompani-
ment feature, which is a 128-D piano-roll representation
the same as [8]. N is the volume of the reference space.

3.2 Phrase Selection

Assuming there are n phrases in the query lead sheet, we
aim to find a reference sequence:

x = [x1, x2, · · · , xn], (3)

where we match reference xi to the i-th phrase qi in our
query; xi 2 r and has the same length as qi.

Given the query’s phrase structure, the reference space
forms a graph of layered structures shown as Figure 1.
Each layer consists of equal-length reference phrases and
consecutive layers are fully connected to each other. Each
node in graph describes the fitness between xi and qi, and
each edge evaluates the transition from xi to xi+1. A com-
plete selection of reference phrases corresponds to a path
that traverses through all layers. To evaluate a path, We
design a fitness model and a transition model as follows.
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3.2.1 Phrase Fitness Model

We rely on the phrase fitness model to evaluate if a refer-
ence accompaniment phrase matches a query phrase. For-
mally, we define the fitness model f(xi, qi) as follows:

f(xi, qi) = ↵sim(xrhy
i , qrhyi )

+ �sim(T(xchord
i ),T(qchordi )),

(4)

where sim(·, ·) measures the similarity between two in-
puts. In our work, we use the cosine similarity. T(·) is
the Tonal Interval Vector (TIV) operator that maps a chro-
magram to a 12-D tonal interval space whose geometric
properties concur with harmonic relationships of the tonal
system [25]. xrhy

i and qrhyi are both rhythm features, which
condense the original 130-D melody feature to 3-D that
denotes an onset of any pitch, a hold state, and rest [1].
xchord
i and qchordi are chord features (chromagram) defined

in Section 3.1 and we further augment the reference space
by transposing phrases to all 12 keys. While computing
the similarity, we consider the rhythm feature and TIV as
2-D matrices each with channel number 3 and 12. We cal-
culate the cosine similarity of both features by feeding in
their channel-flattened vectors.

Note that in Eq (4), we compare only the rhythm and
chord features for query-reference matching. The underly-
ing assumption is that if lead sheet A is similar to another
lead sheet B in rhythm and chord progression, then B’s
accompaniment will be very likely to fit A as well.

3.2.2 Transition Model

We exploit the transition model to reveal the inter-phrase
transition and structural constraints. Formally, we define
the transition score between two reference accompaniment
phrases t(xi, xi+1) as follows:

t(xi, xi+1) = sim(W1x
txt
i ,W2x

txt
i+1)

+ form(xi, xi+1).
(5)

The first term in Eq (5) aims to reveal the transition
naturalness of the polyphonic texture between two adja-
cent phrases. Instead of using rule-based heuristics to pro-
cess texture information, we resort to neural representation
learning and contrastive learning. Formally, let xtxt

i denote
the feature vector that represents the accompaniment tex-
ture of xacc

i . It is computed by:

xtxt
i = Enctxt✓ (xacc

i ), (6)

where the design of Enctxt✓ (·) is adopted from the chord-
texture representation disentanglement model in [8]. This
texture encoder regards piano-roll inputs as images and
uses a CNN to compute a rough “sketch” of polyphonic
texture that is not sensitive to mild chord variations.

To reveal whether two adjacent textures (xtxt
i , xtxt

i+1)
follow a natural transition, we use a contrastive loss L to
simultaneously train the weight matrix W in Eq (5) and
fine-tune Enctxt✓ (·) (with parameter ✓) in Eq (6):

L(W, ✓) = 1�
exp(sim(W1xtxt

i ,W2xtxt
i+1))P

x2S exp(sim(W1xtxt
i ,W2xtxt

k ))
, (7)

𝑥𝑥1

…

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4… … …

Form TermSimilarity Score

𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4

Figure 1. Phrase selection on the graph. Based on the
lead sheet with an AABB phrase structure, the search space
forms a graph with four consecutive layers. Graph nodes
are assigned with similarity scores, and edges with transi-
tion scores. The form term is part of the transition score.

where xi and xi+1 are supposed to be consecutive pairs. S
is a collection of k samples which contains xi+1 and other
k � 1 randomly selected phrases from reference space r.
Following [20], we choose k = 5.

For the form term form(xi, xi+1), we introduce this
term to bias a more well-structured transition. Concretely,
if query phrases qi and qi+1 share the same phrase label,
we would prefer to also retrieve equal-labeled references,
i.e., accompaniments with recapitulated melody themes.
To maximize such likelihood, we define the form term:

form(xi, xi+1) = {qlabel
i =qlabel

i+1 } · {xmel
i ⇡xmel

i+1}, (8)

where we define xmel
i ⇡ xmel

i+1 if and only if their step-wise
cosine similarity is greater than 0.99.

3.2.3 Model Inference

The reference space forms a layered graph with consecu-
tive layers fully connected to each other. In Figure 1, we
leverage the transition model to assign weights of edges
and the fitness model to assign weights of nodes. Thus, the
phrase selection is formulated as:

x⇤ = argmax
x1,x2,··· ,xn

�
nX

i=1

f(xi, qi) + �
n�1X

i=1

t(xi, xi+1), (9)

where f(·) and t(·) are as defined in Eq (4) and Eq (5), and
� and � are hyper-parameters.

We optimize Eq (9) by dynamic programming to re-
trieve the Viterbi path x⇤ as the optimal solution [26]. The
time complexity is O(nN2), where n is the number of
query phrases and N is the volume of the reference space.

In summary, the phrase selection algorithm enforces
strong structural constraints (song-level form and phrase-
level fitness) as well as weak harmonic constraints (chord
term in Eq (4)) to the selection of accompaniment refer-
ence. We argue that this is a good compromise because
strong harmonic constraints can potentially “bury” well-
structured references due to unmatched chord when our
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dataset is limited. To maintain a better harmonic fitness,
we resort to music style transfer.

3.3 Style Transfer

The essence of style transfer is to transfer the chord se-
quence of a selected reference phrase while keeping its tex-
ture. To this end, we adopt the chord-texture disentangle-
ment VAE framework by [8]. The VAE consists of a chord
encoder Encchd and a texture encoder Enctxt. Encchd

takes in a two-bar chord progression under one-beat res-
olution and exploits a bi-directional GRU to approximate
a latent chord representation zchd. Enctxt is introduced in
Section 3.2.2 and it extracts a latent texture representation
ztxt. The decoder Dec takes the concatenation of zchd and
ztxt and decodes the music segment using the same archi-
tecture invented in [9]. Sustaining texture input and vary-
ing chords, the whole model works like a conditional VAE
which re-harmonizes texture based on the chord condition.

In our case, to re-harmonize the selecetd accompani-
ment xacc

i to query lead sheet qi, the style transfer works
in a pipeline as follows:

zchd = Encchd(qchordi ),

ztxt = Enctxt(xacc
i ),

x0
i = Dec(zchd, ztxt),

(10)

where x0
i is the re-harmonized result. The final accopmani-

ment arrangement result is x⇤0 = [x⇤0
1 , x

⇤0
2 , · · · , x

⇤0
n ].

3.4 Controllability

In the phrase selection stage, we essentially traverse a route
on the graph. Intuitively, we can control generation of the
whole route by assigning the first node. In our case, we
filter reference candidates for the first phrase based on tex-
tural properties. The current design has two filter criteria:
rhythm density and voice number. we define three inter-
vals low, medium, and high for both properties and mask
the references that do not fall in the expected interval.

• Rhythm Density (RD): the ratio of time steps with
note onsets to all time steps;

• Voice Number (VN): the average number of notes
that are simultaneously played.

4. EXPERIMENT

4.1 Dataset

We collect our reference space from POP909 dataset [13]
with the phrase segmentation created by [23]. POP909
contains piano arrangements of 909 popular songs created
by professional musicians, which is a great source of del-
icate piano textures. Each song has a separated melody,
chord, and accompaniment MIDI track. We only keep the
pieces with 2

4 and 4
4 meters and quantize them at 16th notes

(chords at 4th). This derives 857 songs segmented into
11032 phrases. As shown in Table 1, we have four-bar and

Table 1. Length Distribution of POP909 Phrase
bars <4 4 5~7 8 >8

Phrases 1338 3591 855 3796 1402

eight-bar phrases in majority, which makes sense for pop-
ular songs. We also use POP909 to fine-tune our transition
model, during which we randomly split the dataset (at song
level) into training (95%) and validation (5%) sets.

At inference time, the query lead sheets come from the
Nottingham Dataset [27], a collection of ~1000 British and
American folk tunes. We also adopt 2

4 and 4
4 pieces quan-

tized at 16th (chords at 4th). We label their phrase seg-
mentation by hand, where four-bar and eight-bar phrases
are also the most common ones.

4.2 Architecture Design

We develop our model based on the chord-texture disen-
tanglement model proposed by [8], which comprises a tex-
ture encoder, a chord encoder, and a decoder. The tex-
ture encoder consists of a convolutional layer with kernel
size 12 ⇥ 4 and stride 1 ⇥ 4 and a bi-directional GRU en-
coder [24]. The convolutional layer is followed by a ReLU
activation [28] and max-pooling with kernel size 4⇥ 1 and
stride 4⇥1. The chord encoder is a bi-directional GRU en-
coder. The decoder is consistent with PianoTree VAE [9],
a hierarchical architecture for polyphonic representation
learning. The architecture of Enctxt(·) in the proposed
transition model is the same as the texture encoder illus-
trated above. We directly take the chord-texture disentan-
glement model with pre-trained weights as our style trans-
fer model. We fine-tune the transition model with W1 and
W2 in Eq (7) as trainable parameters.

4.3 Training

Our model is trained with a mini-batch of 128 piano-
roll pairs for 50 epochs using Adam optimizer [29] with
a learning rate from 1e-4 exponentially decayed to 5e-
6. Note that each piano-roll pair contains 2 consecutive
piano-rolls and 4 randomly sampled ones. We first pre-
train a chord-texture disentanglement model and initialize
Enctxt(·) using weights of the texture encoder in the pre-
trained model. Then we update all the parameters of the
proposed transition model using contrastive loss L in Eq
(7). We set both ↵ and � in Eq (4) to 0.5. During infer-
ence, we set � and � in Eq (9) to 0.3 and 0.7.

4.4 Generated Examples

To this end, we show two long-term accompaniment ar-
rangement examples by the Accomontage system. The
first one is illustrated in Figure 2, in which we show a
whole piece (32-bar music) piano arrangement (the bot-
tom two staves) base on the lead sheet (the top stave). We
see that the generated accompaniment matches with the
melody and has a natural flow on its texture. Moreover,
it follows the A8A8B8B8 structure of the melody.
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Texture re-harmonized with D7 chord

Preservation of phrase structure

Syncopated pattern preserved when phrase transitions from A to B, while more variations introduced

Texture re-harmonized with G7 chord

Minor texture variation that manifests music flow

Texture re-harmonized with A7 chord

Counter melody introduced when phrase transitions from A to A

Figure 2. Accompaniment arrangement for Castles in the Air from Nottingham Dataset by AccoMontage. The 32-bar song
has an A8A8B8B8 phrase structure which is captured during accompaniment arrangement. Second melodies and texture
variations are also introduced to manifest music flow. Here we highlight some texture re-harmonization of 7th chords.
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Figure 3. Pre-Filtering Control on Rhythm Density and Voice Number

The second example shows that our controls on rhythm
density and voice number are quite successful. To better
illustrate, we switch to a piano-roll representation in Fig-
ure 3, where 9 arranged accompaniments for the same lead
sheet is shown in a 3 by 3 grid. The rhythm density control
increases from left to right, while the voice number control
increases from top to bottom. We can see that both controls
have a significant influence on the generated results.

4.5 Evaluation

4.5.1 Baseline Models

The AccoMontage system is a generalized template-based
model that leverages both rule-based optimization and
deep learning to complement each other. To evaluate, we
introduce a hard template-based and a pure learning-based
baseline to compare with our model. Specifically, the base-

line model architectures are as follows:
Hard Template-Based (HTB): The hard template-

based model also retrieves references from existing accom-
paniment, but directly applies them without any style trans-
fer. It uses the same phrase selection architecture as our
model while skipping the style transfer stage.

Pure Learning-Based (PLB): We adopt the accompa-
niment arrangement model in [8], a seq2seq framework
combining Transformer [30] and chord-texture disentan-
glement. We consider [8] the current state-of-the-art al-
gorithm for controllable accompaniment generation due to
its tailored design of harmony and texture representations,
sophisticated neural structure, and convincing demos. The
input to the model is a lead sheet and its first four-bar ac-
companiment. The model composes the rest by predicting
every four bars based on the current lead sheet and previ-
ous four-bar accompaniment.
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Figure 4. Subjective Evaluation Results.

4.5.2 Subjective Evaluation

We conduct a survey to evaluate the musical quality of
the arrangement performance of all models. In our sur-
vey, each subject listens to 1 to 3 songs randomly selected
from a pool of 14. All 14 songs are randomly selected from
the Nottingham Dataset, 12 of which have 32 bars and the
other two 24 and 16 bars. Each song has three accompa-
niment versions generated by our and the baseline models.
The subjects are required to rate all three accompaniment
versions of one song based on three metrics: coherence,
structure, and musicality. The rating is base on a 5-point
scale from 1 (very poor) to 5 (excellent).

• Coherence: If the accompaniment matches the lead
melody in harmony and texture;

• Structure:If the accompaniment flows dynamically
with the structure of the melody;

• Musicality: Overall musicality of accompaniment.

A total of 72 subjects (37 females and 35 males) par-
ticipated in our survey and we obtain 67 effective ratings
for each metric. As in Figure 4, the heights of bars repre-
sent the means of the ratings and the error bars represent
the MSEs computed via within-subject ANOVA [31]. We
report a significantly better performance of our model than
both baselines in coherence and structure (p < 0.05), and a
marginally better performance in musicality (p = 0.053).

4.5.3 Objective Evaluation

In the phrase selection stage, we leverage a self-supervised
contrastive loss (Eq (7)) to enforce a smooth textural tran-
sition among reference phrases. We expect a lower loss for
true adjacent phrase pairs than in other situations. Mean-
while, true consecutive pairs should hold a similar texture
pattern with smaller differences in general properties.

We investigate the contrastive loss (CL) and the dif-
ference of rhythm density (RD) and voice number (VN)
among three types of phrase pairs from the validation set.
Namely, Random, Same Song, and Adjacent. Between to-
tally randomly pairing and strict adjacency, Same Song
refers to randomly selecting two phrases (not necessarily
adjacent) from one song. Results are shown in Figure 5.
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Figure 5. Evaluation of Transition Model. The contrastive
loss (CL) and differences of RD and VN are calculated for
three types of phrase pairs. A consistent decreasing trend
illustrates reliable discernment of smooth transition.

Table 2. Ranking Accuracy and Mean Rank
Metric Phrase Acc. Song Acc. Rank@50

Value 0.2425 0.3769 5.8003

For contrastive loss and each property, we see a consis-
tent decreasing trend from Random to Same Song and to
Adjacent. Specifically, we see the upper quartile of Adja-
cent is remarkably lower than the lower quartile of Random
for CL, which indicates a reliable textural discernment that
ensures smooth phrase transitions. This is also proved by
the metric of ranking accuracy and mean rank [20], where
the selection rank of the true adjacent phrase out of k � 1
randomly selected phrases (Rank@k) is calculated. We
follow [20] and adopt Rank@50, and the results are shown
in Table 2. Phrase Acc. and Song Acc. each refers to the
accuracy that the top-ranked phrase is Adjacent or belongs
to the Same Song. The high rank of adjacent pairs illus-
trates our model’s reliability to explore smooth transitions.

5. CONCLUSION

In conclusion, we contribute a generalized template-based
algorithm for the accompaniment arrangement problem.
The main novelty lies in the methodology that seamlessly
combines deep generation and search-based generation. In
specific, searching is used to optimize the high-level struc-
ture, while neural style transfer is in charge of local co-
herency and melody-accompaniment fitness. Such a top-
down hybrid strategy is inspired by how human musicians
arrange accompaniments in practice. We aim to bring a
new perspective not only to music generation, but to long-
term sequence generation in general. Experiments show
that our AccoMontage system significantly outperforms
pure learning-based and template-based methods, being
capable of rendering well-structured and fine-grained ac-
companiment for full-length songs.
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Ahlbäck, Sven 151, 389
Akama, Taketo 27
Alfaro-Contreras, Marı́a 35
Alunno, Marco 818
Antony, Ria 358
Aravind, R 547
Audebert, Nicolas 197

Barthet, Mathieu 610
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