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ISMIR 2001

October 15, 2001

Welcome friends and colleagues to the 2nd Annual International Symposium on Music Information
Retrieval – ISMIR 2001.

Following on the heels of last year’s groundbreaking inaugural conference, we’re convening with
colleagues this year at the beautiful campus of Indiana University, Bloomington.  We hope the
information exchange fostered by this conference will facilitate innovation and enhance collabora-
tion in this dynamic area of research.

This year’s program is rich in content and variety. We are honored to have David Cope present this
year’s keynote address. The presentations by our four invited speakers, Roger Dannenberg, Jef
Raskin, Youngmoo Kim, and Adam Lindsay provide added depth and breadth to an already dynamic
and diverse program.

This document includes the texts of the accepted papers along with the extended abstracts of the
invited talks and poster presentations. All are also available on the ISMIR 2001Web site at: http://
ismir2001.indiana.edu/

As with last year, we were very encouraged by the number and quality of submissions.  Response to
our Call for Papers was remarkable. Selecting the twenty papers for presentation (out of 40 submis-
sions) and the eighteen posters for exhibition was no easy task. I’d like to personally thank all those
that gave of their time to help review submissions.

Unending appreciation and thanks must be extended to the Program Committee: David Bainbridge
(Program Chair), Gerry Bernbom, Donald Byrd, Tim Crawford, Jon Dunn, and Michael Fingerhut.

Additionally I’d like to thank Dr. Stephen Griffin of the National Science Foundation, for helping us
secure the foundational funding that made this symposium possible. Dr. Radha Nandkumar of the
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, must
also be thanked for providing financial support to help us augment our student stipend program.

Finally, several departments and individuals at our host institution, Indiana University Bloomington,
deserve thanks. A great deal of the planning that went into this conference was done by Diane Jung,
Charles Rondot, David Taylor, and Les Teach, of the Communications and Planning Office under the
Office of the Vice President for Information Technology and CIO, and by Tawana Green and the
staff of the IU Conference Bureau.  Their assistance is much appreciated. In addition, the Indiana
University School of Music generously supplied an extraordinary instrument, a fortepiano, for the
mini-recital at the Mathers Museum.

Sincerely,

J. Stephen Downie
Symposium Chair
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
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ABSTRACT 

We present a measure of the similarity of the long-term structure 
of musical pieces. The system deals with raw polyphonic data. 
Through unsupervised learning, we generate an abstract 
representation of music - the “texture score”. This “texture 
score” can be matched to other similar scores using a 
generalized edit distance, in order to assess structural similarity. 
We notably apply this algorithm to the retrieval of different 
interpretations of the same song within a music database. 
 
1. MOTIVATION 
Motivation for this system is our belief that a bird-eye-view of a 
song’s long-term structure is often a sufficient description for 
music retrieval purposes. In particular, our system doesn’t use 
any “transcription” information such as pitch or rhythm. Thus, it 
can deal with polyphonic music without the problem of 
instrument separation.  

A similar approach has already been illustrated by Foote in [1], 
where the author designs an algorithm to retrieve orchestral 
music based on the energy profiles. A drawback of his system is 
that it requires music with high dynamic variations. To address 
this problem, our approach is rather based on spectral variation: 
we uncover and match the succession over time of abstract 
“spectral textures”.   

 
2. REPRESENTATION 
A piece of polyphonic music can be viewed as the superposition 
of different instruments playing together, each with its own 
timbre. We call “texture“ the polyphonic timbre resulting of this 
superposition. For example, a piece of rock music could be the 
succession over time of the following textures: {drums}, then 
{drums + bass + guitar}, then {drums + bass}, then {drums + 
bass + guitar + voice}, etc…  

The front-end for our system is based on work done by the 
authors in [2]. The musical signal is first windowed into short 
30ms overlapping frames. For each of the frames, we compute 
the short-time spectrum. We then estimate its spectral envelope 
using Mel Cepstrum Coefficients [3]. A Hidden Markov Model 
(HMM) [4] is then used to classify the frames in an 
unsupervised way: it learns the different textures occurring in 
the song in terms of mixtures of Gaussian distributions over the 
space of spectral envelopes. The learning is done with the 
classic Baum-Welsh algorithm. Each state of the HMM accounts 
for one texture. Through Viterbi decoding, we finally label each 
frame with its corresponding texture. 

Our “texture score” representation is just the succession over 
time of the textures learned by the model (figure 1). It reveals 
much of the structure of the song: phrases succeed to phrases, 
common patterns are repeated every verse and chorus, 
instrument solos stand out clearly and echo the introduction and 
ending, etc. 

   
Figure 1: The texture score representation for a few seconds 

of music. 

One interesting property of this representation is that the 
spectral signification of the textures has been discarded by the 
HMM. The texture score of figure 1 could correspond to 
{drums} - {guitar + drums} - {guitar + drums + voice} -{guitar 
+ drums}, but could also well be {cello} - {cello + violin} - 
{cello + violin + voice} - {cello + violin}, etc. We only know 
about the succession of the textures, not about the textures 
themselves. We will use this property to match different 
interpretations of the same song (i.e. same long-term structure) 
which use different instrumentations (i.e. the spectral content of 
the textures is different). 
 
3. MATCHING 
In order to assess the structural similarity of pieces of music, 
we’ve designed an appropriate string-matching algorithm to 
compare texture scores. Each score is a simple string of digits 
out of a small alphabet: if we’ve identified 4 textures in the 
song, the score will be of the form …11221333441… out of the 
alphabet {1,2,3,4}.  

There are three issues that the string-matching algorithm needs 
to solve: 

- Noise: similar structures can differ quite a lot locally, so the 
matching can only be approximate. 

- Time Warping: two different performances with the same 
structure can have a different rhythm or expressivity 
(rubato…).  

- Permutations: the numeration of the textures by the front-
end is arbitrary. This means that a texture which is referred 
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to as “1” in one song, could be referred to as “3” in 
another. Therefore, the two strings “112133” and “331322” 
should be considered to be the same (as they differ only by 
the following permutation {(1,3), (2,1), (3,2)}). 

The first two issues are classically dealt with using dynamic 
programming to compute an edit distance (also called 
Levenshtein distance) [5]. It gives the minimal number of local 
transformations (insertion, deletion, substitution) needed to 
transform – or “edit”- one string into one other.  

However, the third issue has not received much coverage in the 
string matching literature. To avoid the brute force approach 
consisting of !n distance measures for all permutation of the 
alphabet, Baker in [6] suggests an interesting factorization 
method. Unfortunately, it is mainly designed for exact matching 
(without noise), and is also very dependent on the time scale.  

Our integrated solution to these three issues is a generalized edit 
distance, where we progressively adapt the cost of the each 
elementary substitution as the edit distance between two strings 
is computed. At the beginning of the process, we “charge” every 
substitution of one symbol into another, except the identity. By 
the end of the measure, the costs have changed to “learn” the 
best permutation between the two strings: we “charge” every 
substitution (including identity) except the ones corresponding 
to the permutation between the two strings. 
 
4. TWO APPLICATIONS 
4.1 Clustering covers of the same songs 
Figure 2 shows the texture scores for the beginning of two 
versions of the same song, with different instrumentations: the 
first one is a male singer and an accompaniment based on 
accordion; the second one has a female singer and violins. Since 
we have freed ourselves from these spectral differences by using 
the texture scores, we are able to notice that the two pieces show 
some similarity. We have applied our algorithm on a database 
containing different versions of different songs (notably 3 
versions of a French song from the 50’s by A. Bourvil, J. Greco 
and I. Aubret, 4 versions of a Bob Dylan tune, with acoustic or 
electric guitar, studio or live recording, etc.), and the results are 
encouraging: the edit distance between “covers” is generally 
small, and the distance between different songs is big, which 
allows us to cluster the different interpretations. 
 

 
Figure2: Comparison of the texture score representations of 

two different interpretations of the same song. 

4.2 Clustering songs of the same genre. 
We have also applied our algorithm to cluster a database 
containing acoustic blues (3 Robert Johnson tunes, 2 Son House 
and 2 Tommy Johnson), folk (4 songs by Nick Drake) and 
country pieces (4 songs by Woody Guthrie). As most of the 
blues tunes show a common phrase structure (AAB), we are able 
to gather and separate them from the other pieces. Once again, a 
bottom-up spectral approach can’t easily succeed in this task, 
since all the pieces contain mostly the same instrumentation 
(voice + guitar). 
 
5. CONCLUSION 
The texture score is a good representation to study the long-term 
structure of polyphonic musical signals. In the context of string 
matching, it provides an efficient retrieval tool to cluster songs 
with the same structure. Two applications are covers of the same 
tune, and pieces of the same “structural” genre. 

This tool is especially useful since it disregards the spectrum 
content of the signals. Obtaining the same assessment of 
structural similarity from the extraction of “transcription” 
features such as pitch, instrumentation and rhythm would 
actually require very sophisticated high-level knowledge. 

The generation of the texture score involves a machine-learning 
algorithm, which is quite intensive for a database application 
(processing a piece of music takes about real time), but once 
extracted, the score can be stored as metadata, and the retrieval 
can be performed in reasonable times (it is just an edit distance). 

Further work includes generating “cleaner” texture scores (for 
issues on the front-end, see [2]), and optimizing the computation 
of our generalized edit distance. The scheme still has to be 
tested on a large corpus of tunes and genres to measure a 
meaningful precision rate, but we believe that these results 
already show the relevance of this alternative approach to Music 
Retrieval.  
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ABSTRACT 
We present some methods for improving the performance a 
system capable of automatically identifying audio titles by 
listening to broadcast radio. We outline how the techniques, 
placed in an identification system, allow us detect and isolate 
songs embedded in hours of unlabelled audio yielding over a 
91% rate of recognition of the songs and no false alarms. The 
whole system is also able of working real-time in an off-the-shelf 
computer. 

1. INTRODUCTION 
A monitoring system able to automatically generate play lists of 
registered songs can be a valuable tool for copyright enforcement 
organizations and for companies reporting statistics on the music 
broadcasted. The difficulty inherent in the task is mainly due to 
the difference of quality of the original titles in the CD and the 
quality of the broadcasted ones. The song is transmitted partially, 
the speaker talks on top of different fragments, the piece is 
maybe playing faster and several manipulation effects are applied 
to increase the listener’s psycho-acoustic impact (compressors, 
enhancers, equalization, bass-booster, etc…). An additional 
difficulty is that there are no markers in broadcasted radio 
informing when the songs start and end. 
 
 In this scenario, the article focus on the pattern matching 
techniques that, given a sequence of audio descriptors, are able 
to locate a song in a stream avoiding false alarms. Shortly the 
whole system works as follows, off-l ine and out of a collection of 
music representative of the type of songs to be identified, an 
alphabet of sounds that describe the music is derived. These 
audio units are modeled with Hidden Markov Models (HMM). 
The unlabelled audio and the set of songs are decomposed in 
these audio units. We end up then with a sequence of letters for 
the unlabelled audio and a database of sequences representing 
the original songs. By approximate string matching the song 
sequences that best resembles the audio the most similar song is 
obtained. We point out the importance of assessing statistical 
relevance on the best matching song found in order to avoid false 
positives. We end up explaining how these techniques can be 
applied to continuous stream of audio and commenting the 
results. 
 

2. AUDIO PERCEPTUAL UNITS 
From an acoustic point of view, music can be described as a 
sequence of acoustic events. To be able to identify titles it is 
relevant to extract information about the temporal structure of 
these sequences. The first step converts the acoustic signal into a 
sequence of abstract acoustic events. Speech events are described 
in terms of phones. In music modeling this is not so 
straightforward. Using, for instance notes would have 
disadvantages: Often notes are played simultaneously (accords, 
polyphonic music) and music samples contain additional voices 
or other sounds. The approach therefore followed is learning 
relevant acoustic events, that is, finding the set of “ fundamental 
sounds”  in which we can decompose audio and representing 
them with a letter. The alphabet of audio perceptual units is 
derived through unsupervised clustering using cooperative HMM 
from a database of several thousand titles [1]. 
 

3. SEQUENCE ALIGNMENT 
Having derived HMM models for the audio perceptual units, we 
can decompose the songs into a symbolic representation. Instead 
of comparing raw audio, for identifying titles, we compare the 
sequence of letters of unknown audio against the sequences 
corresponding to all the songs to identify. The search for a 
sequence in a database similar to the query sequence is 
performed by approximate string pattern matching [2]. A 
measure of the difference between two sequences is the edit 
distance, defined as the minimum number of character insertions, 
deletions and substitutions needed to make them equal. An 
arbitrary weight can be associated with every edit operation, as 
well as with a match. 

The dynamic programming algorithm is guarantied to find the 
best alignment between a pair of sequences given a particular 
choice of scoring matrix and gap penalties [3]. There are several 
variants of the dynamic programming algorithm that yield 
different kinds of alignments. The Neddleman and Wunsch is a 
global alignment, that is to say, it aligns the entire length of both 
sequences. For our particular case this is not suitable since it is 
typical that a song in the radio is broadcasted partially. The 
variant known as the Smith-Waterman algorithm yields a local 
alignment. It aligns the pair of regions within the sequencesIn 
our application, since the query audio sequence must be 
compared to several thousand titles, we run a heuristic 
approximation to the Smith-Waterman algorithm that allows us 
perform the matching much faster named FASTA[4].  

3.1 The choice of substitution scores 
The weighted scores for substitutions of the edit distance are 
calculated to account for bias in the replacement of symbols 
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between the original and the broadcasted song sequences. A set 
of original CD and corresponding radio songs are selected and 
manually edited by cutting pieces so that the pieces of audio are 
synchronized. Then a similarity ratio, Rij is computed for the 
symbols in the sequences 

ji

ij
ij pp

q
R =  

where qij is the relative frequency with which the symbols i and j 
are observed to replace each other in the manually aligned 
sequences. pi and pj are the frequencies at which the symbols i 
and j occur in the set of songs in which the substitutions are 
observed. Their product, pi pj, is the frequency at which they 
would be expected replace each other if the replacements were 
random. If the observed replacement rate is equal to the 
theoretical replacement rate, then the ratio is one ( Rij = qij / pipj 
= 1.0 ). If the replacements are favored with the manipulative 
effects above described the ratio will be greater than one and if 
there is selection against the replacement the ratio will be less 
than one. The similarity reported in the similarity score matrices 
Sij is the logarithm to this ratio. 

 

4. STATISTICAL SIGNIFICANCE 
Considering the possible uses of the system, a great concern in 
the similarity searching above described is a false-positive error. 
We would not like to include in a play list for a copyright 
enforcement association a song that has not been played. Any two 
sequences composed of letters from the same alphabet can be 
aligned to show some measure of similarity. Typically alignment 
scores of unrelated sequences are small, so that the occurrence of 
unusually large scores can be attributed to a match. However, 
even unrelated sequences can occasionally give large scores in 
the local alignment regime. Although these events are rare, they 
become important when one attempts a search of a big and 
expanding sequence database. How often will an event at least as 
extreme as the one just observed happen if these events are the 
result of a well defined, specific, random process? It is 
imperative to understand the statistics of the high-scoring events, 
in order to estimate the statistical significance of a high-scoring 
alignment. 
 
In the case of gapless alignment, it is known rigorously [6] that 
the distribution of alignment scores of random sequences is the 
Gumbel or extreme value distribution (EVD), which has a much 
broader tail than that of the Gaussian distribution. For the case of 
gapped alignment, there is no theory available to predict the 
distribution of alignment scores for random sequences. It has 
been conjecture that the score distribution is still of the Gumbel 
form. Also our tests on sequence of descriptors extracted from 
audio seem to show a good fit to the Extreme Value Distribution. 
The EVD is of the form: 

SKmneE λ−=  
where E is the expected number of hits with score >=S, m is the 
size of the query sequence, n is the size of the database. λ and K 
the are Gumbel constants and must be estimated from a large 
scale comparison of random sequences. The FASTA or various 
implementation of the SW algorithm, produce optimal alignment 
scores for the comparison of the query sequence to sequences in 
the database. Most of these scores involve unrelated sequences, 
and therefore can be used to estimate λ and K. 

5. ON-LINE SYSTEM 
We have then a method for comparing fragments of audio against 
a database of songs for a best match and statistical method for 
assessing its goodness. Both the symbolic extraction and the 
matching against the database run fast on a normal machine. The 
approach for, having a continuous stream of broadcasted audio, 
identify songs consists in sending hypothesis to match against the 
database every few seconds. That is, the superstring resulting 
from the conversion of the raw audio to symbols is windowed 
with overlap. So every 10 seconds, a sequence corresponding to 
two and a half minutes of sound is compared to the database. As 
a result of each comparison a set of candidates is shown along 
with its expectation (E-value). A candidate with sufficiently low 
E-value suggests that the query is related to that candidate 
sequence and therefore can be added to the play list. Along with 
the candidate sequence, an alignment with the query is provided. 
With the timing associated to the query sequence an estimation 
of the beginning and ending time of the song broadcasted can be 
obtained and printed in the play list. 

 

6. RESULTS 
The system has been tested with 24 hours of radio recorded from 
10 different stations against a database of around 2500 songs of 
commercial music. The radio data contains among music, j ingles 
commercials... 147 songs registered in the system (its original 
version is in the database). The system yields a result of 133 
(little over a 91%) songs recognized and no false positive. By 
lowering the threshold of acceptance of a candidate raises the 
results to 135 correctly identified but false positives appear as 
well. When working on-line, the delay between the moment a 
song starts sounding and it is added correctly to the play list is 
about one minute as average. The system runs in more than real-
time in a Pentium III 500Mhz. 
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ABSTRACT
Music information retrieval (MIR) as a nascent discipline is
blessed  with a multi-disciplinary group of people endeavoring to
bring their respective knowledge-bases and research paradigms to
bear on MIR problems.  Communication difficulties across
disciplinary boundaries, however, threaten to impede the
maturation of MIR into a full-fledge discipline. The principal
causes of the communications breakdown among members of the
MIR community are a) the lack of bibliographic control of the
MIR literature; and, b) the use of discipline-specific languages
and methodologies throughout that literature. This poster abstract
reports upon the background, framework, goals and ongoing
development of the MIR Annotated Bibliography Website Project.
This project is being undertaken to specifically address and
overcome these bibliographic control and communications issues.

1. INTRODUCTION
The problems associated with the creation, deployment, and
evaluation of robust, large-scale, and content-based (i.e., music
queries framed musically) music information retrieval (MIR)
systems are far from trivial.  Music information is inherently
multi-faceted, multi-representational (i.e., can be represented in
many different ways), multi-modal (i.e., experienced in many
different ways), and multi-cultural.  The complex interaction of
Pitch, Temporal, Harmonic, Timbral, Editorial, Textual,
Bibliographic, Representational, Experiential, and Cultural facets
makes music information difficult to store, and then retrieve, in
any robust, large-scale, and comprehensive manner.  Simply put,
this dizzyingly complex interaction is the “MIR problem”.

Because MIR is such a complex and multi-dimensional research
problem, many diverse groups of scholars, researchers, and
interested parties have begun to explore MIR issues within the
frameworks of their particular disciplines.  These groups include
music and digital librarians, computer scientists, audio engineers,
music publishers and retailers, musicologists, information
retrieval specialists, intellectual property lawyers, music
hobbyists, music psychologists, educators, Internet content
providers, broadcasters, and business managers.  Students,
representing all the aforementioned disciplines, at levels ranging
from undergraduate to post-doctorate, are also seeing MIR issues
as fruitful and interesting areas of study.

2. THE PROBLEM
A recurring theme brought to the fore by participants at the
International Symposium on Music Information Retrieval (23-25
October, 2000) was the ignorance many participants felt about
MIR work being done in disciplines other than their own.  This
ignorance had two manifestations.  First, participants of discipline
W bemoaned the fact that they did not know that members of
discipline X had been working on a given problem Y and
publishing their findings on Y in the X literature for years.  For
example, computer scientists, and others, were not aware of the
extensive musicology literature dealing with music representation
codes.  Second, participants of discipline X were distressed by
their inability to fully comprehend, and thus evaluate fairly, the
contributions being made by members of discipline W  because
the contributions of W were so deeply rooted its discipline-
specific language and methods.  For example, the music
librarians, and others, struggled with the audio engineering
presentations because they did not have the educational
background needed to evaluate the application of Fast Fourier
Transforms and other highly mathematical techniques to a
particular MIR problem.

The MIR corpus is scattered willy-nilly across the scholastic
landscape with important papers found in the musicology,
computer science, information retrieval, information science, and
engineering literatures, to name but a few sources.  Because of
this scattering, it is nowhere uniformly represented in any one of
the traditional indexing sources.  For example, the musicology-
based MIR work is found in various music, arts, and humanities,
indexes but not necessarily in the computer science and
engineering indexes. Similarly, important engineering-based
papers are missing from the arts and humanities indexes, and so
on.  Since researchers are generally unaware of the differences in
scope of the various discipline-based indexes, they tend to focus
upon those with which they are most familiar and thus overlook
the contributions of those based in other disciplines.
Unfamiliarity with the wide-range of vocabularies used by the
various disciplines further compounds the communication
difficulties by making it problematic for MIR investigators to
conduct thorough and comprehensive searches for MIR materials.
Until these issues are addressed, MIR will never be in a position
to fully realize the benefits that a multi-disciplinary research and
development community offers, nor will it be able to develop into
a discipline in its own right.

3. PROPOSED SOLUTION
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The creation of a Web-based, two-level, collection of annotated
bibliographies will overcome many of the communications
problems currently plaguing the MIR community (Fig. 1).  The
first level, or core bibliography, will bring together those items
identified as being germane to MIR as a nascent discipline.  Thus,
the core bibliography will comprise only those papers dealing
specifically with some aspect of the MIR problem, such as MIR
system development, experimentation, and evaluation, etc.  The
second level, or periphery bibliographies, will comprise a set of
discipline-specific bibliographies.  Each discipline-specific
bibliography in the set will provide access to the discipline-
specific background materials necessary for non-expert members
of the other disciplines to comprehend and evaluate the papers
from each participating discipline.  For example, an audio
engineering bibliography could be used by music librarians and
others to understand the basics of signal processing (i.e., Fast
Fourier Transforms, etc.).  Another example would be a
musicology bibliography that computer scientists could draw
upon in an effort to understand the strengths and weaknesses of
the various music encoding schemes, and so on.  Thus, taken
together, the two-levels of the MIR bibliography will provide:

a) the much needed bibliographic control to the MIR
literature; and,

b) an important a mechanism for members of each
discipline to comprehend the contributions of the other
disciplines.

C o re 
B ibliography 

of  MIR   
Papers 

    

Figure 1. Project Schematic

4. PHASE I COMPONENTS
An important operating principle of the project is the use of non-
proprietary formats and software. We are committed to the ideals
of the Open Source Initiative [6] and the GNU General Public
License [2] and thus intend to make our innovations freely
available to others. In keeping with this commitment, we have
chosen the Greenstone Digital Library Software (GSDL) package
[5], the Apache HTTP server [1], the PERL scripting language
[7], and the Linux operating system [4] to create the basic
technological foundation of the project. We have purchased
copies of the commercial bibliographic software package, ProCite
[3] for initial, in-house, data-entry. ProCite also provides us with
a representative instance of commercially available software that
many end-users might utilize in manipulating the records they
retrieve from our bibliography.

We have acquired the domain name music-ir.org under which
access to the bibliography will be located (http://www.music-
ir.org). At present, there are two central components of project
undergoing development and alpha testing:

a) the bibliographic search and retrieval interface
using the GSDL package; and,

b) the Web-based end-user data entry system.

For both of these, the goal is to create a system that will permit
ongoing viability of the bibliography by minimizing—but not
necessarily eliminating—the amount of human editorial
intervention required. Item A issues being addressed include
modifications to the basic GSDL system to permit the importation
of specially structured bibliographic records and their subsequent
access through a variety of field selection options. Item B is a
CGI-based input system that guides end-users through the process
of constructing well-structured bibliographic records through a
series of step-by-step interactions and the on-the-fly generation of
input forms specifically designed to provide the appropriate fields
for the various types of bibliographic source materials (i.e.,
journal articles, conference papers, theses, etc.).

4.1 Next Steps
Now that the general framework for the core bibliography has
been laid, we are moving forward on the acquisition of the
supplementary and explanatory materials. For these we will be
drawing upon the expert advice of those that have graciously
signed on as advisors to the project.  These advisors will not only
lend their disciplinary expertise but will also afford us a very
important multinational perspective on the potential uses and
growth of the bibliography.
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ABSTRACT
The word �browser� has come to acquire an additional meaning to
�one who browses�. �Browser� is frequently used to describe a
piece of software that enables a human, the browser, to engage
interactively in visualising and exploring representation of objects
in a computer. Users of record or bookshops and readers of
newspapers engage in browsing.  This activity differs radically
from the traditional IR strategy of using a query to select subsets
or extract properties from data sets. Browsing is an alternate IR
strategy that can be effective for exploration, especially in the
cases of unfamiliar domains, or in cases where a well-defined
query is not desirable or possible. The provision of rich
information spaces allows people to develop an understanding of
the space, or the objects within that space, and of the relations
between the objects. Two existing browsing prototypes are
presented that illustrate how some browsing techniques may be
applied to music. They are of particular interest in that they
explore the potential for incorporating combined auditory and
visual information spaces.

1. INTRODUCTION
With computers, we can extend the abilities of our minds,

just as mechanical devices, motors and electricity have enabled us
to extend our mechanical and motor abilities. When showing a
musicologist a sonic browser prototype, he expressed great
surprise, �I�ve never seen a collection this way before� (see
Figure 1). This is a very important comment as he had been
working for a couple of years re-cataloguing the collection, from
index cards to database, via desktop publishing tools to its final
form � a paper based product, ready to print. Still, in paper or data
base format, one cannot get a visual spatial overview of, for
example, �here are the jigs and there are the reels�.
Marchionini and Shneiderman [5] describe browsing as:

•  an exploratory, information seeking strategy that
depends upon serendipity.

•  especially appropriate for ill-defined problems and
for exploring new task domains.

This can be the case when musicologists are searching for
melodies in a collection. Melodies collected through fieldwork
can often be different to older original versions. They can still be
the same melodies but with the addition of an individual
performers style. This sometimes makes it difficult to use
computer-based search algorithms or formal queries.

2. BROWSING MUSIC
To create a sonic browser that provides an efficient way for

musicologists to find tunes in collections through browsing, we
need to:

•  Provide users with an overview of the data set.

•  Facilitate recognition of information of interest.

•  Give details on demand about objects in the data set.

•  Provide visual and auditory representations of the
data set.

•  Provide an interaction style that makes users feel
engaged and in control.

3. USE SCENARIOS
To develop an understanding of how musicologists use

collections of tunes and the difficulties they experience we
interviewed and observed musicologists at work. Most
musicologists stated that when they read a score, they use their
�inner ear� to listen to an internal representation of what the
melody would sound like. Others, who don�t have such a strong
ability for internal representation, would often hum or whistle the
melody they are reading. Our use scenario also corresponds quite
well to user needs described by Alain Bonardi [6], where he lists
some key features for a musicologist�s workstation.

4. THE SONIC BROWSER
Music is best perceived by listening and the sonic browser is

focused on the affordances of direct and interactive sonification,
i.e. making sound files that are in the user�s focus of attention
play, with the shortest possible interaction sequence. With the
Sonic Browser [2], the user only has to move the cursor around in
the screen and soundscape to see and hear the contents or
representation of the data set. The application utilises our ability
to switch our attention between sounds in the auditory scene,
making use of the cocktail party effect [1]. With multiple auditory
streams it is interesting to note that people have a different ability
to differentiate between the number of concurrent sound sources.
A metaphor for a user controllable function that makes it visible
to the user is the application of an aura [3]. An aura, in this
context, is a function that defines the user�s range of perception in
a domain. The aura is the receiver of information in the domain.
See Figure 1.
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Figure 1: Sonic Browser, with aura around cursor
Using the sonic browser, properties of the melodies can be

mapped to arbitrary features of the visual display. File size can be
mapped to size of visual symbols, genre to colour, symbol shape
time signature, horizontal location to time of collection and
vertical location to key signature. Users can at any time change
these arbitrary mappings, to suit their needs.

5. C.P.N. BROWSE
A second system is under development. It represents corpora

as a weighted graph, where vertices represent tunes, and each
weighted edge a significant relationship between the tunes. 
Building the graph is a process separate from browsing.  Building
is O(n2) in time, and can in practice take many hours to compute. 
The resulting relations are stored for later use by the browser. 
The system enables one to browse between melodies, where at
each stage the closest melodies to the current one are represented
sonically and visually (See Figure 2).  The cursor enables the user
to move between melodies using a semi-acoustic perspective [7].

Figure 2: C.P.N. Browse

6. EVALUATION
In user testing with 10 musicologists from the Irish World

Music Centre at the University of Limerick, we found that:
•  Users performed browsing tasks substantially faster (c. 27%)

when multiple-stream audio was used, compared to single-
stream audio.

•  Users remembered where (in the screen/soundscape) they
heard a melody before.

The interaction sequence was made easier and more engaging in
the sonic browser than with typical standard tools, as unnecessary

mouse clicks were avoided. When the cursor and aura was over
symbols representing melodies, all melodies within the aura were
be heard. Users could rapidly switch the aura on or off with a
single keystroke, to make it easier to pinpoint a particular melody
in high-density clusters.

7. CONCLUSION
Using interactive visualisation and sonification techniques

can allow us to make new discoveries. Our ability to see and hear
new patterns and relations emerge can be supported by many of
the visualisation techniques described in this paper. An ideal MIR
system needs to support both algorithmic approaches as well as
interactive possibilities that extend our human abilities [5]. While
different forms of representation, algorithms, heuristics, neural
networks, etc., can assist us in automating categorisation, feature
extraction, comparison, differentiation, etc., the fact still remains
that music is best perceived and understood through listening.
Sonic browsing techniques can also be used for example when
investigating copyright issues, searching for new repertoire, or,
for pure enjoyment.
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1. Introduction
This paper presents a music information retrieval system based on
parallel and distributed computing. The system, called MIRACLE
(Music Information Retrieval Acoustically with Clustered and
paralleL Engine), can take a user’s acoustic input (about 8
seconds) and perform similarity comparison on a group of
clustered PCs. The system is a paradigm of client-server
distributed computing since the pitch tracking is performed at the
client computer while the time-consuming process of similarity
comparison is performed at the server. Moreover, the similarity
comparison is handled by a master server which partitions the
comparison task into subtasks and dispatches these subtasks to a
collection of slave servers. Currently there are more then 10,000
songs in MARACLE and the average retrieval time for “match
beginning” is less than 1 seconds. The top-10 recognition rate for
"match beginning" is 72%, and for "match anywhere", 56%.
Extensive tests and performance evaluation demonstrates that
MIRACLE is a feasible system that suits common people’s needs
of music information retrieval.

2. Related Work of MIR Systems
As the needs for music information retrieval rises, there are many
MIR systems reported in the literature, including QBH (Query by
Humming) by Ghias et al. [1], MELDEX (Melody Indexing) by
Bainbrideg et al. [6], SoundCompass by Kosugi et al. [5], Super
MBox by Jang et al. [2], Themefinder by Kornstadt et al.[3],
MELODISCOV by Rolland et al.[7], etc. However, most of the
above systems do not allow acoustic input from users directly;
therefore the usability of those systems is significantly limited.
Even within those MIR systems based on acoustic input, only
MELDEX and Super MBox (a precursor of MIRACLE) have web
deployment, which allows general public access. Particularly, as
far as we know, MIRACLE is the first MIR system that is based
on cluster computing.

The authors have also published their work on a content-based
MIR system called Super Mbox [2]. The focus of the publications
is on the use of dynamic programming techniques for elastic
match in the comparison engine. A significant advantage of using

DTW is that users are not required to singing "ta" to facilitate note
segmentation, as required by MELDEX and SoundCompss. Being
a precursor of MIRACLE, Super MBox only allows the use of
DTW on a single processor. MIRACLE, on the other hand, adopts
a two-step hierarchical filtering method (HFM) that filters out
90% candidates using an efficient linear-scaling comparison, and
then employs DTW to compare the survived 10% candidates.

3. Distributed and Parallel Computing
MIRACLE is composed of a client and a server component. The
client component takes users’ acoustic input and transforms it into
a pitch vector. The resulted pitch vector is then send to the server
for similarity comparison. At the server side, the request is first
handled by a master server which partitions the whole song list
into partial lists, and then dispatches these partial lists to 18 client
PC servers (ranging from Pentium 166 MHz to 1 GHz). Once a
slave server receives its candidate list from the master server, it
starts similarity comparison and return top-20 most likely
candidate songs to the master server. The master server then
combines and reorders the top-20 lists from all slave servers to
generate the overall top-20 ranking list.

The initial length of the comparison song list for slave server p ,

denoted by pl , is proportional to the clock rate of the slave server,

namely,
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4. Performance and Discussions
To test the recognition rate of MIRACLE, we have a large
collection of 1550 vocal clips from 20 persons. 1054 of the vocal
clips are from the beginning of songs, while the other 496 are
from the middle. Some of the recordings are obtained via regular
handsets or mobile phones to test the robustness of the pitch
tracking algorithm. For the case of "match beginning", we sent the
1054 files to MIRACLE that employs two-step HFM as the
comparison procedure. The average response time is about 2.29
seconds. The top-3 recognition rate is 65.75%; top-10 is 70.68%.
If we choose DTW instead of two-step HFM, the top-3
recognition rate is 65.56% and top-10 72.58%. It is obvious that
DTW and two-step HFM have comparable recognition rates.
However, DTW's average search time is about 5 seconds, which is
much longer than that of two-step HFM. For "match anywhere",
we sent the 496 vocal clips to the master server and the average
response time is about 5 seconds. The top-3 recognition rate is
43.29%; top-10 is 49.42%.

To test the adaptive strategy for load balancing, we measured
various response time for 100 consecutive requests of “match
anywhere” sent to the master server. The plot of various response
time with respective to request indices can be shown in the
following figure:

Obviously our adaptive strategy can effectively balance the loads
such that the response time of each slave server approaches the
same. Since the slave servers are not dedicated to MIRACLE only,
we can see some sudden increases in the slowest response time.

The following plot shows the curves of various response time
(after 100 requests, and taking the average of the last 10 requests)
with respect to number of slave servers:

From the above plot, we can observe that the average response
time levels off when the number of slave servers is 10 or more.
We can conclude that for a MIR system with 10,000 songs, 10
clustered PCs are qualified for the requests of “match anywhere”.

To test drive MIRACLE, please follow the link of “Online demo
of Super Mbox” at the author’s homepage at:

http://www.cs.nthu.edu.tw/~jang
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ABSTRACT
An e�ective music information retrieval (MIR) system should
provide fast queries to music databases taking into account
musical features relevant to the task, such as transposition
invariance, polyphony of music and the fact that there might
be some `extra intervening musical elements' (such as grace
notes) within the database occurrence of the query pattern.
The importance of eÆciency is due to the need to �nd mu-
sical documents in possibly enormous databases. In this pa-
per, we introduce an approach using three di�erent match-
ing layers each of which is possible to �nd transposition in-
variant occurrences of given musical query patterns in poly-
phonic music databases. The advantage of the layers is in
sorting them in an order of decreasing eÆciency as regards
to the speed, but in an increasing order of carefulness put in
the searching process. Thus, a repeatedly occurring musical
pattern used as a query pattern should be found very eÆ-
ciently, while searching for a query pattern corresponding
to a rare database occurrence with arbitrarily many extra
intervening elements is allowed to take more time.
Key words: music retrieval, multi-layer approach, poly-
phonic databases.

1. INTRODUCTION
The rapid growth of Internet-based services, multimedia
technology, and development of new standards, such as
MPEG-7, have made content-based retrieval and analysis
of multimedia information an increasingly important �eld
of research. Traditionally, the research has focused on the
indexing and retrieval of texts and images. Nevertheless,
music is at least as important a part of our culture and,
consequently, as important a constituent of the multimedia
domain, which can be seen in the current e�ort being put
into developing theories and practical methods for its re-
trieval for use in, for example, Internet search and digital
libraries. Content-based retrieval of music requires speci�c
techniques that have not been employed for other media.

In this paper, we suggest a multi-layer approach for mu-
sic information retrieval (MIR) in large-scale databases.
Our approach contains three di�erent matching layers, each
of which is capable of �nding transposition invariant oc-
currences of a given query pattern within a polyphonic
database. The matching layers are executed in order of
decreasing eÆciency. The same ordering, however, puts
the layers in order of increasing number of possibilities in-
spected. Having executed one layer, the algorithm of that
layer outputs the occurrences it has found (if any), after
which it is down to the user whether the next matching
layer is to be executed.

A speci�c property of two of the layers (the �rst and the
third) is that in a constituent of a musical pattern there
may appear any �nite number of other events between any
two events included in the query pattern. Thus, an occur-
rence could be found even if the database version had, for
example, some kind of musical decoration (such as di�erent
ornamentations or grace notes) that is absent in the query
pattern. Next we brie
y describe the three layers one by
one.

2. DESCRIPTION OF THE LAYERS
The First Layer
The �rst matching layer is based on indexing. A particularly
time-eÆcient indexing technique, based on suÆx structures,
for the matching can be performed in linear time with re-
spect to the length of the query pattern. There are several
ways to implement a suÆx structure. An attractive choice is
the so-called suÆx tree because its space complexity is linear
in the size of the database. Moreover, it can be constructed
in linear time [7]. However, a suÆx tree storing all the MIDI
�les available on the Internet would require an impossible
amount of main memory [4]. Because of this problem, some
MIR researchers have started to consider the possibility of
�nding musically meaningful patterns in the musical docu-
ments residing in the database. One of the �rst ideas was
to extract only the melodies, or only the melodies of the
choruses of the musical documents, these being the parts of
musical documents most frequently used in content based
queries [1].

Another current idea for indexing music [3] is to use a multi-
ple viewpoint system [2]. The idea is to put in the structure
such subsequences from any of the considered viewpoints



whose frequency, in practice, exceeds signi�cantly the ex-
pected frequency. Both of the methods above, as well as all
the others previously suggested for MIR indexing, have been
alike in that they have been based on sequences of musical
events, and the sequences to be considered have been �xed
beforehand.

Our current pattern induction algorithm, SIATEC (Struc-
ture Induction Algorithm with Translational Equivalence
Classes) [6], can be used to �nd the frequently occurring
musical patterns. SIATEC works in two phases. The �rst
phase, SIA, computes every maximal repeated pattern in
the given music database. The second phase takes the out-
put of SIA as input and then computes all the occurrences
of each of the maximal repeated patterns computed by SIA.
The patterns to be inserted in the indexing structure are
selected out of these occurrences of maximal repeated pat-
terns, and can be seen as the Longest Common Transposi-
tion Invariant Subsequences (or LCTS) [4] of subsequences
appearing in the database. Thus, we are able to �nd in this
most eÆcient �rst phase patterns that are musically mean-
ingful (since they are those that recur in the database) even
if they are decorated unexpectedly. We cannot a�ord, how-
ever, to index all such recurring patterns of a large-scale
database, because of the huge amount of main memory re-
quired for the indexing structure. Therefore, the following
matching layers would be needed in many situations.

The Second Layer
If the pattern being sought cannot be found in the index, the
second layer of our approach can be invoked. This layer ap-
plies the fast bit parallel MonoPoly �ltering algorithm [5].
With most patterns (any pattern whose length is shorter
than the size of one computer word), the main phase scans
through the database in linear time (with respect to the
length of the database). The main phase reports possible
locations for occurrences, which are to be checked with an-
other, somewhat slower algorithm.

The advantage of this layer is that it does not need an ex-
cessively large main memory to be able to search the occur-
rences of the pattern anywhere in the database. Further-
more, even though it is not as eÆcient as the previous layer,
it is still very fast compared to the conventional dynamic
programming algorithm computing edit distance, frequently
applied to MIR (see e.g. [4] for a summary of some current
methods). The found occurrences, however, for this layer
are always sequential. Therefore we have one further layer.

The Third Layer
The �nal third layer applies the SIA(M)ESE matching al-
gorithm based on the SIA algorithm [6]. This layer is the
slowest of the three, but it allows a broader de�nition of
what counts as a possible match than the two previous lay-
ers. More precisely, it does the same kind of LCTS matching
as the �rst layer, but because it does not need the indexing
structure, it is not restricted to matching against frequently
occurring patterns only. Moreover, SIA(M)ESE is capable
of multi-resolution searching, i.e., the matching can be done
on any desired level of detail (cf. e.g., Schenkerian analyses).
This is obtained by de�nition without any extra cost on the
performance; the resolution of the search is de�ned by the
details of the user-given query pattern.

3. CONCLUDING REMARKS
In this paper, we have introduced a three-layer approach to
MIR, which is capable of �nding transposition invariant oc-
currences of a given query pattern within large-scale poly-
phonic music databases. The occurrences of the pattern
can be found even if the database version has, for exam-
ple, di�erent musical decorations than the query pattern.
The contribution of our approach is in having three distinct
searching algorithms each of which are eÆcient and e�ec-
tive already in themselves, but that work particularly well
together when sorted in an order of decreasing performance
and in an increasing order of thoroghness and detail in the
searching process. In this way, a repeatedly occurring pat-
tern can be found very eÆciently, whereas �nding another
query pattern corresponding to a rare database occurrence
with possibly many intervening elements takes more time,
but is still possible.

Denoting the number of musical events in the query pat-
tern and music database by m and n, respectively, and the
number of chords in the database and the maximum size
of a chord by n and q, the running times of the di�er-
ent phases of our multi-layer algorithm are as follows. Be-
fore any query execution, a preprocessing phase is required;
the indexing structure for the �rst layer is constructed in
O(n2 log n) time, and the structures required for the second
layer are built in O(nq) time. The three matching layers are
executable in O(m), O(n) (O(nq(q + m)) for the checking
phase), and O(mn log(mn)) times, respectively, the second
requiring the restriction that the length of the query pattern
is no more than the size of the computer word in bits.
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ABSTRACT  
This paper presents a new toolkit for the creation of customized 
structured document recognition applications by expert users. This 
open-source system, called Gamera, allows a user, with particular 
knowledge of the documents to be recognized, to combine image 
processing and recognition tools in an easy to use, interactive, 
graphical scripting environment. Additionally, the system can be 
extended through a C++ module system.  

1. INTRODUCTION 
This paper1 presents a new toolkit for the creation of domain-
specific structured document recognition applications by expert 
users. This system, called Gamera, allows a knowledgeable user 
to combine image processing and recognition tools in an easy to 
use, interactive, graphical scripting environment. The applications 
created by the user are suitable for use in a large-scale digitization 
project; they can be run in a batch processing mode and easily 
integrated into a digitization framework. Additionally, a module 
(plug-in) system allows experienced programmers to extend the 
system. This paper will give an overview of Gamera, describe the 
user environment, and briefly discuss the plug-in system. 

2. MOTIVATION AND GOALS  
Gamera is being created as part of the Lester S. Levy Sheet Music 
Project (Phase Two) (Choudhury et al. 2001). The Levy collection 
represents one of the largest collections of sheet music available 
online. The goal of the Levy Project is to create an efficient 
workflow management system to reduce the cost and complexity 
of converting large, existing collections to digital form. From the 
beginning of the project, optical music recognition (OMR) 
software was a key component of the workflow system. The 
creation of a flexible OMR tool is necessary because of the 
historical nature of the Levy collection; existing OMR systems are 
not designed to handle the wide range of music notation found in 
the collection or deal with the potentially degraded documents. 
OMR alone is not sufficient for the complete recognition of the 
scores in the Levy collection as they are not comprised only of 
musical symbols. Text is also present as lyrics, score markings, 
and metadata. It was hoped, however, that an existing optical 
character recognition (OCR) system would be able to process 
                                                                 
1 Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the full 
citation on the first page. 

such text. Early trials of existing systems revealed there are many 
problems with the current generation of OCR software within this 
context.  

To address the need for OCR in the Levy project the Gamera 
system was created. Gamera is an extension of the existing OMR 
system to a general symbol recognition system. By creating a 
general symbol recognition system it is possible to use the same 
technology that allows the OMR system to perform well on the 
musical portions of the Levy collection to recognize the text. In 
addition to serving the needs of the Levy project, we hope that the 
system may be used in the future for the recognition of historical 
documents and any other structured documents that current 
recognition systems do not adequately address.  

In addition to generalizing the system, a graphical programming 
environment has been added to ease the adaptation of the system 
by users with expert knowledge of the documents to be 
recognized. This environment provides an easy-to-learn scripting 
language coupled with a graphical user interface. The goal is to 
allow the user to experiment easily with algorithms and 
recognition strategies during the creation of custom scripts for the 
recognition process. This will allow users to leverage their 
knowledge of the documents to customize the recognition process. 
It is hoped that users without extensive computer experience can 
effectively use this environment with a small amount of training. 
The scripting environment does contain, however, a complete, 
modern programming language that will allow advanced users 
considerable flexibility and power.  

3. ARCHITECTURE OVERVIEW  
Gamera is primarily a toolkit for the creation of applications by 
knowledgeable users. It is composed of modules (plug-ins), 
written in a combination of C++ and Python, that are combined in 
a very high-level scripting environment to form an application. 
The overall design is inspired by systems like MathWorks Matlab, 
CVIP tools (Umbaugh 1998), or spreadsheet macros. In Gamera, 
modules perform one of five document recognition tasks:  

1. Pre-processing  
2. Document segmentation and analysis  
3. Symbol segmentation and classification  
4. Syntactical or semantic analysis  
5. Output  

Each of these tasks can be arbitrarily complex, involve multiple 
strategies or modules, or be removed entirely depending on the 
specific recognition problem. Additionally, keeping with the 
toolbox philosophy of Gamera, the user of the system has access 
to a range of tools that fall within the general category of these 



tasks. The actual steps that make up the recognition process are 
completely controlled by the user.  

In addition to flexibility Gamera also has several other goals that 
are important to the Levy project and to large-scale digitization 
projects in general. These are:  

1. A batch processing mode to allow many documents to 
be recognized without user intervention.  

2. Open-source so that the software can be customized to 
interact well with the other parts of the digitization 
framework. 

3. The system designed to run on a variety of operating 
systems including Unix, Microsoft Windows, and Apple 
MacOS. 

4. Recognition confidence output so that collection 
managers can easily target documents that need 
correction or different recognition strategies.  
 

The first three goals have been achieved while the last goal is 
currently being developed.  

4. USER ENVIRONMENT  
The goal of the user environment is to leverage the knowledge 
and skills of the user about the documents being recognized. This 
is accomplished by creating a dynamic scripting environment and 
graphical user interface where users can experiment with various 
Gamera modules.  

4.1 Scr ipting Environment  
Gamera includes a complete scripting environment that a user can 
use to create custom recognition systems quickly and easily. The 
scripting environment tries to be easy to use, flexible, and 
extensible.  

4.1.1 Ease of Use  

Perhaps the most important aspect of the Gamera scripting 
environment is ease of use by users with limited computer 
programming experience. As previously stated, the targeted user 
is a person with expert knowledge of the documents to be 
recognized that may or may not have computer programming 
experience. In order to meet this goal Python was chosen as the 
foundation and extensions were written that are as easy to use as 
possible.  

In order to transform Python from a general purpose scripting 
language to scripting environment tailored to the needs of Gamera 
users, a set of extensions was written in a combination of Python 
and C++.  

4.1.2 Flexibility  

Flexibility is the second most important goal for the scripting 
environment. Again, this aspect of the scripting environment is 
facilitated by the choice of Python. Because Python is a general-
purpose programming language, a large portion of the system can 
be implemented directly in standard Python. In general, only those 
algorithms that need direct access to image pixels are written in 
C++. This allows users to customize existing modules written in 

Python, combine the low-level building blocks into new modules, 
or write modules from scratch.  

4.1.3 Extensibility  

Despite the flexibility of the scripting environment, not all 
algorithms can be suitably implemented in Python. For this 
reason, a C++ module system for use by experienced 
programmers has been developed. Some of the features of this 
system are:  

1. Automatic binding of C++ code to Python.  
2. Runtime addition of C++ modules as methods to Python 

classes. 
3. Abstraction of the data storage format of image data 

using C++ templates to allow convenient access to 
compressed images. 

4. Flexible programming interface allows the easy 
conversion of existing C and C++ code that uses a 
variety access methods to image data.  

4.2 Graphical Inter face  
In addition to the scripting environment Gamera includes a 
graphical user interface that allows the interactive display and 
manipulation of images using the scripting environment. This can 
be as simple as displaying the results of a pre-processing 
algorithm or as complex as complete interface for training. Again, 
like the scripting environment, the graphical interface is created 
with standard tools entirely in Python allowing users to extend 
and modify the system.  

5. CONCLUSION  
A graphical programming environment for the creation of 
document recognition applications was described. This system, 
called Gamera, is designed to be used by people with expert 
knowledge of the documents to be processed. These users are not 
required to have extensive computer experience; the system can 
be effectively used with a small amount of training. Users with 
considerable programming experience can also create custom 
modules in Python or C++ to extend the system. The applications 
created by this system are suitable for large-scale digitization 
projects because they can be run in batch mode and integrated into 
the digitization framework.  
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ABSTRACT
In this paper we explore a technique for content-based music
retrieval using a continuous pitch contour derived from a
recording of the audio query instead of a quantization of the query
into discrete notes. Our system determines the pitch for each unit
of time in the query and then uses a time-warping algorithm to
match this string of pitches against songs in a database of MIDI
files. This technique, while much slower at matching, is usually
far more accurate than techniques based on discrete notes. It
would be an ideal technique to use to provide the final ranking of
candidate results produced by a faster but lest robust matching
algorithm.

1. INTRODUCTION
Today, a musician who wishes to locate a particular song by

melody can use a number of different search programs that allow
one to input a few notes from the song (in any key), or even just
the melodic contour [1-6]. Realistically, most people are not
musically literate and are not capable of transcribing a melody
they are hearing in their heads into normal music notation. Even
identifying whether the next note in a sequence goes up, down, or
stays the same, is beyond the capabilities of many potential users.
That is the motivation behind creating an interface where the user
only needs to hum the melody he or she would like to search for.

It is not sufficient to rely on a melody transcription algorithm
to convert a digital recording of the hummed query into a
sequence of notes to search for in a song. Common problems
include regions where the pitch tracker cannot lock onto any
frequency, octave errors, and segmentation errors (two
consecutive notes mistranscribed as a long note or vice versa).

Instead we propose searching for a melody based on the best
estimate of the continuous pitch contour derived directly from the
audio recording. Speech recognition researchers have discovered
time and time again that in the many steps necessary to go from a
recording of speaking to the textual transcription, making hard
decisions at any step can be disastrous. Guided by this experience,
we try to eliminate the transcription steps that quantize pitches
and segment them into discrete notes, as this process is certain to
introduce errors.

This work is guided by the model of query-by-humming
systems. In such a system, the user hums, sings, or whistles (we

will refer to any of these simply as “humming”), and the system
finds matching entries in a music database. An entry matches if it
contains a close match to the hummed query. Since songs are
generally considered to be equivalent when performed at a speed
or in a different key, the system should be invariant with respect
to transposition and tempo.

2. METHODOLOGY
Our idea for searching based on the pitch contour is very

straightforward. First use a pitch transcription system to compute
the continuous pitch contour of the hummed query. (We
distinguish between pitch transcription systems, which simply
attempt to determine the pitch being hummed at each point in
time, and full melody transcription systems, which attempt to
extract a discrete series of notes, each with its own pitch, onset
time, and duration.) Overlay the pitch contour on top of every
possible place in the song, for every possible pitch offset, and for
a range of reasonable time scaling factors. For each position,
offset, and time scale, approximate the integral of the difference
between the instantaneous pitch at each point in time and the pitch
of the song at that point, giving a simple distance measure
between the two. The song that contains the minimum distance
measure is the one that best matches the query. Because hummed
queries are not likely to have a perfectly consistent tempo, we use
a dynamic time warping algorithm to allow for small rhythmic
differences.

This method is very computationally intensive, and even with
heavy optimization it is not likely to be fast enough to be a
complete melody-matching solution. However, note that pitch and
rhythm are taken into account without relying on pitch
quantization, beat induction, or note segmentation. We believe
this contributes to the improved accuracy of this method.

Here are the details of our implementation. We segment the
query and candidate melody into frames of 100 ms. (100 ms was
chosen as a compromise between efficiency and accuracy.) Then
we run the pitch transcription algorithm on each frame of the
audio recording of the humming. The pitch transcription
algorithm that we use is based on theenhanced autocorrelation
algorithm described by Tolonen and Karjalainen [7]. We
investigated many other pitch transcription programs, including
spectral-based approaches, other autocorrelation methods, and
commercial products, but found that choosing the peak of the
enhanced autocorrelation signal worked as well if not better than
anything else when the goal was simply to come up with one
target pitch for each frame. We represented pitches as MIDI note
numbers, allowing fractions, so for example 60.13 stands for a
pitch 13 cents above middle C. Other details, such as pitch ranges
for different singers and silence thresholds, can be obtained

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



directly from our source code, which is freely available on the
Internet [8].

The songs in our database are all MIDI files, so they also
require some preprocessing before we perform our melody-
matching algorithm. To compute a string of 100 ms pitch frames
from a MIDI file, we consider each MIDI channel separately, and
find the note that is most contained in each time frame. If multiple
notes are found, we choose the one with the highest pitch. Also,
because note releases seem to be much less important perceptual
cues than note onsets, and because note releases are performed
inconsistently, we extend all notes to the beginning of the next
note, thereby eliminating rests in the melody. This mirrors the
technique of defining a note’s duration as the inter-onset time
used in almost all note-based melody matching algorithms.
Because the tempo of the query may not have exactly matched the
tempo stored in the MIDI file, we repeat this process with
different time scaling factors from 0.5 to 2.0, allowing for an
opportunity to match a hummed melody from half the speed up to
twice the speed.

At this point we have a string ofn pitches for the query, so
for every possible sequence of about2n frames from every
channel of our MIDI file, we match the query against the database
clip using a dynamic programming-based time-warping algorithm,
exactly the same as would be found in a limited-vocabulary
speech recognition system. To limit the amount of rhythmic
variation between the query and the song from the database, we
use abeam widthof n/10, ensuring that only paths that do not
stray too far from the straight diagonal are allowed. Finally, we
run this time warping algorithm 24 times, once for each possible
quartertone offset.

3. EXPERIMENTAL RESULTS
In order to compare our approach against other techniques

for melody retrieval, we collected a database of MIDI files in
different genres and recordings of various people humming
melodies from these MIDI files. We used the algorithm discussed
in the previous section to compare the query to each song in our
database and arrive at a distance between the query and each song.
We then ranked the songs according to distance, smallest first,
and looked at the rank of the intended song.

Our preliminary results were based on two small databases of
MIDI files, one containing 77 big band swing songs, and one
containing 18 Beatles songs. (For more recent results, see our
website.) Our results were quite promising. Out of Beatles song
queries, 9/11 times the correct song had a rank of one, and all 11
times the correct song appeared in the top three. Out of queries of
big band songs, 13/20 times the correct song had a rank of one,
and 16/20 times the correct song was in the top three. We also
implemented a number of more traditional matching algorithms
based on strings of discrete notes, and none of these performed as
well, mostly because they returned a large number of false
positives. The best note-based algorithm we implemented (which
incorporated both pitch and rhythmic information) only got the
correct song first 5/11 times for Beatles songs, and only got it in
the top three 8/11 times. For big band songs, the note-based
algorithm got the correct match first 5/20 times, and got it in the
top three 6/20 times. This does not mean that it would not be
possible for a better note-based algorithm to do much better, and
in fact we are making our queries and our database available to
any researchers who would like to try, but we feel that no

approach of this form is likely to outperform our frame-based
method unless there is a major breakthrough in melody
transcription software.

4. CONCLUSIONS AND FUTURE WORK
Our frame-based approach shows a lot of promise. It works

better than any note-based approach we were able to implement,
and more importantly, there are compelling reasons why one
would expect this approach to be more accurate.

In spite of these advantages, our approach is not perfect. One
potential problem is that singers may change pitch in the middle
of a query, and our approach does not currently deal with this as
well as an interval-based algorithm. Perhaps the biggest criticism
of our work is that it is clearly a brute-force approach and it is
very slow. Rather than move from dynamic programming toward
sub-linear retrieval algorithms suitable for large databases, we are
advocating strings that are much longer than the number of notes.
Our searches run orders of magnitude slower than typical note-
based searches, and as a result, this algorithm could not be used
by itself to drive a content-based music retrieval system.

Still, our approach could also be used behind the scenes to
improve faster algorithms: when our frame-based algorithm fails,
it is often because the query itself was not particularly good. Thus
a researcher could use our more robust algorithm to distinguish
between cases where the query was simply no good and cases
where a prototype algorithm failed for a different reason.

In the future we would like to improve the speed by using
two or more levels of refinement. We would begin with a fast but
imprecise algorithm to narrow the search to a small subset of the
database, then use successively more precise but more expensive
algorithms to arrive at the final result. In addition, we would like
to experiment with searching audio data instead of MIDI.

The authors would like to thank Kjell Lemstrom for
answering questions about SEMEX and providing some valuable
insight. This material is based upon work supported by NSF
Award #0085945, an IBM Faculty Partnership Award, and an
NSF Graduate Research Fellowship.
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ABSTRACT
Online Digital Music Libraries are becoming increasing com-
mon and more sophisticated; however, availability of infor-
mation on how users access and navigate these resources
is limited. This type of information is crucial for improv-
ing user interface design and for providing users with better
supported services.

Here we present an analysis of the logs for our digital music
library, Meldex, for a 1 year period to discover patterns of
usage.

1. INTRODUCTION
Our Melody Index [1] is part of the New Zealand Digital
Library project (nzdl.org). Users can access songs in two
ways: they can see the results of a query, or they can browse
the song titles alphabetically. Queries can either be melodic
or textual. Melodic queries are submitted by either upload-
ing (posting) a short recording of sung or played notes, or
by providing a Uniform Resource Locator (URL) to such
a recording. Our demonstration page provides some sam-
ple recordings. Textual queries are matched against song
metadata, such as title or author, and lyrics.

Songs are returned in a variety of different audio formats,
such as WAV, MIDI, and Audio Interchange File Format
(AIFF). Some collections can also have results returned as
an image of the original sheet music. For example, our “Fake
Book” collection is built from the results of running optical
music recognition over sheet music. Copyright considera-
tions restrict which collections return full-length audio files
and images.

Our oldest collection is known as the “Folksong” collection.
Based on the Essen and Digital Tradition databases, it con-
sists of 9,354 folk songs which are divided into geographical
regions (Chinese, German, Irish and North American). The
“Fakebook” collection (mentioned above) consists of 1,235

songs. The “Midi” collection is built from 9,763 MIDI files
sourced from the Web, and supports textual and melodic
querying. The “MidiMax” collection indexes 17,799 MIDI
songs and is more sophisticated, also allowing the indexing
and retrieval of motifs. It has been available since Octo-
ber 2000, while the other collections have been online since
November 1999.

2. A SELECTION OF STATISTICS
In reviewing prior work for usage analysis, the Variations
music library [2] at Indiana University is notable for provid-
ing daily statistics online. Given the context of the Varia-
tions project, these focus on aggregate performance-oriented
statistics such as number of songs retrieved, and maximum,
minimum and average retrieval times.

Here we present an analysis of the usage logs of our digital
library service for the 12 month period 1 April, 2000 to 31
March, 2001. Most of the results given here that are not for
the whole library are for the Folksong collection, as this data
set reflects patterns observed across the other collections.

Figure 1 shows the number of daily hits received (the line
represents a rolling 7-day average). There is not a noticeable
trend here, although there is a drop-off over the Christmas
and New Year holidays. There are also several brief periods
of server outages.

Figure 1: Daily accesses for the folksong collection

Table 1 shows the distribution of visitors to the folksong
collection. This is based on all the web pages generated by



Table 1: Top 10 visitor domains for ‘folksong’
Domain Accesses %age of total
.net 3,827 29.67
.com 2,128 16.50
Europe 2,102 16.30
unknown 2,090 16.20
.edu 1,001 7.76
Sth. Pacific 661 5.12
Asia 435 3.37
Nth. America 235 1.82
Australia 188 1.46
Sth. America 73 0.57
Totals: 12740 98.77

Table 2: Results pages generated — All collections
Page type Number
Own audio file with text query 104
Own audio file only 588
Demo audio file with text query 105
Demo audio file only 89
Text query only 1539
Browse titles 1070
Total: 3495

the music library and includes help and query pages, for ex-
ample, in addition to requests for songs from the collection.

Around 2000 of the hits for the folksong collection are from
one site, which appears to have been crawling part of our
library website. This accounts for slightly over half of the
visits from the .net top-level domain, and also accounts for
the two spikes observed in Figure 1. That particular internet
address has been filtered from the remaining statistics given
here. In addition, the addresses used by Meldex’s princi-
pal researchers over this period have been filtered out of all
statistics in this report.

Assuming that any accesses from the same IP address with
less than five minutes of separation are part of the same
“visit”, the average amount of time spent per visit over all
Meldex collections was slightly over 2 minutes, and consisted
of an average of 3.4 page views. Visits came from just over
1,900 different internet addresses.

Table 2 shows how users get to song listings. Just under
70% of song listings are generated as a result of a query, ei-
ther audio or textual (or possibly both), with the remainder
generated as alphabetical listings of titles.

Table 3: Users’ preferred Audio file format
Audio Format %age
MIDI 48.5 (834)
WAV 23.8 (410)
Real Audio 17.2 (295)
AIFF 04.0 (69)
Soundblaster VOC 02.6 (45)
Sun u-law 02.3 (39)
Sun AU 01.6 (28)
Total 100 (1720)

Three of the available file formats account for nearly 90% of
users’ preference settings, with the MIDI format accounting
for nearly half. These settings are listed in Table 3.

Table 4: Folksong Hit Parade - Top 10
Accesses Name

80 “Auld Lang Syne” [from demo page]
72 “Aéire cinn bó rúin”
62 “The Ash Grove” [from demo page]
52 “Abdul Abulbul Ameer”
49 “Ai erwa”
36 “Three Blind Mice” [from demo page]
30 “A New England Ballad”
25 “Abilene”
25 “A-Beggin’ I Will Go”
22 “Adam and Eve”

Table 4 gives the titles of the 10 most frequently requested
songs for the folksong collection. Of the 9,354 songs indexed
in this collection, 2,395 (25.6%) have been accessed at least
once, and about 1,700 have been accessed exactly once, sug-
gesting that these downloads are the results of users’ indi-
vidual queries.

3. SUMMARY
Around thirty percent of song lists generated are alphabet-
ical title listings, and most accesses from these lists are for
songs that start with the letter ‘A’. We conjecture this is
because new users to the library have a strong desire to
discover what sort of music is contained in the collection,
and accessing songs by titles is the easiest route currently
available in the interface.

A result that took us initially by surprise is that forty-four
percent of all listings are the result of a text query alone.
While it is possible that a wide range of Web users are con-
ditioned to typing queries into a text box, it should not be
overlooked that the overhead of entering a music query in
our current interface might be too high for many users. Also,
analysis of our own group members has shown that for large
MIDI collections, a browsing habit that had formed was to
enter a text query on some vague topic (for example, “fire”)
and see which tunes popped up.

Our Meldex service is available at www.nzdl.org/musiclib.
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ABSTRACT 
We present a hybrid method in which we classify music 
from a raw audio signal according to their spectral features, 
while maintaining the ability to assess similarities between 
any two pieces in the set of analyzed works.  First we 
segment the audio file into discrete windows and create a 
vector of triplets respectively describing the spectral 
centroid, the short-time energy function, and the short-time 
average zero-crossing rates of each window. In the training 
phase these vectors are averaged and charted in three-
dimensional space using k-means clustering. In the test 
phase each vector of the analyzed piece is considered in 
terms of its proximity to the graphed vectors in the training 
set using k-Nearest Neighbor method. For the second phase 
we apply Foote's (1999) similarity matrix to retrieve the 
similar content of the music structures between two 
members in the database. 
 

1. ANALYSIS METHODS 
1.1  Spectral Centroid 
The spectral centroid is commonly associated with the 
measure of the brightness of a sound. The individual 
centroid of a spectral frame is defined as (here, F [k] is the 
amplitude corresponding to bin k in DFT spectrum..) 

                     
Figure 1 presents the weighted average spectral centroids of 
the two analyzed sound examples. The lower (magenta) 
band is an excerpt of the Kremlin Symphony's recording of 
Mozart's Symphony 25 (K. 183) and the upper (cyan) band 
is a rock style arrangement of the same musical segment. 
The high frequency components in the pervasively  
percussive rock version accounts for its higher placement 
on the graph. 

1.2  Short-Time Energy Function 
The short-time energy function of an audio signal is 
defined as: (where x(m) is the discrete time audio signal, n is time index 
of the short-time energy, and w(m) is a rectangular window.) 
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Figure 1. 

It provides a convenient representation of amplitude 
variation over time. Patterns of change over time suggest 
the rhythmic and periodic nature of the analyzed sound. 
Figure 2 is the short-time energy change of the same 
excerpts. The highly fluctuating rock version (cyan) 
resulting from the persistent drum beats compared to the 
more subdued but highly contrasting symphonic version 
suggests one possible determinant for genre classification. 
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.3  Short-Time Average Zero-Crossing Rate 
 the context of discrete-time signals, a zero crossing is 
id to occur if successive samples have different signs. 
he short-time averaged zero-crossing rate (ZCR) is 
efined as 
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igure 3 is the ZCR over time of the same two sound 
xamples, as before, the classical version is magenta and 
e rock version is cyan. Compared to that of speech 
gnals, the ZCR curve of music has much lower variance 
nd average amplitude and when averaged, shows 
gnificantly more stability over time. ZCR curves of music 
enerally have an irregular small range of amplitudes.  
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Figure 3. 

1.4  Foote’s Similarity Method 
Foote (1999) represents acoustic similarity between any 
two instants of an audio recording in a 2D representation,  
Figure 4 shows the ‘similarity matrix’ analyzed for the two 
music samples. The parameterization was done with a Mel-
frequency cepstral coefficient function with frame size 30. 
Both samples are about 16 seconds long and sampled at 
11025hz, 16 bits. The analysis visualizes the tripartite 
segmentation of the phrase in the 16 second excerpt 
(seconds 1-5, 5-12, and 12-16) in both the classical version 
(fig 4.1) and the classical version (fig 4.2). Despite the 
stylistic disparity between the two examples the musical 
similarity in terms of pitch and rhythmic structure is well 
represented. 

 
Figure 4.1. orchestral version. 

 
Figure 4.2. rock version 

 
Figure 5. Novelty scores of  

orchestral (left) and rock (right) version 

Figure 5 presents the novelty scores over time(second) of 
the two examples. In each figure the outputs with kernel 
sizes, from top down, 10, 20, 60 and 96. The graph of 
kernel size 96 displays three high peaks corresponding to 
the tripartite musical structure. The smaller the kernel size 
the greater the detail represented. This facilitates detection 
of discrete musical events. We are currently considering 
heuristics to find optimal kernel sizes to track appropriate 
novelty information. 
�

2.CONCLUSION 
In this paper we explored a computational model that 
combines classification and comparison of raw audio 
signals to explore the perceived similarity between musical 
recordings. Foote's (1999) similarity matrix retrieved the 
similar content of the music structures between two music 
samples even though their spectral components are 
different. Future research will focus on quantitative 
measurement of the degree of musical similarity between 
two works, as well as genre classification by statistical 
clustering. 
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Figure 1. Byzantine Music Manuscipts. Detail of the so-called 
'Chartres fragment' with musical notation, beginning of a  
sticheron in Mode 8, Monumenta Musicae Byzantinae, 
University of Copenhagen, Denmark. 
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ABSTRACT 
In this paper an alternate to Western Music musical system is 
presented. This system has flourished for more than 15 centuries 
in the areas of Byzantine Empire and it implements Neumatic and 
Delta Interfaces in order to represent musical structures.  
Recently, a remarkable revival and propagation of this system has 
been recorded worldwide. The motivation for this paper has been 
given from a joint effort of the Department of Informatics at the 
Aristotle University and the Department of Music Science and Art 
at the University of Macedonia to register the musical content not 
only of contemporary manuscripts but also to record and correlate 
morphologically the evolutionary stages from the neumatic origin 
to the final Delta Analytical method.  

KEYWORDS 
Alternate Musical Interfaces, Neumatic and Delta Systems, 
Byzantine Music, Morphology, Information Retrieval. 

1. INTRODUCTION: DELTA AND 
NEUMATIC MUSIC NOTATIONS 
The world of music is not uniform nor unified; it consists of 
various segmented systems diversified on matters of scales, 
rhythms and transitional phenomena [1]. The Common Music 
Notation (CMN) scheme along with the MIDI specification are 
Western Music oriented. As a result, they are not able to clearly 
depict alternate musical forms and traditions. The methodology 
described in this paper implements an indexing scheme based on 
signatures characterizing the content they point to. Also, emphasis 
is given on content extraction mechanisms concerning the 
morphology of the melodies. The musical database selected for 
the application of this method is a Delta musical notation system 

known as Byzantine Music (Figure 1).  
The problem with Delta symbols is that the same sequence of 
symbols may yield a different melodic content, depending on the 
scales of the Mode in which a melody is deployed [2] (Figure 2).   

2. PROBLEM FORMULATION 
The major issues in MIR for Byzantine music melodies are: (a) 
how to locate specific sequences of symbols (b) how to associate 
morphological metadata with the content. 
Although the answer to this question may sound obvious, that by 
forming any melodically meaningful text databases [3] we can use 
IR systems available for Free Text Retrieval, things are not that 
simple. IR systems appropriate for this purpose are the Inverted 
File and the Signature File indexing schemes, both used 
extensively for indexing Free Text Databases.    
The Signature File indexing schemes have a simple structure and 
require significantly less storage overhead. In Figure 3 is 
presented the structure of a signature indexing scheme, as 
modified here to handle a Musical Database. The Audio Data File 
is a collection of original melodic data blocks. These blocks may 
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   Mode 1:
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Figure 2. Variations of a motive in Modes 1 and 2 with D4 serving as a melodic basis.
 



contain both semantic data and comments appended in the form of 
text [4].  

In the Signature File are stored the signature records of the audio 
blocks and to each record is attached a pointer to the 
corresponding audio block. The Signature File and the Audio 
Data File may be kept and processed separately. The Signature 
File, which is of much smaller size, may be copied and distributed 
to many processors so that either many workers can take 
advantage of it or a form of parallel processing may be applied. In 
our case the signatures of a Delta musical file are attached to it as 
an appendix.  

For a given query the Signature File is searched for signature 
records conforming to this query, then the pointers attached to 
these records are used to locate in the Audio Data File the 
corresponding audio block. It should be pointed out that queries 
scan for motives rather then isolated Delta notes which are 
meaningless by themselves (see again Figure 2).  
In order to build a Database, an extension of the signature file 
method described in Figure 3 has been adopted which was 
originally presented for free text bases, the so-called S-Index 
scheme [5]. 
S-Index is a hybrid indexing scheme that combines many of the 
merits of Inverted File and Signature File schemes. Its 
performance is tunable between two extreme ends. At one end S-
Index turns into a Signature File and at the other end it becomes 
an Inverted File. One advantage of the adopted indexing method 
is that frequently queried terms or certain user selected terms may 
be indexed via an Inverted File method, for speed, whereas the 
bulk of the terms may be indexed in the form of a tree of signature 
segments, which requires a lower storage overhead and also is 
more suitable for multiple term queries. 
Since most RDBMS do not support direct use of binary variables 
or Boolean operators on binary variables, a table was created 
simulating the behavior of the proposed index.  This architecture 
yields a binary tree of signature segments. Each node of this tree 
has the following structure: 

SINDEXnn  (block_no INTEGER,  
  aa  INTEGER, 
  node_no  INTEGER, 
  sig  CHAR(k))

     

The value of parameter k depends on layers of the S-Index 
structure. For instance, for SINDEX4 it is k=24=16. Every table 
SINDEXnn (0 <= nn  <= 14) records: (a) pointers to the audio file 
packages (b) pointers to the nodes of the internal tree structure 
and (c) the binary signature itself. 
Apart from this RDBMS-centric methodology, the authors of this 
paper are seeking a method to encode digitally Byzantine 
melodies in a MIDI-like specification and to add to these files as 
accompanying metadata the signatures of each melody. 
 

3. RESULTS 
Following the analysis methodology described in the previous 
section,  we have used Full Text Retrieval systems (BRS SIRSI 
and SQL Server 2000) along with custom made programs that 
calculate the probability of appearance for sequence 7 - 10 of 
symbols.    
Some results are presented in Table 1. For the sake of simplicity, 
conditional probabilities for 3 symbol sequences are presented.  
For these sequences digital signatures are built which accompany 
the digitally encoded manuscript.  

Some results excluded from the statistical analysis tables: 
(a) motives are on average 9 Delta symbols long. 
(b) Non-terminating motive endings are declared by increased 

durations by one time unit for  95%  of  examined cases.   
(c) If intermediate (i.e. non terminating) segmentation takes 

place, motive length drops to 8 Delta symbols. 
(d) The terminating endings of a thesis are less than ten.    
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Figure 3. A Signature File scheme for digitally transcribed 

manuscripts. 

Table 1.  3rd order stochastic sequences for the 3 more frequently  
appearing Delta symbols.  P(So) is the probability for Si as an 
initial symbol. 

Symbol S P(S) P(So) P(S1*S2*S3) 

S1:  ! 0,354 0 P(S1*S1*S3) 0,019 

S2: 1 0,149 0.05 P(S2*S1*S1) 0,0154 

S3: 0 0,146 0.55 P(S3*S1*S1) 0,018 
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ABSTRACT 
We introduce a statistical model of music that allows for the 
retrieval of music based upon an audio input. This model uses 
frequency counts of state transitions to index pieces of music. 
Several methods of comparing these index values to choose an 
appropriate match are examined. We describe how this model can 
serve as the basis for a query-by-humming system. The model is 
also shown to be robust to several kinds of errors. 

1. INTRODUCTION AND RELATED 
WORK 
Recently, researchers have developed systems that can retrieve a 
piece of music from a musical database using an aural query (e.g., 
a sung or hummed query). Of course, a query sounds very 
different from a full audio recording, which typically contains 
much more information. Moreover, the generally accepted 
wisdom is that users remember the major themes from pieces, and 
use these themes as their queries [1]. Thus, most music-retrieval 
systems cast the retrieval problem as matching an abstracted 
representation of each piece in their database, typically the major 
theme(s), against the query. 

Some researchers approach the retrieval problem using 
string-matching techniques [2] [3] [4] [5] [6]. In these approaches, 
the theme and query are treated as a melodic contour and a string 
is derived from the alphabet S, U, D, (same, up, and down) for the 
interval change between notes. Some researchers, however, have 
used different mechanisms. In other related work, Brunelli and 
Messelodi examined different metrics of comparison when 
examining images [7]. Alamkan et al, used Markov models of 
music to generate new pieces in the style of those composed used 
to train the models [8]. 

Our work is inspired by Alamkan’s work; we induce 
Markov models of themes in our database (all pieces are in 
MIDI). Similarly, we induce a Markov model for a query. We 
then use several statistic metrics to compare models to find the 
theme that most closely matches the query. In this paper, we 
overview our approach and provide summary experimental 
results. 

2. THE MODEL 
Music unfolds over time. Thus, we can model a piece of music as 
a series of states from an alphabet Σ. One statistic that we can 
calculate about these states is the frequency that state 
α∈ Σ transitions to another state β ∈ Σ, without considering 
history [8]. Moreover, we have a function τ(α,β)=ρ, where ρ is the 

probability of transitioning from the state α to state β.  
We use a state descriptor called the “concurrency.” [8] 

This descriptor records all the notes that are sounding at any 
particular time, as well as the duration during which they are 
sounding. If we assume monophonic input and wrapping all notes 
into one pitch, this class yields 12 possible states for notes; based 
on our observations, we found that our duration space tends to be 
around a dozen different possible lengths. Thus, |Σ|=12*12 or 
|Σ|=144. In addition, we can totally order state space based on 
pitch classes and duration. 

3. CORRELATION METRICS 
We posit that the statistical model presented here captures some 
important elements of the style of a piece. Therefore, we should 
be able to compare τ’s created from different musical pieces to 
determine style similarity. This gives the basis for a retrieval 
mechanism: we take a τ derived from a query and compare it to 
τ’s induced from the database to determine their similarity. We 
assume that τ ’s based on similar musical pieces will have higher 
correlations than those from disparate works. Here, we examine 
two measures for calculating similarity: 
• Correlation Coefficient – This is the standard Pearson’s 
correlation coefficient [10]. This technique indicates how well 
an entry in one matrix predicts the value of an entry in the other 
matrix.  

• Count Correlation - We can observe the frequency of 
arriving in a state rather than examining the frequency of 
transitions. This is called a count array. We can then apply a 
correlation technique to the array. This procedure is not a true 
correlation measure, but can best be described as a weighted 
correlation, where the weights are the frequencies of state 
visitations. This measure makes a zero-order Markov 
assumption (our use of Pearson’s makes a first-order 
assumption). In other words, the probability of transitioning to 
any state is the probability of being in that state. This technique 
is modified from a method originally developed by Alamkan 
[9]. 

• Modified Scoring Metric - We found through 
experimentation that both correlation measures work equally 
well. Moreover, it appears that the instances where they do not 
work are mainly disjoint. Thus, we combined measures to create 
a new measure, which takes the average of the scores from the 
correlation measures. We found that this combined measure has 
better results than either method alone. 

We note that these techniques can be computed quickly, and thus 
searching is quite fast. The comparison between pieces is 
independent of the size of piece, and is dependent on the size of 
the state space. Of course, fast on-line computation is not without 
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cost: storing a piece in our highly abstract format requires 
substantial computation time compared with search. 

4. EXPERIMENTAL SETUP 
To test our measures, we created a database of 188 MIDI pieces, 
about half consists of Western classical pieces; the other half 
consists of everything from modern popular tunes to Broadway 
show tunes to traditional folk songs. 

We ran these pieces through a thematic extractor called 
MME [12]. MME extracts up to ten of the most prominent themes 
from a piece of music. These themes were used as the target for 
the queries. We then converted all of these pieces into the 
transition table (τ) representation. 

Our search engine takes a query in MIDI format and 
induces a transition table (τ) representation for it. The engine then 
compares this transition table to all transition tables (themes) in 
the database. It then returns correlation measures for all pieces, 
sorted by most to least highly correlated. 

We modified the themes to simulate the errors that a 
user might introduce when querying the system [5]. The three 
types of errors we examined were: 
• Duration-Change Error - The user may not sing a note’s 
correct duration. This was simulated by changing the delta time 
of an event in the MIDI file. Changes were made in increments 
of standard note lengths, from a 32nd note to a whole note. 

• Pitch-Change Error – The user may sing the wrong note. 
These errors were simulated by varying the pitch of a note up 
and down as much as 20 MIDI numbers. 

• Note-Drop Error - The user may forget notes. This was 
simulated by removing notes from the query. A 10% note-drop 
error rate indicated that 10% of the notes were removed from 
the query. 

5. RESULTS AND DISCUSSION 
For each run, one class of errors was varied, while the rest were 
held constant. The error rate was varied from 0% to 100% at 10% 
increments. 100 themes were randomly chosen from our database 
and manipulated each time. The themes were not changed during 
the experiment. The net result was 28 runs of 100 themes each 
time. A query for each test was created from one of the 100 
themes. A correct match means that the top result is from the 
same piece from which the query was derived. 

The results indicate that the system is robust to two 
types of errors, duration change and note drop. The system does 
not perform, however, well on pitch-change errors. We believe 
this is due to a combination of factors. First, if the themes 
extracted from the original piece are not very long or do not have 
a sufficient repetitive structure, it is difficult for the system to find 
statistical regularity. Second, the system tries to identify similar 
states between the query and the database. If a change in the 
theme alters the state table in such a way that it is disjoint from 
the original state, then the measures will not work 

The duration-error results are a little surprising in that 
the system performs well when the duration error is at 100%. The 
result, however, make sense. The input that we are basing our 
database upon is highly quantized.  This means that many times 
even when we change the duration by several MIDI ticks, it still is 
close to the original duration. 

The least surprising result is from the note-drop error 
injection. Here, the quality of results decreases gradually as the 
error percentage increases. The fact that the system performs as 

well as it does at 50% error is promising. After 50% error rate, the 
accuracy of the system quickly decays.  
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1. INTRODUCTION 
While it is clear that user modeling could be valuable in many 
music retrieval contexts [1], the focus in this paper is on content-
based music retrieval as in the WYHIWYG (What You Hum Is 
What You Get) paradigm [5], also referred to as Query-by-
Humming. Desirable data to include in such a user model 
include: 

♦ Musical preferences, expressed by the user by answering the 
system’s questions (examples can be found in [1]). 

♦ History-oriented information computed by the system, e.g. the 
music genre most often retrieved by the user recently (or up to 
now). 

Such data can indeed be util ized by a CBMR system to bias its 
search results, hopefully making the latter more accurate. Based 
on user data the system builds expectations which are used to 
fi lter candidate results. For instance, if a song belonging to the 
user’ s most usually retrieved music genre matches the user’s 
query, it would be advantaged by the system over a matching 
song of a genre the user never retrieved before. Similarly for 
songs belonging or not to a genre declared by the user as being 
among his/her favorite. A number of methods have been 
proposed for collecting, representing and updating these more 
traditional kinds of user data. These are out of the scope of this 
paper.  

In this paper the focus will be on presenting concepts and tech-
niques for modeling a user ’ s sense of musical similar ity, which 
I see as absolutely central. However the similarity model which 
will be proposed throughout the rest of this paper is seen as part 
of a larger user model including the more ‘ traditional’  data types 
mentioned above. Whatever the user modeling paradigms used, I 
suggest that user models in CBMR should be adaptive. This 
means that the model is continuously enhanced throughout the 
successive interactions with the user. While it can be desirable to 
initialize user X’s model by asking X a series of questions, the 
adaptive paradigm allows to instead initialize the model of every 
new user to a default and then automatically, incrementally 
personalize it based on the user’s feedback.  

In the next section I explain why modeling of a user’ s sense of 
musical similarity is seen as central in a CMBR system. 

2. RATIONALE 
The rationale behind this work lies in the following points: 

♦ A. Most — if not all — content-based retrieval systems for 
music use similarity searching. 

♦ B. Similarity search is based on an explicit, or sometimes im-
plicit, formal model of musical similar ity as it is perceived 
by human listeners. In this paper, to avoid any confusion be-
tween ‘musical similarity model’  and ‘user model’  the former 
will be designated by the more restrictive term ‘melodic simi-
larity function’ . Such a mathematical function is designed to 
automatically compute the similarity between two melodic 
pieces or passages, often entailing a whole algorithm such as a 
dynamic programming one. Many different such functions 
have been proposed. Each is underlied by a sequence 
comparison scheme that is either exact or approximate (strict 
vs. error-tolerant matching), binary or gradual (boolean vs. 
gradual similarity function), etc. — see e.g. [4] for a review 

♦ C. Human judgments of musical similarity are multidimen-
sional. This means that the perceived degree of similarity of, 
say, two passages not only derives from the absolute pitch and 
duration of the notes heard but generally from a far larger set 
of musical characteristics of the two passages.  

♦ D. The relative importance of descriptions in the overall simi-
larity judgment can be different from one description to an-
other. As a well-known example, it has been established that 
two isochronous passages having exactly the same underlying 
interval sequence are often judged more similar than two iso-
chronous passages having mostly the same absolute pitches 
sequence but with several mismatches.  

♦ E. Last but not least, the relative impor tance of one given 
descr iption can vary from one individual to another . For 
instance, for certain human subjects rhythmic aspects con-
tribute more strongly to similarity than pitch aspects, and vice-
versa. 

For all these reasons I suggest it is desirable that CBMR systems 
should use not only general user models, but also models of 
users’  sense of musical similarity. Since there is no way to 
(entirely) predict the parameter values of such a similarity model 
beforehand — i.e. based on general user characteristics of the 
user — the model should be adaptive. In other words, the system 
adjusts the similarity model based on user feedback received 
during successive interactions with the user (search sessions). 

There is a trade-off between search speed and search quality. 
Very fast search techniques have been developed for CBMR (e.g. 
[2]), which is convenient for allowing the user to carry out for 
instance a broad 'initial screening' of a music content database. 
However these techniques easily lack recall (or even precision) 
because their time efficiency relies on the simplicity of musical 
similarity models and, correlatively, on the strictness of match 
criteria. Similarly to standard text-based search engines, it is 
seen as important that CBMR systems should also offer 
‘ advanced’  or ‘ specialized’  search modes based, among others, 



on richer musical similarity models and more flexible match 
criteria. The ideas and techniques presented in this paper should 
prove even more useful for these slower search paradigms. 

3. USER MODELING PARADIGM 
The proposed user modeling paradigm is intrinsically linked to 
the CBMR framework in general, and to that of melodic 
similarity assessment schemes it uses. These frameworks are 
presented in the first three subsections. 

3.1 CBMR Framework 
The CBMR paradigm in which we place, viz. that of the 
Melodiscov system [5] will now be briefly described. 
Schematically, pattern-matching techniques are used to match the 
user’ s query against the target collection of music pieces (see 
Figure 1). The underlying similarity function (see 3.2) being 
gradual, search results are returned under the form of a ranked 
list of matches, by decreasing order of match quality. In the 
typical querying mode, the user can hum, sing (with lyrics), 
whistle or play an acoustic instrument, in which case 
Melodiscov’s transcription module transforms the audio query 
into a MIDI-like music structure called raw symbolic query. 
(Here the adjective ‘ symbolic’  is used to distinguish between 
direct content, viz. digital audio signal, and abstract content such 
as MIDI or score representations).  
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Figure 1. CBMR paradigm (Melodiscov system) 

Although some of the concepts and techniques proposed in this 
paper would apply to other kinds of CBMR schemes, it is as-
sumed here that the target content database is a collection of mu-
sical works such as MIDI songs, called melodic database. In that 
phrase as well as in the rest of the paper, ‘melodic’  is used to 
distinguish from other kind of musical content, e.g. harmonic 
(chord) sequences. However ‘melodic’  does not imply 
monophonic material or mere pitch sequences with no rhythmic 
information. 

3.2 Melody Representation 
In Melodiscov music is represented using multiple characteristics 
(called descriptions henceforth). These are derived from the im-
mense body of work that has been carried out in the areas of mu-
sic psychology, music perception and cognition, and music theory 
at large. The various descriptions for melodic material are 
categorized according to their horizontal span (examples given 
below do not necessarily fit all melody retrieval contexts — a far 
more complete list can be found in [3]): 

♦ Individual descriptions correspond to individual notes (or 
rests, or chords). Examples: ‘absolute pitch’ , ‘ forward interval 
direction’ , ‘ backward chromatic interval’ , ‘ backward duration 
ratio’ , ‘ forward metric variation’… 

♦ Local descriptions correspond to groups of notes (or 
rests/chords). Examples: ‘ ascending pitch contour’ , ‘gap-fil l ’ , 
‘ phrase-based grouping’… 

♦ Global descriptions correspond to a whole melody (viz. one 
song in the searched database or the 

hummed/sung/whistled/… query). Examples: ‘ pitch 
histogram’ , ‘ average note duration’  ‘ time signature’ , ‘overall 
tonality’ . 

The raw symbolic query output by the query transcription module 
is, roughly speaking, a MIDI melody. Similarly, currently in 
Melodiscov the melody database is initially made of standard 
MIDI fi les. This initial, MIDI-type, representation comprises 
only three descriptions: the individual descriptions absolute pitch 
(or Midipitch 0-127), relative duration (in number of beats) and 
absolute amplitude (0-127). An algorithmic step is required to 
compute the final representation from the initial one. An 
automated representation enrichment phase is inserted in the 
CBMR algorithmic scheme. In an incremental process, descrip-
tions are derived one after the other from basic descriptions 
and/or already derived descriptions, in a specific order (see [3] 
for more details). 

3.3 Melodic Similar ity Assessment 
3.3.1 Overview  
The melodic similarity function used in Melodiscov is based on 
the Multidimensional Valued Edit Model or MVEM (see e.g. 
[4]). MVEM has been designed to accommodate the multiplicity 
of musical descriptions, each possibly with a different horizontal 
span. MVEM generalizes the basic string edit distance 
framework and allows to carry out soft matching, i.e. allows a 
level of discrepancy between the query and a candidate passage 
in a target music work. Such error tolerance is fundamental in 
CBMR systems because errors in CBMR result from many 
possible causes: 

♦ Users’  inaccurate remembering of the searched melody  
♦ Monophonic rendering, by users, of inherently polyphonic queries 

(think for instance of a theme with some bi-phonic passages) 
♦ Transcription process, either because the query is physically 

too inaccurate (wrong pitches and/or rhythm) or because of 
technical shortcomings in the transcription algorithm. 

3.3.2 MVEM in greater detail 
MVEM will now be described in more technical terms, using as 
an example the similarity computation between the two passages 
shown in Figure 2. These two passages illustrate typical orna-
mentation cases that can be encountered in CBMR.  
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Figure 2. Two melodic passages (Joseph Haydn, Concerto for  

Trumpet in Eb major) 

To compare two passages, the optimal correspondence scheme 
between their respective elements is determined. A ‘ correspon-
dence scheme’ , called alignment, is a series of pairings, with 
each pairing meaning that two groups of notes and/or rests are 
put in correspondence (see Figure 3 and Figure 4). For instance, 
the second pairing in Figure 3 puts in correspondence notes 2 
and 3 of passage 1 with notes 2, 3, 4 and 5 of passage 2. This is 
depicted in gray on the figure as two ellipses connected by an ori-
ented link. I have introduced the notion of pairing to define 
alignments as it provides a richer and more flexible formalism 
than the traditional ‘ edit operations’  formalism. Each group in a 
pairing may contain only one note or even zero note (see below). 
The succession of pairings forming an alignment between the 
two passages is interpreted as a transformation of passage 1 into 
passage 2. For instance, in Figure 4 it is considered that the final 



Eb (quarter note) in passage 1 is replaced by the final Eb (half 
note) of passage 2. Similarly, in passage 2 the second Eb is said 
to be inserted.  

For any pairing the number of notes in each group determine the 
pairing type. Let the signature of a pairing be the integer pair 
(#G1,#G2) where #G1 (resp. #G2) is the number of notes and/or 
rests in the pairing’ s first group (resp. second group). In the 
above example, the pairing’s signature is (2,4).  

♦ Pairings with a signature of that form, i.e. (r, s) where r > 1 
and s > 1 are called generalized replacements.  

♦ Pairings with signature (1,1), such as the first pairing in 
Figure 3, are called [individual] replacements.  

♦ (0,s) pairings, where s > 1, are called generalized insertions.  
♦ (r,0) pairings, where r > 1, are called generalized deletions.  
♦ (0,1) pairings are called [individual] insertions. 
♦ (1,0) pairings are called [individual] deletions. 

As can be seen, such important musical notions as ornamentation 
or variation can be neatly dealt with in this framework. One 
other powerful feature of MEVM is that it can elicit (or explain) 
the similarity between two passages P and P’ , but this is out of 
the scope of this paper. 

 
Figure 3. One possible alignment between the two passages, 

using 2 individual replacements and 2 generalized 
replacements 
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Figure 4. Another possible alignment between the two pas-

sages, using 6 individual replacements and 4 insertions 

3.4 Valuation 
In a valued edit model, a similarity contribution function (in 
short ‘ contribution function’ ) is associated to each pairing type. 
Every pairing p in an alignment gets a numerical evaluation 
contrib(p) reflecting its individual contribution to the overall 
similarity. The contribution may be positive or negative. The 
various descriptions in the representation are simultaneously 
taken into account in contribution functions using a weighted 
linear combination paradigm, as shown in Equation 1. contrib(p) 
is the sum, over all descriptions belonging to the music 
representation R, of terms wD×contribD(p), where: 

♦ wD is the weight attributed to description D, a real number in 
[0;1]. A weight has value zero iff the associated description is 
not taken into account in the model, at least at that particular 
moment. 

♦ contribD(p) is the contribution of p seen only from the point of 
view of description D. Suppose for example that p is the re-
placement of the final Eb (quarter note) in passage 1 by the fi-
nal Eb (half note) of passage 2 in Figure 4. Consider the basic 
descriptions D1: ‘ degree of note in overall tonality’  and D2: 
‘ relative duration of note in beats’ . We can expect 

contribD1(p) to have a strong positive value because the degree 
is the same for both notes. Conversely, contribD2(p) can be 
expected to have a (moderately) negative value because the 
duration of the ‘ replacing’  note is double that of the ‘ original’  
note.  

The value of an alignment is the sum of all of its constitutive 
pairings contributions (Equation 2). Finally, the similar ity be-
tween passage 1 and passage 2 is defined as being the greatest 
value of all possible alignments between the two passages. 
There are several techniques, based on dynamic programming, 
for computing that greatest value as well as, if needed, the corre-
sponding alignment(s). In the case of CBMR, the matching qual-
ity (or ‘matching score’ , etc.) between a query and a music work 
is the greatest value of all possible alignments between the query 
and a passage of the work. The search results are made of the list 
of works, ordered by decreasing matching quality, whose match-
ing quality is above a predefined threshold. 
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3.5 Model Representation and Adaptation 
3.5.1 Description weight vector 
A user’ s sense of melodic similarity is modeled using a scalar 
vector which we call description weight vector (DWV). The 
DWV contains the weight wD of each description D in the music 
representation, each weight being able to vary throughout user 
interaction — primarily search sessions. This user model under-
lies a melodic similarity function that emulates as closely as pos-
sible the user’s sense of melodic similarity.  

The numeric vector format of the user model allows it to be 
shared by different applications or agents. In fact, a musical simi-
larity function is inherently modular, other musical software such 
as navigational interfaces, pattern extraction programs and so on 
can directly reuse it for the omnipresent purposes of melodic 
comparison. Also, a DWV can directly be merged with a sharable 
user model such as the one suggested in [1]. 

3.5.2 Initialization and interaction 
The first time a user uses Melodiscov, the DWV is initialized by 
setting all of its components (description weights) to a default 
value of 0.5.  

Every time the user is presented with a ranked list of search re-
sults, s/he gives feedback to the system in two possible fashions: 

♦ In the simplest interaction mode, single match feedback, s/he 
just tells the system which of the found matches is correct, i.e. 
corresponds to the music work actually looked for. In case that 
music piece does not appear in the system’s list of matches, 
the user may request that lower quality matches, if any, should 
be displayed. These are matches whose similarity scores are 
below a given constant threshold specific to the CBMR 
system. 

♦ In a more complex one, ranked match feedback, s/he gives 
her/his own ranking of some or all of the matches. Think for 
instance of a content database containing several variations of 
a target song; these variations could be designated by the user 
to the system as ‘ reasonable secondary matches’ . 

3.5.3 Model update  
Unless the user has confirmed the system’s best match (single 
match feedback) or best matches (multiple match feedback), the 



user’ s DWV is updated in the following manner. (For the sake of 
simplicity it will be assumed that single match feedback mode 
has been used; feedback in the other mode is dealt with 
similarly).  

The system’s ranked list { M1,…, Mm}  of matches is separated in 
three groups (in decreasing order of match quality as computed 
by the system) : 

♦ the group FP={FP1, ..., FPf}  of all the ‘ false positive’  matches 
(i.e. all matches reported by the system with a better matching 
score than the correct match. In other words, if the user selects 
Mi the list’ s then FP={ M1..M i-1} ) 

♦ the correct match C 
♦ the group S of all subsequent matches proposed by the system 

For each, the contribution of each description to the matching 
score is computed. The weights of some, if not all, weights in the 
user’ s DWV are then adjusted in such a way that, after adjust-
ment, the new ranking gets closer to what it should be, i.e. C 
should be ranked first. The actual update algorithm in detail is 
not important here, what is key is the underlying idea. The latter 
will be presented through two characteristic cases:  

♦ For each description D such that the term vC,D is greater than 
its vertically homologous terms in FP1, … FPf (viz. vFP1,D, … 
vFPf,D ), WD is increased in the following manner :  

( ) DD wkw += 1  

Intuitively, this is based on the observation that, if a term vC,Di 
contributes more to the similarity in the correct match than in 
the false positive matches, it should be reinforced via an in-
crease of its weight. 

♦ Conversely, for each description D such that the term vC,D is 
lesser than its corresponding terms  vFP1,D, … vFPf,D:   
WD is decreased in the following manner :  

( )kww DD += 1/  

This is based on the observation that, if a term vC,D contributes 
more to the dissimilarity in the false positive matches than in the 
correct match, it should be attenuated via a decrease in its weight. 

The positive real number k is called update rate. Of course, k 
values close to 0 induce weak updates while higher values induce 
more drastic updates. In order to force model convergence (stabi-
lization), k can also be made a decreasing function of time, tend-
ing to zero. This is similar to the temperature function used in 
simulated annealing algorithms.  

What has just been presented is the normal, ‘ ongoing’  interaction 
scenario: model update occurs based on feedback the user gives 
throughout successive search sessions. In addition, the user can, 
initially but also at any time, enter system learning sessions that 
are directed toward fast user model learning. In these sessions, 
instead of carrying out CBMR searches the user makes direct 
similarity judgments about melodic material presented by the 
system. In the simplest setting, the user is presented with 
melodic passages A, B and B’  and must tell the system which of 
the pairs A-B and A-B’  is more similar. Of course, every (A,B,C) 
triplets is chosen (by the system’s designer) so as to emphasize 
the contrast between two particular descriptions. The results of 
the successive similarity rankings made by the user during such a 
learning session are finally aggregated, resulting in an 
appropriate update in the user’ s DWV. 

As can be observed, the current weight update scheme uses a 
fixed strategy similar to error gradient feedback in neural net-
works. It should be remarked that other strategies such as evolu-
tionary algorithms could be other appropriate candidates.  

4. RELATED AND FUTURE WORK 
The techniques proposed in this paper are currently being imple-
mented within the Melodiscov system. Melodiscov uses a core 
set of object-oriented classes and methods allowing to represent 
music with multiple, individually weighted descriptions. Using 
that same representation platform, the influence of description 
weight adjustment has been experimented in the context of 
automated musical pattern extraction [3], a problem area directly 
connected to that of CBMR. Additionally, the outcome of the 
work presented in [6] may be very useful. 

The current priority is on completing implementation and experi-
menting with the system. One future work direction concerns 
model initialization. Currently the initial user model is a default 
that is the same for every user. I wish to investigate whether 
more appropriate initial models could be generated for every user 
based on the characteristics recorded in a standard, ‘ general’  user 
model. For instance, suppose that user X’s general model says 
that X has received significant musical education. Stronger 
weights would then be given to the more abstract descriptions in 
user X’s initial model (e.g. harmony-oriented ones) than if X was 
known to have received no musical education. While this simple 
example relies on common sense, more probabilistically accurate 
initialization strategies for user models could be designed based 
on statistical analysis of evolved and stabilized user models of 
perceived musical similarity. Another future work direction is 
investigating aggregation/fusion strategies for synergetically 
mixing the DWV-based model with more ‘ traditional’  user 
models such as the ones mentioned in the first section of this 
paper.  
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1. INTRODUCTION 
Content-based music information retrieval provides ways for 
people to locate and retrieve music based on its musical 
characteristics, rather than on more familiar metadata such as 
composer and title. The potential util ity of such systems is 
attested to by music librarians, who report that l ibrary patrons 
often hum or whistle a phrase of music and ask them to identify 
the corresponding musical work [5, 7]. 

Content-based MIR systems operate by taking a musical query 
(i.e., a string of notes) from the user and searching the music 
database for a pattern closely matching the query. The search 
may be carried out by exhaustively matching the database [5] or 
by matching an index of n-grams created by passing a sliding 
window of length n over the database [2]. 

While these exhaustive search methods are adequate for 
relatively small music databases they do not scale well to large 
collections such as thousands of symphonies and other major 
works. 

Fortunately, for large classical works, such as sonatas and 
symphonies, it is possible to avoid exhaustive search by using an 
index of themes. A theme, in classical music, is a melody that the 
composer uses as a starting point for development. A piece of 
music may have several themes; each of them will repeat and 
may be slightly changed (a “variation” ) by the composer on 
repetition. Using such an index greatly condenses the search on a 
database of classical major works. Furthermore, themes are the 
musical phrases likely to be remembered by listeners, so a theme 
index helps focus the search on the parts of the database most 
likely to match a query. 

One well known theme index is that produced by Harold Barlow 
and Sam Morgenstern [1]. This is a print book containing 
approximately 10,000 themes from the classical music genre. 
Each theme is identified by composer, title of work and section 
of appearance (movement for symphony, act for ballet, overture 
for opera, and so forth). In addition to its print edition, this theme 
index can also be searched online [3]. 

Unfortunately, it is a monumental task to manually compile such 
a theme index. Because themes are, by definition, recurring 
patterns in a piece of music, it should be possible to automate the 
discovery of musical themes in order to create a theme index 
over a given database. 

Our goal is to perform this automation – to analyze a piece of 
music and automatically determine its themes. Some work has 

been done on finding themes in music. Mongeau and Sankoff, for 
example, suggested the use of dynamic programming for finding 
recurring sections in a piece of music [6]. Their method, 
however, was somewhat cumbersome, relying on a closeness 
threshold to determine the beginnings and ends of recurring 
musical patterns. 

2. DISCOVERING THEMES IN MUSIC 
Because a theme, by definition, is a melody that the composer 
uses as a starting point for variation, most researchers have 
assumed that a theme discovery system must use approximate 
string matching [6]. 

Our approach takes the view that a theme dictionary may be 
constructed using an exact match of the musical sequence against 
itself. Our hypothesis is that a significant part of a theme is likely 
to repeat at least once, and that smaller chunks of a theme are 
likely to repeat multiple times. The basic idea is similar to that 
followed by Liu, et al. [4], but, where they build theme 
candidates by joining small repeating patterns into larger ones, 
we start with the longest repeating patterns and look for 
continuations and substrings. 

Theme discovery is essentially a search for self-similarity in a 
piece of music. For that reason, we begin by creating a self-
similarity matrix. For a musical piece of n notes, this is an n x n 
matrix representing where each interval exactly matches another 
interval in the piece – a repeated interval is represented by a 1 in 
the matrix. We use intervals in order to make our analysis 
independent of key. This does not make the analysis independent 
of mode – our algorithm is not l ikely to find repetitions of a 
major-key theme in minor mode, for example, or vice versa. If, 
however, a variation repeats multiple times, our algorithm will 
discover those patterns. 

From the self-similarity matrix, we build a lattice showing all 
repeating patterns longer than a predetermined length and their 
relationships. At this point we are analyzing all repeating 
patterns of four or more notes. This lattice is further processed 
and used to determine which patterns to keep as candidate 
themes. 

3. CASE STUDY 
As a simple test of our algorithm, we used it to identify repeating 
patterns in Bach’s Fugue No. 7, from the Well Tempered 
Clavier. We used only the top (soprano) part of the fugue – this 
is to find out whether our algorithm can find the theme without 
seeing its reiterations when the second and third voices enter. 
When processing the entire piece, we simply concatenate all 
parts to form one long sequence – this enables the algorithm to 
capture themes from repetitions in different voices, but does not 
attempt to discover themes split among more than one voice – the 
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algorithm is not expected to find a theme, for example, that starts 
in the first violin and migrates into the cello. 

Figure 1 shows part of the lattice built from the top part of Fugue 
No. 7. As stated above, we ignore repeating patterns of fewer 
than 4 intervals. 

 

Figure 1. Partial lattice for fugue no. 7. 

The lattice clearly shows a pattern of 18 notes, labeled A, near 
the beginning of the piece, starting with the second interval. This 
is not surprising, given the structure of a fugue, with the 
introductory statement of the subject. Pattern B is a substring of 
A, while pattern C overlaps A. Patterns D, E and F are substrings 
of C. This is only part of the lattice; pattern A repeats at position 
311, B repeats at 93 and 311, C repeats at 103, and so forth. The 
lattice shows one repeat of pattern E at 64; E also repeats at 109 
and 133. Pattern I overlaps itself, starting at position 44 and 
ending – and starting again – at position 49. A total of 20 
repeating patterns were found. 

We envision the theme index being searched by approximate 
search on user queries. For that reason, it is unecessary to keep 
patterns that are substrings of other patterns. Furthermore, we 
extend candidate themes by combining overlapping patterns. 
Figure 2 shows the lattice after discarding substrings and short 
patterns that occur only twice. Overlapping patterns A and C 
have been combined into  one longer pattern. In fact, AC is the 
theme of the fugue – minus the first interval – as listed by 
Barlow and Morgenstern [1]. 

 

Figure 2. Lattice for fugue no. 7 after pruning. 

Pattern G appears twice in the fugue, it is long, and it has a 
substring that repeats, so it is included in the final l ist of patterns 
to be added to the theme dictionary. 

Pattern L is mostly a substring of AC, and could be eliminated. 
However, it adds two (tied) notes to the beginning of AC and, at 
this point, is left in the list because of that extension. It is, in 
fact, a theme variation. 

Pattern Q remains in the list because of its length. It appears only 
twice and has no repeating substrings. Inspection of Q shows that 
it is another variation on part of the theme, and it leads into a 
repetition of pattern C. Q is very similar to pattern B (the 
intervals up to the rest in AC), but introduces an E-natural in 
place of the expected E-flat. 

Given the fact that a theme index is expected to be searched 
using approximate matching, it is l ikely that patterns L and Q 
should not be included – the first part of pattern AC is close 
enough to both of them to allow user queries to retrieve this 
particular fugue. 

Figure 3 shows musical notation, extracted from the score, for 
patterns AC, G, L and Q,. 

 
(a) Pattern AC 

 
(b) Pattern G 

 
(c) Pattern L 

 
(d) Pattern Q 

 

Figure 3. Candidate themes from Fugue No. 7. 

4. CONCLUSION 
This paper describes a method for automatically discovering 
themes in music. A program based on this algorithm can generate 
a theme index from a music database. 

At this point, we have tested the algorithm using simple musical 
structures – namely, fugues. This provides a suitable beginning 
test because we can easily analyze whether the program is acting 
appropriately. In developing the algorithm, we have not made use 
of any musical knowledge regarding the structure of fugues, but 
have let the algorithm discover what it regards as themes. Our 
immediate goal now is to test the algorithm over a much wider 
range of music. A longer term goal is to produce a music analysis 
system based on the algorithm and to incorporate more 
sophisticated approximate matching to complement the base 
algorithm. 
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ABSTRACT 
This poster considers the use of different levels of melodic 
resolution in acoustically driven music retrieval systems from the 
viewpoint of search-key lengths. A query-by-humming 
application was constructed to evaluate the dependencies 
between the melodic resolution, database size and the search-key 
length in order to consider the optimal level of melodic 
resolution in music retrieval applications. 

1. INTRODUCTION 
Acoustically driven retrieval systems (often referred to as query-
by-humming applications[1]-[3]) are a recent approach for 
efficient and flexible music retrieval. These acoustically driven 
music retrieval systems use a hummed, whistled or played 
sample of a melody as a search-key to search matching database 
entries from a music database. Current efforts in standardization 
such as MPEG-7 [4] are a clear indication of the research and 
commercial interest on the topic. 

In the general case, when the user generates the input to a 
melody retrieval process by humming, whistling or playing an 
instrument, the input is noisy. Noise, meaning errors in the input 
melody in relation to the database entries, affects the accuracy of 
the process. To overcome this some approximation can be 
introduced to the retrieval process. 

It is customary to use two methods to introduce approximation to 
query-by-humming applications. First, approximate string 
matching algorithms are used. Second, different levels of melodic 
resolution are used. By lowering the resolution, i.e. using fewer 
intervals to represent melody-lines, the system can eliminate 
some of the interval errors included in the input signals. But it is 
a trade-off; the lower the resolution is the lower is the disparity 
between the database entries. In this poster the emphasis is on 
the use of different levels of melodic resolution. 

2. SYSTEM ARCHITECTURE 
A melody retrieval application was constructed for the purpose of 
evaluating the concept of query-by-humming in general and to 
test the effects of using different levels of melodic resolution in 
the retrieval process. In the following the two main functional 
blocks of the system are presented. 

2.1 Acoustical front-end 
The acoustical front-end transcribes the input melody into an 
inner representation (IRP)[5]. The transcribed melody is used as 

a search-key by the database engine. 

The input signal is segmented into notes with amplitude-based 
segmentation. A normalized signal level is compared to two 
constant thresholds. A higher threshold is used for detecting note 
onsets and a lower one for detecting note offsets. 

The fundamental frequencies of the frames within segmented 
notes are determined with an autocorrelation-based pitch tracker 
[6]. On a note level the pitch is estimated as the median of the 
pitch values of the frames within a note. The presented retrieval 
system does not use rhythmic information and therefore note 
duration is not detected.  

The acoustical front-end is designed to accept input generated by 
humming, whistling and playing an acoustic instrument. The 
system also has an option to take typed search-keys as inputs. 
The user can type the names of the notes of the melody in 
question and that pattern is then used as a search-key.  

2.2 Database engine 
The core of the database engine has been implemented at the 
Department of Computer Science at the University of Helsinki. 
(See [7] for details.) A fast bit-parallel dynamic programming 
algorithm by Myers is used for approximate string matching [8]. 
Transcription invariance is assured by the use of intervals in the 
matching process. 

3. MELODIC RESOLUTION 
Melodic resolution refers to the accuracy of the representation of 
the melody-lines. Essentially different levels of melodic 
resolution are achieved by using different number of intervals to 
represent the melody.  

The use of lower melodic resolution is motivated by the 
approximation that it offers for the user input. When using lower 
resolution the intervals in the input melody do not have to be as 
accurate as with higher resolution. On the other hand the use of 
lower resolution forces the user to use longer search-keys for 
successful retrieval. 

In the developed system five different levels of melodic 
resolution can be used in the matching process. The highest 
resolution presents the melody with semitone accuracy using 25 
intervals (12 up and down and the prime). The lowest resolution 
is the so-called sign-based contour representation that represents 
the melody with only three intervals (see for example [9]). 

3.1 Required Length of the Search-key 
From the users point of view the search-key length is a relevant 
parameter when considering the experienced quality of a 
retrieval system.  
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For the purpose of studying the effect of using different melodic 
resolutions the system was tested with correct typed inputs. That 
is, for every search-key used, there was an exact match in the 
database. The melody lines of 13 different tunes were used as 
search-keys. Typed input was used in this test so that the 
accuracy of the audio analysis would not have an effect on the 
test results. 

The tests showed that on average, in order to find a unique 
match, the sign-based contour representation (3 intervals) 
requires about 1.7 times longer search-keys than the semitone 
resolution.  

In Figure 1 the relationship between the database size and the 
required search-key length is presented. Figure 1 shows the 
average required search-key lengths for four different databases 
with five different levels of melodic resolution. 
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Figure 1. The average search-key lengths required for 
successful unique retrieval using different levels of melodic 
resolution in test MIDI databases of 0.6, 1.2, 2.5 and 3.6 
million notes with correct search-keys. 

The search-key length becomes even more relevant when the 
errors in the input signals are considered. This was studied with 
another test. In this test the same search-keys were used as in the 
previous test but one error was included in each of the keys by 
removing one random note from the pattern.  
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Figure 2. The average search-key lengths required for 
successful unique retrieval in a test MIDI database of 3.6 
million notes. Lower values for correct search-keys and 
higher values for search-keys with one error (one random 
note missing). 

In Figure 2 the required search-key lengths for successful unique 
retrieval in a test database are presented for five different levels 
of melodic resolution. The search-key lengths are calculated for 
an optimal case where the search-key is exactly like the 
corresponding melody-line in the database and for a more 
realistic case where there is one error in the search-key. 

4. CONCLUSIONS 
The tests reported above imply that for large databases 
acoustically driven melody retrieval is not, in the general case, 
accurate enough. This is mainly due to the errors included in the 
search-keys generated by the users. This is not to say that query-
by-humming type applications are not practical and user-friendly 
but it implies that the effective size of a large database has to be 
relatively small if query-by-humming type algorithms are 
applied. 

The tests give an indication of the optimal level of melodic 
resolution from the point of view of search-key lengths. 9-, 7-, 
and 5-interval representations are relatively equal from this 
viewpoint, whereas the 3-interval representation requires 
significantly longer search keys than the other representations. 

The concept of query-by-humming is in many ways a user 
friendly and efficient method for melody retrieval but the tests 
indicate that, from the database size point-of-view, it has some, 
relatively low upper limits beyond which the retrieval process 
becomes too inaccurate and impractical. When these upper limits 
are exceeded some other means for classifying the database 
entries has to be considered. One straightforward method of 
reducing the effective database size is the use of key words to 
identify relevant parts of the database in which the actual melody 
based retrieval process is executed. 
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ABSTRACT 
We present a system for content-based retrieval of perceptually 
similar sound events in audio documents (‘sound spotting’, using 
a query by example. The system consists of three discrete stages: a 
front-end for feature extraction, a self-organizing map, and a 
pattern matching unit. Our paper introduces the approach, 
describes the separate modules and discusses some preliminary 
results and future research. 

1. PROBLEM 
The possibility of storing large quantities of sound or video data 
on digital media has resulted in a growing demand for content-
based retrieval techniques to search multimedia data for particular 
events without using annotations or other meta-data. This paper 
presents an approach to a task that can be described as sound 
spotting: the detection of perceptually similar sounds in a given 
document, using a query by example, i.e. selecting a particular 
sound event and searching for ‘similar’ occurrences. The 
proposed system could be applied to content-based retrieval of 
sound events from broadcasting archives or to aid transcription 
and analysis of non-notated music. 
A particular problem is posed by the definition of perceptual 
similarity: sound perception comprises so many different aspects 
that it is very hard to define a general perceptual distance measure 
for a pair of sounds. Even if the variability is restricted to timbre 
alone, it is still uncertain how to construct a timbre space with 
respect to any underlying acoustical features. Within the scope of 
our system we decided to focus on the spectral evolution of 
sounds by calculating a time-frequency distribution and splitting 
the signal into a series of short-time frames. Similarity can then be 
assessed by comparing sequences of frames. 

2. APPROACH 
Our concept builds on various connectionist approaches to  
modelling the perception of timbre that have been investigated 
over the last ten years [1, 2, 3]. These systems typically consist of 
some kind of auditory model to preprocess the sounds, and a self-
organizing map to classify the resulting feature vectors. The 
reported  experiments involved the classificaton of a small number 
of test sounds equalized in pitch, duration and loudness. To 
extend these models towards evolutions of timbre, pitch and 
loudness we have pursued a dynamic, frame-based approach 
involving three stages. 
First the raw audio data is preprocessed by an auditory model 
performing a feature extraction. The signal is divided into short-

time frames and represented by a series of feature vectors. In the 
current system we use a parametric representation adopted from 
automatic speech recognition, mel-frequency cepstral coefficients 
(MFCC). 
Second a self-organizing map (SOM) is employed to perform a 
vector quantization while mapping the feature vectors onto a two-
dimensional array of units. The SOM assigns a best-matching unit 
to each input vector, so that a sound signal corresponds to a 
sequence of best-matching units. 
Finally a pattern matching algorithm is applied to search the entire 
source for sequences ‘similar’ to a selected pattern. Currently we 
refer to the SOM units simply by discrete symbols (disregarding 
the associated weight vectors and topological relations) and 
perform an approximate matching on the resulting sequences. 

3. SYSTEM COMPONENTS 
3.1 Feature Extraction 
Besides their application in speech recognition mel-frequency 
cepstral coefficients have been successfully utilized for timbre 
analysis [4] and music modeling [5]. MFCC calculation involves 
the following steps: the signal is divided into short frames (10-20 
ms), a discrete Fourier transform is taken of each frame and its 
amplitude spectrum converted to a logarithmic scale to 
approximately model perceived loudness. The spectrum is 
smoothed by combining Fourier bins into outputs of a 40 channel 
mel-spaced filterbank (mel being a psychological measure of pitch 
magnitude). Finally a discrete cosine transform is applied to 
extract principal components and reduce the data to typically 13 
components per frame. 

3.2 Self-Organizing Map 
Self-organizing maps constitute a particular class of artificial 
neural networks, which is inspired by brain maps such as the 
tonotopic map in the auditory cortex [6]. A self-organizing map 
can be imagined as a lattice of neurons, each of which possesses a 
multidimensional weight vector. Feature vectors are mapped onto 
the lattice by assigning a best-matching unit to each vector.  
Self-organization of the map takes place during a training phase, 
where the entire data is repeatedly presented to the network. The 
SOM ‘learns’ the topology of the input data and forms a set of 
ordered discrete reference vectors, which can be regarded as a 
reduced representation of the original data. 
To enable an efficient pattern matching process in the third stage 
of the system we represent the best-matching units by their index 
number only and disregard their mutual relations. A sound sample 
then corresponds to a string of symbols, which can be further 
processed by means of string searching algorithms. 
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3.3 Pattern Matching 
We use a k-difference inexact matching algorithm to retrieve 
approximate matches of a selected pattern from the entire text [7]. 
The algorithm retrieves matches differing by an edit distance of at 
most k, where edit distance denotes the minimum number of 
operations needed to transform one string into another, permitting 
insertion, deletion and substitution of symbols. k can be specified 
with respect to the pattern length (e.g. 40%). 

4. DISCUSSION 
Initial experiments conducted with a MATLAB prototype 
implementation (see Figure 1) have demonstrated varying degrees 
of success in retrieving perceptually similar sounds. Encourageing 
results have been obtained for instance with drum loops, where 
similar sounds could easily be detected. Difficulties arise when an 
event has to be detected in a mixture of different sounds. The 
reduction of the multidimensional feature vectors to index 
numbers and the use of a simple string matching algorithm clearly 
entails a significant loss of potentially important information, 
which could be avoided by a more sophicated distance measure in 
conjunction with a suitable pattern matching algorithm. These 
issues will be addressed in future research. 
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Figure 1. Graphical user interface of the prototype implementation. 
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Abstract

We present an efficient algorithm to retrieve similar music
pieces from an audio database. The algorithm tries to cap-
ture the intuitive notion of similarity perceived by human:
two pieces are similar if they are fully or partially based
on the same score, even if they are performed by different
people or at different speed.

Each audio file is preprocessed to identify local peaks
in signal power. A spectral vector is extracted near each
peak, and a list of such spectral vectors forms our interme-
diate representation of a music piece. A database of such
intermediate representations is constructed, and two pieces
are matched against each other based on a specially-defined
distance function. Matching results are then filtered accord-
ing to some linearity criteria to select the best result to a
user query.

1 Introduction

With the explosive amount of music data available on
the internet in recent years, there has been much interest
in developing new ways to search and retrieve such data
effectively. Most on-line music databases today, such as
Napster and mp3.com, rely on file names or text labels to
do searching and indexing, using traditional text searching
techniques. Although this approach has proven to be useful
and widely accepted, it would be nice to have more sophis-
ticated search capabilities, namely, searching by content.
Potential applications include “intelligent” music retrieval
systems, music identification, plagiarism detection, etc.

Most content-based music retrieval systems operate on
score-based databases such as MIDI, with input methods

�
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ranging from note sequences to melody contours to user-
hummed tunes [2, 5, 6]. Relatively few systems are for raw
audio databases. Our work focuses on raw audio databases;
both the underlying database and the user query are given
in .wav audio format. We develop algorithms to search for
music pieces similar to the user query. Similarity is based on
the intuitive notion of similarity perceived by humans: two
pieces are similar if they are fully or partially based on the
same score, even if they are performed by different people
or at different tempo.

See our full paper [12] for a detailed review of other
related work [1, 3, 4, 7, 8, 9, 10, 11, 14].

2 The Algorithm

The algorithm consists of three components, which are
discussed below.

1. Intermediate Data Generation.

For each music piece, we generate its spectrogram, and
plot its instantaneous power as a function of time. Next,
we identify peaks in this power plot, where peak is de-
fined as a local maximum value within a neighborhood
of a fixed size. Intuitively, these peaks roughly cor-
respond to distinctive notes or rhythmic patterns, with
some inaccuracy that will be compensated in later steps.
We extract the frequency components near each peak,
taking 180 samples of frequency components between
200Hz and 2000Hz. This gives us � spectral vectors of
180 dimensions each, where � is the number of peaks
obtained. After normalization, these � vectors form
our intermediate representation of the corresponding
music piece.

2. Matching.

In this step, two music pieces are compared against
each other by matching spectral vectors in the inter-
mediate data. We associate a “distance” score to each
matching by computing the sum of root-mean-squared
errors between matching vectors plus a penalty term

 



for non-matching items. A dynamic programming ap-
proach is used to find the best matching that minimizes
this distance. Furthermore, a “linearity filtering” step
is taken to ensure that matching vectors reflect a linear
scaling based on a consistent tempo change.

3. Query Processing.

All music files are preprocessed into the intermedi-
ate representation of spectral vectors discussed ear-
lier. Given a query sound clip (also converted into the
intermediate representation), the database is matched
against the query using our minimum-distance match-
ing and linearity filtering algorithms. The pieces that
end up with the highest number of matching points are
selected as answers to the user query.

See [12] for details and analysis of the algorithm.

3 Experiments and Future Work

We identify five different types of “similar” music pairs,
with increasing levels of difficulty:

� Type I: Identical digital copy

� Type II: Same analog source, different digital copies,
possibly with noise

� Type III: Same instrumental performance, different vo-
cal components

� Type IV: Same score, different performances (possibly
at different tempo)

� Type V: Same underlying melody, different otherwise,
with possible transposition

Sound samples of each type can be found at http:
//www-db.stanford.edu/˜yangc/musicir/ .

Tests are conducted on a dataset of 120 music pieces,
each of size 1MB. For each query, items from the database
are ranked according to the number of final matching points
with the query music, and the top 2 matches are returned. For
each of the first 4 similarity types, retrieval accuracy is above
90%. Type-V is the most difficult, and better algorithms
need to be developed to handle it.

We are experimenting with indexing schemes [13] in
order to get faster retrieval response. We are also planning
to augment the algorithm to handle transpositions, i.e., pitch
shifts.
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ABSTRACT
In a way, this talk is addressed to anybody that is involved with
developing systems to aid human in intellectual pursuits. That I
have been using computers to notate, edit, store, and perform
music since the 1960s is almost irrelevant to my being here,
except that it makes me especially sympathetic to the needs of
other musicians.

1. INTRODUCTION
There is a sad truth I wish to bring forcibly to our attention, and
surprisingly, it is one that we all know, though you may have put
in the back of your mind -- for if you thought about it often, it
would either make you mad or drive you mad. And that truth is
that our computers and our software are too hard to use. This
would not be a primary concern of mine if the difficulty was a
necessary consequence of computer technology and the tasks we
are trying to accomplish, but most of the difficulties are
unnecessary. They can be fixed. Computer software is not beyond
our control; unlike the weather, we can do something about it.

The obvious question is this: Considering that computers were
made to help humans with tasks once thought to require intellect
for their successful accomplishment, why were they so difficult to
use? And why hasn't the problem been rectified?

2. DISCUSSION
A good deal of the reason has to do with history. In the computer
industry the term "legacy" is often applied to things developed
long ago and still in use. We have a great deal of this in music.
Some of the notations of music, the layout of the keyboard, the
use of key signatures, our rich variety of clefs, that we have
transposing instruments in the orchestra, and a myriad of other
details of musical life and nomenclature could be streamlined to
great advantage. Yet we are tied into our history, we are trained
from youth in our arcane skills. Because it is training, secured by
repetition upon repetition, it is difficult to dislodge them. If I may
be permitted a personal note, I presently watch my son becoming
professionally competent on the French horn. We are both
horrified that hornists are expected to be able to play in a
profusion of transpositions, a legacy from the days that horn
players slipped in a crook to change key. Why do most modern
editions and orchestral copyists preserve the old notation, now a
relic useful only for tripping over? Because that was the way it
used to be done.

A second reason is fashion. Does anybody find a splash screen on
a computer program useful? Why do we waste pixels on making
window boarders shaded, as if they had thickness (did anybody
not see them when they were flat-looking?). Where legacy
represents ideas that once made sense carried into a world where
they no longer do, fashion is intended to be primarily decorative
when introduced, and then persists mindlessly. Fashion and
legacy are an especially dangerous couple, the Bonnie and Clyde
of usability. An example is the present desktop metaphor for a
computer operating system. The concept is a harmful legacy, the
presentation a miserable fashion. There is not room in this abstract
to detail the reasons.

A third reason is ignorance. Most developers of software are
simply not aware of the strides that have been made in
understanding how humans interact with their electronic servants.
It is challenge enough to have competence in, say, music,
acoustics, and computer science without also having to become a
student of cognetics. Cognetics is the application of cognitive
psychology to the mental side of human-machine interaction
(much as ergonomics is applied physiology, essential in designing
the physical side of human-machine interaction). However, there
is little excuse for not finding a colleague, expert in the field, who
can help out.

There are superb reasons for paying attention to interface design.
If done incorrectly a facility can be made difficult and time-
consuming to use. For example, most music-entry systems (in
fact, all that I have seen) are unnecessarily complex and slow.
They are created on the basis of legacy, fashion, and
incompetence. Published methods for predicting keystroke counts
and time to complete tasks have been long available [1], popular
yet reliable treatments of the foibles of poor design have
appeared, e.g. [2], and a deeper understanding of the ways we
work with interfaces (or instruments) based on recent results in
cognition research has developed in the past few years, along with
quantitative measures of efficiency [3].

If you are going to create software or hardware that interacts with
humans then even a small spark of consideration and humanity
would seem to demand that you acquaint yourself with the basics
of what is known. Otherwise you will, through ignorance, saddle
your users with unnecessarily high error rates and extra work
(leading to lowered productivity, higher risk of repetitive stress
injuries, and the pressures of frustration).

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



3. CONCLUSION
If you use software or hardware, then you should know that what
you are saddled with is not decreed from on high. You will learn
that there is no real excuse to not doing a lot better, and you can
work more effectively with vendors and programmers. In either
case, allow me to point you to the two brief books [2] and [3] on
my list of references. Whether designer, programmer, or user, you
will find yourself better able to deal with technology after a brief
immersion in this most practical corner of evidence-based
psychology.

4. REFERENCES
[1] Card, Moran, and Newell. The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates,
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[2] Norman. The Design of Everyday Things. Basic Books,
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GUIDO/MIR — an Experimental
Musical Inf ormation Retrieval System

basedon GUIDO Music Notation
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Abstract

Musical databasesare growing in number,
size, and complexity, and they are becom-
ing increasinglyrelevant for a broadrange
of academicaswell ascommercialapplica-
tions. The featuresandperformanceof mu-
sical databasesystemscritically dependon
two factors:Thenatureandrepresentationof
the information storedin the database,and
the searchand retrieval mechanismsavail-
ableto theuser. In this paper, we presentan
experimentaldatabaseand retrieval system
for score-level musicalinformationbasedon
GUIDO Music Notation as the underlying
music representation.We motivateandde-
scribethedatabasedesignaswell astheflex-
ible andefficient queryand retrieval mech-
anism,a query-by-exampletechniquebased
on probabilistic matchingover a clustered
dataset.This approachhasnumerousadvan-
tages,andbasedon experiencewith a first,
experimentalimplementation,we believe it
providesa solid foundationfor powerful, ef-
ficient,andusabledatabaseandretrieval sys-
temsfor structuredmusicalinformation.

1 Intr oduction

Multimedia databasesplay an important role, espe-
cially in thecontext of onlinesystemsavailableon the
World Wide Web. As thesedatabasesgrow in number,
size, and complexity, it becomesincreasinglyimpor-
tantto provideflexibleandefficientsearchandretrieval
techniques.Whendealingwith musicaldata,two main
difficulties are encountered:Firstly, the multidimen-
sional,oftencomplex structureof thedatamakesboth
the formulationof queriesandthe matchingof stored�

Correspondingauthor. University of British Columbia,
Departmentof ComputerScience,2366Main Mall, Vancou-
ver, BC, V6T 1Z4,Canada,hoos@cs.ubc.ca�
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datawith a given query difficult. Secondly, there is
oftena considerableamountof uncertaintyor in accu-
racy in thequeryand/orthedata,stemmingfrom limi-
tationsof themethodsusedfor obtainingqueries,such
as“Query-By-Humming”[12], or for acquiringmusi-
cal data,suchasautomatedperformancetranscription,
aswell asfrom simplehumanerrorwhenenteringdata.
While thereis a strongand increasinginterestin da-
tabaseandretrieval systemsfor soundandsound-level
descriptionsof music,many applicationcontexts (par-
ticularly in musicalanalysis,composition,andperfor-
mance)benefitfrom or requirehigher-level, structured
musicrepresentations.Consequently, thereis a grow-
ing body of researchon musical databasesand mu-
sic information retrieval basedon structured,score-
level music representations(see,e.g., [3; 21; 8]). In
this work, we focuson content-basedmusic informa-
tion retrieval from a databaseof score-level musical
databasedon thequery-by-exampleapproach[2]. The
maincontributionsof our work, canbesummarisedas
follows:

1. We useGUIDO Music Notation[16] asthe mu-
sic representationunderlyingthedatabaseaswell
asfor formulatingqueries.Comparedto the use
of MIDI and variousother music representation
formats,this approachhasa numberof concep-
tual and practicaladvantageswhich will be dis-
cussedin detailin thefollowing sections.Wefind
thatGUIDO is particularlysuitablefor formulat-
ing queriesin a query-by-exampleapproach,and
we outline how a small andnaturalextensionof
GUIDO allows the explicit and localisedrepre-
sentationof uncertaintyassociatedwith a given
query.

2. We introducea novel musicretrieval mechanism
basedonprobabilisticmodelsandahierarchically
clusteredmusical database.Using probabilistic
modelsfor musicalinformation retrieval hasthe
advantageof offeringnatural,elegant,andflexible
ways of scoringexact and approximatematches
betweenpiecesin thedatabaseanda givenquery.
While in thiswork,weintroduceandillustratethis
generalconceptusingrathersimpleprobabilistic
models,theapproachcanbeeasilygeneralisedto



morecomplex probabilisticmodels.

3. Wepresentanexperimentaldatabaseandretrieval
systemwhich implementsthe designand tech-
niquesproposedin this paper. This prototypical
system,which is availableontheWWW, supports
various combinationsof melodic and rhythmic
querytypesfor retrieving informationfromadata-
baseof piecesof varyingcomplexity. Thesystem
is implementedin Perl[1] andhighly portable;the
underlying, object-orientedand modular design
facilitatesthe implementationof differentsearch
and retrieval techniquesand the investigationof
their behaviour.

In the following, we presentand discussour overall
approachin moredetail.Westartwith abrief introduc-
tion of GUIDO Music Notationanddiscussits usein
the context of musicaldatabaseandretrieval systems.
In Section3,weoutlineourexperimentalmusicaldata-
basedesignandimplementation.Section4 is thecore
of our work; it motivatesanddescribesour approach
to musicinformationretrieval. Relatedapproachesare
briefly discussedin Section5, andSection6 presents
someconclusionsandoutlinesa numberof directions
for futureresearch.

2 Why GUIDO?

GUIDO Music Notation1 is a generalpurposefor-
mal languagefor representingscorelevel music in a
platform independent,plain-text and human-readable
way [16]. The GUIDO designconcentrateson gen-
eral musicalconcepts(asopposedto only notational,
i.e., graphicalfeatures).Its key featureis representa-
tional adequacy, meaningthatsimplemusicalconcepts
shouldbe representedin a simpleway andonly com-
plex notionsshouldrequirecomplex representations.
Figure 1 containsthree simple examplesof GUIDO
Music Notationandthe matchingconventionalmusic
notation.
The GUIDO designis organisedin threelayers: Ba-
sic,Advanced,andExtendedGUIDO MusicNotation.
Basic GUIDO introducesthebasicGUIDO syntactical
structuresandcoversbasicmusicalnotions;Advanced
GUIDO extendsthis layer to supportexact scorefor-
mattingandmoresophisticatedmusicalconcepts;and
Extended GUIDO introducesfeatureswhich are be-
yondconventionalmusicnotation.GUIDO Music No-
tation is designedas a flexible and easily extensible
openstandard.Thus,it canbeeasilyadaptedandcus-
tomisedto coverspecialisedmusicalconceptsasmight
berequiredin thecontext of researchprojectsin com-
putationalmusicology. GUIDO hasnot beendevel-
opedwith a particularapplicationin mind but to pro-
vide an adequaterepresentationformalism for score-
level music over a broadrangeof applications. The

1GUIDO Music Notationis namedafterGuidod’Arezzo
(ca.992-1050),arenownedmusictheoristof histimeandim-
portantcontributor to today’s conventionalmusicalnotation.

intendedapplicationareasinclude notationsoftware,
compositionalandanalyticalsystemsandtools,musi-
cal databases,performancesystems,andmusicon the
WWW. Currently, agrowing numberof applicationsis
usingGUIDO astheirmusicrepresentationformat.

GUIDO vs.MIDI

Currently, virtually every (content-based)MIR system
works on MIDI files. The two main reasonsfor that
are:� theenormousamountof musicavailableasMIDI

fileson theWWW� the lack of a commonlyusedandacceptedrepre-
sentationformatfor structuredmusic

Although StandardMIDI File (SMF) format is the
mostcommonlyusedmusicinterchangeformat,it does
not adequately supportactivities other thanplayback.
MIDI wasnever intendedto be the notation(andmu-
sic) interchangeformatthatit hasbecometoday.
Thereareseveral reasons,why MIDI is not very well
suited for MIR. A MIDI file containsa low level-
descriptionof musicwhich describesonly the timing
and intensity of notes. Since structural information
suchaschords,slursor tiescannotbestoredin a Stan-
dard MIDI file2, a high- or multilevel descriptionis
not possible.Someof thebasiclimitationsof a MIDI
file arethelack of differentiationbetweenenharmonic
equivalents(e.g..C-sharpandD-flat), andlack of pre-
cision in the durationsbetweenevents(which areex-
pressedin MIDI-ticks).
Our MIR systemhasbeenimplementedusingGUIDO
as its underlyingmusic representationlanguage. To
still beableto usethehugebodyof MIDI files on the
WWW, our group hasdevelopedconvertersbetween
GUIDO andMIDI 3.

GUIDO vs.XML

XML isasimplifiedsubsetof SGML,ageneralmarkup
languagethat hasbeenofficially registeredasa stan-
dard(ISO8879).Becauseof its increasingpopularity,
therehavebeenquiteanumberof attemptsto useit for
storingmusicaldata[14;6] andaswell asfor MusicIn-
formationRetrieval [26]. XML hasobviousandunde-
niablestrengthsasa generalrepresentationlanguage:
it is platformindependent,text-based,human-readable
andextensible.Additionally, by usingXML to repre-
sentmusic, one gainsthe advantageof using a stan-
dardisedmetalanguagefor whichagrowing numberof
toolsarebecomingavailable. To our knowledgenone
of theapproachesto musicrepresentationusingXML
publishedso far hasyet gainedwide acceptance.One

2Usingnon-standardtechniques,it is possibleto storead-
ditional information in MIDI files; however, thesemecha-
nismsarenotpartof thestandard

3GMN2MIDI andMIDI2GMN areavailableat our web
sitehttp://www.salieri.org/guido
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Figure1: Simpleexamplesof GUIDO MusicNotation;morecomplex examplescanbefoundin [17,18].

of the reasonsfor this seemsto lie in the complexity
of musicalstructure;just using a “new” format does
not automaticallyleadto a simpleandeasyto usedata
structure.
To allow theuseof XML-tools whereneeded,wehave
developed GUIDO/XML, a XML compliant format
that completelyencapsulatesGUIDO within a XML
structure. Using GUIDO/XML is simple: we pro-
vide tools that convert GUIDO Music Notation files
into GUIDO/XML files andvice versa.Usingthis ap-
proach,wecancontinuetouseGUIDO MusicNotation
andits associatedtools (SALIERI, NoteAbility, Note-
Server, ParserKit,etc.)but arealsofreeto useany cur-
rentor emergingXML tool.
Oneadvantageof XML is its ability to storesocalled
metadata. A pieceof music can be associatedwith
a composer, a title, a publisher, a publishingdateand
even version information. One can easily add new
metadatafieldsencodingadditionalmusicalinforma-
tion (like for exampleperformance-relateddatafor a
piece). UsingGUIDO/XML in conjunctionwith a set
of metadatainformationcanleadto completeXML-
compatibledescriptionsof structuredmusic.

UsingGUIDO Music Notation for Musical
Databasesand MIR

As we have shown, GUIDO Music Notationoffersan
intuitive yet completeapproachfor representingmusi-
cal data.UsingGUIDO in musicaldatabasesis there-
fore a straightforward task: becauseit is a plain-text
format,noadditionaltoolsarenecessaryto create,ma-
nipulateor to storeGMN files. It is alsopossibleto use
standardtext-compressiontools to minimise storage
space(thesizeof compressedGMN files comparesto
thesizeof MIDI files). By usingexisting toolslike the
GUIDO NoteServer[25], onecan createconventional

musicnotationfrom GUIDO descriptionsquickly.
Becauseof its representationallyadequatedesign,
GMN is also very well suitedfor MIR: Queriescan
be written as(enhanced)GUIDO strings. Userswith
a backgroundin GUIDO can specify even complex
queriesin aneasyway. By usingadditionaltools like
a virtual piano-keyboard,evennoviceusersareableto
build queriesquickly. In Section4 it will be shown,
how usingGUIDO asthe underlyingmusicrepresen-
tation languagesimplifies the taskof building query-
enginesandwe alsodemonstrate,how a slight exten-
sion to GUIDO leadsto an intuitive approachto ap-
proximatematching.
Other representationformats(like XML) do not pro-
vide this feature:a new querylanguagehasto becre-
atedin orderto accessthestoredinformation.As there
is no standardfor musicalqueries(like SQL is for re-
lational databasessystems)a whole rangeof different
musicalquerylanguageswill beproposedin thefuture.

3 The Experimental GUIDO Database

As wasshown in the previoussection,GUIDO Music
Notationis well suitedasa generalmusicrepresenta-
tion language.Our prototypicalMIR systemis build
on thebasisof anexperimentalGUIDO Databasethat
will bedescribedin this section.
The GUIDO Databasecontainsmusicalpiecesstored
asGMN files alongwith someadditionalinformation
which is usedfor efficient retrieval (this will be dis-
cussedin moredetail in the next section). Insteadof
building our musicaldatabasebasedon a conventional
databasesystem,we decidedto implementit in Perl
[1], usingthe regularfile systemfor informationstor-
age.This designoffersanumbersof advantages:� ThePerllanguagehasgoodsupportfor manipula-
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Figure2: Overview of theobject-orienteddesignof our
experimentaldatabaseand information retrieval sys-
tem.

ting textual data(suchasGUIDO or HTML data)
andis well suitedfor rapidprototyping.� Using PERL allows for very easyintegration in
onlinesystems.� Disk storageis cheap,and textual data can be
compressedefficientlyusinggeneralfile compres-
sion techniques;furthermore,modernoperating
systemsallow time-efficient file accessthrough
caching.� It is easyandreasonablyefficient to build index
structuresona file system.� Maintenanceandupdatingof the databaseis rel-
atively easy, sincefunctionality of the operating
systemandunderlyingfile systemcanbeused.

Onedrawbackof thisapproachis thefactthatstandard
databasefunctionality, suchasconcurrentwrite access,
the implementationof accesscontrol, andtransaction
control would have to be implementedseparatelyand
are currently not supported. However, it should be
notedthatin thecontext of musicinformationretrieval,
write operations(i.e., modificationsof or additionsto
the database)arerelatively rarecomparedto readac-
cess(suchasretrieval)andusuallyrestrictedtoselected
users.Interestingly, thesameholdsfor many largeand
heavily usedonlinebiomedicalandliteraturedatabase
systems. Our model is basedon an off-line update
mechanism,wherepiecesareaddedto thedatabaseby
taking the databaseoff-line andgenerating/ updating
theindex structurewhile nootheraccessis permitted.
Our implementationfollows anobjectorienteddesign
which is graphicallysummarisedin Figure2. Details
of theimplementationcanbeseenfrom thesourcesof
our Perl modules,which are publicly available from
http://www.salieri.org/guido/mir .

Currently, our databasesystemcontains about 150
files, most of which have beenconvertedto GUIDO
from other formats like abc and MIDI. Becausethe
conversionfrom MIDI to GUIDO is a complex task
that sometimesneedsmanual interaction, extending
this corpusis time-consuming. However, we expect
that basedon recentimprovementsof our conversion
tools,wewill beableto extendourdatabaseto amuch
larger body of files. Our experimentalsystemis not
optimisedfor speed,andwe arequite certainthat we
will needto increaseits efficiency whenoperatingona
muchlargerdatabase.

4 The Experimental MIR Engine

Our music informationretrieval approachis basedon
the “Query by Example” (QBE) paradigm[2]. QBE
hastheadvantagethatqueriescanbeformulatedin an
easyand intuitive way. In many searchand retrieval
situations,usersappearto prefer the QBE approach
over the useof query languages,which supportmore
complex querieslike booleanexpressions,wildcards,
or regularexpressions.

Query Types

Many musicinformationretrieval systemsareprimar-
ily basedon melodic, i.e., pitch-relatedinformation4.
Types of melodic information that can be used for
queriesareabsolutepitches,pitch-classes,intervals,in-
terval classes(e.g., large/smallintervals)andmelodic
trends(e.g.,up/down/equal). Alternatelyor addition-
ally, rhythmic informationcanbe usedasa basisfor
retrieval. Again, varioustypesof rhythmic informa-
tion canbe distinguished:absolutedurations,relative
durations(or durationratios),or trends(e.g., shorter,
longer, equal).
Our prototypicalMIR Enginesupportsqueriesthatar-
bitrarily combineoneout of five typesof melodicin-
formationwith oneoutof threetypesof rhythmicinfor-
mation.Themelodicqueryfeaturesarethefollowing:
absolutepitch (suchasc1, d#2, etc.), intervals (such
asminor third, major sixth, etc.), interval types(such
assecond,fourth, etc.), interval classes(equal,small,
medium,large),melodic trend(upwards,downwards,
static).Thethreecurrentlysupportedrhythmicfeatures
areabsolutedurations(suchas1/4, 1/8.,etc.),relative
durations(suchas1:2, 4:3, etc.),andrhythmic trends
(shorter, longer, equal). All thesefeaturesare deter-
mined for individual notesor pairs of notes,respec-
tively, suchthataqueryeffectively specifiessequences
of thesefeatures.
Sincewe are following a QBE approach,thesevari-
ous query types(and their combinations)correspond
merelyto differentinterpretationsof thesamemusical
query. For instance,the GMN fragment[g1/4 e1/4
e1/4] canbeusedasapurelymelodicquery, usingab-

4see[21] for anoverview of MIR systemsandtheir pitch
representations



solutepitch. In this case,only the melodicsequence
[g1 e1 e1] would be matched,regardlessof rhythm.
Thesamefragment,usedasa purelyrhythmicalquery
would alsomatch[e1/4 e1/4 e1/4], andeven [ /4 /4
/4]. For informationretrieval basedon the QBE ap-

proach,thisparadigmof “query= data+ featureselec-
tion” is very natural;this appliesparticularlyto multi-
dimensional,complex datasuchasmusicalor graphi-
cal objects.
We canalsodistinguishexact retrieval, wherethetask
is to find exact occurrencesof the informationspeci-
fied in thequery, or approximate(or error-tolerant)re-
trieval, wherea certainamountof deviation between
the query information and the datato be retrieved is
permitted.Here,we first considerexact retrieval, and
laterdiscussbriefly anextensionof ourapproachto ap-
proximateretrieval.

Probabilistic Models

Themusicinformationretrieval approachtakenhereis
basedon the generalideaof characterisingandsum-
marisingmusicalstructureusingprobabilisticmodels.
Searchingfor a fragmentwith a specificmusicalstruc-
ture (specifiedin a query)canthenbedoneby proba-
bilistic matchingusingthesemodels.Here,wepropose
a rathersimpleapproach,which is basedon first-order
Markov chainsfor modeling the melodic and rhyth-
mic contoursof a monophonicpiece of music [15;
9]. Currently, we focus on horizontal queriesonly,
i.e.querieswhichonly involvemonophonicmusic,and
treatpieceswith multiple voices(or chords)ascollec-
tionsof monophonicpieces.
Intuitively, a (discretetime) first-orderMarkov chain
is a probabilisticmodel for a processwhich at each
time is in a state,and at eachtime stepprobabilisti-
cally changesinto a successorstate(which canbe the
sameasthe currentstate)with a probability that only
dependsonthepresentstate.Hence,first-orderMarkov
chainsarecharacterisedby the transitionprobabilities���
	

for enteringstate� asthenext state,whenthecur-
rentstateis � .5 Thetransitionprobabilitiescharacteris-
ing afirst-orderMarkov chaincanbewrittenin form of
a squarematrix 
���� � �
	�� whoserows andcolum in-
dicescorrespondto thestatesof thechain.It shouldbe
notedthatfirst-orderMarkov chainswith a finite setof
statescorrespondto non-deterministicfinite statema-
chines(FSMs),andcanalsobe seenasa specialcase
of HiddenMarkov Models(HMMs) whereemissions
for all statesaredeterministic[24].
In the applicationconsideredhere, we conceptually
useonefirst-orderMarkov chainfor eachmelodicand
rhythmicquerytypeandeachgivenmonophonicpiece.
Thestatesof thesechainscorrespondto pitchesfor ab-

5In this work, we only usehomogenousMarkov chains,
i.e. chains, for which the transition probabilities do not
changeover time. In Section6 we briefly discusshow and
why a moregeneralapproachequivalentto usinginhomoge-
neouschainsmightbeadvantageous.

solutepitch queries,to intervals for interval queries,
to relative durations for relative rhythmic queries,
etc. The correspondingtransition probabilities are
determinedfrom frequency countsover neighbouring
pitches,intervals, note durations,etc. which are nor-
malisedto obtainproperprobabilities.
Figure3 shows the transitionprobability matricesfor
theMarkov chainscharacterisingthesequencesof ab-
solutepitchesanddurationsfor the“HänschenKlein” 6

examplefrom the secondrow of Figure 1 as well as
thecorrespondingrepresentationsasnon-deterministic
finite statemachines;the latter representationis often
moreintuitiveandconcise.
Thetransitionprobabilitiesof thesefirst-orderMarkov
chainssummarisestatisticalpropertiesof the pieces
in the musical database. When trying to find exact
matchesbetweena given queryandpiecesin the da-
tabase,wecanmakeuseof thefollowing simpleobser-
vation: If for agivenpiece� , a transitionthatis present
in thequery(e.g.,anupwardfifth followedby adown-
wardthird)hasprobabilityzero,thereis noexactmatch
of the query in � . Unfortunately, the converseis not
true: Therearecaseswherethereis no exactmatchof
thegivenqueryin � , yet for any neighbouringfeatures
in thequery, thecorrespondingtransitionprobabilities
in � aregreaterthanzero.
Generally, the key ideaof informationretrieval based
onprobabilisticmodelsis thefollowing: Givenapiece� anda probabilisticmodel ����� � for this piece,this
modelcanbe usedto generatepieces��� with proper-
tiessimilar to � . Here,thesepropertiesarethe transi-
tion probabilitiesof the first-orderMarkov chainswe
usefor characterisingsequencesof features. To as-
sessthe potentialof a matchgiven a querysequence� � �������! "�!#$#%#$���'& (wherethe �!( areindividual features
suchaspitches)anda candidatepiece � from the da-
tabase,we determinethe probability )*� �,+ ����� ��� that
theprobabilisticmodelof � , denoted���-� � , generates
thefeaturesequencecorrespondingto thegivenquery� . For oursimpleprobabilisticmodel, ���-� � is charac-
terisedby a matrix of transitionprobabilities

� �
	
, and

theprobabilityof generatingthequerysequencegiven
that model is given by the product of the transition
probabilities

���
	
which correspondto all neighbouring

featuresin thequerysequence:

)*� �,+ ����� ��� �/.10 ���
	 + �2� �'(3� �4� �!($56�7�'8:9<;>=<?A@
Intuitively, this probability score will be higher for
pieceswhich contain many exact matchesthan for
pieceswhich contain few exact matches,and as ex-
plainedabove, it will be zerofor pieceswhich do not
containany exactmatchesat all. Sincetheprobabilis-
tic modelwe useis very simplisticandis certainlyfar
from capturingall relevant (statistical)featuresof the
piecesin the database,we cannotexpectthis intuition
to befully met.However, ourpracticalexperiencewith

6“HänschenKlein” is a popuparGermanchildrenssong
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Figure3: TransitionprobabilitymatricesandFinite StateMachinesfor absolutepitch andabsoluterhythm

the experimentalsystemdescribedhereindicatesthat
evenwhenusingthissimplisticprobabilisticmodel,the
correlationbetweenprobabilityscoresandpiecescon-
tainingexactmatchesis sufficient to beusedasa basis
for amusicinformationretrieval mechanism.
Obviously, the transition probability matricescorre-
spondingto relatedfeatures,suchasabsolutepitches
and intervals, are not independent,and in fact two
matrices(one for absolutepitches,one for absolute
durations)are sufficient as a basis for handling any
type of query. However, in practice,thereis a trade-
off betweenthe amount of pre-computedstatistical
data(transitionprobabilities),andthetimerequiredfor
matchinga given queryagainsta probabilisticmodel
thatmight not beexplicitly available.
Note: The techniquespresentedheredo not directly
supportthe efficient searchof matcheswithin a given
piece (which might have been selectedbasedon a
high probability score for a given query). To effi-
ciently searchmatcheswithin a piece, conventional
techniques,suchassuffix trees(see,e.g.,[20]) canbe
used. Alternatively, piecescanbe segmented(manu-
ally, or automatically, usingany suitablesegmentation
algorithm;see,e.g.,[22]), andprobabilisticmodelling
andmatchingcanbeappliedto thesegmentsindividu-
ally.

Hierarchical Clustering

Theprobabilisticmatchingtechniquedescribedbefore
canhelp to reducesearcheffort by eliminating some
of the piecesthat do not match a given query, and
moreimportantly, by identifying promisingcandidate
piecesbasedon their transition probability matrices
only. However, a naive searchfor good candidates
basedon probabilityscoreswould still requireto eval-
uatethe queryagainstthe probabilisticmodelsfor all
piecesin the database.For very large databases,or
whenshortresponsetimesarerequired,this might be
too time-consuming.
Oneway of addressingthis problemis to organisethe
databasein form of a tree,whereeachleafcorresponds
to oneelement(i.e.,piece)of themusicaldatabase.For
a given query, we could now startat the root andfol-
low thepathsleadingto theleaveswhichcontainpieces
whichmatchthequery. Thiswouldallow usto retrieve

matchesin time proportionalto the heightof the tree,
i.e., logarithmicin thenumberof leavesfor abalanced
tree. In orderto do this, we needa mechanismthatat
eachnodeof the treeallows us to identify the subtree
thatis mostlikely to containa match.
As a first approximationto sucha mechanism,we use
combinedprobabilisticmodelswhich summarisethe
propertiesof all sequencesin a given subtree. Note
that our first-orderMarkov chainmodelcanbe easily
generalisedto setsof piecesinsteadof singlepieces:
Given two pieces � � � �  , we combine the two tran-
sition probability matrices
]��� � � � 
]���  � derived from
theirrespectiveinterval sequencesinto onejoint matrix
]�30�� � � �  @ � by computinga weightedsum suchthat
the resultingtransitionprobabilitiesare equivalent to
thosethatwouldhavebeenobtainedby deriving atran-
sitionprobabilitymatrix from theconcatenation� �_^ �  
of thetwo sequences:

� �30�� �7� �  `@ � �
	 � � �-� �a^ �  � �!	
� + � ��+ � �-� � � �
	6b + �  c+ � �-�  � �
	+ � ��+ b + �  c+

This methodgeneralisesto the caseof combiningthe
models of more than two sequencesin a straight-
forwardway. Matchingfor thesecombinedprobabilis-
tic modelsworks exactly asfor singlepieces,andthe
probability scoresthusobtainedcanbe usedto guide
thesearchfor matchesin a treestructuredindex of the
database.Figure4 showshow thetreestructureof tran-
sition matricesis build; thesearchfor a patternbegins
at theroot matrix andthencontinuesat thedescendant
matricesaslongasthesematchthetransitionprobabil-
itiesof thequery.
Obviously, the topologyof the treeaswell as the de-
cision how piecesand setsof piecesare groupedto-
gethercan have a large impact on the efficiency of
theproposedsearchmechanism.Onepotentiallyvery
fruitful approachfor deriving treestructuresis theuse
of hierarchicalclusteringtechniques[10]. However,
it is presentlynot clearwhethersimilar piecesshould
be clusteredtogetheror whether clusteringdissimi-
lar piecestogetherwould be morebeneficial;the for-
mer approachmight make it easierto identify larger
setsof promisingcandidatesfor matchesearly in the
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Figure4: Treestructuredindex of thedatabase

search,while the latter shouldfacilitateselectingthe
mostprobablematchfrom a setof pieces.
The issuesarising in this context are rathercomplex
and require thoroughempirical analyses;we plan to
further investigateand discusstheseelsewhere. For
our presentprototype,we usea simpleandratherar-
bitrary hierarchicalclusteringresultingin a balanced
treewhereeachnodehasup to 32 children.7 Further-
more,to speedup thesearchwithin this tree,for each
nodewestorethreebit matriceswhoseentriesindicate
whetherthe transitionprobabilitiesin the probabilis-
tic model for the cluster correspondingto that node
exceedsthresholdsof 0, 0.15, and 0.3, respectively.
Thosethresholdmatricesareusedfor rapidlyselecting
themostpromisingsubclusterat eachinternalnodeof
the clustertree that is visited during the search.(For
detailsof this mechanism,see[13].)
Onceagain,it shouldbenotedthatthemechanismsin-
troducedhereserve a doublepurpose:They can po-
tentially prunelargepartsof thesearch,for which ex-
act matchescannotbe encountered(basedon the oc-
currenceof transition probabilitieswith value zero),
and they alsoheuristicallyguide the searchsuchthat
promisingcandidatepiecesare identifiedearly in the
search.

ApproximateMatching and Err or-tolerant
Search

Often, queriesare inaccurateor may containerrors,
and relevant matchescannotexpectedto be perfect
matches.In othercases,a userqueryinga musicalda-
tabasesystemmightbeinterestedin “almostmatches”,
which might indicate interestingmusicalsimilarities.
One way of addressingthis situation is to useexact

7The number32 is chosenin order to allow bit-parallel
operationsto beusedon this data,seealso[21].

matchingin combinationwith “fuzzy” queriesthatsup-
port featuressuchasmelodicor rhythmictrendsor in-
terval classes.But this is not alwaysthe mostappro-
priateapproach,andmany musicapproximateretrieval
mechanismsinsteador additionallysupporttrueerror-
tolerantsearch,which allows (penalised)mismatches
whenmatchingqueriesagainstpiecesfrom the given
musicaldatabase8.
Our retrieval mechanismbasedon probabilisticmod-
els, although primarily developed for exact match-
ing, quite naturallyextendsto a certaintype of error-
tolerantsearch.To thatend,both the searchfor good
candidatesequences,aswell as the searchwithin the
sequencesneedto bemodified. While we cannotdis-
cussthe technicaldetailsof theseextensionshere,we
will outlinethegeneralideasandprovideadetailedde-
scriptionelsewhere.
To localise candidatesequencesin an error-tolerant
way, we could modify the probabilisticmodelsasso-
ciatedwith the individual piecesin the databasewith
prior information by factoring pseudo-observations
into all transition probabilities (this is a standard
method in machine learning, which is applied fre-
quently when probabilistically modelling sequence
data,see,e.g.,[4]). Intuitively, thiswould reflectacer-
tain degreeof uncertaintyaboutthe piecesin the da-
tabase.The hierarchicalclusteringof the probabilis-
tic modelsand the searchprocessbasedon scoring
the query sequenceusing theseprobabilistic models
remainsunchanged,but the whole processnow sup-
portsimperfectmatches,which arestill penalised,but
no longerruledout.
Thesameeffect canachievedby factoringtheprior in-
formationinto thequery;this correspondsto allowing
for errorsor inaccuraciesin thequery. Themechanism
is exactly the same,only now the prior is associated
with the queryandgetsdynamicallyfactoredinto the
probabilisticscoringprocessrather than folded stati-
cally into thetransitionmatricesstoredin thedatabase.
Underthis view, it is possibleto allow theuncertainty
associatedwith particularaspectsof the query to be
explicitly specified.For example,a usermight be ab-
solutelycertainaboutthefirst andthesecondpitch of
a melodic fragmentusedas a query, but lesscertain
aboutthethird pitch,andveryuncertainabouta fourth
one.9 We devisedanextensionof GUIDO Music No-
tationthatallows to expresssuchlocal uncertaintiesin
a simpleandintuitive way by usinga thesymbols“?”
and“ !”. An instanceof theexamplegivenabovecould
thusbespecifiedas[g1! e1! e1? f1??]. We arecur-
rentlyworkingonextendingthisconceptto all melodic
andrhythmicfeaturessupportedby ourMIR Engine.

8See[21] for an overview of MIR systemand their ap-
proximatematchingtypes.

9Note that this information neednot necessarilybe ex-
plicitly enteredby theuser— it couldtheoreticallybeadded
automaticallybasedon a learnedmodel of typical errors
madeby (particular)users,e.g., in the context of a Query-
by-Hummingapproach.



The secondstageof error-tolerant retrieval, locating
approximatematcheswithin candidatepieces,canbe
handledin many different ways, including standard
methodsbasedon edit-distancesaswell astechniques
closelyrelatedto theonewediscussedfor findingcan-
didatepiecesin an error-tolerantway. The latter ap-
proachappearsto beconceptuallymoreelegant;weare
currently developing a unified approximateretrieval
mechanismbasedon this idea,whichwill bediscussed
in detailelsewhere.(Thecurrentimplementationof our
experimentalRetrieval Enginecontainsa moreadhoc
methodfor error-tolerantsearch,which we intend to
replacewith thetheoreticallymoresolidapproachout-
lined above.)

5 RelatedWork

Over the last few years,a substantialamountof work
on musicdatabaseandretrieval systemshasbeenpub-
lished. While we cannotnearlycover all relevant ap-
proaches,we will outline anddiscusssimilaritiesand
differencesbetweenthekey ideasof our approachand
somerecentandearlierwork in thefield.
Lemstr̈om andLaine recognisedearly that musicrep-
resentationswhicharemoreexpressivethanMIDI pro-
vide a betterbasisfor certainretrieval tasks(see[20];
thispaperalsocontainsaniceoverview of earlierwork
in music information retrieval). Recently, a number
of musicaldatabaseand retrieval systemshave been
developedin which music representationsother (and
moreexpressive) thanMIDI areused(see,e.g., [5]);
however, we believe thatour useof GUIDO goesone
stepfurther thanmostof thesein usinga uniform for-
malismfor representingpiecesin thedatabaseandfor
formulatingquerieswhich is powerful enoughto cap-
turebasicallyany aspectof a musicalscore.Although
our presentsystemonly supportsqueriesbasedon pri-
mary melodicandrhythmic features,we feel that the
ability to extendthis in a naturalway to othermusical
concepts,suchaskey, metre,or barlineinformation,is
animportantadvantageof ourapproach.
Recently, a numberof XML-basedmusic representa-
tionshave beenproposed(see,e.g.,[14; 26; 6]. While
theseoffer someadvantagesby allowing the use of
standardXML toolsandcertainlyhavethepotentialto
representarbitraryaspectsof score-level music,weare
notawareof any existingmusicaldatabaseandretrieval
systembasedonanXML-representation.As discussed
in Section2 of this paper, XML-basedrepresentations
sharemany desirablefeatureswith GUIDO. Aside
from tool support,we cannotseeany featureswhich
would make XML intrinsically suitablefor content-
basedmusicinformationretrieval. While XML-based
representationsare typically much too verboseand
syntacticallycomplex to be useddirectly for musical
queries,many aspectsof our work (particularly our
retrieval technique)are independentfrom the use of
GUIDO as the underlyingmusic representation,and
canbeeasilyappliedto abroadrangeof otherformats.

Sonodaet al. have beendeveloping a WWW-based
system for retrieving musical information from an
online musical databasebased on the “Query-by-
Humming” approach[19; 28]. Their systemis based
on MIDI as the underlyingmusic representation,and
their indexing and retrieval method,which usesdy-
namic programmingfor matching,hasrecentlybeen
optimised for efficient retrieval from large musical
databases[29]. Similar to their approach,we follow
the“Query-by-Example”paradigm(usingGUIDO in-
steadof MIDI) andacknowledgethatmatchingagainst
largedatabases,usingdynamicprogrammingor simi-
lar techniques,canbe prohibitively inefficient, partic-
ularly in the context of an on-line system. Our prob-
abilisticmatchingtechniqueis fundamentallydifferent
from their “ShortDynamicProgramming”.Their tech-
niquerequiresvery largeindeces(comparedto thesize
of thedatabase),while ourprobabilisticmodelsarerel-
atively compact. Their retrieval techniqueis a rather
efficientstand-alonemethodfor findingmatchesin the
given database.10 In contrast,we mainly focus on a
techniquefor identifying promisingcandidatepieces
in the database,which canbe combinedwith various
methodsfor identifying matcheswithin a given piece
(e.g.,dynamicprogramming).Anotherdifferencebe-
tweentheir approachandoursis the fact that they fo-
cus on melodic information alone,while we support
queriesthatcancombinevariousmelodicandrhythmic
features. Evidencefor the importanceof supporting
suchcombinedqueriesis givenin [8], who usea fixed
time-grid for rhythmical structure(in contrastto our
more flexible rhythmical query types)anda retrieval
methodbasedon invertedfile indexing.
An interestingapproachto musicinformationretrieval
whichhasrecentlygainedsomepopularityis theuseof
text-retrieval methodson suitablyencodedmusicrep-
resentations[23]. Although our systemusesa text-
basedmusicrepresentation,our approachto musicin-
formation retrieval is radically different,andactually
morerelatedto techniquesfor biomolecularsequence
analysisandgenomicinformation retrieval (see,e.g.,
[11; 4]). It is our belief that musicalinformation is
in many ways inherentlydifferentfrom text, andthat
specificpropertiesof musicaldatashouldbeexploited
for musicinformationretrieval. To thatend,sequence
retrieval methodsdevelopedfor text datacan poten-
tially provide a valuablestarting point (as has been
the casefor biomolecularsequenceanalysis),but ul-
timatelywill haveto becomplementedandaugmented
by techniquesspecificallydevelopedfor musicaldata.
The probabilisticmatchingapproachwe proposepro-
videsabasisfor suchtechniques,andtheoveralldesign
of oursystemfacilitatessuchextensions.Furthermore,
text-basedmethodscanbe usedin the context of our
approachfor locatingmatcheswithin candidatepieces
identifiedby ourprobabilisticmatchingtechnique.

10Sincetheonly evaluationof theirapproachweareaware
of is basedon a databaseof mainly randompieces,we feel
thattheaccuracy of themethodin practiceis hardto assess.



Generally, our probabilistic modelling approachis
basedon characterisationsof the underlyingmusical
datawhichcanbepotentiallyusefulfor purposesother
thaninformationretrieval, suchasanalysisor compo-
sition (see,e.g., [9]).11 In this sense,our approach
is related to work by Thom and Dannenberg [31;
30], who useprobabilisticmodelsandmachinelearn-
ing techniquesfor characterisingmelodies.
Finally, let uspoint out a generalproblemwith almost
any work oncontent-basedmusicinformationretrieval
we are aware of (including our own work presented
here): the lack of a corpusof musicfor testingtheef-
ficiency andaccuracy of musicretrieval systems.Part
of the reasonfor this is the lack of a commonlyused
andwidely supportedmusic interchangeformat. We
believe that GUIDO Music Notationhasthe potential
to remedythis situation,andwe arecurrentlyworking
on translatingvariouscollectionsof musicalmaterial
into GUIDO, in orderto integratetheseinto our exper-
imentalmusicaldatabase.

6 Conclusionsand Future Work

In this paperwe have presentedthe conceptof a da-
tabasesystemfor structured,score-level musical in-
formation and introduceda query-by-examplemech-
anismfor retrieving informationbasedon a varietyof
melodicandrhythmic searchcriteria. The underlying
musicretrieval methodusesprobabilisticmodelsanda
hierarchicalclusteringof thedatabasefor pruningand
heuristicallyguiding thesearch.We alsopresentedan
extensionof GUIDO Music Notation,themusicrepre-
sentationlanguagewe usefor the piecesin the data-
baseaswell asfor queries,whichallowsexpressinglo-
caliseduncertaintyin musicalqueries;andwe briefly
describedanextensionof our retrieval mechanismthat
usessuchextendedqueriesfor approximateprobabilis-
tic matching.
A first prototypeof the databasesystemandretrieval
enginehasbeenimplementedand testedon a set of
about150relatively simplemusicalpiecesin GUIDO
NotationFormat. This experimentalsystemhasbeen
equippedwith a WWW interface and is available
onlineat http://www.salieri.org/guido/mir/ .
Our experiencewith this smallprototypesuggeststhat
the approachpresentedherecanprovide a solid foun-
dationfor largerandmorecomplex databaseandinfor-
mationretrieval systemsfor structuredmusicaldata.
Conceptuallyaswell aswith respectto theimplemen-
tation, this work is still in a relatively earlystage,and
many aspectsof it will befurtherexploredandrefined
in the future. On the practicalside,an obviousexten-
sionof our work is to testour systemandmethodson
largermusicaldatabases.To thatend,we have begun
to includeabroadrangeof structuredmusicaldata,in-
cluding the“EssenFolksongCollection” [27] into our

11The simple probabilisticmodelsusedhere,as well as
morecomplex models,canbeusedfor generatingstatistically
similar fragmentsof music.

dataset.Finally, wehopeto getaccessto thedatacom-
ing out of Fujinagaet al.’s “Optical Music Recogni-
tion System”[7], wherea largecollectionof American
sheetmusicis automaticallyconvertedintoGUIDO de-
scriptions.With thisadditionaldata,wehopeto beable
to conductsometestswith thousandsto ten-thousands
of piecesin GUIDO Music Notation in the near fu-
ture.Wealsointendto improvetheintegrationwith the
experimentaldatabase/MIRsystemwith otherGUIDO
toolsandapplications,in particularwith thelatestver-
sion of the GUIDO NoteServer [25] (for visualising
themusicaldata),converters(in particularGUIDO-to-
MIDI for playback),andanalysistoolswhich arecur-
rentlyunderdevelopment.
Anotherdirectionwe would like to explorein thenear
future is to supportquerieswhich allow the use of
GUIDO tagsin addition to melodicandrhythmic in-
formation.Clearly, theinformationrepresentedby tags
in theGUIDO datacomprisingtheelementsof theda-
tabasecanbemusicallyvery meaningful,andin many
contextswe considerit desirableto includesuchinfor-
mationin musicalqueries.This couldbe very useful,
e.g., in order to supportthe specificationof tonality,
metre,or instrumentinformationin a query;similarly,
constraintson themetricpositionwithin barscouldbe
expressedin queriesby includingbarlines,andinclud-
ing expressivemarkingsor dynamicinformationcould
help to make approximatequeriesmorespecific. The
probabilisticmatchingmechanismpresentedherecan
be extendedin variouswaysto accommodatequeries
including tag information,anddetermininga theoret-
ically elegantandpracticallyeffective solutionto this
problemis a challengingproblemfor futureresearch.
Evenwhenjust consideringthemelodicandrhythmic
querytypessupportedin our presentsystem,it might
beinterestingto investigatemorepowerful probabilis-
tic modelsasabasisfor thecharacterisationof themu-
sical datawhich is at the coreof our retrieval mecha-
nism. Obviously, higher-orderMarkov modelscould
beusedto capturemoreof the local structure,andad-
ditional statisticalinformationwhich betterresembles
aspectsof the global structureof larger piecescould
be usedin addition to simple Markov chains. Fur-
thermore,largerpiecescanbemoreappropriatelyhan-
dledby segmentingtheminto smallerfragments(using
standardsegmentationapproaches),for which proba-
bilistic modelsarethenconstructedindividually. This
way, local structurecanbe capturedmoreadequately
andprobabilisticmatchingbasedonthefragmentmod-
elswill bemoreaccurate.
Finally, weareinterestedin extendingourapproachbe-
yondpurelyhorizontalqueriesby allowing polyphonic
featuresto be included in queries. We seetwo fun-
damentalapproachesfor suchanextension:Allowing
chordsand possibly tags referring to harmoniccon-
text to beincludedin monophonicqueries,or support-
ing full polyphonicqueriesthat specifysimultaneous
monophonicvoices. We believe that our generalap-
proachshouldin principlebeapplicableto eithertype



of polyphonicquery, but clearly, substantialfurther in-
vestigationwill be requiredto devise and implement
thecorrespondingretrieval algorithms.Overall,weare
convinced that the work presentedherewill provide
a goodbasisfor theseandother generalisedretrieval
tasks.
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Abstract: 
Music title identification is a key ingredient of content-
based electronic music distribution. Because of the lack 
of standards in music identification – or the lack of 
enforcement of existing standards – there is a huge 
amount of unidentified music files in the world. We 
propose here an identification mechanism that exploits 
the information possibly contained in the file name itself. 
We study large corpora of files whose names are decided 
by humans without particular constraints other than 
readability, and draw various hypotheses concerning the 
natural syntaxes that emerge from these corpora. A 
central hypothesis is the local syntactic consistency, 
which claims that file name syntaxes, whatever they are, 
are locally consistent within clusters of related music 
files. These heuristics allow to parse successfully file 
names without knowing their syntax a priori, using 
statistical measures on clusters of files, rather than on 
parsing files on a strict individual basis. Based on these 
validated hypothesis we propose a heuristics-based 
parsing system and illustrate it in the context of an 
Electronic Music Distribution project. 

1 Introduction 

The recent progress of digital audio technologies and the 
availability of easy and cheap Internet access have led to 
the proliferation of music files on the planet. 
Efficient digital audio compression format such as mp3 
have made possible the distribution of music on a large 
scale, using all sorts of broadcasting techniques and 
supports, such as peer-to-peer communication systems. 
This proliferation of music data around the globe is not 
incidental, and may be seen as a sign of the huge pressure 
for Electronic Music Distribution (EMD) from the 
community of music listeners. 
EMD, however, is more than just representing music as 
audio files. Confronted to large databases, users can only 
access what they know, and content-based management 
techniques are acknowledged to be a necessary ingredient 
to fulfil the target of true, personalized music distribution.  
 
 
 
 
 
 
 
 
 

Content-based music access requires, between other 
things, the ability of extracting features from the signal, 
of gathering descriptions of various source of textual 
information, of modelling user profiles and matching 
these profiles to music descriptors, etc. (see Pachet, 
2001a for a survey). Among these requirements, one key 
issue is music identification: how to identify in a non-
ambiguous way music files. This identification is crucial 
to allow the management of metadata, copyrights, 
profiles, recommendation systems, etc. Without a solid 
identification mechanism, EMD may well turn into a 
gigantic and serendipitous adventure for users, content 
providers and distributors. 
Various standardization efforts have been conducted to 
define universal codes for music titles. The most famous 
is probably the ISRC (International Standard Recording 
Code), developed by ISO (ISO 3901) to identify sound 
and audio-visual recordings. ISRC is a unique identifier 
of each recording that makes up an album. Unfortunately 
it is not followed by all music production companies, and 
hardly used in unofficial music sources such as peer-to-
peer communication systems. 
Another problem is that, even when a code could be used, 
it is not: for instance, digital music encoded in the audio 
CD format usually does not contain information on the 
music identification. Strangely enough, it is not possible 
to get the track listing information from a CD. External 
databases of track listings for commercial CDs have been 
developed, such as CDDB. CDDB works by associating 
track-listing information to audio signatures of CDs. To 
allow scaling up, CDDB is a collective effort: the 
database is made up by the users themselves. While this 
collaborative aspect does allow scaling up (there are more 
than 4 millions CDs registered on CDDB), there is an 
obvious drawback to this enterprise: the track listing 
information is not guaranteed, which leads to many 
errors, duplications and to the difficulty of identifying 
correctly music titles. 
There are other sectors of the music production chain that 
are concerned with music title identification, such as 
radios (which display their track listing on Internet for 
instance) or copyright associations (which have to keep 
track of broadcasted titles to compute the payment of 
royalties). In each case, ad hoc and proprietary schemes 
have been devised, but there is no convergence of music 
identification methods. 
There are several approaches to the identification of 
audio music sources. The most straightforward one 
consists in analysing the signal, typically a portion of the 
whole music title, to extract an audio signature. This 
signature is then matched against a database of pre-
recorded music signals. This task is, for instance, 
addressed by technologies such as Broadcast Data 
Systems (US) or MediaControl (Germany), and is used 



  

by copyrights management companies to infer radio play 
lists. The techniques used to perform the identification 
range from usual pattern matching to more elaborate 
statistical methods based on characterization of the 
evolution of spectral behaviours. In all cases, the 
identification requires a database of all music files 
created beforehand. Such a global database is far from 
realistic in the near future sot the approach can work only 
within limited contexts. 
Another approach consists in exploiting external 
information about the music source. For instance, the 
Emarker system (Emarker, 2001), exploits the 
geographical and temporal location of a radio listener 
requesting a song, and then queries a large database 
containing all radio stations programs by time and 
location. The approach is of course much lighter than the 
signal based approach since no signal processing is 
required, and can scale-up to recognize virtually any 
number of titles. It works of course only for titles played 
on official radio stations. 
In this paper we describe another approach, more suited 
to personal music file management systems, for which no 
radio track listing is available for identification, and 
which does not require the management of a global, 
universal database of music titles. This approach is based 
on the analysis of actual music file names. 
More precisely, we consider the context of popular music 
titles, and therefore seek to identify two main information 
for a music source: the artist (or performer) identification, 
and the actual name of the music title. We consider music 
file names coming from natural sources, such as personal 
hard disk drives (usually filled with audio files coming 
from peer-to-peer communication systems), track listing 
databases (such as CDDB), or radio track listings. In all 
these cases, the file names are input by users who do not 
follow any constraint, other than human readability. 
We consider here information contained in music file 
names, and not identification from the signal, or from 
other external sources of information (such as ID tags in 
mp3 files, see Hacker, 2000). These other methods are 
orthogonal to the method proposed here. In an ideal case, 
music identification could exploit all these methods 
collaboratively. 
We will first introduce the context of our study, and the 
corpora analysed (Section 2.1). We then propose several 
assumptions for guiding the analysis process, the main 
assumption being a local consistency assumption (Section 
2.2). We perform a statistical analysis of these corpora to 
validate the assumptions and draw corresponding 
heuristics. Finally, we describe FNI, a system that 
implements our heuristics, and illustrate how it performs 
in the context of a real world Electronic Music 
Distribution system developed at Sony CSL, within the 
European CUIDADO IST-funded project. 

2 Popular Music file names 

Music file names may contain various types of 
information about a music title. In our context we focus 
on popular music, for which two information are of 
interest: the artist or interpreter identifier, and the actual 
title name. In some cases, file names can also contain 
other information such as the album or track number. In 

the case of Classical music, the notion of artist is more 
complex, and identification may contain both composer 
and performer identifier. Additionally, various identifiers 
may also be present, such as the version (instrumental, 
remix, etc). Several statistical approaches have been 
proposed to parse text automatically into coherent 
segments, corresponding for instance to different topics 
in news transcripts (see e.g Beeferman et al., 1999). In 
our case, the textual data considered is much shorter and 
the domain (music works) is narrower, so we show that it 
is possible to derive heuristics to implement an efficient 
parsing system without a learning component, at least as 
a first approximation. 

2.1 Corpora studied 
Music files names are typically found in the following 
locations: 1) personal storage systems such as hard disks, 
2) radio program track listings and 3) repositories of 
musical metadata. For the purpose of our study, we 
identified three such databases: a subset of 22, 302 album 
track listings from the CDDB database containing track 
listings for about 4 millions CD albums, 2) a 1-year 
listing of a radio station broadcasting music in a large 
variety of styles (Fip/RadioFrance) and 3) a set of file 
listings (about 3000 files) of personal hard-disks of 
intensive users of peer-to-peer music communication 
systems. 
These three cases share a common characteristic: the file 
names they contain have been specified by individuals on 
whom no particular syntactic constraint was enforced, 
other than human readability, i.e. the fact that these 
names should be understood easily by other individuals 
of the same community. The individuals name their files 
as they wish, and these personal conventions are simply 
spread through the community without modification. In 
CDDB, the principle of the database is collaboration: 
albums track-listings are given by the users themselves. 
Although the editors for entering track-listing information 
may in some case force some structure (e.g. differentiate 
title and artists), there is no unique syntax valid for all 
track listings, as illustrated below. In the case of radio 
stations broadcasting their programs, there may more be 
cohesion since these programs are entered by a smaller 
number of individuals, but, similarly, the syntax will not 
be constant, and will differ from a radio station to another 
one. However, the case of radios is simplified by the fact 
that the syntax of file names is usually constant for a 
given radio. 
To illustrate our study, we give below some typical 
examples of file names coming from the sources at hand. 
 
The Rol l i ng St ones -  Angi e 
The Beat l es -  Oh!  Dar l i ng 
Eagl es -  Hot el  Cal i f or ni a 
Si mon & Gar f unkel  -  The Sound Of  Si l ence 
Kansas -  Dust  I n The Wi nd 
Amer i ca -  The Last  Uni cor n 
Cr eedence Cl ear wat er  Revi val  -  I  Put  A Spel l  On 
You 
The Beat l es -  Let  I t  Be 
The Tr emel oes -  Si l ence I s  Gol den 
Hol l i es -  He Ai n’ t  Heavy He’ s My Br ot her  
Zz Top -  Bl ue Jeans Bl ues 
Si mon & Gar f unken -  El  Condor  Pasa ( I t  I  Coul d)  
Bee Gees -  Massachuset t s  



  

Omega -  The Gi r l  Wi t h The Pear l ’ s  Hai r  -  
Feat ur i ng Gabor  Pr esser ,  Ann 

Figure 1. File names found on the CDDB database, for  an 
album entitled “ Golden Rock Ballads V.1”  

 
d: \ mp3\ CSL2- 1\ Var i ous -  Ani mal s -  The house of  
t he r i s i ng sun. mp3 
d: \ mp3\ CSL2- 1\ Var i ous -  The Mi ndbender s -  A 
gr oovy k i nd of  l ove. mp3 
d: \ mp3\ CSL2- 1\ Var i ous -  Hol l i es -  The Ai r  That  I  
Br eat he. mp3 
d: \ mp3\ CSL2- 1\ Var i ous -  The Beat l es -  Ai n’ t  she 
sweet . mp3 
d: \ mp3\ CSL2- 1\ Var i ous -  Bee Gees -  
Massachuset t s . mp3 
d: \ mp3\ CSL2- 1\ Var i ous -  The Moody Bl ues -  Ni ght s 
i n whi t e sat i n. mp3 
d: \ mp3\ CSL2- 1\ Si mon and Gar f unkel  – El  Condor  
Pasa ( I f  I  Coul d) . mp3 
d: \ mp3\ CSL2- 1\ Si mon and Gar f unkel  – The Sound of  
Si l ence. mp3 
d: \ mp3\ CSL2- 1\ Bee Gees -  Sat ur day Ni ght  
Fever . mp3 
d: \ mp3\ CSL2- 1\ Beast i e Boys -  Song f or  Juni or . mp3 
d: \ mp3\ CSL2- 1\ Beach Boys -  Good Vi br at i ons. mp3 
d: \ mp3\ CSL2- 1\ 01 -  The Beat l es -  Doct or  
Rober t . mp3 
d: \ mp3\ CSL2- 1\ 05 -  The Beat l es -  Sgt  Pepper ’ s  
Lonel y Hear t s. mp3 
d: \ mp3\ CSL2- 9\ Var i ous -  Rock F. M\ Or i gi nal  Rock 
N° 5 -  Cr ack The Wor l d Lt d -  Fi ne Young Canni bal s 
-  She Dr i ves Me Cr azy. mp3 
d: \ mp3\ CSL2- 9\ Var i ous -  Rock F. M\ Or i gi nal  Rock 
N° 5 -  Cr ack The Wor l d Lt d -  The Beach Boys -  I  
Get  Ar ound. mp3 
d: \ mp3\ Jazz\ STAN_GETZ\ MENI NA_MOCA. mp3 
d: \ mp3\ Jazz\ STAN_GETZ\ SAMBA_DE_UMA_NOTA_SO. mp3 

Figure 2.  File names found on a personal hard disk. 

 

17: 54 OH DARLI NG,  THE BEATLES 
ABBEY ROAD ( 1969 EMI )  

17: 57 I  BELONG TO YOU,  LENNY KRAVI TZ 
5 ( 1998 VI RGI N)  

18: 01 FATI GUE D ETRE FATI GUE,  LES RI TA MI TSOUKO 
COOL FRENESI E ( 2000 DELABEL)  

18: 09 I T AI N T NECESSARI LY SO,  MI LES DAVI S 
BESS ( 1958 CBS)  

18: 14 ENTRE VOUS NOUVI AUX MARI ES,  ALLA FRANCESCA 
BEAUTE PARFAI TE /  ALLA FRANCESCA ( 1997 

OPUS 111)  
18: 16 FOR EMI LY WHENEVER I  MAY FI ND HER,  SI MON 
AND GARFUNKEL 

COLLECTED WORKS ( 1966 CBS)  

Figure 3. A typical radio program on Fip/Radio France. 

 
9: 28 Bach:  Concer t o #4 i n A,  BWV 1055 ( Gl enn 
Goul d,  pi ano,  Col umbi a SO/ Gol schmann)  CBS 38524 
9: 50 Bach/ Manze:  Toccat a & f ugue i n d,  BWV 565 
( Andr ew Manze,  sol o v i ol i n)  Har moni a Mundi  
907250. 51 
10: 04 Jar omí r  Wei nber ger :  Pol ka & f ugue f r om 
Schwanda t he Bagpi per  ( Phi l adel phi a O/ Or mandy)  
Sony 63053 
10: 21 Shost akovi ch:  Pi ano concer t o #2 i n F,  
Op. 101 ( Mi khai l  Rudy,  St .  Pet er sbur g PO/ Jansons)  
EMI  Cl assi cs 56591  
10: 49 Dvor ák :  Bagat el l es,  Op. 47 ( Takács Qr t . )  
London 430 077  
11: 14 Fal l a:  El  sombr er o de t r es pi cos ( Thr ee-
Cor ner ed Hat ) ,  par t  1 ( Jenni f er  Lar mor e,  Chi cago 
SO/ Bar enboi m)  Tel dec 0630- 17145  

Figure 4. Another  typical radio program on 
WFCR/Western New England. 

2.2 Clusters 
An important remark to be made is that the music files 
considered are usually organized in different levels. In 
CDDB, there is only one level which is the album, itself 
containing tracks. On personal hard disks, there may be 
any number of levels, represented by the directory 
structure of file systems. For the sake of generality, we 
consider that the database of file names is structured by 
clusters – possibly – recursively. Clusters may contain 
either other clusters of file names. 
As we can see, there is no universally valid syntax, either 
at the lexeme level (morphology of informative elements) 
or the music file level (actual syntax). However, these file 
names are not totally random, and some regularities can 
be identified, in particular at the cluster level. In the next 
section, we examine more closely the regularities found 
in these various sources, from which we will draw a set 
of heuristics for an automatic file name recogniser.  

2.3 An Empirical Analysis 
A manual analysis of a subset of our databases was 
performed, to identify the most salient characteristics of 
file names. This manual analysis of some examples yields 
a number of regularities: 
 
1) Regularities at the file name level. There is a small 

number of delimiters that are used for separating 
artist and title information. Based on these 
delimiters, there are some syntaxes with a higher 
degree of probability than others. For instance: 
“artist – title “  such as “The Beatles - Oh! Darling” , 
“ title – artist”  such as “Oh Darling, The Beatles” ,  or 
“constant term – artist – title”  such as “Various - The 
Beatles - Ain't she sweet” , etc. 

2) Regularities at the word level. Artist names are 
usually found under a restricted number of syntactic 
forms, such as: “Paul McCartney” , “McCartney, 
Paul” , “Mc Cartney” , or “The Beatles” , “Beatles, 
the” , “Beatles” . 

3) Most importantly, regularities at the cluster level. It 
appears that syntaxes, as cumbersome as they may 
sometimes be, are not distributed uniformly: within a 
cluster, it is often the case than all titles follow the 
same syntax, or, at least, a small number of syntaxes. 
This remark is at the core of our proposal, as we will 
see below.  

 
Based on these remarks, we propose the following four 
hypotheses relative to music file name analysis: 
 
Delimiter  Hypothesis: 
This hypothesis states that the artist and title name 
information are indeed separated by delimiters, which are 
special characters within a given, small set of characters.  
As a special case, we consider that a file name using no 
separators is a title name without reference to its artist. 
  
Constant Term Hypothesis: 
Several syntaxes may contain constant terms, which are 
not directly relevant. A constant term can be for instance 
the album name, a date, or key words such as “Various 
Artists”  (see Figure 2). The notion of constant term here 
is augmented by integrating possibly varying numerals, to 



  

handle cases such as track numbers (“Track 1,”  Track 2” , 
etc. see Figure 2). 
 
Word Morphology Hypothesis: 
Artist names and title names have statistically different 
morphologies. For instance, the number of words for 
artist names is less important than the number of words 
used for title names. Additionally, artist names often 
make use of a limited number of specific heuristics 
related to first name (McCartney, Paul”  is the same than 
“Paul McCartney”  or “McCartney, P.” ). These heuristics 
may be used to determine whether a piece of information 
denotes an artist or a title name. 
 
Local Syntactic Consistency Hypothesis 
This hypothesis asserts that syntaxes of file names are 
consistent within a given cluster (what we call a syntax 
will be defined more precisely below). In reality, the 
hypothesis is weakened by the fact that this consistency 
may not actually occur entirely within a cluster. For 
instance, Figure 2 shows a directory listing containing 
four main syntaxes (for a total 13 titles, which is indeed 
an extreme case). We weaken this hypothesis by 
considering sub-clusters sharing the same syntax, and 
showing that only a small number of sub-clusters is 
needed – in general – to perform the analysis correctly. 
 
In the next Section, we show the results of an automatic 
analysis performed on our databases to assess the validity 
or our hypothesis. 

3 Statistical Analysis of File Name 
Corpora 

3.1 Delimiter Hypothesis 
We call here a delimiter a character used to separate 
different type of information in a given segment. The 
hypothesis states that there are indeed delimiters: these 
special characters are - most often - used as separators, 
rather than significant characters for artists or title names.  
The most encountered delimiters in the corpora are the 
following: ‘ -‘ , ‘ /’ , ‘ (‘ , ‘ )’ , ‘ [‘ , ’ ]’ , ‘ { ‘ , ‘ } ’ , ‘ ;’ , ‘ :’ . 
To validate the Delimiter Hypothesis, we have to show 
that the file names use delimiters to separate artist and 
title information. To do this systematically would require 
a thorough check of over 300.000 titles, which is too hard 
a task to be done manually. Instead, we show here that 
delimiters are used in a consistent manner within each 
cluster. Although this check does not guarantee that 
delimiters are indeed used to separate, e.g. artist and title 
information, it does a give strong indication that there is a 
consistent use of these characters as syntactical elements 
rather than significant characters.  
More precisely we call “common delimiter”  a character 
delimiter found in all the segments of a given cluster. 
This delimiter indicates in most of the case a separation 
between different information types. As the following 
table shows, many (64.4%) though not all clusters have 
one common delimiter. Some clusters have no delimiters 
(7.2%), which corresponds to cases where the file name 
only contains the title information (the artist name is then 
most often contained in the album name for CDDB, or in 

the super directory for personal files). In the remaining 
cases, several delimiters are found in given clusters. We 
then look for the minimum number of delimiters that 
“cover”  the whole cluster. What the table shows is that 
there is, in most of the cases, a small number of such 
covering delimiters, which is once again a strong 
indication that these delimiters are used for syntactical 
purposes. 
 
 Nb clusters: Percentage: 
no delimiter : 1615  7. 2 % 
1 common delimiter  : 14354 64. 4 % 
2 delimiters cover  the 
cluster  : 

4763 21. 3 % 

3 delimiters cover  the 
cluster  : 

1338  6. 0 % 

4 delimiters cover  the 
cluster  : 

215  1. 0 % 

5 delimiters cover  the 
cluster  : 

17  0. 1 % 

Total : 22302 100. 0 % 

Figure 5 Analysis of delimiters in  our  CDDB play lists. 

3.2 Word Morphology Hypothesis 
The word morphology hypothesis asserts that artist 
names are shorter on average than title names. Although 
this hypothesis is certainly not always true (e.g. the group 
named “Everything but the girl”  has recorded a song 
named “Angel” ), it is true in average, and in particular 
within clusters. 
An analysis of about 17,000 titles from CDDB yields an 
average of 1.6 words per artist names against an average 
of 3.2 words for title names, i.e. a ratio of 2 times more 
words in artist names. Similarly, an analysis of 19,648 
titles from the FIP radio program yields 2.1 words for 
artist names against 3.1 words for the title names, i.e. a 
ratio of 1.5. 
This shows clearly that titles names are, on average, 
longer than artist names. As we will show below, this 
heuristic may be used when no other clue allows to infer 
whether a string is an artist or title name. 

3.3 Constant Term Hypothesis 
The constant term hypothesis asserts that clusters may 
happen to contain constant terms in all their segments. 
These constant terms can refer for instance to the artist 
name, but also to information which is useless in our 
context.  
The analysis of our CDDB database yields 800 constant 
terms, of which about 20% are not artist names. As an 
indication, here are the 10 most frequent useless constant 
terms retrieved from this list: 
 



  

Sampl er   
Var i ous Ar t i st s  
Var i ous 
Passi on 
Unknown 
Fabul ous 
Success 
Dr eams 
Memor i es 
Mi xer y  

Figure 6 Most Frequent constant terms in CDDB play lists 

These constant terms are used in our system to 
differentiate between useless information that can be 
discarded from useful information such as artist names. 

3.4 Local Syntactic Consistency Hypothesis 
This hypothesis is the most important in our study, since 
it will allow us to determine the syntax according to the 
analysis of a group of titles, rather than individual titles 
only. To validate this hypothesis, we need to estimate the 
average number of different syntaxes a cluster contains.  
To do so we introduce the notion of syntax as follows. 
For a given file name string, we replace all the token 
strings encountered by an alphabetic letter incremented 
automatically (a, then b, then c, etc.) and we replace all 
numbers by a digit (0, 1, 2; etc.). We let the delimiters 
unchanged. The resulting string may be seen as a 
canonical representation of the syntax of the file name. 
 
Here are some examples of file names and their 
associated syntax as extracted by our analysis: 
 
File name  Syntax 
Var i ous -  Bee Gees -  
Massachuset t s . mp3 

a-b-c 

Si mon and Gar f unkel  – El  Condor  
Pasa ( I f  I  Coul d) . mp3 

a-b(c) 

The Beat l es -  05 -  Sgt  Pepper ’ s  
Lonel y Hear t s Cl . mp3 

a-0-b 

Or i gi nal  Rock N° 5 -  Cr ack The 
Wor l d Lt d -  The Beach Boys ( I  
Get  Ar ound) . mp3 

a-b-c(d) 

Al l  you need i s  l ove. mp3 a 

Figure 7 Canonical syntaxes for  var ious music file names. 

As an illustration of the process, here are the most 
frequent syntaxes retrieved (in number of lines): 

a 69277 a- b 66637 
a/ b 64584 a( b) c 30569 
a- b( c) d 15351 a/ b( c) d 19191 
a: b 5561 a( b) - c 4198 
a- b- c 3050 a/ b- c 2508 
a( b) / c  1959 a, b 1918 
a- b/ c 1708 a( b- c) d 1319 
a[ b] c 1317 a- - b 1128 
a/ b, c 954 a, b/ c 930 
a: b( c) d 906 a- b, c 727 
a- b[ c] d 703 a: b- c 673 
a, b- c 589 a/ b[ c] d 556 
( a) b 524 a/ b( c- d) e 517 
a- b- c( d) e 506 a( b) ( c) d 500 

Figure 8 Main syntaxes found in our  CDDB play lists 

Once syntaxes are extracted, we compute, for each 
cluster, the number of different syntaxes it contains. This 
computation simply consists in comparing syntaxes using 
string comparison operators. The following table shows 
the result of this computation. 
 
 Nb clusters: Percentage : 
1 common syntax : 4871 21. 8 % 
2 syntaxes in the cluster  : 7702 34. 6 % 
3 syntaxes in the cluster  : 5160 23. 1 % 
4 syntaxes in the cluster  : 2691 12. 1 % 
5 syntaxes in the cluster  : 1162 5. 2 % 
6 syntaxes in the cluster  : 409 1. 8 % 
7 syntaxes in the cluster  : 180 0. 8 % 
8 syntaxes in the cluster  : 51 0. 2 % 
9 syntaxes in the cluster  : 27 0. 1 % 
Over   9 syntaxes: 49 0. 2 % 
Total: 22302 100. 0 % 

Figure 9 Analysis of syntaxes in our  CDDB play lists 

These results clearly show that there is indeed a syntactic 
consistency in most of the clusters encountered. This 
consistency, in turn, will be used to parse file names 
according to the most prominent syntax within clusters, 
as shown in the next section. 

4 The FileNameInterpreter (FNI) System 

The hypotheses we made and validated have been 
exploited to design and implement a file name interpreter, 
in the context of an EMD application. This application is 
part of Cuidado, a large European project for content-
based music access (see Pachet, 2001b). In this section, 
we describe the overall design of this system, and show 
its performance on real world examples. 

4.1 Overview 
The input of our system is a file containing a structured 
list of file names. The output is a file containing the 
analysed artist and title name information. This analysis 
is performed by applying heuristics as described below. 
To allow flexibility, the user always has the possibility to 
correct manually the analysis proposed, and this 
correction is then substituted to the analysis in the output 
file, and retrieved in later analysis to avoid repeating 
corrections. 



  

4.2 Initialization 
A pre-processing phase is applied systematically to the 
input list of music file names. This pre-processing 
consists in: 
 
1) Grouping together file names having the same syntax 

into sub-clusters, 
2) Chunking related file names into segments according 

to delimiters. 
 
For instance, if we consider the input file as given in 
Figure 2, considering only the first cluster we obtain the 
following: 
 
1) The syntaxes found in this corpus are: “ a- b- c” ,  “ 0-

a- b” ,  “ a- b” ,  “ a- b( c) ” . 
 
2) The lists relative to the syntaxes are then the following 
(“ |”  indicates separation between recognized segments): 
 
Syntax: a-b-c 
Var i ous |  Ani mal s |  The house of  t he r i si ng 
sun 
Var i ous |  The Mi ndbender s |  A gr oovy k i nd 
of  l ove 
Var i ous |  Hol l i es |  The Ai r  That  I  Br eat he 
Var i ous |  The Beat l es |  Ai n’ t  she sweet  
Var i ous |  Bee Gees |  Massachuset t s  
Var i ous |  The Moody Bl ues |  Ni ght s i n whi t e 
sat i n 
 
Syntax: 0-a-b 
01 |  The Beat l es |  Doct or  Rober t  
05 |  The Beat l es |  Sgt  Pepper ’ s  Lonel y 
Hear t s 
 
Syntax: a-b 
Si mon and Gar f unkel  |  The Sound of  Si l ence 
Bee Gees |  Sat ur day Ni ght  Fever  
Beast i e Boys |  Song f or  Juni or  
Beach Boys |  Good Vi br at i ons 
 
Syntax: a-b(c)  
Si mon and Gar f unkel  |  El  Condor  Pasa ( I f  I  
Coul d)  
 
Each of these three sub clusters is now treated using the 
implementation of the heuristics as described below. 
In the next sections, we consider each sub cluster as an 
array. The lines of the array match the lines of the sub 
cluster, and the columns of the array match the segments 
in each line of the sub cluster. 

4.3 Management of Identifiers 
In order to take into account differences in the spelling of 
Proper names (artists) and title names, we implement 
retrieval mechanisms based on a canonical representation 
of identifiers. This representation is computed so that 
different spellings of a given identifier yield the same 
representation. 
The principle is to build a unique String composed only 
of the significant characters of a given identifier, 
removing blanks, spaces, and non-standard characters. 
 

Additionally, there is a specific provision for managing 
artist names: artist names may have several attributes 
such as “ firstName” , or “group prefix”  (e.g. “The”  or 
“Les”  in French). These attributes are specified in a lazy 
mode, that is as they are encountered. 
For instance, the first time we encounter the artist spelled 
as “McCartney, Paul” , we create an entry in the artist 
directory, with a canonical representation being 
“mccartney” , a first name being “paul” . 
When we encounter another occurrence of McCartney, 
but with a different ordering or spelling, such as 
“McCartney”  or “Paul McCartney” , we are able to 
retrieve the previously entered occurrence by trying 
several all the possible combinations. 
 
Lastly, this specific procedure is augmented with a fuzzy 
matching algorithm to take into account possible 
misspelling and errors. This procedure is not discussed 
here for reasons of space. 

4.4 Implementation of the heuristics 
We describe here how we implement and prioritise the 
different heuristics to infer the artist and title information 
from a given sub cluster in which all titles share the same 
syntax. We do not describe the whole analyser here, but 
only highlight its main structure. 

4.4.1 Case 1, implicit information 
If the sub cluster contains only one segment, the only 
hypothesis we can make is that 1) the segment denotes 
the title name, and 2) the artist information is contained 
in the super cluster (super directory usually). For 
instance, if the corpus is a directory from a personal 
database of music file names, the artist name can be the 
name of the directory containing the music files. This is 
the case with the 2 “Stan Getz”  files in Figure 2 for 
instance. 

4.4.2 General Case 
As illustrated in Section 2.2, about 93% of the play lists 
analysed from CDDB have at least two segments. We 
therefore assume that these segments contain at least both 
the title name and the artist name. The problem is now to 
determine which segment is the artist name, which one 
the title name, and which ones are useless groups of 
words such as constant terms, dates, etc. 
 
Here is the ordering of the heuristics to identify properly 
the artist and title information. 
 
1) Constant term heuristics, 
2) Artist names heuristics, 
3) Title name heuristics. 

4.4.2.1 Constant Terms Heuristics 
This heuristics is applied only if the syntax of the sub 
cluster considered contains at least two segments. 
We first check if the array contains any constant terms in 
a whole column. If a column contains the same constant 
term, there are two possible interpretations: 



  

- The array contains two columns: the column containing 
the constant terms is assumed to be the artist name 
column. 
- The array contains more than two columns: we must 
check if the constant term belongs to a list of known 
constant terms as illustrated in section 3.3. The list of 
well-known constant terms we use has been retrieved 
from our CDDB database. We cannot determine whether 
or not a constant term is an artist name if it does not 
belong to our list. If the constant term belongs to our list 
of constant terms, we will not take into account the 
column relative to this constant term anymore in the title 
identification and consider that the artist and title names 
are the remaining columns of the array. 

4.4.2.2 Artist Names Heuristics 
To determine if a column is an artist name, we consider 
the following information in the following order: 
 
1) Number of comas. 
One heuristic is to consider that the column containing 
the most commas in its strings is the artist names column. 
Indeed, even if the percentage of cases where the artist 
name is written with a comma (ex: “Beatles, the” , “Mc 
Cartney, paul” ) is not very high, this is a first way to 
retrieve the artist name. 

 
2) Known artists 
Then, if the artist column has not been found, we propose 
to take into account the artists already known by the 
system. If a known artist is found in a column, this is the 
artist column, following our local consistency hypothesis 
(all the artist names are in the same column). 

 
3) Number of different words 
Once the elimination of columns containing useless terms 
has been performed and if there are only two columns left 
in the array considered, we count the number of different 
words in all the valid columns of the array. If the number 
is smaller in one of the columns, we assume this column 
represents the artist names. 

4.4.2.3 Title Name Heuristics 
At this step of the identification, the column of the array 
containing the title names may be inferred in most of the 
cases by elimination since there is most often only one 
column remaining. 
However, if we have more than one column, we apply 
again the heuristics about the number of words: if the 
number of different words is greater in one of the 
columns, we considered it as the title names column. 

5 Experimentations 

Our system has been tested and validated on our three 
databases. To validate the system, we made about 1500 
random experiments, by drawing a random title, and 
checking manually whether the parse was correct or not. 
95 % of the cases where correctly analysed. We assume 
the most frequent cases have been encountered. 
 

 

Figure 10. The inter face of FNI . 

 
The incorrect cases are most often non interpretable file 
names. For instance, as illustrated in Figure 10,  “Various 
- Toots Thielemans - Jane's Theme - 05”  has too many 
segments. The “05”  is duly recognized as a constant term, 
but the system cannot determine which segment refers to 
the title name and which one refers to the artist name.  In 
this case, even a human could not infer the right syntax, 
unless he/she would know the track listings and albums 
names of  Toots Thielmans. 
A few cases were not correctly analysed because the 
syntax exceptionally did not match our heuristics. 
Example: “Johnny Lee Hooker - Boom, Boom.mp3” . The 
artist name has more words than the title name, and the 
title name contains a comma. However our system allows 
to correct manually the wrong file names (see Figure 10). 
Additionally, the list of “known artists”  is updated 
automatically, so mistakes are only done once. 
FNI is integrated in Personal Radio, a working EMD 
system that has already been tested on over 100 users. 
More tests are being conducted within the Cuidado 
European project (Pachet, 2001b). 

6 Conclusion 

We described a method for parsing music file names 
without knowing their syntax a priori. The method is 
based on a set of justified heuristics which are validated 
by a prior analysis of a large corpora of “natural”  file 
names, and by a working system integrated in a large 
scale EMD project. The success of the approach lies 
mainly in the local consistency hypothesis, which states 
that syntaxes are usually consistent within related groups 
of music files. This hypothesis allows to solve a number 
of ambiguity by making choices based on statistical 
properties of file clusters rather than on individual files. 
Extensions of the approach for handling other types of 



  

music (e.g. Classical) or non-Western filenames are 
under study, and may require different sets of heuristics, 
but we believe the approach in general is still valid. 
Lastly, we plan to integrate a learning module to FNI that 
is able to learn automatically new syntaxes from errors, in 
the spirit of (Petasis et al., 2001). 

7 References 

Beeferman, D. Berger, A. Lafferty, J. (1999) Statistical 
Models for Text Segmentation, Machine Learning, 34, 
1-3, Feb. 1999. 

Hacker, Scott (2000) MP3, the definitive guide, O’Reilly. 
Maurel, D. Piton, O. Eggert, E. (2001) Automatic 

Processing of Proper Nouns Vol. 41 N.3, February 
2001. 

Pachet, F. (2001a) Content management for Electronic 
Music Distribution: The Real Issues, submitted to 
Communications of the ACM, 2001. 

Pachet, F. (2001b) Metadata for music and sounds: The 
Cuidado Project, Content-Based Multimedia Indexing 
Workshop, Brescia (It). 

Petasis, G. Vichot, F. Wolinski, F. Paliouras, G. 
Karkaletsis, V. Spyropoulos, C. (2001) Using Machine 
Learning to Maintain Rule-based Named-Entity 
Recognition and Classification Systems, Association 
for Computational Linguistics, ACL. 



SCORE PROCESSING FOR MIR
Donncha S. Ó Maidín 

Centre for Computational Musicology and Computer 
Music 

Department of Computer Science and Information 
Systems 

University of Limerick 
353(0)61202705 

donncha.omaidin@ul.ie 

Margaret Cahill 
Centre for Computational Musicology and Computer 

Music 
Department of Computer Science and Information 

Systems 
University of Limerick 

353(0)61202759 

margaret.cahill@ul.ie
  

ABSTRACT 
The focus of this paper is on the design and use of a music score 
representation. The structure of the representation is discussed 
and illustrated with sample algorithms, including some from 
music information retrieval. The score representation was 
designed for the development of general algorithms and 
applications. The common container-iterator paradigm is used, in 
which the score is modelled as a container of objects, such as 
clefs, key signatures, time signatures, notes, rests and barlines. 
Access to objects within the score is achieved through iterators. 
These iterators provide the developer with a mechanism for 
accessing the information content of the score. The iterators are 
designed to achieve a high level of data hiding, so that the user is 
shielded from the substantial underlying complexity of score 
representation, while at the same time, having access to the 
score’s full information content. 

1. INTRODUCTION 
The focus of this paper is on representing music scores. The 

music score is the primary document for practically all music of 
the past. It holds a primary place in literacy, in education, in 
composition and performance and in music theory.  

In the computer era, two main sources for digital versions of 
scores arise. The first of these is from digitising initiatives, such as 
those at Center for Computer Assisted Research in the Humanities 
at Stanford University. The second comes as a by-product of 
music publishing.  These activities have resulted in the production 
quantities of machine-readable scores.  Unfortunately, not all of 
these efforts are readily usable in IR research. Lack of agreed 
open standards and lack of openness on the part of notation 
software developers form some of the main barriers to more 
general use. 

In practice MIDI has become the representation used in 
much of music information retrieval research.  The MIDI standard 
was invented to capture the gestures of a keyboard player.  Its 
ability to provide the pitch and duration content of music has 
resulted in its acceptability for music research.  However basic 
MIDI representation is radically different from score 
representation. Rests, slurs, barlines, staccatos, trills, ornaments,  
_______________________________________________________________ 
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triplets and chromaticisms, are examples of concepts that are not 
explicit in MIDI.  

An alternate prospect to using MIDI is that of having an 
availability of music scores, encoded to professional editorial 
standards, together with appropriate tools.  One consequence of 

 this approach is that the music IR researcher may work with 
the full information content of a score, rather than a simplified 
view of pitch and duration. Additionally this approach will serve 
to facilitate cooperation between the music IR researcher and 
music theorists, who deal primarily with the score. 

2. CONTAINER-ITERATOR 
Some endeavours in Computer Science have been concerned with 
discovering useful ways for organising collections of data. One of 
the most basic ways of organising data is to conceive of a complex 
object as a collection of objects that are included in a container. 
Objects within the container are accessed by means of iterators. 
Iterators are often characterised as ‘safe’ pointers – that is that 
they can point to objects within a container, and can be safely 
manipulated, or moved about so as to make all of the internal 
objects accessible.  The success of this approach has led to the 
development of many libraries, the most widely used one being 
the C++ Standard Template Library that was developed at 
Hewlett-Packard Labs by Alexander Stepanov and Meng 
Lee[1][2] and was adapted as part of ANS and ISO standards in 
the 90’s.  The containers in the STL allow the user to structure the 
data as vectors, lists, deques, sets, maps, stack and queues. Most 
of these data structures are one-dimensional. Their associated 
iterators are built so that all objects in the more general containers 
may be accessed in a left-to-right fashion, and possibly in a 
reverse order. Additionally some iterator/container combinations 
allow random access to the contained objects. 

It is appropriate to consider how the music score may be modelled 
as a container.  Items in a score may be represented as objects 
within the container. Objects are used to represent notes, barlines, 
key and time signature. Iterators allow the software developer 
access to the information content of a score. 

A strict adherence to the S.T.L. model has proved inappropriate 
for score representation and manipulation. In S.T.L., one of the 
main functions of iterators is to allow access to container 
members. In C.P.N.View, the iterator is used to carry out the 
substantial scoping resolution. Automatic scorping resolution is 
essential in order to achieve an appropriate level of abstraction or 
complexity hiding. Iterators must be able to randomly access 
objects (e.g. the uppermost object half ways through bar no 22 in 
the second violin line). Iterators may be required to move 



vertically, to access harmony or horizontally to follow a melody. 
The iterator must, at the same time keep track of scoping 
information about aspects of the current context such as clef, key 
signature, time signature, metronome settings, tempo indications, 
accidental alterations and location within a bar.  This is necessary 
in order to free the user from the considerable scoping 
complexities, that would otherwise tend to get in the way of the 
development. 

3. COMMON PRACTICE NOTATION 
VIEW 
C.P.N.View[3][4] is a score representation written in C++, that 
was developed in the mid-1990s.  It implements a representation 
of scores as containers and provides iterators for use with 
algorithms.  A score object is created either algorithmically or by 
using one of the components for converting from various file-
based representations (ALMA, *kern, NIFF, EsAC). 

Creating a score object: 

Score s(filename); 

One or more score iterators may be created in order to gain access 
to the internal objects in the score as 

ScoreIterator si(s); 

For the initial examples we will assume that the score is 
monophonic. 

A number of functions exist to move the score iterator about the 
score.  Random access is achieved using the locate member 
function. This  moves the iterator to an arbitrary place in the score  

si.locate(NOTE, 23); 

will move the iterator si to the 23rd note of the score. This function 
returns a TRUE/FALSE value to signal the success or otherwise 
of the operation. For example if we call this function on a score 
that has only 22 notes, we get a FALSE result. Almost all of the 
functions in C.P.N.View return a TRUE/FALSE result, where 
appropriate. 

si.locate(BAR, 20); 

moves the iterator si to the start of the 20th bar of the score, if it 
exists. 

Relative movement of the iterator is achieved by the step member 
function.  This function may take a parameter, indicating the kind 
of object that it is required to move to. The following code 
fragment may be used to traverse all of the notes of the score 
contained in filename. 

Score s(filename); 
ScoreIterator si(s); 
while (si.step(NOTE)) 
{ 
 doSomething(si); 
} 
 

Iterators in C.P.N.View are used to directly extract information 

about the objects in the score. C.P.N.View iterators carry out 
domain level processing. Much of this processing is involved with 
resolving contextual information. For example, where a score 
iterator points to a note, the member function pitch12() returns 
the chromatic note number (effectively the MIDI note number).  
C.P.N.View performs the following operations automatically. (1) 
key signature in use; (2) checks if any accidental alterations are 
present since the start of the bar in which the note in question 
resides, and (3) calculates relevant adjustments to the final pitch 
of the current note.  Using all of this information the correct 
pitch12 value is returned. 

The following fragment illustrates how the constructs discussed so 
far can be used to identify and print out the highest and lowest 
note of a piece and to calculate the pitch range of the piece. 

 

Score s(filename); 
ScoreIterator si(s); 
si.step(NOTE); 
ScoreIterator highest = si, lowest = si; 
while (si.step(NOTE)) 
{ 
if ( si.getPitch12() < lowest.getPitch12()) lowest = si; 
if (si.getPitch12() > highest.getPitch12()) highest = si; 
} 
std::cout << “\nHighest note is “ << highest; 
std::cout << “\nLowest note is “ << lowest; 
std::cout << “\nRange is “ << highest.getPitch12() – lowest.getPitch12() 
<< “ semitones.\n”; 

 

Similarly, a program to locate the longest and shortest note in a 
piece, excluding grace notes, 

Score s(filename); 
ScoreIterator si(s); 
si.step(NOTE); 
ScoreIterator longest = si, shortest = si; 
while (si.step(NOTE)) 
{ 
    if (!si.hasAttribute(GRACE_NOTE)) 
   { 

if ( si.getRDuration() < shortest.getRDuration()) shortest = si; 
if (si..getRDuration( ) > highest.getRDuration()) longest = si; 

    } 
} 
std::cout << “\nLongest note is “ << longest; 
std::cout << “\nShortest note is “ << shortest; 
 

A question arises of what happens if we run these programs on a 
polyphonic score? The answer is that these will work and produce 
meaningful results. 

To explain what happens it is necessary to consider two cases. 
The first one is where a score consist of a single stave, but has 
simultaneous notes.  Some examples of this will be found in string 
music in which multiple stopping occurs. More complicated 
examples happen in scores where two lines occupy the same 
stave.   

An iterator in C.P.N.View has an internal mode setting of MONO 
or POLY.  In MONO mode the iterator traverses the uppermost 
notes on each stave only, and skips others.  In POLY mode the 
iterator traverses all of the notes, moving vertically, from top to 

 



bottom, where possible, and moving to the next highest rightmost 
object otherwise.  

Functions exist for setting and querying the scanning mode of an 
iterator. 

si.putScanMode(MONO); 

si.putScanMode(POLY); 

getScanMode(); 

Figures 1 and 2 show iterators in MONO and POLY mode 
operating on a single stave piece. 

 

Figure.1 Single stave traversal in MONO mode 

 

Figure 2 Single stave traversal in POLY mode 

 

By default, the iterators created above will have MONO scan 
modes if the score contained in filename has one stave. 

On the other hand, if the score is a multistave score, the scan 
mode will default to POLY, and the iterator will scan all of the 
objects in the score. To understand how the iterators scan across 
multiple staves, it is necessary to regard the score as being divided 
vertically into windows.  Each window has an associated width, 
corresponding to a time span. The left and right borders of each 
window correspond to onsets or offsets of notes or rests. A 
window may not contain internal onsets or offsets. 

Successive calls to the step() function moves the iterator 
vertically, wherever possible, from the uppermost object on the 
top stave in a window to objects on the lowermost stave in the 
same window.  Where the score iterator points to the lowermost 
allowable object, a call made to step() moves the iterator to the 
uppermost object in the next adjacent window to the right. Figure 
3 shows an such an iterator. Figure 4 demonstrates the concept of 
dividing the score into vertical windows. 

 

Figure 3 Multi-stave traversal in POLY mode 

 

 

Figure 4 Multi-stave score divided into vertical windows 

The program fragments above will work correctly with a 
polyphonic score and will search through all of the notes present.  
The occurrence of different clefs, changes in key and accidental 
changes in the score are all dealt automatically. 

In cases where we want to scan individual staves of a polyphonic 
score, the constructor for the ScoreIterator takes an additional 
parameter corresponding to the stave number.  The uppermost 
stave is numbered 0. An iterator created in this way will have a 
default scanning mode of MONO.  To access objects on the last 
stave of a polyphonic score that has 10 staves, the following 
iterator could be used. 

ScoreIterator si(s, 9); 

In the previous examples, we have seen use of the member 
functions locate, step, getPitch12, getRDuration, getScanMode 
and putScanMode.  A design strategy arises in creating such 
information retrieving functions. One could aim to design a 
minimal set of functions to retrieve the basic information content 
from the score. Such a minimal set will compromise convenience. 
The opposite approach of providing functions to retrieve every 
conceivable form will make things more difficult for the user, who 
will have a larger set to sift through and remember. The current 
set of 131 functions and operators might appear to lean towards 
the second approach. However many of these operators and 
functions cluster into families and thereby reduce the cognitive 
load in familiarization.  Also many of these group into meaningful 
pairs. For example most member functions that start with ‘get’ 
have a counterpart that starts with ‘put’.  Additionally some of 
these are more frequently used than others.  For example the step 
and locate functions are the main navigation mechanisms. There 
is very little additional to learn. The getPitch12, getRDuration 
deliver information similar to that available in a basic MIDI file. 
A short review of some of the main functions is given below. 

The getTag member function give the type of object that is 
current. 

If the current object is a note or rest, duration values may be 
retrieved 

getHead() returns the head value, 

getDots() returns the dot count, 

getRDuration() retrieves the rational time value of the note or 
rest, including the resolution of groupette scoping.  



Pitch information can be retrieved in many forms, including  

getAlpha() returns the alphabetic note name, 

getOctave() returns the octave number, 

getAccid() returns details of any accidental placed directly on the 
note, 

getPitch12() returns the MIDI pitch number of the note, with all 
necessary scoping resolved, 

Many function return scoping information. These include the self 
obvious getKeySig(), getTimeSig(), getClef(), getBarNo(). 

getBarDist() returns the distance of the current position from the 
start of the bar. 

A facility exists for annotating any score object, and for querying 
these annotations. 

4. IR EXAMPLES 
The following illustrates the use of C.P.N.View in an IR context. 
It contains a complete implementation of the dynamic 
programming algorithm as documented in Sequence-Based 
Melodic Comparison: A Dynamic-Programming Approach[5]. 
The two encoded score fragments used in the algorithm have been 
encoded in two files that appear in lines 1 and 2.  These are 
“Innsbruck ich muss dich lassen” and “Nun ruhen alle Waelder”. 

This algorithm is based on the concept of a minimal edit cost of 
transforming a source melody into a target melody, using 
operations of insert, delete and replace. The cost matrix d, 
represents the minimal cost of transforming the notes of the 
source tune, represented in rows, into notes of the target tune 
represented across the columns. The recurrence equations for 
generating the matrix are 

000 =d       a1 

1),,(0,10 ≥+= − iawdd iii φ    a2 

1),,(1,00 ≥+= − jbwdd jjj φ    a3 

)},(),,(),,(min{ 1,1,1,1 jjijijiiji
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d

φφ +++

=

−−−−

      
      a4 
Where   

  ),( φiaw , is the cost of inserting note ai, 

  ),( jbw φ ,  is the cost of deleting bj,,  

both of these have value 4 in this example.   

  ),( ji baw , is the cost of substituting ai with bj,  

This cost is calculated by taking the absolute value of the 
difference in MIDI note number, then adding half the absolute 
value of the difference in duration measured in 16th note units. 

 
 
 
 

 
Score s1("C:\\Mdb\\Others\\inns.alm");   // 1 
Score s2("C:\\Mdb\\Others\\nur.alm");   // 2 
ScoreIterator si1(s1);     // 3 
ScoreIterator si2(s2);     // 4 
ScoreIterator siAr1[100] = {ScoreIterator()}, 
     siAr2[100]= {ScoreIterator()};   // 5 
int length1 = 0;     // 6 
while ( si1.step(NOTE)) siAr1[++length1] = si1;  // 7 
int length2 = 0;     // 8 
while ( si2.step(NOTE)) siAr2[++length2] = si2;  // 9 
double diffMatrix[100][100];    // 10 
int i, j;      // 11 
diffMatrix[0][0] = 0.0;    
       
  
for ( i = 1; i <= length1; i++)    //12  

diffMatrix[i][0] = diffMatrix[i-1][0] + 4.0;  //13 
for ( j = 1; j <= length2; j++)     //14 

diffMatrix[0][j] = diffMatrix[0][j-1] + 4.0;  // 15 
 

for ( i = 1; i <= length1; i++)    // 16 
{ 
  for ( j = 1; j <= length2; j++)    // 17 
  { 
    diffMatrix[i][j] =     // 18 
      min3(   
        diffMatrix[i-1][j] + 4.0,    // 19 
        diffMatrix[i][j-1] + 4.0,    // 20 
        diffMatrix[i-1][j-1] +    // 21 
          fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12()) + 
          0.5*16*fabs(siAr1[i].getRDuration()- siAr2[j].getRDuration())); 
  } 
} 
 

Lines 1 to 9 two arrays siAr1 and siAr2 are created, and contain 
iterators that point to each note of the score 

Lines 12 to 15 correspond to equations a1, a2 and a3. 

Lines 16 to 21 implement a4. 

The function min3 is not documented here. 

 

     Table 1.  The difference matrix diffMatrix.   

   A  F G A B C B A 

   0   4   8 12 16 20 24 28 32 

F   4   6   6 10 14 18 22 26 30 

F   8   8   6   8 12 16 20 24 28 

G 12 10 10   6 10 14 18 22 26 

A 16 14 14 10   9 13 17 19 22 

C 20 18 18 14 13 14 15 19 22 

B 24 22 22 18 17 16 18 15 19 

A 28 26 26 22 21 20 21 19 15 



Each cell in the matrix represents the difference at a particular 
point between the two fragments of “Innsbruck ich muss dich 
lassen” and “Nun ruhen alle Waelder”. The total distance between 
the two melodies is represented by the value in the bottom right 
corner, 15. The combination of edit operators that yield this result 
may also be determined by tracing the best path from the bottom, 
rightmost cell to the top left corner. 

In this example, it will appear that little is to be gained from  
using the score representation instead of MIDI.  However it is 
worth emphasising that the with score representation this 
algorithm may be refined since all of the information content of 
the score is available. Some examples of using score information, 
instead of MIDI may be gleaned from the following possibilities.  
Stressed notes may be distinguished by their position in the bar, 
using information for getBarDist and getTimeSig functions.  
Using these, one could allow greater weights for inserting and 
deleting stressed notes. Pitch information can be dealt with at a 
finer level by distinguishing between enharmonic versions of the 
same note. Hence a C sharp may be treated differently than a D 
flat. A policy on handling rests will be necessary, if this algorithm 
is to have general applicability.  The algorithm is not explicit on 
how grace notes are handled.  Are they to be treated as part of the 
pitch contour? Perhaps a researcher may wish to treat them as 
providing extra emphasis on the following note. 

A final example will illustrate a partial implementation of this 
same basic algorithm, as it was designed by Mongeau and 
Sankoff[6].  They used a more sophisticated model for the 
calculation of replacement costs than in the previous example.  
The previous example was encoded above as part of line 21, by 
calculating the absolute value of the two MIDI note number. 

fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12()) 

Mongeau and Sankoff used the pitch differences between pairs of 
notes to calculate difference weights, based on consonances of 
their intervals. This involves a simple table look-up for diatonic 
notes.  However for comparing pairs of notes in cases where one 
or other note involved is chromatic, an alternate table is used, as is 
reflected in the following algorithm. The array deg holds the 
difference weights for the diatonic table and ton holds the 
corresponding weights for chromatic intervals. 

The algorithm checks if the notes involved are diatonic, and 
applies the appropriate transformation.  The function pitchD is a 
simplified version of the production algorithm, that is applicable 
to music is in a major key only. 

The function noteInKey was developed specifically for this 
application. Its coding is given below. 

int ScoreIterator::noteInKey() 

{ 
 int key = currentKs; 
 int actual12 = getPitch12(); 
 int actual7 = getPitch7(); 
 int nrOctaves7 = actual7/7; 
 int octaveDisp12 = nrOctaves7*12; 
 int scaleStep7 = actual7%7; 
 int diatonicSteps[] = {0,2,4,5,7,9,11}; 
 int unalteredPitch12 = octaveDisp12 + diatonicSteps[scaleStep7] +  
                                                              getKeySigAdjust(); 
 if ( unalteredPitch12 == actual12 ) return TRUE; 
 return FALSE; 
} 

double pitchD(ScoreIterator &si1, int major1, ScoreIterator & si2) 
{ 
  double pitchDist = 0; 
  if ( inKey(si1, major1 )) 
  { 
   double deg[] = {0.0, 0.9, 0.2, 0.5, 0.1, 0.35, 0.8}; 
   double ton[] = {0.6, 2.6, 2.3, 1.0, 1.0, 1.6, 1.8, 0.8,  
                              1.3, 1.3, 2.2, 2.5};   
   if ( si1.noteInKey() && si2.noteInKey() ) 
   { 
    int diatonicSteps = fabs(si1.getPitch7() –  
                                          si2.getPitch7()); 
     diatonicSteps = diatonicSteps % 7; 
     pitchDist = deg[diatonicSteps]; 
    } 
    else 
    { 
     int chromaticSteps = fabs(si1.getPitch12() –  
                                             si2.getPitch12()); 
     chromaticSteps = chromaticSteps % 12; 
     pitchDist = ton[chromaticSteps]; 
   } 
  } 
  return pitchDist; 
} 

5. CONCLUSION 
Processing of music scores gives the prospect for accessing ever 
increasing corpora that have been created to high editorial 
standards. The Container/Iterator model gives an appropriate tool 
for algorithmic construction.  Experience with C.P.N.View raises 
some interesting issues. An illustration of one such, that has been 
mentioned earlier in this paper is on devising an optimal set of 
operations to include in C.P.N.View.  A minimal set, makes it 
easier for anyone to learn to use C.P.N.View.  A more extensive 
set of operations, make it easier to write algorithms.  A case in 
point is the noteInKey function above. This was not developed 
initially as part of C.P.N.View, but instead formed part of the 
implementation of the Mongeau and Sankoff algorithm. It was 
added to C.P.N.View, on the basis that it provided potential for 
reuse in other algorithms.  
C.P.N.View provides a sufficiently abstract model of a score that 
it is potentially useable with a wide range of score representations, 
including some representations from notation packages.  Currently 
C.P.N.View can accept input from score codings in ALMA, 
NIFF, *kern and EsAC.  Some incomplete work has been done 
with SCORE and Enigma files. 
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ABSTRACT 
In this paper, the problem of processing audio signals is addressed 
in the context of query-by-humming systems. Since singing is 
naturally used as input, we aim to develop a front end dedicated to 
the symbolic translation of voice into a sequence of pitch and 
duration pairs. This operation is crucial for the effectiveness of 
searching for music by melodic similarity. In order to identify and 
segment a tune, well-known signal processing techniques are 
applied to the singing voice. After detecting pitch, a novel post-
processing stage is proposed to adjust the intonation of the user. A 
global refinement is based on a relative scale estimated out of the 
most frequent errors made by singers. Four rules are then em-
ployed to eliminate local errors. This front end has been tested 
with five subjects and four short tunes, detecting some 90% of 
right notes. Results have been compared to other approximation 
methods like rounding to the nearest absolute tone/interval and an 
example of adaptive moving tuning, achieving respectively 74%, 
80% and 44% of right estimations. A special session of tests has 
been conducted to verify the capability of the system in detecting 
vibrato/legato notes. Finally, issues about the best representation 
for the translated symbols are briefly discussed. 

1. INTRODUCTION 
In the last few years, the amount of bandwidth for multimedia 
applications and the dimension of digital archives have been 
continuously growing, so that accessibility and retrieval of 
information are becoming the new emergency. In the case of 
digital music archive, querying by melodic content received a lot 
of attention. The preferred strategy has been the introduction of 
query-by-humming interfaces that enable even non-professional 
users to query by musical content. A number of different imple-
mentations has been presented since the first work by Ghias et al. 
[4] and a brief overview is introduced in the next section. In spite 
of this fact, the digital audio processing of an hummed tune has 
been tackled with naive algorithms or with software tools avail-
able on the market. This fact results in a poor performance of the 
translation from audio signals to symbols. Furthermore, previous 
query-by-humming systems can be hardly extended to handle 
sung queries (i.e. with lyrics) instead of hummed queries. 

The quality of a query-by-humming system is strictly connected to 
the accuracy of the audio translation. It is well known that the 
amount of musical pieces retrieved through a melody grows when 
the length of the query decreases [8, 12, 13, 22]. Employing 
representations like the 3-level contour will further lengthen the 
list of matched pieces. In the same time, we can not expect users 
to search through very long queries (more than twenty notes long) 
or to sing perfectly, without errors and approximations. Interval 
representations show another source of errors, since a misplaced 
note propagates to the contiguous one. Thus, an accurate transla-
tion of the input is surely a basic requirement for every query-by-
humming system. 

In this paper, we propose an audio front end for the translation of 
acoustic events into note-like attributes and dedicated to the 
singing voice. We will focus on the post-processing of the voice 
in order to minimize the characteristic errors of a singer. In other 
words, the audio processing will be conducted in a user-oriented 
way, that is, trying to understand the intention of the singer. This 
work follows the one presented in [5] where some preliminary 
work and experiments have been briefly illustrated. 

2. RELATED WORK  
There are many techniques to extract pitch information from audio 
signals, primarily developed for speech and then extended to the 
music domain. The detection of pitch from monophonic sources is 
well understood and can be easily accomplished through the 
analysis of the sampled waveform, the estimation of the spectrum, 
the autocorrelation function or the cepstrum method.  

Previous query-by-humming systems employed some basic pitch 
tracking algorithms with only little pre- and post- processing, if 
any. For example, Ghias et al. performed pitch extraction by 
finding the peak of the autocorrelation of the signal [4], McNab et 
al. employed the Gold-Rabiner algorithm [12], while Prechelt and 
Typke looked for prominent peaks in the signal spectrum [16]. 
Rolland et al. [19] applied an autocorrelation algorithm with 
heuristic rules for post-processing. Some works focused mainly 
on the matching and indexing stages of the query-by-humming, 
using software tools available on the market for the audio transla-
tion [3,7].  
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Figure 1. Architecture of the system developed. 

Outside of the Music Information Retrieval community, the analy-
sis of the singing voice constitutes an established research field, 
especially in the framework of voice analysis/re-synthesis. Typical 
examples are the voice morphing system by Loscos et al. [10], the 
structured audio approach to singing analysis score driven by Kim 
[6] and the synthesis of voice based on sinusoidal modeling by 
Macon et al. [11]. 

3. BACKGROUND 
Despite its monophonic nature, singing has proved to be difficult 
to analyze [21]. The time-varying spectral characteristics of voice 
are similar during speech and singing. In both cases, we can 
divide the generated sounds in voiced and unvoiced1. In order to 
have an approximate idea of this property, we can think of the 
former kind of sounds as consonants2 and the latter as vowels. 
Since voiced sounds are constituted by periodic waveform, they 
are easier to analyze, while unvoiced sounds have a state similar 
to noise. Luckily, during singing the voiced properties are pre-
dominant and contain what we call musical pitches. However, the 
information held by unvoiced regions are important as well, since 
they often contain the rhythmic aspect of the performance. Unlike 
speech, the singing voice shows a slowly-changing temporal 
modulation both in the pitch and in the amplitude (vibrato). In 
addition to these acoustic properties, singing voice analysis 
should deal with human performance that is typically affected by 
errors and unstable. Previous researches revealed that errors 
remain constant regardless of the note distance in time and in 
frequency [9]. We will follow these findings in the post-
processing step of the proposed front end. 

4. VOICE PROCESSING 
An audio front end for a query-by-humming/singing system 
should contain all the elements needed to perform the transforma-
tion from audio to symbols, where audio is the singing voice and 
symbols are the most likely sequences of notes and durations. It 
should be able to adapt to the user automatically, i.e. without any 
user-defined parameter settings. Further, it should not require a 
particular way of singing, like inserting some little pause between 
notes or following some reference musical scale or metronome. In 
a query-by-singing application, the last requirements are impor-
tant to avoid limiting the number of potential users, who are 
expected to be most non-professional users [5]. 

                                                                 
1 A more rigorous definition is the following: “speech sounds can 

be voiced, fricative (or unvoiced) and plosive, according to their 
mode of excitation” [18]. In the present paper, plosive and 
fricative sounds will be grouped into the unvoiced category. 

2 with the exception of [m][n][l] which are voiced. 

We suggest to elaborate the audio signal at three different levels 
of abstraction, each one with a particular set of operations and 
suitable approximations: 

1- event  

2- block  

3- frame  

At the event level, we estimate starting/ending points of musically 
meaningful signal, signal gain and, as a last step of computation, 
pitches and durations. At the block level, a background noise 
threshold is determined, voiced-unvoiced segments are isolated 
and pitches are approximated; eventually, effects of vibrato or 
bending are eliminated. At a frame level, we estimate spectrum, 
zero crossing rate, RMS power and octave errors. From the above 
observations, we derived an architecture (Figure 1) in which every 
uncertainty about the audio signal is resolved with subsequent 
approximations. The elaboration path is divided into three stages; 
details of each stage are presented in the following sections. The 
system developed is designed for offline voice processing and is 
not currently developed for real-time operations. Thus, audio is 
captured from a microphone, stored as wave file with sampling 
frequency of 44100 samples/sec and 16 bit of quantization, and 
then analyzed.  

4.1 Pre-Processing 
The first purpose of the audio front end is to estimate the 
background noise. We evaluate the RMS power of the first 60 
msec. of the signal; a threshold for the Signal/Noise discrimina-
tion is set to a value of 15% above this level (S/N threshold). If 
this value is above –30dB, the user is asked to repeat the 
recording in a less noisy room. Otherwise, two iterative processes 
begin to analyze the waveform, one from the beginning and 
another from the end. Both the processes perform the same 
algorithm: the RMS power of the signal is calculated for frame 
440 samples long (about 10 msec.) and compared with the S/N 
threshold. To avoid the presence of ghost onsets caused by 
impulsive noise, the value of the n-th frame is compared to the 
(n+4)-th. The value of 40 msec. is too long for such noise and it is 
not enough to skip a true note. The forward and backward analy-
sis are then composed giving respectively a first estimate of the 
onset and offset points. The fragments of signal between each 
onset and offset represent the musically meaningful events.  

Before localizing voiced and unvoiced regions, we calculate the 
derivative of the signal normalized to the maximum value, so that 
the difference in amplitude is emphasized. This way, it will be 
easier detecting the voiced consonants since their energy is most 
likely to be lower than the energy of vowels. A well-known tech-
nique for performing the voice/unvoiced discrimination is derived 
from speech recognition studies and relies on the estimation of the 
RMS power and the Zero Crossing Rate [1, 18]. Plosive sounds 
show high values of zero crossing rate because the spectral energy 
is almost distributed at higher frequencies. Mean experimental 



Figure 3. The proposed pitch-tracking stage; pitch detection is followed by a quantization step in 
which median approximation, vibrato suppression and legato detection are applied. The output is 
a sequence of pitches and durations. 
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Figure 2. The pre-processing stage of the system developed. An audio signal given in input is 
segmented into musically meaningful events. Each event is characterized by its location in time 
(event boundaries) and by its voiced region. 
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values of average number of zero crossings are 49 for unvoiced 
sounds and 14 for voiced sounds in a 10 msec window. The task 
is not trivial for other speech utterance like weak fricatives. A 
better technique employs mean and standard deviation of the 
RMS power and zero-crossing rate of both background noise and 
signal as thresholds. Moreover, heuristic rules about the maxi-
mum duration admitted for each utterance are used. For example, 
events longer than 260 msec can not be unvoiced. These methods 
are applied to the derivative of the signal, detecting voiced conso-
nants, unvoiced sounds and vowels. Thanks to this procedure, we 
can refine the on/offset estimation. In Figure 2 the process 
explained so far is illustrated. 

4.2 Pitch-Tracking 
As we said, the pitch of a sung note is captured by its voiced 
region and in particular by vowels. Thus, we will estimate pitch 
only on those fragments. Compared to unvoiced sounds, voiced 
sounds exhibit a relatively slowly-changing pitch. Thus, the frame 
size can be widen. For each voiced fragment identified in the 
segmentation step discussed above, the signal is divided into half-
overlapping Hamming windows of 46 msec (2048 samples) (see 
Figure 3). A FFT algorithm is performed for each frame and the 
most prominent peaks of the estimated spectrum are passed to the 
next step. Here, it is taken the decision of pitch at the frame level. 
The algorithm is a simplified version of the one presented in [15]. 
The basic rule is quite simple: the candidate peak centered at a 
frequency in the range 87 Hz – 800 Hz that clearly shows at least 
two overtones is the fundamental frequency. Then, fundamental 
frequencies within an event are mediated along each three subse-
quent frames (median approximation) and are checked for octave 
errors. A group of four contiguous frames with similar funda-
mental frequencies constitutes a block. This further level of 

abstraction is needed to look for vibrato and legato (with 
glissando), which are slowly changing modulations in pitch and in 
amplitude. In the case of singing, vibrato is a regular modulation 
with rate of 4/7 Hz (i.e. with a 150/240 msec period or about 1/2 
blocks) and depth between 4% and 15% [14, 20]. Legato is 
detected when adjacent blocks have pitches more than 0.8 semi-
tones apart. This former case is resolved generating two different 
events; otherwise, the adjacent blocks are joint to form an event. 
For each event, pitch values are set to the average of the pitches of 
the constituting blocks. These information are gathered with the 
relative positions of consonants and the exact bounds of each note 
are estimated. 

4.3 Post-Processing 
The most critical stage is the post processing where the informa-
tion captured by earlier stages are interpreted as pitch and dura-
tion. The intonation of the user is rarely absolute3 and the 
transcription process has to take into account a relative musical 
scale. Pitches are measured in fraction of semitones to improve 
the importance of the relative distance between tones in the frame 
of the tempered musical scale. We use the definition of MIDI 
note; the number resulting from the following equation is rounded 
off to three decimal places: 

                                                                 
3 Only about 1 in 10,000 people claim to have tone-Absolute 
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Figure 4. The post-processing stage of the system; the sequence of notes estimated in the previous stages is adjusted 
by means of a relative scale and four local rules. The definitive tune is given in output. 
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Figure 5. Example of calculation of the reference deviation (in bold style). The deviations (right) within the highest bin (left) are 
averaged. 

where f0  is the frequency in Hertz associated to the MIDI note 
zero, that is: 

 

To our knowledge, only Mcnab et al. [12] introduced a procedure 
to adjust the scale during transcription. They used a constantly 
changing offset, initially estimated by the deviation of the sung 
tone from the nearest tone on the equal tempered scale. The 
resulting musical scale is continuously altering the reference 
tuning, in relation to the previous note. They relied on the 
assumption that singers tend to compress wide leaps and expand 
sequences of smaller intervals, suggesting that errors accumulate 
during singing. On the contrary, in this work we assume to deal 
with constant sized errors in accordance with the experiments 
conducted by Lindsay [9].  

The tune estimated by the pitch-tracking is adjusted by means of 
three different steps: estimation of a reference deviation, scale 
adjustment and local refinement (Figure 4). The construction of a 
relative scale is based on the following idea: every singer has its 
own reference tone in mind and he/she sings each note relatively 
to the scale constructed on that tone. There are two important 
consequences: errors do not propagate during singing and are 
constant, apart some small increases with the size of the interval. 
These observations suggest to look for the reference tone of the 
singer through the estimation of his/her most frequent deviations 
from any given scale. In order to estimate the reference value for 
the construction of a relative scale, the semitone is divided into 
ten overlapping bins, each one being 0.2 semitone wide with an 
overlapping region of 0.1 semitone. We compute the histogram of 
the deviations from an absolute scale, which are the decimal digits 

of the estimated MIDI notes. The mean of the deviations that 
belong to the maximum bin is the constant average distance in 
semitones from the user’s reference tone. Thus, the scale can be 
shifted by this estimated amount. An example is illustrated in 
Figure 5. 

With the relative scale just introduced, we achieved results always 
better than rounding to the nearest MIDI note or implementing the 
algorithm by McNab et al. [12] (see next section for quantitative 
results). It is worth noting that the minimization of error has been 
obtained out of the whole performance of a singer. A further 
refinement is possible considering some local rules. When the 
reference deviation is between 0.15 and 0.85 semitones or there is 
more than one maximum bin in the histogram, the approximation 
introduced by the relative scale could be excessive. In particular, 
notes that have a deviation from 0.3 to 0.7 semitones on the rela-
tive scale are said to be critical. In this case, other four hypothetic 
melodies are considered; they reflect the following assumptions: 

• a singer tends to correct its intonation from a note to the 
following one. 

• some singers show a stable, even if slight, sharp or flat 
tuning with larger intervals (5 semitones and higher). 

• rounded off absolute pitches and rounded intervals can 
further adjust an imperfect intonation 

A very simple rule allows to remove single-note mistakes. The 
rounded melody on the relative scale is compared with the ones 
just calculated: a note n on the relative scale is replaced by the nth 
value given by three of the four representations above, when this 
value is the same in the three.  

Hzf 1758.8
2
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5. REPRESENTATION ISSUES 
The proposed front end can translate an acoustic input into a 
sequence of symbols represented by MIDI note numbers and 
durations in absolute time (milliseconds). This representation 
could not be best suited for querying by melodic content because 
it is not invariant to transpositions and different tempi. Musical 
intervals are the most likely representation for searching by 
similarity, as it is normally implemented by current query-by-
humming systems. Since we expect to have a good approximation 
of the absolute pitches for each note, intervals can be naturally 
obtained as difference between a pitch value and the previous one.  

A different matter concerns the rhythmic information, for which 
an acceptable representation is not known. Singers are likely to 
make great approximations on tempo, probably larger than the 
errors introduced by an imperfect estimation of note boundaries. 
Thus, the introduction of a stage for tempo quantization should be 
encouraged. For example, the measured lengths in msec of each 
note event could be smoothed by means of a logarithmic function. 
We suggest to use the following definition that is invariant to 
different tempi:  
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The alphabet is constituted by integers in the range [–10÷10]; for 
instance, the value 6 corresponds to the transition from a sixteenth 
note to a quarter note and –6 is the reverse transition; equal length 
transitions are represented by the symbol 0. Since it leads to a 
very detailed description of rhythm, this definition can be easily 
relaxed for handling approximate or contour-based representation 
of durations.  

6. EXPERIMENTAL RESULTS 
The audio front-end illustrated in section 4 has been implemented 
in Matlab code and Java applet. The first prototype allowed us to 
adjust a proper set of parameters, while the second one has been 
employed with human subjects. The Java applet provides a 
graphical interface that allows users to record their voice through 
the sound card and to store it as a wave file. The recorded audio 
can be tracked and the translation can be stored as midifile or 
played. The system produces two warnings in case of too low or 
too high recording gain. Input and output gain can be easily 
adjusted by means of two sliders. The audio waveform and a 
graphical representation of the melody are given in output on the 
screen (see Figure 6). 

Five subjects were asked to participate to the experiment. None of 
them was a musician or experienced singer, although they 
declared to feel themselves inclined to sing. Three subjects were 
male and two were female. The subjects sung in the tonality they 
preferred but without lyrics (i.e. singing ‘na-na’, ‘ta-ta’, ‘pa-pa’), 
simulating a query-by-humming session at home. The choice of 
removing lyrics was suggested to take out another possible source 
of errors that is difficult to quantify. Note segmentation is too 
much dependent on the way users remember the metric of a song. 
The experiment has been conducted in a non acoustically treated 
room, thus, in medium noisy condition. The audio card was a 
Creative Sound Blaster Live and the microphone was a cheap 
model by Technics.  

Four simple melodies were chosen among the ones that the 
subjects proved to remember very well. The knowledge of the 
melodies doesn’t hold a particular importance; it assures the 
equivalence of the tunes to be evaluated. After the recording 
sessions, a musician was asked to transcribe the melodies sung by 
all the subjects without taking care of his memory of the melodies. 
The aim was to keep as much as possible of the original intention 
of the singers, and not their ability in remembering a music 
fragment. A different interpretation occurred only with a subject 
in three ending notes of a tune, but the same amount of notes has 
been sung and rhythm has been preserved; for this reason, that 
performance was included in the test. The transcriptions constitute 
the reference melodies for the evaluation of the front end. Each 
tune has been chosen for testing a particular block of the system. 
The main characteristics of each melody are described in the 
following: 

§ Melody number 1: three legato notes (with bending) 

§ Melody number 2: three sustained notes 

§ Melody number 3: very long, but well-known as well, 
sequence of notes (28 notes) 

§ Melody number 4 (“Happy Birthday”): well-known tune 
always sung in a different key 

For each tune, the output of the front end is compared with the 
transcriptions by the musician. Each different pitch accounts for 
an error. In the case of round-interval tunes, the comparison has 
been made on the transcribed intervals. For the evaluation of the 
estimated durations, we consider only segmentation errors (i.e. a 
note split into two or more notes and two or more notes grouped 
into a note).  

Eq. 3 

Figure 6. Screen capture of the applet Java developed 
running in Netscape Navigator. It is illustrated an example 
of the translation of melody 1 (MIDI note on vertical axis; 
value 0 indicates pauses; value 5 represents silence). 



ALL SUBJECTS Round 
MIDI 

Moving 
Tuning 

Round 
Intervals 

Proposed 
without 

local 
rules 

Proposed 
with local 

rules 

Melody 1 (13 notes) 15 38 7 5 3 

Melody 2 (8 notes) 4 15 4 3 3 

Melody 3 (28 notes) 38 89 34 24 21 

Melody 4 (12 notes) 19 30 8 8 4 

      

ALL MELODIES      

Subject 1 22 26 12 8 10 

Subject 2 9 42 8 8 5 

Subject 3 14 35 12 8 6 

Subject 4 17 32 10 6 3 

Subject 5 14 37 11 10 7 

Average Error (%) 24.9% 56.4% 17.4% 13.1% 10.2% 

 

Table 1-2. Comparison of different methods for approximating 
an estimated tune. With the exception of the last row, values 
indicate the absolute number of wrong notes.  

Variance Dev. 
Round MIDI 

0.134 

Reference Dev. 
Melody 

0.625 

 
Variance Dev. 
Adjusted Mel. 

0.036 

 

Actual Melody 56 56 58 56 61 60 56 56 58 56 63 61 

Sung Melody 56.693 56.623 58.328 56.628 61.255 60.872 56.423 56.435 58.286 56.644 63.352 61.537 

Round-MIDI 
Melody 

57 57 58 57 61 61 56 56 58 57 63 62 

Dev. Round-
MIDI  Melody 

-0.307 -0.377 0.328 -0.372 0.255 -0.128 0.423 0.435 0.286 -0.356 0.352 -0.463 

Adjusted 
Melody 

56.068 55.998 57.703 56.003 60.63 60.247 55.798 55.81 57.661 56.019 62.727 60.912 

Round 
Adjusted Mel. 

56 56 58 56 61 60 56 56 58 56 63 61 

Dev. Adjusted 
Melody 

0.068 -0.002 -0.297 0.003 -0.37 0.247 -0.202 -0.19 -0.339 0.019 -0.273 -0.088 

Rounded 
Intervals 

 0 2 -2 5 0 -4 0 2 -2 7 -2 

Moving Tuning 57 56 58 57 62 61 56 56 58 57 63 62 

 

Table 4. Approximation of melody 4 (first twelve notes of “Happy Birthday”); actual notes come from the transcription by a musician. 
Sung melody represents the sequence of pitches given in output by the second stage of the front end.  

Tests have been carried out with different approximation methods 
for a direct comparison of the proposed one with the following: 
rounded midi note, McNab’s moving tuning [12] and rounded 
intervals. The proposed method has been also tested without local 
rules (see Section 4.3), in order to assess their contribution. 
Results are illustrated in Table 1 and 2, ordered respectively by 
melody and by subject and without considering segmentation 
errors. In Table 3 the overall error rates (with segmentation errors) 
are summarized. 

As previously noticed, the relative scale introduced in this work is 
always better than any other approximation method. The moving 
scale developed by McNab et al. [12] has the worst performance 
(56.4% of wrong approximations), confirming that errors do not 
accumulate. Rounding to the nearest tone on an absolute scale 
(round-MIDI) lead to an error in 26.6% of the sung notes, 

showing a performance comparable to the proposed method only 
in the second melody. Here, the deviations from the MIDI scale 
are close to zero, thus indicating the simple round as a valid 
approximation. The round-interval tunes perform better as 
expected (17.4% of wrong approximated notes), since it confirms 
the previous work by Lindsay [9]. However, the segmentation 
errors have an unwanted side effect on intervals, since a single 
error propagates. Thus, the overall error rates increase more than 
the number of the segmentation errors, going from 17.4% of 
wrong pitches to 20.3% of wrong notes (pitch and segmentation). 

The introduction of the four local rules bring some benefits, in 
fact the error rate is reduced from 13.1% to 10.2%. In absolute 
terms, these heuristic rules permit us to make the right approxi-
mation for ten notes more and introduce wrong approximations 
for only a note.  

The recognition of note events has been very successful: only 5 
notes were split into two events, thus identifying a total number of 
310 notes instead of 305. Such a negligible error rate can be easily 
fixed by a somewhat fuzzy algorithm for melody comparison and 
retrieval, for example in a hypothetic next stage of the audio front 
end. As already said, in the case of round-interval the segmen-
tation errors lead to heavier costs.  

An example of translation is reported in Table 4. It is shown the 

 Round 
MIDI 

Moving 
Tuning 

Round 
Intervals 

Proposed 
without 

local 
rules 

Proposed 
with local 

rules 

Nr.of Wrong Notes 
(total number of 
notes=310) 

81 177 63 45 36 

Error Rate (%) 
26.1% 57.1% 20.3% 14.5% 11.6% 

 

Table 3. Summary of performances for the five methods 
employed. Error rates account for both pitch and 
segmentation errors. 

 



Figure 7. Example of legato notes detection (melody 1).  

 

Figure 8. Transcription of melody 1 by a software tool 
available on the market and by the system developed here. 
Actual notes coincide with the sequence on the bottom. 

reference deviation on which the relative scale is built; errors are 
indicated in bold type. Without employing any local rules, the 
melody is perfectly approximated on the relative scale, while the 
round interval and moving-tuning approximations account 
respectively for an error and six errors.  

A hard problem for pitch-tracking algorithms are notes sung 
legato, for which there is neither a noticeable change in energy 
nor an abrupt modification in pitch. In Figure 7, the sampled 
waveform of the melody nr.1 is depicted with its translation. 
Three vertical lines highlight the estimated legato tones. The 
approximation introduced by the front end is able to capture the 
performance, splitting the legato notes in a natural way. The same 
file has been translated by means of Digital Ear by Epinoisis 
Software [2]. Since this software tool allows smart recognition of 
onsets and recovery of out-of-tune notes, different settings have 
been employed. In Figure 8, one of the resulting MIDI files (top 
figure) is compared to the translation obtained with our system 
(bottom figure). Although it is not made clear in the figure, the 

actual notes coincide with the latter tune; a number of errors both 
in the segmentation and pitch-tracking can be noted in the former 
translation. 

7. CONCLUSION AND FURTHER WORK 
The need of dedicated singing voice processing tools strongly 
arises in the context of query-by-humming systems. The transla-
tion of the acoustic input into a symbolic query is crucial for the 
effectiveness of every music information retrieval system.  

In the present work, well-known signal processing techniques 
have been combined with a novel approach. Our goal is the 
realization of an audio front end for identifying, segmenting and 
labeling a sung tune. The labeling stage constitutes the novelty; it 
enables to adjust a human performance out of a set of hypothesis 
on the most frequent errors made by singers. The adjustment 
follows two steps: global tuning and local rules. Both methods 
have been tested with twenty human performances (four tunes, 
five singers). We achieved the detection of some 90% of right 
notes with both steps. Previously employed methods like 
rounding to the nearest absolute tone or interval, and the moving 
tuning by McNab et al. [12], were outperformed, since they 
respectively accounted for about 74%, 80% and 44% of right 
notes. A special session of tests has been carried out to verify the 
ability of the pitch tracking stage in detecting vibrato and legato 
effects. An example has been reported in comparison with a 
software tool available on the market. The proposed front end 
roughly identified all the notes sung legato in our dataset. 
Quantitative results could not be presented, since it is impossible 
to classify as right/wrong the splitting point between two legato 
tones. 

Much work needs to be done in different directions. First, we are 
developing a new pre-processing stage for the detection of noise. 
The aim is twofold: improving the estimation of the background 
noise level and filtering the noisy sources from the singing voice. 
This pre-process should be very robust since we are looking to 
applications like query-by-singing by cellular phones or other 
mobile devices.  

In the post-processing stage, we relied on assumptions derived 
from the cited work of Lindsay [9]. Although these assumptions 
have been confirmed, a more rigorous model should be 
formalized. Moreover, we employ four local rules that have been 
introduced from experimental results but we don’t know how 
these rules can be arranged in a more general model.  

Query-by-singing is a straightforward extension of querying 
through hummed tones. Preliminary tests show that the task is not 
trivial and should need further experiments for the detection of 
note boundaries. As we said, language articulation could cause a 
wrong estimation of both the number of events and the rhythmic 
aspects of a performance. 

Finally, current implementation suffers from the known 
performance deficiencies of Java. The computation time is about 
the same of the play time (i.e. length of the audio file) on a 
Pentium III, 450MHz running Windows NT 4.0. Thus, a complete 
re-engineering of the package is necessary and we can not exclude 
the possibility of migrating to other software platforms.  
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ABSTRACT 
MUSART is a research project developing and studying new 
techniques for music information retrieval. The MUSART 
architecture uses a variety of representations to support multiple 
search modes. Progress is reported on the use of Markov 
modeling, melodic contour, and phonetic streams for music 
retrieval. To enable large-scale databases and more advanced 
searches, musical abstraction is studied. The MME subsystem 
performs theme extraction, and two other analysis systems are 
described that discover structure in audio representations of 
music. Theme extraction and structure analysis promise to 
improve search quality and support better browsing and “audio 
thumbnailing.” Integration of these components within a single 
architecture will enable scientific comparison of different 
techniques and, ultimately, their use in combination for improved 
performance and functionality. 

1. INTRODUCTION 
We are integrating components for music search and retrieval into 
a comprehensive architecture called MUSART, an acronym for 
MUSic Analysis and Retrieval Technology. Like several other 
music-retrieval systems, MUSART takes as input an aural query, 
which is typically a theme, hook, or riff, of the piece for which the 
user is searching. Unlike other systems, however, MUSART 
automatically builds a thematic index of the pieces in its database. 
Since users generally remember the theme of a piece of music, 
and the theme can occur anywhere in a piece, indexing by theme 
can greatly improve both the precision and recall of the retrieval 
system. 

Moreover, MUSART uses a variety of representations to support 
multiple search modes. These representations run from a Markov 
model, to phonetic streams, to strings. This allows us, for 
example, to easily compute approximate matches and to search 
based on stylistic similarity or the lyrics in a popular song. Our 
representation can capture harmony and rhythm, should the user 
decide to query based on harmonic progression or rhythmic 
pattern, or both, in addition to or in place of melody. 

The current version of the system contains hundreds of pieces 
from different Western genres (all are tonal pieces). From these 
pieces, we have automatically induced about 2000 themes. 
MUSART is able to effectively retrieve pieces from either the 
theme or full piece databases. The system is relatively robust 
against queries that contain some classes of errors (e.g., rhythmic 
changes). We measure performance by rank (the target piece is in 
the top ten pieces retrieved), yielding measures from 100%1 for 
queries without errors and degrading from there based on the type 
of error in the query. 

In this paper, we describe the MUSART system architecture2. The 
discussion concentrates mostly on searching themes, as we believe 
this will be the primary method most users will employ. We will 
mention, however, extensions to full pieces and other music-
analysis strategies. We begin by placing our work in the context 
of current systems. 

2. RELATED RESEARCH 
There are varieties of approaches described in the database and 
information-retrieval (IR) literature on retrieval of music. Some of 
these approaches, such as Variations [1], are primarily based on 
retrieving either musical scores or sound recordings using 
traditional categorization schemes, where the musical items are 
treated in much the same way as text-based media.  

A number of other systems [2-8] have focused on sound and 
MIDI [9] input. These systems generally take as input a melody 
that is “hummed” or played on some type of musical input device, 
such as a MIDI keyboard. The hummed melodies are converted to 
text strings, usually with a representation of intervallic distance or 
simply relative pitch contour [10]. For the melody “Happy 
Birthday,” a user may hum the pitches “G G A G C B,” which 
may then be more simply categorized as ascending (U), 
descending (D), or the same (S) to yield the pitch contour “S U D 
U D.” A commonly used variation to the SUD approach is to 
divide jumps into large (U or D) and small (u or d), where large 
is, for example, a jump greater than a minor 3rd. This SUuDd 
alphabet provides more information than a string composed from 
the SUD alphabet, but does not substantially change the retrieval 
process. 

                                                                 
1 That is, in 100% of the cases the target was in the top-ten rank. 
2 See musen.engin.umich.edu for more information on the 

MUSART project and related projects. 

Permission to make digital or hard copies of all or part of this 
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provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page. 



  

While hummed input is a natural approach, there are some 
problems with using it as the sole input. Pitch contour and related 
representations (such using actual or modified pitch normalized to 
some key) are not necessarily unique: the hummed input is 
sometimes fraught with a number of distortions inherent in the 
way that humans remember and produce (sing) melodies [6]. Such 
distortions include raising or lowering the pitch of various notes, 
“going flat” over time, losing the beat, or humming “off key.” To 
account for these distortions, researchers treat the string as 
imprecise. In other words, regions of uncertainty are added. The 
retrieval process on imprecise strings employs a string-matching 
[11], N-gram [12], or other algorithm where the input string is 
matched against abstractions stored in the database.  

While this approach has clearly led to some impressive results, we 
argue that the “string approach” is fundamentally limited for the 
following reasons: 

•  The assumption that a melodic fragment exists and forms a 
suitable search key is not always true for some types of music 
such as rap, electronic dance music, and even some modern 
orchestral music. Users may want to search for non-melodic 
attributes. 

•  Given a large, but not unrealistic, corpus of music, pitch 
contour or intervallic representations will not uniquely 
identify pieces. In other words, there will be a great many 
pieces with similar string representations; this problem is 
exacerbated if the strings are modeled as imprecise. 

•  In some genres, harmony, homophony or polyphony may be 
predominant musical features. Representing any of these as 
simple strings is fraught with significant problems. For 
example, would a two-voice piece be represented as two 
“concurrent” strings? 

We are not arguing against melodic search per se; we only want to 
recognize that current practice must be augmented with new 
techniques to achieve better performance and richer functionality. 
For example, current research suggests using genre to narrow 
searches, but in many cases users may want to search for 
orchestration, themes, or rhythms that span many genres. Using 
genre to narrow searches is similar to MARC-record searching in 
that pre-established categories are selected using traditional 
database and query techniques. We look to implement more 
general and more powerful searching techniques. 

Several researchers have described systems based on various non-
string methods to represent and classify music [8, 13, 14]. These 
projects have not yet demonstrated how to integrate general query 
mechanisms and methods for returning results. Nor do these 
systems integrate abstraction with a search mechanism. 

Retrieval by melody depends on the “hook” of a piece of music. 
The hook is usually what a person uses as a query when humming. 
The problem is that although the hook may be contained in the 
opening melodic line of a song, often it is not. For example, it is 
common in popular songs for a familiar chorus (such as “Take me 
out to the ballgame…” by Jack Norworth & Albert Von Tilzer) to 
follow an unfamiliar verse (such as “Nelly Kelly loved baseball 
games…,” the actual opening line from the 1927 version of “Take 
Me Out to the Ballgame”). In classical music, the main theme (or 
melody) may not be stated for several measures following the start 
of the piece, or it may be disguised in a variation, and the 
variation may be better known than the main theme.  

Thus, there is a significant problem in determining what part of a 
melody, or even which melody, should be indexed. Some 
abstraction of a piece is clearly needed, as many pieces of music 
are too long to be reasonably searched. Faced with these 
problems, music librarians have developed thematic indexes 
which highlight significant themese in staff notation, thus 
preserving major musical features (harmony, rhythm, etc.) [13]. 
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Figure 1. MUSART Architecture. 

 



  

We know of no other researchers who are addressing the problem 
of abstraction using automated mechanisms. 

3. MUSART ARCHITECTURE 
This section illustrates the conceptual organization of our system 
(see Figure 1). The corpus is preprocessed using a collection of 
tools to build abstract representations of the music (i.e., our data). 
The extracted information is then translated to multiple 
representations. Queries are also translated, and a search engine is 
selected to search the database. The important idea of this 
framework is that various modules and representations can work 
together in parallel or in sequence to achieve more refined 
searches than any single search technique can offer. We can also 
compare different techniques on the same set of data. 

With this architecture, the user interface can offer a rich set of 
options to the user. Because music is abstracted in various ways, 
users can explore musical spaces along many dimensions. In 
addition, abstract representations lend themselves to music 
generation and synthesis. We have just begun to explore this 
possibility, but this promises to be a powerful tool for users to 
refine queries and to explore different musical dimensions. 

So far, we have implemented several new techniques for 
searching, and we have investigated several techniques for 
musical abstraction. These are described in the following sections. 
We are in the process of integrating these subsystems to form a 
more integrated whole. 

4. MARKOV REPRESENTATION AND 
THE CONCURRENCY 
One way we model music is as a stochastic process, where we cast 
a musical performance as a Markov model. Recently, we have 
experimented with Markov models where we use simple state 
features of pitch (or concurrent set of pitches) and duration [14]. 
The transition table is the likelihood of going from one state to 

another, where the priors are determined by counting transitions 
occurring in some set of music (e.g., the piano concerti of 
Mozart). 

We define the states of the Markov model as concurrencies. A 
concurrency consists of all the notes that are sounding at the same 
time. These notes need not all have the same duration, onset, or 
offset. Hence, a different concurrency exists at each point a new 
note begins or terminates in a piece. For the purposes of 
simplification, the notes in a concurrency are modeled by pitch 
class, thereby ignoring octave information. By representing 
concurrencies in this manner, we are able to store and use them as 
12-tuple bit vectors. It is easy to extend the concurrency to 
include octave information, simply by increasing the size of the 
bit vector. For example, a two-octave range is represented by a 
24-tuple and corresponding bit vector. 

The concurrency can represent up to twelve simultaneous pitches 
(every pitch class); elements of the harmony or polyphony are 
naturally represented. Moreover, this represent is well suited for 
automated harmonic analysis [15].  

We use Figure 2 and Table 1 as examples of a set of concurrencies 
and the corresponding state and transition tables for the Markov 
model representing the piece. Figure 2 shows the piano-roll 
notation for Wilson’s Wilde, an anonymous 16th-century work. 
Table 1 shows the corresponding concurrencies (given in the table 
as Markov states) based solely on this excerpt. 
Although relatively simple, the Markov representation has several 
interesting properties that allow us to use it as one of the primary 
representations in our system. First, our results from inducing 
Markov models from the pieces in our corpus indicate that 
composers occupy (mostly) unique regions in the state space 
implied by the Markov model. Secondly, we found that the 
transition matrices are relatively sparse (more so for some works 
than others). Thirdly, we can impose an order on the states 
implied by the Markov model.  

The ordering is formed as follows: we quantize note duration to 
some minimum (e.g., 16th-note) and use a pitch-class vector 
where, for example, <100000000000> represents the pitch class C 
as the single pitch sounding, <110000000000> represents the 
pitch classes C and C#/D-flat sounding concurrently, and so forth. 
A state is represented by a duple (duration, pitch vector). We can 
simply order the state space as follows: (16th-note, 
<100000000000>), (8th-note, <100000000000>), … (whole note, 

 
Figure 2: Piano roll for Wilson’s Wilde, mm. 1 – 4. 

State # Notes in State
1 E
2 A
3 E, A
4 C#, A
5 A, B
6 C#, A
7 D
8 C#, D
9 E, G#, B
10 REST  

Table 1: Concurrencies for Wilson’s Wilde, mm. 1-4. 



  

<111111111111>), where durations are ordering by increasing 
powers of 2 of a 16th-note, and the maximum duration is a whole 
note.3 

Because of these three properties, we can assess similarity among 
pieces of music, or even composers using a variety of techniques. 
Initial results indicate a strong correspondence between similarity 
as computed by the MUSART system and educated musical 
opinion. Consider that once the query is converted to a Markov 
chain, it can be easily correlated with pieces in the database (See 
Section 6.) While at worst case this is a linear-time operation, the 
correlation operation is fast and, with clever indexing, we can 
significantly reduce this time. Finally, the induction of the 
Markov model and correlation computation can be done off line. 

5. Thematic Abstraction 
We are interested in extracting the major themes from a musical 
piece: recognizing patterns and motives in the music that a human 
listener would most likely retain. Extracting themes is an 
important problem to solve. In addition to aiding music librarians 
and archivists, exploiting musical themes is key to developing 
efficient music retrieval systems. The reasons for this are twofold. 
First, it appears that themes are a highly attractive way to query a 
music-retrieval system. Second, because themes are much smaller 
and less redundant than the full piece, by searching a database of 
themes rather than full pieces, we simultaneously get faster 
retrieval (by searching a smaller space) and get increased 
relevancy. Relevancy is increased as only crucial elements, 
variously named motives, themes, melodies or hooks are searched, 
thereby reducing the chance that less important, but frequently 
occurring, elements are assigned undue relevancy. 
Our theme abstraction subsystem, MME [16], exploits 
redundancy that is found in music. Thus, by breaking up a piece 
into note sequences and seeing how often these sequences repeat, 
we identify the themes. Breaking up a piece involves examining 
all note sequence lengths of one to some constant. Moreover, 
because of the problems listed earlier, we must examine the entire 
piece and all voices. This leads to very large numbers of 
sequences, thus we must use a very efficient algorithm to compare 
these sequences. 

Once repeating sequences have been identified, we must further 
characterize them with respect to various perceptually important 
features in order to evaluate their thematic value. It has been 
noted, for instance, that the frequency of a pattern is a stronger 
indication of thematic importance than pattern register. We 
implement hill-climbing techniques to learn weights across 
features, i.e., MME learns relative to a training set the relative 
importance of the features it uses. The resulting evaluation 
function is then used to rate the sequence patterns we uncover in a 
piece. A greedy algorithm is used to identify a subset of the piece, 
consisting of some pre-determined number of note events, 
containing top-ranked patterns. 

Our formal evaluation of MME on over 30 training trials, with 30-
piece training and test sets randomly selected across 60 pieces for 
each trial, MME returns Barlow's A Dictionary of Musical Themes 
[17] “1st theme” in 98.7% of cases (see Figure 4). Figure 3 shows 

                                                                 
3 We can choose any range of durations, and any method to order 

the durations. 

sample output from MME, two slightly different versions of the 
passage Barlow identifies as the “1st theme”. 

 
 

Figure 3: Sample MME output, Smetana's Moldau. 
Because of the large number of patterns that MME may find in a 
complex piece of music, it must be computationally efficient. The 
system’s overall complexity is )( 23nmΘ  time, where m is the 
maximum pattern length under consideration, and n is the number 
of note events in the input piece. In practice, however, we observe 
sub-linear performance, and reasonable running times on even the 
largest input pieces.  
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Figure 4: MME test results. 

6. Retrieval Methods 
The pieces in the MusArts’ database are converted by MME into a 
set of themes, where up to a certain number of themes are 
identified for each piece. These themes are then converted to the 
Markov models described in Section 4. Thus, the “Markov 
Distance” retrieval engine takes a query, converts it to a Markov 
model, and then computes a variety of correlations measures 
between the query model and all “theme” models [18]. 

Currently, we use two correlation methods to examine how the 
query relates to a theme. Both are based on a standard correlation 
coefficient. One technique, however, uses the first-order Markov 
model, while the other simply uses the frequency count of each 
state observed, which is a zero-order Markov model. Once a 
comparison has been made to each database entry the results are 
sorted and presented as a score out of 1000 to the user. 

The results so far are promising. We have taken some of the 
themes extracted automatically and manipulated them to simulate 
typical errors we expect to see in queries. The three classes of 
errors that we are investigating are duration change, note drop, 
and pitch change. In our experiments, we set an error rate for each 
type of error that indicates what percentage of the MIDI events we 
will manipulate when comparing the query to the database entries. 



  

We define a successful trial as one in which the piece that was 
being sought is presented as one of the top ten themes returned (a 
rank measure). The system is very robust to duration-change 
errors, having as high as a 95% success rate even when the error 
rate is 100%. When it comes to note-drop errors, the system 
performs at a 75% success rate with error-rates approaching 50%. 
However the system is not robust to pitch-change errors. It 
appears that a pitch-change error rate of 10% the system does not 
return the sought piece in the top rank. We are investigating 
several solutions to this problem.  

We have recently implemented a Viterbi algorithm for retrieval. 
With this algorithm, we can find which Markov model is most 
likely to cover the input query. Rather than calculate correlation 
measures, this approach calculates true posterior probabilities 
(given the input query as evidence). To account for errors, we 
insert “error states” in the Markov model for each theme. The 
distributions for these error states are currently based on our 
intuition; however, we are conducting an extensive set of 
experiments to get better error models.  

Our initial results with the Viterbi approach are encouraging. 
Using the same experimental setup as we used for the correlation 
experiments, we have recorded better results for all error classes. 
In particular, the Viterbi approach appears to be more robust to 
pitch-change errors. 

The description of both the correlation and Viterbi approaches 
given in this paper has relied on searching a database of 
monophonic themes (which do include rhythmic features). Given 
that both approaches are based on concurrencies, it is very simple 
to apply both approaches to homophonic or polyphonic music. In 
fact, we are experimenting with searching for harmonic 
progressions using the Viterbi approach.  

7. FRAME REPRESENTATION AND 
MELODIC CONTOUR 
We are exploring another representation and search strategy to 
address some of the problems of conventional “event-based” 
searching, where events are typically musical notes and searching 
is performed on the basis of note sequences. Event-based searches 
suffer from at least two problems. First, it is difficult for music 
transcription systems to segment audio correctly into discrete 
notes. This is a problematic even when skilled musicians sing 
queries. Secondly, efficient string-matching algorithms, when 
given enough leeway to ignore music transcription and 
performance errors, can often time-align two perceptually 
dissimilar melodic strings, leading to false positives. 

An alternative is to ignore the concept of note and perform a 
direct comparison of musical contours, representing melody as a 
function of pitch versus time. This function is discretized by 
segmenting the melody into time frames. Thus, we call this a 
“frame-based” approach. Figure 5 illustrates a pitch contour from 
an audio query and the resulting query string. In this approach, 
there is no need to quantize pitch, nor is there a problem if pitch 
varies during a “note” because notes are not represented 
explicitly. Furthermore, this approach can be extended to 
incorporate transcription uncertainty by representing pitch as a 
probability distribution. 
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Query string: 47.1, 47.4, 47.8, 47.8, 47.8, 49.4, 49.2, 49.6, 

49.2, 48.4, 47.4, 47.7, 47.7, 47.7, 51.5, 52.6, … 
Figure 5. An audio query is segmented into frames 

representing a melodic contour. Each frame corresponds 
to the pitch of a 100 ms timeslice. 

To deal with pitch transposition, we transpose queries by many 
different pitch offsets; to deal with tempo variation, we “stretch” 
the target melodies in the database by different scale factors. In 
addition, we use a constrained form of time warping to align 
queries with the database entries. Constraints prohibit large 
deviations that would distort the overall contour shape. 

This approach is obviously very slow and impractical for 
searching a large database. However, we believe it would be 
foolish to limit our research to the existing body of fast search 
algorithms. Instead, we hope to characterize some limitations of 
fast search algorithms and then try to overcome them. For 
example, a slow precise search might be used to refine the results 
of a fast, imprecise search. To evaluate the frame-based approach, 
we are replicating various event-based search engines from the 
literature so that we can compare different approaches using 
identical queries and databases. Preliminary results show that the 
frame-based approach is giving substantially better precision. For 
example, the frame-based approach ranked the correct match as 
the closest match in 13 out of 20 queries on a collection of 77 big 
band arrangements, and it ranked the correct match in the top 3 on 
16 out of 20 queries. In contrast, an event-based search found the 
correct match in 5 out of 20 queries, with only 6 out of 20 queries 
ranked in the top 3 results [19]. 

8. PHONETIC-STREAM ANALYSIS 
In addition to pitch and rhythm, singing as a natural form of query 
possesses time-varying acoustic-phonetic information, e.g., one 
sings the words of a song according to the pitch and duration of 
each note. While all three streams may provide useful information 
for searching the musical database, only the pitch stream has been 
studied in any detail, and almost no work has been done on the 
acoustic-phonetic stream. In the ideal case of errorless queries, the 
acoustic-phonetic stream is likely to be highly redundant with the 
rhythm and pitch streams, and, therefore, is expected to provide 
little additional information. In the practical case, where the 
rhythm and pitch streams may contain a significant number of 



  

errors, the acoustic-phonetic stream may be the only reliable 
source of information. 

In its most general form, extracting the stream of phonetic 
information from the query is a problem in speaker-independent 
continuous speech recognition, for which a sizable body of 
research literature exists, all of which suggests that we should 
expect little success in the case of sung passages without 
substantial effort. Besides independence across speakers, the 
problem of speech recognition for singing is further exacerbated 
by the fact that non-vocalic segments of the stream are generally 
poorly represented, e.g., one cannot “sing” the fricative /f/. 
Furthermore, singing extends the pitch range upwards from the 
normal range of speaking to fundamental frequencies that 
generally cause problems for many standard recognition systems. 

Our work [20] focuses on a reduced version of phonetic-stream 
analysis. Rather than attempting to transcribe the word that is 
sung into standard phonetic units, we have studied coarser 
quantizations of the phonetic stream, which trade robustness to 
production variations within and across singer against the 
information-bearing capacity of the stream. The algorithm we 
have developed extracts a symbol stream consisting of the 
Cartesian product of a “phonetic” alphabet of four vowel types 
(front, neutral, back, non-vocalic) and a duration alphabet of long 
and short.  

Among the several approaches we have studied for segmenting 
the phonetic stream into the 8-element symbol stream, the most 
promising appears to be based on a self-referential model, as 
opposed to an absolute-referential one. In an absolute-referential 
model, queries are segmented based on templates constructed for 
the four vowel types over the entire population of singers. A self-
referential model segments each query individually and then maps 
these segments to the most likely “universal” alphabet of front, 
neutral, back, and non-vocalic. Of the two approaches, the self-
referential model appears in our preliminary studies to be more 
robust to such sources of variation in production as gender, 
training, song, and register. 

The self-referential model utilizes nearest-mean reclassification 
(NMRA) to segment the query into four categories based on 
properties of the query’s short-time Fourier transform. NMRA is 
performed on the entire set of short-time Fourier transforms to 
assign one of four raw categories to each time slice. Aggregation 
is performed across time slices to yield short and long 
classification of each vowel type. Finally, the raw categories are 
mapped into front, neutral, back, and non-vocalic labels based on 
features of the spectral distributions within and across the raw 
categories. The string for each query is then compared with the 
database to find the best matches. 

Results from pilot studies suggest that the approach outlined 
above may be useful in music retrieval. A database of sung 
queries was  constructed by having subjects sing one verse from 
seven familiar songs: “Happy Birthday”, “Yankee Doodle”, 
“America the Beautiful”, the Beatles’ “Yesterday”, “Row, Row, 
Row Your Boat”, “Somewhere Over the Rainbow”, and “My 
Bonnie Lies Over the Ocean”. Ten subjects were recruited from 
among staff, faculty, and graduate students at the Advanced 
Technologies Laboratory at the University of Michigan. Each 
subject sang four instances of each song. They were allowed to 

pace themselves and to choose whatever pitch range and tempo 
they felt most comfortable for each of the songs. Informal 
classification of the quality of singing ranged from very poor to 
excellent across the ten subjects.  

Error! Reference source not found. shows the percent correct in 
the nearest neighbor matches as a function of query song. For 
each query, the nearest neighbor is found as the vowel stream that 
requires the fewest number of (weighted) edits to be transformed 
into the desired query. If that selected vowel stream is generated 
from the same song as the query, then the selection is deemed 
correct. There are a total of 40 queries for each song, for a total of 
279 possible neighbors from which to select, as we do not count 
the query itself as a possible neighbor.  Therefore, a 14% chance 
exists of a correct answer occurring at random. 
Across all songs, the nearest neighbor selection is correctly 
chosen from the same song 60% of the time, and varies by song 
between 42% (for “Yankee Doodle”) and 80% (for “America the 
Beautiful”).  We interpret these results as supporting the general 
hypothesis that some representation of vowel stream is useful for 
music information retrieval. 
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Figure 6. Fraction of correct nearest-neighbor choices as a 
function of the query song. A correct choice means that the 

nearest neighbor to the vowel stream is a vowel stream from 
the same song. There are 40 queries for each song. 

9. STRUCTURAL ANALYSIS AND 
ABSTRACTION 
In parallel with our work on melodic search, we are investigating 
methods by which we can deduce musical structure and genre. 
Information about structure has many uses. Since repetition is 
common in music, identifying repetition can aid in music 
processing and transcription as well as eliminate unnecessary 
searching. Listeners often remember the most-often repeated parts 
of a song, so search engines can give extra weight to these, and 
audio browsers can begin playback at these memorable moments. 
While a great deal of work has focused on the analysis of 
symbolic representations of music, we also wish to consider 
applications to databases of audio waveforms. Both of the 
approaches described below represent early efforts to derive 
structure from music audio. 



  

9.1 Chroma-Based Search for Structure 
One approach in this direction is our “audio thumbnailing” 
algorithm [21]. Prior work in this area includes Logan and Chu, 
[22] who developed algorithms for finding key phrases in 
selections of popular music. Their work focused on the use of 
Hidden Markov Models and clustering techniques for mel-
frequency cepstral coefficient (MFCC) representations of the 
acoustic waveform. Their system was subjectively evaluated on a 
relatively small selection of Beatles songs. In another work, Foote 
[23, 24] talks about audio “gisting” as an application of his 
proposed measure of audio novelty. This audio novelty score is 
based on a similarity matrix, which compares frames of audio 
based on features extracted from the audio. Foote leaves details 
such as the similarity metric and feature class as design decisions; 
however, he does recommends the use of MFCCs as a feature 
class for computing audio novelty. 

Our approach to “audio thumbnailing” draws upon two key 
concepts: the chromagram and recurrent state. The chromagram is 
an abstraction of the time-varying spectrum of the audio signal 

which is based on the perceptual organization of pitch [25]. For 
each time frame, the chromagram maps the linear-frequency 
spectrum onto pitch-chroma spectrum, which ranges in semitones 
over the octave [26]. Among the mathematical properties of the 
chromagram is that it discounts octave relationships among the 
components of the frequency spectrum, which are highly 
redundant in harmonic sources, and places greater emphasis on 
pitch-class relationships, which bear information about harmony.  

Recurrent state abstracts the concept of structural organization in 
a piece of music. The refrain in a song, for example, is 
distinguished from the rest of the piece only by virtue of the fact 
that it, alone, recurs throughout the piece. Thus, in searching for a 
refrain, or other such structures that repeat often in a piece of 
music, relatively little can be assumed about the structure save 
some basic unit of time, which establishes the scale of the 
structure.  

Our system performs audio thumbnailing by examining the audio 
signal for recurrent states over time scales from 5 to 60 seconds in 
duration. To reduce redundancies in the representation of 
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harmonic sources, each time-slice of the chromagram is quantized 
into twelve equal semitone bins. The 12-dimensional feature 
vectors are correlated across time and the correlation values are 
aggregated over windows of time to identify recurrent structures 
at a particular time scale. 

Foote’s similarity matrix is a convenient way to represent the 
feature-correlation space. Windowing, in this case, transforms the 
similarity matrix into a time-lag surface Figure 7 presents a time-
lag surface for Jimmy Buffet’s Margaritaville. A thumbnail for 
the piece of music is selected by locating the maximum element of 
the time-lag matrix subject to two constraints. To prevent the 
selection of quick repetitions and fading repeats, we require that 
the location have a lag greater than one-tenth the length of the 
song and occur less than three-fourths of the way into the song. 
The thumbnail is then defined by the time position of this 
maximum, which corresponds to the time that the first of the pair 
of sections begins, and the length of the window used for 
aggregating the data. 

Our primary quantitative studies of the thumbnailing algorithm 
have been applied to a database of 93 selections of popular music, 
with styles including rock, folk, dance, country-western, and 
others [21]. Each song was hand-scored to identify the refrain or 
chorus segments of the song. The thumbnailing algorithm was 
then used to identify highly similar segments of music. Our 
general observations include the following. With respect to frame-
level recall and precision rates, the thumbnail algorithm performs 
as high as 0.9, for proper choice of window. When it fails, it is 
often the case that the chorus or refrain is repeated, but there is 
some change, either in instrumentation or in the musical structure 
of the repeat. These cases violate our initial assumption of high 
correlation between instances of the chorus and indicate that this 
assumption would need to be relaxed under such circumstances. It 
is also interesting to note that thumbnailing based on the 
chromagram reduction of the audio stream clearly outperforms a 
comparable system based on MFCC’s. We interpret this outcome 
to reflect the fact that MFCC’s provide a low-order representation 
of the wideband spectrum, whereas the chromagram provides a 
low-order representation of the “wideband” harmonic content of 
the signal, by folding harmonically redundant regions of the 
spectrum into each other. 

9.2 Melodic Pattern Analysis 
Another effort in the direction of structural analysis also starts 
with audio but uses conventional autocorrelation-based pitch 
estimation to extract melodic contour. The top of Figure 8 shows 
audio taken directly from a commercial recording of a ballad, 
“Naima,” by John Coltrane and performed by his jazz quartet  
[27]. Below the audio is a piano-roll display of a pitch 
transcription, accomplished using a straightforward 
autocorrelation algorithm for pitch estimation. At the bottom of 
the figure is the analysis, discussed below. 

Taking inspiration from the frame-based melodic contour 
comparison described in Section 7 and the chroma-based 
correlation analysis of Section 9.1, the analysis procedure 
computes the length of similar melodic contours starting at all 
pairs of locations i and j, which index note position. The matrix 
M(i, j) is defined as the duration of similar contours starting at 
locations i and j. (M(i, j) is mostly zero.) For example, there is a 
repeated 4-bar phrase at the beginning of the piece, starting at the 

first and seventh notes. Note that where M(i, j) is non-zero, there 
will tend to be a slightly shorter duration at M(i+1, j+1). For 
example, there are similar phrases starting at notes 2 and 8. These 
“implied” entries are “removed” by setting them to zero. 

After eliminating these implied entries, clusters of similar melodic 
contours are formed. For example, similar lengths at i,j, j,k, and 
k,i imply that three similar contours are located at i, j, and k. In the 
saxophone solo, there is a third repetition of the opening four bars 
near end of the excerpt shown in Figure 8.  

After simplifying the matrix M and forming clusters from the 
remaining melodic fragments, a greedy algorithm attempts to 
“explain” all notes of the transcription in terms of these clusters. 
The shaded bars at the bottom of Figure 8 locate similar 
fragments. It can be seen from this that the melody consists of a 
repeated phrase followed by a shorter repeated phrase and a third 
phrase. This is followed by a return to the opening phrase. These 
phrases return after a piano solo (not shown). 

 
Figure 8. Audio from jazz quartet (top), automatic 

transcription (middle), and analysis (bottom). Similar 
shading indicates similar melodic fragments. 

This work is at an early stage. It has produced an excellent 
analysis of a performance of “Naima.” This example was chosen 
because of the clear, simple lines and structure and the dominance 
of the saxophone in the jazz quartet recording (and also because it 
is a wonderful ballad). Work is underway to adapt these methods 
to more challenging examples. 

9.3 Genre Classification 
Although we have argued that not all searches should be 
conducted within a given genre, there are certainly many cases 
where users can narrow their search by specifying music 
categories. We have investigated the use of machine learning 
techniques to perform music classification. We trained a neural 
network classifier on audio power spectra measured within 
windows of several seconds of duration of different genres. To 
classify a piece, we divide the piece into many window-sized 
chunks and run the classifier on each chunk. The overall class is 
the one reported for the greatest number of chunks. This approach 
correctly classified all 80 pieces in a database of digital audio as 
rock, jazz, country, or classical. Much finer classification is 
desirable, and we hope to incorporate new methods into our 
architecture as they become available. 

10. SUMMARY 
We have presented an architecture for music retrieval. The 
MUSART architecture is motivated by the need to explore and 



  

ultimately rely on multiple mechanisms for representation, 
abstraction and search. We have made progress toward more 
robust and flexible music databases. Our work on Markov models 
provides a new an approach to musical abstraction and retrieval. 
Our frame-based melodic search and phonetic-stream search deal 
specifically with problems of audio-based queries. Additional 
work addresses the problems of audio analysis, the identification 
of musical structure, and music classification. 

In the future, we will refine all of these techniques and integrate 
them into the architecture we have presented. We also need to 
explore many user interface issues. The benefits will include the 
ability to combine multiple search strategies and a more formal 
approach to the evaluation and comparison of music retrieval 
techniques. 
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ABSTRACT
I will describe here a computer program called Sorcerer. Sorcerer
uses what I call referential analysis, a semiotic approach roughly
situated between hermeneutic and Rétian analyses, which
associates patterns found in a target work—music under study—
with several potential source works—music assumed to either
influence or be influenced by the target work. Sorcerer then
presents these patterns as possible references called allusions. The
program lists its findings without regard for whether the composer
of the target work consciously or subconsciously referenced the
source work, only that the found allusions exist. I will further
describe the possible relevance and importance of this type of
analysis as a complementary approach to more standard harmonic,
melodic, and formal types of analysis, as a method for performers
to better interpret the music they play, and as one possible
approach to the deeper understanding of meaning in music.

1. INTRODUCTION
Allusions have occurred throughout music history, though very
few systematic studies of them have taken place. With the
exception of Deryck Cooke's landmark The Language of Music
[3], for example, few articles or books are devoted exclusively to
allusions. Certain musical forms like organum, motets, cantatas,
and other cantus firmus-based styles often depend on allusions.
As well, certain composers' styles, like those of Ives and Berio use
allusions extensively, deliberately, and obviously. Late Romantic
Russian composers used allusions as a benchmark of their
nationalism, considering them not only honorable but requisite to
their stylistic heritage.

2. DISCUSSION
I developed Sorcerer in 1995 as analytical software designed to
discover the possible sources of a target work in various works
chosen as source music. Sorcerer may incorporate pitch and/or
rhythm in contiguous or non-contiguous sequences in its searches.
Source music may consist of works composed prior to or after the
target work depending on whether the desired information is
intended to portray what might have influenced the target work or
what works the target work might have influenced. In fact, source
works may consist of both music composed previously and after
the target work as long as one clearly distinguishes their
chronological relationships.

I classify allusions into five basic categories—moving from nearly
exact quotation to the use of more common musical conventions. I
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do not use negative words such as cliché here, trying to avoid the
stigma of what some feel as weakness in art and which I feel can
be a strength. My taxonomy for referential analysis includes:

(1) Quotations—as in citations, excerpts, or renditions;

(2) Paraphrases—as in variations, caricatures, or
transcriptions;

(3) Likenesses—as in approximations, translations, or
similarities;

(4) Frameworks—as in outlines, vestiges, or redactions;

(5) Commonalities—as in conventions, genera, or
simplicities.

As can be seen, potential for listener recognition proceeds from
strong to weak through these categories and the potential for
stylistic integration proceeds inversely. A more detailed
description of each of these categories will be presented through
visual and aural examples.

Using Sorcerer involves three primary considerations: choosing
the proper music, pattern matching, and interpreting the program's
output. Choosing appropriate source music for a particular target
work is critical to producing useful results. Documentation of the
relationship of the target music composer to the composer(s) of
the source work can further enhance the logic of selecting
appropriate music. Once works have been chosen and checked for
errors they are algorithmically encoded for pattern matching.

To pattern match source music with a target work, particularly
when matching non-contiguously, requires a general
understanding of the basic principles of pattern matching. In order
to make a favorable comparison between two patterns, a pattern
matcher should:

(a) compare intervals rather than notes;

(b) allow for certain variations in interval size within
logical boundaries;

(c) allow the interpolation of a certain number and type of
notes between hierarchically more important notes.

In order to expedite this process, I employ an approach which
stores source music as a series of patterns rather than as complete
works. In other words, the target and source music is segmented
into patterns before the actual pattern matching takes place. The
advantage of this approach is that re-matching with different
settings can take place almost immediately after a matching
session. The disadvantage of this approach is that any variations
in pattern size requires a complete overhaul of the source music
storage, a problem that will discourage most users from even
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attempting it. The following detail of the storage process and the
resultant pattern matching will, I hope, make these advantages and
disadvantages clearer.

Patterns must fit within a certain size limit governed by the user.
This size should not be so large that it unnecessarily stores music
in pattern sizes which will never match other patterns. At the same
time, this size should not be so small that it restricts the possibility
that slightly larger patterns will match. Setting this maximum size
then requires some experience both with pattern matching in
general and with the music being used as target and as potential
sources.

Once collected, patterns are stored (along with information about
their original locations) in special lexicons which are named
according to their initiating intervals. Thus all patterns beginning
with a second (major or minor) are stored in the same lexicon, and
so on. Within each interval lexicon, patterns are further stored in
specialized lexicons named according to their second intervals.
Within each of these lexicons, patterns are further stored
according to their third intervals, and so on. Thus, a pattern
consisting of the intervals of a major third, minor second, unison,
perfect fourth, and perfect fifth will be stored in the fifth lexicon,
within the fourth lexicon, within the unison lexicon, within the
second lexicon, within the third lexicon.

To compare a pattern from a target work to a pattern from a
source work, then, requires only that the pattern matcher find the
appropriate lexicon and then the most appropriate pattern within
that lexicon, if there is one. In other words, the process ensures
that patterns are compared only to patterns that the approach
guarantees will match and avoids the extensive matching of
patterns which have no chance of matching (required of more
standard pattern matchers). Pattern comparisons survive only as
long as an appropriate lexicon exists. This process makes
comparing patterns very efficient.

Once pattern matching is complete, users are presented with a
mosaic of overlapping potential allusions. Awareness of these
allusions can have significant impact in the making and
interpretation of music. For example, knowledge of allusions can
indicate to performers what to emphasize in various melodic lines
and what performance practice to use for certain passages.
Knowledge of the location and substance of allusions informs
listeners about how to listen to a work, allowing them to link their
current experience with other experiences they've had previously
with the referenced music. A knowledge of allusions will also
provide hints as to how other types of analysis should be used to
reveal more analytical information about a work. Allusions can
also reference music to traditions of the past or indicate a
composer's familiarity with an individual theme or with a class of
themes.

3. Conclusions
Ultimately, users must take meaning from Sorcerer's output for
themselves. However, I here assert a few general observations:

(a) that all music consists, at least in part, of allusions to
other music, providing listeners with a sense of
familiarity beyond that of style recognition;

(b) that understanding the presence and origins of allusions
gives us a better understanding of music's deeper
context;

(c) that awareness of certain allusions can provide
interesting and insightful information about the
composer of a target work in terms of what that
composer finds important in music and to some degree
how that composer listens to music;

(d) that tracing lineages of allusions can help define a
genealogy of musical styles and influences.

Understanding traditional analytical techniques such as tonal
harmonic function as well as formalisms such as canons and
fugues, and so on, can have immense value. However, such
analyses do not provide a full understanding of music. Such an
understanding only comes with the addition of more semantic
analysis such as those that referential analysis provides.
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ABSTRACT 
Musical works form a key entity for music information retrieval. 
Explicit l inkage of relationships among entities is critical for 
document-based information retrieval. Works contain 
representations of recorded knowledge. Core bodies of work—
canons—function to preserve and disseminate the parameters of 
a culture. A musical work is an intellectual sonic conception. 
Musical works take documentary form in a variety of 
instantiations. Epistemology for documentary analysis provides 
key perceptual information about the objects of knowledge 
organization. Works are carriers of knowledge, representing 
deliberately-constructed packages of both rational and empirical 
evidence of human knowledge. Smiraglia (2001) suggests the 
parameters of a theory of the work, incorporating the tools of 
epistemology to comprehend works by expressing theoretical 
parameters in the context of a taxonomic definition. A work is a 
signifying, concrete set of ideational conceptions that finds 
realization through semantic or symbolic expression. Semiotic 
analysis suggests a variety of cultural and social roles for works. 
Musical works, defined as entities for information retrieval, are 
seen to constitute sets of varying instantiations of abstract 
creations. Variability over time, demonstrated empirically, is an 
innate aspect of the set of all instantiations of a musical work, 
leading to complexity in the information retrieval domain. 

1. INTRODUCTION 
Musical works (as opposed to musical documents, such as scores 
or recordings of musical works) form a key entity for music  

information retrieval. Ultimately, searches for a given musical 
work rely on the hope of subsequent selection of instantiation in 
one of several documentary formats. Musical works have been 
variously and industriously described by musicologists and music 
bibliographers. However, in the information retrieval domain, the 
work as opposed to the document, has only recently received 
focused attention (Smiraglia 2001). Efforts to define works as 
information retrieval entities and to document their occurrence 
empirically are quite recent. In fact, systems for bibliographic 
information retrieval, and more recently for information storage 

and retrieval, have been designed with the document as the key 
entity, and works have been dismissed as too abstract or difficult 
to define empirically to take a role in information retrieval. 
Recent work, summarized in Smiraglia (2001), points to the 
primacy of works for bibliographic information retrieval, and to 
the importance of works as concepts for all text-based 
information storage and retrieval systems. In this paper, 
definitions of works as entities (from the information retrieval 
perspective) and of musical works (from the musicological 
perspective) are examined. A taxonomic definition is presented. 
An epistemological perspective, including empirical evidence, 
aids in understanding the components of the taxonomic 
definition. Musical works, thus defined as entities for 
information retrieval, are seen to constitute sets of varying 
instantiations of abstract creations. 

2. Documentary Entities 
A documentary entity is a unique instance of knowledge (e.g., a 
thesis, a sculpture, a research report, etc.). Each documentary 
entity has physical and intellectual properties. A containing 
relationship exists between these two properties. That is, the 
physical property is the package for the intellectual. The explicit 
l inkage of relationships among documentary entities is critical 
for document-based information retrieval. Empirical research 
techniques have il luminated the technical problems of bringing 
the objective of collocating works, as opposed to documents, into 
primary position. Tillett (1987) sought to classify and quantify 
the entire range of bibliographic relationships--relationships that 
exist among documentary entities. Smiraglia (1992) investigated 
the derivative relationship, which holds among all versions of a 
work, refining its definition to include several different 
categories of derivation. These categories are: 

·simultaneous derivations 

·successive derivations 

·translations 

·amplifications 

·extractions 

·adaptations, and 

·performances. 

Leazer (1993 and 1994) described a conceptual schema for the 
explicit control of works in catalogs, taking into account both 

copyright box 
 



Tillet and Smiraglia’ s taxonomies of relationship types. Leazer 
and Smiraglia studied the presence of derivative relationships in 
the OCLC WorldCat (Smiraglia and Leazer 1995 and 1999, 
Leazer and Smiraglia 1996 and 1999) affirming the taxonomy of 
derivative relationship types. Yee examined problems of 
relationships among moving image materials, including the 
substantial problems of associating bibliographic records for 
varying instantiations of films. Vellucci (1997) examined 
musical works and found that the categories Tillett and Smiraglia 
had suggested were present, and in large numbers; 85.4% of the 
works in her sample drawn from the catalog of the Sibley Music 
Library demonstrated derivative relationships. Vellucci also 
postulated two new categories of derivation applicable only to 
musical works: musical presentation, and notational 
transcription. 

A 1998 report by a study group of The International Federation of 
Library Associations (IFLA) was devoted to outlining functional 
requirements for bibliographic records. Representing the 
products of intellectual or artistic endeavor, the report suggested 
a group of documentary entities works, expressions, 
manifestations, and items. A work was described as a distinct 
intellectual or artistic creation, an expression as the intellectual 
or artistic realization of a work. The entities work and expression 
reflected intellectual or artistic content. A manifestation 
embodied an expression of a work, which was in turn embodied 
by an item. The entities manifestation and item, then, reflected 
physical form. The report noted that a work might be realized 
through one or more expressions, which might be embodied in 
one or more manifestations, which in turn might be exemplified 
in one or more items (IFLA 1998, 12-13). 

3. WORKS AS VEHICLES FOR 
COMMUNICATION 
Works contain representations of recorded knowledge. Works are 
created deliberately to represent the thoughts, data, syntheses, 
knowledge, art and artifice of their creators. Works, then, serve 
as vehicles to communicate one or more of these aspects of new 
knowledge to potential consumers (readers, scholars, etc.). 
Consumers of works may and often do use them to inform their 
own new works, which likewise serve as vehicles to 
communicate knowledge across time and space to new 
consumers. In this manner, we can observe the social role of 
works. Therein we see works as vehicles that transport ideas 
along a human continuum, contributing to the advancement of 
human knowledge in specific ways and to the advancement of the 
human social condition in more general ways. 

Saussure described a system for the study of the life of signs in a 
society, which he named semiology (1959, 16). Smiraglia (2001) 
has used Saussure's system to demonstrate the cultural role of 
works. Works function in a manner analogous to signs, uniting 
the conceptual with the semantic, and demonstrating the two 
properties immutability and mutability. Peirce and his school of 
semiotics also shed light on the mutability of signs and the 
probability of their varying perception across chronological and 
cultural barriers. Peirce ([1894] 1998, 5) asserted a triad of types 
of signs: a) l ikenesses, which convey ideas of the things they 
represent through imitation; b) indications, which show 
something about things by being physically connected with them; 
and c) symbols, or general signs, which have become associated 
with their meanings by usage. The meaning of a symbol is not 
fixed, but rather is a function of its perception. Barthes also 

described reception mutability, suggesting that consumers of 
works were not concerned so much with the integrity of a text as 
with their own experience of it (1975, 11). For example, an 
individual work might be consulted for information, it might be 
used for recreation, or it might form the basis of a scholar's 
discourse. Barthes suggests that in essence a text is as though it 
were tissue (1975, 64). Poster (1990) suggested that cultural 
history was demarcated by variations in the structure of symbolic 
exchange. In literate society, works are the vehicles that facilitate 
the propagation of culture through formal symbolic exchange. 

Works can be seen as analogous to signs that are mutable over 
time. The texts of works act as signifiers, seemingly immutable 
when first fixed, but with other properties (such as cultural 
identity) that are themselves very mutable indeed. Works are 
vehicles of culture, entities that arise from a particular cultural 
perspective. As such they are vehicles with certain cultural 
obligations--among them dissemination and propagation of the 
culture from which they spring. This analogy has been 
demonstrated graphically by Smiraglia (2001) and is reproduced 
in Figure 1. 

  

Figure 1. Works are Analogous to Signs 

4. WORKS AS ELEMENTS OF CANON 
Each work is in some way a part of a larger body of related work. 
These bodies of work derive meaning from their function in 
culture as well as from their relations with other works and other 
bodies of work. Individual works derive meaning from their 
relations to their human receptors. These core bodies of work, 
sometimes referred to as canons, function to preserve and 
disseminate the parameters of a culture by inculcating cultural 



values through the information conveyed as a whole and in each 
of the works that comprise them. Smiraglia and Leazer (1999) 
reported that the size of a family of instantiations of a work 
seems to be related to its popularity, or ... its canonicity. Most 
families are formed and reach full size soon after publication of 
the progenitor. On the other hand, older progenitors are the locus 
for larger families. 

Relations that are observed among works in a canon are thought 
to be conventional rather than natural. That is, they are functions 
of their roles in the culture from which they spring rather than 
determined by any inherent characteristics. Eggert (1994) 
described a phenomenological view of works of art, seeing works 
as ongoing entities that incorporate across their chronological 
existence all of the reactions of those who encounter them. 
Through the vehicle of works, culture is continually 
communicated. Works have no unchanging existential anchor, no 
single perfect exemplar. Rather they derive much of their 
meaning from their reception and continuous reinterpretation in 
evolving cultures. Works follow the same pattern as Saussure’s 
linguistic signs, mutating across time through the collaboration of 
the cultures that embrace them. Works are shaped by their 
audiences, and they reflect the functional requirements of those 
who will use them. Therefore, works are artifacts of the cultures 
from which they arise. 

5. MUSICAL WORKS 
A musical work is an intellectual sonic conception. Musical 
works take documentary form in a variety of instantiations (i.e., 
a sounding of it as in performance, or its representation in 
printing as in score). The primary purpose of any physical 
instantiation of a work is to convey the intellectual conception 
from one person to others. Because musical works fundamentally 
are meant to be heard, physical instantiations are not of primary 
importance in the exchange between creator and consumer. 
Rather, they are media through which musical ideas captured at 
one end of the continuum may be reproduced so that they may be 
absorbed at the other. Defining a musical work as a sonic 
conception allows us to bridge the difficulty that arises between 
works that are composed (such as those in the supposed canon of 
Western Art Music) and those that are improvised or otherwise 
realized primarily through performance. In information retrieval, 
it is critical to make a distinction between the physical artifactual 
document, on the one hand, and its musical content, on the other. 

Because a musical work must first exist in time to be 
apprehended by an audience, the more accurate instantiation of a 
musical work truly is l ikely its performance. Krummel (1988) 
argues that music is an entity that occurs in time, not on paper. 
Each performance is a "re-creation" of the work. A performance 
of a musical work, and by extension a recording thereof, 
delineates the time factor of a musical work for the receiving 
audience. For Dahlhaus (1983), the musical work actually 
inheres in the receiving audience. 

Krummel (1970) summarized the historical use of musical 
documents, which serve as evidence of musical works that have 
existed and perhaps been performed in the past. He wrote (16): 
“Behind both [score and performance], apart from but governing 
both, as something of a Platonic ideal, is the abstract concept of 
the work of music itself.” That is, a musical work (like any 
creation) is existentially viewed as an abstract concept in time 
rather than a particular physical entity in space. Scores, 
performances (and recordings) represent instances of the work, 

none of which can be equated fully with the work itself. Nattiez 
(1990) described a semiology of music that comprehends musical 
works as multi-dimensional because their realization is in sound. 
Goehr (1992) pointed to the human’s natural tendency to take 
musical works for granted, enjoying their reception but without 
any clear understanding of the complexity of their origin or 
existence. Goehr posited an imaginary museum of works--
imaginary to those who cannot see beyond the objectification of 
works of sonic art. With Nattiez and Goehr we approach the 
concept of mutability of works one step further. That is, we can 
clearly comprehend works that might have no concrete tokens--as 
literary works have words on paper--but which find their 
realization in sonic performances, each of which is uniquely 
created and uniquely perceived. Ingarden (1986) approached the 
central problem of the nature of a musical work by considering 
that the work represents a congruence between the composer and 
the listener. Talbot (2000) includes eleven papers on the musical 
work-concept, demonstrating little consensus on the historical 
meaning of the concept or its time of origin. There is however, 
convergence that a musical work must be discrete, reproducible 
and attributable (Talbot 2000, 3). The volume is fi lled with 
criticisms of the concepts of the musical work and the attendant 
canons. Curiously, just as scholars of information storage and 
retrieval and of knowledge organization have turned their 
attention to the concept of the work as an entity for information 
retrieval, musical scholars seem to be less sanguine about the 
concept. 

Thomas and Smiraglia (1998) reflect on more than a century of 
formal rules for the cataloging of musical documents, speaking to 
the cataloging community at the point at which video-recordings 
of musical performances have become entities for documentary 
retrieval. They described the nature of the musical work as an 
entity for information retrieval, suggesting the concept functions 
in the manner of a surname for a family, around which cluster all 
instantiations known by that concept-name in horizontal, but 
explicitly described, relations. 

Ligabue (1998) attempts to discover a real process of semiosis in 
music, beginning with the understanding that every sign is 
essentially inherently empty--a signifier without signification. 
Thus a sign finds its meaning revealed only within a relational 
context (p. 35). In music, single, isolated sounds can offer only 
pure information about themselves; only when contextualized 
does a sound acquire specificity. Therefore, sounds "become 
meaningful only and exclusively in relation to a context (p. 37)" 
In other words, sounds alone are no more musical signs than are 
letters or words linguistic signs. Rather, the semiosis is context-
dependent. Signs are cultural constructs, and musical signs, l ike 
linguistic signs, depend on specific cultural contexts for their 
meaning. Liguabue demonstrates that "within organized sound 
systems, the perceptive act undergoes a mental rationalizing 
process [which is] culturally determined." Therefore, he writes, 
music as organized sonic events demonstrates a signification 
process analogous to other semiotic systems (p. 43): 

Meaning is not to be found among notes, but in them, even if it 
manifests itself only among them. Therefore if a sign only exists 
in virtue of another sign, which, though different, shares its nature 
but not its essence, the same thing occurs in music where each 
note has its precise meaning, which expresses itself in its 
specificity but can manifest itself only in the wholeness of the 
system. This manifestation takes place in a musical context 
according to existing modes which cannot be the same as those of 
the verbal context. 



He concludes, that what is heard or listened to (in other words, 
what is signified) is in essence different from the acoustic 
physical phenomenon, and is interpreted within conventional 
cultural behaviors symbolically interpreted. 

Hamman (1999) wrote about the role of computers in music 
composition, asserting that computers generate semiotic rather 
than symbolic frameworks. Hamman suggests that a composer is 
not only producer of musical artifacts, which he defines as 
“pieces,”  “ sounds,”  etc. (in other words, works). Rather, the 
composer (102): “makes traces of processes by which abstract 
ideas are concretized according to particular performances and 
interactions vis a task environment.”  Turino (1999), l ike 
Ligabue, asserts a Peircian semiotic theory of music in which 
components of musical units (that is, works) such as pitch, scale, 
tempo, etc. function as components of signs. The present paper 
relies on applied semiotics to demonstrate the effect of the social 
role of works on their complexity as entities for information 
retrieval. Turino’s semiotic analysis demonstrates the complex 
functioning of music and its components as signs at a meta-level. 
Echoing the comments of Eggert and Poster, van Leeuwen (1998) 
suggests a systemic-functional semiotics of music in which music 
is seen as an abstract representation of social organization, 
concerned with meta-level cultural interactions that find their 
expression in music functioning as signs. 

6. EPISTEMOLOGY, KNOWLEDGE 
ORGANIZATION, INFORMATION 
RETRIEVAL 
Epistemology is the division of philosophy that investigates the 
nature and origin of knowledge. Poli (1996) contrasted the tools 
of ontology and epistemology for knowledge organization, 
suggesting that where ontology represents the "objective" side of 
reality, epistemology represents the "subjective" side. Ontology 
("being") provides a general objective framework within which 
knowledge may be organized, but epistemology ("knowing") 
allows for the perception of the knowledge and its subjective 
role. Olson (1996) used an epistemic approach to comprehend 
Dewey’s classification, asserting a single knowable reality 
reflected in the topography of recorded knowledge. Dick (1999) 
described epistemological positions in library and information 
science. He suggested that experience (empiricism) provides the 
material of knowledge, and reason (rationalism) adds the 
principles for its ordering. Rationalism and empiricism supply 
the basic platform for epistemological positions. 

Hjørland (1998) asserts a basic epistemological approach to base 
problems of information retrieval, particularly to the analysis of 
the contents of documentary entities. He begins from a basic 
metaphysical stance, stating that ontology and metaphysics 
describe what exists (basic kinds, properties, etc.), whereas 
epistemology is about knowledge and ways in which we come to 
know. Hjørland lists four basic epistemological stances:  

·Empiricism: derived from observation and experience; 

·Rationalism: derived from the employment of reason; 

·Historicism: derived from cultural hermeneutics; and, 

·Pragmatism: derived from the consideration of goals and their 
consequences. 

Hjørland describes a domain-analytic approach to subject 
analysis, recognizing that any given document may have different 
meanings and potential uses to different groups of users. 

Hjørland and Albrechtsen (1999) delineate recent trends in 
classification research, demonstrating the util ity of Hjørland’s 
epistemological framework for deriving categories. 

Marco and Navarro (1993) described contributions of the 
cognitive sciences and epistemology to a theory of classification. 
They suggest that (p. 128): 

The study of epistemology is, therefore, essential for the design and 
implementation of better cognitive strategies for guiding the process of 
documentary analysis, particularly for indexing and abstracting 
scientific documents. The ordering and classifying of information 
contained in documents will be improved, thus allowing their effective 
retrieval only, if it is possible to discover the conceptual framework 
(terms, concepts, categories, propositions, hypotheses, theories, 
patterns, and paradigms) or their authors from the discursive elements 
of texts (words, sentences and paragraphs). 

Epistemology, then, is concerned with the theory of the nature of 
knowledge. The potential uses of epistemology for documentary 
analysis are many; a few have been attempted. Whereas ontology 
may be relied upon to frame the organization of knowledge, 
epistemology provides us with key perceptual information about 
the objects of knowledge organization. Empiricism can lead us to 
taxonomies of knowledge entities. Rationalism can demonstrate 
the cultural role of, and impact on, knowledge entities. 

Works are key carriers of knowledge, representing not simply 
raw data or facts, but deliberately-constructed packages of both 
rational and empirical evidence of human knowledge. The 
organization of works for information retrieval along topical and 
disciplinary lines has been the key task of knowledge 
organization, specifically of classification. But works, too--
especially those with canonical importance, have been organized 
using inadequate alphabetico-classified orders. 

For instance, we can take the example of a well-known musical 
work, Beethoven’s Moonlight sonata. An important part of 
Beethoven’s oeuvre, this popular work has become a cultural 
icon. Quite aside from its formal performance, the lilting 
arpeggios are associated in the public imagination with concepts 
of nighttime and sleep. The work has demonstrated Eggert’ s 
concept of canonical mutation by becoming part of our cultural 
consciousness. As Ligabue and Turino suggest, the signifying 
role of the Moonlight sonata is grounded in the personal 
experience of l isteners over time and across cultures. In the 
summer of 2000, it was used as background for a television 
commercial for a new sleep-inducing medication. 

In Figure 2 we see an array of descriptions of physical 
instantiations of this work in a typical online bibliographic 
retrieval system. As is often the case, this array consists of 
traditional name-title citations, qualified by publisher and date. 
Note there is no differentiation among the citations that can 
indicate any sort of variation among the sonic instantiations they 
represent. 

 

Beethoven, Ludwig v Moonlight.                      E.F. Kalmus,   1970 

Beethoven, Ludwig v Moonlight Sonata.            presso Gio. Ca 1802 

Beethoven, Ludwig v Moonlight sonata.            G.D. Russell & 1863 

Beethoven, Ludwig v Moonlight sonata.            F. A. North &  1872 

Beethoven, Ludwig v Moonlight sonata.            Schirmer,      1894 

Beethoven, Ludwig v Moonlight sonata.            T. Presser,    1900 

Beethoven, Ludwig v Moonlight sonata              Carl Fischer,  1906 

Beethoven, Ludwig v Moonlight sonata.            Century Music, 1906 



Beethoven, Ludwig v Moonlight sonata.            Fischer,       1906 

Beethoven, Ludwig v Moonlight sonata.            Carl Fischer,  1916 

Beethoven, Ludwig v Moonlight sonata              H.W. Gray,     1918 

Beethoven, Ludwig v Moonlight sonata.            Angel Publicat 1961 

Beethoven, Ludwig v Moonlight sonata.            Shattinger-Int 1971 

Beethoven, Ludwig v Moonlight sonata.            Lyra Music Co. 1975 

Beethoven, Ludwig v Moonlight sonata              The Hornists’  1978 

Beethoven, Ludwig v Moonlight sonata.            G. Schirmer ;  1980 

Beethoven, Ludwig v Moonlight sonata.            Alfred Pub. Co 1986 

Beethoven, Ludwig v Moonlight sonata              Alfred Pub. Co 1991 

Beethoven, Ludwig v Moonlight sonata              Beam Me Up Mus 1992 

Figure 2. Moonlight sonata 

 

To solve this problem, music librarians have traditionally 
superimposed an ordering device called a uniform title. Inserted 
in square brackets between the composer’s name and the 
transcription of the title from the physical instantiation, the 
uniform title consists of a bibliographically significant title for 
the work, based on its original as given by the composer. To this 
are added musical identifiers (such as opus number and key), to 
assist with both differentiation and order in a file consisting of 
all of the composer’ s works. Excerpts are identified by 
movement or section title, and to all of this might be added terms 
that indicate variation in the sonic instantiation of the work. 
Taken altogether the name-uniform title citation provides the 
means for an alphabetico-classified ordering of a composer’s 
works in an information retrieval venue. 

In Figure 2 the last citation carries the curious publisher name 
“Beam Me Up Music.”  This citation actually identifies an 
arrangement of the adagio movement of Moonlight arranged for 
guitar. The uniform title for this work is as follows: 

 

Beethoven, Ludwig van, 1770-1827. 

[Sonatas, piano, no. 14, op. 27, no. 2, C# minor. Adagio sostenuto; 
arr.] 

 

The purpose of this example is to demonstrate the centrality of 
the identity of musical works for music information retrieval. 
The uniform title not only identifies the present physical 
instantiation, but it also places it well amidst other physical 
instantiations, themselves representative of a variety of sonic 
instantiations. From the uniform title we learn the form, medium, 
number and key of the original work, the title of the specific 
movement, and the fact that this edition represents an 
arrangement. Seen in array, as in Figure 3, the alphabetical 
identifiers serve a classificatory role, arranging and displaying 
for differentiation the total available instantiations (physical and 
sonic) of the work. 

 

Beethoven, Ludwig van, 1770-1827. 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR.] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR; 
ARR.] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
ADAGIO SOSTENUTO] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
ADAGIO SOSTENUTO; ARR.] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
ALLEGRETTO] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
ALLEGRETTO; ARR.] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
PRESTO AGITATO] 

[SONATAS, PIANO, NO. 14, OP. 27, NO. 2, C# MINOR. 
PRESTO AGITATO; ARR.] 

Figure 3. Instantiations Arranged by Uniform Title 

We also see in this example a simple representation of the need 
for a complex definition of the musical work as an entity for 
information retrieval. Musical works constitute complex sets of 
varying sonic and physical instantiations, all derived from a 
common progenitor. Information retrieval systems need to go 
well beyond the simple identification of the progenitor work. As 
we see demonstrated in this example, a useful information 
retrieval system needs to have the capability to differentiate 
among the varying instantiations, in order to allow searches to 
make the best possible choice among alternatives. 

7. A TAXONOMIC DEFINITION OF THE 
WORK 
Smiraglia (2001) suggests the parameters of a theory of the work. 
Smiraglia (2000) incorporated the tools of epistemology to 
comprehend works by incorporating those theoretical parameters 
in the context of a taxonomic definition, which is repeated here. 

A work is a signifying, concrete set of ideational conceptions that 
finds realization through semantic or symbolic expression. That 
is, a work embraces a set of ideas that constitute both the 
conceptual (signified) and image (signifier) components of a 
sign. A work functions in society in the same manner that a sign 
functions in language. Works, l ike signs, demonstrate the 
characteristics of arbitrariness (the absence of a natural l ink 
between the signified and the signifier) and linearity (signifiers 
unfold sequentially over time). Therefore, works are subject to 
the natural ambiguity of signs, having both the properties of 
immutability (the fixed nature of a signifier in a given 
community) and mutability (change over time in their perception 
and use). 

Further, a work has the characteristics of a Peircean symbol, 
reflecting both the physical connections of indications and the 
imitative ideational likenesses. Like works, Peircean symbols 
incorporate words or phrases that have become associated with 
their meanings by usage. 

If a work enters a canon then its signifying texts may derive and 
mutate. Derivations may take one or more forms: 1) simultaneous 
editions; 2) successive editions; 3) amplifications; or, 4) 
extractions. Musical works, according to Vellucci (1997), may 
also derive in two additional ways through musical presentation 
or notational transcription. In these categories the work derives 
culturally over time, but ideational and semantic content do not 
change. 

Mutations may take one or more forms as well: 1) translations; 2) 
adaptations; or 3) performances. In these categories the 
ideational and semantic content have mutated to some degree. 
The relations among the exemplars of a work constitute a 



network of related entities that has been described variously as a 
bibliographic family (Smiraglia 1992) or a textual identity 
network (Leazer and Furner 1999). 

Using Hjørland’s epistemological framework we can 
comprehend the origins of the components of this taxonomic 
definition. Empirically derived components are those that have 
been demonstrated quantitatively in the research by Smiraglia, 
Smiraglia and Leazer, and Vellucci. Through these studies we 
have quantitative evidence that works are signifying sets of 
ideational conceptions that take realization through semantic or 
symbolic expression. The characteristics of arbitrariness and 
linearity are clearly demonstrated by the quantification of 
derivations and mutations of works. Evidence of canonicity is 
demonstrated by the increased rate of derivation and mutation 
observed among works that have become part of the academic 
canon. 

Rationalism allows us to perceive the cultural function of works, 
which function in society in the same manner that signs function 
in language. We also see through the application of rationalism 
that works have the characteristics of Peircean symbols, 
reflecting both the physical connections of indications and the 
imitative ideational l ikenesses. Pragmatism gives us the 
perspective that the array of instantiations of works for 
information retrieval must incorporate mechanisms to 
differentiate among the demonstrated derivations and mutations 
of a given work. Works, particularly musical works, that gain 
popularity take on the perspective of cultural icons, and from that 
point the rate of derivation and mutation and thus of the creation 
of varying physical and sonic instantiations increases. Finally, 
historicism provides the nominal anchor for a set of instantiations 
of a work. That is, the citation for the original work (such as the 
very useful uniform title), derived through bibliographical 
research, stands as the central point for l inkage of instantiations 
in an information retrieval system. 

Thus our epistemological perspective yields a logic for the 
construction of music information retrieval mechanisms. The 
nominal anchor for the accumulated artifacts or their 
representations is the historically-derived citation for the original 
ideational set, occasionally altered as a result of the natural 
evolutionary action over time. Rationalism provides the 
principles for apprehending and ordering the entire construct. 
Entities are derived empirically; their cultural role is described 
pragmatically. Derivation, mutation, and the rate thereof are 
empirically verifiable, pragmatic, collaborative socio-cultural 
constructs. 

8. CONCLUSION 
Musical works form a key entity for music information retrieval. 
Semiotic analysis suggests a variety of cultural and social roles 
for works, and for music in particular. Musical works, defined as 
entities for information retrieval, are seen to constitute sets of 
varying instantiations of abstract creations. Variability over time, 
demonstrated empirically, is an innate aspect of the set of all 
instantiations of a musical work, leading to complexity in the 
information retrieval domain. 

Musical works have been well comprehended as documentary 
entities. Understanding the social roles of musical works expands 
the boundaries of their definition. Epistemological frameworks 
can help us understand the socio-cultural origins of concepts of 
the musical works. Taxonomic definition contributes to the 

epistemological perception of works as specific entities of 
recorded knowledge. An historically-generated nominal anchor 
for a musical work can be used to collect the entire array of 
instantiations.  

More importantly, for music information retrieval, it is critical to 
comprehend the cultural role of musical works because it is at 
the heart of their dissemination and reception. In a digital era of 
music information retrieval, the question of the degree to which 
differing sonic instantiations represent the same work have 
epistemological bases. In the nineteenth century one bought a 
musical work by buying its score, and creating one's own sonic 
conception. In the twentieth century one bought a musical work 
by buying a recording of a performance of it--LP or CD. In both 
cases all copies were identical. But in the digital age, the 
opportunities for mutation are rampant. This must raise 
constantly then, the question of just what constitutes a given 
musical work. The answer is to be found in the epistemological 
understanding of the reception of musical works, and in the 
semiotic explanation of the role of musical works as cultural 
icons. 

In any event, an expanded perception of musical works helps us 
understand the variety of ways in which mechanisms for their 
control and retrieval might better be shaped in future. 
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ABSTRACT
Among other factors, high complexity and mandatory expert
computer knowledge make many music IR and music analysis
systems unsuitable for the majority of largely computer-illiterate
musicologists. The JRing system offers highly flexible yet intui-
tively usable search and comparison operations.  to aid musicolo-
gists during score analysis. This paper discusses the requirement
analysis that led to JRing’s inception, its IR tools and graphical
user interface plus the kind of musical material it works on and
the Humdrum-based technical realization of IR operations.

1 USER NEEDS
JRing was conceived as set of tools to assist musicologists during
that kind of score analysis which aims at:

• a score in which all musicologically relevant elements are
completely marked up

• a catalogue which contains all occurrences of all of these
elements in complete form plus an arbitrary set of annota-
tions

Depending on the type of work and / or analysis, the elements
could be themes, leitmotivs or sets. At the beginning of the JRing
development process, musicologists at the University of Hamburg
and Stanford University were asked to specify the kind of com-
puter assistance they would like to have during analysis. The five
results that directly or indirectly pertain to IR were:

(1) Print-like rendition of all musical materials (score, excerpts,
search results) as the basis for identifying and comparing
elements optically.

(2) Search capabilities for finding elements by arbitrary combi-
nations of musical features (pitch, harmony, and rhythm in
various forms).

(3) Tools that help to create catalogue entries, comprising (a)
making excepts and (b) filling in information about the ele-
ments that can be automatically derived from the excerpt
such as set class or position within the score.

(4) Catalogue management capabilities to sort and filter cata-
logue entries according to certain criteria.

(5) Customization of the structure of catalogue entries and con-
sequently the search and comparison operations based on
them.

Other – non IR-related – requirements included the ability to
switch back and forth between different kinds of analyses plus a
maximum degree of platform independence.

It becomes evident from the composition of the set of require-
ments what at least the musicologists that took part in the devel-
opment of JRing do aim for. It is not a “big automaton” that can
be fed with a score and some kind of theory description and that
churns out a results that has to be interpreted by the musicologist
[1, 7]. Instead, what is asked for is a set of tools that leaves the
analyst permanently in charge of analysis decisions and that
merely assist him in making choices faster and with less effort.
The basic ways of traditional, manual analyses should not be
changed.

2 SOLUTION COMPONENTS
A comprehensive solution that meets all the above-mentioned
requirements can hardly be furnished single-handedly. Although
there is no adequate reusable and platform independent graphical
user interface, many results in the area of data storage and re-
trieval can be incorporated and made accessible through a new
user interface.

2.1 Data
The foremost problem is a lack of data to be analyzed that is
available in an appropriate format. Although MIDI and score
notation data is widely available, these formats are ill-suited for
analysis and musical IR.

• MIDI data focuses on pitch while durations are often not
quantized. As MIDI is mainly intended for controlling elec-
tronic instruments, enharmonic spelling, articulation, orna-
mentation, and lyrics cannot be represented  among other
things. Although there are several extensions of the MIDI
file format that try to overcome some of these limitations,
none has captured a sizable market share and is thus a good
source for widely usable analytical data [9].

• Data from notation programs such as SCORE, Finale or NP-
DARMS tends to be layout-oriented and often subordinates
logical musical information (C##) to purely spatial descrip-
tions (“black circle between two horizontal lines”). The true
pitch can only be determined by scanning backwards for a
clef, key signatures, ottava marks, etc. Although, these for-
mats are mostly page-oriented so that musical features that
cross page boundaries are very difficult to recognize.
Therefore, analytic applications that work on this kind of
data often restrict themselves to dealing with works that fit
on a single page [8]. Also, they need to implement complex
algorithms to extract the logical musical information from
the spatial information.

In contrast to highly specialized MIDI and notation formats,
analytical formats like Humdrum [4] and MuseData [3] are better
suited for analytic applications. Both have been specifically de-
signed with music analysis and IR in mind. They do not exclu-
sively focus on one single aspect of the score (audible pitch or

Permission to make digital or hard copies of all or part of this
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citation on the first page.



visual rendition) but offer flexible, extensible encoding schemes
that can be used to represent arbitrary musical abstractions in
different (parts of) files. Common abstractions besides pitch and
duration are melodic contour, rhythmic weight, scale degree, pitch
class, frequency, MIDI events or lyrics (full text, syllables and
phonetic equivalents). All in all, over predefined 40 Humdrum
formats exist. As Humdrum makes only minimal structural re-
quirements, new formats can be added to encode almost any kind
of new musical abstraction that musicologist can conceive.

The separation of different musical aspects within the data repre-
sentation forms the basis for that kind of search and comparison
features that users require according to the results of section 1.
Therefore, developers of music analysis and IR programs can
make use of these existing analytical formats instead of coming up
with completely new encoding schemes.

Because MuseData has been less widely publicized than Hum-
drum and does not split different musical aspects into different
files, Humdrum is becoming the main target format for conversion
programs. If copyright problems can be solved, the vast majority
of high quality scores can be converted into Humdrum using
FinalSCORE (by Leland Smith), scr2hmd [6] (by this author) and
muse2kern (by Bret Aarden and this author).

2.2 Information Retrieval
As on the data side, Humdrum offers an ideal platform for infor-
mation retrieval programs. It comes with over 40 specialized
UNIX-programs and tools, many of which can work with all file
formats. As all formats have the same structure, they can be ma-
nipulated and analyzed with a few common tools that – among
other things – can assemble individual specialized files into one
combined file or extract certain section either by data type (e.g.
pitch) or by position (e.g. measures 60 to 70). Analytic questions
that pertain to a certain representation can be answered by running
chains (“pipes” in UNIX-lingo) of small programs, each of which
performs a very limited task. Plugged together in a useful way,
these pipes can find answers to quite complex questions such as
“Do melodic passages in folk songs tend to exhibit an arch
shape?”. Because Humdrum (1) runs in the UNIX environment,
(2) stores its data in ASCII format, and (3) provides a wide range
of reference records for encoding non-musical information, the
standard UNIX tools for data management (find, grep, sort,
sed, etc.) can be used.

For example, in order to mark instances of a certain pattern in a
score by its semitone contour, the following UNIX pipe of com-
mands is necessary:

extract –i’**kern’ score.krn | semits -x |
xdelta –s = | patt –t MotivX –s = -f MotivX.dat |
extract –i’**patt’ | assemble score.krn

The complexity of the patterns to be matched depends on the
program used:

(1) When the patt command is used, search patterns are limited
to quite simple sequences of tokens. To search for a melodic
contour of “same, up 2, down 2”, that pattern looks like this:

0
+2
-2

(2) The pattern command allows for highly complex search
patterns. The following sequence of tokens matches one or
more G naturals followed optionally by a single G-sharp
followed by one or more records containing one or more

pitches from an A major triad the last of which must end a
phrase.

[Gg]+[^#-] +
[Gg]+#[^#-] ?
([Aa]+|([Cc]+#)|[Ee]+)[^#-] *
(}.*([Aa]+|([Cc]+#)|[Ee]+)[^#-]))|(
([Aa]+|([Cc]+#)|[Ee]+)[^#-].*})

(3) A different level of flexibility can be achieved by using the
simil command. It does not only match precise instances of
a given pattern but measures the editing distance between the
given pattern and the material in the score [5]. The result is a
list of numbers between 1 (perfect match) and 0 (no similar-
ity at all) that quantifies the degree of similarity for every po-
sition in the score.

Humdrum data and tools form the ideal technical infrastructure for
analytic and IR applications. They permit a wide range of analyti-
cal and IR operations while being open for custom-made exten-
sions. Especially, Humdrum is suitable to realize all those search
and comparison features described in the requirements section.
The basic modus operandi can be described as follows:

1. Any element (theme / leitmotiv / set) as well as the score is
converted into those specific Humdrum formats that can be
used for conducting searches and comparisons. E.g. semitone
intervals, pitch classes, durations and lyrics in syllables.

2. According to the specifications of the user, one or more of
these representations are separately processed with the ap-
propriate program (patt, pattern, simil). E.g. the
semitone representation is searched for the sequence “same,
up 2, down 2” while the duration representation is searched
for “Hap-py birth-day”

3. The results are merged to form the combined result. For
example, only those positions in the score are returned that
feature the semitone pattern AND the lyrics.

Despite its benefits, for the vast majority of musicologists,
Humdrum can only serve as technical infrastructure and not as IR
or analytic system itself because it does not provide a graphical
user interface that allows analysts to manipulate the score, its
elements and catalogues in a way that they are accustomed to.
Although there are sometimes GUIs that help constructing the
command pipes [2, 10], working with musical materials the tradi-
tional way is still not possible.

3 JRING
JRing aims at providing musicologists with an electronic equiva-
lent of their physical desktop complete with fully graphical scores,
thematic / leitmotivic / set notes and catalogues of these elements.
Scores, notes and catalogues can be perused in the same way as
their physical equivalents, i.e. always with a view of the print-like
view of the material. It also offers IR-related functionality that
goes beyond what can be done with physical scores and cata-
logues.

In order to better understand the way in which IR functionality is
embedded into JRing, its non-IR related features are described
first.

3.1 Non-IR-Related Features
JRing works on scores, notes and catalogues.



3.1.1 Scores
Scores are displayed in a high quality, print-like rendition. Voices
are basically arranged the same way as in the printed score but
vertical positions are fixed for every voice. Therefore, the topmost
row is always reserved for e.g. the piccolo while the lowest voice
always holds the display for e.g. the double base. Therefore, the
vertical size of the score is always the same even if some voices
are pausing. This grid-like organization of the score makes it easy
(1) to browse the score without the need to search for a specific
instrument and (2) to mark an occurrence of a specific element in
one piece even if it covers one or more system / page breaks in the
printed score.

The tool that works on scores is the score analyzer. It displays the
score in the above-mentioned way. It has several features:

• The position within the score can be changed by either mak-
ing use of the scroll bars or by jumping to any logical loca-
tion such as measure 23 of the 2nd scene of the 3rd act.

• Already marked up elements can be shown or hidden. The
ability to see intermediate results gives valuable information
on where to look for new elements. In combination with
zooming out to, say, a 10% magnification this feature to get
an overview over large-scale patterns of elements.

• The score can be searched for arbitrary combinations of
musical features (see section 3.2.2).

• Newly found elements can be graphically marked up with a
marker tool (see figure 2). Although marks can consist of a
single contiguous block, they can be made up of any number
of blocks. Marks form the basis for notes.

3.1.2 Notes
Notes describe one occurrence of a musically relevant element of
a work. They consist of a graphical rendition of the marked ele-
ment (see above) plus an arbitrary number of additional fields. As
notes used in manual analysis, they contain fields for non- or
meta-musical information such as the position within the score,
the formal relation of the element to other elements, the reason for

Figure 2. The marker tool.

Figure 1. The main components of the JRing system: desktop, score analyzer (partly covered), and catalogue browser.



the element’s occurrence or – for leitmotivic analysis – the name
of the leitmotiv. Note fields form the basis for comparisons with
other elements which are penned down on other notes.

Two tools directly work on notes:

• Note editors pop up after an element has been marked up
using the marker tool. Its graphical excerpt and its position
within the score are automatically filled in. Information that
depends on human judgement (formal relation, reason for
occurrence, etc.) needs to be filled in manually.

• Note viewers (see rightmost sub tool in catalogue browser in
figure 1) display notes.

A third kind of note-related tool are note selectors. They do not
work on individual notes but on catalogues.

3.1.3 Catalogues
Catalogues contain all the notes an analyst furnishes. As a musi-
cologist can find a huge number of elements in a sizable score,
tool support for managing a catalogue is need. This support is
provided by catalogue browsers.

Catalogue browsers consist of three sub tools: A catalogue lister, a
note selector and a note viewer. Basically, the user can select a
note in the note lister which is then shown by the note viewer. The
note selector can be used to make the lister show only a specific
subset of notes from the catalogue.

Note selectors (see central sub tool in catalogue browser in fig-
ure 1) are structurally similar to note viewers and note editors:
Like these, they list every field of the note and like note editors
every filed is editable. Different from these, the values entered
into the fields of a note selector do not describe a specific note but
a pattern that is matched against all notes contained in a cata-
logue. If for example “1”  is entered into the field named “Act” ,
only notes that pertain to elements from the first act are listed in
the note lister.

Although valuable, matching a single criterion does not meet the
user requirements stated in section 1 (cf.). Therefore, note selec-
tors offer two additional features for describing note selections
more precisely:

1. A combo box to select the matching condition. For textual
fields the options are “equals” , “contains” , “starts with”  and
“ends with” . For numerical fields these are “equals” , “ less
than” , “ less than or equals” , etc.

2. A checkbox which users can employ to indicate whether a
field should be taken into account when finding matches or
not. In figure 1 this feature is used to show only those notes
in the lister that matches certain work names AND occur in
the first act.

3.2 IR-Related Features
The features described so far replicate the traditional way of
dealing with scores, notes and catalogues. Although they facilitate
the analytic process considerably by relieving musicologists of
strenuous tasks by means of automatically doing excerpts, filling
out large parts of notes, and dealing with catalogues but they do
not provide any IR capabilities.

JRing provides these capabilities not through completely new
tools but integrates them into the tools already described in sec-
tion 3.1.

3.2.1 Catalogue browser
In manual analysis, the musicologist just needs to write down the
excerpt and can then make any kind of comparison based solely
on that excerpt. Because he can make arbitrary abstractions of that
excerpt, he can simply choose to concentrate on certain abstract
features and then browse the other excerpts in the catalogue to
find exact, partial or fuzzy matches. As a computer IR system
cannot know in which respect two notes should be compared, this
choice of the analyst has to made explicit in a computer assisted
system. Therefore, in addition to the text fields discussed in sec-
tion 3.1.2, each note in JRing carries a list of musical abstractions
that are automatically derived from the excerpt. For example, the
pitch information of the marked up element can be used to derive
absolute pitch, pitch class, and any melodic contour in semitone
steps (see table 1).

Table 1. Some melodic abstractions of a Beethoven theme

pitch a1b1- d2 c2 b1- a1 g1 c1 f1 g1 a1 b1- a1 g1

pitch
class 9 A 2 0 A 9 7 0 5 7 9 A 9 7

semitone
interval *  +1 +4 -2 -2 -1 -2 -7 +5 +2 +2 +1 -1 -2

refined
contour * ^ / v v v v \ / ^ ^ ^ v v

gross
contour * / / \ \ \ \ \ / / / / \ \

In the note selector, these fields with musical abstractions can be
used in the same way as text fields in order to determine the notes
that are shown in the note lister: The checkbox next to them indi-
cates whether or not a certain field is to be included in the com-
parison, and the combo box can be used to determine the match-
ing condition (from a 100% perfect match down to 5% similarity).

To make filling in the fields of the note selector easier, the con-
tents of the note displayed in the note viewer can be copied into
the note selector and then modified.

3.2.2 Score Searcher
The score searcher is a sub tool of the score analyzer described in
section 3.1.1. It basically has the same layout as the note selector,
but has only fields for musical abstractions and no text fields
except for specifying a search range within the score. When the
user chooses to search the score for a certain combination of
features, the results are temporarily marked up in the score and a
result list browser pops up. Clicking on a result entry in the lister
takes the user to the score position of the match. He can decide to
discard the result list or can invoke the score marker to make
individual results the basis for new notes in the catalogue.

JRing’ s tools are adequate to fulfill user requirements (1) to (4)
stated in section 1. The remaining fifth requirement - customiza-
tion of the structure of catalogue entries – is the topic of section
4.2.

4 TECHNICAL REALIZATION

4.1 IR-Related Features
As motivated in section 2, JRing uses Humdrum as its technical
infrastructure and does not implement music IR functionality
itself. While presenting Humdrum data in a way that is tailored to



the needs of the majority of musicologists, JRing can be seen as
an – albeit very extensive – GUI front-end for Humdrum. It
transforms user input into Humdrum commands and parses the
results in such a way that it can be displayed in a form that is
understandable for musicologists that are used to carrying out
analyses in a traditional form.

The core of the transformation process are the structurally identi-
cal files the contain the analytical score information and the
graphical layout information. Because they are synchronized, user
input that pertains to the graphic representation on the screen can
be mapped to a precise portion of analytical information and
search results can be mapped back to the graphical score rendition
(see figure 3). A search in the score is thus carried out the fol-
lowing way:

1. For every field that the user marked by ticking the checkbox
next to it, its contents are interpreted and converted into the
appropriate Humdrum representation.

2. If the user has not included one of the selected representa-
tions, the required abstraction file is generated with Hum-
drum. E.g. **semits for semitone intervals.

3. For every representation, a separate Humdrum pattern
matching tool is invoked. If perfect matches are desired,
patt is used, simil otherwise.

4. The individual results are merged. Only those hits become
part of the comprehensive result that occur in every individ-
ual result.

5. JRing compiles the result list from the comprehensive result.
By going from analytical spines to synchronized layout
spines, the its precise position within the graphically ren-
dered score can be determined.

Because melodic matching often requires finding roving or hidden
themes [9], JRing generates an extra file that contains the highest
consonant pitches of the whole score. This “melody”  file is auto-
matically included into any melodic search.

The technical realization of note comparisons using the note
selector is similar to using the score searcher. The only difference
is that notes are matched against each other and that results are
listed in the note lister instead and not in a separate result lister.

4.2 Customization
Although the list of musical abstractions discussed so far does
cover some of the more frequently used features, it is not exhaus-
tive by far. Taking into account that Humdrum comes with over
40 data formats and that new formats can easily be added, no tool

that comes with a fixed and thus limited set of abstractions / note
elements can be very useful. If all possible abstractions are auto-
matically generated, notes become huge and unwieldy. On the
other hand, if the “ right”  abstractions are not offered, the tool is in
risk of becoming useless.

Similar cases can be made for the capability to display scores in
different formats (mensural, CMN, chromatic) or to work with
different Humdrum implementations or without any Humdrum-
subsystem.

To deal with the demand for flexibility, JRing can be customized
in three ways:

(1) The structure of notes. Depending on the type of analysis,
notes can be made up of different fields. In a leitmotivic
analysis, there might be several name fields for leitmotiv
names according to different sources, and musical abstrac-
tions from the melodic, harmonic and rhythmic domain. For
an analysis based on Forte’s set theory, the name of the ele-
ment can be automatically derived from the excerpt (by de-
termining the prime form and its set class) while there is no
need for melodic, harmonic and rhythmic abstractions.

(2) The type of score rendition. To represent a score on screen,
there needs to be a component that takes a graphical score
presentation and displays it. Depending on the type of score
notation (mensural, CMN, chromatic, or something com-
pletely new), different display components can be selected.

(3) Type of musical subsystem. As Humdrum consists of UNIX
commands, it requires a UNIX shell for operation. This
might not be available on non-UNIX systems because the
UNIX shell emulators available on these platforms cannot be
used free of charge. Therefore, the component that connects
to the musical subsystem can be totally absent in some cases
or a substitute might be available. If totally absent, JRing
functions normally except that searches and comparisons
based on musical features are disabled.

The source of JRing’s flexibility is the slide-in approach. Compo-
nents implementing (1) a single musical abstraction, (2) score
renderer, or (3) musical subsystem can be put into matching
“holes” of the JRing core system at startup time. In contrast to
plug-ins or other kinds of dynamic libraries, slid-ins have the
following advantages:

1. Slide-ins implement exactly one flexible feature of the sys-
tem whose functionality actually means something to its us-
ers.

2. Slide-ins only fit into the matching slide-in frame (“hole”) of
the core system, thus making misconfigurations impossible.

Horn (F)
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4

**kern **layout
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3. Individual slide-in frames have specific capacities. While the
slide-in frame for musical abstractions can hold any number
of slide-ins, the slide-in frame for musical subsystems can
have at most one slide-in (either Humdrum, a substitute or
nothing at all), and the slide-in frame for score renders must
have exactly one slide-in.

Because slide-ins are easy to visualize, a configuration desktop is
provided that can even be used by those musicologists that would
not normally be able to configure technical systems.

As does Humdrum, JRing just offers a core system that can be
easily extended in compliance with its interfaces. In the case of
Humdrum, these interfaces are the Humdrum file format structure
and the POSIX standard. In the case of JRing, these interfaces are
the three slide-in frames (for (1) new abstractions, (2) score ren-
derers, and (2) musical subsystems) plus the Java programming
language. As with Humdrum, users of JRing can profit from its
high reuse potential, i.e. when starting a new project, chances are
that the required slide-ins already have been written by some one
else. If not, just the missing slide-ins need to be implemented and
can later be passed on into the pool of available slide-ins so that
they can be used in future projects by others.

5 DISCUSSION
JRing meets all requirements listed in section 1 by providing a
graphical user interface that can easily be used by the vast major-
ity of musicologists. While this GUI is merely a Humdrum GUI
from a technical point of view, it adds the user-oriented features
of notes and catalogues that are not present in the Humdrum
world. The system allows for complex searches and comparisons
by combining arbitrary musical abstractions in precise or fuzzy
searches using combinations of Humdrum’s patt and simil
commands. Due to its compliance with the slide-in approach, it
can easily be extended in a  fashion similar to Humdrum.

The limitation of JRing stem from the way in which searches and
comparisons can be formulated. While Humdrum allows ex-
tremely complex pattern definitions (see section 2.2), JRing pares
down searches to fixed length patterns that can merely be com-
bined with Boolean conjunctions (ANDs). Although patterns can
be matched using similarity, not even Boolean subjunctions (ORs)
are possible.

Still, this limitation appears to be acceptable as most musicologi-
cal queries done by traditional musicologists do not require the
maximum degree of flexibility offered by Humdrum. To make this
limitation acceptable to more demanding musicologists, JRing
maintains all notes as separate Humdrum files (with text informa-
tion as reference records). These files can be used independently
from JRing in Humdrum pipes to make full use of Humdrum’s
powerful yet difficult pattern matching syntax.
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Abstract

We present a technique that, given a sequence of mu-
sical note onset times, performs simultaneous iden-
ti�cation of the notated rhythm and the variable
tempo associated with the times. Our formulation
is probabilistic: We develop a stochastic model for
the interconnected evolution of a rhythm process,
a tempo process, and an observable process. This
model allows the globally optimal identi�cation of
the most likely rhythm and tempo sequence, given
the observed onset times. We demonstrate applica-
tions to a sequence of times derived from a sampled
audio �le and to MIDI data.

1 Introduction

A central challenge of music IR is the generation of
music databases in formats suitable for automated
search and analysis [1], [2], [3], [4], [5], [6]. While a
certain amount of information can always be com-
piled by hand, the thought of \typing in," for exam-
ple, the complete works of Mozart seems daunting,
to say the least. Given the enormity of such tasks
we expect that automatic music transcription will

�This work is supported by NSF grant IIS-9987898.

play an important role in the construction of music
databases.

We address here a component of this automatic
transcription task: Given a sequence of times, we
wish to identify the corresponding musical rhythm.
We refer to this problem as \Rhythmic Parsing."
The sequences of times that form the input to our
system could come from a MIDI �le or be estimated
from (sampled) audio data. On output, the rhythmic
parse assigns a score position, a (measure number,
measure position) pair, to each time.

A trained musician's rhythmic understanding re-
sults from simultaneous identi�cation of rhythm,
tempo, pitch, voicing, instrumentation, dynamics,
and other aspects of music. The advantage of posing
the music recognition problem as one of simultane-
ous estimation is that each aspect of the music can
inform the recognition of any other. For instance,
the estimation of rhythm is greatly enhanced by dy-
namic information since, for example, strong beats
are often points of dynamic emphasis. While we ac-
knowledge that in restricting our attention to timing
information we exclude many useful clues, we feel
that the basic approach we present is extendible to
more complex inputs.

We are aware of several applications of rhythmic
parsing. Virtually every commercial score-writing
program now o�ers the option of creating scores
by directly entering MIDI data from a keyboard.
Such programs must infer the rhythmic content from
the time-tagged data and, hence, must address the
rhythmic parsing problem. When the input data
is played with anything less than mechanical preci-
sion, the transcription degrades rapidly, due to the
di�culty in computing the correct rhythmic parse.



14

16

18

20

22

24

26

28

4 4.5 5 5.5 6 6.5 7 7.5 8

se
cs

measures

0

0.5

1

1.5

2

2.5

0 0.125 0.25 0.375 0.5

se
cs

measures

Figure 1: Top: Real time (seconds) vs. Musical
time (measures) for a musical excerpt. Bottom:

The actual inter onset intervals (seconds) of notes
grouped by the musical duration (measures).

Rhythmic parsing also has applications in musicol-
ogy where it could be used to separate the inherently
intertwined quantities of notated rhythm and expres-
sive timing [7], [8], [9]. Either the rhythmic data
or the timing information could be the focal point
of further study. Finally, the musical world eagerly
awaits the compilation of music databases contain-
ing virtually every style and genre of (public domain)
music. The construction of such databases will likely
involve several transcription e�orts including optical
music recognition, musical audio signal recognition,
and MIDI transcription. Rhythmic parsing is an es-
sential ingredient to the latter two e�orts.

Consider the data in the top panel of Figure 1
containing estimated note times from an excerpt of
Schumann's 2nd Romance for oboe and piano (oboe
part only). The actual audio �le can be heard at
http://fafner.math.umass.edu/rhythmic parsing. In
this �gure we have plotted the score position of each

note, in measures, versus the actual onset time, in
seconds. The points trace out a curve in which the
player's tempo can be seen as the slope of the curve.
The example illustrates a very common situation in
music: The tempo is not a single �xed number, but
rather a time-varying quantity. Clearly such time-
varying tempi confound the parsing problem leading
to a \chicken and egg" problem: To estimate the
rhythm, one needs to know the tempo process and
vice-versa.

Most commercially available programs accom-
plish the rhythmic parsing task by quantizing the
observed note lengths, or more precisely inter-onset
intervals (IOIs), to their closest note values (eighth
note, quarter note, etc.), given a known tempo, or
quantizing the observed note onset times to the clos-
est points in a rigid grid [10]. While such quan-
tization schemes can work reasonably well when
the music is played with robotic precision (often a
metronome is used), they perform poorly when faced
with the more expressive and less accurate playing
typically encountered. Consider the bottom panel of
Figure 1 in which we have plotted the written note
lengths in measures versus the actual note lengths
(IOIs) in seconds from our musical excerpt. The
large degree of overlap between the empirical distri-
butions of each note length class demonstrates the
futility of assigning note lengths through note-by-
note quantization in this example.

We are aware of several research e�orts in this
direction. Some of this research addresses the prob-
lem of beat induction, or tempo tracking in which one
tries to estimate a sequence of times corresponding
to evenly spaced musical intervals (e.g. beats) for
a given sequence of observed note onset times [11],
[12]. The main issue here is trying to follow the
tempo rather than transcribing the rhythm. An-
other direction addresses the problem of rhythmic
transcription by assigning simple integer ratios to
observed note lengths without any corresponding es-
timation of tempo [13], [14], [15]. The latter two of
these approaches assume that beat induction has al-
ready been performed, whereas the former assumes
that tempo variations are not signi�cant enough to
obscure the ratios of neighboring note lengths.

In many kinds of music we believe it will be ex-
ceedingly di�cult to independently estimate tempo
and rhythm, as in the cited research, since the ob-



served data is formed from a complex interplay be-
tween the two, as illustrated by the example of Fig-
ure 1. Thus, in this work we address the problem
of simultaneous estimation of tempo and rhythm; in
the following we refer to such a simultaneous esti-
mate as a rhythmic parse. From a problem domain
point of view, our focus on simultaneous estimation
is the most signi�cant contrast between our work
and other e�orts.

2 The Model

We construct a generative model that describes the
simultaneous evolution of three processes: a rhythm
process, a tempo process, and an observable process.
The rhythm process takes on values in a �nite set of
possible measure positions whereas the tempo pro-
cess is continuous-valued. In our model, these two
interconnected processes are not directly observable.
What we observe is the sequence of inter-onset in-
tervals (IOIs) which depend on both unobservable
quantities.

To be more speci�c, suppose we are given a se-
quence of times o0; o1; : : : ; oN , in seconds, at which
note onsets occur. These times could be estimated
from audio data, as in the example in Figure 1, or
could be times associated with MIDI \note-ons."
Suppose we also have a �nite set, S, composed of
the possible measure positions a note can occupy.
For instance, if the music is in 6/8 time and we be-
lieve that no subdivision occurs beyond the eighth
note, then

S = f
0

6
;
1

6
;
2

6
;
3

6
;
4

6
;
5

6
g

More complicated subdivision rules could lead to
sets, S, which are not evenly spaced multiples of
some common denominator, as shown in the exper-
iments of Section 4. We assume only that the pos-
sible onset positions of S are rational numbers in
[0; 1), decided upon in advance. Our goal, in part, is
to associate each note onset on with a score position
| a pair consisting of a measure number and an el-
ement of S. For the sake of simplicity, assume that
no two of the fong can be associated with the exact
same score position as would be the case for data
from a single monophonic instrument. We will drop
this assumption in the second example we treat.

We model this situation as follows. Let
S0; S1; : : : ; SN be the discrete measure position pro-
cess, Sn 2 S; n = 0; : : : ; N . In interpreting these
positions we assume that each consecutive pair of
positions corresponds to a note length of at most
one measure. For instance, in the 6/8 example given
above Sn = 0=6; Sn+1 = 1=6 would mean the nth
note begins at the start of the measure and lasts for
one eighth note, while Sn = 1=6; Sn+1 = 0=6 would
mean the nth note begins at the second eighth note
of the measure and lasts until the \downbeat" of the
next measure. We can then use l(s; s0),

l(s; s0) =

(
s0 � s if s0 > s
1 + s0 � s otherwise

(1)

to unambiguously represent the length, in measures,
of the transition from s to s0. Note that we can re-
cover the actual score positions from the measure po-
sition process. That is, if S0 = s0; S1 = s1; : : : ; SN =
sN then score position, in measures, of the nth note
is mn = s0 + l(s0; s1) + : : : ; l(sn�1; sn). Extending
this model to allow for notes longer than a mea-
sure complicates our notation slightly, but requires
no change of our basic approach. We model the S
process as a time-homogeneous Markov chain with
initial distribution p(s0) and transition probability
matrix

R(sn�1; sn) = p(snjsn�1)

With a suitable choice of the matrix R, the Markov
model captures important information for rhythmic
parsing. For instance, R could be chosen to express
the notion that, in 4/4 time, the last sixteenth note
of the measure will very likely be followed by the
downbeat of the next measure: R(15=16; 0=16) � 1.
In practice, R should be learned from actual rhythm
data. When R accurately re
ects the nature of the
data being parsed, it serves the role of a musical
expert that guides the recognition toward musically
plausible interpretations.

The tempo is the most important link between
the printed note lengths, l(Sn; Sn+1), and the ob-
served note lengths, on+1�on. Let T1; T2; : : : ; TN be
the continuously-valued tempo process, measured in
seconds per measure, which we model as follows. We
let the initial tempo be modeled by

T1 � N(�; �2)
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Figure 2: The DAG describing the dependency
structure of the variables of our model. Circles rep-
resent discrete variables while squares represent con-
tinuous variables.

where N(�; �2) represents the normal distribution
with mean � and variance �2. With appropriate
choice of � and �2 we express both what we \expect"
the starting tempo to be (�) and how con�dent we
are in this expectation (1=�2). Having established
the initial tempo, the tempo evolves according to

Tn = Tn�1 + �n

for n = 2; 3; : : : ; N where �n � N(0; �2(Sn�1; Sn)).
When �2 takes on relatively small values, this \ran-
dom walk" model captures the property that the
tempo tends to vary smoothly. Note that our model
assumes that the variance of Tn � Tn�1 depends on
the transition Sn�1; Sn. In particular, longer notes
will be associated with greater variability of tempo
change.

Finally we assume that the observed note lengths
yn = on� on�1 for n = 1; 2; : : : ; N are approximated
by the product of the length of the note, l(Sn�1; Sn),
(measures) and local tempo, Tn, (secs. per measure).
Speci�cally

Yn = l(Sn�1; Sn)Tn + �n

where

�n � N(0; �2(Sn�1; Sn)) (2)

Our model indicates that the observation variance
depends on the note transition. In particular, longer
notes should be associated with greater variance.

These modeling assumptions lead to a graphical
model whose directed acyclic graph is given in Fig-
ure 2. In the �gure each of the variables S0; : : : ; SN ,
T1; : : : ; Tn, and Y1; : : : ; YN is associated with a node

in the graph. The connectivity of the graph de-
scribes the dependency structure of the variables
and can be interpreted as follows. The conditional
distribution of a variable given all ancestors (\up-
stream" variables in the graph) depends only on the
immediate parents of the variable. Thus the model
is a particular example of a Bayesian network [16],
[17], [18], [19]. Exploiting the connectivity struc-
ture of the graph is the key to successful comput-
ing in such models. Our particular model is com-
posed of both discrete and Gaussian variables with
the property that, for every con�guration of discrete
variables, the continuous variables have multivari-
ate Gaussian distribution. Thus, the S0; : : : ; SN ,
T1; : : : ; TN , Y1; : : : ; YN collectively have a conditional
Gaussian (CG) distribution [20], [21], [22], [23].

3 Finding the Optimal Rhythmic

Parse

Recall that by \rhythmic parse" we mean a simulta-
neous estimate of the unobserved rhythm and tempo
variables S0; : : : ; SN and T1; : : : ; TN given observed
IOI data Y1 = y1; : : : ; Yn = yN . In view of our
probabilistic formulation of the interaction between
rhythm, tempo and observables, it seems natural to
seek the most likely con�guration of rhythm and
tempo variables given the observed data, i.e. the
maximum a posteriori (MAP) estimate. Thus, us-
ing the notation aji = (ai; : : : ; aj) where a is any
vector, we let f(sN0 ; t

N
1 ; y

N
1 ) be the joint probability

density of the rhythm, tempo and observable vari-
ables. This joint density can be computed directly
from the modeling assumptions of Section 2 as

f(sN0 ; t
N
1 ; y

N
1 ) = p(s0)

NY
n=1

p(snjsn�1)

� p(t1)
NY
n=2

p(tnjsn�1; sn; tn�1)

�
NY
n=1

p(ynjsn�1; sn; tn)

where p(s0) is the initial distribution for the rhythm
process, p(snjsn�1) = R(sn�1; sn) is probability of
moving from measure position sn�1 to sn, p(t1) is the
univariate normal density for the initial distribution



of the tempo process, p(tnjsn�1; sn; tn�1) is the con-
ditional distribution of tn given tn�1 whose parame-
ters depend on sn�1; sn, and p(ynjsn�1; sn; tn) is the
the conditional distribution of yn given tn whose pa-
rameters also depend sn�1; sn. The rhythmic parse
we seek is then de�ned by

ŝN0 ; t̂
N
1 = arg max

sN
0
;tN
1

f(sN0 ; t
N
1 ; y

N
1 )

where the observed IOI sequence, yN1 , is �xed in the
above maximization.

This maximization problem is ideally suited to
dynamic programming due to the linear nature of
the graph of Figure 2 describing the joint distribu-
tion of the model variables. Let fn(s

n
0 ; t

n
1 ; y

n
1 ) be the

joint probability density of the variables Sn
0 ; T

n
1 ; Y

n
1

(i.e. up to observation n) for n = 1; 2; : : : ; N . If
we de�ne Hn(sn; tn) to be the density of the opti-
mal con�guration of unobservable variables ending
in sn; tn:

Hn(sn; tn)
def
= max

s
n�1

0
;t
n�1

1

fn(s
n
0 ; t

n
1 ; y

n
1 )

then Hn(sn; tn) can be computed through the recur-
sion

H1(s1; t1) = max
s0

p(s0)p(s1js0)p(t1)p(y1js0; s1; t1)

Hn(sn; tn) = max
sn�1;tn�1

Hn�1(sn�1; tn�1)

� p(snjsn�1)

� p(tnjtn�1; sn�1; sn)

� p(ynjsn�1; sn; tn)

for n = 2; : : : ; N . Having computed Hn for n =
1; : : : ; N we see that

max
sN ;tN

HN (sN ; tN ) = max
sN
0
;tN
1

f(sN0 ; t
N
1 ; y

N
1 )

is the most likely value we seek.
When all variables involved are discrete, it is a

simple matter to perform this dynamic programming
recursion and to traceback the optimal value value to
recover the globally optimal sequence ŝN0 ; t̂

N
1 . How-

ever, the situation is complicated in our case due
to the fact that the tempo variables are continu-
ous. We have developed methodology speci�cally
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Figure 3: The number of errors produced by our
system at di�erent perplexities and with di�erent
numbers of errors already corrected.

to handle this important case, however a presenta-
tion of this methodology takes us too far a�eld. A
general description of a strategy for computing the
global MAP estimate of unobserved variables, given
observed variables, in conditional Gaussian distribu-
tions (such as our rhythmic parsing example), can
be found in [24].

4 Experiments

We performed several experiments using two dif-
ferent data sets. The �rst data set is a
performance of the �rst section of Schumann's
2nd Romance for Oboe and Piano (oboe part
only), an excerpt of which is depicted in Figure
1. The original data, which can be heard at
http://fafner.math.umass.edu/rhythmic parsing, is a
sampled audio signal, hence inappropriate for our
experiments. Instead, we extracted a sequence of
129 note onset times from the data using the HMM
methodology described in [25]. These data are also
available at the above web page. In the perfor-
mance of this excerpt, the tempo changes quite
freely, thereby necessitating simultaneous estimation
of rhythm and tempo.

Since the musical score for this excerpt was avail-
able, we extracted the complete set of possible mea-
sure positions,

S =
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1
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;
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4
;
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(The position 15/32 corresponds to a grace note
which we have modeled as a 32nd note coming before
the 3rd beat in 4/4 time). The most crucial param-
eters in our model are those that compose the tran-
sition probability matrix R. The two most extreme
choices for R are the uniform transition probability
matrix

Runif(si; sj) = 1=jSj

and the matrix ideally suited to our particular recog-
nition experiment

Rideal(si; sj) =
jfn : Sn = si; Sn+1 = sjgj

jfn : Sn = sigj

Rideal is unrealistically favorable to our experiments
since this choice of R is optimal for recognition
purposes and incorporates information normally un-
available; Runif is unrealistically pessimistic in em-
ploying no prior information whatsoever. The actual
transition probability matrices used in our experi-
ments were convex combinations of these two ex-
tremes

R = �Rideal + (1� �)Runif

for various constants 0 < � < 1. A more in-
tuitive description of the e�ect of a particular �
value is the perplexity of the matrix it produces:
Perp(R) = 2H(R) where H(R) is the log2 entropy
of the corresponding Markov chain. Roughly speak-
ing, if a transition probability matrix has perplexity
M , the corresponding Markov chain has the same
amount of \indeterminacy" as one that chooses ran-
domly from M equally likely possible successors for
each state. The extreme transition probability ma-
trices have

Perp(Rideal) = 1:92

Perp(Runif) = 11 = jSj

In all experiments we chose our initial distribution,
p(s0), to be uniform, thereby assuming that all start-
ing measure positions are equally likely. The remain-
ing constants, �; �2; �2; �2 were chosen to be values
that seemed \reasonable."

The rhythmic parsing problem we pose here is
based solely on timing information. Even with the
aid of pitch and interpretive nuance, trained musi-
cians occasionally have di�culty parsing rhythms.
For this reason, it is not terribly surprising that our

parses contained errors. However, a virtue of our
approach is that the parses can be incrementally im-
proved by allowing the user to correct individual er-
rors. These corrections are treated as constrained
variables in subsequent passes through the recog-
nition algorithm. Due to the global nature of our
recognition strategy, correcting a single error often
�xes others parse errors automatically. Such a tech-
nique may well be useful in a more sophisticated
music recognition system in which it is unrealistic
to hope to achieve the necessary degree of accuracy
without the aid of a human guide. In Figure 3 we
show the number of errors produced under various
experimental conditions. The four traces in the plot
correspond to perplexities 2; 4; 6; 8, while each in-
dividual trace gives the number of errors produced
by the recognition after correcting 0; : : : ; 7 errors. In
each pass the �rst error found from the previous pass
was corrected. In each case we were able to achieve a
perfect parse after correcting 7 or fewer errors. Fig-
ure 3 also demonstrates that recognition accuracy
improves with decreasing perplexity, thus showing
that signi�cant bene�t results from using a transi-
tion probability matrix well-suited to the actual test
data.

In our next, and considerably more ambitious,
example we parsed a MIDI performance of the
Chopin Mazurka Op. 6, no. 3. for solo piano. Un-
like the monophonic instrument of the previous ex-
ample, the piano can play several notes at a single
score position. This situation can be handled with
a very simple modi�cation of the approach we have
described above. Recall from Section 2 that l(s; s0)
describes the note length associated with the transi-
tion from state s to state s0. We modify the de�ni-
tion of Eqn. 1 to be

l(s; s0) =

(
s0 � s if s0 � s
1 + s0 � s otherwise

where we have simply replaced the > in Eqn. 1 by
�. The e�ect is that a \self-transition" (from state
s to state s) is interpreted having 0 length, i.e. cor-
responding to two notes having the same score posi-
tion.

For this example, in 3/4 time, we took the pos-
sible measure positions from the actual score, giving
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Again, several of the measure positions correspond
to grace notes. Rather than �xing the parameters
of our model by hand, we instead estimated them
from actual data. The transition probability ma-
trix, R, was estimated from scores of several dif-
ferent Chopin Mazurka extracted from MIDI �les.
The result was a transition probability matrix having
Perp(R) = 2:02, thereby providing a model that has
enormously improved predictive power over the uni-
form transition model having perplexity Perp(R) =
jSj = 15. We also learned the variances of our model,
�2(Sn�1; Sn) and �2(Sn�1; Sn) by applying the EM
algorithm to a MIDI Mazurka using a known score.

We then iterated the procedure of parsing
the data and then �xing the error beginning
the longest run of consecutive errors. The re-
sults of our experiments with this data set are
shown in Figure 4. The example contained
1334 notes. The MIDI �le can be heard at
http://fafner.math.umass.edu/rhythmic parsing.

5 Discussion

We have presented a method for simultaneous esti-
mation of rhythm and tempo, given a sequence of
note onset times. Our method assumes that the col-
lection of possible measure positions is given in ad-
vance. We believe this assumption is a relatively sim-
ple way of limiting the complexity of the recognized
rhythm produced by the algorithm. When arbitrary
rhythmic complexity is allowed without penalty, one
can always �nd a rhythm with an arbitrarily accu-
rate match to the observed time sequence. Thus,
we expect that any approach to rhythm recognition
will need some form of information that limits or
penalizes this complexity. Other than this assump-
tion, all parameters of our model can, and should,
be learned from actual data, as in our second ex-
ample. Such estimation requires a set of training
data that \matches" the test data to be recognized
in terms of rhythmic content and rhythmic interpre-
tation. For example, we would not expect success-
ful results if we trained our model on Igor Stravin-
sky's Le Sacre du Printemps and recognized on Hank
Williams' Your Cheatin' Heart. In our experiments
with the Chopin Mazurka in Section 4, we used dif-
ferent Chopin Mazurkas for training; however, it is
likely that a less precise match between training and
test would still prove workable.

We believe that the basic ideas we have pre-
sented can be extended signi�cantly beyond what
we have described. We are currently experimenting
with a model that represents simultaneous evolution
of rhythm and pitch. Since these quantities are inti-
mately intertwined, one would expect better recog-
nition of rhythm when pitch is given, as in MIDI
data. For instance, consider the commonly encoun-
tered situation in which downbeats are often marked
by low notes as in the Chopin example.

The experiments presented here deal with esti-
mating the composite rhythm obtained by superim-
posing the various parts on one another. A disad-
vantage of this approach is that composite rhythms
can be quite complicated even when the individual
voices have simple repetitive rhythmic structure. For
instance, consider a case in which one voice uses
triple subdivisions while another use duple subdi-
visions. A more sophisticated project we are explor-
ing is the simultaneous estimation of rhythm, tempo



and voicing. Our hope is that rhythmic structure
becomes simpler and easier to recognize when one
models and recognizes rhythm as the superposition
of several rhythmic sources. Rhythm and voicing
collective constitute the \lion's share" of what one
needs for for automatic transcription of MIDI data.

While the Schumann example was much simpler
than the Chopin example, it illustrates another di-
rection we will pursue. Rhythmic parsing can play
an important roll in interpreting the results of a
preliminary analysis of audio data that converts a
sampled acoustic signal into a \piano roll" type of
representation. As discussed, we favor simultaneous
estimation over \staged" estimation whenever pos-
sible, but we feel that an e�ort to simultaneously
recover all parameters of interest from an acoustic
signal is extremely ambitious, to say the least. We
feel that the two problems of \signal-to-piano-roll"
and rhythmic parsing together constitute a reason-
able partition of the problem into manageable pieces.
We intend to consider the transcription of audio data
for considerably more complex data than those dis-
cussed here.
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ABSTRACT 
We have created a system that identifies musical keywords or 
themes. The system searches for all patterns composed of melodic 
(intervallic for our purposes) repetition in a piece. This process 
generally uncovers a large number of patterns, many of which are 
either uninteresting or only superficially important. Filters reduce 
the number or prevalence, or both, of such patterns. Patterns are 
then rated according to perceptually significant characteristics. 
The top-ranked patterns correspond to important thematic or 
motivic musical content, as has been verified by comparisons with 
published musical thematic catalogs. The system operates robustly 
across a broad range of styles, and relies on no meta-data on its 
input, allowing it to independently and efficiently catalog 
multimedia data. 

1. INTRODUCTION 
We are interested in extracting the major themes from a musical 
piece: recognizing patterns and motives in the music that a human 
listener would most likely retain. Thematic extraction, as we term 
it, has interested musician and AI researchers for years. Music 
librarians and music theorists create thematic indices (e.g., Köchel 
catalog [1]) to catalog the works of a composer or performer. 
Moreover, musicians often use thematic indices (e.g., Barlow's A 
Dictionary of Musical Themes [2]) when searching for pieces 
(e.g., a musician may remember the major theme, and then use the 
index to find the name or composer of that work). These indices 
are constructed from themes that are manually extracted by 
trained music theorists. Construction of these indices is time 
consuming and requires specialized expertise. Figure 1 shows a 
simple example. 

Background Material

1st Theme from Barlow
 

Figure 1: Sample Thematic Extraction from opening of 
Dvorak's American Quartet 
Theme extraction using computers has proven very difficult. The 
best known methods require some ‘hand tweaking’ [3] to at least 

provide clues about what a theme may be, or generate thematic 
listings based solely on repetition and string length [4]. Yet, 
automatically extracting major themes is an extremely important 
problem to solve. In addition to aiding music librarians and 
archivists, exploiting musical themes is key to developing 
efficient music-retrieval systems. The reasons for this are twofold. 
First, it appears that themes are a highly attractive way to query a 
music-retrieval system. Second, because themes are much smaller 
and less redundant than full pieces, by searching a database of 
themes, we simultaneously get faster retrieval (by searching a 
smaller space) and get increased relevancy. Relevancy is increased 
as only crucial elements, variously named motives, themes, 
melodies or hooks, are searched, thus reducing the chance that 
less important, but commonly occurring, elements will fool the 
system. 
There are many aspects to music, such as melody, structure and 
harmony, each of which may affect what we perceive as major 
thematic material. Extracting themes is a difficult problem for 
many reasons. Among these are the following: 

• The major themes may occur anywhere in a piece. Thus, 
one cannot simply scan a specific section of piece (e.g., 
the beginning). 

• The major themes may be carried by any voice. For 
example, in Figure 2, the viola, the third lowest voice, 
carries the principal theme. Thus, one cannot simply 
“listen” to the upper voices. 

• There are highly redundant elements that may appear as 
themes, but should be filtered out. For example, scales 
are ubiquitous, but rarely constitute a theme. Thus, the 
relative frequency of a series of notes is not sufficient to 
make it a theme. 

In this paper, we introduce an algorithm, Melodic Motive 
Extractor (MME), that automatically extracts themes from a piece 
of music, where music is in a note representation. Pitch and 
duration information are given; metrical and key information is 
not required. 
MME exploits redundancy that is found in music: composers will 
repeat important thematic material. Thus, by breaking a piece into 
note sequences and seeing how often sequences repeat, we 
identify the themes. Breaking up involves examining all note 
sequence lengths of two to some constant. Moreover, because of 
the problems listed earlier, we must examine the entire piece and 
all voices. This leads to very large numbers of sequences (roughly 
7000 sequences on average, after filtering), thus we must use a 
very efficient algorithm to compare these sequences.  

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page.  
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Figure 2: Opening Phrase of Dvorak's “American” Quartet  

Once repeating sequences have been identified, we must further 
characterize them with respect to various perceptually important 
features in order to evaluate if the sequence is a theme. Learning 
how best to weight these features for the thematic value function 
is an important part of our work. For example, we have found that 
the frequency of a pattern is a stronger indication of thematic 
importance than is the register in which the pattern occurs (a 
counterintuitive finding). We implement hill-climbing techniques 
to learn weights across features. The resulting evaluation function 
then rates the sequences. 
Across a corpus of 60 works, drawn from the Baroque, classical, 
romantic and contemporary periods, MME extracts sections 
identified by Barlow as “1st themes” over 98% of the time. 

1.1 Problem Formulation 
Input to MME is a set of note events making up a musical 
composition N = {n1,n2...n3}. A note event is a triple consisting of 
an onset time, an offset time and a pitch (in MIDI note numbers, 
where 60 = ‘Middle C’ and the resolution is the semi-tone): ni = 
<onset, offset, pitch>. We note that several other valid 
representations of a musical composition exist, taking into 
account amplitude, timbre, meter and expression markings among 
others [6]. We limit the domain because pitch is reliably and 
consistently stored in MIDI files--the most easily accessible 
electronic representation for music--and because we are interested 
primarily in voice contour as a measure of redundancy.  
The goal of MME is to identify patterns and rank them according 
to their perceptual importance as a theme. We readily 
acknowledge that there may, in some cases, be disagreement 
among listener about what constitutes a theme in a piece of music; 
however, , we note that t published thematic catalogs represent 
common convention. These catalogs thereby provide a concrete 
measure by which the system can be evaluated.. 

2. Algorithm 
In this section, we describe the operation of MME. This includes 
identifying patterns and computing pattern characteristics, such 
that “interesting” patterns can be identified. MME’s main 
processing steps are the following: 

1. Input  
2. Register 

3. Stream segregation 
4. Filter top voice 
5. Calculate event transitions 
6. Generate event keys 
7. Identify and filter patterns 
8. Frequency 
9. Compute other pattern features 
10. Rate patterns 
11. Return results 

2.1 Input 
MME generally takes as input MIDI files, which are translated 
into lists of note events in the described format. Information is 
also maintained about the channel and track of each event, which 
is used to separate events into streams. 

2.2 Register 
Register is an important indicator of perceptual prominence [10]: 
we listen for higher pitched material. For the purposes of MME, 
we define register in terms of the voicing, so that for a set of n 
concurrent note events, the event with the highest pitch is 
assigned a register of 1, and the event with the lowest pitch is 
assigned a register value of n. For consistency across a piece, we 
map register values to the range [0,1] for any set of concurrent 
events, such that 0 indicates the highest pitch, 1 the lowest. 
Given the input set of events N[]:
1. Sort(N, onset[N])
2. ActiveList NULL
3. index 0
4. while index < n
4. onset Onset[N[index]]
5. • remove all inactive events
6. Remove(ActiveList, Offset[N] • Onset)
7. • add all events with the same onset
8. while index < n – 1 and Onset[N[index]] = onset
9. Register[N[index]] 0
10. add N[index] to ActiveList
11. increment index
12. • update Register value of active events
13. Sort(ActiveList, Pitch[ActiveList])
14. n Size[ActiveList] – 1
15. for j 0 to n
16. register n - j / n
17. if register > Register[ActiveList[j]]
18. Register[ActiveList[j]] register

Algorithm 1: Calculating Register 
Table 1: Register values at each iteration of register algorithm 

Adding e0 e1 e2 e3 e4 e5 e6 e7 ActiveList 
e0 0        {e0} 

e1 1 0       {e0,  e1} 

e2 1 0 1/2       {e0, e1, e2} 

e3 1 0 1 0     {e2, e3} 

e4, e5 1 0 1 2/3 1/3 0   {e2, e3, e4, e5} 

e6, e7 1 0 1 2/3 1/3 0 1/2  1 {e4, e6, e7} 

We need to define the notion of concurrency more precisely. Two 
events with intervals I1 = [s1,e1] and I2 = [s2,e2] are considered 
concurrent if there exists an common interval Ic = [sc,ec] such that 
sc < ec and Ic ⊆  I1 ∧  Ic ⊆  I2. The simplest way of computing 
these values is to walk through the event set ordered on onset 
time, maintaining a list of (notes that are on) events, or events 
sharing a common interval (see Algorithm 1). 



Consider the example piece in Figure 3. The register value 
assigned to each event {e0…e7} at each iteration is shown in 
Table 1. 

Time

Pi
tc

h

e0

e1

e2

e3

e4

e5

e6

e7

 
Figure 3: Register, Example Piece 

2.3 Stream Segregation and Filtering Top 
Voice 
Generally, the individual channels of a MIDI file correspond to 
the different instruments or voices of a piece. Figure 2 shows a 
relatively straightforward example of segmentation, from the 
opening of Dvorak's “American” Quartet, where four voices are 
present. In cases where several concurrent voices are present in 
one instrument, for example in piano music, we deal with only the 
top sounding voice. This is clearly a restriction, albeit a 
reasonable one, as certain events are disregarded. This restriction 
is necessary . Although existing analysis tools, such as MELISMA 
[7], perform stream segregation on abstracted music, i.e., note-
event representation, they have trouble with overlapping voices 
[8], as seen between the middle voices in Figure 2. 
Identifying the top sounding voice is not as straightforward as it 
may appear. Some MIDI scores contain overlapping consecutive 
events within a single voice. To avoid filtering out such notes, we 
employ an algorithm similar to the register algorithm (see 
Algorithm 1), wherein events are removed from the active list for 
their particular channel some ratio (0.5) of their duration from 
their onset, and as such avoid being falsely labeled as “lower-
sounding” notes. For instance, an event in the time interval [30, 
50] will be removed from the active list when the sweep reaches 
time 40. 
Additionally, when long pauses (greater than some time constant) 
are found in a stream, the stream is broken at that point. In this 
manner, we exclude sequences enclosing large stretches of silence 
from gaining arbitrary advantage from the duration feature. 
For the purposes of this paper, we will indicate events using the 
notation estream, index, such that e0,1 indicates the second note of the 
first stream. 

2.4 Calculating Transitions 
We are primarily concerned with melodic contour as an indicator 
of redundancy. For our purposes, contour is defined as the 
sequence of pitch intervals across a sequence of note events in a 
stream. For instance, the stream consisting of the following event 

sequence: es = {<0, 1, 60>, <1, 2, 62>, <2, 3, 64>, <3, 4, 62>, <4, 
5, 60>} has contour cs  = {+2, +2, -2, -2}. 
MME considers contour in terms of simple interval, which means 
that although the sign of an interval (+/-) is considered, octave is 
not. As such, an interval of +2 is equivalent to an interval of +14 
= (+2 + octave = +2 + 12). We normalize each interval 
corresponding to an event, i.e., the interval between that event and 
its successor, to the range [-12, 12]: 
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Another transition measure we employ is known as the Inter-
Onset Interval (IOI), used to describe the rhythmic content of a 
sequence, and the rhythmic consistency of a pattern. This measure 
ignores the rhythmic articulation of events, but maintains the 
basic rhythmic information. In the above example, the IOI values 
are simply {1, 1, 1, 1}: 

][][][ ,1,, isisis eOnseteOnseteIOI −= +
 

2.5 Calculating Keys 
To efficiently uncover patterns, or repeating sequences, we assign 
a key k to each event in the piece that uniquely identifies a 
sequence of m intervals, where m is the maximum pattern length 
under consideration. Length refers to the number of intervals in a 
pattern, one less than the number of events. The keys must exhibit 
the following property: 

},,,{},,,{)()( 12,112,22,211,111,11,12,21,1 −++−++ =↔= misisismisisisisis ccccccmkmk KK  

Since only 25 distinct simple intervals exist, we can refer to 
sequences of intervals in radix-26 notation, reserving a digit (0) 
for the ends of streams. An m-digit radix-26 number, where each 
digit corresponds to an interval in sequence, thus uniquely 
identifies that sequence of intervals, and our key values can then 
be calculated as follows, re-mapping intervals to the range [1, 25]: 
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The following derivations allow us to more efficiently calculate 
the value of ks,i: 

Equation 1 
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Equation 2 
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The second case of this last equation deals with the situation 
where no additional information is gained by increasing n, since 
there are no additional intervals to consider beyond the end of the 
stream. It is derived from the observation that when 

sci ≥ , 

0)1(, =isk , the end of stream zero padding. 

By removing the most significant digit of a key )(, nk is
, we get the 

key for the subsequent event )1(1, −+ nk is
: 



Equation 3 
1
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This in turn allows us to calculate the subsequent key value in 
constant time, using Equation 2. 
Using Equation 1 and Equation 2, we can calculate the key if the 
first event in a stream in linear time with respect to the maximum 
pattern length, or the stream length, whichever is smaller (this is 
essentially an application of Horner’s Rule [9]). Equation 3 
allows us to calculate the key of each subsequent event in constant 
time (as with the Rabin-Karp algorithm [9]). As such, the overall 
complexity for calculating keys is )(nΘ  with respect to the 
number of events. 
Consider the following simple example for m = 4, a single phrase 
from Mozart’s Symphony no. 40: c0 = {-1, 0, +1, -1, 0, +1, -1, 0 
+8}. 
First we calculate the key value for the first event (k0,0(4)), using 
Equation 1 and Equation 2 recursively: 
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Then we calculate the remaining key values: 

916426*)1()4()3( 3
0,00,01,0 =−= kkk  (Equation 3) 

238277)1()3(*26)4( 4,01,01,0 =+= kkk  (Equation 2) 

Using the same procedure, we generate the remaining key values: 
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2.6 Identifying and Filtering Patterns 
We employ one final derivation on k for the pattern identification: 

Equation 4 
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Events are then sorted on key so that pattern occurrences are 
adjacent in the ordering. We make a pass through the list for 
pattern lengths from ]2[ Kmn = , resulting in a set of patterns, 
ordered from longest to shortest. This procedure is 
straightforward: during each pass through the list, we group 
together keys for which the value of )(nk - calculated using 
Equation 4 – is the same. Such groups are consecutive in the 
sorted list. Occurrences of a given pattern are then ordered 
according to their onset time, a property necessary for later 
operations. 
Continuing with the Mozart example, sorting the keys we get: 
{k0,9, k0,0, k0,3, k0,6, k0, 1, k0,4, k0,7, k0,2, k0,5, k0,8}. 
On our first pass through the list, for n = 4, we identify patterns 
{k0,0, k0,3} and {k0,1, k0,4}, since there keys are identical. During 
the second pass, for n = 3, we identify patterns {k0,0, k0,3}, {k0,1, 
k0,4} and {k0,2, k0,5}, noting that k0,2/264-3 = k0,5/264-3 (which by 
Equation 4 indicates that a pattern of length three exists.) 

Similarly, we identify the following patterns for n = 2: {k0,0, k0,3, 
k0,6}, {k0,1, k0,4} and {k0,2, k0,5}. The patterns are shown in Table 2. 

Table 2: Patterns in opening phrase of Mozart's 
 Symphony no. 40 

Pattern Occurrences at Characteristic interval 
sequence 

P0 e0, 0, e0, 3 {-1, 0, +1, -1} 

P1 e0, 1, e0, 4 {0, +1, -1, 0} 

P2 e0, 0, e0, 3 {-1, 0, +1} 

P3 e0, 1, e0, 4 {0, +1, -1} 

P4 e0, 2, e0, 5 {+1, -1, 0} 

P5 e0, 0, e0, 3, e0, 6 {-1, 0} 

P6 e0, 1, e0, 4 {0, +1} 

P7 e0, 2, e0, 5 {+1, -1} 

We associate a vector of parameter values 
>=< ni vvvV ,,, 21 K and a set of occurrences to each pattern. 

Length, 
lengthv , is one such parameter. The assumption was made 

that longer patterns are more significant, simply because they are 
less likely to occur by chance. 
As patterns are identified, they are filtered according to several 
criteria. Since zero padding is used at the ends of streams, it must 
be verified that a sequence does not overrun the end of a stream, 
which frequently happens since all streams end with the same 
zero-padding. Two other filtering criteria are considered as well: 
intervallic variety, and doublings. 

2.6.1 Intervallic Variety 
Early experiments with this system indicated that sequences of 
repetitive, simple pitch-interval patterns dominate given the 
parameters outlined thus far. For instance, in the Dvorak example 
(see Figure 2) the melody is contained in the second voice from 
the bottom, but highly consistent, redundant figurations exist in 
the upper two voices. Intervallic variety provides a means of 
distinguishing these two types of line, and tends to favor 
important thematic material since that material is often more 
varied in terms of contour. 
Given that intervallic variety is a useful indicator of how 
interesting a particular passage appears, we count the number of 
distinct intervals observed within a pattern, not including 0. We 
calculate two interval counts: one in which intervals of +n or -n 
are considered equivalent, the other taking into account interval 
direction. Considering the entire Mozart example, which is indeed 
a pattern within the context of the whole piece, there are three 
distinct directed intervals, -1, +1 and 8, and two distinct 
undirected intervals, 1 and 8. 
At this stage, we filter out all patterns whose characteristic 
interval sequence has below certain minimum values for these 
interval counts. In addition, interval counts are maintained for 
each pattern. 

2.6.2 Doublings 
Doublings are a special case in MME. A doubled passage occurs 
where two or more voices simultaneously play the same line. In 
such instances, only one of the simultaneous occurrences is 



retained for a particular pattern, the highest sounding to maintain 
the accuracy of the register measure.  
We must provide a definition of simultaneity to clearly describe 
this parameter. To provide for inexact performance, we allow for a 
looser definition: two occurrences oa and ob, with initial events 
es1,i1 and es2,i2 respectively, and length n, are considered 
simultaneous if and only if 

jisenjj +≤≤∀ 1,1:0,  overlaps es2,i2+j. 

Two events are in turn considered overlapping if they strictly 
intersect. It is easier to check for the non-intersecting relations -- 
using the conventions and notations of Beek [11] -- es1,i1 before 
(b) es2,i2 or the inverse (bi) (see Algorithm 2): 
We check each occurrence of a pattern against every other 
occurrence. Note that since occurrences are sorted on onset, we 
know that if oi and oj are not doublings, where j > i, oi cannot 
double ok for all k > j. This provides a way of curtailing searches 
for doublings in our algorithm, and provides significant 
performance gains (experimentally, a tenfold improvement). This 
is because partial doublings rarely occur, where only some subset 
of corresponding intervals is simultaneous. 
Given a pattern P with n occurrences in O[] and length l
1. for i 0 to n – 2
2. for j i + 1 to n – 1
3. if ~Remove[O[i]] and ~Remove[O[j]]
4. Simultaneous = true
5. for k 0 to l
6. if ~Intersects(eStream[O[i]],Index[O[i]], eStream[O[j]],Index[O[j]]) then
7. Simultaneous false
8. k l + 1
9. if Simultaneous then
10. if Pitch(eStream[O[i]],Index[O[i]]) > Pitch(eStream[O[j]],Index[O[j]])
11. Remove[j] true
12. Doubled[i] true
13. else
14. Remove[i] true
15. Doubled[j] true
16. else
17. j n
18. Remove(O, Remove[O])

Algorithm 2: Filter Doublings 
This doubling filtering occurs before other computations, and thus 
influences frequency. We, however, retain the doubling 
information (Lines 12 and 15, Algorithm 2), as it is a musical 
emphasis technique. 
If after filtering doublings less than two occurrences remain, the 
pattern is no longer considered a pattern, and removed from 
consideration. Doublings serve to reinforce a voice, and as such 
do not constitute repetition. 

2.7 Frequency 
Frequency of occurrence is one of the principal parameters 
considered by MME in establishing pattern importance. All other 
things being equal, higher occurrence frequency is considered an 
indicator of higher importance. Our definition of frequency is 
complicated by the inclusion of partial pattern occurrences. For a 
particular pattern, characterized by the interval sequence 

},...,,{ 110 −lengthvCCC , the frequency of occurrences is defined as 

follows: 
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An occurrence is considered non-redundant if it has not already 
been counted, or partially counted (i.e., it contains part of another 
sub-sequence that is longer or precedes it.) Consider the piece 
consisting of the following interval sequence, in the stream e0: 

}2,2,2,2,5,5,2,2,2,2,5,5,2,2,2,2{0 +−+−+−+−+−+−+−+−=c , and 
the pattern 2,-5}2,-2,{-2, ++ . Clearly, there are two complete 
occurrences at e0,0 and e0,6, but also a partial occurrence of length 
four at e0,12. The frequency is then 2.8 for this pattern. 
To efficiently calculate frequency, we first construct a set of 
pattern occurrence lattices, on the following binary occurrence 
relation p : 
Given occurrences o1 and o2 characterized by event sequences E1 
and E2, 2121 EEoo ⊂⇔p . In other words, each occurrence in the 
lattice covers all patterns occurrences containing a subsequence of 
that occurrence. 
As such, in establishing frequency, we need consider only those 
patterns covered by occurrences of P in the lattices. Two 
properties of our data facilitate this construction: 

1. The pattern identification procedure adds patterns in 
reverse order of pattern length. 

2. For any pattern occurrence of length n > 2, there are at 
most two occurrences of length n – 1, one sharing the 
same initial event, one sharing the same final event. If 
one of these two child occurrences does not exist, it is 
due to the filtering described above. Because of the 
nature of the filtering, no patterns of length less than n – 
1 will be covered by the occurrence in these instances, 
so we need only generate links to occurrences of length 
n – 1 in the lattices. The branching factor is thus limited 
to two. 

The lattice is described as follows: given a node representing an 
occurrence of a pattern o with length l, the left child is an 
occurrence of length l – 1 beginning at the same event. The right 
child is an occurrence of length l – 1 beginning at the following 
event. The left parent is an occurrence of length l + 1 beginning at 
the previous event, and the right parent is an occurrence of length 
l + 1 beginning at the same event. Consider the patterns the 
Mozart excerpt (see Table 2): P0's first occurrence, with length 4 
and at e0,0, directly covers two other occurrences of length 3: P2's 
first occurrence at e0,0 (left child) and P3's first occurrence at e0,1 
(right child). The full lattice is shown in Figure 4, where each 
occurrence in the lattice is labeled with its respective pattern. 
Lattices are constructed from the top down, since patterns are 
added in reverse order of length. Each note event in the piece 
contains a pointer to an occurrence, such that as occurrences are 
added, lattice links can be built in constant time (see Algorithm 
3). 
Consider the patterns identified in the Mozart example (Table 2), 
from which we build the lattice in Figure 1. When the first 
occurrence of pattern P4 is inserted, o_left = the first occurrence 
of P3, and o_right = null. Since P3 has the same length as P4, we 
check the right parent of the o_right, and update the link between 
those occurrences of P1 and P4. Other links are updated in a more 
straightforward manner. 



Given a series of n patterns P[]
1. for i 0 to n – 1
2. O Occurrences[P[i]]
3. for j 0 to Size[O]
4. • occurrence pointed to by the first event of O
5. o_right Occurrence[eStream[O[j]], eIndex[O[j]]]
6. • occurrence pointed to by the preceding event
7. if Index[O[j]] = 0
8. o_left null
9. else
10. o_left Occurrence[eStream[O[j]], eIndex[O[j]]-1]
11. • we consider three cases for the value of o_left
12. if o_left = null

• we learn nothing about the lattice
13. else if Length[o_left] > Length[O[j]]
14. Right_Child[o_left] O[j]
15. else
16. Right_Child[Right_Parent[o_left]] O[j]
17. • we consider two cases for the value of o_right
18. if o_right = null

• we learn nothing about the lattice
19. else
20. Right_Parent[O[j]] o_right • used in line 16
21. Left_Child[o_right] O[j]
22. Occurrence[eStream[O[j]], eIndex[O[j]]] O[j]

Algorithm 3: Lattice Construction 

Length = 4

Length = 3

Length = 2

e0,0 e0,1 e0,2 e0,3 e0,4 e0,5 e0,6

P0 P0P1 P1

P2 P3 P4 P2 P3 P4

P5 P6 P7 P5 P6 P7 P5

right parent

left child

left parent

right child
 

Figure 4: Lattice for the First Phrase of Mozart's Symphony 
no. 40 
From this lattice, we easily identify non-redundant partial 
occurrences of patterns. For each pattern, we perform a breadth-
first traversal from its occurrences in the lattice, marking patterns 
and events as they are counted so that none are included twice. 
Simultaneously, the number of doubled occurrences is counted. In 
this manner, we calculate the value of the vdoublings and vfrequency 
features for each pattern (see Algorithm 4). 

 
Take for instance pattern P2 in the Mozart example. By breadth-
first traversal, starting from either occurrence of P2, the following 
elements are added to Q: P2, P5 and P6. First, we add the two 
occurrences of P2, tagging events e0,0, e0,1, … , e0,5, and setting  
vfrequency  6. The first two occurrences of P5 contain tagged 
events, so we reject them, but the third occurrence at e0,6 is un-
tagged, so we tag e0,6, e0,7, e0,8 and set vfrequency  6 + 2. All 
occurrences of P6 are tagged, so the frequency of P2 is equal to 8 / 
3. 

Given a pattern P:
1. id unique identifier for pattern
2. Tag[P] id
3. push(Q, P)
4. while ~empty(Q)
5. • add chbildren to Queue (DFS)
6. pop(Q, p)
7. o_left Left_Child[Occurrences[p][0]]
8. o_right Right_Child[Occurrences[p][0]]
9. if o_left ~= null and Tag[Pattern][o_left] ~= id
10. Tag[Pattern[o_left]] id
11. push(Q, Pattern[o_left]])
12. if o_right ~= null and Tag[Pattern][o_right] ~= id
13. Tag[Pattern[o_right]] id
14. push(Q, Pattern[o_left]])
15. • count non-redundant occurrences of p
16. for i 0 to Size[Occurrences[p]] – 1
17. if events in Occurrences[p][i] have Tag ~= id 1

18. set Tag
id for all events in Occurrences[p][i]

19. vfrequency[P] vfrequency[P] + Length[Occurrences[p][i]]
20. vdoublings[P] vdoublings[P] + Length[Occurrences[p][i]]
21. vfrequency[P] vfrequency[P] / vlength[P]
22. vdoublings[P] vdoublings[P] / vlength[P]

Algorithm 4: Calculating Frequency 

2.8 Other Pattern Features 
Several pattern features have been described thus far: vinterval_count, 
vabsolute_interval_count, vlength, vfrequency and vdoublings. In addition, we 
consider pattern duration (vduration), rhythmic consistency (vrhythm), 
position in the piece (vposition), and register (calculated from event 
register, vregister). 

2.8.1 Duration 
The duration parameter is an indicator of the temporal interval 
over which occurrences of a pattern exist. For a given occurrence 
o, with initial event es1,i1 and final event es2,i2, the duration D(o) = 
Offset[es2,i2] – Onset[es1,i1]. For a pattern P, with occurrences o0,  
o1, ... , on-1, the distance parameter is calculated to be the average 
duration of all occurrences: 
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2.8.2 Rhythmic Consistency 
We calculate the rhythmic distance between a pair of occurrences 
as the angle difference between the vectors built from the IOI 
values of each occurrence. For occurrence o, with events E0, E1, 
… , Elength – 1,2 the IOI vector is 

>=< − ][],...,[],[)( 110 lengthEIOIEIOIEIOIoV . The rhythmic 

distance between a pair of occurrences oa and ob is then the angle 
distance between the vectors V(oa) and V(ob): 
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1 If the first and last events of Occurrences[p][i] are un-tagged, 

then we can assume the occurrence has not been counted even 
in part, since previously considered occurrences are necessarily 
of greater or equal length. As such, only the first and last events 
are examined here. 

2 We use the notation Ej to refer to an arbitrary event es,i. Note that 
Ej and Ej+1 refer to consecutive events es,i and es,i+1.  



Figure 5: Rhythmic Distance Measure 
A 3-dimensional example of the rhythmic distance calculation 
between two occurrences oa and ob is shown in 
Figure 5. 
We take the average of the distances between all occurrence (o0,  
o1, ... , on-1) pairs for a pattern P to calculate its rhythmic 
consistency: 
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This value is a measure of how similar different occurrences are 
with respect to rhythm. Notice that two occurrences with the same 
notated rhythm presented at different tempi have a distance of 0. 
Consider the case where oa has k times the tempo of ob. In this 
case, )()( ab okVoV = , and 

0))(),(())(),(( == aaba okVoVDoVoVD . 

Occurrences with similar rhythmic profiles have low distance, so 
this approach is robust with respect to performance and 
compositional variation. For instance, in the Well-Tempered 
Clavier Bach often repeats fugue subjects at half speed. The 
rhythm vectors for the main subject statement and the subsequent 
stretched statement will thus have the same angle, and a distance 
of zero. Similarly, if two presentations of a theme have slightly 
different rhythmic inflections, their IOI vectors will nonetheless 
be quite similar. 

2.8.3 Position 
Noting that significant themes are sometimes introduced near the 
start of a piece, we also characterize patterns according to the 
onset time of their first occurrence (o). Note that occurrences are 
sorted according to Onset as patterns are identified, so the first 
occurrence is also the earliest occurrence: 

][ ][],[ oIndexoStreamposition eOnsetv =  

2.8.4 Register 
Given the register values calculated for note events, the register 
value for a pattern P with occurrences o0,  o1, ... , on-1, is equal to 
the average register of all events contained in those occurrences: 
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2.9 Rating Patterns 
For each pattern P, we have calculated several feature values. We 
are interested in comparing the importance of these patterns, and a 
convenient means of doing this is to calculate percentile values 
for each parameter in each pattern, corresponding to the 
percentage of patterns over which a given pattern is considered 
stronger for a particular feature. These percentile values are stored 
in a feature vector: 
 >=< registercountintervalLength pppPF ,...,,][ _

 

We define stronger as either less than or greater than depending 
on the feature. Higher values are considered desirable for length, 
duration, interval counts, doublings and frequency; lower values 
are desirable for rhythmic consistency, pattern position and 
register. 
The rating of a pattern P, given some weighting of features W, is: 
 ][][ PFWPRating ⋅←  

2.10 Returning Results 
Patterns are then sorted according to their Rating field. This 
sorted list is scanned from the highest to the lowest rated pattern 
until some pre-specified number (k) of note events has been 
returned. Often, MME will rate a sub-sequence of an important 
theme highly, but not the actual theme, owing to the fact that parts 
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of a theme are more faithfully repeated than are others. As such, 
MME will return an occurrence of a pattern with an added margin 
on either end, corresponding to some ratio g of the occurrences 
duration, and some ratio of the number of note events h, 
whichever ratio yields the tightest bound. 
In order to return a high number of patterns within k events, we 
use a greedy algorithm to choose occurrences of patterns when 
they are added: whichever occurrence adds the least number of 
events is used. 
Output from MME is a MIDI file consisting of a single channel of 
monophonic (single voice) note events, corresponding to 
important thematic material in the input piece. 

3. Results 
A set of 60 pieces from the Baroque, Classical, Romantic, 
Impressionistic and 20th Century were used to train and test the 
software. Bach, Mozart, Beethoven, Brahms, Schubert, 
Mendelssohn, Dvorak, Smetana, Debussy, Bartok and Stravinsky 
are represented, in chamber, orchestral and solo piano works. 
A few details of MME’s configuration should be mentioned: the 
intervallic variety filter required a minimum of at least zero 
distinct intervals, and two distinct absolute intervals. Maximum 
pattern length is set to 12 transitions, and streams are broken with 
silences longer than one and a half seconds. For the sake of result 
output and training, there is a margin of 0.5 on both ends for both 
events and duration. Up to 240 note events are returned for each 
piece, as compared with an average of over 8500 notes per piece 
originally. We employ a hill-climbing algorithm to discover good 
values for W. 

3.1 Preliminary Results 
Given even feature weighting, the primary theme was returned in 
51 of the 60 pieces. Learning weights W across this entire set, and 
testing across the same set, the primary theme was returned on 60 
of the 60 pieces. These results are presented only to provide 
context for later results, and to provide some indication of the 
importance of learning appropriate weights. 

3.2 Training Trials 
We performed 30 trials, randomly selecting a 30-piece training set 
for each trial. During each trial, the hill-climbing algorithm was 
permitted 50 random restarts. These weights were then evaluated 
against the test set, consisting of the remaining 30 pieces. In two 
trials, MME identified 28 of the 30 primary themes, in seven trials 
29 out of 30, and in 21 trials 30 out of 30, or on average roughly 
29.6 out of 30, as compared with an expected average of 25.5 out 
of 30 using even weights (see Figure 6.) 
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Figure 6: Trial Results 

3.2.1 Weights 
Examining the weights learned during the trials, we get some idea 
of the relative importance of the different pattern features 
examined. The average and median weights across the 30 trials 
are listed in Table 3. 
Of particular interest is the negative weight for absolute interval 
count. Although our early experiments indicated that filtering 
patterns with low intervallic variety improves algorithm 
performance, it appears this parameter does not usefully 
distinguish the remaining patterns. The weight given to the 
register feature is perhaps most surprising., as we normally 
associate important melodies with the highest-sounding voice in a 
passage. Position is clearly the dominant feature, perhaps owing 
to our focus on primary themes, which tend to occur near the 
opening of pieces. 

Table 3: Feature Weights 

Feature Average 
Weight 

Median 
Weight 

absolute interval count -0.016249988 -0.021642894 

register 0.051727027 0.041694308 

doublings 0.085212347 0.055842776 

interval count 0.121993193 0.110731687 

frequency 0.119746216 0.125918866 

rhythmic consistency 0.176786867 0.181440092 

duration 0.233749767 0.237064805 

length 0.344768215 0.274449283 

position 0.819313306 0.872008477 

3.2.2 Errors 
Three pieces were responsible for all errors in MME’s output: the 
first movement of Mozart’s Symphony no. 40, the second 
movement of Brahms’ Cello Sonata in E minor, and Brahms’ 
Academic Festival Overture. In the first two cases, the proper 
theme was only partly returned in some trials, and in the last case, 
another theme sometimes dominated, albeit one that might be 
considered subjectively more prevalent than that listed first in 
Barlow. 
Examining the Mozart example (see Figure 7), the opening few 
notes exhibit a low absolute interval count (only minor seconds, 
+/- 1), which explains why MME returned only the subsequent 
portion of the theme in some trials. This piece was included in 20 
of the 30 test sets, and in three of those cases, the output was 
offset as described. In the remaining 17 cases, the proper theme 
was returned in full.  

Barlow, 1st theme
MME output includes

 
Figure 7: Mozart Symphony no. 40 1st Theme 

In the case of the cello sonata, MME again selected only a portion 
of the 1st theme, in four of the 14 trials in which it appeared in the 
test set.  This movement contains a great deal of repetition and 
variation, on the one hand offering a wealth of potentially 



important targets, and on the other, confusing the system due to 
its reliance on exact repetition. 
The Academic Festival Overture contains a large number of 
themes, and in every trial, MME returned a fair number of them. 
The first theme listed in Barlow, however, was returned only six 
of the 10 times the piece appeared in the test set. In all cases, 
MME returned another theme (see Figure 8). 
 

Barlow theme

MME theme  
Figure 8: Themes from Brahms' Academic Festival Orchestra 

 

3.2.3 Sample of Output 
MME’s output from Smetana’s The Moldau (a movement of My 
Country) is shown in Figure 10. The first section A contains the 
1st theme as indicated by Barlow. Section F contains a slight 
rhythmic variation on the same material, and section H presents 
the subsequent phrase. In addition, section B and D contain tonal 
variations of the same material (presented here in the major, 
whereas the main presentation is in the minor.) To many listeners, 
these sections sound similar. This highlights a potential weakness 
of the algorithm: although the correct material is returned, there is 
redundancy in the output. 

3.2.4 Popular Music 
MME has been tested on several pieces of popular music, though 
we present no formal results in the absence of an accepted 
benchmark for system performance in this genre. Across 20 songs, 
ranging from the Beatles to Nirvana, an untrained version of 
MME returned the chorus where applicable, and what we 
considered to be significant “hooks” in all cases. 
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Figure 9 

4. Summary 
Identifying the major themes in a sophisticated musical work is a 
difficult task. The results show that MME correctly identifies the 
major themes in 100% of the test cases (when learning is 
employed), and identifies 85% of the major when learning is not 
used. 

It is interesting to note that MME contains no deep musical 
knowledge, such as theory of melody, harmony, or rhythm. 
Rather, it works entirely from surface features, such as pitch 
contour, register, and relatively duration. We found, surprisingly, 
that register is not a good indicator of the thematic importance. 
MME is computationally efficient. The system’s overall 
complexity is dominated by the frequency calculation, which in 
the worst-case operates in )( 23nmΘ  time, where m is the 
maximum pattern length under consideration, and n is the number 
of note events in the input piece. In practice, however, we observe 
sub-linear performance (see Figure 9), and reasonable running 
times on even the largest input pieces.  
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Figure 10: Output from Smetana's Moldau 
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ABSTRACT 
 
In the course of the WedelMusic project [15], we are currently 
implementing retrieval engines based on musical content 
automatically extracted from a musical score. By musical content, 
we mean not only main melodic motives, but also harmony, or 
tonality.  

In this paper, we first review previous research in the domain of 
harmonic analysis of tonal music. 

We then present a method for automated harmonic analysis of a 
music score based on the extraction of a figured bass. The figured 
bass is determined by means of a template-matching algorithm, 
where templates for chords can be entirely and easily redefined by 
the end-user. We also address the problem of tonality recognition 
with a simple algorithm based on the figured bass. 

Limitations of the method are discussed. Results are shown and 
compared to previous research. 

Finally, potential uses for Music Information Retrieval are 
discussed. 

 

KEYWORDS 
 
Music analysis, automatic extraction of musical features, figured 
bass and tonality recognition. 

1. INTRODUCTION 
As stated by Ian Bent in his article ”Analysis” of the New Grove’s 
Dictionary, musical analysis is “the resolution of a musical 
structure into relatively simpler constituent elements, and the 
investigation of the functions of these elements within that 
structure”. 

Harmonic analysis is one of the principal means to achieve this 
goal through the production of a figured bass and the analysis of 
the function of chords based on the relationship of their root to 
the main tonality. In this paper, we describe a technique for the 
automated extraction of the figured bass. 

The figured bass is a very old principle, described in several 
treatises, starting from “Del sonare sopra il basso” by Agazzari 
(1607).  

The aim of the figured bass was, in principle, oriented towards 
interpretation. Rameau turned it into a genuine theory of tonality 
with the introduction of the fundamental concept of root. 
Successive refinements of the theory have been introduced in the 
18th, 19th (e.g., by Reicha and Fetis) and  20th  (e.g., Schoenberg 
[10, 11]) centuries. For a general history of the theory of 
harmony, one can refer to Ian Bent [1] or Jacques Chailley [2] 

 

Several processes can be build on the top of a harmonic reduction 

• detection of tonality, 

• recognition of cadence, 

• detection of similar structures 

Following a brief review of systems addressing the problem of 
tonal and harmonic analysis, we first point out the problems raised 
by harmonic reduction. We then describe our algorithm, and show 
its use in some examples. In the subsequent section, we show the 
application of a simple process of tonality detection on top of 
harmonic reduction. 

The analysis tools that are described here are part of the 
WedelMusic project, which is funded by the European 
Commission [15]. Its aim is the development of a system of 
distribution of music scores over the Internet while preserving the 
owner’s rights. This project includes a cataloguing system. 
Indexes are built from such metadata as name of composer, date 
of composition and so on. Indexes are also built on the basis of 
musical content, as extracted from the score by analysis tools 
developed at Ircam. They include such elements as main motives, 
descriptions of tonalities and their relation with the main tonality, 
etc. 

These elements can be used in a more general strategy of Music 
Information Retrieval, which would be based not only just on 
motives, but also on tonal style, harmony and so on. 

2. A BRIEF TOUR OF MUSIC ANALYSIS 
SYSTEMS 
In the past, a number of systems have been developed to address 
the problem of automatic tonal harmonic analysis. Only a few 
tackle the difficult problem of chord generation - that is, 
generation of root and encoding of the nature of the chord  - 
directly from the score. 

Maxwell’s expert system for harmonic analysis of tonal music [6] 
is a rule-based system, consisting of more than 50 rules. The first 
phase performs a reduction of the vertical sonorities of the piece 
into a chord sequence, by recognizing dissonances and 
consonances. Maxwell’s complex set of decision rules for 



consonance and dissonance is difficult to adapt to situations 
where the notion of dissonance is slightly different, such as music 
of the 19th century. In addition, as noticed by David Temperley 
[12], Maxwell’s algorithm appears not to be capable of correctly 
handling situations where notes of the chord are stated in 
sequence. 

Temperley’s approach to harmonic analysis [12] consists of a set 
of preference rules, as described in Lerdahl’s and Jackendoff’s 
generative theory of tonal music [5]. As in Maxwell’s system, the 
first phase of Temperley’s algorithm leads to the production of the 
roots of chords. Despite the strongly encouraging results he 
achieved, the author himself pointed out several problems with 
the algorithm, especially in the analysis of the Gavotte from the 
French Suite n° 5 by J.-S. Bach.  

Pardo and Birmingham [8] developed HarmAn, a system that 
partitions tonal music into harmonically significant segments 
corresponding to single chords. It also tags these segments with 
the proper chord label. A strength of the system is that it is 
independent of rhythm. New templates for chords can be 
introduced, but this requires a rethinking of both the preferences 
rules and the scoring method for a single template, as stated by the 
authors. A numerical method is used for scoring elements, with 
known drawbacks: as stated by Francois Pachet [7], “numerical 
values are difficult to justify, difficult to maintain, and have poor 
explanatory capacity”. The system works with a MIDI-like 
representation of notes, and no enharmonic spelling algorithm is 
implemented. The system thus suffers from a number of 
drawbacks by not recognizing the difference between, for 
example, F# and Gb. This will certainly lead to a number of 
problems in passages belonging to tonalities with several 
accidentals. In addition, some aggregations used in the late 18th 
century and in the 19th century, such as the augmented sixth (C – 
E – G – A#) cannot be distinguished from other chords (in this 
case, from a seventh on the fifth degree). 

Other systems have been developed, which don’t address the first 
difficulty of chord recognition and segmentation of the score. 

Winograd [14], in a pioneering work, addressed the analysis of 
musical scores by using systemic grammars. His method needs a 
preliminary hand-made conversion of the original score into a 
score expressed as a sequence of four-part perfect chords. During 
this operation, ornamental notes, like suspensions, passing notes 
and the like, are eliminated. 

Ulrich [13] developed a process of functional analysis, this term 
referring to the identification of the function of each chord in a 
song, and the grouping together of measures that move the tune 
from one key center to another one. Similarly to Winograd, the 
input to the program consists of a sequence of chords, each of 
them consisting of a set of musical notes. An interesting part of 
the system is an algorithm for detection of keys, described as an 
“island-growing” mechanism. 

François Pachet’s approach to computer analysis of jazz chord 
sequences [7] can be seen as an extension of Ulrich’s island 
growing mechanism, as stated by the author himself. The input of 
the system is a chord sequence, already explicitly mentioned on 
the score. The most important improvement to Ulrich’s 
mechanism is that the system outputs a hierarchical description of 
modulations. 

Hoffmann and Birmingham [4] use a constraint satisfaction 
approach in order to solve the problem of tonal analysis. Similarly 
to Winograd’s method, a preliminary hand-made conversion of 
the score is necessary. 

3. PROBLEM STATEMENT 
The issues raised by harmonic reduction are the following: 

• ornamental notes and incomplete harmony, 
• ambiguities, 
• non-regularity of harmony, 
• non-universality of harmony rules. 

 
We shall now address each of these points. 
 

3.1 Ornamental notes and incomplete 
harmonies 
In the process of harmonic reduction, some notes are extraneous 
to the harmony - these are ornamental notes, like appoggiaturas, 
suspensions, passing notes and so on. On the other hand, harmony 
is frequently incomplete – i.e., some notes may be missing. 

This is illustrated in the following example: 

 

Figure 1. Ornamental notes and incomplete harmonies 
(Trio of the Clarinet Quintet by Mozart, KV 581) 

The circled A and C# (written transposed C and E) in the clarinet 
part in the first measure are not part of the harmony, thus they are 
to be considered as ornamental notes. 

In the second measure, the harmony – a fifth chord on F# - is 
never complete anywhere in the measure. 

To cope with these problems, we must apply a fundamental rule 
of analysis, as described by Cook [3] in his treatise: “Essentially 
there are two analytical acts: the act of omission and the act of 
relation”. In order to decide if a note is an ornamental, we use the 
rule handling the resolution: in general, resolution of an 
ornamental note such as a suspension, a passing note, an 
appoggiatura is performed with a conjunct degree. 

In some cases, however, the resolution of an ornamental will be 
done through disjoint motion: for example, a suspension can be 
resolved by first playing a harmonic note before playing the 



resolution. For now, we only apply “natural” resolution, and we 
will extend our rule to handle more cases. 

Another rule for deciding if a note is an ornamental is based on 
the relative duration (weight) of the note as compared to the other 
notes of the chord. 

 

3.2 Ambiguities 
Some ambiguities have to be resolved, since certain vertical 
aggregations are not “true harmony”, as shown in the following 
example: 

 
Figure 2. Ambiguous harmony. 

(Trio of the Clarinet Quintet by Mozart, KV 581) 

The harmony found on the third beat, surrounded here by a 
rectangle, looks like a sixth. If it is so analysed, its root would 
then be C#,  the third degree of A Major. But this  is a nonsense in 
this context. 

3.3 Non-regularity of harmony 
In traditional harmony, one cannot assume that the harmonic 
rhythm is regular. In other words, a harmonic reduction process 
cannot be based on the assumption that harmony is the same for a 
beat and for a measure. 

3.4 Non-universality of harmony rules 
The “theory of harmony” is not to be considered as a genuine, 
universal and well-defined set of rules. As François Pachet states 
[7], it is “a theory without theorems”. Rules of harmony have 
evolved through history. As noticed by Hoffmann [4], “the rules 
for tonal harmony are not specifically stated, but are conventions 
drawn from centuries of musical experience”. 

To cope with this problem, we must let the user define his own 
sets of “harmonic rules”, and choose which  set of “right” rules to 
apply. 

 

4. DESCRIPTION OF HARMONIC 
REDUCTION 
The harmonic reduction process includes two main phases: 

• a clusterisation, which is composed of a first phase of 
quantization of each measure, followed by a vertical 
aggregation of notes belonging to the same 
quantization, 

• an iterative horizontal aggregation, in which 
unnecessary notes are eliminated, and successive 
clusters are merged into chords. 

The quantization of the measure is simply the computation of the 
duration of the shortest note in the measure. 

For each quantization, we store the result of a vertical aggregation 
as a cluster. We use this term here to designate an aggregate of 
notes which has not yet reached the status of a chord; it is 
represented as a list of notes, each of them stored with its diatonic 
value (pitch, accidental, octave) and its melodic function (interval 
to the following note in the same voice). The information about 
the melodic function is used to decide whether the note is an 
ornamental note or a harmonic note: a note with an interval of a 
second to the following note is considered to be a possible 
ornamental note. A note with an interval greater than a second (a 
third, a fourth and so on) is considered to be a harmonic note. 

The iterative horizontal aggregation uses a set of user-defined 
chord templates, i.e., a list of chords together with their figures. 
For the analysis presented in this paper, we have used a set of 33 
chords, including some seventh and ninth chords, which can be 
considered as representative of classical harmony as  used by 
composers at the end of the 18th century. 

For other styles, the user can choose another pre-defined set of 
chords, or to redefine entirely his own set of chords, and store it in 
the database. The definition of the set of chords is easily input 
through the Wedel score editor, which is also used for displaying 
the score being analysed. The process of horizontal aggregation 
extensively uses the set of chords that the user has selected. 

We begin the process of aggregation by comparing two 
consecutive clusters. They are considered the same if the sounds 
composing the two clusters are the same, regardless of their 
octave, i.e., each sound of the first cluster belongs to the second, 
and each sound of the second belongs to the first. In this case, the 
two clusters are merged in one. 

If they have not been merged, the process performs a union of 
both clusters and compares the result against the each chord in the 
set of chords: 

• If the union, except for the possible ornamental notes, 
can be exactly mapped to a chord, the two clusters are 
merged into one. 

• If the union, including the possible ornamental notes, 
can be exactly mapped to a chord, the two clusters are 
merged into one, and the ornamental notes are now 
considered to be harmonic notes. 

The merge is first applied beat by beat, and then measure by 
measure, and is iteratively repeated until no more merge can be 
achieved. 

When no further merge can be accomplished, an attempt is made 
to turn each cluster into a chord, by mapping it to the nearest 
chord possible.  

First, we try to find a chord containing all the harmonic notes of 
the cluster and conversely. If this attempt fails, we then search for 
a chord containing all the notes of the cluster (this assumes that 
the cluster can be an incomplete chord). If this fails, we try to find 
a chord such that the duration of those cluster's notes which 
cannot be mapped to any note of this chord, is significantly 
shorter (actually by a factor of 6) than the total duration of the 



notes of the cluster (this assumes that these notes are really 
ornamental notes, but were not previously detected as being so). 

 

5. EVALUATION 
5.1 Limitations 
Some very special cases are not taken into account in our 
algorithm, notably pedals. Another limitation is due to the 
oversimplicity of our rule for detection of ornamental notes: some 
ornamentals can be followed by a disjoint interval, and these can 
only be detected by the last attempt of turning a cluster into a 
chord, as described above. 

A further limitation is due to the fact that our algorithm doesn’t 
take sufficiently into account the context. Some problems of 
context dependencies are handled, as shown below in fig. 5, but 
the resolution of ambiguities is not sufficiently strong. Let us 
examine this example extracted from the Gavotte from the French 
Suite n° 5 by J.-S. Bach: 

 

Figure 3. Gavotte from French Suite n°5 by J.-S. Bach, 
measure 8 

In this Gavotte, whose figured bass is given below (see Figure 
11), the harmony is a seventh chord on the dominant of D (A - C# 
-  E - G). But in some other contexts, it can be a sixth chord on the 
root of F# (this analysis being the one produced by our 
algorithm). 

More generally, we must limit the scope of our harmonic analysis 
to accompanied melody, even if in some limit cases of 
monophonic voice, a good result can be obtained (as shown below 
with Mozart’s example). We think also that these results can be 
applied to some music of the 20th century, for example Bartok’s 
works, by redefining the set of chords, but we are aware that this 
method cannot be applied to contrapuntal work. 

5.2 Examples 
These examples show the process of harmonic reduction applied 
to the Trio of Mozart’s Clarinet  Quintet. 

The first example1 shows elimination of ornamental notes and 
reconstruction of incomplete chords  

                                                                 
1 The notation of figures follows the conventions of figured bass as stated 

in the treatise, with the following exceptions:  figures are written from 
left to right and not from top to bottom, and a slash following a figure 
indicates that this figure is diminished. 

7+ is for , 65/ is for . 

 

Figure 4. Elimination of ornamental notes 
 and reconstruction of incomplete harmony. 

(Trio of the Clarinet Quintet by Mozart, KV 581) 

 

The figure 5 shows the resolution of ambiguities: 

 

Figure 5. Resolution of ambiguities 
(Trio of the Clarinet Quintet by Mozart, KV 581) 

The harmony on the third beat is not analysed as being a 6th 
chord, as the C# in the clarinet part is determined as a potential 
ornamental note (an appoggiatura), and thus, the harmony is 
merged with the following one, giving as a result a correct 
analysis of a 7th chord on the fifth degree. 

The following example shows that the algorithm can produce 
correct results even in the case of a simple monophonic voice: 



 

Figure 6. Detection  of the root for a monophonic voice 
(Trio of the Clarinet Quintet by Mozart, KV 581) 

The root is correctly detected as being a B. 
 
This last example shows that detection of figured bass is not 
constrained by rhythm: 

 

Figure 7. Measures 6 –  7 , 
Sarabande in D minor by J.-S. Bach 

 

6. Application to tonality detection 
On top of this harmonic reduction, we have developed a simple 
algorithm of tonality detection. This algorithm is based on the fact 
that each chord can belong to a limited number of tonalities. 

The possible tonalities are derived from the figured bass as 
previously obtained, and a process of elimination is then applied 
by successively merging regions where there is at least one 
tonality in common, eliminating tonalities not common to the 
regions being merged. Where there is no common tonality, a 
change of tonality is therefore detected. 

This algorithm, proceeding as an “island-growing” mechanism, is 
very near to the system implemented by Ulrich.  

The result of this operation for the Trio of the Clarinet Quintet by 
Mozart is shown here, together with the complete figured bass 
generated by the system: 

 

Figure 8: Figured Bass and Tonalities detected for the Trio of 
the Clarinet Quintet by Mozart, KV 581 

The figured bass presented here is totally consistent with an 
analysis done by a human analyst, with a small exception (in 
measures 31 and 32). 

The detected tonalities are written below the figured bass. When a 
change of tonality is detected, it is written on the score, the 
tonality is determined to be the same until the next change of 
tonality. If a tonality is not recognized, it is denoted bys “?”. 

The tonalities are correctly detected as being A Major, B Minor, 
A Minor, E Major and D Major, with the exception of measures 
31 and 32 where the tonality is unrecognised. 

The advantage of this approach is that, due to the harmonic 
reduction process, a number of problems related to tonality 
recognition are easily solved.  

In particular, certain notes “out of the tonality”, that is, notes 
which are not really part of the tonality, are eliminated from the 
process. One can notice, using the original score, that a B# in 
measure 5 or a E# in measure 51 are completely ignored and do 
not interfere with the process of tonality recognition.  

However, some problems are raised by this simplification. 

In the following example from “Eine Kleine Nachtmusik” by 
Mozart, measures 24-28, a main tonality is simply ignored: 



Figure 9. Mozart’s “ Eine Kleine Nachtmusik”  

 

The musicologist easily recognizes in measure 28 the main entry 
of the second theme, in D Major. 

Unfortunately, the G natural is ignored by the process of harmonic 
reduction,  being a passing note, even if the root harmony is 
correctly recognized as D. So, between the (short) modulation in 
A found at the end of measure 25, and the (short) modulation in E 
minor correctly recognized at the end of measure 28, the main 
tonality of D Major is not recognized. 

A possible solution to this problem can be a refinement of the 
model of tonality recognition by adding a rule recognizing some 
modulations as being embedded modulations (in some French 
treatises of Harmony, such modulations are called “emprunts”, 
i.e., “loans”). To this end, a derivation of the model of François 
Pachet can be applied. 

7. COMPARISON 
For the purpose of comparing our models with other work, we 
show here the result of the production of figured bass applied to a 
fragment of a Sarabande in D minor by J.-S. Bach, whose analysis 
can be found in the papers of Maxwell [6] and Pardo [8]: 

 

 

Figure 10.  Sarabande in D minor by J.-S. Bach 

The result of the production of figured bass is shown here on the 
third staff, marked “FB”, together with the recognized tonalities. 

The results of Pardo and Maxwell are shown on the following 
lines. 

The results of Maxwell are identical to ours, with a (very little) 
exception at the beginning of measure 5: the reason is that chord 
Bb – D - F# - A is part of our templates. In measure 8, Maxwell’s 
system doesn’t recognize the sixth-fourth chord on the root of D. 

Pardo’s result suffers from several drawbacks: the system 
produces an A Major chord on the second eighth note of measure 
2, and a G Major chord on the second eighth note of measure 4, 
this last one being quite  annoying since the correct tonality in this 
context is G Minor. Incorrect analysis of augmented chords on the 
first beat of measure 5 and on the third beat of measure 6 are 
certainly due to the MIDI-like representation of notes. In addition, 
one cannot understand the analysis of the last chord (A7), the 
seventh - G - being not in the chord. 

We have also applied the Figured Bass to the Gavotte already 
analysed by Temperley [12]. 



 

Figure 11. Gavotte from French Suite n° 5 by J.-S. Bach 

There are several drawbacks in this Figured Bass: 

• measure 6 is incorrectly analysed as a seventh of 
dominant on the tonic, this chord being part of our 
templates, 

• the last chord of measure 8 is incorrectly analysed as a 
sixth and fifth chord, 

• the root of measure 5 is correctly detected, but 
incorrectly figured as a seventh chord. 

Temperley’s analysis of the same Gavotte also suffers from 
several drawbacks: 

• measure 8 is incorrectly analysed as entirely based on 
the root of D, 

• a incorrect root of A is detected for the second beat of 
measure 4, 

• the second half of measure 5 is incorrectly detected as 
being based on the root of E, 

• incorrect roots of D and E are detected in measure 6. 

Temperley’s analysis of measure 6 can be considered better than 
our Figured Bass, but our analysis of measure 4 can be considered 
better. The definite mistake made in both cases in measure 8 is 
due to the same fact: our models are not able to analyse correctly 
the last F# as an ornamental.  

8. Conclusion and perspectives 
In this paper, we described an algorithm for production of a 
figured bass.  

This algorithm allows the musicologist to redefine “harmony 
rules” entirely, merely by redefining the chord templates. It is thus 
much more general than algorithms found in the literature. We 
have also shown that our results can be considered at least as good 

as the best results previously found. We are currently trying to 
make improvements to the algorithm. 

We have shown that higher-level processes, for example tonality 
recognition, can be build on the top of the figured bass. As stated 
in the introduction, several processes can be build on the top of a 
figured bass: detection of cadence, of tonality, of similar 
structures, and so on. Results of these processes can be stored and 
indexed in database for the purpose of Music Information 
Retrieval. 

One can notice that the Figured Bass, as the result of a 
standardized process, can be used as a retrieval criterion. It is a 
useful criterion for a teacher, for example, in the retrieval of 
scores using of the same fragment of Figured Bass (the Figured 
Bass of Sarabande in D minor by J.-S. Bach is an interesting one). 
To this end, a transposition independent encoding of the Figured 
Bass must be developed, and we are currently working on it. 

Other applications for Music Information Retrieval are possible, 
such as classification of style based upon the frequency of chords, 
or upon the relationship between the recognized tonalities and the 
main tonality, assuming that the complexity of tonal relations is 
characteristic of a given style. Some techniques actually used to 
classify melody, such as the Hidden Markov Model (Pollastri, 
[9]), or techniques issued from Graph Theory can be also applied 
on the description of the score generated by the harmonic 
analysis. 
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ABSTRACT 
This talk will present a progress report on the Indiana University 
Digital Music Library project as it enters its second of four years. 

 

1. INTRODUCTION 
The Indiana University Digital Music Library project [1] aims to 
establish a digital music library testbed system containing music 
in a variety of formats, involving research and development in 
the areas of system architecture, metadata standards, component-
based application architecture, network services, and intellectual 
property rights.  This system will be used as a foundation for 
digital library research in the areas of instruction, usability, and 
human-computer interaction. 

Key to the projec t is the interdisciplinary team of investigators, 
who represent the academic disciplines of information science, 
computer science, law, music theory and music education, as 
well as the professional disciplines of academic research libraries 
and information technology services.  

The project builds in part upon experiences with a previous 
operational digital music library system at Indiana University 
known as VARIATIONS [2].  

The Digital Music Library (DML) testbed system will provide 
users with access to a collection of music in several formats from 
a range of musical styles and types.  Users will be able to listen 
to sound recordings of musical performances; display and browse 
images of published scores; view and manipulate encoded score 
notation files; have notation translated into MIDI format for 
audio playback; and make use of active links that connect a 
musical work in one format to a representation in a different 
format. 

The DML system will provide navigation, search, and retrieval 
functions for this large and diverse information space.  This will 
include search based on descriptive metadata; retrieval and 
synchronized playback of recorded music, MIDI files and 
encoded music notation files; access to structural metadata for 
manipulation of and navigation within individual recordings or 
other music representations; access control and authentication 
services; and administrative metadata for rights management. 
                                                             
   

The DML system will provide a software framework to make 
digital music objects (music sound recordings, score notation 
files, text files, etc.) accessible to music instructors and 
application developers, using a component-based programming 
architecture.  This framework will serve as the foundation for 
developing and delivering software applications that integrate the 
collections of the DML into teaching and research in the field of 
music. 

In addition, as the DML collection of audio and notation content 
grows, we hope to work with other research groups to integrate 
content-based audio and notation music IR technologies as part 
of the testbed system. 

 

2. PROJECT PROGRESS 
Current plans are to have an initial version of the DML testbed 
system, developed as a client-server Java application and 
providing basic bibliographic search capabilities and access to 
sound recordings and score images, available in January 2002.  
The system will be tested at IU and at seven “satellite sites” in 
the US, the UK, and Japan.  New versions of the system will 
follow roughly every six months thereafter, adding new 
functionality and new user interfaces. 

Over the course of the first year of the project, which began in 
October 2000, much progress has been made, including: 

• Usability testing of the existing VARIATIONS digital 
library system 

• Documentation of requirements for the first version of 
the system 

• Design and development of a data model and metadata 
specification for the system 

• Design and prototyping of user interfaces for the first 
version of the system 

• Gathering of user requirements and development of 
specifications for the Multimedia Music Theory 
Teaching (MMTT) tool [3], to be included in later 
versions of the DML testbed 

• Research into copyright issues surrounding the creation 
of digital library systems for music  

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page.  



Our presentation at ISMIR 2001 will provide an overview of the 
project and an update on project progress from the perspectives 
of three of the project co-PI’s representing diverse backgrounds: 
technologist, music librarian, and music theory faculty member. 
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ABSTRACT 
Much of the difficulty in Music Information Retrieval can be 
traced to problems of good music representations, understanding 
music structure, and adequate models of music perception. In 
short, the central problem of Music Information Retrieval is 
Music Understanding, a topic that also forms the basis for much 
of the work in the fields of Computer Music and Music 
Perception. It is important for all of these fields to communicate 
and share results. With this goal in mind, the author’s work on 
Music Understanding in interactive systems, including computer 
accompaniment and style recognition, are discussed. 

1. INTRODUCTION 
One of the most interesting aspects of Music Information 
Retrieval (MIR) research is that it challenges researchers to form a 
deep understanding of music at many levels. While early efforts in 
MIR were able to make impressive first steps even with simple 
models of music, it is becoming clear that further progress 
depends upon better representations, better understanding of 
music structure, and better models of music perception. 

As MIR research progresses, the community will undoubtedly 
find more and closer ties to other music research communities, 
including “Computer Music,” probably best represented by the 
International Computer Music Association and its annual 
conference [22], and “Music Perception” as represented by the 
Society for Music Perception and Cognition [25]. While MIR is 
not the main focus of either of these communities, there is 
considerable overlap in terms of music processing, understanding, 
perception, and representation. 

The goal of this presentation is to survey some work (mostly my 
own) in Music Understanding and to describe work that is 
particularly relevant to MIR. Most of my work has focused on 
interactive music systems. Included in this work is extensive 
research on computer accompaniment systems, in which melodic 
search and comparison are essential components. Other efforts 
include beat-tracking, listening to and accompanying traditional 
jazz performances, and style classification of free improvisations. 
Along with the preparation of this presentation, I am placing 
many of the cited papers on-line so they will be more accessible to 
the MIR community. 

My thesis is that a key problem in many fields is the 

understanding and application of human musical thought and 
processing; this drives much of the research in all fields related to 
music, science, and technology. This is not to say that these fields 
are equivalent, but it is important to understand how and why they 
are related. The work that I describe here shares many underlying 
problems with MIR. I hope this overview and the citations will be 
of some benefit to the MIR community. 

2. COMPUTER ACCOMPANIMENT 
The general task of computer accompaniment is to synchronize a 
machine performance of music to that of a human. I introduced 
the term computer accompaniment in 1984, but others terms have 
been used including synthetic performer [26], artificially 
intelligent performer [2] and intelligent accompanist [5]. In 
computer accompaniment, it is assumed that the human performer 
follows a composed score of notes and that both human and 
computer follow a fully notated score. In any performance, there 
will be mistakes and tempo variation, so the computer must listen 
to and follow the live performance, matching it to the score. 

Computer accompaniment involves the coordination of signal 
processing, score matching and following, and accompaniment 
generation. Because of the obvious similarity of score matching to 
music search, I will focus on just this aspect of computer 
accompaniment. See the references for more detail.[9, 12] 

2.1 Monophonic Score Following 
My first computer accompaniment systems worked with acoustic 
input from monophonic instruments. The system is note-based: 
the sequence of performed pitches is compared to the sequence of 
pitches in the score. Times and durations are ignored for the 
purposes of matching and comparison, although timestamps must 
be retained for tempo estimation and synchronization. 

Originally, I tried to apply the algorithm from the Unix diff 
command, which, viewed from the outside, seems to be perfect for 
comparing note sequences. Unfortunately, diff does not work here 
because it assumes that lines of text are mostly unique. This led to 
the exploration and application of dynamic programming, inspired 
by longest common substring (LCS) and dynamic timewarp 
algorithms [24]. To my knowledge, this is the first use dynamic 
programming for melodic comparison. 

Recall that LCS computes a matrix of size m·n for strings of 
length m and n. An important refinement for real-time music 
recognition is the introduction of a sliding window centered 
around the current score position. This reduces the computation 
cost per note to a constant. 
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This windowing idea could be used in music search applications, 
especially to compare long query strings to stored strings. The 
window only affects the result in cases where the match is poor, 
but presumably these cases are not of interest anyway. 

Dynamic programming algorithms typically look at the final m·n 
matrix to determine the result, but this is not possible in real time. 
As a heuristic, my score follower reports a match when a “match 
score” is computed that is higher than any previous value 
computed so far. The “match score” is essentially the number of 
notes matched so far minus the number of notes skipped in the 
score. This formulation compensates for the tendency to skip over 
notes in order to find a match. 

It is perhaps worth noting that matching the performance (a prefix 
of the score) to the score is a bit like matching a query, which may 
be a melodic fragment, to a complete melody. Since a fragment 
may start and end anywhere in a complete melody, we want to 
compute the least distance from any contiguous fragment of the 
melody, ignoring a certain (but unknown) prefix and suffix of the 
melody. Dynamic programming, as formulated for score 
following, can find this best match with a cost of m·n, where m 
and n are the lengths of the melody and query. (Unfortunately, the 
windowing idea does not seem to apply here because we do not 
know where the best match will start in the melody.) 

Monophonic score following works very well. The original 
implementation ran on a 1MHz 8-bit processor that performed 
pitch estimation, score following, accompaniment, and synthesizer 
control in real time, and fit under an airline seat in 1984! As a 
historical note, I suggested in a talk given in 1985 [7] that these 
matching algorithms could be used to quickly search a database of 
songs. Unfortunately, I missed the opportunity to mention this in 
my patent [8] or create the first such implementation. 

2.2 Polyphonic Score Following 
The logical next step in this research was to consider 
accompanying keyboard performances, and two algorithms were 
developed for polyphonic score following. [3] Rather than repeat 
their full descriptions here, I will simply try to give the main ideas 
and properties of the algorithms. One approach, developed by 
Josh Bloch, generalizes the idea of “note” to “compound event.” 
A compound event is set of simultaneous note onsets, i.e. a chord. 
The score and performance are regarded as sequences of 
compound events, and we are essentially looking for the best 
match. The quality of the match is determined by the number of 
pitches that match within corresponding compound events minus 
the number of pitches that are skipped. This is easily solved using 
dynamic programming, where rows and columns correspond to 
compound events. 

One problem with the preceding algorithm is that it relies upon 
some process to group events into compound events. We form 
compound events by grouping notes whose onsets are separated 
by less than 50 to 100ms. Another algorithm for polyphonic score 
following was created that forms compound events dynamically. 
In this algorithm, score events are initially grouped into 
compound events, but performed events are processed one-at-a-
time. What amounts to a greedy algorithm is used to associate 
performed notes with compound events. Unfortunately, this 
algorithm does not always find the optimal match because of the 
heuristic nature of its grouping. 

In practice, both algorithms work very well, failing only in 
(different) contrived pathological cases. Both use the same 
windowing technique introduced in the monophonic matcher and 
therefore run in constant time per performed note. The precision 
of a MIDI keyboard compared to acoustic input, combined with 
the additional information content of a polyphonic score, makes 
computer accompaniment of keyboard performances very robust. 

These algorithms could be used for music search, but they rely on 
matching notes as opposed to something more abstract such as 
harmony. If an improviser plays correct harmonies but in different 
rhythms or voicings, the match rating might be low. On the other 
hand, the algorithm can be used as a sort of diff on MIDI files, for 
example to compare different performances [21, 23] or editions. 
Another interesting application of this technology is in intelligent 
piano tutoring systems. [4, 6, 13] 

2.3 Ensemble Accompaniment 
With keyboard performance, the right and left hands are generally 
synchronized, but this is not so true of ensembles.  Following and 
accompanying an ensemble can be accomplished by following 
each musician separately and then integrating the results.[10, 15, 
16] One of the interesting problems encountered here is that 
different performers may have more or less relevance at any given 
time. Usually, performers that have performed a note more 
recently and that are synchronized with other performers are better 
sources of timing information. The situation changes constantly in 
a performance as one part assumes prominence and another plays 
a background role or rests. 

In MIR research, it is common to assume music is a totally 
ordered sequence of notes or features. It might be useful to 
consider that, in performance, individuals are not always 
synchronized. Instead, each performer has a separate notion of 
time and has a strong goal to produce coherent musical gestures. 
The synchronization of all these independent lines and gestures is 
a quasi-independent task performed as each performer listens to 
the others. 

2.4 Vocal Accompaniment 
In spite of the success of monophonic and polyphonic matchers 
for score following, these techniques do not work well for vocal 
soloists. The main problem is that vocal melodies are difficult to 
segment into discrete notes, so the data seen by the matcher has a 
high error rate. Similar problems occur in MIR systems, and a 
more detailed analysis can be found in Lorin Grubb’s thesis [19]. 

Given that discrete string matching methods cannot be applied to 
vocal music, Grubb’s solution [18, 20] is based on the idea of 
using probability theory to form a consistent view based on a 
large number of observations that, taken individually, are 
unreliable. The probabilistic framework allows the system to be 
trained on actual performance data; thus, typical performance 
errors and signal processing errors are all integrated into the 
framework and accounted for. 

The system effectively matches pitch as a function of time to the 
score, but rather than use dynamic time warping, Grubb’s system 
represents score position as a probability density function. This 
density function is updated using a model of tempo variation, 
accounting for natural variations in performed tempo, and a model 
of pitch observations, accounting for the natural distribution of 
pitch around the one notated in the score. In addition, phonetic 



information and note onset information can be integrated within 
the probabilistic framework.[17] This work forms an interesting 
basis for MIR using vocal queries. 

3. Listening to Jazz  
It would be wrong to assume every MIR query can be formulated 
as a melodic fragment. Similarly, it is restrictive to assume 
accompanists can only follow fully notated music. What about 
jazz, where soloists may follow chord progressions, but have no 
predetermined melody? Working with Bernard Mont-Reynaud, I 
developed a real-time blues accompaniment system that analyzed 
a 12-bar blues solo using supervised learning to characterize 
typical pitch distributions and a simple correlation strategy to 
identify location.[11] This work also included some early beat 
induction techniques.[1] It seems unlikely that these techniques 
will be directly applicable to MIR systems, but the general idea 
that improvised solos (or even stylized interpretations of 
melodies) can be understood in terms of harmonic and rhythmic 
structure is important for future MIR research. 

4. Style Classification 
An underlying structure of beats, measures, harmony and choruses 
supports traditional jazz solos. I am interested in interactive 
improvisations with computers where this structure is absent. 
Instead, I want the computer to recognize different 
improvisational styles, such as “lyrical,” “syncopated,” and 
“frantic” so that the improviser can communicate expressive 
intentions to the computer directly through the music, much as 
human musicians communicate in collective improvisations. This 
goal led to work in style classification using supervised machine 
learning.[14] This work has obvious applications to music search 
where the object is to retrieve music of a certain genre or style. 
We were able to obtain good classification rates on personal styles 
using quite generic features obtained from a real-time pitch 
analyzer. Recognition was based on only 5 seconds of music to 
minimize latency in a real-time performance. 

5. Conclusions 
Music Understanding is a critical part of Music Information 
Retrieval research as well as a central topic of Computer Music 
and Music Perception. The similarities between score following 
and style classification to problems in MIR are striking. I hope 
that this paper will introduce some pioneering work in Music 
Understanding to a broader audience including especially MIR 
researchers.  
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ABSTRACT

In recent years the interest in melodic similarity has
mushroomed mainly due to the increased importance of music
information retrieval (MIR). A great number of similarity
models and algorithms have been developed, but little or no
attention has been paid to cognitive or perceptual aspects to the
issue at hand. Questions, about the relevant parameters and the
appropriate implementation are under-researched as are
experimental data. This paper focuses on the pitch aspect of
melodic similarity, scrutinising the term pitch replacing it by a
less ambivalent and overused term, which we will call meloton.
Based on the term meloton the paper suggests to approach the

issue of ‘melotonic’ similarity from a transformational angle,
where transformations are executed as reflections and
translations. ‘Melotonic’ similarity then is seen as related to the
transformation process in form of a transpositional and interval
vector. Finally, melotonic similarity as portrait in a
psychological context emerges as a multi-facet phenomenon
requiring the development of flexible models.

1. INTRODUCTION

Unarguably, melodic similarity has been of great interest to
composers (e.g., Schoenberg, 1967), ethnomusicologists (e.g.,
Adams, 1976) and music analysts (e.g., Reti, 1951). However,
the issue has received new interest due to the development of the
internet and the need to administrate and retrieve musical
information. Early works on MIR date back to the 60’s with
Kassler (1966) as one of the pioneers. Not much research was
done on the topic for some time, but by now the growing interest
is reflected for instance in the fact that in 2000 the first
international symposium on MIR was organised and attended by
researchers from a great variety of fields. The interest of MIR in
the issue of similarity does not necessarily add importance to the
issue but certainly urgency to develop reliable and relevant
similarity models. In fact, by now several models and algorithms
have been proposed (Anagnostopoulou, Hörnel & Höthker, 1999;
Cambouropoulos, 2000; Crawford, Iliopoulos & Raman, 1998;
Dovey &Crawford, 1999; Downie, 1999; Kluge, 1996; Maidin
& Fernström, 2000;  Smith & McNab & Witten, 1998), but none
of these models take cognitive or perceptual issues sufficiently
into account, nor do they pay a closer look at as to what
parameters to select and how to implement them. 

Admittedly, the psychological and more specific the
music-psychological research in this field leaves possibly more
questions unanswered than answered (compare Goldstone,
1998), but this seems not to justify the dismissal of existing
research. Notably, none of the researchers takes dynamic aspects
into account and rhythmic aspects play no or little role by
regarding melodic similarity exclusively as a pitch phenomenon,
without considering the limitations of their models.

Interestingly, the question of what the term pitch, a term which
from a psychological angle is more than problematic, is not
being asked, although there exists some awareness to the related
issue of musical representation; that is whether we are dealing
with the representation of music in form of a score, with
recorded music or digital sources such as MIDI files (e.g.
Wiggins & Harris & Smaill, 1989), but the central issue of pitch
perception is hardly ever touched. 

Most strikingly, the works of Egmond & Povel & Maris (1996)
have not been referred to in a single instance to the knowledge
of the author, although their findings are in agreement with
previous research (Francès, 1988) and also in agreement with
more recent research by Hofmann-Engl & Parncutt (1998). Their
experiments indicate that transposition is a significant factor for
melodic similarity judgements whereby melodic similarity
decreases with increasing size of the transpositional interval.
However, all the models known to the author are transpositional
invariant. This demonstrates the strong tendency of researchers
to borrow their tools from music theoretical teachings where
transpositions of a motive are regarded as being equivalent. This
is not to say that search tools within MIR should under no
circumstances consider transpositions as equivalent (for instance
when analysing the structure of a specific composition), but
where perceptual issues are of importance such attempt will have
to be seen as a shortcoming. 

While some models are seemingly unaware of the  evidence as
produced by researchers (e.g.  Dowling & Harwood, 1986;
Dowling 1994; Edworthy, 1982, 1985; White, 1960) that contour
is somewhat a factor determining cognitive similarity (for
instance models based on dynamic programming) there are
models which take contour into account (for instance Maidin’s
model), but still reference to psychological research is not given.

Experiments by Hofmann-Engl and Parncutt (1998) indicate that
contour is in fact an imbedded factor of what they called interval
difference. This is, a reference-melody raised by an interval I
between two consecutive tones (let us say tone 1 and tone 2)



produces the interval difference D = I - I’, with I’ being the
interval between the two corresponding tones (tone 1 and tone 2)
of the comparison-melody. Melodies which show contour
differences also produce interval differences and hence contour
appears to be a factor. However, multiple regression shows that
interval difference is the sole factor. Up to this date no model
has accounted for these findings.

Finally, none of the models takes emotional aspects into account.
True, that at this point it seems an almost unattainable task, but
research by Tekman (1998) shows, that emotional aspects can be
at least partly sensibly measured. Clearly, there exists a level of
unawareness amongst melodic similarity researchers of
psychological issues which seems hardly acceptable.

It is the intention of the present paper to contribute to the
bridging of exactly this gap.  Although as mentioned before
dynamic, rhythmic and emotional aspects will have to be seen as
factors alongside pitch, we will focus on pitch exclusively. This
is, pitch is the most discussed aspect of melodic similarity, and
treating all parameters would exceed the framework of this
paper. However, the author is in process of developing a
similarity model which takes dynamics and rhythmic features
into account alongside with pitch. In the first instance we will
scrutinise the term pitch arguing for its substitution by the new
term, which will be called meloton, we then will consider the
transformation of melodies and finally we will develop a
similarity model based on the composition of two specific
transformations.

2. PITCH VERSUS MELOTON

The term pitch is intriguing and perplexing at the same time,
intriguing, because it is probably the most discussed musical and
music psychological term, and perplexing, because it has been
employed  in so many different contexts that it frequently
requires specification to what actually is meant by it. A situation
which led Rohwer (1970) to question the usage of the term pitch
altogether. However, pitch is commonly understood to be the
correlate to the fundamental frequency as Rasch & Plomp (1982)
explain: “Pitch is the most characteristic property of tones ... .
Pitch is related to the frequency of a simple tone and to the
fundamental frequency of a complex tone.” Pitch is seen here
exclusively as being related to a physical quantity. This is as
widespread an approach as is insufficient because subtleties of
pitch perception are not captured by referring to physical
dimensions only. It seems this is the issue Sundberg (1991) is
addressing when he suggests to see pitch as locating musical
sound in terms of musical intervals and to call other aspects of
pitch perception tone height (the high or lowness of sound).
However, the categorical differentiation between pitch and tone
height seems frail as even sounds with low pitch salience (e.g.,
musical chimes) can produce a distinctive pitch sensation (Askill
1997). Confronted with the phenomenon that sounds without
fundamental frequency can produce pitch sensations, Schouten
(1938) introduced the term residual pitch. However, from a
phenomenological angle there is no difference between pitch and
residual pitch — both appear to a listener in the same way.
Concepts of virtual pitch (Houtsma & Goldstein 1972, Terhardt
1982, Hofmann-Engl 1999) added further complexity to the issue
by demonstrating that sounds do not have one single pitch but a

multiplicity of pitches with varying degrees of probabilities.
Employing this concept the term pitch has to be replaced by the
term most probable pitch. It seems the introduction of a new
term which will have some specific psychological meaning is
more than appropriate. We argue to use the term meloton as
suggested by Hofmann-Engl (1989).

Without going into detail, we will consider some features of
what this term is to deliver. We wish for this term to be purely
of psychological meaning. This is we endeavour to understand
melodic similarity from a cognitive angle. Thus, concepts of
fundamental frequency and other physicalistic approaches are
inadequate. Hereby, the term meloton will represent the
psychological concept whereby a listener listens to a sound
directing her/his attention to the sound with the intention to
decide whether the sound is high or low. True, this does not
deliver a quantity we could input into a similarity model, and
hence we will have to define the value of a meloton somehow
without using a physicalistic concept. In this context it seems
most appropriate to consider an experimental setting as
employed by  Schouten (1938). A selected group of listeners is
asked to tune in a (sinusoidal) comparison tone with variable
frequency to match according to the listener’s  perception a test
tone (for which we want to obtain a melotonic value).  The
logarithm of the comparison tone then will be called m-response
of this listener. Assuming that the group of listeners consist of
n listeners, we will obtain n m-responses. We will call the mean
of this distribution the m-center. The mode of the distribution
will be called m-peak. The relative density of the m-peak will be
called melograde, and can be defined as:
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where Mg is the melograde, D(pm) the density of the peak of
the m-distribution,  D(lm)i the density of the location lm at the
place i and n the number of locations. The range of Mg is ]0,
1]. Note, that models of the pitch salience (Terhardt, Stoll &
Seewann 1982) are predictors for the peak of the response
distribution.

We finally define the value M of a meloton as given by the value
of the m-centre. However, if the melograde of a m-distribution
is larger than 0.75 and the peak and the centre coincide with
maximum deviation of 25 cents, the value of the meloton is
given by the peak of the m-distribution. In this case we speak of
strong meloton Ms. In all other cases we speak of weak meloton
Mw.

There are several advantages to this approach as there are
limitations.  Firstly, the classification of melota into weak and
strong melota guaranties that tones such as produced by a drum
instrument will also fetch a melotonic value. This allows for the
inclusion of ‘drum-melodies’ into a melodic similarity model.
Secondly, we replaced the dogmatic attitude towards pitch
perception by an understanding which is sensitive towards
individual, cultural, educational and social differences; what
might appear to one group as a sound with a certain melotonic
value might appear to another group as a sound with a different
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melotonic value. This is certainly of importance when
considering melodic similarity. Right at the basis melodic
similarity judgement might differ due to lower level perceptual
differences. Objections might be raised that this approach is
impracticable in many ways, as the measurement of melotonic
values is time consuming and expensive. Still, we might expect
that data bases containing melotonic measurements might be
established and made available in future. Another objection
might be that even if measurements of single tones are available,
there is no guaranty that meloton will retain their values when
put into a melodic context. Although this might be true, this will
have to be an issue to be investigated. However, considering the
success of aural training (where listeners are required to identify
tones in any context), we expect that this approach is more than
promising.

Before we will base a transformation theory on melota, we will
abandon the term melody due its many ambivalent connotations
and replace it by the term chain. We will as mentioned only
consider the melotonic component of a chain (excluding
properties such as timbre, duration and loudness). A melotonic
chain will be written as m-chain and as M(ch). Now, we will
consider transformations of melotonic chains.

2. MELOTONIC TRANSFORMATIONS

The motivation for developing a transformation theory is driven
by the proposal as put forward by Palmer (1983), where
similarity is understood to be related to the transformation
process involved in mapping two objects onto each other. There
have been several attempts within the camp of pitch class
theorists to introduce similarity measures and transformations of
pitch class sets (e.g., Isaacson (1996), Lewin (1977), Morris

(1979)). However, none of these approaches are of interest in
this context, as a pitch class set is fundamentally a different
entity than is a melotonic chain. One attempt to describe melodic
transformations has been put forward by Mazzola (1987) and has
been further developed by Hammel (1999) in form of matrices.
Without going into detail, the main deficiency of their
transformation matrices is the combination of time and pitch in
one matrix leading to time and pitch appearing as mixed terms.
Maybe even more important, the matrices as they stand, do not
allow for general transformations. Thus, a theory of similarity
based on their concept would not allow for the comparison of
any melody with any melody.

Instead we will take inversions and transpositions as a starting
point and generalise these two transformations. As we are
dealing with melotonic transformations, we will require that two
chains will have the same rhythm and the same dynamic
structure. This is a restriction to the model, but this deficiency
can only be overcome at a later stage including rhythm and
dynamics and possibly emotional aspects in a final model.
However, as mentioned, this would exceed the framework of this
paper.

2.1. Inversion

It is a well known geometrical fact, that inversion can be
illustrated as a reflection along a straight line. Taking a
melotonic chain (melody) M(ch) to consist of an initial tone with
meloton m1 and then the subsequent intervals 100, 100, -100,
-100 (where 100 might be taken to mean 100 cents), we write:
M(ch) = (m1)[100, 100, -100, -100] to be reflected onto the chain
M(ch’) = (m1’)[-100, -100, 100, 100] will require a straight line
through the point p = 50 (see Figure 1)

Figure 1: The m-chain M(ch) = (m1)[100, 100, -100, -100] is mapped onto the chain M(ch’) = (m1’)[-100,-100, 100, 100] via
the reflection line through p, with m1 = 0 and p = 50

2.2. Transposition

Executing two reflections along two different reflection lines
results in transposition. Taking the example from above, where
M(ch) = (m1)[100, 100, -100, -100], we obtain the inversion
M(ch’) = (m1’)[-100, -100, 100, 100], when reflecting M(ch)
through p1 = 50 and the transposition M(ch’’) = (m1’’)[100, 100,
-100, -100] when reflecting M(ch’) through p2 = 150. The

difference between p2 and p1 is p2 - p1 = 100, and the
transposition interval between M(ch) and M(ch’’) is 2(p2 - p1) =
200 (Figure 2). The transposition interval is generally 2(p2 - p1)
regardless where p2 and p1 are located. Allowing for the
reflecting of single melota rather than the reflection of an entire
m-chain, we can illustrate transposition as a reflection along a
reflection chain, which we will call M( χ), we obtain figure 3.
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Figure 2: The m-chain M(ch) = (m1)[100, 100, -100, -100] is
mapped onto the chain M(ch’’) = (m1’)[-100,-100, 100, 100]
via the reflection line through p1 = 50 and onto M(ch’’) =
(m1’’)[100, 100, -100, -100] via the reflection line through p2

= 150. The graph illustrates, that reflection along two lines
results in transposition.

Figure 3: The m-chain M(ch) = (m1)[100, 100, -100, -100] is
mapped onto the chain M(ch’) = (m1’)[-100,-100, 100, 100] via
the sequence of reflection points p1, p2, ... p5, thus effecting
the transposition of M(ch).

2.3. General melotonic transformations

Given a m-chain M(ch) of the length n and a reflection chain
M(χ) of the length n, we find that M(ch) will be mapped onto
M(ch’), where for all mi � M(ch) and all pi � M(χ), that m’i = 2pi -
mi, for all m’i  � M(ch’). This is important, when defining
reflections and translations (we will use the mathematical term
instead for transposition) within the vector-space Rn+1. As we will
see later, the composition of two specific reflections will enable
us to produce similarity measures. However, we define
reflections and translations on a more formal level first. For this
purpose we define the m-vector :

�
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Definition:

Given a m-chain of length n, with M(ch) = [m1, m2, ..., mn], we
define the m-vector of length n+1 as:
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This enables us to define the reflection matrix R as:
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Clearly, multiplying the reflection matrix by a m-vector, results
in the reflection of this m-vector. As two reflections result in
translation, we will define the translation matrix, where each

component mi � will be translated by the translation interval
�

m



Ii = 2(p2i - p1i). We define:
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Multiplying the translation matrix  T  with a m-vector , we get:
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There exists a  complex algebraic structure between reflections
and translations. However, the framework of the paper exceeds
a discussion of this issue. Still, it might be worth mentioning that
the composition of two reflection matrices results in a translation
matrix. This is the reason, why we had to introduce translations,
although translations are of no significance in context of
melotonic similarity. We are now equipped to consider melotonic
similarity.

3. MELOTONIC SIMILARITY

It seems the best way of approaching melotonic similarity is,
when we consider two m-vectors and , such as:
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with a as a constant

We will now reflect the m-vector through the 0-point Rn+1 via
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Reflecting the m-vector onto the m-vector requires the
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R

m m

m m

m m

s

n n

=

−
− +�

�
�

�

�
�

−
− +�

�
�

�

�
�

−
− +�

�
�

�

�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

1 0 0 2
2

0 1 0 2
2

0 0 1 2
2

0 0 0 1

11 21

12 22

1 2

. .

. . .

. . .

. .

As we find:
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Isolating the last column in the subspace Rn of  Rn+1, we can

define the similarity vector :
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With m2i = m1i + a, we obtain the similarity vector: 
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Geometrically, this means that  the similarity vector comes to
coincide with the diagonal of the space Rn. We further find for
the length of this vector:

�

V a ns =

 Clearly, the larger the transposition interval a is, the larger will
be the length of the similarity vector. According the van
Egmond, Povel & Maris (1996) melodic similarity decreases
with increasing transposition interval. Thus, we will expect that
the length of the similarity vector will be correlated to the
transpositional component of melotonic similarity. 

The intervalic component of melotonic similarity,
according to Hofmann-Engl & Parncutt (1998) is a significant
predictor. This is, when two m-vectors are not

� �

m m1 2 and 

simply transpositions of each other but deviate in shape. The

similarity vector will then deviate from the diagonal in Rn.
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Without going into a lengthily discussion, the angle between the
similarity vector and the diagonal of Rn is not a suitable measure
of the intervalic similarity component, as small intervalic
changes can lead to a sudden increase of the angle. However, the
differences between the components of the similarity vector are.
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We define the interval vector with as a vector
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We will give an example referring to the four m-chains M(ch1)
= (m1)[1, -1], M(ch2) =  (m1)[3, -3], M(ch3) = (m1)[-1, 1]  and
M(ch4) = (m1)[1, 1] (where 1 unit might be one semitone).
Setting m1 to be m1 = 0, we obtain the four m-vectors:
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In musical notation we obtain (setting the first tone to be c):

M(ch1) =

M(ch2) =

M(ch3) =

M(ch4) =

                                         
     

We find:

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

V m m V m m

V m m V m m

V m m V m m

s i

s i

s i

( , ) ( , )

( ) ( , )

( , ) ( , )

,

1 2 1 2

1 3 1 3

1 4 1 4

0

2

0

2

2

0

2

0

2

2

0

0

2

0

2

=
�

�

�
�
�

�

�

�
�
�

=
−

�

�
�

�

�
�

=
�

�

�
�
�

�

�

�
�
�

=
−

�

�
�

�

�
�

=
�

�

�
�
�

�

�

�
�
�

=
�

�
�

�

�
�

  and  

  and  

  and  

The lengths of the similarity vectors ,
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are identical (= ), although  M(ch1) and M(ch2) have the8
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same contour, while M(ch1) and M(ch3) have different  contour.
However, both chains  show the same interval difference. As
mentioned above contour differences  are imbedded within
interval differences. Thus, similarity and interval vector are in
agreement with experimental findings.  Further, the comparison
of M(ch1) and M(ch4) demonstrates, that the length of the
similarity vector (=2) does not necessarily produce a length of

 . Thus, similarity and interval vector are independent8
similarity predictors. Because of the smaller length of the
interval vector, we expect M(ch1) to be more similar when
compared with M(ch4) than when compared with M(ch2).

We will expect that  melotonic similarity will be correlated to the
length or a derivative of the similarity vector (the longer the
vector the smaller the similarity) and the deviation of the
similarity vector from the diagonal measured by the length or a
derivative of the interval vector (the longer the interval vector the
smaller the similarity).

While the similarity vector takes the differences of two
corresponding melota mi and m’i into account without considering
any higher order (it does not matter where a pair of melota is
placed within a chain), the interval vector considers higher order
relationships in as much as pair-wise groupings are covered (the
difference  between mi - mi+1 and m’i - m’i+1). We could take even
higher order relationships into account by forming the
differences of the components of the interval vector in the
fashion we formed the differences of the similarity vector
obtaining the interval vector. We then could from the differences
of these differences and so on. We then would obtain a series of
vectors with decreasing dimensions starting with the similarity
vector of dimension n, followed by the interval vector with the
dimension n-1, followed by the differences of the interval vector

producing a vector of dimension n-2 and so on till we obtain a
vector of dimension 1. Thus, higher order relationships would
b e
covered and a predictor of melotonic similarity could be
modelled around something comparable to a Taylor series.
However, we expect that the similarity vector and interval
vector will be sufficient to produce useful approximations.

Basing a similarity model exclusively on the lengths of the
similarity and interval vector will still produce several
complications. Without going into much detail, we will
consider some experimental findings. Hofmann-Engl &
Parncutt (1998) showed that keeping the transposition interval
constant and varying the length of two melodic fragments (one
to five tones), that similarity judgements increase with
increasing length of the fragments. This seems to call for
enveloping the components of the similarity vector by a
exponential function giving more weight to earlier tones than
later tones. Further, comparing two given m-chains of the
length n, which are identical except one interval, Hofmann-Engl
& Parncutt (1998) found that by varying the length n, that
similarity judgements increase with increasing length n. Thus,
a model will also have to be length sensitive. According to
these researchers, tempo is not a factor in melotonic similarity,
but appears as a rhythmic factor. We also might expect that
aspects concerning the shape of two m-chains as covered by the
interval vector will affected by the primacy/recency effect,
where earlier and later tones are weighted more than are tones
in the middle. This might call for enveloping the components of
the interval vector by a Gauss distribution. Finally, a suitable
model will require some empirical constants which will have to
be determined through experimentation. However, at this point
we might suggest a simple melotonic model of the form:

:

where is the transpositional similarity predictor and is the interval similarity predictor, k1 and k2 are empirical
�

F1

�

F2

constants determining the strength of each interval component, c1 and c2 are empirical constants determining ho much the length
of a chain affects similarity, s1, s2, ... sn are the components of the similarity vector, I1, I2, ..., In-1 are the components of the
interval vector and n is the length of the compared m-chains.



An overall similarity could then be defined as:

S F F= ⋅
� �

1 2

In fact, setting c1 = 1 and c2 = -2, we obtain a correlation of
87% with the data as produced by the two experiments as
conducted by Hofmann-Engl & Parncutt (1998).

An overall similarity model taking rhythmic, dynamic and
pitch features into account, might be of the form:

S S S Sm d r= + +α β γ

where α,α,α,α,    β,β,β,β,    γγγγ are empirical constants, Sm as the pitch
similarity, Sd as the dynamic similarity and Sr as the
rhythmic similarity

 This is not to say that this  the most adequate model, but it is
fashioned based on some available data, some theoretical
concepts and is similar to Shepard’s (1987) model. However,
the model as it stands does not take into account any rhythmic
or dynamic aspects nor does it pay tribute to harmonic features
or emotional aspects. It also allows for the comparison of
m-chains only which have equal length. Further, we might find
that tones which are longer will bear more weight than shorter
tones. Thus, as the model stands it might be only suitable as a
predictor for short isochronous m-chains.

4. CONCLUSION

This paper set out to investigate an aspect of melodic
similarity from a cognitive angle.  We found that the term
pitch is little satisfying and we argued for replacing it by the
term meloton which was defined as a cognitive quality of
sound. We further proposed that melotonic similarity is best
approached by defining a set of transformations (reflections
and translations). Based on the composition of two specific
reflections we were able to define a similarity and interval
vector which we propose to be somewhat sufficient to form the
basis for a melotonic predictor. Specifically, we presented a
simple similarity model which admittedly shows limitations
but might demonstrate that more complex and comprehensive
models can be developed. However, before a more
comprehensive model will become available, many more
experiments on melodic similarity will have to be conducted.
Considering that we covered melotonic similarity only, we can
by now conclude that the construction of sufficient models is
a far more complex task than generally acknowledged, but at
the same time it appears to be an achievable task. 
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ABSTRACT 
In this paper, we describe the Ultima project which aims to 
construct a platform for evaluating various approaches of music 
information retrieval. Three approaches with the corresponding 
tree-based, list-based, and (n-gram+tree)-based index structures are 
implemented. A series of experiments has been carried out. With 
the support of the experiment results, we compare the performance 
of index construction and query processing of the three approaches 
and give a summary for efficient content-based music information 
retrieval. 

1. Introduction 
With the growth of music objects available, it is getting more 
attention on the research of constructing music information 
retrieval systems. To provide an efficient and effective content-
based retrieval of music objects, various approaches have been 
proposed in which the music representations, index structures, 
query processing methods, and similarity measurement are key 
issues. 

Regarding the issue of music representation, several approaches 
are introduced to model various features of music content, such as 
pitch, rhythm, interval, chord, and contour. To efficiently resolving 
user queries, different kinds of techniques are proposed, including 
string matching methods, dynamic programming methods, n-gram 
indexing methods, and list-based and tree-based indexing 
structures with the corresponding traversal procedures. Most 
researchers present their solutions to the key issues separately. 
However, the research work focusing on the quantitative and 
qualitative comparison of various techniques used in music 
information retrieval is still limited. 

On the contrary, in the traditional information retrieval, the 
problems and techniques involved in the evaluation of retrieval 
systems and procedures have been investigated. The most common 
evaluation criteria have also been identified, such as precision and 
recall, response time, user effort, form of presentation, and 
collection coverage [18]. 

Due to the multi-faceted properties of music, there exist intrinsic 
difficulties for content-based music information retrieval (MIR). 
The framework of a formal MIR evaluation mechanism becomes 
necessary. The point is emphasized in [7], which states “a 
formalized set of MIR evaluation standards must become part of 
the MIR researcher toolkit” and “a set of music test databases of 
substantial size and varied content must be formed so that all MIR 
researchers can properly compare and contrast techniques under a 
variety of scenarios.” 

From the database point of view, we initiate the project of building 
a platform for the evaluation of music information retrieval 
systems. Considering the retrieval efficiency and effectiveness, we 
focus on the performance study of music representations, indexing 
and query processing which involve a wide range of techniques 
used in content-based music information retrieval. 

The rest of this paper is organized as follows. In Section 2, we 
describe our project for evaluating music information retrieval 
approaches. The issues of system design, data set, query set 
generation, and efficiency and effectiveness study are also 
introduced in this section. The three approaches implemented in 
our platform are described in Section 3. We perform a series of 
experiments and illustrate the experiment results and performance 
study in Section 4. Section 5 concludes this paper and points out 
our future directions. 

1.1 Related Work 
Selfridge-Field [19] provides a survey of clarifying and resolving 
conceptual and representational issues in melodic comparison. 
Research work on MIR systems are introduced as follows. Ghias, 
et al. [10] propose an approach for modeling the content of music 
objects. A music object is transformed into a string which consists 
of three kinds of symbols, ‘U’, ‘D’, and ‘S’ which represent a note 
is higher than, lower than, or the same as its previous note, 
respectively. The problem of music data retrieval is then 
transformed into that of approximate string matching. 

In [1][6], a system supporting the content-based navigation of 
music data is presented. A sliding window is applied to cut a music 
contour into sub-contours. All sub-contours are organized as an 
index structure for the navigation. Tseng [20] proposes a content-
based retrieval model for music collections. The system uses a 
pitch profile encoding for music objects and an n-gram indexing 
for approximate matching. A framework is also proposed in which 
the music objects are organized as an n-gram structure for efficient 
searching [22]. Different techniques of local alignment and local 
common subsequences have also been applied for comparison. 
Similar techniques of n-gram indexing have also been employed in 
[8][24][25]. Furthermore, Downie and Nelson [8] provide an 
effectiveness evaluation of an n-gram based MIR system by using 
statistical analysis. 

The work [17] focuses on music retrieval from a digital library in 
which dynamic programming is used to match melodic phrases. 
The issues of melody transcription and matching parameters are 
discussed and the trade-off between the matching criteria and 
retrieval effectiveness is shown. Also using dynamic programming, 
Lemstrom and Perttu [14] present a bit-parallel algorithm for 



efficiently searching melodic excerpts. In the bit-parallel 
processing, the whole table for dynamic programming need not be 
created, and thus it leads to a better performance. Clausen, et al. [5] 
design a web-based tool for searching polyphonic music objects. 
The applied algorithm is a variant of the classic inverted file index 
for text retrieval. A prototype is implemented and its performance 
is investigated. 

To develop a content-based MIR system, we have implemented a 
system called Muse [3][4][13]. In this system, various methods are 
applied for content-based music data retrieval. The rhythm, melody, 
and chords of a music object are treated as music feature strings 
and a data structure called 1D-List is developed to efficiently 
perform approximate string matching [13]. Moreover, we consider 
music objects and music queries as sequences of chords [4] and 
mubol strings [3]. A tree-based index structure is developed for 
each approach to provide efficient matching capability. In [3], we 
propose an approach for retrieving music objects by rhythm. 
Instead of using only melody [1][4][6][10][13] or rhythm of music 
data, we consider both pitch and duration information plus the 
music contour, coded as music segment, to represent music objects 
[2]. Two index structures, called one-dimensional augmented 
suffix tree and two-dimensional augmented suffix tree, are 
proposed to speed up the query processing. By specifying the 
similarity thresholds, we provide the capability of approximate 
music information retrieval. When considering more than one 
feature of music objects for query processing, we propose multi-
feature index structures [12]. With the multi-feature index, both 
exact and approximate search functions on various music features 
are provided. 

2. The Ultima Project  
The Ultima project is established with the goal to make a 
comprehensive and comparative assessment of various MIR 
approaches. Under the same environment and real data sets, a 
series of experiments can be performed to evaluate the efficiency 
and effectiveness of the MIR systems. Issues such as the threshold 
setting and the identification of most influential factors which 
dominates the system performance can be explored. Furthermore, 
heuristics for choosing appropriate representation schemes, 
indexing structures, and query processing methods when building 
an MIR system can be provided based on the performance study. 
The Ultima platform will be continuously maintained and served 
as the testbed whenever new approaches of content-based music 
information retrieval are proposed. 

2.1 System Design and Implementation 
The system is implemented as a web server, which runs on the 
machine of Intel Pentium III/800 with 1GB RAM on MS Windows 
2000 by JDK 1.3. For posing queries at the client end, we provide 
the ways of humming songs, playing the piano keyword, uploading 
MIDI files, and using the computer keyboard and mouse. The 
server end consists of a mediator, four modules, and a data store, 
as shown in Figure 1. The mediator receives user queries and 
coordinates with other modules. The music objects and the 
corresponding information, such as title, composer, and genre, are 
organized as standard MIDI files and relational tables, respectively. 
The summarization module aims to resemble and visualize query 
results. The query generation module aims to generate 
parameterized user queries for performance evaluation, as 
discussed in Section 2.3. The implementations of the two modules 
are not finished yet. The report module aims to monitor and assess 

the performance of the system, such as the elapsed time of query 
processing, space of indices, and precision and recall of the 
retrieved results. The query processing module aims to resolve 
queries from the client end or the query generation module. The 
query processing module is designed as a “container” to which 
each query processing methods can be “plugged-in”. Whenever a 
new method is proposed, it can be easily plugged into the module 
for performing experiments under the same environment. Currently, 
three methods are considered, i.e., 1D-List [13], APS [2] and APM 
[3] which will be further discussed in Section 3. 

Data Store (MS Access)

SMF

M
ed

ia
to

r

Query Processing Module

Table

to the InternetSummarization Module

1D-List APS APM

Report Module

Query Generation Module

Figure 1: The function blocks of the server in the Ultima 
project. 

2.2 Data Set 
The testing data of music objects, from CWEB Technology, Inc., is 
a collection of 3500 single track and monophonic MIDI files. Most 
of them are pop music of Chinese and English songs in various 
genres. 

The average object size is 328.05 notes. When coding these objects 
in the mubol and music segment representations, the average 
object size is 78.34 (mubol) and 272 (segment), respectively. 
Based on the statistics of the CWEB dataset, we estimate that one 
mubol corresponds to 4.19 notes, and one music segment 
corresponds to 1.21 notes. The note count is defined as the number 
of distinct notes appearing in a music object. According to the 
MIDI standard, the alphabet size is 128. Therefore, the note count 
of every melody string is between 1 and 128. For the CWEB data 
set, the average note count is 13.46. Due to the space limitation, 
the histograms of the object size and note count of the CWEB data 
set are skipped. 

Moreover, when coding music objects by music segment, the 
distribution of segment pitch is shown in Figure 2. For the segment 
duration, most of its value is between 0 and 20 beats without any 
obvious clustering. 

2.3 Query Set Generation 
In the traditional information retrieval, there exist standard testing 
data, queries and the associated answers [9][23]. 
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Figure 2: The distribution of segment pitch values of CWEB 

data set. 
Therefore, a fair performance evaluation can be performed. 
However, there is no such kind of benchmarks dedicated to the 
MIR systems. In this project, we will also investigate a standard 
procedure for generating parameterized queries and the associated 
answers from a data set. With the variety of queries, the 
performance study will be more accurate. 

2.4 Efficiency and Effectiveness Study 
We design a series of experiments to evaluate the methods of 
indexing and query processing. Factors influencing the system 
performance are identified, such as query length, database size, and 
query approximation degree. The measurement of performance is 
based on memory usage, retrieved candidates and elapsed time for 
efficiency, and precision and recall for effectiveness. 

3. Description of the Three Approaches 
Instead of detailed procedures and algorithms, each approach is 
illustrated by an example to show the basic idea. The three 
approaches cover various methods of music representation, 
indexing, and query processing, as summarized in Table 1. Note 
that all the approaches support the functionality of exact, partial, 
and approximate matching. For simplicity, we only show an 
example of exact query processing. 

Table 1: The representations and indexing structures of the 
three approaches. 

Approach Representation Index structure 
APM Mubol (rhythm) (N-gram+tree)-based
1D-List Melody (pitch) List-based 

APS Music segment 
(pitch+duration) Suffix tree-based 

3.1 The APM Approach 
The rhythm information of music objects is coded as mubol strings. 
A mubol is a rhythmic pattern of a measure in a music object. A 
mubol string of a music object is the string of mubols which are 
determined by each measure of the music objects. For example, as 
shown in Figure 3(a), R1 is a mubol string of eight measures. The 
n-grams of R1, where n = 1, 2, 3, with the associated positions are 
listed in Figure 3(b). For example, the position “R1: 1,4,7” of the 
mubol in the first row of Figure 3(a) indicates the mubol appears in 
the first, forth, and seventh measure of R1. All the prefixes of an n-
gram can be found in the (n−1)-grams, (n−2)-grams, …, and 1-

grams. To efficiently process queries, the n-grams of mubol strings 
are organized as a tree structure, called L-tree. The tree height h of 
L-tree is the maximal n, i.e., h = 3 in our example. As shown in 
Figure 3(c), the nodes in level 1 of the tree indicate the first 
mubols of 1-grams, the nodes in level 2 indicate the second mubols 
of 2-grams, etc. Note that there are two kinds of links in L-tree, 
namely, solid link and dotted link. The internal nodes are 
connected with solid links, while the leaf nodes with the associated 
information are indicated by dotted links. 

The exact query processing is performed by a tree traversal of the 

L-tree. Suppose the query is  for exact searching. The 
query will be processed by traversing the L-tree in level-wise 
manner. When processing the first mubol of the query at level 1 of 

the L-tree, the node containing  is matched and its children 
will be reached for processing the next mubol. When processing 
the second mubol at level 2, those children (only one node in this 
example) will be compared to the second mubol. Since the node 

containing  is matched to the second mubol of the query 
string, the two children of this node will be reached for further 
processing. Moreover, all the mubols of the query string have been 
processed and only (R1:2,5) is the answer. 

The L-tree is a (n-gram+tree)-based index structure. In the 
approach of n-gram indexing, if the length of the query string is 
larger than n, the false match may happen. For the L-tree of tree 
height h, if the query length is larger than h, the query will be 
divided into subqueries and the intermediate answers with 
respective to each subquery will be merged and confirmed by the 
join processing. 

3.2 The 1D-List Approach 
In this approach, music objects are coded as melody strings. For 
example, there are two music objects M1 and M2 in the database. 
The melody strings of M1 and M2 are “so-mi-mi-fa-re-re-do-re-
mi-fa-so-so-so” and “do-mi-so-so-re-mi-fa-fa-do-re-re-mi”, 
respectively. 
To support efficient string matching, melody strings are organized 
as linked lists, as shown in Figure 4(a). For the notes of the same 
pitch in the melody strings, they are linked in an increasing order. 
Each node in the linked lists is of the form (x:y) which denotes the 
y-th note of the melody string of the x-th music object in the 
database. 

When a query Q = “do-re-mi” is specified, the lists involved in Q 
are retrieved with the two dummy nodes start and end as shown in 
Figure 4(b). Then, the exact query processing goes as follows. Let 
Ax be the first element of node A, and Ay be the second element of 
node A. For each pair of nodes (A, B) taken from two adjacent 
linked lists, if Ax = Bx and Ay+1 = By, we build an exact link from A 
to B, as shown in Figure 4(c). Also, we build an exact link from 
start to node F of the first list if F has an outgoing link, and from 
node L of the last list to end if L has an incoming link. By 
traversing the exact links from start to end, each path indicates a 
substring appearing in the melody string of the database and will 
be considered as a result. In our example shown in Figure 4(c), 
there exists only one path, which is denoted in bold-faced links, 
i.e., “start-(1:7)-(1:8)-(1:9)-end”. 



 

Figure 3: (a) A sample mubol string R1. (b) The table of n-grams associated with the corresponding positions. (c) The L-tree of the 
mubol string R1. 

 

3.3 The APS Approach 
For better readability, the representation, indexing, and query 
processing are separately described as follows. 
3.3.1 Representation of Music Objects 
Taking into account of music contour with note duration and pitch, 
the APS approach represents music objects by sequences of music 
segments. A music segment is a triplet which consists of the 
segment type and the associated duration and pitch information. 
There are four segment types defined to model the music contour, 

i.e., (type A), (type B), (type C), and (type 
D). Define the segment base as the horizontal part of a music 
segment. The beat information of a music segment is represented 
by the segment duration which is the number of beats in the 
corresponding segment base. The pitch information of a music 
segment is represented by the segment pitch which is the note 
number in the MIDI standard of the corresponding segment base 
minus the note number of the segment base of the previous 
segment base. For example, for the piece of music shown in Figure 
5, the corresponding representation as a sequence of music 
segments is shown in Figure 6. The music segment (A, 1, +1) 
indicates that it is a type A segment with the segment duration and 
segment pitch being 1 and +1, respectively. When coding by music 

segments, the first music segment and the last music segment are 
ignored due to lack of information to assign the segment type. 
Therefore, the music object of Figure 5 is represented by the 
sequence of (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+2) (C,1,+2) 
(C,1,+1). In priori to describing the dedicated indexing structures 
for APS, we introduce a data structure named suffix tree. A suffix 
tree is originally developed for substring matching [11][15]. 

For example, Figure 7 shows the suffix tree of the string S 
= ”ABCAB”. Each leaf node (denoted by a box) corresponds to a 
substring starting at the position indicated in the node in S, and 
each link is labeled with a symbol α, where α ∈ ∑ ∪ {$}, ∑ is the 
alphabet of S and ‘$’ is a special symbol denoting end-of-string. 
As a result, all the suffixes, i.e., “ABCAB”, “BCAB”, “CAB”, 
“AB”, and “B”, are organized in the tree. For a query string, the 
matching processing is a typical tree traversal. For example, 
suppose that the query string is “AB”. We follow the leftmost path 
to the black node, and all leaf nodes descending from the black 
node are the results, i.e., the first and the forth position. 

 
Figure 5: A piece of music. 
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Figure 4: (a) The index structure of M1 and M2 for the 1D-List approach. (b) An example of exact query Q = “do-re-mi”. (c) The 
exact link and result of the query Q. 
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Figure 6: The corresponding sequence of music segments of the 

music object in Figure 5. 

3.3.2 Index Structures for Sequences of Music 
Segments 
In the following, we introduce two index structures for efficiently 
processing queries of music segments, i.e., the one-dimensional 
and two-dimensional augmented suffix trees. 

A one-dimensional augmented suffix tree (1-D AST, in short) is a 
suffix tree with the segment duration information being added to 
the edges. First, a suffix tree based on the sequences of the 
segment types is constructed. Each edge of the suffix tree refers to 
a symbol appearing in one or more positions in the sequence. For 
example, let the sequence of music segments be (A,2,+1) (B,5,-1) 
(C,1,+1) (A,3,+1) (B,3,-2). Using only the segment types, the 
suffix tree can be constructed as shown in Figure 7. The bold-faced 
edge in Figure 7 refers to the ‘B’ in the second and fifth position. 
Since the corresponding segment durations are 5 and 3, we attach 
the range of segment duration <min, max> = <3, 5> to the edge. 
This range can be used to filter out some results which cannot be 
answers during query processing. Figure 8 shows an example of a 
1-D AST. 

To exploit the filtering effect, the range <min, max> should be as 
compact as possible. For a given population of segment durations, 
such as {1, 2, 2, 3, 7, 8, 8}, two ranges <1, 3> and <7, 8> are 
better than one range <1, 8>. Thus, the edge should be split into 
two edges labeled with <1, 3> and <7, 8>. This method is called 
dynamic splitting. In some cases, however, if it is hard to find 
compact ranges from a given population, we may apply static 
splitting method by splitting a range into some predefined smaller 
ranges which can be obtained from the statistics of data set. 

The 2-D AST is an extension of the 1-D AST by attaching both 
segment duration and segment pitch information to the edge. 

3.3.3 Query Processing 
The query processing for the augmented suffix tree is called the 
thresholding-based matching, which is able to deal with both exact 
and approximate queries [2]. The approximation degree of the 
query is specified by means of thresholds. The exact queries can be 
considered as a special case with the thresholds being set to zero. 
For ease of illustration, we only show the processing of exact 
queries in the following. 

Based on the 1-D AST in Figure 8(b), given the query Q = (A,1,−) 
(C,2,−) (A,5,−), we find the music objects whose sequences of 
music segments contain Q. When processing queries against a 1-D 
AST, the segment pitch in the queries is not needed and denoted 
by ‘−‘. 

The tree traversal starts from the root node and goes as follows. 
When processing the first music segment (A,1,−), the edge A<1, 
1> is matched such that we reach the node N1. Then, when 
processing the second music segment (C,2,−), the edge C<1, 3> is 
satisfied because the duration of the music segment is covered by 
the range of the edge. For the last music segment (A,5,−), although 
the segment type of the two edges from node N2 is matched, the 
two edges are filtered out because the duration of the music 
segment is not covered by any ranges of the edges. Therefore, the 
processing terminates without any answer. Note that the results 
derived from this tree traversal are not necessary the answers to the 
query. Further verification of the results is required. 
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Figure 7: The suffix tree of the string S ==== “ABCAB”. 
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Figure 8: (a) An example of suffix tree. (b) The 1-D augmented 

suffix tree. 

4. The Efficiency Study 
In this section, we show the experiment results on the efficiency of 
the three approaches described in Section 3. For the APS approach, 
both 1-D AST and 2-D AST are implemented. For comparison, we 
also construct a suffix tree, denoted as ST, based on the segment 
types of music segment sequences. 

4.1 Index Construction 
The elapsed time and memory usage for constructing indices of the 
three approaches are illustrated as follows. For the APM approach, 
the tree height of L-tree is set to 6 in our experiments. As shown in 
Figure 9 and Figure 10, both the elapsed time and the memory 
usage of 1D-List are less than those of L-tree. This is because the 
construction of 1D-List is a simple process of transforming the 
melody strings to the linked lists, and the number of nodes in the 
1D-List is linear to the database size. 

The suffix tree-like data structures including the augmented suffix 
trees in the APS approach suffer from the space consumption. It is 
not reasonable to construct a full and complete augmented suffix 
tree just for handling the rare cases of extremely long-length 
queries. On the contrary, an augmented suffix tree with longer tree 
heights is beneficial to the efficiency of query processing. In our 
experiments, the tree height of augmented suffix tree is set to 4, 6, 
8, 10, and 12. We construct three indices of APS, i.e., ST, 1-D 
AST, and 2-D AST. As described in Section 3.3, we apply the 
static splitting method to divide the domain of duration into three 
ranges and the domain of pitch into two ranges. Obviously, the 
elapsed time and memory usage of the three indices ST, 1-D AST, 
and 2-D AST are increasing. We only show the construction of the 
2-D AST in Figure 11 and Figure 12, where ‘h_4’ indicates the 
tree height of four, ‘h_6’ indicates tree height of six, and so on. 
The elapsed time and memory usage in the cases of smaller tree 
heights are much less than the cases of larger tree heights.  

4.2 Exact Query Processing 
In the following, we discuss the efficiency of processing exact 
queries for the APM, 1D-Lst, and APS approaches. Factors of 
query length, number of objects, and tree height of indices of APS 
will be investigated. 
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Figure 9: Elapsed time vs. # of objects for index construction of 

APM (L-tree, h====6) and 1D-List. 
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Figure 10: Memory usage vs. # of objects for index 

construction of APM (L-tree, h====6) and 1D-List. 
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Figure 11: Elapsed time vs. # of objects for index construction 

of APS (2-D AST).  



0

200

400

600

800

500 1000 1500 2000 2500 3000 3500

# of objects

m
em

or
y 

us
ag

e 
(M

B)

h_4
h_6
h_8
h_10
h_12

 
Figure 12: Memory usage vs. # of objects for index 

construction of APS (2-D AST). 
For the APM and 1D-List approaches, the factors of query length 
and number of objects are explored, as shown in Figure 13, Figure 
14, and Figure 15. Figure 13 shows the scalability of two 
approaches. The query length for 1D-List, denoted by |Qn|, is of 
twelve notes. Accordingly, the query length for APM, denoted by 
|Qm|, is of three mubols. Compared to the APM approach, the 1D-
List approach scales well as the number of music objects. 

Figure 14 and Figure 15 show the elapsed time versus query length 
of APM and 1D-List, where ‘obj_0.5K’ indicates five hundred 
music objects in the experiment, ‘obj_1.0K’ indicates one 
thousand objects, and so on. For the APM approach, as shown in 
Figure 14, the elapsed time decreases rapidly when processing 
queries of length from one to six. As processing queries of length 
seven, the elapsed time rises up substantially. In the experiment 
setting, the tree height of L-tree is six. As in Section 3.1, if the 
query is of length seven, it will be divided into two subqueries. As 
a result, two times of the L-tree traversal are required. In addition, 
the join processing also contributes extra elapsed time. For the 
queries of length from seven to thirteen, similar behavior can be 
observed. When processing queries of length from seven to twelve, 
the elapsed time decreases. As processing the queries of length 
thirteen, the elapsed time rises up again, and so on. For the 1D-Lsit 
approach, Figure 15 shows the elapsed time versus the query 
length. The elapsed time increases slightly for query lengths 
ranging from 1 to 10, and remains almost the same for longer 
queries. Since only the lists involved in the query are retrieved for 
building exact links, the elapsed time is linear to the query length.  

The elapsed time consists of the time for building links and 
traversing links. When dealing with shorter queries, the number of 
lists to be processed is small and the elapsed time increases slightly. 
When dealing with longer queries, although the number of lists to 
be processed increases, the number of answers to the query 
dramatically reduces such that the elapsed time remains almost the 
same. In our experiment, the number of answers is less than 2 for 
the query of lengths ranging from 16 to 64. 

For APS, factors of query length, number of objects, and tree 
height of the three indices are explored as follows. 

Figure 16 shows the scalability of APS with 1-D AST and 2-D 
AST of tree height of eight. The APS with ST is not included 
because of a much larger elapsed time under the same condition. 

Compared to the 1-D AST, the 2-D AST performs well as the 
number of objects increases. 
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Figure 13: Elapsed time vs. # of objects for query processing of 

APM (|Qm|====3, L-tree, h====6) and 1D-List (|Qn|====12). 
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Figure 14: Elapsed time vs. query length for query processing 

of APM (L-tree, h====6). 
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Figure 15: Elapsed time vs. query length for query processing 

of 1D-List. 
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Figure 16: Elapsed time vs. # of objects for query processing of 

APS (1-D AST and 2-D AST, |Qs|====8, h====8). 
Figure 17, Figure 18, and Figure 19 show the elapsed time versus 
query length for ST, 1-D AST, and 2-D AST, respectively. The 
curves in Figure 19 have a similar trend to the curves in Figure 14. 
However, for shorter queries ranging from one to eight music 
segments, such kind of trend is not obvious in APS. Two reasons 
are given as follows. In APM, leaf nodes are regarded as results, 
while leaf nodes of APS are just candidates for further 
confirmation. In addition, the number of leaf nodes retrieved in 
APS is much more than the one in APM. For example, after the 
tree traversal, there are four leaf nodes for four-mubol queries in 
APM, while there are 16968, 5429, 105 nodes for four-segment 
queries in APS with the index of ST, 1-D AST, and 2-D AST of 
tree height twelve, respectively. Post processing of a large number 
of candidates results in extra computation which smoothes the 
curves. 

The total elapsed time of query processing in APS consists of three 
parts, i.e., tree traversal, joining processing (if the query length is 
longer than the tree height), and post processing (for similarity 
computation). Among the three parts, the post processing 
consumes most of the elapsed time. For example, with the 2-D 
AST of tree height ten, the total elapsed time of processing a ten-
segment query is 811 milliseconds, where 10 milliseconds for tree 
traversal and 801 milliseconds for computing similarity. When 
processing queries whose length is longer than the tree height, the 
query will be divided into subqueries. The number of candidates 
will be reduced after the joining processing. However, our 
database of 3500 music objects is only of moderate size. No matter 
what the tree height is, the number of candidates does not change 
much. Therefore, the difference of the performance with various 
tree heights is not obvious in our experiments, as shown in Figure 
17, Figure 18, and Figure 19. We believe that, when dealing with 
much more music objects in databases, the influence of tree height 
will be revealed. 

For comparison, we show the elapsed time for different indices in 
Figure 20. The performance gain of 2-D AST is obvious because 
of substantial edge pruning and candidate reduction. 

In the following, we show the filtering effect of APS by applying 
1-D AST and 2-D AST. The number of candidates is the number 
of leaf nodes retrieved after tree traversal. The filtering effect is 
measured by the candidate reduction rate (CRR), which is defined 
as the ratio of the number of reduced candidates using 1-D AST or 
2-D AST to the number of candidates using ST. 

ST

ASTST

N
NNCRR   −=  

where NST denotes the number of candidates by applying ST and 
NAST denotes the one by 1-D AST or 2-D AST. 
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Figure 17: Elapsed time vs. query length for query processing 

of APS (ST, 3.5K objects). 
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Figure 18: Elapsed time vs. query length for query processing 

of APS (1-D AST, 3.5K objects). 
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Figure 19: Elapsed time vs. query length for query processing 

of APS (2-D AST, 3.5K objects). 
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Figure 20: Elapsed time vs. query length for comparison of 
query processing of APS using various indices (h====12, 3.5K 

objects). 
Higher reduction rates suggest better filtering effects. As shown in 
Figure 21, there are two kinds of curves with respect to the 
corresponding y-axis. The ‘ST’, ‘1-D AST’, and ‘2-D AST’ 
indicate the number of candidates applying the corresponding 
indices. The ‘R1D’ and ‘R2D’ indicate the CRR of the 
corresponding indices. 

For the 1-D AST, the CRR increases as the query length is less 
than 14, while the ratio decreases as the query length ranges from 
15 to 32. For the 2-D AST, since there are much fewer candidates, 
the CRR for the query lengths ranging from 1 to 24 is at least 80%. 
For the longer queries, the CRR is decreased to 67%. 

For shorter queries, the APS approaches with 1-D AST and 2-D 
AST get benefits through attaching the beat and pitch information. 
However, for longer queries, all the methods have fewer candidates 
such that the filtering effect decreases slightly. For example, as the 
query lengths range from 24 to 32, the number of candidates for 
ST, 1-D AST, and 2-D AST is 3, 1, and 1, respectively. In general, 
the filtering effect of 2-D AST is better than that of 1-D AST. 
Moreover, a significant reduction of the candidates can be 
achieved using our approaches as the query length is less than 14. 
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Figure 21: Reduction rate vs. query length for comparison of 

query processing of APS using various indices (h====12, 3.5K 
objects). 

4.3 Summary of the Experiment Results 
Following the comprehensive illustrations of the performance with 
respect to each approach, we summarize the experiment results for 
a comparison in Table 2. Four sets of query lengths for query 

processing are selected, i.e., 1, 2, 3, and 4 mubols for APM, 4, 7, 
10, and 12 notes for 1D-List, and 4, 8, 12, and 14 music segments 
for APS. 
For reference, we also implement the string matching methods, 
namely, STR_MAT_n, and STR_MAT_ms. STR_MAT_n is a 
standard string matching method using the indexOF function in 
Java, which can be used to compare melody strings. On the other 
hand, STR_MAT_ms is for comparing sequences of music 
segments, which match segment types, followed by a checking for 
segment duration and segment pitch.  

We summarize the experiment results as follows.  

First, the 1D-List approach is superior in terms of indexing and 
query processing. However, the melody string of 1D-List approach 
is coded as the string of pitch values (i.e., the note number in MIDI 
standard). If the MIR system is designed for end users and the 
query approximation is one of major concerns, 1D-List may not 
result in good effectiveness. If it is the case of exact searching from 
the bibliographic catalog, the 1D-List approach is suggested. 

Second, the APM outperforms the APS family. Two reasons are 
given as follows. The APS family needs an extra cost for post 
processing. In addition, the average number of branches of a tree 
node in L-tree is much more than that of AST. It results in fewer 
candidates of APM. Therefore, the elapsed time of APS family is 
more than that of APM. 

Third, constructing indices for the APS family is not always 
beneficial to query processing, especially when the query length is 
less than four music segments. For longer query lengths, the 
performance of 2-D AST is impressive, as shown in Figure 20 and 
Table 2. In addition, the performance difference between the 2-D 
AST with various tree heights is limited, as shown in Figure 17, 
Figure 18, and Figure 19. Therefore, for the APS family, we 
suggest using the 2-D AST of smaller tree heights. This is because 
the index size of 2-D AST substantially reduces when the tree 
height is smaller. For example, as shown in Figure 12, the index 
size of 2-D AST of tree height 12 is 774.46 MB, while that of tree 
height 10 is 461.57 MB.  

5. Conclusion 
In this paper, we describe the Ultima project which aims at 
building a platform for evaluating the performance of various 
approaches for music information retrieval. The issues of system 
design, query set generation, and performance study are discussed. 
The list-based, tree-based, (n-gram+tree)-based approaches are 
considered. Concerning the efficiency study, a series of 
experiments are conducted. The factors of database size, query 
length, tree height are investigated. We also provide a comparative 
study and summarization of the three approaches.  

Future work include a performance evaluation of retrieval 
effectiveness among these approaches. Also, various input 
methods, the summarization module, and the query generation 
module will be implemented. The dynamic programming-based 
approaches, which are not covered in this project yet, will be 
considered in the next stage. While more and more polyphonic 
music retrieval methods are proposed, we also plan to extend our 
project to build a database of polyphonic music objects for 
evaluating these methods. 

 



Table 2: The comparison of various approaches. 

Index Exact query processing(1)(2) (millisec.) 
Approach  
(|DB| = 3500) Size (MB) Time 

(sec.) 
|Qm| = 1 mubol 
|Qs| = 4 notes 
|Qn| = 4 segments

|Qm| = 2  
|Qs| = 7  
|Qn| = 8 

|Qm| = 3  
|Qs| = 10 
|Qn| = 12 

|Qm| = 4  
|Qs| = 12  
|Qn| = 14 

In average

APM (L-tree, h=6) 289.0 52.5 50.6 23.8 13.6 10.1 24.5 
1D-List 48.3 33.7 4.0 4.0 4.1 4.0 4.0 
STR_MAT_n N/A N/A 861.0 852.0 852.0 851.0 854.0 
APS (ST, h=12) 48.3 39.9 23767.0 9239.0 2899.0 1271.0 9294.0 
APS (1-D AST, h=12) 290.7 54.0 10882.0 1630.0 416.0 195.0 3280.1 
APS (2-D AST, h=12) 774.5 90.0 1570.0 244.0 96.0 9.0 479.8 
STR_MAT_ms N/A N/A 2974.0 2814.0 2794.0 2814.0 2849.0 
Note:  
(1) Qn, Qm, Qs indicate that queries are coded as melody strings for the 1D-List approach, mubol strings for the APM approach, 

and sequences of music segments for the APS approach, respectively.  
(2) |Qn|, |Qm|, and |Qs| indicate the length of queries in note, mubol, and music segment, respectively.  
 

Acknowledgment 
We would like to thank the CWEB Technology, Inc., for sharing us 
the data set used in our experiments. 

References: 
[1] Blackburn, S. & DeRoure, D. (1998). A tool for content-based 

navigation of music. In Proc. of ACM Multimedia. 
[2] Chen, A. L. P., Chang, M., Chen, J., Hsu, J. L., Hsu, C. H. & 

Hua, S. Y. S. (2000). Query by music segments: An efficient 
approach for song retrieval. In Proc. of IEEE Intl. Conf. on 
Multimedia and Expo (ICME). New York. 

[3] Chen, J. C. C. & Chen, A. L. P. (1998). Query by rhythm: An 
approach for song retrieval in music databases. In Proc. of the 
8th Intl. Workshop on Research Issues in Data Engineering, 
(pp. 139-146).  

[4] Chou, T. C., Chen, A. L. P., & Liu, C. C. (1996). Music 
databases: Indexing techniques and implementation. In Proc. 
of IEEE Intl. Workshop on Multimedia Data Base 
Management System.  

[5] Clausen, M., Engelbrecht, R., Mayer, D. & Smith, J. (2000). 
PROMS: A web-based tool for searching in polyphonic music.  

[6] DeRoure, D. & Blackburn, S. (2000). Content-based 
navigation of music using melodic pitch contours. Multimedia 
Systems, 8(3), Springer. (pp. 190-200).  

[7] Downie, S. (2000). Thinking about formal MIR system 
evaluation: Some prompting thoughts. Available on 
http://www.lis.uiuc.edu/~jdownie/mir_papers/downie_mir_eva
l.html. 

[8] Downie, S. & Nelson, M. (2000). Evaluation of a simple and 
effective music information retrieval method. In Proc. of ACM 
SIGIR, (pp. 73-80). 

[9] Frakes, W. B. & Baeza-Yates, R. (1992). Information retrieval: 
Data structures and algorithms, Prentice-Hall. 

[10] Ghias, A., Logan, H., Chamberlin, D., & Smith, B. C. (1995). 
Query by humming: Musical information retrieval in an audio 
database. In Proc. of ACM Multimedia, (pp. 231-236). 

[11] Gusfield, D. (1997). Algorithms on strings, trees, and 
sequences. Cambridge University Press. 

[12] Lee, W. & Chen, A. L. P. (2000). Efficient multi-feature index 
structures for music data retrieval. In Proc. of SPIE 

Conference on Storage and Retrieval for Image and Video 
Databases. 

[13] Liu, C. C., Hsu, J. L., & Chen, A. L. P. (1999). An 
approximate string matching algorithm for content-based 
music data retrieval. In Proc. of Intl. Conference on 
Multimedia Computing and Systems (ICMCS’99). 

[14] Lemstrom, K. & Perttu, S. (2000). SEMEX: An efficient 
music retrieval prototype. In Proc. of Intl. Symposium on 
Music Information Retrieval. 

[15] McCreight, E. M. (1976). A space economical suffix tree 
construction algorithm. Journal of Assoc. Comput. Mach., 23, 
262-272. 

[16] MIDI Manufactures Association (MMA), MIDI 1.0 
Specification, http://www.midi.org/. 

[17] McNab, R. J., Smith, L. S., Witten, I. H., & Henderson, C. L. 
(2000). Tune retrieval in the multimedia library. Multimedia 
Tools and Applications, 10(2/3), Kluwer Academic Publishers. 

[18] Salton, G. & McGill, M. (1983). Introduction to modern 
information retrieval. MaGraw-Hill Book Company.  

[19] Selfridge-Field, E. (1998). Conceptual and representational 
issues in melodic comparison. In Hewlett, W. B. & Selfridge-
Field E. (Ed.), Melodic similarity: Concepts, procedures, and 
applications (Computing in Musicology: 11), The MIT Press. 

[20] Tseng, Y. H. (1999). Content-based retrieval for music 
collections. In Proc. of ACM SIGIR. 

[21] Uitdenbogerd, A. & Zobel, J. (1998). Manipulation of music 
for melody matching. In Proc. of the 6th ACM Intl. 
Multimedia Conference, (pp. 235-240). 

[22] Uitdenbogerd, A. & Zobel, J. (1999). Melodic matching 
techniques for large music databases. In Proc. of the 7th ACM 
Intl. Multimedia Conference, (pp. 57-66). 

[23] Witten, I. H., Moffat, A., & Bell, T. C. (1994). Managing 
gigabytes: compressing and indexing documents and images, 
International Thomson Publishing company. 

[24] Yanase, T. & Takasu, A. (1999). Phrase based feature 
extraction for musical information retrieval. In Proc. of IEEE 
Pacific Rim Conf. on Communications, Computers, and Signal 
Processing. 

[25] Yip, C. L. & Kao, B. (2000). A study on n-gram indexing of 
musical features. In Proc. of IEEE ICME. 

 

http://www.midi.org/


Efficient Multidimensional Searching Routines for Music 
Information Retrieval 

 

Josh Reiss 
Department of Electronic Engineering,  

Queen Mary, University of London 
Mile End Road, London E14NS  

UK 
+44 207-882-7986 

josh.reiss@elec.qmw.ac.uk

Jean-Julien Aucouturier 
Sony Computer Science Laboratory 

6, rue Amyot,  
Paris 75005,  

France 
+33 1-44-08-05-01 

jjaucouturier@caramail.com 

Mark Sandler 
Department of Electronic Engineering,  

Queen Mary, University of London 
Mile End Road, London E14NS 

UK 
+44 207-882-7680 

mark.sandler@elec.qmw.ac.uk 
 

 
ABSTRACT 
 
The problem of Music Information Retrieval can often be 
formalized as “searching for multidimensional trajectories” . It is 
well known that string-matching techniques provide robust and 
effective theoretic solutions to this problem. However, for low 
dimensional searches, especially queries concerning a single 
vector as opposed to a series of vectors, there are a wide variety 
of other methods available. In this work we examine and 
benchmark those methods and attempt to determine if they may 
be useful in the field of information retrieval. Notably, we 
propose the use of KD-Trees for multidimensional near-
neighbor searching. We show that a KD-Tree is optimized for 
multidimensional data, and is preferred over other methods that 
have been suggested, such as the K-Tree, the box-assisted sort 
and the multidimensional quick-sort.  

  

1. MULTIDIMENSIONAL SEARCHING 
IN MUSIC IR 
 

The generic task in Music IR is to search for a query 
pattern, either a few seconds of raw acoustic data, or some type 
of symbolic file (such as MIDI), in a database of the same 
format.  

To perform this task, we have to encode the files in a 
convenient way. If the files are raw acoustic data, we often 
resort to a feature extraction (fig. 1). The files are cut into M 
time frames and for each frame, we apply a signal-processing 
transform that outputs a vector of n features (e.g. 
psychoacoustics parameters such as pitch, loudness, brightness, 
etc…). If the data is symbolic, we similarly encode each symbol 
(e.g. each note, suppose there are M of them) with an n-
dimensional vector (e.g. pitch, duration). In both cases, the files 
in the database are turned into a trajectory of M vectors of 
dimension n.  

 

 
Figure 1- Feature extraction 

 
 

Within this framework, two search strategies can be considered: 
  
- String-matching techniques try to align two vector sequences 
of length Mm� , ( (1), (2),... ( ))x x x m  and ( (1), (2),... ( ))y y y m  
using a set of elementary operations (substitutions, 
insertions…). They have received much coverage in the Music 
IR community (see for example [1]) since they allow a context-
dependent measure of similarity and thus can account for many 
of the high-level specificities of a musical query (i.e., replacing a 
note by its octave shouldn’ t be a mismatch). They are robust and 
relatively fast.  
 
- Another approach would be to “ fold”  the trajectories of m 
vectors of dimension n into embedded vectors of higher 
dimension N m n= ⋅ . For example, with m=3 and n=2: 

( ) ( )1 2 1 2 1 2(1), (2),.. ( ) (1), (1), (2), (2), (3), (3)x x x m x x x x x x=  

The search problem now consists of identifying the nearest 
vector in a multidimensional data set (i.e., the database) to some 
specified vector (i.e., the query). This approach may seem 
awkward, because 
- We lose structure in the data that could be used to help the 
search routines (e.g., knowledge that 1(1)x  and 1(2)x  are 

coordinates of the same “kind”). 
- We increase the dimensionality of the search. 
 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page.  
 



However, there has been a considerable amount of work in 
devising very efficient searching and sorting routines for such 
multidimensional data. A complete review of the 
multidimensional data structures that might be required is 
described by Samet, et al. [2,3]. Non-hierarchical methods, such 
as the use of grid files [4] and extendable hashing [5], have been 
applied to multidimensional searching and analyzed extensively. 
In many areas of research, the KD-Tree has become accepted as 
one of the most efficient and versatile methods of searching. 
This and other techniques have been studied in great detail 
throughout the field of computational geometry [6,7]. 
 

Therefore, we feel that Music IR should capitalize on 
these well-established techniques. It is our hope that we can 
shed some light on the beneficial uses of KD-Trees in this field, 
and how the multi-dimensional framework can be adapted to the 
peculiarities of music data.  
 

The paper is organized as follows. In the next four 
sections, we review four multidimensional searching routines: 
The KD-Tree, the K-Tree, the Multidimensional Quick-sort, 
which is an original algorithm proposed by the authors, and the 
Box-Assisted Method. Discussion of each of these methods 
assumes that the data consists of M N-dimensional vectors, 
regardless of what each dimension represents or how the vectors 
were created or extracted. We then benchmark and compare 
these routines, with an emphasis on the very efficient KD-Tree 
algorithm. Finally, we examine some properties of these 
algorithms as regards a multidimensional approach to Music IR. 

 

2. THE KD-TREE 
 

2.1 Description 
 

The K-dimensional binary search tree (or KD-Tree) is a 
highly adaptable, well-researched method for searching 
multidimensional data. This tree was first introduced and 
implemented in Bentley, et al. [8], studied extensively in [9] and 
a highly efficient and versatile implementation was described in 
[10]. It is this second implementation, and variations upon it, 
that we will be dealing with here. 

There are two types of nodes in a KD-Tree, the terminal 
nodes and the internal nodes. The internal nodes have two 
children, a left and a right son. These children represent a  
partition along a given dimension of the  N-dimensional 
hyperplane. Records on one side of the partition are stored in the 
left sub-tree, and on the other side are records stored in the right 
sub-tree. The terminal nodes are buckets which contain up to a 
set amount of points. A one- dimensional KD-Tree would in 
effect be a simple quick-sort.  

 

2.2 Method 
 

The building of the KD-Tree works by first determining 
which dimension of the data has the largest spread, i.e. 
difference between the maximum and the minimum. The sorting 
at the first node is then performed along that dimension. A 
quickselect algorithm, which runs in order M time for M 

vectors, finds the midpoint of this data. The data is then sorted 
along a branch depending on whether it is larger or smaller than 
the midpoint. This succeeds in dividing the data set into two 
smaller data sets of equal size. The same procedure is used at 
each node to determine the branching of the smaller data sets 
residing at each node.  When the number of data points 
contained at a node is smaller than or equal to a specified size, 
then that node becomes a bucket and the data contained within 
is no longer sorted. 

 
Consider the following data:  
 

A (7,-3); B (4,2); C (-6,7); D (2,-1); E (8,0); 
F (1,-8); G (5,-6); H (-8,9); I (9,8); J (-3,-4); 

  
Fig. 2 depicts the partition in 2 dimensions for this data set. At 
each node the cut dimension (X or Y) and the cut value (the 
median of the corresponding data) are stored. The bucket size 
has been chosen to be one. 
 

 
 

Figure 2- The KD-Tree created using the sample data. 
 

The corresponding partitioning of the plane is given in 
Fig. 3. We note that this example comes from a larger data set 
and thus does not appear properly balanced. This data set will be 
used as an example in the discussion of other methods. 

 
Figure 3- The sample data partitioned using the KD-Tree. 



A nearest neighbor search may then be performed as a top-
down recursive traversal of a portion of the tree. At each node, 
the query point is compared with the cut value along the 
specified cut dimension. If along the cut dimension the query 
point is less than the cut value, then the left branch is descended. 
Otherwise, the right branch is descended. When a bucket is 
reached, all points in the bucket are compared to see if any of 
them is closer than the distance to the nearest neighbor found so 
far. After the descent is completed, at any node encountered, if 
the distance to the closest neighbor found is greater than the 
distance to the cut value, then the other branch at that node 
needs to be descended as well. Searching stops when no more 
branches need to be descended. 

Bentley recommends the use of parent nodes for each node 
in a tree structure. A search may then be performed using a 
bottom-up approach, starting with the bucket containing the 
search point and searching through a small number of buckets 
until the appropriate neighbors have been found. For nearest 
neighbor searches this reduces computational time from O(log 
M) to O(1). This however, does not immediately improve on 
search time for finding near neighbors of points not in the 
database. Timed trials indicated that the increased speed due to 
bottom-up (as opposed to top-down) searches was negligible. 
This is because most of the computational time is spent in 
distance calculations, and the reduced number of comparisons is 
negligible.  

 

3. THE K-TREE 
 

3.1 Description 
 
K-trees are a generalization of the single-dimensional M-

ary search tree. As a data comparative search tree, a K-tree 
stores data objects in both internal and leaf nodes. A hierarchical 
recursive subdivision of the N-dimensional search space is 
induced with the space partitions following the locality of the 
data. Each node in a K-tree contains K=2N child pointers. The 
root node of the tree represents the entire search space and each 
child of the root represents a K-ant of the parent space.  

One of the disadvantages of the K-tree is its storage space 
requirements. In a standard implementation, as described here, a 
tree of M N-dimensional vectors requires a minimum of 

N(2 +N) M⋅  fields. Only M-1 of the 2N branches actually point 
to a node. The rest point to NULL data. For large N, this waste 
becomes prohibitive. 

 

3.2 Method 
 
Consider the case of two-dimensional data (N=2, K=4). 

This K-tree is known as a quad-tree, and is a 4-ary tree with 
each node possessing 4 child pointers. The search space is a 
plane and the partitioning induced by the structure is a 
hierarchical subdivision of the plane into disjoint quadrants. If 
the data consists of the 10 vectors described in Section 2.2, then 
the corresponding tree is depicted in Fig. 4 and the partitioning 
of the plane in Fig. 5.  

 
Figure 4- The KDTree created using the sample data. 

 
Note that much of the tree is consumed by null pointers. 
 

 
Figure 5- Sample data partitioned using the KTree method. 

 
Searching the tree is a recursive two-step process. A cube 

that corresponds to the bounding extent of the search sphere is 
intersected with the tree at each node encountered. The bounds 
of this cube are maintained in an N-dimensional range array. 
This array is initialized based on the search vector. At each 
node, the direction of search is determined based on this 
intersection. A search on a child is discontinued if the region 
represented by the child does not intersect the search cube. This 
same general method may be applied to weighted, radial, and 
nearest neighbor searches. For radial searches, the radius of the 
search sphere is fixed. For nearest neighbor searches it is 
doubled if the nearest neighbor has not been found, and for 
weighted searches it is doubled if enough neighbors have not 
been found. 

4. MULTIDIMENSIONAL QUICKSORT 
 

4.1 Description 
 

For many analyses, one wishes to search only select 
dimensions of the data. A problem frequently encountered is 
that a different sort would need to be performed for each search 
based on a different dimension or subset of all the dimensions. 
We propose here a multidimensional generalization of the 
quick-sort routine. 
 



4.2 Method   
 

A quick-sort is performed on each of the N dimensions. 
The original array is not modified. Instead, two new arrays are 
created for each quick-sort. The first is the quick-sort array, an 
integer array where the value at position k in this array is the 
position in the data array of the kth smallest value in this 
dimension. The second array is the inverted quick-sort. It is an 
integer array where the value at position k in the array is the 
position in the quick-sort array of the value k.  Keeping both 
arrays allows one to identify both the location of a sorted value 
in the original array, and the location of a value in the sorted 
array. Thus, if (1)x  has the second smallest value in the third 

dimension, then it may be represented as 3(2)x . The value 
stored at the second index in the quick-sort array for the third 
dimension will be 1, and the value stored at the first index in the 
inverted quick-sort array for the third dimension will be 2. Note 
that the additional memory overhead need not be large. For each 
floating-point value in the original data, two additional integer 
values are stored-, one from the quick-sort array and one from 
the inverted quick-sort array. 

We begin by looking at a simple case and showing how 
the method can easily be generalized. We consider the case of 
two-dimensional data, with coordinates x and y, where we make 
no assumptions about delay coordinate embeddings or 
uniformity of data.  

Suppose we wish to find the nearest neighbor of the 2-
dimensional vector 1 2( , )x x x= . If this vector’s position on the 

first axis quick-sort is i and its position on the second axis 
quick-sort is j (i and j are found using the inverted quick-sorts), 
then it may also be represented as  

1 1 1 2 2 2
1 2 1 2( ) ( ( ), ( )) ( ) ( ( ), ( ))x x i x i x i x j x j x j= = = = .  

Using the quick-sorts, we search outward from the search 
vector, eliminating search directions as we go. Reasonable 
candidates for nearest neighbor are the nearest neighbors on 
either side on the first axis quick-sort, and the nearest neighbors 
on either side on the second axis quick-sort. The vector 

1 1 1
1 2( 1) ( ( 1), ( 1))x i x i x i− = − −  corresponding to position i-1 on the 

first axis quick-sort is the vector with the closest coordinate on 
the first dimension such that 1

1 1( 1)x i x− < . Similarly, the vector 
1( 1)x i +  corresponding to  i+1 on the first axis quick-sort is the 

vector with the closest coordinate on the first dimension such 
that 1

1 1( 1)x i x+ < . And from the y-axis quick-sort, we have the 

vectors 2 ( 1)x j −  and 2 ( 1)x j + .  These are the four vectors 
adjacent to the search vector in the two quick-sorts. Each 
vector's distance to the search vector is calculated and we store 
the minimal distance and the corresponding minimal vector. If 

1| ( 1) |x i x− −  is greater than the minimal distance, then we know 
that all vectors 1( 1)x i − , 1( 2)x i − ,... 1(1)x  must also be further 
away than the minimal vector. In that case, we will no longer 
search in decreasing values on the first axis quick-sort. We 
would also no longer search in decreasing values on the first 
axis quick-sort if 1(1)x  has been reached. Likewise, if 

1| ( 1) |x i x+ −  is greater than the minimal distance, then we know 
that all vectors 1( 1)x i + , 1( 2)x i + ,... 1( )x M  must also be further 
away than the minimal vector. If either that is the case or 1( )x M  
has been reached then we would no longer search in increasing 

values on the x-axis quick-sort.  The same rule applies to 
2| ( 1) |x j x− −  and 2| ( 1) |x j x+ − . 

We then look at the four vectors, 
1( 2)x i − , 1( 2)x i + , 2 ( 2)x j − and 2 ( 2)x j + . If any of these is closer 

than the minimal vector, then we replace the minimal vector 
with this one, and the minimal distance with this distance. If 

1| ( 2) |x i x− −  is greater than the minimal distance, then we no 
longer need to continue searching in this direction.  A similar 
comparison is made for 1| ( 2) |x i x+ − , 2| ( 2) |x j x− −  and 

2| ( 2) |x j x+ − . 
This procedure is repeated for 1( 3)x i − , 1( 3)x i + , 

2 ( 3)x j −  and 2 ( 3)x j + , and so on, until all search directions have 
been eliminated.  We find the distance of the four points from 
our point of interest and, if possible, replace the minimal 
distance. We then proceed to the next four points and proceed 
this way until all directions of search have been eliminated. 

The minimal vector must be the nearest neighbor, since all 
other neighbor distances have either been calculated and found 
to be greater than the minimal distance, or have been shown that 
they must be greater than the minimal distance. 

Extension of this algorithm to higher dimensions is 
straightforward. In N dimensions there are 2N possible 
directions. Thus 2N immediate neighbors are checked. A 
minimal distance is found, and then the next 2N neighbors are 
checked. This is continued until it can be shown that none of the 
2N directions can contain a nearer neighbor. 

It is easy to construct data sets for which this is a very 
inefficient search. For instance, if one is looking for the closest 
point to (0,0) and one were to find a large quantity of points 
residing outside the circle of radius 1 but inside the square of 
side length 1 then all these points would need to be measured 
before the closer point at (1,0) is considered. However, similar 
situations can be constructed for most multidimensional sort and 
search methods, and preventative measures can be taken. 

 

5. THE BOX-ASSISTED METHOD 
 

The box-assisted search method was described by 
Schreiber, et al.[11] as a simple multidimensional search method 
for nonlinear time series analysis. A grid is created and all the 
vectors are sorted into boxes in the grid. Fig. 6 demonstrates a 
two-dimensional grid that would be created for the sample data. 
Searching then involves finding the box that a point is in, then 
searching that box and all adjacent boxes. If the nearest 
neighbor has not been found, then the search is expanded to the 
next adjacent boxes. The search is continued until all required 
neighbors have been found. 

One of the difficulties with this method is the 
determination of the appropriate box size. The sort is frequently 
tailored to the type of search that is required, since a box size is 
required and the preferred box size is dependent on the type of 
search to be done. However, one usually has only limited a 
priori knowledge of the searches that may be performed. Thus 
the appropriate box size for one search may not be appropriate 
for another. If the box size is too small, then many boxes are left 
unfilled and many boxes will need to be searched. This results in 
both excessive use of memory and excessive computation. 

 



 
Figure 6- The sample data set as gridded into 16 boxes in two 

dimensions, using the box-assisted method. 
 

The choice of box dimensionality may also be 
problematic. Schreiber, et al.[11] suggest 2 dimensional boxes. 
However, this may lead to inefficient searches for high 
dimensional data. Higher dimensional data may still be searched 
although many more boxes are often needed in order to find a 
nearest neighbor. On the other hand, using higher dimensional 
boxes will exacerbate the memory inefficiency. In the 
benchmarking section, we will consider both two and three-
dimensional boxes.  
 

6. BENCHMARKING AND 
COMPARISON OF METHODS 
 

In this section we compare the suggested sorting and 
searching methods, namely the box assisted method, the KD-
Tree, the K-tree, and the multidimensional quick-sort. All of 
these methods are preferable to a brute force search (where no 
sorting is done, and all data vectors are examined each time we 
do the searching). However, computational speed is not the only 
relevant factor. Complexity, memory use, and versatility of each 
method will also be discussed. The versatility of the method 
comes in two flavors- how well the method works on unusual 
data and how adaptable the method is to unusual searches. The 
multidimensional binary representation and the uniform K-Tree, 
described in the previous two sections, are not compared with 
the others because they are specialized sorts used only for 
exceptional circumstances. 
 

6.1 Benchmarking of the KDTree 
 
One benefit of the KD-Tree is its rough independence of 

search time on data set size. Figure 7 compares the average 
search time to find a nearest neighbor with the data set size. For 
large data set size, the search time has a roughly logarithmic 
dependence on the number of data points. This is due to the time 
it takes to determine the search point’s location in the tree. If the 
search point were already in the tree, then the nearest neighbor 
search time is reduced from O(log n) to O(1). This can be 
accomplished with the implementation of Bentley's suggested 

use of parent pointers for each node in the tree structure.[10] 
This is true even for higher dimensional data, although the 
convergence is much slower.  
 

 
Figure 7- The dependence of average search time on data set 

size. 
 

In Figure 8, the KD-Tree is shown to have an exponential 
dependence on the dimensionality of the data. This is an 
important result, not mentioned in other work providing 
diagnostic tests of the KD-Tree.[10, 12] It implies that KD-
Trees become inefficient for high dimensional data. It is not yet 
known what search method is most preferable for neighbor 
searching in a high dimension (greater than 8), although Liu, et. 
al. have proposed a method similar to the multidimensional 
quicksort for use in multimedia data retrieval.[13] 

 

 
Figure 8- A log plot of search time vs dimension. 

 
Figure 9 shows the relationship between the average search 

time to find n neighbors of a data point and the value n. In this 
plot, 10 data sets were generated with different seed values and 
search times were computed for each data set. The figure shows 
that the average search time is almost nearly linearly dependent 
on the number of neighbors n. Thus a variety of searches 
(weighted, radial, with or without exclusion) may be performed 
with only a linear loss in speed. 

The drawbacks of the KD-Tree, while few, are transparent. 
First, if searching is to be done in many different dimensions, 
either a highly inefficient search is used or additional search 
trees must be built. Also the method is somewhat memory 



intensive. In even the simplest KD-Tree, a number indicating the 
cutting value is required at each node, as well as an ordered 
array of data (similar to the quick-sort). If pointers to the parent 
node or principal cuts are used then the tree must contain even 
more information at each node. Although this increase may at 
first seem unimportant, one should note that a music information 
retrieval system may consist of a vast number of files, or 
alternately, a vast number of samples within each file. Thus 
memory may prove unmanageable for many workstation 
computers. 

 

 
Figure 9- A plot of the average search time to find n 

neighbors of a data point, as a function of n. 
 
We have implemented the KD-Tree as a multiplatform 

dynamic linked library consisting of a set of fully functional 
object oriented routines. The advantage of such an 
implementation is that the existing code can be easily ported 
into existing MIR systems.  In short, the core code consists of 
the following functions 

 
Create(*phTree, nCoords, nDims, nBucketSize,*aPoints); 
FindNearestNeighbor(Tree,*pSearchPoint, *pFoundPoint); 
FindMultipleNeighbors(Tree, *pSearchPoint, 
*pnNeighbors, *aPoints); 
FindRadialNeighbors(Tree, *pSearchPoint, radius, 
**paPoints, *pnNeighbors); 
ReleaseRadialNeighborList(*aPoints); 
Release(Tree); 
 

6.2 Comparison of methods 
 

The KD-Tree implementation was tested in timed trials 
against the multidimensional quick-sort and the box-assisted 
method. In Figure 10 through Figure 13, we depict the 
dependence of search time on data set size for one through four 
dimensional data, respectively.  

 

 
Figure 10- Comparison of search times for different 

methods using 1 dimensional random data. 
 
 

 
Figure 11- Comparison of search times for different 

methods using 2 dimensional random data. 
 

In Figure 10, the multidimensional quick-sort reduces to a 
one-dimensional sort and the box assisted method as described 
by [11] is not feasible since it requires that the data be at least 
two-dimensional. We note from the slopes of these plots that the 
box-assisted method, the KDTree and the KTree all have an O(n 
log n) dependence on data set size, whereas the quick-sort based 
methods have approximately O(n1.5) dependence on data set size 
for 2 dimensional data and O(n1.8) dependence on data set size 
for 3 or 4 dimensional data. As expected, the brute force method 
has O(n2) dependence.  

Despite its theoretical O(n log n) performance, the KTree 
still performs far worse than the box-assisted and KDTree 
methods. This is because of a large constant factor worse 
performance that is still significant for large data sets (64,000 
points). This constant worse performance relates to the poor 
balancing of the KTree. Whereas for the KDTree, the data may 
be permuted so that cut values are always chosen at medians in 
the data, the KTree does not offer this option because there is no 
clear multidimensional median. In addition, many more 
branches in the tree may need to be searched in the KTree 
because at each cut, there are 2k instead of 2 branches. 

 



 
Figure 12- Comparison of search times for different 

methods using 3 dimensional random data. 

 
Figure13- Comparison of search times for different 

methods using 4 dimensional random data. 
 

However, all of the above trials were performed using 
uniform random noise. They say nothing of how these methods 
perform with other types of data. In order to compare the sorting 
and searching methods performance on other types of data, we 
compared their times for nearest neighbor searches on a variety 
of data sets. Table 1 depicts the estimated time in milliseconds 
to find all nearest neighbors in different 10,000 point data sets 
for each of the benchmarked search methods. The uniform noise 
data was similar to that discussed in the previous section. 

 Each Gaussian noise data set had a mean of 0 and standard 
deviation of 1 in each dimension. The identical dimensions and 
one valid dimension data sets were designed to test performance 
under unusual circumstances. 

 For the identical dimensions data, uniform random data 
was used and each coordinate of a vector was set equal, e.g., 

1 2 3 1 1 1( ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))x i x i x i x i x i x i x i= =  

For the data with only one valid dimension, uniform random 
data was used in only the first dimension, e.g., 

1 2 3 1( ) ( ( ), ( ), ( )) ( ( ),0,0)x i x i x i x i x i= =  

In all cases the KD-Tree proved an effective method of sorting 
and searching the data. Only for the last two data sets did the 
multidimensional quick-sort method prove faster, and these data 
sets were constructed so that they were, in effect, one- 
dimensional. In addition, the box method proved particularly 

ineffective for high dimensional Gaussian data where the 
dimensionality guaranteed that an excessive number of boxes 
needed to be searched, and for the Lorenz data, where the highly 
non-uniform distribution ensured that many boxes went unfilled. 
The K-tree also performed poorly for high dimensional data 
(four and five dimensional), due to the exponential increase in 
the number of searched boxes with respect to dimension. 
 
A summary of the comparison of the four routines can be found 
in Table 2. The “adaptive”  and “ flexible”  criteria refer to the 
next section.  
 
Table 2- Comparison of some features of the four routines. 
Rating from 1=best to 4=worst.  
 
Algorithm Memory Build Search Adapt. Flexible 
KDTree 2 3/4 1 yes yes 
KTree 3 3/4 3 no no 

Quick-sort 1 2 4 yes yes 
BoxAssisted 4 1 2 no yes 
 

7. INTERESTING PROPERTIES FOR 
MUSIC IR 
 

The multi-dimensional search approach to Music IR, and 
the corresponding algorithms presented above have a number of 
interesting properties and conceptual advantages. 

 

7.1 Adaptive to the distribution 
 

A truly multi-dimensional approach enables an adaptation to the 
distribution of the data set. For example, the KD-Tree algorithm  
focuses its discriminating power in a non-uniform way. The 
search tree it creates represents a best fit to the density of the 
data. This could be efficient for, say, search tasks in a database 
where part of the features remain quasi constant, e.g. a database 
of samples which are all pure tones of a given instrument, with 
quasi constant pitch, and a varying brightness. It is interesting to 
compare this adaptive behavior with a string-matching algorithm 
that would have to compare sequences that all begin with 
“aaa…”. The latter can’ t adapt and systematically tests the first 
three digits, which is an obvious waste of time. 

 
 

7.2 Independent of the metric and of the 
alphabet 
 

All the methods presented here are blind to the metric that 
is used. This is especially useful if the set of features is 
composite, and requires a different metric for each coordinate, 
e.g. pitches can be measured modulo 12. The routines are also 
independent of the alphabet, and work for integers as well as for  

 
 
 



Table 1- Nearest neighbor search times for data sets consisting of 10000 points. The brute force method, multidim. quick-sort, the 
box assisted method in 2 and 3 dimensions, the KDTree and the KTree were compared. An X indicates that it wasn’ t possible to use 

this search method on this type of data. The fastest method is given in bold and the second fastest method is given in italics. 
 

 

 

 

 

 

 

 
 
floating-points. This makes them very general, as they can deal 
with a variety of queries on mixed low-level features and high-
level meta-data such as: 

Nearest neighbor )"",3,2,1( BACHpitchpitchpitch  

 

7.3 Flexibility 
 

There are a variety of searches that are often performed on 
multidimensional data.[14] Perhaps the most common type of 
search, and one of the simplest, is the nearest neighbor search. 
This search involves the identification of the nearest vector in 
the data set to some specified vector, known as the search 
vector. The search vector may or may not also be in the data set. 
Expansions on this type of search include the radial search, 
where one wishes to find all vectors within a given distance of 
the search vector, and the weighted search, where one wishes to 
find the nearest A vectors to the search vector, for some positive 
integer A. 

Each of these searches (weighted, radial and nearest 
neighbor) may come with further restrictions. For instance, 
points or collections of points may be excluded from the search. 
Additional functionality may also be required. The returned data 
may be ordered from closest to furthest from the search vector, 
and the sorting and searching may be required to handle the 
insertion and deletion of points. That is, if points are deleted 
from or added to the data, these additional points should be 
added or deleted to the sort so that they can be removed or 
included in the search. Such a feature is essential if searching is 
to performed with real-time analysis. 

Most sorting and searching routine presented above are 
able to perform all the common types of searches, and are 
adaptable enough so that they may be made to perform any 
search.  

 
7.4 A note on dimensionality 
 

One of the restrictions shared by the multidimensional 
search routines presented on this paper is their dependence on 
the dimensionality of the data-set (not its size). This is 
detrimental  to the  sheer  “folding”  of  the  trajectory  search  as  

 

 
 

 
presented in the introduction, especially when it involves long 
m-sequences of high-n-dimension features (dimension N m n= ⋅  
may be too high). However, as we mentioned in the course of 
this paper, there are still a variety of searches that can fit into the 
multidimensional framework.  We notably wish to suggest: 
 
- Searches for combinations of high-level metadata (m=1) 
- It is possible to reduce N with classic dimensionality 
reduction techniques, such as Principal Component Analysis or 
Vector Quantization. 
- It is possible to reduce M by computing only 1 vector of 
features per audio piece. It is the approach taken in the Muscle 
Fish™ technology [15], where the mean, variance and 
correlation of the features are included in the feature vector. 
- It is possible to reduce M by computing the features not 
on a frame-to-frame basis, but only when a significant change 
occurs (“event-based feature extraction”, see for example [16]). 
- For finite alphabets, it is always possible to reduce the 
dimension of a search by increasing the size of the alphabet. For 
example, searching for a set of 9 notes out of a 12 semi-tone 
alphabet can be reduced to a 3D search over an alphabet of 

312 symbols.  
 

8. CONCLUSION 
 

We’ve presented and discussed four algorithms for a 
multidimensional approach to Music IR. The KD search tree is a 
highly adaptable, well-researched method for searching 
multidimensional data. As such it is very fast, but also can be 
memory intensive, and requires care in building the binary 
search tree. The k tree is a similar method, less versatile, more 
memory intensive, but easier to implement. The box-assisted 
method on the other hand, is used in a form designed for 
nonlinear time series analysis. It falls into many of the same 
traps that the other methods do. Finally the multidimensional 
quick-sort is an original method designed so that only one 
search tree is used regardless of how many dimensions are used.  

These routines share a number of conceptual advantages 
over the approaches taken so far in the Music IR community, 
which -we believe- can be useful for a variety of musical 
searches. The aim of the paper is to be only a review, and the 
starting point of a reflection about search algorithms for music. 

Data set Dimension Brute Quicksor t Box (2) 
method 

Box (3) 
method 

KDTree KTree 

Uniform noise 3 32567 2128 344 210 129 845 

Gaussian 2 16795 280 623 X 56 581 

Gaussian 4 44388 8114 54626 195401 408 3047 

Identical dimensions 3 33010 19  1080  5405 42 405 

One valid dimension 3 30261 31  1201  7033 37 453 



In particular, we still have to implement specific music retrieval 
systems that use the results presented here. 
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ABSTRACT
The ideal content-based musical search engine for large cor-
pora must be both expressive enough to meet the needs of
a diverse user base and efficient enough to perform queries
in a reasonable amount of time. In this paper, we present
such a system, based on an existing advanced natural lan-
guage search engine. In our design, musically meaningful
searching is simply a special case of more general search
techniques. This approach has allowed us to create an ex-
tremely powerful and fast search engine with minimal effort.

1. INTRODUCTION
This paper describes a system for music searching that is ex-
pressive enough to perform both simple and sophisticated
searches that meet a broad range of user needs. It is also
efficient enough to search through a large corpus in a reason-
able amount of time. The music search system was created
by extending an existing advanced natural language search
engine with simple filters and user-interface elements.
This paper will describe the search engine in the context of
our larger sheet music digitization project, and relate it to
other musical search engines already available for use on the
web. Then, the capabilities of the non-music-specific core of
the search engine will be described, followed by the exten-
sions necessary to adapt it to music.

2. BACKGROUND
The Lester S. Levy Collection of Sheet Music represents one
of the largest collections of sheet music available online.
The Collection, part of the Special Collections of the Mil-
ton S. Eisenhower Library at The Johns Hopkins University,
comprises nearly 30,000 pieces of music (Choudhury et al.
2000). It provides a rich, multi-facetted view of life in late
19th and early 20th century America. Scholars from vari-
ous disciplines have used the Collection for both research
and teaching. All works in the public domain are currently
available online as JPEG images. The user can browse the
collection by category or search based on metadata, such as
author, title, publisher, and date. Musical searches, such as
finding a particular melodic or rhythmic pattern, will soon be

possible once the collection has been converted to symbolic
musical data.
To convert this data, an optical music recognition (OMR)
system is being developed (Choudhury et al. 2001). We
chose GUIDO as the target representation language due
to its simplicity and extensibility (Hoos and Hamel 1997).
Having music in a symbolic format opens the collection to
sound generation, musicological analysis and, the topic of
the present paper, musical searching.

3. PRIOR ART
None of the available musical search engines we evaluated
met the needs of the diverse user base of the collection, or
could handle the large quantity of data in the complete Levy
collection. In particular, we evaluated two projects in detail:
Themefinder (Huron et al. 2001) and MELDEX (McNab et
al. 1997).

3.1 Themefinder
Themefinder’s goal is to retrieve works by their important
themes. These themes are manually determined ahead of
time and placed in an incipit database.
One can query the database using five different kinds of
search queries: pitch, interval, scale degree, gross contour,
and refined contour. These five categories served as the in-
spiration for a subset of our basic query types. The user can
query within an arbitrary subset of these categories and then
intersect the results. However, Themefinder does not allow
the user to combine these query types within a single query
in arbitrary ways. For instance, a user may know the begin-
ning of a melodic phrase, while the ending is more uncertain.
Therefore, the user may want to specify exact intervals at the
beginning and use gross contours or wild-cards at the end.
Unfortunately, in Themefinder, the user must have the same
level of certainty about all of the notes in the query. Un-
fortunately, this is not consistent with how one remembers
melodies (McNab et al. 2000).
In addition, Themefinder does not have a notion of rhythmic
searching. While its invariance to rhythm can be an asset, it
can also be cumbersome when it provides too many irrele-
vant matches. Figure 1 shows the results of a query where
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one result is more relevant than the other. Such queries may
return fewer false matches if they could include rhythmic in-
formation.
The searches themselves are executed in Themefinder us-
ing a brute-force method. The entire database is linearly
searched for the given search query string. While this is
acceptable for the 18,000 incipits in Themefinder’s largest
database, it may not scale well for searching across a full-
text database such as the Levy collection.

Beethoven, Ludwig Van. Quartet in E Minor, Op. 59, No. 2
“Rasoumowsky”, 4th Movement.

Beethoven, Ludwig Van. Sonata No. 4, in A Minor, Op. 23, Violin
and Pianoforte, 1st Movement.

Figure 1: These two incipits start with the identical set
of pitches, [c d e d], but with different rhythmic content.
With better rhythmic specificity, irrelevant results could
be eliminated. (http://www.themefinder.org/ )

3.2 MELDEX
The simple text-based query strings in Themefinder are easy
to learn and use by those with moderate musical training.
MELDEX, however, has a more natural interface for non-
musicians. The user sings a melody using a syllable with a
strong attack such as “tah.” The pitches of the melody are de-
termined using pitch-tracking, and the rhythm is quantized.
The results are used as the search query. The query is approx-
imately matched to melodies in the database using a fast-
matching algorithm related to dynamic programming. While
this approach is highly effective for non-musicians and sim-
ple queries, it is limiting to those wanting more fine-grained
control.

4. CAPABILITIES
Our musical search engine supports both melodic and rhyth-
mic searches. Search queries can also include the notion of
simultanaeity. That is, events can be constrained to occur
at the same time as other events. The search engine, as de-
scribed here, is limited to standard-practice Western music,
though modifications could be made to support other musical
traditions.

4.1 Extensibility
Other types of musical searching beyond these core capa-
bilities require additional layers of musical knowledge to be
built on top of the search engine. The general design of the
search engine encourages such extensibility. Any analytical
data that can be derived from the score data can be gener-
ated offline (ahead of time) and later used as search criteria.

This data can be generated by new custom tools or existing
analysis tools such as the Humdrum toolkit (Huron 1999).
For example, the search engine could be extended to support
harmonic searches with respect to harmonic function. West-
ern tonal harmonic theory is ambiguous, making it difficult
to objectively interpret and label harmonies. This is a largely
unsolved problem that is not the subject of our present re-
search. However, assuming an acceptable solution to these
issues could be found, labeling of harmonic function could
be implemented as an input filter.
Also, the core search engine does not include any notion
of melodic similarity. This is an open problem strongly
tied to subjective matters of human perception (Hewlett and
Selfridge-Field 1998). It is possible for a specialized front-
end to include notions of melodic similarity by generating
specialized search queries. The search query language of the
core search engine is expressive enough that these advanced
features could be added without modifying the core itself.

4.2 Meeting diverse user requirements
We define the users of our musical search engine as any-
one who wants to access the collection in a musical way. Of
course, the needs of different users are greatly varied. A non-
musician may want to hum into a microphone to retrieve a
particular melody. A copyright lawyer may want to track the
origins of a particular melody, even melodies that are merely
similar. A musicologist may want to determine the frequency
of particular melodic or rhythmic events. To meet these di-
verse needs, it is necessary to provide different interfaces for
different users. The set of interfaces is arbitrary and can be
extended as new types of users are identified. It may include
graphical applications, web-based forms and applets, or text-
based query languages. Audio interfaces, with pitch- and
rhythm-tracking may also be included. The purpose of these
interfaces is to translate a set of user-friendly commands or
interactions into a query string accepted by the search en-
gine. The details of that query can be hidden from the end-
user and therefore can be arbitrarily complex.
At present, we have focused our attention on the core search
engine itself. In the second phase of the search engine
project, the user interfaces will be developed in collabora-
tion with a usability specialist.

5. THE CORE SEARCH ENGINE
The core search engine in our system was originally devel-
oped for text-based retrieval of scores based on their meta-
data and full-text lyrics. Its overall design was inspired by
recent developments in the field of natural-language search-
ing (DiLauro et al. 2001). These features allow the user to
perform search queries using the embedded context in natu-
ral languages, such as parts of speech, rhyming scheme, and
scansion. While not originally intended for musical search-
ing, it was soon discovered that the core was very well suited
for searching across symbolic musical data.



The core itself did not need to be modified to support music
searching. Instead, specialized filters and front-ends were
added to adapt it to the music domain. In the ingestion
stage, the data is filtered to store it in the appropriate in-
dices and partitions (see Section 6). When searching, special
user interfaces handle the details of generating search query
strings and filtering and displaying the resulting data. Figure
2 shows how the individual parts of the system fit together to
ingest and query the data.
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Figure 2:Workflow diagram of the musical search engine.

5.1 Inverted lists
Many search engines, including ours, are built on the concept
of an inverted list. For a complete discussion of inverted list
search engines, see Witten et al. (1999).
Sequential data, such as English prose or melodic data, is
stored on disk as a sequence of atoms. In the case of En-
glish, the atom is the word and the sequence is simply the
ordered words as they appear in sentences and paragraphs.
Take for example the following sentence:

To be , or not to be , that is
the question .

Note that both words and punctuation are treated as indivis-
ible atoms. To search for a particular atom in this string, a
computer program would need to examine all thirteen atoms
and compare it with a query atom. To increase searching ef-
ficiency, an inverted list search engine would store this string
internally as:

, −→ {3, 8}
. −→ {13}
be −→ {2, 7}
is −→ {10}
not −→ {5}
or −→ {4}
question −→ {12}
that −→ {9}
the −→ {11}
to −→ {1, 6}

Here, each atom in the string is stored with a list of num-
bers indicating the atom’s ordinal location within the string.
The set of words in the index is called the vocabulary of the
index. To search for a particular atom using the index, the
program needs only to find that word in the vocabulary and
it can easily obtain a list of indices (or pointers) to where that
atom is located within the string. Since the vocabulary can
be sorted, the lookup can be made faster using hashing or a
binary search.
Inverted lists perform extremely well when the size of the
vocabulary is small relative to the size of the corpus. In the
case of English, of course, the vocabulary is much smaller
relative to the size of all the works written in that language.
This property also allows us to improve the efficiency of mu-
sical searching as we will see below.

6. THE MUSICAL SEARCH ENGINE
The musical search capabilities are supported by three main
features of the core search engine:

1. Secondary indicesallow the amount of specificity to
vary with each token.

2. Partitions allow search queries to be performed upon
specific discontiguous parts of the corpus.

3. Regular expressionsallow advanced pattern match-
ing.

Figure 3: A measure of music, from the Levy collection,
used as an example throughout this section. (Guion, D.
W., arr. 1930. “Home on the range.” New York: G.
Schirmer.)

6.1 Secondary indices
In the case of music, the searchable atom is not the word, but
the musical event. Events include anything that occurs in the



score, such as notes, rests, clefs, and barlines. Each of these
events, of course, can have many properties associated with
it. For instance, the noteb[ at the beginning of the fragment
in Figure 3 has the following properties:

• Pitch name: b
• Accidental: [
• Octave: -1 (first octave below middle-c)
• Twelve-tone pitch: 10 (10th semitone abovec)
• Base-40 pitch:-3 (see Hewlett 1992)
• Duration: eighth note
• Interval to next note: perfect4th

• Contour (direction) to next note: up
• Scale degree:so(5th scale degree inE[ major)
• Lyric syllable: “sel–”
• Metric position: Beat 1 in a6

8 measure

All of these properties are self-evident, with the exception
of base-40 pitch, which is a numeric pitch representation
where the intervals are invariant under transposition while
maintaining enharmonic spelling (Hewlett 1992). Note also,
we use GUIDO-style octave numbers, where the octave con-
taining middle-c is zero, as opposed to ISO-standard octave
numbers.
The concept of secondary indices allows the individual prop-
erties of each atom to be indexed independently of any other
properties. This allows search queries to have arbitrary levels
of specificity in each event. The set of properties can be ex-
tended to include any kinds of data that can be extracted from
the musical source. For example, if the harmonic function
of chords could be determined unambiguously, a secondary
index containing chord names in Roman numeral notation
could be added. In our design, we use secondary indices to
handle the properties of events that change from note to note.
Continuous properties of events, that are carried from one
event to the next, such as clefs, time signatures, and key sig-
natures, are handled using partitions, explained below (see
Section 6.2).

6.1.1 Ingestion of secondary indices
During the ingestion phase, the source GUIDO data is first
converted to an interim format where all of each event’s
properties are fully specified. For example, the GUIDO rep-
resentation of Figure 3 is as follows:

[ \clef<"treble"> \key<-3> \time<6/8>
\lyric<"sel-"> b&-1*/8.
\lyric<"dom"> e&*0
\lyric<"is"> f
\lyric<"heard"> g/4
\lyric<"A"> e&/16
\lyric<"dis-"> d

]

Each event is then extended so it is fully specified. In this
format, each note event is a tuple of properties:

pitch-name, accidental, octave, twelve-tone-
pitch, base-40-pitch, duration, interval, contour,
scale-degree, lyric-syllable, metric-position

Figure 4 shows the example in fully-specified symbolic rep-
resentation.
Each one of these fields is used to index the database in a
particular secondary corpus. For example, if the notes in the
example were labeled 1 through 6, the data in the secondary
indices may look something like:

• Pitch name
a −→ ∅
b −→ {1}
c −→ ∅
d −→ {6}
e −→ {2, 5}
f −→ {3}
g −→ {4}

• Accidentals
n (\) −→ {3, 4, 6}
& ([) −→ {1, 2, 5}

• Octave
-1 (octave below middle-c) −→ {1}
0 (octave above middle-c) −→ {2, 3, 4, 5, 6}

• Duration
1/4 (quarter note)−→ {4}
1/8 (eighth note)−→ {1, 2, 3}
1/16 (sixteenth note)−→ {5, 6}

6.1.2 Searching using secondary indices
The search query itself is simply a series of events. Each
event can be indicated as specifically or as generally as the
end user (as represented by a user interface) desires. For ex-
ample, the following query would match any melodic frag-
ment that begins on ab[ eighth note, has a sequence of 3
ascending notes, ending on ag:

b,&,1/8 / / / g

To execute a search query using secondary indices, the
search engine looks up each “parameter” in their correspond-
ing secondary indices, and retrieves tokens in the secondary
index. These tokens are then looked up in the primary index,
returning a list of positions. These lists are intersected to find
the common elements. This list of locations is then filtered
to include only those events that are sequenced according to
the search query.

6.1.3 Supported user interfaces
This design supports a broad range of user interfaces. A text-
based user interface may allow a user to be very specific in



[ \clef<"treble"> \key<-3> \time<6/8>
b, &, -1, 10, -3, 1/8, P4, /, so, "sel-", 0
e, &, 0, 3, 14, 1/8, M2, /, do, "dom", 1/8
f, n, 0, 5, 20, 1/8, M2, /, re, "is", 1/4
g, n, 0, 7, 25, 1/4, M3, \, mi, "heard", 3/8
e, &, 0, 3, 15, 1/16, m2, \, do, "A", 5/8
d, n, 0, 2, 9, 1/16, M2, \, ti, "dis-", 11/16

]

Figure 4:Fully specified symbolic representation of the example in Figure 3.

the query, and then incrementally remove layers of speci-
ficity until the desired match is retrieved. An audio-based
user interface could be more or less specific depending on
the pitch tracker’s confidence in each event.

6.1.4 Efficiency of secondary indices
One of the efficiency problems with this approach is that the
vocabularies of the individual secondary indices tend to be
quite small, and thus the index lists for each atom are very
large. For instance, the “pitch name” secondary index has
only seven atoms in its vocabulary (a - g). “Accidentals”
is even smaller:{[[, [, \, ], ×}. Therefore, a search for a
b[ must intersect two very large lists: the list of allb’s and
the list of all flats. However, the search engine can combine
these secondary indices in any desired combination off-line.
For example, given the “pitch name” and “accidental” in-
dices, the search engine can automatically generate a hybrid
index in which the vocabulary is all possible combinations
of pitch names and accidentals. The secondary indices can
be automatically combined in all possible combinations, to
an arbitrary order.

6.2 Partitions
Partitioning can be used to restrict a search query to a partic-
ular part of the corpus. Each partition is a description of how
to divide the corpus into discontiguous, non-overlapping re-
gions. More specifically, each partition is a file containing a
list of regions. Each region within a partition is named and
has a list of its start and stop positions.
In our music search engine, the metadata is used to parti-
tion the corpus into regions. For example, all works by a
given composer would make up a discontiguous region in the
“composer” partition. Partitions exist for all types of meta-
data in the collection, including date, publisher, geographical
location, etc.
In addition, we have extended partitioning to include musical
elements derived directly from the GUIDO data. Regions are
generated from key signatures, clefs, time signatures, mea-
sures, movements, repeats, etc. This allows for searching for
a particular melody in a particular key and clef, for example.

6.2.1 Ingestion of partition data
When a new work is added to the corpus, the data is par-
titioned automatically. First, the metadata regions, such as

title, composer, and date, are set to include the entire piece.
As the piece is scanned, continuous musical elements, such
as clef, key signature, and time signature, are regioned on the
fly. Therefore, when the ingestion filter sees a “treble clef”
token, all further events are added to the “treble clef” region
until another clef token is encountered. Lastly, events are
added to the moment regions on an event-by-event basis.
For the example in Figure 3, again assuming the notes are
numbered 1 through 6, the partitions may look something
like:

• Title partition
“Home on the range”−→ [1, 6]

• Clef partition
Treble clef−→ [1, 6]

• Time signature partition
6
8 −→ [1, 6]

6.2.2 Searching using partitions
Extending the example in Section 6.1.2, the user may wish
to limit the search to the key signature ofE[-major:

( b,&,1/8 / / / g ) @ key:"E& major"

Here the non-partitioned search query is performed as de-
scribed above, and then the results are intersected with the
results of the partition lookup. Since in our case, the entire
range of notes [1, 6] is in the key signature ofE[-major, the
query will retrieve the example in Figure 3.

6.2.3 Searching with simultanaeity using partitions
Scores are also partitioned at the most atomic level by “mo-
ments.” A moment is defined as a point in time when any
event begins or ends in any part. Moments almost always
contain multiple events, and events can belong to multiple
moments (e.g. when a half note is carried over two quarter
notes in another part). Each moment within a score is given
a unique numeric identifier, and all events active at a given
point are included in a moment region. In this way, one can
search for simultaneous polyphonic events very efficiently.
To explain this further, Figure 5 shows the example measure
with its assigned moment numbers. Each event is assigned to
one or more moments so that it can be determined which, if
any, of the events are active at the same time. These moment



numbers are used to create regions. For example, the dotted
half note in the left hand of the piano part would be assigned
to all seven moment regions.
To perform searches involving simultanaeity, the query for
each part is performed separately, and then the results are in-
tersected based on their moments. Only the query results that
occur at the same time (existing in the same moment regions)
will be presented to the user.

Figure 5: The example measure of music showing mo-
ment numbers.

6.3 Regular expressions
The core search engine supports a full complement of
POSIX-compliant regular expressions. Regular expressions,
a large topic beyond the scope of this paper, are primar-
ily used for pattern-matching within a search string (Friedl
1997).
Many users find regular expressions difficult and cumber-
some ways to express searches. However, it is our intent
that most of these details will be hidden from the user by ap-
propriate interfaces. For example, regular expressions would
be very useful for an interface that allowed searching by
melodic similarity. What is important to our present research
is that regular expressions are supported in the core search
engine, leaving such possibilities open.

7. CONCLUSION
Based on existing advanced natural-language search tech-
niques, we have developed an expressive and efficient mu-
sical search engine. Its special capabilities include: sec-
ondary indices for gradiated specificity, partitions for selec-

tive scope and simultanaeity, and regular expressions for ex-
pressive pattern matching. This allows users with different
search needs to access the database in powerful and efficient
ways.

8. ACKNOWLEDGMENTS
The second phase of the Levy Project is funded through
the NSF’s DLI-2 initiative (Award #9817430), an IMLS Na-
tional Leadership Grant, and support from the Levy Family.
We would like to thank David Yarowsky of the Department
of Computer Science for motivation and discussion.

9. REFERENCES
Choudhury, S., T. DiLauro, M. Droettboom, I. Fujinaga, B.
Harrington, and K. MacMillan. 2000. Optical music recog-
nition within a large-scale digitization project.ISMIR 2000
Conference.

Choudhury, G. S., T. DiLauro, M. Droettboom, I. Fujinaga,
and K. MacMillan. 2001. Strike up the score: Deriving
searchable and playable digital formats from sheet music.D-
Lib Magazine: 7(2).

DiLauro, T., G. S. Choudhury, M. Patton, J. W. Warner, and
E. W. Brown. 2001. Automated name authority control and
enhanced searching in the Levy collection.D-Lib Magazine:
7(4).

Friedl, J. E. F. 1997.Mastering regular expressions.Se-
bastopol, CA: O’Reilly.

Hewlett, W. B. 1992. A base-40 number-line representation
of musical pitch notation.Musikometrika4: 1–14.

Hewlett, W. B., and E. Selfridge-Field. 1998.Melodic sim-
ilarity: Concepts, procedures and applications.Cambridge,
MA: MIT Press.

Hoos, H. H., and K. Hamel. 1997. GUIDO music nota-
tion: Specification Part I, Basic GUIDO. Technical Report
TI 20/97, Technische Universität Darmstadt.

Huron, D., W. Hewlett, E. Selfridge-Field, et al. 2001. How
Themefinder works.http://www.themefinder.org

Huron, D. 1999.Music research using Humdrum: A user’s
guide. Menlo Park, CA: Center for Computer Assisted Re-
search in the Humanities.

McNab, R. J., L. A. Smith, D. Bainbridge, and I. H. Witten.
1997. The New Zealand Digital Library MELody inDEX.
D-Lib Magazine: 3(5).

McNab, R. J., L. A. Smith, I. H. Witten, and C. L. Hender-
son. 2000. Tune retrieval in the multimedia library.Multi-
media Tools and Applications10(2/3): 113–32.

Witten, I., A. Moffat, and T. Bell. 1999. Managing giga-
bytes. 2nd Ed. San Francisco: Morgan Kaufmann.



A technique for “ regular expression”  style searching in 
polyphonic music 

Matthew J. Dovey 
Visiting Research Fellow 

Dept. of Computer Science  
Kings College, London 

+44 1865 278272 

matthew.dovey@las.ox.ac.uk 
 

ABSTRACT 
This paper discussed some of the ongoing investigative work on 
integrating these two systems conducted as part of the NSF/JISC 
funded OMRAS (Online Music Retrieval and Searching) project 
into polyphonic searching of music. It describes a simple and 
efficient “piano-roll”  based algorithm for locating a polyphonic 
query within a large polyphonic text. It then describes ways in 
which this algorithm can be modified without affecting the 
performance to allow more freedom in the how a match is made, 
allowing queries which involve something akin to polyphonic 
regular expressions to be located in the text. 

1. INTRODUCTION 
The OMRAS (Online Music Retrieval And Searching) project is 
a three year collaborative project between Kings College London 
and the Center for Intelligent Information Retrieval, University of 
Massachusetts. Its primary aim is to look at various issues 
surrounding content based searching of polyphonic music; 
current research in content based music searching has primarily 
concentrated on monophonic music, that is to say music 
consisting of only a single melodic line and ignoring the 
complexities find in a more complex music texture for example 
as found in an say an orchestral symphony. 

Different computer representations of music roughly fall into two 
basic categories: those representing the audio of the music such 
as a typical wave or aiff fi le (or more topically MP3), and those 
representing the symbolic structure of the music as indicated in a 
typically written musical score. The audio fi le formats typically 
represent an actual performance of a piece, whilst the symbolic 
formats represent the composer’ s instructions and guidelines to 
the performer. In practice, as described in Byrd and Crawford 
(2001) [1], these are two extremes of a spectrum with various 
formats fall ing in between which contain elements of both such 
as MPEG7 and MIDI. MIDI, for example, was originally 
designed for representing music performances but is closer to a 
symbolic notation than an audio representation (and is used to 
indicate instructions for a performance rather than record a 
performance). (Byrd and Crawford actually talk of three distinct 
types – the two referred to above plus MIDI representing the 
middle ground) 

One aspect of OMRAS is to look at conversion of formats 
moving along this spectrum. Moving from symbolic notations to 
audio is fairly straightforward but this is to be expected since the 
role of the symbolic notation is to describe how to enact a 
performance of the music. Going from the audio to a symbolic 
description of how to perform that audio is far more difficult. A 
good comparison would be between a performance of a play, and 
the script and stage-directions for performing that play. 

A second aspect on OMRAS is to consider the searching of music 
by content. As indicated above we are concentrating on 
polyphonic music since this is currently neglected in the existing 
work. One of the groups in OMRAS has been looking at audio 
work, but this paper concentrates on searching symbolic formats 
which represent Common Music Notation (CMN) of the Western 
tradition of music. Most work on music searching has 
concentrated on searching within monophonic, single voice 
music, often applying techniques derived from the text-retrieval 
world (e.g. Downie (1999) [5]). There are been some approaches 
at polyphonic searching (e.g. Uitdenbogerd and Zobel (1998) [9], 
Holub, Il iopoulos, Melichar and Mochard (1999) [6] and 
Lemström and Perttu (2000) [7]). This paper will outline some of 
the algorithms we have developed for this purpose, which we 
believe are more versatile for regular expression style searching 
than previous work in this area. 

A key mission statement of the joint JISC/NSF International 
Digital Library Initiative, which is funding the OMRAS work is 
that the projects should make existing digital collections more 
accessible. We feel that the work of OMRAS makes digital 
collections of music more accessible by providing content based 
searching possible, in addition to standard metadata searched 
such as by composer or title. OMRAS is collaborating with the 
JISC funded JAFER project at Oxford University to provide 
integration with existing music library catalogues1. 

2. THE OMRAS TEST FRAMEWORK 
Within the OMRAS project we have written a test framework 
using the Java programming language for testing the performance 
of various search algorithms and techniques. The framework is 
command line driven (and not really designed for novice users). 
From the command line we can load a music file into the 
system), can load in different algorithms and can load in different 
user interface components for displaying and editing queries and 
results. The framework allows us to experiment with a number of 
different algorithms and a number of different representations of 
music. A screenshot of the command line framework in use is 
given in figure 1. 

The framework has been designed to take advantage of Java’s 
object-oriented nature: all the components such as file format 
modules, user interface widgets and search algorithms are 

                                                             
1 http://www.lib.ox.ac.uk/jafer and http://www.jafer.org 



 

Figure 1 

 
implemented as independent java objects, so that the entire 
framework is modular. These java objects can be manipulated in 
the framework using a scripting interface for java such as 
BeanShell2, but selected components can be used in other 
software. In particular, some engineering undergraduates have 
been working with OMRAS to build a GUI interface to the 
framework in addition to the current command line interface. 
Collaborating with the JISC funded JAFER Project at Oxford 
University3 we have reused the components to build a prototype 
demonstrating how our algorithms for content based searching 
can be integrated into existing bibliographic oriented music 
library catalogue systems (Dovey, M (2001) [4]). 

At the moment we only have modules for handling a small 
number of fi le formats (including MIDI) but are working on 
others most notably GUIDO and Kern4. The user interface 
components are based on piano roll type displays, but we are 
working on incorporating better CMN software for displaying 
scores into the framework in the near future. We also have 
objects for rendering scores into audio, using the Java Media 
Framework. 

                                                             
2 http://www.beanshell.org 
3 http://www.jafer.org and http://www.lib.ox.ac.uk/jafer 
4 A good reference of various music fi le formats can be found in 

Selfridge-Field (1997) [8]. 

3. BASE ALGORITHM FOR SEARCHING 
POLYPHONIC MUSIC 
3.1 “ Piano Roll”  Model of CMN 
Common Music Notation (CMN) is a very complex pictorial 
language for describing music with a number of cues as to how it 
should be performed. Its pictorial nature proved very difficult for 
in the history of the printing press; in many cases the most 
efficient means to produce a printed score was to create an 
engraving rather than attempt to produce a generic type-set for 
music. It is not surprising, therefore, that CMN produces 
complex problems for computer based representations. We are 
working with a very simple model for representing music, but 
one, which can provide a skeleton for re-introducing some of the 
complexities of CMN.  

The representational model of music we are currently using can 
be compared to that of a piano roll, where punched holes indicate 
whether a note should be playing. The horizontal position in the 
roll indicates the time of the note, whilst the vertical position 
indicates the pitch of the note. In our base model we only concern 
ourselves with the beginnings of notes (in MIDI terms with the 
Note On events). We consider a musical “event”  to be a list of 
notes which begin to play at the same time (in some ways this is 
similar to a chord but is more generalized). Whilst not an ideal 
terminology, we will use the term “event”  in this manner, for the 
purposes of this paper. We only introduce a new musical event 
where needed, i.e. because a new note has begun to play. In this 
model we can regard a piece of music to be a sequence of 
musical events. For example the extract in Figure 2, 



 

Figure 2 

 

could be represented as the following list of musical events: 

1. F, C 

2. G, D 

3. A, E 

4. C 

5. E 

6. E 

7. G, C 

This leads an obvious representation as a matrix of zeros and 
ones indicating whether a note begins to play at that time and 
pitch and this is used as an effective way to display queries and 
results. For example the more complex extract in Figure 3 

 

Figure 3 

 

can be represented in this piano roll format as in Figure 4 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  
 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 4 

 

In the OMRAS framework, we represent as an XML structure 
such as: 

<scor e> 
  <event > 
    <not e pi t ch=” 72” / > 
    <not e pi t ch=” 67” / > 
    <not e pi t ch=” 64” / > 

  </ event > 
    <not e pi t ch=” 60” / > 
  <event > 
  </ event > 
etc… 
 
By representing this structure as an XML Schema document we 
can generate the Java object model for this format from the XML 
Schema description. Representing CMN in this manner allows us 
to add additional music information. For example onset time (in 
mill iseconds as for MIDI, or metrical information such as bar 
number of beat within the bar) can be added as additional 
attributes for the event element; duration of notes, voicing, 
instrumentation etc. can be added as additional attributes to the 
note element. 

3.2 Searching in a “ piano roll”  model 
In the model, described above the typical search problem can be 
expressed as follows: given a query as a sequence of musical 
events and a text to perform the query on as a sequence of 
musical events, we are trying to find a sequence of musical 
events in the text such that each musical event in the query is a 
subset of the musical event in the text. This again is best 
i l lustrated by an example. Consider the musical extract in figure 
5. 

 

 

Figure 5 

 

 

As a piano roll, this would be represented as in Figure 6. 

 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         

Figure 6 

 

 

A potential match is il lustrated in Figure 7. As can be seen, there 
is some allowance in that intervening musical events are allowed 
between matched events in the text. The freedom of this can be 
limited to avoid too many spurious matches. 

 

  

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  



 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 7 

 

In musical terms, it is also necessary to allow transpositions of 
pitch. Figure 8 gives a second match at a different transposition. 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  
 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 8 

 

There are other degrees of freedom that need to be allowed in 
searching, in order to accommodate inaccurate recall of the user, 
and also inaccuracies in the data, for example if the musical 
information has been created by automatic transcription of either 
audio data or via optical recognition of the printed score. A fuller 
description of these areas of fuzziness is given in Crawford and 
Dovey (1999) [2]. 

3.3 A “ piano roll”  based algorithm 
In Dovey (1999) [3], we presented a matrix-based algorithm for 
searching the music using the piano roll abstract model described 
above. That algorithm has underpinned much of our subsequent 
work, however there were some serious performance issues with 
the algorithm described there in pathological cases. The 
algorithm described here is a more refined version of that 
algorithm which performs in effectively linear time for a given 
text. 

Let the text be represented by the sequence <Tm> and the query 
by the sequence <Sn> and consider the case when we can allow k 
intervening musical events in the text between the matches for 
consecutive events in the query. 

In essence, we are performing a pass over the text for each 
musical event in the query. In the first case we are looking for 
the matches for the first event in the query to occur in the text. 
For all subsequent passes we are looking for an occurrence of the 
nth  term of the query occurring within k musical events of an 
occurrence of the n-1th term found in the previous pass. 

Mathematically speaking, we construct the matrix M, where 

M i j =  k+1 iff Sj ⊆ Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj ⊆ Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

A result can be found by traversing the last row of the matrix 
constructed for the value k+1, this indicates by it horizontal 
position the match in the text for the last event in the query, 
reading to the left from this position in the row above for the 
value k gives the match for the penultimate event in the query 
and so on. We then repeat the process for each pitch 
transposition of the query sequence (i.e. where the value pitch of 
note in the sequence <Sn> is transposed up or down by the same 
amount). We clearly need not consider any transposition such 
that the transposed sequence of <Sn> and the sequence <Tm> 
have not pitches in common. 

In the worse case this algorithm can never take more that m x n 
steps to locate each pitch transposition, and the number of 
transpositions will never exceed the range of pitches which occur 
in <Tm>. 

The following worked example would make this clearer. Let use 
consider the text in figure 4. Then our text is 

T0 = 72, 76, 64 

T1 = 60 

T2 = 79, 67, 59 

etc. 

Let us consider a simple query 

S0 = 67, 59 

S1 = 67, 55 

S2 = 59 

For this case we allow one intervening gap, i.e. k=1. 

We build the first row of the matrix by writing k+1 (i.e. 2) where 
S0 contains all the pitches in Ti, otherwise if the value of the 
preceding square is non-zero we write that value less one, 
otherwise zero. So the first l ine becomes 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

 

For the second line we perform a similar operation for S1, 
however we only write k+1 if all the pitches of S1 are in Ti and 
the value of the preceding square in the row above is non-zero. 
So we now have 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

S1 0 0 0 0 2 1 0 0 0 

 

 

We then repeat for S2 giving 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

S1 0 0 0 0 2 1 0 0 0 

S2 0 0 0 0 0 0 2 1 0 

 

Note that although S2 occurs within T2 the preceding square 
above in the second row is zero, so we do not write k+1 (i.e. 2) 
here. The results can now be found in linear time by reading the 
matrix backwards looking for the occurrence of the value 2 i.e. 



here T2 T4 T6 is our match. We can then repeat for the other 15 
possible pitch transpositions of the query.  

There is an optimization to avoid unnecessary comparisons of 
musical events. For the row i of the matrix there exist a maximal 
s such that M i j = 0 for all j < s. Similarly there exists a minimal t 
such that M i j = 0 for all j > t. From this we can deduce that M i+1 j 
= 0 for all j < s and j > t+k, i.e. we can limit our attention when 
constructing the next row of the matrix to the subsequence Ts, 
Ts+1 … Tt+k of the text. Of course when t < s there can be no 
matches for the query in the text. This optimization can cut 
processing time dramatically. 

The above method forms the basis for more complex searching 
techniques where we have a query which in many ways 
resembles a regular expression for a musical phrase.  

4. EXTENSIONS OF BASE ALGORITHM 
TO HANDLE REGULAR EXPRESSION 
TYPE QUERIES 
4.1 Comparisons of Music Events 
In the algorithm described in section 3, we considered only one 
way in which a musical event in the query can match a musical 
event in the text, namely that of inclusion. i.e. we say that a 
musical event Sj matches Ti if all the notes in Sj are in Ti (i.e Sj ⊆ 
Ti  ). Dovey (1999) [3] considers four such comparison operators: 

• Sj ⊆ Ti – as described here.   

• Sj = Ti – for exact matching 

• Sj 
�

i  � Ø –  Sj here represents a disjunctive lists of 
notes we wish to match 

• Ti ⊆  Sj – for symmetry of the operators 

 

This is generalized in Crawford and Dovey (1999) [2], so that 
these become just four of the most typical comparison operators 
in a lattice of all possible comparison operators with equals 
being the Top of this lattice and always matches the Bottom. In 
general we have some relationship R which defines whether two 
events “match” or not. Other typical relationships may include: 

• Rh : Sj and Ti are harmonically similar. 

• Rr : For each note in Sj there is a note in Ti whose pitch 
is within a given range of the pitch of the note in Sj 

• Rr * : For all but x notes in Sj there is a note in Ti whose 
pitch is within a given range of the pitch of the note in 
Sj 

 

Our base algorithm described in section 3.3 can easily be 
extended to accommodate any such relationship R without any 
lose of performance. In this case given our relationship R we 
construct the matrix M where 

M i j =  k+1 iff Sj R Ti  and (M i-1 j ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj R Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

We can further generalize this. Given that we perform a pass 
over <Tm> for each Sj in <Sn>, we can use a different 
relationship for each pass again without any loss in performance. 
i.e. we now have a sequence <Rn> where Rj describes the 

comparison operation for locating matches of Sj in <Tm>. In this 
case we construct the matrix M where 

M i j =  k+1 iff Sj Rj Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj Rj Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

This allows use for each event in the query to specify how the 
match will be found in the text using a polyphonic comparison 
range from exact match to more fuzzy matching comparisons. 

4.2 Adding additional dimensions to notes 
So far we have considered a note only to have a single value 
indicating its pitch. Clearly the algorithm described in section 
3.3 and the enhancements described in section 4.1 would apply 
to any property. In the case of duration we would clearly be more 
interested in a comparison operator of the type Rr or Rr *. For 
instrumentation or voicing we would be more interested in strict 
equality. If we define each note to be an n-tuple of the properties 
we are interested in we can perform a match against all these 
properties by defining a suitable composite comparison operator 
R without affecting the efficiency of our algorithm. 

For example, in the case of three properties pitch, duration and 
instrument then R might behave as follows 

Sj R Ti if for almost all notes in Sj there is a note in Tj 
with a similar pitch, a similar duration and in the same 
voice (with some suitable parameters defining the 
ranges for similar and almost all). 

4.3 Varying gaps between event matches 
In section 4.1, we showed that we could have a different 
comparison operator for each term in the query. However, we 
stil l only have a single value of k, determining the allowed “gap”  
between matched events in the text, for the entire query. This 
also need not be the case. We can instead consider the sequence 
<kn> where kj indicates the number of allowed gaps that can 
occur in the text after a match of Sj before a match of Sj+1 occurs. 
kn clearly has no meaning but must be non-zero for the algorithm 
to work properly. Modifying the generic form of the algorithm 
from section 3.3 gives 

M i j =  kj+1 iff Sj ⊆ Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj ⊆ Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

When reading the matrix for results we now look for the value 
kj+1 to indicate matches where j is the current row of the matrix. 

Modifying the form of the algorithm given at the end of section 
4.1 gives 

M i j =  kj+1 iff Sj Rj Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj Rj Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

So far we have considered the “gap”  to be measured in terms of 
the number of events that can occur. Clearly in a piece of music 
the time between two consecutive events can vary. We can 
incorporate this into the algorithm by allowing the “gap” to be 
specified in terms of the time between matched events rather 
than the number of intervening events. We define an monotonic 
increasing function O on <Tm> where 

O(Ti) is the time at which Ti occurs.  



The units could be mill iseconds as in MIDI or could be based on 
a musical metric such as number of quarter notes. 

In this case we set k to be the maximum allowed duration 
between matched events in the text. The base algorithm from 
section 3.3 now becomes 

M i j =  k iff Sj ⊆ Ti  and ((M i-1 j > 0 and M i-1 j < k) or i = 0)) 

 M i j-1- (O(Ti) – O(Ti-1)) 

    iff (not Sj ⊆ Ti ) and (M i j-1- (O(Ti) – O(Ti-1)) > 0) 

 0 otherwise 

Reading the results matrix now involves looking for the 
occurrences of the value of k. The modifications described in 
sections 4.1 and 4.2 can be applied to this form. 

4.4 Omission of events in the query 
The final modification to the base algorithm is to allow a match 
to be found even if some of the events in the query are not 
present in the matched subsequence of the text. Essentially when 
parsing the matrix we consider non-zero values in not only the 
line immediately above but also previous lines. To avoid 
excessive parsing of the matrix which would degrade the 
performance of the algorithm we can build a matrix of ordered 
pairs. For notational purposes, given an ordered pair p, we will 
denote the first value as p[0] and the second as p[1]. 

Working with the base algorithm from section 3.3 and allowing a 
sequences of up to l events from the query to be omitted from the 
match we build the matrix 

M i j =  (k+1, l) iff Sj ⊆ Ti  and (M i-1 j-1 ≠ (0, 0) or i = 0) 

 (M i j-1[0] - 1, M i j-1[1])  iff (not Sj ⊆ Ti ) and (M i j-1[0]≠ 
0) 

 (M i-1 j[0], M i-1 j[1] - 1)  iff (not Sj ⊆ Ti ) and (M i-1 j[1]≠ 
0) 

 (0, 0) otherwise 

Parsing the matrix for matches is a matter of looking for the 
value k+1 as the first member of any ordered pairs. Limiting the 
number of sequences omitted can be performed when parsing the 
matrix for results. Again the modifications described in sections 
4.1, 4.2 and 4.3 can also be applied in conjunction with this 
modification. 

4.5 An XML query structure 
Combined these modifications allow us to search a musical text 
given a polyphonic query and a number of degrees of freedom. 
Considering just note pitches and durations, we can use the 
following XML structures such as the following to write a query 
allowing some of these degrees of freedom 

<quer y omi ssi ons=” 0” > 
  <event  
    f ol l owi ng- gap=2 
    f ol l owi ng- gap. uni t s=” event s ”  
    cont ent - omi ssi ons . max=” 0”  
    cont ent - omi ssi ons . mi n=” 0” > 
     <not e 
       pi t ch. mi n=” 60”  
       pi t ch. max=” 65”  
       dur at i on. mi n=” 1”  
       dur at i on. max=” 1” / > 
  </ event > 
etc… 
 

Here the omissions attribute of the query element tells us that 
we do not allow any events of the query to be omitted in the 
match. The following-gap attribute of the event element tells us 
the “gap” that can occur after this event in the text before the 
next event must occur; the following-gap.units whether this is 
measure in events or durations. The content-omissions.min and 
content-omissions.max tell us how many notes can be omitted 
from the match in order for it sti l l to be classified as a match. 
The pitch.min, pitch.max, duration.min and duration.max 
attributes of the note element define ranges for a note in the text 
to match.  

Whilst the algorithms described here can efficiently cope with 
this sort of query, there are other queries which can be handled 
which cannot be articulated in this XML structure. 

5. FURTHER WORK 
At present the algorithms described here merely locate matches 
given a number of degrees of freedom. There is no attempt to 
rank these matches. The calculation of a rank could be made as 
the matrix is parsed for matches and some pre-parsing could also 
be performed as the matrix is built. Crawford and Dovey (1999) 
[2] outline a number of similarity measures which could be used 
in creating a ranking algorithm such as completeness, 
compactness, musical salience, harmonic progression, rhythmic 
similarity, metrical congruity. This ranking process is essential 
before we can fully evaluate the effectiveness of this type of 
approach to music information retrieval. 

Given the amount of freedom these algorithms allow in the 
specification of a query there is a need for query languages and 
GUI query interfaces to allow users to easily express such 
queries. Some work has already been undertaken in this area. 
The XML structure above is very much a working structure and 
not intended for general use. 
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ABSTRACT  
Most research on music retrieval systems is based on monophonic 
musical sequences.  In this paper, we investigate techniques for a 
full polyphonic music retrieval system.  A method for indexing 
polyphonic music data files using the pitch and rhythm dimensions 
of music information is introduced.  Our strategy is to use all 
combinations of monophonic musical sequences from polyphonic 
music data.  ‘Musical words’  are then obtained using the n-gram 
approach enabling text retrieval methods to be used for polyphonic 
music retrieval. Here we extend the n-gram technique to encode 
rhythmic as well as interval information, using the ratios of onset 
time differences between two adjacent pairs of pitch events.  In 
studying the precision in which intervals are to be represented, a 
mapping function is formulated in dividing intervals into smaller 
classes.  To overcome the quantisation problems that arise with 
using rhythmic information from performance data, an encoding 
mechanism using ratio bins is also adopted.  We present results 
from retrieval experiments with a database of 3096 polyphonic 
pieces.   
 

1. INTRODUCTION 
Music documents encoded in digital formats have rapidly been 
increasing in number with the advances in computer and network 
technologies.  Managing large collections of these documents can 
be difficult and this has consequently motivated research towards 
computer-based music information retrieval (IR) systems.  Music 
documents encompass documents that contain any music-related 
information such as music recordings, musical scores, manuscripts 
or sketches and so on [1].  Many studies have been carried out in 
using the music-related information contained in these documents 
for the development of content-based music IR systems.  Such 
systems retrieve music documents based on information such as 
the incipits, themes and instrument families.  However, most of 
these content-based IR systems are still research prototypes.  
Music IR systems that are currently in wide-spread use are systems 
that have been developed using meta-data such as file-names, titles 
and catalogue references.   

 

 

One common approach in developing content-based music IR 
systems is with the use of pitch information.  Examples of such 
systems are Themefinder [2] and Meldex [3].  However, these 
systems were developed using monophonic musical sequences, 
where a single musical note is sounded at one time, as opposed to 
polyphonic music where more than one note is sounded 
simultaneously at any one point in time.  With vast collections of 
polyphonic music data available, research on polyphonic music IR 
is on the rise [4].   

 

Our aim is the development of a polyphonic music IR system for 
retrieving a title and performance of a musical composition given 
an excerpt from a musical performance as a query.  For content-
based indexing, we use the pitch and rhythm dimensions of music 
information and propose an approach for indexing full polyphonic 
music data. In this paper we present our approach and evaluate it 
using a database of polyphonic pieces. 

 

The paper is structured as follows: Section 2 highlights some of 
the issues and challenges in content-based indexing. Section 3 
presents the approach taken in using the pitch and duration 
information for indexing. The steps in constructing n-grams from 
polyphonic music data and the mechanism of extending the 
representation to include rhythm information are outlined.  The 
empirical analysis performed and approach for encoding patterns 
derived from n-gramming is presented.  Section 4 reports the 
retrieval experiments using ranked retrieval and evaluation results 
using the mean reciprocal rank measure of our polyphonic music 
IR system. 

 

2.  ISSUES IN CONTENT-BASED 
INDEXING AND RETRIEVAL OF 
MUSICAL DATA 
The problem of varying user requirements is common to most IR 
systems.  Music IR systems are no exception.  Music librarians, 
musicologists, audio engineers, choreographers and disc-jockeys 
are among the wide variety of music IR users with a wide range of 
requirements [1]. For example, with a musical query where the 
user plays a recording or hums a tune, one user could possibly 
require all musical documents with the same key to be retrieved 
while another user's requirement might be to obtain all documents 
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of the same tempo.  Looking at another example where a musical 
composition’s title is queried, one user could require the 
composer’s full-name and another user might need to know the 
number of times the violin had a solo part in the composition.   
Knowledge of user requirements is an important aspect in 
developing useful indexes, and with music IR systems this 
challenge is compounded with others such as the multiple 
dimensions of music data and digital music data formats. 

 

Music data are multi-dimensional; musical sounds are commonly 
described by their pitch, duration, dynamics and timbre.  Most 
music IR systems use one or two dimensions and these vary based 
on types of users and queries.  Selecting the appropriate dimension 
for indexing is an important aspect in developing a useful music IR 
system.  Indexing a system based on its genre class would be useful 
for a system that retrieves music based on mood but not for a 
system where a user needs to identify the title of a music piece 
queried by its theme.    

 

The multiple formats in which music data can be digitally encoded 
present a further challenge.  These formats are generally 
categorised into a) highly structured formats such as Humdrum [5] 
where every piece of musical information on a piece of musical 
score is encoded, b) semi-structured formats such as MIDI in 
which sound event information is encoded and c) highly un-
structured raw audio which encodes only the sound energy level 
over time.   Most current music IR systems adopt a particular 
format and therefore queries and indexing techniques are based 
upon the dimensions of music information that can be extracted or 
inferred from that particular encoding method.  

 

There are many approaches for the development of music IR 
systems.  Some of these include the use of approximate matching 
techniques in dealing with challenges such as recognising melodic 
similarity [6], the use of standard principles of text information 
retrieval and exact matching techniques that demand less retrieval 
processing time [7,8].  

 

3.  A TECHNIQUE FOR INDEXING 
POLYPHONIC MUSICAL DATA 
3.1 Pattern extraction 
The approach we take for indexing is full-music indexing, similar 
to full-text indexing in text IR systems.  This approach was studied 
by Downie [8], where a database of folksongs was converted to an 
interval-only representation of monophonic ’melodic strings’.  
Using a gliding window, these strings were fragmented into length-
n subsections or windows called n-grams for music indexing.   

 

With polyphonic music data, a different approach to obtaining n-
grams would be required since more than one note can be sounded 
at one point in time (known as the onset time in this context).  In 
sorting polyphonic music data with ascending onset times and 
dividing it into windows of n different adjacent onset times, one or 
more possible monophonic ’melodic string(s)’ can be obtained 
within a window.  The term melodic string used in this context 
may not be a melodic line in the musical sense.  It is simply a 

monophonic sequence extracted from a sequence of polyphonic 
music data.   

 

Various approaches in deriving patterns from unstructured 
polyphonic music for computer-based music analysis have been 
investigated in a study by Crawford et. al. [9].  The approach taken 
for our study would be a musically unstructured but an exhaustive 
mechanism in obtaining all possible combinations of monophonic 
sequences from a window for the n-gram construction.  Each n-
gram on its own is unlikely to be a musical pattern or motif but a 
pattern amenable for digital string-matching.  The n-grams 
encoded as musical words using text representations would be 
used in indexing, searching and retrieving a set of sequences from 
a polyphonic music data collection. 

 

The summary of steps taken in obtaining these monophonic 
musical sequences is as follows: 

 

Given a polyphonic piece in terms of ordered pairs of onset time 
and pitch  sorted by onset time, 

 

1. Divide the piece using a gliding window approach into 
overlapping windows of n different adjacent onset times 

2. Obtain all possible combinations of melodic strings from each 
window 

 

N-grams are constructed from the interval sequence(s) of one or 
more monophonic sequence(s) within a window.  Intervals (the 
distance and direction between adjacent pitch values) are a 
common mechanism for deriving patterns from melodic strings, 
being invariant to transpositions [10].  For a sequence of n pitches, 
an interval sequence is derived with n-1 intervals by Equation (1). 

 

iii PitchPitchInterval −= + 1   (1) 

 

To illustrate the pattern extraction mechanism for polyphonic 
music data, the first few bars of Mozart’s Alla Turca, as shown in 
Figure 1, is used.  The performance data of the first two bars of the 
piece was extracted from a MIDI file and converted into a text 
format, as shown in Figure 2(a). The left column contains the onset 
times sorted in ascending order, and the corresponding notes 
(MIDI semitone numbers) are on the right column.  The 
performance visualised on a time-line is shown in Figure 2 (b). 

 

 

 
 

Figure 1. Excerpt from Mozart’ s Alla Turca 
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Figure 2.  (a) Onset times and pitch events for Mozart’s  

   All Turca (b) performance visualized on a time-line 

 

Following the steps outlined in obtaining the n-grams and applying 
Equation (1) in pattern derivation, the interval sequences from the 
first 3 windows of length-3 onset times of the performance data in 
Figure 2 are: 

Window 1: [-2 -1]  

Window 2: [-1 1] 

Window 3: [1 –12]  and  [1 3]  

 

To add to the information content of the n-grams constructed 
using interval sequences, the duration dimension of music 
information is used.  Numerous studies have been carried out with 
the use of patterns generated from various combinations of the 
pitch and duration dimensions.  These studies either used pitch 
information [8, 11], rhythm information [12] or both pitch and 
rhythm information simultaneously [4, 13].  In using the duration 
dimension for pattern derivation, a common mechanism is to use 
the relative duration of a note to a designated base duration such 
as the quarter or the sixteenth note.  Relative durations are widely 
used as they are invariant to changes of tempo [10].  However, the 
choice of base durations such as the quarter or the sixteenth note 
could pose quantisation problems with performance data compared 
to data obtained from score encodings.  With performance data, 
one option for the selection of a base duration could be the time 
difference between the first two notes of a given performance.  
However, with errors such as timing deviations of these two notes 
or recordings being slightly trimmed off at the beginning, this error 
would be duplicated in obtaining rhythmic information of the 
whole performance data.   

                                    

In our approach, we look at the onset times pattern based on the 
timeline - the times at which pitch events occur.  The approach in 
using time between consecutive note onsets has been studied by I. 
Shmulevich et. al. [14].  For pattern derivation using rhythm 
information, the ratios of time difference between adjacent pairs of 
onset times form a rhythmic ratio sequence.  With this approach, it 
is not necessary to quantise on a predetermined base duration, to 
use the duration length of a note (which can be difficult to 
determine from audio performances) and we do not assume any 
knowledge of beat and measure information.  For a sequence of n 
onset times, a rhythmic ratio sequence is derived with n-2 ratios 
obtained by Equation (2). 
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In obtaining n-grams that incorporate interval and rhythmic ratio 
sequences using n onset times and pitches, the n-gram would be 
constructed in the pattern form of:  

 

[ Interval1 Ratio1 … Intervaln-2 Ration-2 Intervaln-1  ] 

 

Using the example of Figure 2, the combined interval and ratio 
sequences from the first 3 windows of length 3-onset are: 

 

Window 1: [-2  1  -1] 

Window 2: [-1 1 1] 

Window 3: [1 1 -12] and [1 1 3] 

 

Note that the first and last number of each tuple are intervals while 
the middle number is a ratio. 
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3.2 Pattern encoding 
 

In order to be able to use text search engines we need to encode 
our n-gram patterns with text characters.  One challenge that arises 
is to find an encoding mechanism that reflects the pattern we find 
in musical data.  With large numbers of possible interval values and 
ratios to be encoded, and a limited number of possible text 
representations, classes of intervals and ratios that clearly represent 
a particular range of intervals and ratios without ambiguity had to 
be identified.  For this, the frequency distribution for the directions 
and distances of pitch intervals and ratios of onset time differences 
that occur within the data set were obtained.  A data collection of 
3096 MIDI files of a classical music collection was used in 
obtaining these frequencies. These were mostly classical music 
performances obtained from the Internet.  
[http://www.classicalarchives.com] 

 

For the pitch encoding, firstly the data set was analysed for the 
range and interval distances that occur within the data set and the 
frequency at which these occur.  The frequency distribution versus 
interval (in units of semitones) graph obtained is shown in Figure 
3. 

 

According to Figure 3, the vast bulk of pitch changes occurs 
within one octave (i.e., -12 to +12 semitones). A good encoding 
should be more sensitive in this area than outside of it.  We chose 
the code to be the integral part of a differentiable continuously 
changing mapping function (3), the derivative of which 
approximately matches the empirical distribution of intervals in 
Figure 3.   
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In Equation (3), X is a constant set to 27 for our experiments as a 
mechanism to limit the codes range to the 26 text letters.  Y is set 
to 24 to obtain a 1-1 mapping of semitone differences in the range 
[-13, 13].  In accordance with the empirical frequency distribution 
of Figure 3, less frequent semitone differences (which are bigger in 
size) are squashed and have to share codes. Based on the property 
of the tanh curve, Y determines the rate at which class sizes 
increase as interval sizes increase.  This is a trade-off between 
classes of small (and frequent) versus large (and rare) intervals.  
The codes obtained are then mapped to the ASCII character values 
for letters.  In encoding the interval direction, positive intervals are 
encoded as uppercase A-Z and negative differences are encoded 
with lower case a-z and in the centre code 0 being represented by 
the numeric character 0. 

In using duration ratios, most studies have assumed quantised 
rhythms, i.e., rhythm as notated in the score [ 14]  owing to 
simplicity and timing deviations that could occur with performance 
data.  To deal with performance data, we adopt ratio bins for our 
study.   
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Figure 4 shows the frequency versus the log of the ratios (onset 
times were obtained in units of milliseconds).  We analysed the 
frequency distribution of ratio values of the data collection in order 
to provide quantisation ranges for the bins that reflect the data set.  
The peaks clearly discriminate ratios that are frequent and bins for 
ratio values for encoding can be established.  Mid-points between 
these peak ratios were then used to construct bins which provided 
appropriate quantisation ranges in encoding the ratios.  Ratio 1 has 
the highest peak as expected and other peaks occur in a 
symmetrical fashion where for every peak ratio identified, there is 

y,i-a                            Z                  A-I ,Y 

 

        z-a                        0  A-Z 

 

Figure 3. Interval Histogram 

 

Figure 4. Ratio Histograms and Ratio Bins 

 



a symmetrical peak value of 1/peak ratio.  From our data analysis, 
the peaks identified as ratios greater than 1 are 6/5, 5/4, 4/3, 3/2, 
5/3, 2, 5/2, 3, 4 and 5.  

 

The ratio 1 is encoded as Z.  The bins for ratios above 1 as listed 
above are encoded with uppercase alphabets A-I and any ratio 
above 4.5 is encoded as Y.  The various bins for ratios smaller than 
1 as listed above are encoded with lowercase alphabets a-i and y 
respectively.  The ranges identified with this symmetry and 
corresponding codes assigned are visualised in Figure 4. 

 

4 IMPLEMENTATION 
4.1 Database development 
One of the main aims of this study is to examine the retrieval 
effectiveness of the musical words obtained from n-grams based on 
the pitch and duration information.  The experimental factors 
investigated for this initial study were a) the size of interval classes 
and bin ranges for ratios, b) the query length and c) the window 
size used for the n-gram construction.  We use the same data 
collection of 3096 classical MIDI performances for the database 
development as in Section 3.   

6 databases P4, R4, PR3, PR4, PR4CA and PR4CB were 
developed.  The minimum window size is 3, as at least 3 unique 
onset times would be required in obtaining one onset time 
difference ratio.  A description of each database and its 
experimental factors follows:   

 
P4:  Only the pitch dimension is used for the n-gram construction 
with the window size of 4 onset times.  Each n-gram is encoded as 
a string of 3 characters corresponding to 3 intervals.  Y is set to 24 
to enable a 1-1 mapping of codes to most of the intervals within a 
distance of 20. The theoretical maximum of possible index terms is 
148,877 = (26*2+1)3. 
 
R4:  Only the rhythm dimension is used for the n-gram 
construction with the window size of 4 onset times.  All bin ranges 
identified as significant ratio ranges were used in encoding.  The 
theoretical maximum of possible index terms is 441 = (10*2+1)3. 
 
PR3: The pitch and rhythm dimensions are used for the n-gram 
construction in the combined pattern form stated in Section 3 with 
the window size of 3 onset times.  Y is assigned 24 to enable 
similar interval class encoding as P4.  All bin ranges identified as 
significant ratio ranges are used in encoding.  The theoretical 
maximum of possible index terms is 58,989 = (53*21*53). 
 
PR4: The pitch and rhythm dimensions are used for the n-gram 
construction as above but with the window size of 4 onset times.  
All bin ranges identified as significant ratio ranges are used in 
encoding.  The theoretical maximum of possible index terms is 
65,654,757 = (533*212). 
 
PR4CA:  The pitch and rhythm dimensions are used for the n-gram 
construction as above.  To study the effects of the interval class 
sizes within the range of 2 octaves for a 2-1 mapping for most 
intervals for most intervals smaller than 20 semitones, Y is set to 
48.  Although one character now covers at least 2 semitones (as 

opposed to 1 semitone above), still all alphabets are used with this 
encoding, i.e. 26 uppercase and 26 lowercase letters and 0 for no 
change.  The encoding for the ratios was made coarser as well : 
where we previously used the codes A-I,Y and a-I,y we now use 
the codes A-D, Y and a-d,y respectively, now A covers what used 
to be represented by A and B, B covers what used to be C and D , 
C covers what used to be E and F etc.  The theoretical maximum 
of possible index terms is 18,014,177 = (533*112).  
 
PR4CB:  The pitch and rhythm dimensions are used for the n-gram 
construction as above.  To study the effects of the interval class 
sizes within the range of 2 octaves for a 3-1 mapping for most 
intervals up to around 20 semitones, Y is set to 72. Coarse ratio 
encoding with bins used as in PR4CA.   
 
The summary of databases and experimental factors are shown in 
Table 1.  
 
 

Table 1. Databases and experimental factors 

 

Database Pitch Rhythm n Y # R.Bins #Terms 

P4 Y  4 24  148,877 

R4  Y 4  21 441 

PR3 Y Y 3 24 21 58,989 

PR4 Y Y 4 24 21 65,654,757 

PR4CA Y Y 4 48 11 18,014,117 

PR4CB Y Y 4 72 11 18,014,117 

 
 

4.2 Retr ieval Exper iments 
In examining the retrieval effectiveness of the various formats of 
musical words and to evaluate the various experimental factors, an 
initial run, R1, was performed on the 6 databases.  For query 
simulation, polyphonic excerpts are extracted from randomly 
selected musical documents of the data collection.  Query locations 
were set to be the beginning of the file.  In simulating a variety of 
query lengths, lengths of the excerpts extracted from the randomly 
selected files were of 10, 30 and 50 onset times.  These excerpts 
were then pre-processed and encoded to generate musical words 
with similar formats to the corresponding 6 databases: P4, R4, 
PR3, PR4, PR4CA and PR4CB.  The ranked retrieval method was 
used for run R1 averaged over 30 queries.  In ranking the 
documents retrieved, the cosine rule used by the MG system was 
adopted [15] and in evaluating our retrieval using the known item 
search of our query excerpt, the Mean Reciprocal Rank (MRR) 
measure was used.  The reciprocal rank is equal to 1/r where r is 
the rank of the music piece the query was taken from.  In using the 
known item search, the rank position of the document that the 
query was extracted from was used in obtaining the reciprocal rank 
measure.  These were averaged over the 30 queries.  This MRR 
measure is between 0 and 1 where 1 indicates perfect retrieval.  
The retrieval results are shown in Table 2. 

 



Table 2. MRR measures for run R1 

 10 30 50 

P4 0.60 0.77 0.81 

R4 0.03 0.11 0.15 

PR3 0.46 0.74 0.81 

PR4 0.74 0.90 0.95 

PR4CA 0.71 0.83 0.71 

PR4CB 0.47 0.68 0.73 

 

 

The results clearly indicate that using n-grams with polyphonic 
music retrieval is a promising approach with the best retrieval 
measure 0.95 being obtained by musical words of the PR4 format 
and a query length of 50 onset times. Comparing the retrieval 
measures of P4 and PR4 for all 3 query lengths, it can be said that 
the addition of rhythm information to the n-gram is a definite 
improvement to widening the scope of n-gram usage in music 
information retrieval. 

 

The length of a window for n-gram construction would require 
further study, as there are clear improvements of measures 
between PR3 and PR4 for all query lengths.  Further experiments 
will be needed to obtain the optimal length.  In looking at the class 
size of the intervals and bin range of ratios, measures clearly 
deteriorate from smaller class sizes of PR4 to larger sizes of 
PR4CA and PR4CB.  The class sizes require further investigation 
to determine its usefulness in providing allowances for more fault-
tolerant retrieval.   

 

In general, and as expected, the measure improves with the length 
of the query for all databases although retrieval using only ratio 
information with R4 is almost insignificant.  Clearly, the 441 
possible different index terms are insufficient to discriminate music 
pieces. 

 

4.3 Error  Simulation 
A second run, R2, was performed by simulating errors in the 
queries to study the retrieval behaviour under error conditions. 
Error models used in monophonic music described in [3, 8] were 
not adopted for this study as the range of intervals was 
significantly different.  As there were no error models available 
with polyphonic music, we adopted the Gaussian error model for 
intervals as shown in Equation (4) and for ratios as shown in 
Equation (5).  ε is the Gaussian standard random variable and Di is 
the mean deviation for an interval error and Dr is the mean 
deviation for an error in the ratio. 

 

*( ikk DIntervallNewInterva += ε ) (4) 

*.(exp* rkk DRatioNewRatio = ε ) (5) 

 

As an initial attempt to investigate retrieval with error conditions, 
we arbitrarily selected two sets of error deviation values D1 and 
D2.  With D1,  Di was assigned 3 and Dr assigned as 0.3.  For the 
second set of mean error deviation values, Di was assigned 2 and 
Dr was retained as 0.3.  Dr was left unchanged, as the ratio bin 
range was not varied between PR4CA and PR4CB. All musical 
words generated for the similar queries used in R1 and with length 
30 were modified by incorporating the error deviation for the pitch 
and duration dimensions correspondingly for the 3 databases PR4, 
PR4CA and PR4CB. The MRR measures are shown in Table 3. 

 

Table 3. MRR measures for run R2 

 D1 D2 

PR4 0.24 0.50 

PR4CA 0.30 0.65 

PR4CB 0.27 0.50 

 
 

The results clearly indicate that musical words encoded with a 
wider interval class size perform better with error conditions.  A 
compromise between musical words encoded using larger interval 
class sizes and wider ratio bin ranges and smaller ones is clearly 
required.  This can be seen from the improvement in measures 
obtained with run R2 and deviation set D2 of Table 3 where the 
measure of PR4CA is 0.65 and PR4 only 0.50. For the counterpart 
run, R1, with no query errors, it indicates deterioration in measure 
with the wider encoding (where a measure of 0.90 was obtained 
with PR4 and only 0.83 for PR4CA with query length 30). 

 

This initial experiment under error conditions clearly identifies the 
need for a detailed analysis in obtaining optimal values for interval 
class size and effective retrieval in using n-grams in polyphonic 
music retrieval.  

 

5 FUTURE WORK 
Based on the experimental results and initial experimental factors 
investigated, this study will be continued with an in-depth study of 
the following experimental factors: a) query length b) window 
length c) ration bin range d) Y value for interval classification e) 
error model.  Further issues for investigation are a) the 
development of error models with polyphonic music, b) a 
relevance judgment investigation in assessing the documents and 
finer retrieval measures, c) suitability of the ranking mechanism for 
musical words, d) an analysis of the search complexity of the 
algorithm in extracting all possible patterns 

 

6 CONCLUSIONS 
This study has proven the usefulness of using n-grams in 
polyphonic music data retrieval.  An interval mapping function was 
utilised and proved useful in mapping interval classes over the text 
alphabetical codes.  Onset time ratios have proven useful for 
incorporating rhythm information.  With the use of bins for ranges 
of significant ratios, the rhythm quantisation problem in music 



performance data has been overcome.   The results presented so 
far for polyphonic retrieval are qualitatively comparable to 
published successful monophonic retrieval experiments [8] and, 
hence, very promising.  
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ABSTRACT
The authors give a brief account of their combined 7+ years in
multimedia standardization, namely in the MPEG arena. They
discuss specifics on musical content description in MPEG-7
Audio and other items relevant to Music Information Retrieval
among the MPEG-7 Multimedia Description Schemes. In the
presentation, they will give a historical overview of the MPEG-7
standard, its motivations, and what led to its current state.

1. INTRODUCTION
MPEG-7, officially known as the Multimedia Content Description
Interface, is an ISO/IEC standard whose first version will be
finalized at the end of 2001. Its goal is to provide a unified
interface for describing multimedia content in all forms. Although
an obvious application for this is in multimedia information
retrieval, it by no means limits itself to that domain, also
encompassing broadcast-style scenarios, real-time monitoring, and
potentially semi-automated editing. The Audio part of the
standard includes descriptors for musical timbre and for melodic
similarity.

2. MPEG-7 AUDIO
2.1 Melody in MPEG-7
Of chief interest to the authors in MPEG-7 is the Melody
description scheme. The MPEG-7 Audio standard will include a
unified Description Scheme (DS) for melodic information, which
contains two variants at different levels of detail. Within the
Description Scheme, there are a series of features common, but
auxiliary, to either variant. These features include meter, key, and
scale used, and their use is optional. Of the two options for
representing the melody itself, the first, called MelodyContour, was
designed to facilitate the type of imprecise musical matching
required by the query-by-humming application with as little
overhead as possible. The second representation,
MelodySequence, is considerably more verbose as a precise
description of melody to facilitate search and retrieval using a
wide variety of queries [1].

Defining exactly what is or is not a melody can be somewhat
arbitrary. Melodies can be monophonic, homophonic, or
contrapuntal. Sometimes what one person perceives to be the

melody is not what another perceives. A melody can be pitched or
purely rhythmic, such as a percussion riff. The MPEG-7 Melody
DS does not attempt to address all of these cases and is limited in
scope to pitched, monophonic melodies.

Importantly for recognition purposes, people can still uniquely
identify melodies after they have undergone transposition (we still
recognize a familiar tune in a different key as being the same
tune). For this reason, absolute pitch is not the best descriptor for
melodic pitch information. What is important are the relative
intervals between successive notes in a melody, since interval
relations are also invariant to key transposition. This is a key fact
exploited by both MelodyContour and MelodySequence.

With MelodyContour, however, we do not assume that a query will
contain precise and accurate intervals. A more robust feature is
the melody contour, which is derived from interval information
and is also invariant to transposition [4]. Based on research and
experimental evidence, a five-level contour was chosen for
MelodyContour in MPEG-7, dividing the contour into small and
large ascending and descending intervals with one level indicating
no pitch change. Separation of the five contour levels is defined as
in table 1.

Table 1: The five levels of contour information in
MelodyContour

Contour value Change in interval

-2 Descent of a minor-third or greater

-1 Descent of a half-step or whole-step

0 No change

1 Ascent of a half-step or whole-step

2 Ascent of a minor-third or greater

In contrast, the MelodySequence makes no a priori assumptions
about the errors made in the query, and does not try to eliminate
them through quantization. Rather, it takes the approach that the
data set itself provides the best recovery for user error [5]. For a
query on a melody with n notes, the representation transforms the
query into n-1 dimensional interval space, to enable a comparison
between two melodies using an L2 norm. This approach has the
advantages of not eliminating any pitch or rhythm information,
and therefore is able to reconstruct melodies and queries after thePermission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



fact. MelodyContour and MelodySequence are compared in Tables
2 and 3.

Figure 1: The first measures of "Moon River"

Table 2: MelodyContour code for “Moon River”
<Contour>
<!—- MelodyContour description: “Moon River”-->
<!-- (7 intervals = 8 notes total) -->
  <ContourData>2 –1 –1 –1 –1 –1 1</ContourData>
</Contour>
<Meter>
  <Numerator>3</Numerator>
  <Denominator>4</Denominator>
</Meter>
<Beat>
  <BeatData>1 4 5 7 8 9 9 10</BeatData>
</Beat>

Table 3: MelodySequence code for “Moon River”
<MelodySequence>
  <!-- [+7 -2 -1 -2 -2 -2 +2]                -->
  <!-- [2.3219 -1.5850 1 -0.4150 -1.5650 0 0]-->
    <Note>
      <Interval>7</Interval>
      <NoteRelDuration>2.3219</NoteRelDuration>
      <Lyric>Moon</Lyric>
      <PhoneNGram>m u: n</PhoneNGram>
    </Note>
    <Note>
      <Interval>-2</Interval>
      <NoteRelDuration>-1.5850</NoteRelDuration>
      <Lyric>Ri-</Lyric>
    </Note>
    <Note>
      <Interval>-1</Interval>
      <NoteRelDuration>1</NoteRelDuration>
      <Lyric>ver</Lyric>
    </Note>
    <!-- Other notes elided                  -->
</MelodySequence>

2.2 Other features in MPEG-7 Audio
The other Description Scheme relevant to music is the musical
instrument timbre DS. This description scheme groups up to five
different features to estimate the perceptual similarity between
segmented musical tones. There are two different “timbre spaces”
possible, with harmonic, sustained, coherent sounds, and with
non-sustained, percussive sounds [6]. The different spaces use the
following features as shown in table 4.

Table 4: Timbre features

Harmonic Percussive

Harmonic Spectral Centroid Log Attack Time

Harmonic Spectral Deviation Temporal Centroid

Harmonic Spectral Spread Spectral Centroid

Harmonic Spectral Variation

Log Attack Time

The application-oriented Description Schemes within MPEG-7
audio also include a representation of spoken content (e.g. as an
output of a speech recognition engine) [3], robust audio
identification, and generalized sound recognition tools that use
spectral basis functions [2].

To complement the application-oriented Description Schemes,
there are general audio features that may apply to any signal.
These low-level audio descriptors form a basic compatibility
framework so that different applications have a baseline
agreement on such aspects as standard definitions of features,
standard sampling rates for regularly sampled descriptors, or how
to segment sounds hierarchically [7].

3. GENERAL MPEG-7 FEATURES
Typical descriptors for traditional information retrieval, such as
title, composer, and year of recording, are covered in detail in the
Multimedia Description Schemes (MDS) part of the standard,
particularly in the section on creation and production information.
Similarly, one may try to describe musical genre as a hierarchical
ontology, or describe musical instrument from a list of controlled
terms. The mechanisms by which one can create these ontologies
and dictionaries are in the MDS as the Controlled Term datatype
and the Classification Scheme DS. One may also describe aspects
of the medium itself, such as the encoding format or sound
quality, with the media description tools in the MDS [7].

Other important technologies in MPEG-7, such as the Description
Definition Language (DDL)—the XML Schema-based language
for giving the syntax of Description Schemes—and various
systems technologies for compressing MPEG-7 data, are sadly out
of the scope of this paper.
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ABSTRACT
Along with investigating similarity metrics between audio
material, the topic of robust matching of pairs of audio content
has gained wide interest recently. In particular, if this matching
process is carried out using a compact representation of the audio
content ("audio fingerprint"), it is possible to identify unknown
audio material by means of matching it to a database with the
fingerprints of registered works. This paper presents a system for
reliable, fast and robust identification of audio material which can
be run on the resources provided by today's standard computing
platforms. The system is based on a general pattern recognition
paradigm and exploits low level signal features standardized
within the MPEG-7 framework, thus enabling interoperability on
a world-wide scale.

Compared to similar systems, particular attention is given to
issues of robustness with respect to common signal distortions,
i.e. recognition performance for processed/modified audio signals.
The system's current performance figures are benchmarked for a
range of real-world signal distortions, including low bitrate
coding and transmission over an acoustic channel. A number of
interesting applications are discussed.

1. INTRODUCTION
 Stimulated by the ever-growing availability of musical material to
the user via new media and ways of distribution (e.g. the Internet,
efficient audio compression schemes) an increasing need to
identify and classify audio data has emerged. Given the enormous
amount of available audio material it has become more and more
difficult for the consumer to locate music that fits his or her
personal tastes.

Descriptive information about audio data which is delivered
together with the actual content would be one way to facilitate this
search immensely. This so-called metadata ("data about data")

could e.g. describe the performing artist, composer or title of the
song and album, producer, date of release, etc.. Examples of de-
facto and formal standards for metadata are the widely used ID3
tags attached to MP3 bitstreams [1] and the forthcoming MPEG-7
standard [2].

Another way of retrieving these information resides in the
characteristics of the medium on which the audio data is
comprised. This kind of services are provided by e.g. Gracenote,
formerly CDDB, [3] where the Table Of Content (TOC) of an
audio CD is compared against a vast database. Obviously, this
kind of mechanism fails when the CD is a self made compilation,
or when commercially not available.

A lot of different approaches have addressed the automatic
analysis of audio content, be it speech/music classification
[4, 5, 6], retrieval of similar sounds ("sounds like" data base
search) [7, 8, 9], or music genre classification [10].

The main topic of this paper, however, is to present a system
which performs an automated identification of audio signals rather
than assigning them to predefined categories. The essential
property of the introduced system lies in the fact that it does not
rely on the availability of metadata information that is attached to
the audio signal itself. It will, however, identify all incoming
audio signals by means of a database of works that are known to
the system. This functionality can be considered the algorithmic
equivalent of human recognition of a song from the memory of
the recognizing person.

This observation yields the key criteria for the performance
requirements of an audio identification system. It should be able
to identify the song as long as a human being is able to do so. To
come as close as possible to this aim, the system should be robust
against alteration commonly applied to musical material, like
filtering, dynamic range processing, audio coding, and so on.
Additionally, arbitrary excerpts of the music signal should be
sufficient for the recognition.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



The segment size needed for recognition by an ideal system
should not be longer than a few seconds, with other words as long
as it would take a human listener to identify a piece of music
correctly.

On top of that the system should be able to operate with large
databases of registered works while reliably discriminate between
the items, and computational complexity should stay within
acceptable limits ("System Scalability").

While the task of music recognition may appear easy to human
listeners, lately introduced technologies definitely fall short of
reaching these high goals, e.g. in terms of robustness of
recognition [11] or computational complexity [12].

The system presented in this paper has been designed to meet
many of the requirements mentioned above. The system's
complexity is low enough to allow operation on today's personal
computers and other cost-effective computing platforms and the
described algorithm is based on well-known feature
extraction/pattern recognition concepts [13]. It includes extraction
of a set of robust features with a psychoacoustic background. The
extraction process itself is based on so called Low Level
Descriptors that will be part of the upcoming MPEG-7 standard.

In the following chapters an overview of the presented system is
provided first. The architecture of the system as well as the basic
underlying concepts are explained. Subsequently, the system
requirements for robust recognition are discussed by identifying a
suite of typical alterations of the original audio material. The
influence of the audio feature selection on the recognition
performance is addressed thereafter based on test results using
different sets of test data. In the following two chapters potential
applications of the proposed system are identified and the
compliance to the upcoming MPEG-7 standard is accounted for.

Finally, a conclusion section will present promising future
improvements and directions for further enhancement of the
overall system performance.

2. SYSTEM OVERVIEW
The audio identification system presented here follows a general
pattern recognition paradigm as described in [13]. From the block
diagram shown in Figure 1, two distinct operating modes can be
identified, namely the training mode and the classification
(recognition) mode.  During training a condensed "fingerprint" of
each item from the training sample is created which is used in the
recognition phase to identify the item under test.  In a
preprocessing step a signal preprocessor converts the audio input
signal into a fixed target format with predefined settings. In the
present configuration, the signal is converted to a mono signal
using common downmix techniques and then, if necessary,
resampled to a sampling frequency of 44.1 kHz.

2.1 Feature Extraction
Feature extraction is a central processing step which has a high
influence on the overall system performance. The chosen feature
set should be robust under a wide class of distortions (see Section
3.2) and the computational burden should be low enough to allow
for real-time calculation. In the present configuration the audio
time signal is segmented by a windowing function and each
window is mapped to a spectral representation by means of a DFT
(Discrete Fourier Transform). A set of psychoacoustic features is
extracted from the spectrum of each analysis window to form a
feature vector. This vector is regarded as an elementary feature at
a discrete time instant t and undergoes further processing.

The elementary features are then normalized to have component-
wise unit variance. Note that no removal of the mean is necessary

Figure 1: System architecture overview



prior to normalization, as suggested in [14], since only the
difference between the feature vectors to be classified and the
reference vectors from the "fingerprint" are considered. Through
this normalization step, a balanced feature vector is generated
which can be filtered optionally.

Normalized features from subsequent time steps are then grouped
together to form a composite feature vector of higher dimension.
In addition, the feature statistics of the single vectors are
estimated.

2.2 Vector Quantization for Pattern
Recognition
The identification system uses a linear classifier which is based on
a compact representation of the training vectors, the above
mentioned fingerprint. The classification is performed using a
standard NN (Nearest Neighbor) rule. To obtain a compact class
representation a VQ (Vector Quantization) algorithm is applied
for training. This method approximates the training data for each
class with a so-called vector codebook by minimizing a RMSE
(Root Mean Square Error) criterion. The codebook consists of a
certain number of code vectors depending on the maximum
permitted RMSE. An upper limit of the number of code vectors
may be specified. The VQ clustering algorithm is an iterative
algorithm which approximates a set of vectors by a much lower
number of representative code vectors, forming a codebook. Such
a codebook is needed for each class (audio item). In Figure 2 an
example of the representation of a set of 2-D feature vectors by 6
code vectors is shown.

The code vectors are obtained using a simple k-means clustering
rule. The code vectors computed during training phase are stored
in a database together with other associated descriptive
information of the music items, such as title and composer of the
item.

In Figure 3 the approximation error of a feature vector set is
shown, depending on the number of code vectors used for the
codebook. The training set can be approximated ideally if the
number of code vectors reaches the number of training vectors.
For distorted versions of the training vectors, on the other hand,
the approximation error does not converge toward zero.

2.3 Classification
The music identification task here is an N-class classification
problem. For each of the music items in the database one class,
i.e. the associated codebook, is generated. To identify an unknown
music item which is included in the reference database, a
sequence of feature vectors is generated from the unknown item
and these features are compared to the codebooks stored in the
database.

In more detail, during the identification process each vector is
subsequently approximated by all stored codebooks using some
standard distance metric. For each of the classes the
approximation errors are accumulated and, as a result, the music
item is assigned to the class which yields the smallest
accumulated approximation error.

In a more recent version of the system, the statistics of the features
is used for the classification task instead of the features
themselves. The extracted features are collected over a certain
period of time and short-time statistics are calculated.
Furthermore, the temporal dependencies between the features are
taken into account. This results in both higher recognition
performance and lower processing time.

3. SYSTEM REQUIREMENTS
3.1 Robustness Requirements
For a human listener, just a few seconds, even in noisy
environments, may be sufficient to identify a song. In order to
design a prototype system which approximates this behavior,
special attention has to be paid to the alterations an audio signal
can be subjected to and to measure the impact of these
degradations on the recognition performance. It is therefore of
great importance for an audio identification system to handle "real
world" audio signals and distortions. Some of these types ofFigure 2. Example of 2-D feature set and it's

approximation using 6 code vectors.

Figure 3. RMS error as a function
of the number of code vectors.

.



distortions are discussed subsequently, forming the basis of the
development process of a robust identification system.

A basic type of signal "degradation" which exists in real world are
time shifted signals. If a feature turns out to be very sensitive
towards this kind of signal modification, it is likely that this
feature will also yield a poor recognition performance when faced
with "real world" signals.

Another essential aspect is the sensitivity of the identification
system against level changes. This is particularly important when
the level of the input signal is unknown, or even worse, may
slowly vary over time. Such situations arise when, for example, a
song is recorded via a microphone. When considering this kind of
distortion, the selected features should be invariant to scaling.
This is, for instance, the case for energy envelopes and loudness.
However, appropriate post processing of such features can avoid
this dependency. A simple example could be the calculation of the
difference of two consecutive feature vectors (these are the so-
called delta features). Other transforms may be applicable as well
to overcome this deficiency.

The following list enumerates a selection of signal distortions
which were used during the development process of the
identifications system to form a test suite of typical "reference
distortions", each representing a different aspect of robustness.

• Time shift: Tests the system’s robustness against arbitrary
time shifts of the input signal. This can be performed very
easily by accessing the original audio signal randomly. Care
should be taken that the entry points do not correspond to a
block boundary used during training.

• Cropping: It is desirable that an audio identification system
may be able to identify a small excerpt from a musical item
with sufficient accuracy. In this way, identification of an
entire song would be possible when only parts (such as the
introduction or chorus) are used for recognition. As a
consequence, the duration of a song to be entered in the base
class database cannot be used as a feature.

• Volume change: By scaling the input signal by a constant or
slightly time varying factor, the signal amplitude (volume)
may be varied within a reasonable range. In order to counter
level dependency, all features/post processing chosen for the
identification system were designed to be level independent.
Thus, no separate test results will be listed for this type of
robustness test.

• Perceptual audio coding: An ever-increasing amount of
audio is available in various compressed audio formats (e.g.
MP3). It is therefore important for an identification system to
maintain high recognition performance when faced with this
kind of signals. The bitrate should be selected within a
reasonable range, so that the degradation of subjective audio
quality is not excessive. A bitrate of 96kbps for an MPEG-
1/2 Layer-3 coded stereo signal is considered to be
appropriate for general testing.

• Equalization: Linear distortion may e.g. result from applying
equalization which is widely used  to adapt the frequency
characteristics to the users personal taste. For robustness
testing of the audio identification system, octave band
equalization has been used with adjacent band attenuations
set to -6dB and +6dB in an alternating fashion.

• Bandlimiting: Bandlimited signals occur when the signal was
represented at a low sample rate or, simply, if a low pass
filter has been applied. This can be regarded as a special case
of equalization.

• Dynamic range compression: Dynamic range compression is
frequently used in broadcast stations. In order to identify
audio signals from these stations, robustness against this
time-variant type of processing must be considered.

• Noise addition: White noise or pink noise with a reasonable
SNR (like e.g. 20-25 dB) was added to the item with a
constant level in order to simulate effects such as analog
background noise.

• Loudspeaker-microphone transmission (Ls-Mic): This kind
of distortion appears when a musical item is played back
over a loudspeaker and the emitted sound is recorded via a
microphone. The resulting analog signal is then digitized by
means of an A/D converter and presented to the input of the
system. Such a setup provides a realistic combination of both
severe linear and non-linear distortions and has been found
to be one of the most challenging types of distortions with
respect to automatic audio recognition. A system exhibiting
robustness with respect to such a scenario is perfectly
suitable for a wide range of applications. The test setup used
in the presented work consists of a pair of small multimedia
PC speakers and a standard PC microphone, which is
directed towards the speakers at a distance of around 10cm.

While this list is by far not exhaustive, it should be sufficient for a
general assessment of a system’s robustness qualities. In
particular, the robustness of each feature with respect to these
distortion types can be quantified effectively by such a test suite
and then taken into account for the final feature selection process.

3.2 Computational Requirements
When investigating the necessary computational resources of all
the software components involved in the identification process, it
becomes apparent that that there exists a clear asymmetry between
the feature extractor and the classifier in terms of processing
power and memory space (both RAM and disk space). More
precisely, the extraction process ("fingerprint generation") can be
performed several times faster than real-time, since it only
consists of a signal analysis followed by a feature calculation.
This processing step is independent from the used classification
scheme and from the database size, and thus only requires a small
amount of CPU processing power and RAM storage.

In contrast, the required resources for the classification task are
directly related to the underlying matching algorithm, the size of
the database (i.e. the number of trained reference items) and the
size and type of the fingerprint information.

While there is a trade-off between the degree of tolerable
distortions, the fingerprint size and the computational complexity
of the matching algorithm, it was the goal of the work described
in this paper to find efficient configurations which would allow
for both reliable recognition of real-world audio signals and real-
time operation on today’s standard PC computing platforms.



4. RECOGNITION PERFORMANCE
This section discusses the recognition performance achieved by
the prototype system depending on the choice of features. More
specifically, the performance of the system is investigated when
faced with distorted audio signals like the ones listed in the
previous section. Figures are provided for different configurations
of the system, including three features and different sizes of the
test database.

4.1 Features
A decisive factor in the performance of the identification system is
the selection of features. An extensive review of potentially
interesting features led to the selection of the following candidate
features which have been used for further experimentation.

• An important part in the perception of sound is represented
by the so-called Loudness. Loudness belongs to the category
of intensity sensations [15]. It seems intuitive that this basic
aspect of an audio signal could serve as a robust feature for
audio identification. Simple computational models of
loudness are known, including both the calculation of the
signal’s total loudness and partial loudness in different
frequency bands. This provides plenty of flexibility for
defining a loudness-based feature set. For the following
investigations a multi-band loudness feature was used.

• Besides the loudness sensation, another important
characteristics of the audio signal relates to the distinction
between more tone-like and more noise-like signal quality.
The so-called SFM (Spectral Flatness Measure) [16] is a
function which is related to the tonality aspect of the audio
signal and can therefore be used as a discriminating criterion
between different audio signals. Similar to loudness, the
SFM can be used to describe the signal in different frequency
bands. Such a multi-band version of the SFM features was
used for the following evaluations.

• Similar to SFM, a so-called SCF ("Spectral Crest Factor")
feature was investigated which is related to the tonality
aspect of the audio signal as well. Instead of calculating the
mean value for the numerator the maximum is computed, i.e.
the ratio between the maximum spectral power within a
frequency band and its mean power is determined. In the
same way as for SFM, a multi-band version is used.

The next sections present classification results based on different
setups. Each setup consists of a data base holding an increasing
number of music items.

For each setup, a few tables are provided which reflect the
recognition performance of the identification system. The
performance is characterized by a pair of numbers, where the first
stands for the percentage of items correctly identified (top 1),
while the second expresses the percentage for which the item was
placed within the first ten best matches (top 10).

4.2 1,000 Items Setup
An experimental setup of 1,000 musical items was chosen first,
each item stored in the compressed MPEG-1/2 Layer 3 format (at
a data rate of 192 kbit/s for a stereo signal). The items were
chosen from the combined genre rock/pop, to make a distinction
between the items more demanding than if material with a wider
diversity of characteristics would have been used. To achieve a
fast classification of the test items the processed length was set to

20 seconds while training was limited to 30 seconds, i.e. the data
had to be recognized based on an excerpt of the sequence only.
The feature extractor uses a block size of 1,024 samples. Both the
Loudness and the SFM feature were using 4 frequency bands.
After feature extraction, temporal grouping and subsequent
transformation techniques were applied prior further processing.
The generation of the base classes was conducted as described
above (VQ clustering algorithm). The setup described here
allowed a classification time of 1 second per item (measured on a
Pentium III 500 MHz class PC). A selection of the recognition
performance for this setup of the system is reported in Table 1.

Table 1. Recognition performance of Loudness and SFM
features (1,000 item setup, top 1/ top 10)

Feature Loudness SFM

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 15s 51.0% / 75.5% 92.3% / 99.6%

Equalization 99.6% / 100.0% 14.1% / 29.8%

Dynamic
Range

Compression
89.5% / 94.9% 99.0% / 99.3%

MPEG-1/2
Layer 3 @ 96

kbit/s
19.0% / 33.3% 90.0% / 98.6

Loudspeaker
/ Microphone

Chain
38.3% / 61.7% 27.2% / 59.7%

As can be seen from these figures, the Loudness feature provides
a rather low recognition performance for the case of cropping
effects (further restriction to 15s length) or MPEG-1/2 Layer-3
robustness. In contrast to this, SFM shows very good performance
concerning these robustness tests. Both features do not perform
very well in this configuration for the loudspeaker/microphone
chain experiment.

4.3 15,000 Items Setup
This setup represents one significant step on the way to a "real
world" scenario. A set of 15,000 items was chosen as a database
for the classification system, representing a clearly more
demanding task. Again the chosen test items belong mostly to the
rock/pop genre. To cope with the two main points of interest
(namely speed and discrimination) while handling this amount of
data, some improvements were made compared to the previous
setup. To realize an even faster classification speed with a larger
number of items, the statistical analysis of the features was
exploited and used for classification instead of the raw features
themselves. Furthermore, the number of frequency bands was
increased from 4 to 16 bands in order to achieve a more precise
description of the audio signal.

A further difference compared to the previous setup is the fact that
the features were implemented in accordance with the
time/frequency resolution as specified for the extraction of Low
Level Descriptors (LLDs) by the MPEG-7 audio standard [2] (i.e.
same window/DFT and shift length).

Tables 2 and 3 show the recognition performance achieved for
this experimental setup, now investigating the behavior of the
promising features which are related to the signal’s spectral



flatness properties (and thus "tone-likeness"). Table 2 reports the
classification results of a standard Vector Quantization approach,
whereas Table 3 shows the results for a more advanced matching
algorithm including aspects of temporal relationship between
subsequent feature vectors. As can be seen from the figures, both
features (SFM and SCF) perform extremely well even under
severe distortion conditions, such as the loudspeaker/microphone
chain. It can be observed that the SFM feature performs very good
while using a standard VQ classifier. This is further increased to
recognition rates above 97% with the more sophisticated
matching algorithm. In both cases, SCF shows an even better
recognition performance. Being at some kind of "saturation level"
further tests with an increased amount of items and additional
robustness requirements are mandatory for a better discrimination
of the two features. Classification time is 7.5 seconds for standard
and 2.5 seconds for advanced matching (per item).

Table 2. Recognition performance of SFM and SCF features
using standard matching (15,000 item setup)

Feature SFM SCF

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 100.0% / 100.0% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s
96.1% / 97.2% 99.4% / 99.6%

MPEG-1/2
Layer 3 @ 96

kbit/s &
Cropping

92.2% / 94.3% 98.8% / 99.3%

Table 3. Recognition performance of SFM and SCF features
using advanced matching (15,000 item setup)

Feature SFM SCF

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 100.0% / 100.0% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s
99.6% / 99.8% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s &
Cropping

97.9% / 99.9% 99.7% / 100.0%

Loudspeaker
/ Microphone

Chain &
Cropping

98.0% / 99.0% 98.8% / 99.5%

5. APPLICATIONS
The identification of audio content based on matching to a
database of known works has many attractive applications, some
of which are presented in the following:

• Audio Fingerprinting: Matching of audio signals as
described in this paper is closely related to the much-
discussed topic of "Audio Fingerprinting". A compact

representation of the signal features for matching (e.g. the
VQ codebooks) resembles the condensed "essence" of the
audio item and is thus usable as a fingerprint of the
corresponding item.

• Identification of music and linking to metadata:
Automated identification of audio signals is a universal
mechanism for finding associated descriptive data (metadata)
for a given piece of audio content. This is especially useful
when the format the content has been delivered in is
irrelevant for the identification process and when
furthermore this format does not support the transport of
associated metadata or reference thereto. Under these
premises recognition of the song will also serve to provide
links to the corresponding metadata. Since the metadata is
not necessarily embedded in the audio content, access to a
remote database could carry updated information on the
artist, concerts, new releases and so on.

• Broadcast monitoring: A system for automatic audio
recognition can identify and protocol transmitted audio
program material on broadcasting stations. With a system
like the one introduced in this paper this can be achieved
without the need for special processing of the transmitted
audio material, as would otherwise be required when using
branding methods like watermarking. Applications that
require monitoring of radio programs would include
verification of scheduled transmission of advertisement
spots, securing the composer’s royalties for broadcast
material or statistical analysis of program material (charts
analysis).

• Music Sales: Automatic audio identification can also be
used to retrieve ordering and pricing information of the
identified material and additionally offer similar material.
The recording of sound/music and storage of the signature on
small handheld devices (such as Personal Digital Assistants)
will enable the customer to find the recorded music item in
the music store or by connecting to the Internet.

6. MPEG-7 AND ROBUST
IDENTIFICATION OF AUDIO
Due to the ever-increasing amount of multimedia material which
is available to users, efficient management of such material by
means of so-called content-related techniques is of growing
importance. This goal can be achieved by using pre-computed
descriptive data ("metadata") which is associated with the content.
One example of a number of upcoming metadata standards for
audiovisual data is the MPEG-7 [2] process which is planned to
be finalized in a first version in late 2001.

MPEG-7 defines a wide framework for the description of audio,
visual and generic properties of multimedia content, covering both
high level semantic concepts as well as low level features (the
latter can be extracted directly from the signal itself) [17].

The basic descriptive entities in MPEG-7 are called Descriptors
(D) and represent specific content properties or attributes by
means of a defined syntax and semantics. Description Schemes
(DS) are intended to combine components with view towards
application and may comprise both Descriptors and other
Description Schemes. Both Descriptors and Description Schemes



are syntactically defined by a so-called Description Definition
Language (DDL) which also provides the ability for future
extension/modification of existing elements. The MPEG-7 DDL is
based on XML Schema as the language of choice for the textual
representation of content description and for allowing
extensibility of description tools.

In the area of audio signal description, MPEG-7 provides a set of
Low Level Descriptors (LLDs) which are defined in terms of both
syntactic format and semantics of the extraction process. While
these descriptors can be considered to form a universal toolbox
for many future applications, a number of concrete functionalities
have already been envisaged during the development process of
the standard [2]. These include "Query by humming"-type search
for music, sound effects recognition, musical instrument timbre
description, annotation of spoken content and robust matching of
audio signals.

Specifically, the functionality of content-related identification of
audio signals is supported within MPEG-7 audio by means of the
AudioSpectrumFlatness low level descriptor which is
designed to support robust matching of a pair of audio signals,
namely the unknown signal and the known reference signal. The
AudioSpectrumFlatness descriptor specifies the flatness
property of the signal's power spectrum within a certain number of
frequency bands, i.e. the underlying feature of the recognition
system, as described previously. Using the Scalable Series
concept, this data can be delivered with varying temporal
granularity to achieve different tradeoffs between descriptive
accuracy and compactness.

This standardized descriptor design forms the basis for achieving
an open, interoperable platform for automatic audio identification:

• Identification relies on a published, open feature format
rather than proprietary solutions. This allows all potential
users to easily produce descriptive data for the audio works
of interest (e.g. descriptions of newly released songs).

• Due to the exact standardized specification of the descriptor,
interoperability is guaranteed on a worldwide basis, i.e. every
search engine relying on the MPEG-7 specification will be
able to use compliant descriptions, wherever they may have
been produced.

In this sense, MPEG-7 provides a point of interoperability for
these applications at the feature level. Since textual descriptions
based on an XML representation are not designed to provide
extremely compact representations, applications may choose to
transcode the MPEG-7 compliant description into a smaller,
compressed representation for storage in an internal database
("fingerprint", "signature"). Still, the "un-packed" representation
will remain to be available as a point of interoperability with other
schemes.

7. CONCLUSIONS AND OUTLOOK
This paper discussed methods for achieving automatic content-
based identification of audio material by means of robust
matching to a set of known reference items. Particular attention
was paid to aspects of robustness with respect to common types of
signal alterations, including both linear and non-linear distortions,
audio compression and cropping to a reasonably-sized excerpt.
The ability to handle these types of distortions is vital to the

usability of systems for content-based processing in many real-
world application scenarios.

Relying on a general feature extraction/pattern recognition
paradigm, a prototype system for automatic identification of audio
material was described in its architecture and background.
Clearly, the selection of appropriate robust features can be
considered crucial for achieving a good recognition performance
under a wide range of possible distortions.

Recognizing the importance of the application, the upcoming
MPEG-7 audio standard defines a descriptor designed to provide
the functionality of robust matching of pairs of audio signals
which relates to the "un-flatness" of the signal’s power spectrum
and thus the tone-like quality of the signal in a number of
frequency bands.

Using this (and related) features, the recognition performance of
the identification system was assessed in a number of
experiments. The system configuration used showed excellent
matching performance for a test set comprising 15,000 songs. A
correct identification rate of better than 98% was achieved even
for severe distortion types, including an acoustic transmission
over a loudspeaker/microphone chain. The system runs about 80
times real-time performance on a Pentium III 500MHz class PC.

Clearly, there is still a long way to go until such an automatic
system will be able to match the recognition performance of a
human listener. Nonetheless, the current level of performance
already opens the door for a number of very interesting
applications, including finding associated metadata for a given
piece of audio content, broadcast monitoring and music sales.
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ABSTRACT
Musical genres are categorical descriptions that are used to
describe music. They are commonly used to structure the
increasing amounts of music available in digital form on the
Web and are important for music information retrieval.
Genre categorization for audio has traditionally been
performed manually. A particular musical genre is
characterized by statistical properties related to the
instrumentation, rhythmic structure and form of its
members. In this work, algorithms for the automatic genre
categorization of audio signals are described.  More
specifically, we propose a set of features for representing
texture and instrumentation. In addition a novel set of
features for representing rhythmic structure and strength is
proposed. The performance of those feature sets has been
evaluated by training statistical pattern recognition
classifiers using real world audio collections.  Based on the
automatic hierarchical genre classification two graphical
user interfaces for browsing and interacting with large
audio collections have been developed.

1. INTRODUCTION
Musical genres are categorical descriptions that are used to
characterize music in music stores, radio stations and now on the
Internet. Although the division of music into genres is somewhat
subjective and arbitrary there are perceptual criteria related to the
texture, instrumentation and rhythmic structure of music that can
be used to characterize a particular genre. Humans are remarkably
good at genre classification as investigated in [1] where it is
shown that humans can accurately predict a musical genre based
on 250 milli seconds of audio.  This finding suggests that humans
can judge genre using only the musical surface without
constructing any higher level  theoretic descriptions as has been
argued in [2]. Up to now genre classification for digitally
available music has been performed manually. Therefore
techniques for automatic genre classification would be a valuable
addition to the development of audio information retrieval
systems for music.

In this work, algorithms for automatic genre classification are
explored. A set of features for representing the music surface and
rhythmic structure of audio signals is proposed. The performance
of this feature set is evaluated by training statistical pattern
recognition classifiers using audio collections collected from
compact disks, radio and the web. Audio signals can be
automatically classified using a hierarchy of genres that can be
represented as a tree with 15 nodes. Based on this automatic genre
classification and the extracted features two graphical user
interfaces for browsing and interacting with large digital music
collections have been developed. The feature extraction and
graphical update of the user interfaces is performed in real time
and has been used to classify li ve radio signals.

2. RELATED WORK
An early overview of audio information retrieval (AIR) (including
speech and symbolic music information retrieval) is given in [3].
Statistical pattern recognition based on the extraction of spectral
features has been used to classify Music vs Speech [4], Isolated
sounds [5, 6] and Instruments [7]. Features related to timbre
recognition have been explored in [8,9]. Extraction of
psychoacoustic features related to music surface and their use for
similarity judgements and high level semantic descriptions (li ke
slow or loud) is explored in [10]. Content-based similarity
retrieval from large collections of music is described in [11].
Automatic beat tracking systems have been proposed in [12, 13]
and [14] describes a method for the automatic extraction of time
indexes of occurrence of different percussive timbres from an
audio signal. Musical genres can be quite subjective making
automatic classification diff icult. The creation of a more objective
genre hierarchy for music information retrieval is discussed in
[15]. Although the use of such a designed hierarchy would
improve classification results it is our belief that there is enough
statistical information to adequately characterize musical genre.
Although manually annotated genre information has been used to
evaluate content-based similarity retrieval algorithms to the best
of our knowledge, there is no prior published work in automatic
genre classification.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



3. FEATURE EXTRACTION
3.1 Musical Surface Features
In this work the term “musical surface” is used to denote the
characteristics of music related to texture, timbre and
instrumentation.  The statistics of the spectral distribution over
time can be used in order to represent the “musical surface” for
pattern recognition purposes. The following 9-dimensional feature
vector  is used in our system for this purpose: (mean-Centroid,
mean-Rolloff, mean-Flux, mean-ZeroCrossings, std-Centroid,
std-Rolloff, std-Flux, std-ZeroCrossings,  LowEnegry).

The means and standard deviations of these features are calculated
over a “texture” window of 1 second consisting of 40 “analysis”
windows of 20 milli seconds (512 samples at 22050 sampling
rate). The feature calculation is based on the Short Time Fourier
Transform (STFT). that can be eff iciently calculated using the
Fast Fourier Transform (FFT) algorithm [16].

The following features are calculated for each “analysis” window:
(M[f] is the magnitude of the FFT at frequency bin f and N the
number of frequency bins):

• Centroid :              
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The Centroid is a measure of spectral brightness.

• Rolloff :    is the value R such that :
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        The rolloff is a measure of spectral shape.

• Flux:                 ][][ fMfMF p−=               (3)

where pM denotes the FFT magnitude of the previous

frame in time. Both magnitude vectors are normalized in
energy. Flux is a measure of spectral change.

• ZeroCrossings: the number of time domain zerocrossings of
the signal. ZeroCrossings are useful to detect the amount of
noise in a signal.

• LowEnergy: The percentage of “analysis” windows that
have energy less than the average energy of the “analysis”
windows over the “texture” window.

3.2 Rhythm features
The calculation of features for representing the rhythmic structure
of music is based on the Wavelet Transform (WT) which is a
technique for analyzing signals that was developed as an
alternative to the STFT. More specifically, unlike the STFT that
provides uniform time resolution for all frequencies the DWT
provides high time resolution for all frequencies, the DWT
provides high time resolution and low frequency resolution for
high frequencies and high time and low frequency resolution for
low frequencies.

The Discrete Wavelet Transform (DWT) is a special case of the
WT that provides a compact representation of the signal in time
and frequency that can be computed eff iciently. The DWT
analysis can be performed using a fast, pyramidal algorithm
related to multi rate filterbanks [17]. An introduction to wavelets
can be found in [18].

For the purposes of this work, the DWT can be viewed as a
computationally eff icient way to calculate an octave
decomposition of the signal in frequency. More specifically the
DWT can be viewed as a constant Q (bandwidth / center
frequency) with octave spacing between the centers of the filters.

In the pyramidal algorithm the signal is analyzed at different
frequency bands with different resolutions by decomposing the
signal into a coarse approximation and detail i nformation. The
coarse approximation is then further decomposed using the same
wavelet step. The decomposition is achieved by successive
highpass and lowpass filtering of the time domain signal and is
defined by the following equations:
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where ][],[ kyky lowhigh  are the output of the highpass (g) and

lowpass (h) filters, respectively after subsampling by two. The
DAUB4 filters proposed by Daubechies [19] are used.

The rhythm feature set is based on detecting the most salient
periodicities of the signal. Figure I shows the flow diagam of the
beat analysis. The signal is first decomposed into a number of
octave frequency bands using the DWT. Following this
decomposition the time domain amplitude envelope of each band
is extracted separately. This is achieved by applying full wave
rectification, low pass filtering and downsampling to each band.
The envelopes of each band are then summed together and an
autocorrelation function is computed. The peaks of the
autocorrelation function correspond to the various periodicities of
the signal’s envelope. These stages are given by the equations:

1. Full Wave Rectification (FWR):

])[(][ nxabsny =                       (6)

2. Low Pass Filtering (LPF): (One Pole filter with an alpha
value of 0.99) i.e:

][][)1(][ nynxny αα −−=        (7)

3. Downsampling (↓↓) by k (k=16 in our implementation):

][][ knxny =                                    (8)

4. Normalization (NR) (mean removal):

]][[][][ nxEnxny −=                  (9)



FWWT

Fig. I Beat analysis flow diagram

5. Autocorrelation  (AR) (computed using the FFT for
eff iciency) :

∑ +=
n

knxnx
N

ny ][][
1

][           (10)

The first five peaks of the autocorrelation function are detected
and their corresponding periodicities in beats per minute (bpm)
are calculated and added in a “beat” histogram. This process is
repeating by iterating over the signal and accumulating the
periodicities in the histogram. A window size of 65536 samples at
22050 Hz sampling rate with a hop size of 4096 samples is used.
The prominent peaks of the final histogram correspond to the
various periodicities of the audio signal and are used as the basis
for the rhythm feature calculation.

The following features based on the “beat” histogram are used:

1. Period0: Periodicity in bpm of the first peak Period0

2. Amplitude0: Relative amplitude (divided by sum of
amplitudes) of the first peak.

3. RatioPeriod1: Ratio of periodicity of second peak to the
periodicity of the first peak

4. Amplitude1: Relative amplitude of second peak.

5. RatioPeriod2, Amplitude2, RatioPeriod3, Amplitude3

These features represent the strength of  beat (“beatedness”) of the
signal and the relations between the prominent periodicities of the
signal. This feature vector carries more information than
traditional beat tracking systems [11, 12] where a single measure
of the beat corresponding to the tempo and its strength are used.

Figure II shows the “beat” histograms of two classical music
pieces and two modern pop music pieces. The fewer and stronger
peaks of the two pop music histograms indicate the strong
presence of a regular beat unlike the distributed weaker peaks of
classical music.

Fig. II    Beat Histograms for Classical (left) and Pop (right)

The 8-dimensional feature vector used to represent rhythmic
structure and strength is combined with the 9-dimensional musical
surface feature vector to form a 17-dimensional feature vector that
is used for automatic genre classification.

4. CLASSIFICATION
To evaluate the performance of the proposed feature set, statistical
pattern recognition classifiers were trained and evaluated using
data sets collected from radio, compact disks and the Web. Figure
III shows the classification hierarchy used for the experiments.
For each node in the tree of Figure III , a Gaussian classifier was
trained using a dataset of 50 samples (each 30 seconds long).
Using the Gaussian classifier each class is represented as a single
multidimensional Gaussian distribution with parameters estimated
from the training dataset [20]. The full digital audio data
collection consists of 15 genres * 50 files * 30 seconds  = 22500
seconds (i.e 6.25 hours of audio).

For the Musical Genres (Classical, Country…..)  the combined
feature set described in this paper was used. For the Classical
Genres (Orchestra, Piano…) and for the Speech Genres
(MaleVoice, FemaleVoice…) mel-frequency cepstral coeff icients
[21] (MFCC) were used. MFCC are perceptually motivated
features commonly used in speech recognition research. In a
similar fashion to the Music Surface features, the means and
standard deviations of the first five MFCC over a larger texture
window (1 second long) were calculated. MFCCs can also be used
in place of the STFT-based music surface features with similar
classification results. The use of MFCC as features for classifying
music vs speech has been explored in [22].

The speech genres were added to the genre classification
hierarchy so that the system could be used to classify li ve radio
signals in real time. “Sports announcing” refers to any type of
speech over noisy background.
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Fig. III   Genre Classification Hierarchy

Table 1.   Classification accuracy percentage results

MusicSpeech Genres Voices Classical

Random 50 16     33 25

Gaussian 86 62 74 76

Table 1. summarizes the classification results as pecentages of
classification accuracy. In all cases the results are significantly
better than random classification. These classification results are
calculated using a 10-fold evaluation strategy where the
evaluation data set is randomly partitioned so that 10% is used for
testing and 90% for training. The process is iterated with different
random partitions  and the results are averaged (in the evaluation
of Table.1 one hundred iterations where used).

Table 2. shows more detailed information about the genre
classifier performance in the form of a confusion matrix. The
columns correspond to the actual genre and the rows to the
predicted genre. For example the cell of row 2, column 1 with
value 0.01 means that 1 percent of the Classical music (column 1)
was wrongly classified as Country music (row 2). The percentages
of correct classifications lie in the diagonal of the confusion
matrix. The best predicted genres are classical and hiphop while
the worst predicted are jazz and rock. This is due to the fact that
the jazz and rock are very broad categories and their boundaries
are more fuzzy than classical or hiphop.

Table 3. shows more detailed information about the classical
music classifier performance in the form of a confusion matrix..

classic country Disco Hiphop jazz Rock

classic 86 2 0 4 18 1

country 1 57 5 1 12 13

disco 0 6 55 4 0 5

Hiphop 0 15 28 90 4 18

Jazz 7 1 0 0 .37 12

Rock 6 19 11 0 27 48

Table 2.   Genre classification confusion matrix

choral orchestral Piano string 4tet

choral 99 10 16 12

orchestral 0 53 2 5

piano 1 20 75 3

string 4tet 0 17 7 80

Table 2.   Classical music classification confusion matrix

Fig. IV Relative feature set importance

Figure IV shows the relative importance of the “musical surface”
and “ rhythm” feature sets for the automatic genre classification.
As expected both feature sets perform better than random and
their combination improves the classification accuracy. The genre
labeling was based on the artist or the compact disk that contained
the excerpt. In some cases this resulted in outliers that are one of
the sources of prediction error. For example the Rock collection
contains songs by Sting that are more close to Jazz than Rock
even for a human listener. Similarly the Jazz collection contains
songs with string accompaniment and no rhythm section that
sound like Classical music. It is li kely that replacing these outliers
with more characteristic pieces would improve the genre
classification results.
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Fig. IV GenreGram

5. USER INTERFACES
Two new graphical user interfaces for browsing and interacting
with collections of audio signals have been developed (Figure
IV,V) . They are based on the extracted feature vectors and the
automatic genre classification results.

• GenreGram is a dynamic real-time audio display for
showing automatic genre classification results. Each genre is
represented as a cylinder that moves up and down in real
time based on a classification confidence measure ranging
from 0.0 to 1.0. Each cylinder is texture-mapped with a
representative image of each category. In addition to being a
nice demonstration of automatic real time audio
classification, the GenreGram gives valuable feedback both
to the user and the algorithm designer. Different
classification decisions and their relative strengths are
combined visually, revealing correlations and classification
patterns. Since the boundaries between musical genres are
fuzzy, a display like this is more informative than a single
classification decision. For example, most of the time a rap
song will t rigger Male Voice, Sports Announcing and
HipHop. This exact case is shown in Figure IV.

• GenreSpace is a tool for visualizing large sound collections
for browsing. Each audio file is represented a single point in
a 3D space. Principal Component Analysis (PCA) [23] is
used to reduce the dimensionality of the feature vector
representing the file to the 3-dimensional feature vector
corresponding to the point coordinates. Coloring of the
points is based on the automatic genre classification. The
user can zoom, rotate and scale the space to interact with the
data. The GenreSpace also represents the relative similarity
within genres by the distance between points. A principal
curve [24] can be used to move sequentially through the
points in a way that preserves the local clustering
information.

Fig. V GenreSpace

6. FUTURE WORK
An obvious direction for future research is to expand the genre
hierarchy both in width and depth. The combination of
segmentation [25] with automatic genre classification could
provide a way to browse audio to locate regions of interest.
Another interesting direction is the combination of the graphical
user interfaces described with automatic similarity retrieval that
takes into account the automatic genre classification. In its current
form the beat analysis algorithm can not be performed in real time
as it needs to collect information from the whole signal. A real
time version of beat analysis is planned for the future. It is our
belief that more rhythmic information can be extracted from audio
signals and we plan to investigate the abilit y of the beat analysis
to detect rhythmic structure in synthetic stimuli .

7. SUMMARY
A feature set for representing music surface and rhythm
information was proposed and used to build automatic genre
classification algorithms. The performance of the proposed data
set was evaluated by training statistical pattern recognition
classifiers on real-world data sets. Two new graphical user
interfaces based on the extracted feature set and the automatic
genre classification were developed.

The software used for this paper is available as part of  MARSYAS
[26] a  software framework for rapid development of computer
audition application written in C++ and JAVA. It is available as
free software under the Gnu Public License (GPL) at:

 http://www.cs.princeton.edu/~gtzan/marsyas.html
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ABSTRACT 
We have developed a music retrieval method that 
takes a humming query and finds similar audio 
intervals (segments) in a music audio database. This 
method can also address a personally recorded video 
database containing melodies in its audio track. Our 
previous retrieving method took too much time to 
retrieve a segment: for example, a 60-minute database 
required about 10-minute computation on a personal 
computer. In this paper, we propose a new high-speed 
retrieving method, called start frame feature 
dependent continuous Dynamic Programming, which 
assumes that the pitch of the interval start point is 
accurate. Test results show that the proposed method 
reduces retrieval time to about 1/40 of present 
methods.  

1. INTRODUCTION 
Although a large amount and variety of musical audio 
signals have been available on the internet and stored 

in personal hard disks at home, information retrieval 
methods for those signals are still in infancy. A 
typical method is a simple text-based search which 
seeks property tags attached to those signals, such as 
the song title, artist name, and genre. The purpose of 
this research is to enable a user to retrieve a segment 
of a musical audio signal desired just by singing its 
melody. Such a music retrieval method is also useful 
for retrieving video clips if those clips contain music 
in audio tracks. For practical application, we think it 
important that the method can be applied to an audio 
database that is not segmented into musical pieces (as 
is often the case with broadcast recordings). 

In this paper, we focus on a music retrieval system 
that takes a humming query and finds similar audio 
intervals (segments) in a music audio database. If the 
database is composed of melody scores such as MIDI, 
symbols (e.g., relative pitch change or span change) 
can be extracted robustly. In this case, symbol-based 



retrieval [1-4] is very efficient. On the other hand, 
extracted melody from an audio signal usually suffers 
a lot of error and such symbol-based methods are not 
applicable. Therefore, we developed the pattern-based 
retrieval method [5]. Fundamentally, we find a similar 
pitch sequence of a query (query pattern) in the 
melody-likeness pattern on the pitch-temporal plane 
obtained from the database shifting the query pattern 
along pitch axis and warping temporally as shown in 
Figure 1. The previous matching method is called 
model-driven path Continuous Dynamic 
Programming (mpCDP) which compares the 
reference and all the partial intervals in the database 
and outputs similar intervals by considering multiple 
possibilities of transpositions. Because the mpCDP 
achieves pattern-based matching, the method can also 
take whistle sound or tempo-varying humming. (In the 
following, we use two terms, "reference pattern'' and 
"input pattern'': we extract a "reference pattern'' from 
a query and an "input pattern'' from a database in 
order to feed those patterns into matching methods.) 
This previous mpCDP, however, is too slow to be 
used in practical applications: it needs much 
computational cost because it accumulates local 
similarities in 3-D space, which is composed from 
model-axis, input-axis, and pitch-axis. 
In this paper, we propose a new quick retrieval 
method, called start frame feature dependent 
continuous DP (s-CDP), which searches only in 2-D 
space (reference-axis and input-axis) assuming that 
the feature (pitch in this paper) of the start point of the 
extracted optimal interval is accurate. Our new s-CDP 
is different from conventional continuous DP in the 
respect that we do not calculate local similarities 
beforehand because the start point of the optimal 
interval is obtained from bottom left to top right 
successively in the 2-D space. 
 
 

 
 

Figure 1. Pattern matching for humming retrieval.  
Pitch shift and temporal-warp are considered. 

 
 
We evaluate our new method using 20 popular music 
selections comparing the conventional method to 
show that the proposed method can reduce search 
time to about 1/40 with retrieval rates in excess of 
70%. 

The following section describes the conventional 
retrieval method. The s-CDP and the retrieval method 
using s-CDP is proposed in Section 3. The method is 
evaluated in Section 4 and newly developed retrieval 
system is introduced in Section 5. 

2. OUR CONVENTIONAL RETRIEVAL 
METHOD 
Continuous DP [7] is improved from temporally 
monotonous Dynamic Programming (DP) for speech 
or gesture recognition. Continuous DP achieves 
inconsistent recognition because it can segment the 
input pattern automatically but it cannot consider 
multiple possibilities of transpositions. Therefore, we 
proposed mpCDP [5] for music retrieval method 
adding one dimension (pitch) for input pattern and 
finding similar pitch sequence to the query.  

 

2.1 Continuous DP 
As shown in Figure 2 (a), continuous DP calculates 
accumulated similarities ),( τtS  between reference 

τR )1( T≤≤ τ  and input tI )0( ∞≤≤ t  by adding 
local similarities ),( τts . Denoting the temporal axis 
of reference and input as t and τ , respectively, 
continuous DP calculates ),( τtS  using the following 
recursive equations. 



Boundary conditions )0,1( tT ≤≤≤ τ : 
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Recursive equations ( t≤1 ): 
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In this equation, local path with maximum similarity 
is chosen among the three paths as shown in Figure 
2(c). Numbers besides each point are weights for local 
similarities. Notice that the summation of weights is 
always three for one frame up along the reference axis. 
Therefore, dividing accumulated similarities by three 
can normalize them. 

Next, we find a similar interval. Figure 2(b) shows 
accumulated similarities ),( TtS ; and the continuous 
DP decide the maximum point with higher similarity 
than a certain threshold α  as the end point of the 
similar interval.  

In brief, continuous DP finds the optimal path and 
maximum accumulated similarities by choosing the 
maximum local path successively from bottom left to 
top right in the reference-input plane. The ),( TtS  is 
the similarity between the whole reference and the 
input considering temporal warps from 1/2 to 2 times. 

 

 

 
 

Figure 2. Continuous Dynamic Programming. 
 
 

2.2 Humming Retrieval by mpCDP 
This section explains the conventional humming 
retrieval method using Figure 3. The method has three 
steps. First, database audio signals are analyzed every 
frame, 64ms in this paper, and sequence of melody-
likeness of each pitch (SMLP) is obtained. When a 
query is input to the method, highest melody-likeness 
pitch is chosen from SMLP every frame and query 
model is created by the relative pitch change. Third, 
model-driven path Continuous Dynamic Programming 
(mpCDP) compares the model and all partial intervals 
in the database and output similar intervals by 
considering multiple possibilities of transpositions.  

The local path of mpCDP is different from that of 
continuous DP in that they are shifted along the pitch 
axis according to the model, which is the relative 
pitch change of the query. By executing such 
processes successively, accumulated similarity 

),,( xTtS (Here x  denotes pitch axis) takes a 
maximum similarity along the pitch axis at the end of 
the model as shown in top-right figure of Figure 3. 
Then, ),,(max xTtS

x
 changes similar to Figure 2(b). 

Finally the mpCDP outputs the maximum point with 
higher similarity than a certain threshold α  as the end 
point of the similar interval.  
 
 
 
 



 
 
 

 
 
 

 

 
 

Figure 3. Conventional retrieval method. 
 
 

3. PROPOSAL OF s-CDP 
3.1 s-CDP 
The definition of s-CDP is that local similarities 

),( τts  are dependent on the feature of the start point 
)1),,(( τtp of optimal paths. Therefore local 

similarities of s-CDP are described as 
),,,(),( ),(1 τττ tpt IRIRfts =  using a certain similarity 

function ()f . (For continuous DP: 
),(),( tIRfts ττ = ). 

 
 

 
 

Figure 4. Comparison of matching methods. 
 

 

The difference between conventional continuous DP 
and s-CDP is shown in Figure 4. All local similarities 
can be calculated beforehand for continuous DP 
(Figure 4(a)), whereas local similarities are obtained 
incrementally as the optimal paths are fixed for s-CDP 
as shown in Figure 4(b). There are three local 
similarities for each point ),( τt  because the start 
points are different among three local paths as shown 
in Figure 2 (c). Equation (1) is rewritten for s-CDP as:  



Recursive equations ( t≤1 ): 

)1,(3)1,( 2 tstS ⋅=  

=),( τtS  
 

 
(2) 

 
 

)2( T≤≤ τ  
 
Here we call the local paths in Figure 2 (c) path1, 
path2, path3 from top-left and define 

),(1 τts , ),(2 τts , ),(3 τts  as local similarities for path1, 
path2, and path3, respectively. Those are defined as:  

),,,(),( ),(12 τττ tpt IRIRfts = )1( =τ   

),,,(),( )1,2(11 −−= τττ tpt IRIRfts  )2( τ≤  

),,,(),( )1,1(12 −−= τττ tpt IRIRfts  )2( τ≤  

),,,(),( )2,1(13 −−= τττ tpt IRIRfts )2( τ≤  

The ),(2 τts  alone takes 1=τ  and requires exception 
because the start point is the same as the point )1,(t . 
Second terms of path1 and path3 in equation (2) are 

),(2 ⋅⋅s  because both points come from points )1,1( −−  
relatively in the plane. 

Outputs of s-CDP are obtained as points with 
maximum accumulated similarities in the same way as 
continuous DP, but they have positions of start points 
and features of start points. 

To calculate the start position ),( τtp  on the input 
axis, first initialize with time t  when 1,0=τ . 

ttptp == )1,()0,(  

Next, copy the start point memorized at the local start 
point to ),( τtp  as follows: 
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Start positions )1),,(( τtp  are obtained incrementally 
by the recursive equations above. 

In case of error in start points, features of start points 
),(1 , τtpIR  are incorrect - leading to miscalculation of 

accumulated similarities. Therefore, one must choose 
a high melody-likeness point as the start point in order 
to segment the reference. As for input, segmenting a 
similar interval is the method’s purpose, so such a 
measure is impossible. Still, those errors are 
recovered if one feature near the start point is correct 
because s-CDP matches, warping the reference 
temporarily. 
 

3.2 Apply for Humming Retrieval 
In this section, s-CDP is modified for the humming 
retrieval method. Because melody is expressed as the 
pitch sequence, the feature is pitch and each pitch is 
subtracted from the start pitch to cope with 
transpositions, assuming that start pitch is correct. 
Query is transposed to make the start pitch 0 as shown 
in Figure 5. On the other hand, database transposition 
is possible just after the start pitch is fixed by tracing 
back the optimal path derived from s-CDP. Then the 
segmented database is similarly transposed to make 
the start pitch 0 as shown in Figure 5. Finally, s-CDP 
compares the transposed query and database without 
any influence of transpositions. 
 
 

 
 

Figure 5. Overview of melody matching 
considering transpositions. 
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Figure 6 helps to explain the detail method. First, 
make relative pitch sequence of query as the reference 

1
' RRR −= ττ . Second, obtain N high melody-likeness 

candidates from database musical signal as input 
),,1)(( NkkI t L= . In this study, local similarities 

),( τts  are defined: 
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Here )}]1()({[min ),(
'

, τττ tptkt IkIRabsD −−=  and local 

similarities are 1 if one of the relative pitches of N 

candidates is equal to relative pitch of the query. We 
set 5=N  in experiments in this paper. 

 

 
 
 

 
 

Figure 6. Proposed retrieval method using s-CDP. 
 
 

4. EXPERIMENTS 
4.1 Experimental Method 
We prepared 20 WAV files (about 80 minutes in 
total) in 16 kHz sampling and monaural recording 
format as a music database to compare s-CDP with 
mpCDP. This database includes 10 Japanese pop 
songs, 8 children's songs, an animation song, and a 

Japanese enka. There are 4 male and 16 female vocal 
artists in the database. Also, 3 males and 2 females 
sang a portion of each song in the database for about 
20 seconds. Hence, the total number of queries was 
100. 

Let fb[Hz] (in this experiment: 55[Hz]) denote the 
lowest frequency of melody. We compute the melody 



likeness for the frequency ),,1(2 12/ Xxfb
x L=  [Hz] by 

FFT analysis in consideration of the harmonic 
structure of acoustic signals. This method is a simple 
version of [5]. The step of the pitch axis of mpCDP is 
set at 60 (5 octaves: 60=X ) considering the male and 
female voice pitch range. 

Two thresholds segmented a reference from a query. 
To decide the start point, the threshold is set at P5.0 , 
where P  is average power (summation of square of 
signal). For the end point, the threshold is set at P1.0 . 
The start point threshold is set larger because the start 
point pitch should be correct. 

The search rate, which depends on a threshold α(0 ≤ α 
≤ 1), is defined as the average of precision rate 
NC/ND and recall rate NC/NT, where NC, ND, and NT 
represent the number of similar terms to the humming 
query in detected terms, the number of detected terms 
by mp-CDP, and the number of similar terms to the 
humming, respectively. The detected term by mp-
CDP is correct if the following overlapping rate 

  termdetected  rmsimilar te
 termdetected  rmsimilar te  rate goverlappin

∪
∩=  

is greater than 0.5. This means the overlapping terms 
between similar and detected ones has 70% 
intersection when lengths of both terms are mutually 
identical. Since the search rate depends on threshold α, 
"the search rate for a humming query" is defined as 
the maximum value running over all α. The computer 
for this experiment is OS: Windows2000, CPU: 
Pentium IV 1.5GHz. 

 

4.2 Results 
Table 1 shows average search rates and search times 
for 5 persons × 20 songs = 100 queries for query 
duration of 20 seconds. Those results show that s-

CDP reduced search time to about 1/40. The mpCDP 
has 60 times the local path calculation because it has 
60 steps in pitch axis. The reduction effect is only 
about 1/40 because s-CDP calculates the start point 
and has three times the number of local similarities. 

The s-CDP search rate was lower by 16%, though it is 
more than 70%, showing practical usefulness. 

 
 

Table 1: Comparison of the two search methods. 

Search method mpCDP s-CDP 

Average search 
rate 89.0% 73.3% 

Search time 532(s) 14.2(s) 

 

 

5. RETRIEVAL SYSTEM 
We made a humming retrieval system as shown in 
Figure 7. From the top window, the query wave, the 
query pitch sequence, similarities in the database, and 
hit results are shown. On clicking the peak on the 
similarities or the hit results, similar intervals of video 
or music are played in the right-bottom window. 
Using a notebook PC with a Pentium III 750MHz 
CPU, retrieving a 10[s] query from 60[min] database 
took about 10 seconds. There are several similarity 
peaks in Figure 7 because the same song was recorded 
from a TV program and a radio program and also the 
song had several repeated melodies. Retrieving from 
an audio video database that captured a scene from 
karaoke has been successful with this system, which 
will be demonstrated in presentation. 
 

 



 
 

Figure 7. Monitor of the developed retrieval system. 
 

 

6. SUMMARY 
We proposed a start frame feature dependent 
continuous DP assuming that the start point pitch of 
the extracted optimal interval is correct. Test results 
showed that the proposed method reduces 
computational costs to about 1/40. 
One method for further reducing retrieval time is to 
compress similar intervals in the database because a 
song usually has a repeated melody. 
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ABSTRACT
I intend to use this forum to share with you my personal thoughts
and feelings concerning the future of the music information
retrieval (MIR) research community. I wish to propose that the
MIR community begin, in earnest, to construct more formal and
permanent organizational frameworks explicitly designed to
maximize the benefits of being a multi-disciplinary and multi-
national research community while at the same time minimizing
their inherent costs. Throughout this presentation I make
suggestions and recommendations that I hope will prompt others
to take up the challenge of creating a stronger and more vibrant
future for MIR research and development.

1. INTRODUCTION
Music information retrieval research is alive and well. It is a
thriving endeavour that is producing interesting, insightful, and
intriguing solutions to difficult and non-trivial problems. It is a
multi-disciplinary research programme involving researchers
from traditional, music and digital libraries, information science,
computer science, law, business, engineering, musicology,
cognitive psychology and education. It is also a multi-national
enterprise. An informal perusal of the MIR literature finds MIR
papers and presentations originating from Australia, Austria,
Canada, United Kingdom, New Zealand, Ireland, Greece, United
States, Japan, Taiwan, Germany, France, Italy, Spain, and
Finland.

Multi-disciplinarity both blesses and curses the MIR research
community. We are blessed with the wide variety of techniques
and technologies that are being brought to bear on MIR
problems. We are cursed, however, with its tower-of-babel effect:
different researchers speaking different research languages. We
are doubly cursed with the scattering of MIR papers across
disparate disciplinary literatures making comprehension of the
true state-of-the-art difficult.

Multi-nationality similarly has its benefits and its drawbacks.
Again, the wealth of international experience in all aspects of
MIR research provides us with framework of transnational
connections that rival the United Nations. Like the United
Nations, however, we must be ever vigilant that the cultural
assumptions and practices of one particular group do not

overshadow the needs and concerns of the other members. On a
more pragmatic level, communications conducted in what is for
many a second, or third, language, across several, if not many,
time zones only adds to the extra burden of sustaining
multinational research and organizational ties.

2. THE FUTURE OF ISMIR GATHERINGS
The success of ISMIR 2000 and ISMIR 2001, along with other
recent MIR workshops and panel sessions, clearly illustrates both
the desire and need for MIR researchers to come together as a
community to discuss matters unique to our research problem. In
conversations and correspondence with participants of these
events several issues have appeared consistently enough that they
require addressing. Find below my suggestions regarding future
ISMIR events stemming from these discussions.

Suggestion #1: Reclassify ISMIR. Many participants have
mentioned that funding bodies and faculty reviewers have clearly
defined hierarchies of precedence concerning types of academic
gatherings. Many researchers have mentioned that they can more
readily obtain funding for a “conference” than for a
“symposium”. We should, therefore, classify each of our future
meetings as a “conference” rather than a “symposium”. I believe
that we now have the depth and breadth of research to justify this
reclassification. The astute reader will have ascertained that the
name “ISMIR” will have to be modified to reflect this change.
This is certainly is the case, however, I will discuss later a
proposal to keep the acronym but still affect the reclassification.

Suggestion #2: Expand ISMIR. Our present format of two-and-
one-half days is clearly insufficient to meet the communication
needs of our participants. Future iterations must be longer (four
days?) to allow for meaningful interactions at a formal level (i.e.,
organizational meetings; specialized panels) and at an informal
level (i.e., impromptu discussions; social events). Participants
travel great distances to attend and it makes sense to get the
maximum “bang” out their travel investments.

Suggestion #3: Hold a TREC-like panel every conference. One
specialized panel that I would like to see made regular part of the
conference would be one structured along the lines of the Text
REtrieval Conference (TREC) [12] [6] [7]. Each year a different
predefined set of collections, queries, responses and metrics
would be put forward for the purposes of comparing the efficacy
of different approaches. Note here my deliberate use of
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commercial advantage and that copies bear this notice and the
full citation on the first page.



“different”. Because there are so many types of tasks that we are
proposing for our MIR systems, we should focus our attention on
one specific task each year. This will bring coherence to the
necessary compare-and-contrast aspects of the evaluations. For
example, one year we might focus upon known-item
identification; another year we could turn our attention to user
interface issues, and so on.

Suggestion #4: Hold introductory workshops. As part of an
expanded conference setup, it is imperative that we begin to hold
discipline-specific workshops as part of the programme of events.
Ideally, these would not be held concurrently on some special
“workshop day” as is the practice at some conferences, but on
consecutive days to allow participants the opportunity to attend
as many as desired. These introductory workshops will help us
minimize some of problems associated with our multi-
disciplinarity by exposing all to the basic principles, methods,
and technologies of the various disciplines. For example, I
envision workshops with such titles as “Basics of Information
Retrieval Evaluation”, “Introduction to Digital Signal
Processing”, “Music Encoding 101”, and so on.

Suggestion #5: Consistently rotate the conference location. We
must formally adopt as a first principle our commitment to
fostering and nurturing our multi-national character. To this end,
we must establish a governing principle that our conferences
shall rotate through the major regions currently conducting MIR
research: North America, Europe, Asia and Australasia. As other
regions become more active, they too should be added to the
rotation list.

Suggestion #6: Keep the current cost model. Two things are
points of pride with me concerning my involvement with ISMIR
2001. First, we presented a first-rate symposium while keeping
the fees to a very reasonable US$150. Even at this modest level,
issues of international currency exchange rates and limited home-
base resources made the fee problematic for some. We must
strive to keep our fee structure as low as humanly possible. We
should also set up resources to support colleagues with more
limited funding opportunities and/or weaker currencies.

Second, we were able to secure principal funding for student
stipends from the National Science Foundation. Additional
stipend support was provided by the National Center for
Supercomputing Applications. This funding allowed us to waive
fees, provide accommodations, and/or pay travel expenses for
approximately one dozen student researchers. MIR research and
development will wither and die without an ongoing influx of
younger researchers. Conference attendance is expensive and
many departments, especially those in the humanities, simply do
not have the resources to support student travel. We must do
everything possible to ensure that we can continue to offer
financial support to our future colleagues regardless of their
discipline or country of origin.

3. THE MIR BIBLIOGRAPHY PROJECT
The MIR Annotated Bibliography Project outlined in Downie [8]
should be seen an integral part of the MIR community’s future.
Initial work on the project has two principal components:

a) the creation of a MIR-specific bibliography designed to
counter the scattering of the MIR literature across
disciplinary boundaries; and,

b) the creation of ancillary, discipline-specific,
bibliographies designed to provide basic background
materials necessary to acquaint MIR researchers with
the fundamental principles and methods of all the
contributing disciplines.

Together, these two components could go a long way in helping
us bridge the disciplinary divides that so hinder our effective
communications. The domain name music-ir.org has been
acquired, under which access to the bibliography will be
afforded.

Suggestion #7: Embrace the bibliography project. Primary
funding for the bibliography project has been generously
provided by the Andrew W. Mellon Foundation [2].
Notwithstanding the ever-present need for ongoing financial
support for the bibliography project, I believe it to be more
important that we as a community take it upon ourselves to put a
little “sweat equity” into this and similar resources. We have
been designing into our project the ability to distribute the data
entry and collection tasks. By distributing these tasks, we hope to
improve the sustainability of the resource. For example, we are
implementing an end-user data entry system that we hope will
guide users in the creation of well-structured bibliographic
records that will require a minimum amount of editorial
intervention. I suggest that we all make it a habit to submit a
record of our publications as soon as we have them published.
Similarly, as part of embracing the bibliography project as a
community resource, I would like encourage all to contribute
suggestions and recommendations concerning its development.
More specifically, consider this a formal solicitation for your
input on the creation of the discipline-specific supplementary and
explanatory materials.

Suggestion #8: Consider music-ir.org as our home-base. Over
the next several years, I would like to see music-ir.org become
the principal starting point for all things related to MIR. I would
like us to see the current MIR bibliography project as only one
seed in a potentially fruitful garden. We need a central repository
for our collective work whether it be in the form of test
collections, papers, theses, reports, discussions, presentations,
membership contact lists, software, and so on. One thing that
will help us to expand our horizons from the bibliography project
to a more comprehensive WWW portal is our decision to use the
Greenstone Digital Library Software (GSDL) [13] as the
system’s principal retrieval mechanism. The GSDL software will
enable us to bridge the gap between bibliographic retrieval to
full-fledged digital library/portal with a minimum of bother.
Again, a combination of “sweat equity” and financial resources
can make this a reality.

4. FORMAL ORGANIZATION
Of all my suggestions and recommendations, I believe the most
controversial will be those concerning how we as a research
community constitute ourselves. We have several options before
us, including the option to ignore the issue altogether. I no longer
see ignoring the question as a reasonable option. If we are going
to continue to hold ISMIR conferences and create resources like
the proposed portal then the time has arrived that we address the
issues of what we are and how we are going make things happen.



In discussion with various members of the MIR community two
contending options seem the most prevalent:

Option #1: We form an independent organization specifically to
foster MIR research and development.

Option #2: We seek membership as a special interest group
(SIG) under the auspices of such organizations as:

a) the Association for Computing Machinery [5], perhaps
as part of their SIG Information Retrieval (SIGIR) [4]
or SIG Multimedia (SIGMM) [3];

b) the Institute of Electrical and Electronic Engineers
(IEEE) [9]

c) the American Society for Information Science and
Technology (ASIS&T) [1]; or,

d) the International Computer Music Association (ICMA)
[11], who are the convenors of the annual International
Computer Music Conference (ICMC) [10].

Suggestion #9: Let us reject Option #2. There several attractive
features to Option #2 including pre-existing infrastructures,
name recognition, and access to possible financial and
technological resources. These are, however, outweighed by
three serious drawbacks. Let me address these in turn:

a) Loss of identity: By choosing to affiliate ourselves
with one organization over another we are in
essence affirming that our work is best conceived
as being a subset of that particular organization’s
rubric. For example, if IEEE is our choice, then
we are saying that MIR is an engineering problem.
If we choose SIGMM then we are saying that MIR
is really only a multimedia retrieval problem (as it
is conceived by the current members of SIGMM).
In reality, MIR is broader than either and it is in
our best interests to ensure that we do not
arbitrarily narrow our research focus and agenda.

b) Weakening of our multi-disciplinary strengths.
We must remember that each of these groups has
its own paradigm of accepted practice that
privileges some research questions and methods
over others. I would hate to see our intellectual
toolkit deprived of any of the research approaches
that we have seen presented at our recent
meetings simply because it was expedient to join a
particular organization. I wonder—absent any real
data, of course—how many musicologists and
music librarians we might attract over time after
subjugating ourselves to IEEE or ACM.

c) Hidden costs to members. As an organization it
might be more financially sound to affiliate
ourselves with one of these organizations. I
suspect, however, that this would represent a false
economy to the MIR community. I recently paid,
for example, $US395 in fees to attend the joint
ACM/IEEE digital libraries conference. I am
similarly concerned that access to our publications
and proceedings could be caught up in their
respective proprietary, fee-based, digital libraries.

Suggestion #10: Let us adopt Option #1. Given the
aforementioned drawbacks are rather serious, I suggest that we
strike out on our own. I see six reasons to support this idea:

a) Build upon ISMIR: ISMIR has begun to have
considerable name recognition as being the forum
for MIR research. We can exploit the acronym by
forming the International Society for Music
Information Retrieval (i.e., ISMIR). It would be
under the auspices of this organization that our
expanded conferences would be held. This would
also allow us, for example, to refer to our
meetings as ISMIR 2002, and so on. The
“Society” would be responsible for shaping and
upkeep of whatever develops at the music-ir.org
site which is fitting because the site is
fundamentally an outcome of ISMIR 2000.

b) We define the research paradigms. The
recurring theme throughout my discussion has
been the important role multi-disciplinarity plays
in enriching our endeavours. Under on
independent ISMIR we can reinforce this strength
both formally through our statement of principles
and informally by creating the mechanisms the
ensure all disciplinary voices have the opportunity
to express their respective world views.

c) We define the priorities. We have problems
unique to MIR research and development that I
believe are best addressed by ourselves. These
include, for example, the creation of multi-
representational test collections, tasks and MIR-
specific evaluation metrics. Effective solicitation
of support from the music recording and
publication industry is another priority I believe to
be unique to MIR.

d) We control our resources. Rather than pay
substantial membership and conference fees to a
larger organization, we will be able to tailor our
finances to suit our needs. This includes
deliberately holding down conference costs, both
in terms of registration fees and in
accommodations by taking advantage of the
flexibility inherent in a smaller, independent
organization. This alone should help us continue
to attract international scholars and students. Our
bibliography and portal can remain under our
control and be shaped as we see fit. Finally, as we
mature, we will want to establish our own peer-
reviewed e-journal exclusively devoted to MIR
issues. Under the auspices of ISMIR, we will be
able to set and control the editorial rules
governing the e-journal. We will also be able to
provide true peer-review since the reviewers will
be drawn from our MIR peers. Since the
envisaged e-journal will exploit resources already
under the control of ISMIR, there is added benefit
that access to the e-journal could be provided at no
cost to readers.



e) We can affiliate on more equal terms. Nothing
in the suggestion to form ISMIR precludes our
affiliation with other related organizations. In
fact, it is very important that we do strengthen our
ties with outside groups. The advantage we would
have under an independence model is that we
would be empowered to negotiate the specific
levels of interaction that we think would best suit
us on a case-by-case basis. This might include a
special joint conference or our sponsorship of an
MIR panel session at their meeting in exchange
for some of their members providing us with
special workshops, and so on.

f) We still have the Option #2. It would be easier to
move from independence to affiliation, than from
affiliation to independence. Disentangling
ourselves from a larger organization, should we
become dissatisfied with our arrangement, could
be next to impossible as we would have to
negotiate such contentious issues as intellectual
property rights and finances. This suggests that
the prudent course of action would be to first give
independence a try for some reasonable amount of
time. If the membership is unhappy with the
results, then we can move to become affiliated
with one of the larger organizations.

5. CLOSING COMMENTS
MIR research and development is fast approaching a crossroads
in its evolution. The time is upon us to make some important
decisions as to which direction we would like to take as a
research community. I would like to iterate one last time that our
true strengths are rooted in our wide variety of multi-disciplinary
and multi-national world views. Based upon these strengths, I
have offered ten suggestions that I believe will help foster the
continued growth and vitality of our endeavours. The MIR
community may accept or reject my suggestions as it sees fit, but
I hope that the alternatives that it adopts are predicated upon
preserving our multi-disciplinary and multi-national character.
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