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ISMIR 2001
October 15, 2001

Welcome friends and colleagues to the 2" Annual International Symposium on Music Information
Retrieval — ISMIR 2001.

Following on the heels of last year’s groundbreaking inaugural conference, we’re convening with
colleagues this year at the beautiful campus of Indiana University, Bloomington. We hope the
information exchange fostered by this conference will facilitate innovation and enhance collabora-
tion in this dynamic area of research.

This year’s program is rich in content and variety. We are honored to have David Cope present this
year’s keynote address. The presentations by our four invited speakers, Roger Dannenberg, Jef
Raskin, Youngmoo Kim, and Adam Lindsay provide added depth and breadth to an already dynamic
and diverse program.

This document includes the texts of the accepted papers along with the extended abstracts of the
invited talks and poster presentations. All are also available on the ISMIR 2001 Web site at: http://
1smir2001.indiana.edu/

As with last year, we were very encouraged by the number and quality of submissions. Response to
our Call for Papers was remarkable. Selecting the twenty papers for presentation (out of 40 submis-
sions) and the eighteen posters for exhibition was no easy task. I’d like to personally thank all those
that gave of their time to help review submissions.

Unending appreciation and thanks must be extended to the Program Committee: David Bainbridge
(Program Chair), Gerry Bernbom, Donald Byrd, Tim Crawford, Jon Dunn, and Michael Fingerhut.

Additionally I’d like to thank Dr. Stephen Griffin of the National Science Foundation, for helping us
secure the foundational funding that made this symposium possible. Dr. Radha Nandkumar of the
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, must
also be thanked for providing financial support to help us augment our student stipend program.

Finally, several departments and individuals at our host institution, Indiana University Bloomington,
deserve thanks. A great deal of the planning that went into this conference was done by Diane Jung,
Charles Rondot, David Taylor, and Les Teach, of the Communications and Planning Office under the
Office of the Vice President for Information Technology and CIO, and by Tawana Green and the

staff of the IU Conference Bureau. Their assistance is much appreciated. In addition, the Indiana
University School of Music generously supplied an extraordinary instrument, a fortepiano, for the
mini-recital at the Mathers Museum.

Sincerely,

J. Stephen Downie

Symposium Chair

Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
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Using Long-Term Structure to Retrieve Music:
Representation and Matching.

Jean-Julien Aucouturier
SONY Computer Science Labs, Inc.
Rue Amyot, 75005 Paris, France

jjaucouturier@caramail.com

ABSTRACT

We present a measure of the similarity of the long-term structure
of musical pieces. The system deals with raw polyphonic data.
Through unsupervised learning, we generate an abstract
representation of music - the “texture score”. This “texture
score” can be matched to other similar scores using a
generalized edit distance, in order to assess structural similarity.
We notably apply this algorithm to the retrieval of different
interpretations of the same song within a music database.

1. MOTIVATION

Motivation for this system is our belief that a bird-eye-view of a
song’s long-term structure is often a sufficient description for
music retrieval purposes. In particular, our system doesn’t use
any “transcription” information such as pitch or rhythm. Thus, it
can deal with polyphonic music without the problem of
instrument separation.

A similar approach has already been illustrated by Foote in [1],
where the author designs an algorithm to retrieve orchestral
music based on the energy profiles. A drawback of his system is
that it requires music with high dynamic variations. To address
this problem, our approach is rather based on spectral variation:
we uncover and match the succession over time of abstract
“spectral textures”.

2. REPRESENTATION

A piece of polyphonic music can be viewed as the superposition
of different instruments playing together, each with its own
timbre. We call “texture* the polyphonic timbre resulting of this
superposition. For example, a piece of rock music could be the
succession over time of the following textures: {drums}, then
{drums + bass + guitar}, then {drums + bass}, then {drums +
bass + guitar + voice}, etc...

The front-end for our system is based on work done by the
authors in [2]. The musical signal is first windowed into short
30ms overlapping frames. For each of the frames, we compute
the short-time spectrum. We then estimate its spectral envelope
using Mel Cepstrum Coefficients [3]. A Hidden Markov Model
(HMM) [4] is then used to classify the frames in an
unsupervised way: it learns the different textures occurring in
the song in terms of mixtures of Gaussian distributions over the
space of spectral envelopes. The learning is done with the
classic Baum-Welsh algorithm. Each state of the HMM accounts
for one texture. Through Viterbi decoding, we finally label each
frame with its corresponding texture.

Mark Sandler

Department of Electronic Engineering,
Queen Mary, University of London,
Mile End Road, London E14NS, UK

mark.sandler@elec.gmw.ac.uk

Our “texture score” representation is just the succession over
time of the textures learned by the model (figure 1). It reveals
much of the structure of the song: phrases succeed to phrases,
common patterns are repeated every verse and chorus,
instrument solos stand out clearly and echo the introduction and
ending, etc.

textures

TEXTURE 3

TEXTURE 2

TEXTURE 1

Figure 1: The texture score representation for a few seconds
of music.

One interesting property of this representation is that the
spectral signification of the textures has been discarded by the
HMM. The texture score of figure 1 could correspond to
{drums} - {guitar + drums} - {guitar + drums + voice} -{guitar
+ drums}, but could also well be {cello} - {cello + violin} -
{cello + violin + voice} - {cello + violin}, etc. We only know
about the succession of the textures, not about the textures
themselves. We will use this property to match different
interpretations of the same song (i.e. same long-term structure)
which use different instrumentations (i.e. the spectral content of
the textures is different).

3. MATCHING

In order to assess the structural similarity of pieces of music,
we’ve designed an appropriate string-matching algorithm to
compare texture scores. Each score is a simple string of digits
out of a small alphabet: if we’ve identified 4 textures in the
song, the score will be of the form ...11221333441... out of the
alphabet {1,2,3,4}.

There are three issues that the string-matching algorithm needs
to solve:

- Noise: similar structures can differ quite a lot locally, so the
matching can only be approximate.

- Time Warping: two different performances with the same
structure can have a different rhythm or expressivity
(rubato...).

- Permutations: the numeration of the textures by the front-
end is arbitrary. This means that a texture which is referred

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.



to as “1” in one song, could be referred to as “3” in
another. Therefore, the two strings “112133” and “331322”
should be considered to be the same (as they differ only by
the following permutation {(1,3), (2,1), (3,2)}).

The first two issues are classically dealt with using dynamic
programming to compute an edit distance (also called
Levenshtein distance) [5]. It gives the minimal number of local
transformations (insertion, deletion, substitution) needed to
transform — or “edit”- one string into one other.

However, the third issue has not received much coverage in the
string matching literature. To avoid the brute force approach
consisting of #!distance measures for all permutation of the
alphabet, Baker in [6] suggests an interesting factorization
method. Unfortunately, it is mainly designed for exact matching
(without noise), and is also very dependent on the time scale.

Our integrated solution to these three issues is a generalized edit
distance, where we progressively adapt the cost of the each
elementary substitution as the edit distance between two strings
is computed. At the beginning of the process, we “charge” every
substitution of one symbol into another, except the identity. By
the end of the measure, the costs have changed to “learn” the
best permutation between the two strings: we “charge” every
substitution (including identity) except the ones corresponding
to the permutation between the two strings.

4. TWO APPLICATIONS

4.1 Clustering covers of the same songs

Figure 2 shows the texture scores for the beginning of two
versions of the same song, with different instrumentations: the
first one is a male singer and an accompaniment based on
accordion; the second one has a female singer and violins. Since
we have freed ourselves from these spectral differences by using
the texture scores, we are able to notice that the two pieces show
some similarity. We have applied our algorithm on a database
containing different versions of different songs (notably 3
versions of a French song from the 50’s by A. Bourvil, J. Greco
and 1. Aubret, 4 versions of a Bob Dylan tune, with acoustic or
electric guitar, studio or live recording, etc.), and the results are
encouraging: the edit distance between “covers” is generally
small, and the distance between different songs is big, which
allows us to cluster the different interpretations.

Ml Bl
BRI

Figure2: Comparison of the texture score representations of
two different interpretations of the same song.

4.2 Clustering songs of the same genre.

We have also applied our algorithm to cluster a database
containing acoustic blues (3 Robert Johnson tunes, 2 Son House
and 2 Tommy Johnson), folk (4 songs by Nick Drake) and
country pieces (4 songs by Woody Guthrie). As most of the
blues tunes show a common phrase structure (AAB), we are able
to gather and separate them from the other pieces. Once again, a
bottom-up spectral approach can’t easily succeed in this task,
since all the pieces contain mostly the same instrumentation
(voice + guitar).

5. CONCLUSION

The texture score is a good representation to study the long-term
structure of polyphonic musical signals. In the context of string
matching, it provides an efficient retrieval tool to cluster songs
with the same structure. Two applications are covers of the same
tune, and pieces of the same “structural” genre.

This tool is especially useful since it disregards the spectrum
content of the signals. Obtaining the same assessment of
structural similarity from the extraction of “transcription”
features such as pitch, instrumentation and rhythm would
actually require very sophisticated high-level knowledge.

The generation of the texture score involves a machine-learning
algorithm, which is quite intensive for a database application
(processing a piece of music takes about real time), but once
extracted, the score can be stored as metadata, and the retrieval
can be performed in reasonable times (it is just an edit distance).

Further work includes generating “cleaner” texture scores (for
issues on the front-end, see [2]), and optimizing the computation
of our generalized edit distance. The scheme still has to be
tested on a large corpus of tunes and genres to measure a
meaningful precision rate, but we believe that these results
already show the relevance of this alternative approach to Music
Retrieval.
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ABSTRACT

We present some methods for improving the performance a
system capable of automaticaly identifying audio titles by
listening to broadcast radio. We outline how the techniques,
placed in an identification system, allow us detect and isolate
songs embedded in hours of unlabelled audio yielding over a
91% rate of recognition of the songs and no fase aarms. The
whole system is aso able of working real-time in an off-the-shelf
computer.

1. INTRODUCTION

A monitoring system able to automatically generate play lists of
registered songs can be a valuable tool for copyright enforcement
organizations and for companies reporting statistics on the music
broadcasted. The difficulty inherent in the task is mainly due to
the difference of quality of the original titles in the CD and the
qudlity of the broadcasted ones. The song is transmitted partialy,
the speaker talks on top of different fragments, the piece is
maybe playing faster and several manipul ation effects are applied
to increase the listener’s psycho-acoustic impact (compressors,
enhancers, egualization, bass-booster, etc...). An additiona
difficulty is that there are no markers in broadcasted radio
informing when the songs start and end.

In this scenario, the article focus on the pattern matching
techniques that, given a sequence of audio descriptors, are able
to locate a song in a stream avoiding false darms. Shortly the
whole system works as follows, off-line and out of a collection of
music representative of the type of songs to be identified, an
alphabet of sounds that describe the music is derived. These
audio units are modeled with Hidden Markov Models (HMM).
The unlabelled audio and the set of songs are decomposed in
these audio units. We end up then with a sequence of letters for
the unlabelled audio and a database of sequences representing
the original songs. By approximate string matching the song
sequences that best resembles the audio the most similar song is
obtained. We point out the importance of assessing statistical
relevance on the best matching song found in order to avoid false
positives. We end up explaining how these techniques can be
applied to continuous stream of audio and commenting the
results.

Permission to make digital or hard copies of al or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

2. AUDIO PERCEPTUAL UNITS

From an acoustic point of view, music can be described as a
sequence of acoustic events. To be able to identify titles it is
relevant to extract information about the temporal structure of
these sequences. The first step converts the acoustic signal into a
sequence of abstract acoustic events. Speech events are described
in terms of phones. In music modeling this is not so
straightforward. Using, for instance notes would have
disadvantages: Often notes are played simultaneously (accords,
polyphonic music) and music samples contain additional voices
or other sounds. The approach therefore followed is learning
relevant acoustic events, that is, finding the set of “fundamental
sounds’ in which we can decompose audio and representing
them with a letter. The alphabet of audio perceptual units is
derived through unsupervised clustering using cooperative HMM
from a database of several thousand titles [1].

3. SEQUENCE ALIGNMENT

Having derived HMM models for the audio perceptual units, we
can decompose the songs into a symbolic representation. Instead
of comparing raw audio, for identifying titles, we compare the
sequence of letters of unknown audio against the sequences
corresponding to al the songs to identify. The search for a
sequence in a database Smilar to the query sequence is
performed by approximate string pattern matching [2]. A
measure of the difference between two sequences is the edit
distance, defined as the minimum number of character insertions,
deletions and substitutions needed to make them equal. An
arbitrary weight can be associated with every edit operation, as
well aswith amatch.

The dynamic programming algorithm is guarantied to find the
best alignment between a pair of sequences given a particular
choice of scoring matrix and gap penalties [3]. There are several
variants of the dynamic programming algorithm that yield
different kinds of aignments. The Neddleman and Wunsch is a
globa alignment, that isto say, it aligns the entire length of both
sequences. For our particular case thisis not suitable since it is
typical that a song in the radio is broadcasted partially. The
variant known as the Smith-Waterman agorithm yields a local
alignment. It aligns the pair of regions within the sequencesin
our application, since the query audio sequence must be
compared to severa thousand titles, we run a heuristic
approximation to the Smith-Waterman algorithm that allows us
perform the matching much faster named FASTA[4].

3.1 Thechoice of subgtitution scores
The weighted scores for substitutions of the edit distance are
calculated to account for bias in the replacement of symbols



between the original and the broadcasted song sequences. A set
of original CD and corresponding radio songs are selected and
manually edited by cutting pieces so that the pieces of audio are
synchronized. Then a similarity ratio, Rj is computed for the
symbolsin the sequences

_ G

R Pi P;

where g is the relative frequency with which the symbols i and j
are observed to replace each other in the manually aligned
sequences. pi and p are the frequencies at which the symbols i
and j occur in the set of songs in which the substitutions are
observed. Their product, pi pj, is the frequency at which they
would be expected replace each other if the replacements were
random. If the observed replacement rate is equal to the
theoretical replacement rate, then the ratio is one ( Ry = g / pipj
= 1.0 ). If the replacements are favored with the manipulative
effects above described the ratio will be greater than one and if
there is selection againgt the replacement the ratio will be less
than one. The similarity reported in the similarity score matrices
Sj isthelogarithm to thisratio.

4, STATISTICAL SIGNIFICANCE

Considering the possible uses of the system, a great concern in
the similarity searching above described is a fa se-positive error.
We would not like to include in a play list for a copyright
enforcement association a song that has not been played. Any two
sequences composed of letters from the same aphabet can be
aligned to show some measure of similarity. Typically alignment
scores of unrelated sequences are small, so that the occurrence of
unusually large scores can be attributed to a match. However,
even unrelated sequences can occasionally give large scores in
the local alignment regime. Although these events are rare, they
become important when one attempts a search of a big and
expanding sequence database. How often will an event at least as
extreme as the one just observed happen if these events are the
result of a well defined, specific, random process? It is
imperative to understand the statistics of the high-scoring events,
in order to estimate the statistical significance of a high-scoring
alignment.

In the case of gapless alignment, it is known rigorously [6] that
the distribution of alignment scores of random sequences is the
Gumbel or extreme value distribution (EVD), which has a much
broader tail than that of the Gaussian distribution. For the case of
gapped alignment, there is no theory available to predict the
distribution of alignment scores for random sequences. It has
been conjecture that the score distribution is still of the Gumbel
form. Also our tests on seguence of descriptors extracted from
audio seem to show a good fit to the Extreme Value Distribution.
The EVD is of the form:
E = Kmne™®

where E is the expected number of hits with score >=S misthe
size of the query sequence, n is the size of the database. A and K
the are Gumbel constants and must be estimated from a large
scale comparison of random sequences. The FASTA or various
implementation of the SW algorithm, produce optimal alignment
scores for the comparison of the query seguence to sequences in
the database. Most of these scores involve unrelated sequences,
and therefore can be used to estimate A and K.

5. ON-LINE SYSTEM

We have then a method for comparing fragments of audio against
a database of songs for a best match and statistical method for
assessing its goodness. Both the symbolic extraction and the
matching against the database run fast on a normal machine. The
approach for, having a continuous stream of broadcasted audio,
identify songs consists in sending hypothesis to match against the
database every few seconds. That is, the superstring resulting
from the conversion of the raw audio to symbols is windowed
with overlap. So every 10 seconds, a sequence corresponding to
two and a half minutes of sound is compared to the database. As
a result of each comparison a set of candidates is shown along
with its expectation (E-value). A candidate with sufficiently low
E-value suggests that the query is related to that candidate
sequence and therefore can be added to the play list. Along with
the candidate sequence, an alignment with the query is provided.
With the timing associated to the query seguence an estimation
of the beginning and ending time of the song broadcasted can be
obtained and printed in the play list.

6. RESULTS

The system has been tested with 24 hours of radio recorded from
10 different stations against a database of around 2500 songs of
commercial music. The radio data contains among music, jingles
commercials... 147 songs registered in the system (its original
version is in the database). The system vyields a result of 133
(little over a 91%) songs recognized and no false positive. By
lowering the threshold of acceptance of a candidate raises the
results to 135 correctly identified but false positives appear as
well. When working on-ling, the delay between the moment a
song starts sounding and it is added correctly to the play list is
about one minute as average. The system runs in more than real -
timein aPentium 111 500Mhz.
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ABSTRACT

Music information retrieval (MIR) as a nascent discipline is
blessed with a multi-disciplinary group of people endeavoring to
bring their respective knowledge-bases and research paradigms to
bear on MIR problems. Communication difficulties across
disciplinary boundaries, however, threaten to impede the
maturation of MIR into a full-fledge discipline. The principal
causes of the communications breakdown among members of the
MIR community are a) the lack of bibliographic control of the
MIR literature; and, b) the use of discipline-specific languages
and methodologies throughout that literature. This poster abstract
reports upon the background, framework, goals and ongoing
development of the MIR Annotated Bibliography Website Project.
This project is being undertaken to specifically address and
overcome these bibliographic control and communications issues.

1. INTRODUCTION

The problems associated with the creation, deployment, and
evaluation of robust, large-scale, and content-based (i.e., music
queries framed musically) music information retrieval (MIR)
systems are far from trivial. Music information is inherently
multi-faceted, multi-representational (i.e., can be represented in
many different ways), multi-modal (i.e., experienced in many
different ways), and multi-cultural. The complex interaction of
Pitch, Temporal, Harmonic, Timbral, Editoria, Textual,
Bibliographic, Representational, Experiential, and Cultural facets
makes music information difficult to store, and then retrieve, in
any robust, large-scale, and comprehensive manner. Simply put,
this dizzyingly complex interaction is the “MIR problem”.

Because MIR is such a complex and multi-dimensiona research
problem, many diverse groups of scholars, researchers, and
interested parties have begun to explore MIR issues within the
frameworks of their particular disciplines. These groups include
music and digital librarians, computer scientists, audio engineers,
music publishers and retailers, musicologists, information
retrieval  specialists, intellectual property lawyers, music
hobbyists, music psychologists, educators, Internet content
providers, broadcasters, and business managers.  Students,
representing all the aforementioned disciplines, at levels ranging
from undergraduate to post-doctorate, are also seeing MIR issues
as fruitful and interesting areas of study.

Permission to make digital or hard copies of all or part of this
work for persona or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

2. THE PROBLEM

A recurring theme brought to the fore by participants at the
International Symposium on Music Information Retrieval (23-25
October, 2000) was the ignorance many participants felt about
MIR work being done in disciplines other than their own. This
ignorance had two manifestations. First, participants of discipline
W bemoaned the fact that they did not know that members of
discipline X had been working on a given problem Y and
publishing their findings on Y in the X literature for years. For
example, computer scientists, and others, were not aware of the
extensive musicology literature dealing with music representation
codes. Second, participants of discipline X were distressed by
their inability to fully comprehend, and thus evaluate fairly, the
contributions being made by members of discipline W because
the contributions of W were so deeply rooted its discipline-
specific language and methods. For example, the music
librarians, and others, struggled with the audio engineering
presentations because they did not have the educational
background needed to evaluate the application of Fast Fourier
Transforms and other highly mathematical techniques to a
particular MIR problem.

The MIR corpus is scattered willy-nilly across the scholastic
landscape with important papers found in the musicology,
computer science, information retrieval, information science, and
engineering literatures, to name but a few sources. Because of
this scattering, it is nowhere uniformly represented in any one of
the traditional indexing sources. For example, the musicology-
based MIR work is found in various music, arts, and humanities,
indexes but not necessarily in the computer science and
engineering indexes. Similarly, important engineering-based
papers are missing from the arts and humanities indexes, and so
on. Since researchers are generally unaware of the differencesin
scope of the various discipline-based indexes, they tend to focus
upon those with which they are most familiar and thus overlook
the contributions of those based in other disciplines.
Unfamiliarity with the wide-range of vocabularies used by the
various disciplines further compounds the communication
difficulties by making it problematic for MIR investigators to
conduct thorough and comprehensive searches for MIR materials.
Until these issues are addressed, MIR will never be in a position
to fully realize the benefits that a multi-disciplinary research and
development community offers, nor will it be able to develop into
adisciplinein its own right.

3. PROPOSED SOLUTION



The creation of a Web-based, two-level, collection of annotated
bibliographies will overcome many of the communications
problems currently plaguing the MIR community (Fig. 1). The
first level, or core bibliography, will bring together those items
identified as being germane to MIR as a nascent discipline. Thus,
the core bibliography will comprise only those papers dealing
specifically with some aspect of the MIR problem, such as MIR
system development, experimentation, and evaluation, etc. The
second level, or periphery bibliographies, will comprise a set of
discipline-specific  bibliographies. Each discipline-specific
bibliography in the set will provide access to the discipline-
specific background materials necessary for non-expert members
of the other disciplines to comprehend and evaluate the papers
from each participating discipline. For example, an audio
engineering bibliography could be used by music librarians and
others to understand the basics of signal processing (i.e., Fast
Fourier Transforms, etc). Another example would be a
musicology bhibliography that computer scientists could draw
upon in an effort to understand the strengths and weaknesses of
the various music encoding schemes, and so on. Thus, taken
together, the two-levels of the MIR bibliography will provide:

a) the much needed bibliographic control to the MIR
literature; and,

b) an important a mechanism for members of each
discipline to comprehend the contributions of the other
disciplines.

Figure 1. Project Schematic
4. PHASE | COMPONENTS

An important operating principle of the project is the use of non-
proprietary formats and software. We are committed to the ideals
of the Open Source Initiative [6] and the GNU Genera Public
License [2] and thus intend to make our innovations freely
available to others. In keeping with this commitment, we have
chosen the Greenstone Digital Library Software (GSDL) package
[5], the Apache HTTP server [1], the PERL scripting language
[7], and the Linux operating system [4] to create the basic
technological foundation of the project. We have purchased
copies of the commercial bibliographic software package, ProCite
[3] for initial, in-house, data-entry. ProCite also provides us with
a representative instance of commercially available software that
many end-users might utilize in manipulating the records they
retrieve from our bibliography.

We have acquired the domain name music-ir.org under which
access to the bibliography will be located (http://www.music-
ir.org). At present, there are two centra components of project
undergoing development and alpha testing:

a) the bibliographic search and retrieval interface
using the GSDL package; and,

b) the Web-based end-user data entry system.

For both of these, the goa is to create a system that will permit
ongoing viability of the bibliography by minimizing—but not
necessarily  eliminating—the amount of human editorial
intervention required. Item A issues being addressed include
modifications to the basic GSDL system to permit the importation
of specialy structured bibliographic records and their subsequent
access through a variety of field selection options. Item B is a
CGl-based input system that guides end-users through the process
of constructing well-structured bibliographic records through a
series of step-by-step interactions and the on-the-fly generation of
input forms specifically designed to provide the appropriate fields
for the various types of bibliographic source materials (i.e,
journal articles, conference papers, theses, etc.).

4.1 Next Steps

Now that the general framework for the core bibliography has
been laid, we are moving forward on the acquisition of the
supplementary and explanatory materials. For these we will be
drawing upon the expert advice of those that have graciously
signed on as advisors to the project. These advisors will not only
lend their disciplinary expertise but will also afford us a very
important multinational perspective on the potential uses and
growth of the bibliography.
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ABSTRACT

The word ‘browser’ has come to acquire an additional meaning to
‘one who browses’. ‘Browser’ is frequently used to describe a
piece of software that enables a human, the browser, to engage
interactively in visualising and exploring representation of objects
in a computer. Users of record or bookshops and readers of
newspapers engage in browsing. This activity differs radically
from the traditional IR strategy of using a query to select subsets
or extract properties from data sets. Browsing is an alternate IR
strategy that can be effective for exploration, especially in the
cases of unfamiliar domains, or in cases where a well-defined
query is not desirable or possible. The provision of rich
information spaces allows people to develop an understanding of
the space, or the objects within that space, and of the relations
between the objects. Two existing browsing prototypes are
presented that illustrate how some browsing techniques may be
applied to music. They are of particular interest in that they
explore the potential for incorporating combined auditory and
visual information spaces.

1. INTRODUCTION

With computers, we can extend the abilities of our minds,
just as mechanical devices, motors and electricity have enabled us
to extend our mechanical and motor abilities. When showing a
musicologist a sonic browser prototype, he expressed great
surprise, “I’ve never seen a collection this way before” (see
Figure 1). This is a very important comment as he had been
working for a couple of years re-cataloguing the collection, from
index cards to database, via desktop publishing tools to its final
form — a paper based product, ready to print. Still, in paper or data
base format, one cannot get a visual spatial overview of, for
example, ‘here are the jigs and there are the reels’.

Marchionini and Shneiderman [5] describe browsing as:
e an exploratory, information seeking strategy that
depends upon serendipity.

e especially appropriate for ill-defined problems and
for exploring new task domains.

This can be the case when musicologists are searching for
melodies in a collection. Melodies collected through fieldwork
can often be different to older original versions. They can still be
the same melodies but with the addition of an individual
performers style. This sometimes makes it difficult to use
computer-based search algorithms or formal queries.
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2. BROWSING MUSIC

To create a sonic browser that provides an efficient way for
musicologists to find tunes in collections through browsing, we
need to:

e  Provide users with an overview of the data set.

e Facilitate recognition of information of interest.
e Give details on demand about objects in the data set.

e Provide visual and auditory representations of the
data set.

e Provide an interaction style that makes users feel
engaged and in control.

3. USE SCENARIOS

To develop an understanding of how musicologists use
collections of tunes and the difficulties they experience we
interviewed and observed musicologists at work. Most
musicologists stated that when they read a score, they use their
‘inner ear’ to listen to an internal representation of what the
melody would sound like. Others, who don’t have such a strong
ability for internal representation, would often hum or whistle the
melody they are reading. Our use scenario also corresponds quite
well to user needs described by Alain Bonardi [6], where he lists
some key features for a musicologist’s workstation.

4. THE SONIC BROWSER

Music is best perceived by listening and the sonic browser is
focused on the affordances of direct and interactive sonification,
i.e. making sound files that are in the user’s focus of attention
play, with the shortest possible interaction sequence. With the
Sonic Browser [2], the user only has to move the cursor around in
the screen and soundscape to see and hear the contents or
representation of the data set. The application utilises our ability
to switch our attention between sounds in the auditory scene,
making use of the cocktail party effect [1]. With multiple auditory
streams it is interesting to note that people have a different ability
to differentiate between the number of concurrent sound sources.
A metaphor for a user controllable function that makes it visible
to the user is the application of an aura [3]. An aura, in this
context, is a function that defines the user’s range of perception in
a domain. The aura is the receiver of information in the domain.
See Figure 1.
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Figure 1: Sonic Browser, with aura around cursor

Using the sonic browser, properties of the melodies can be
mapped to arbitrary features of the visual display. File size can be
mapped to size of visual symbols, genre to colour, symbol shape
time signature, horizontal location to time of collection and
vertical location to key signature. Users can at any time change
these arbitrary mappings, to suit their needs.

5. C.P.N. BROWSE

A second system is under development. It represents corpora
as a weighted graph, where vertices represent tunes, and each
weighted edge a significant relationship between the tunes.
Building the graph is a process separate from browsing. Building
is O(n?) in time, and can in practice take many hours to compute.
The resulting relations are stored for later use by the browser.
The system enables one to browse between melodies, where at
each stage the closest melodies to the current one are represented
sonically and visually (See Figure 2). The cursor enables the user
to move between melodies using a semi-acoustic perspective [7].
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6. EVALUATION

In user testing with 10 musicologists from the Irish World
Music Centre at the University of Limerick, we found that:
* Users performed browsing tasks substantially faster (c. 27%)
when multiple-stream audio was used, compared to single-
stream audio.

e Users remembered where (in the screen/soundscape) they
heard a melody before.

The interaction sequence was made easier and more engaging in
the sonic browser than with typical standard tools, as unnecessary
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mouse clicks were avoided. When the cursor and aura was over
symbols representing melodies, all melodies within the aura were
be heard. Users could rapidly switch the aura on or off with a
single keystroke, to make it easier to pinpoint a particular melody
in high-density clusters.

7. CONCLUSION

Using interactive visualisation and sonification techniques
can allow us to make new discoveries. Our ability to see and hear
new patterns and relations emerge can be supported by many of
the visualisation techniques described in this paper. An ideal MIR
system needs to support both algorithmic approaches as well as
interactive possibilities that extend our human abilities [5]. While
different forms of representation, algorithms, heuristics, neural
networks, etc., can assist us in automating categorisation, feature
extraction, comparison, differentiation, etc., the fact still remains
that music is best perceived and understood through listening.
Sonic browsing techniques can also be used for example when
investigating copyright issues, searching for new repertoire, or,
for pure enjoyment.
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1. Introduction

This paper presents a music information retrieval system based on
parallel and distributed computing. The system, called MIRACLE
(Music Information Retrieval Acousticaly with Clustered and
paralleL Engine), can take a user's acoustic input (about 8
seconds) and perform similarity comparison on a group of
clustered PCs. The system is a paradigm of client-server
distributed computing since the pitch tracking is performed at the
client computer while the time-consuming process of similarity
comparison is performed at the server. Moreover, the similarity
comparison is handled by a master server which partitions the
comparison task into subtasks and dispatches these subtasks to a
collection of slave servers. Currently there are more then 10,000
songs in MARACLE and the average retrieval time for “match
beginning” is less than 1 seconds. The top-10 recognition rate for
"match beginning" is 72%, and for "match anywhere', 56%.
Extensive tests and performance evaluation demonstrates that
MIRACLE is afeasible system that suits common peopl€’s needs
of music information retrieval.

2. Related Work of MIR Systems

As the needs for music information retrieval rises, there are many
MIR systems reported in the literature, including QBH (Query by
Humming) by Ghias et a. [1], MELDEX (Melody Indexing) by
Bainbrideg et d. [6], SoundCompass by Kosugi et a. [5], Super
MBox by Jang et d. [2], Themefinder by Kornstadt et a.[3],
MELODISCOQOV by Rolland et al.[7], etc. However, most of the
above systems do not alow acoustic input from users directly;
therefore the usability of those systems is significantly limited.
Even within those MIR systems based on acoustic input, only
MELDEX and Super MBox (a precursor of MIRACLE) have web
deployment, which allows general public access. Particularly, as
far as we know, MIRACLE is the first MIR system that is based
on cluster computing.

The authors have aso published their work on a content-based
MIR system called Super Mbox [2]. The focus of the publications
is on the use of dynamic programming techniques for elastic
match in the comparison engine. A significant advantage of using

DTW isthat users are not required to singing "ta" to facilitate note
segmentation, as required by MELDEX and SoundCompss. Being
a precursor of MIRACLE, Super MBox only alows the use of
DTW on asingle processor. MIRACLE, on the other hand, adopts
a two-step hierarchical filtering method (HFM) that filters out
90% candidates using an efficient linear-scaling comparison, and
then employs DTW to compare the survived 10% candidates.

3. Distributed and Parallel Computing

MIRACLE is composed of a client and a server component. The
client component takes users acoustic input and transforms it into
a pitch vector. The resulted pitch vector is then send to the server
for similarity comparison. At the server side, the request is first
handled by a master server which partitions the whole song list
into partial lists, and then dispatches these partial lists to 18 client
PC servers (ranging from Pentium 166 MHz to 1 GHz). Once a
slave server receives its candidate list from the master server, it
starts similarity comparison and return top-20 most likely
candidate songs to the master server. The master server then
combines and reorders the top-20 lists from &l dave servers to
generate the overall top-20 ranking list.

The initial length of the comparison song list for slave server p,
denoted by |, isproportional to the clock rate of the slave server,
Cp
18
k=1""k
server kand | is the length of the total song list. To adaptively
change the formula for |, at request i, denoted by 1,(i) , can be

namely, Ip =|* , where C, is the clock rate of slave

. _ S\ % {tave(i)_tp(i)} oy
expressed as | (i +1) =1,(i)* exp — [ where t,(i) is

the response time of save server p a request | ;
18

tave(i)=%2tj(i) is the average response time over al dave
j=1

servers at request i ; and k is a constant used to control the

sensitivity of the adaptation. The goa of the adaptive load

balancing strategy is to eventually have a same response time for

each dave server. In fact, the above expression for | ,(i +1) isnot

the final value for our experiment since I,,(i +1) must fulfill the
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constraint that the total length should be equal to | . Hence the
I,(+2
p

final valueof | (i+1) isl (i+)=1* ————.
P P e+

4. Performance and Discussions

To test the recognition rate of MIRACLE, we have a large
collection of 1550 vocal clips from 20 persons. 1054 of the vocal
clips are from the beginning of songs, while the other 496 are
from the middle. Some of the recordings are obtained via regular
handsets or mobile phones to test the robustness of the pitch
tracking algorithm. For the case of "match beginning”, we sent the
1054 files to MIRACLE that employs two-step HFM as the
comparison procedure. The average response time is about 2.29
seconds. The top-3 recognition rate is 65.75%; top-10 is 70.68%.
If we choose DTW instead of two-step HFM, the top-3
recognition rate is 65.56% and top-10 72.58%. It is obvious that
DTW and two-step HFM have comparable recognition rates.
However, DTW's average search time is about 5 seconds, which is
much longer than that of two-step HFM. For "match anywhere",
we sent the 496 vocal clips to the master server and the average
response time is about 5 seconds. The top-3 recognition rate is
43.29%; top-10 is 49.42%.

To test the adaptive strategy for load balancing, we measured
various response time for 100 consecutive requests of “match
anywhere” sent to the master server. The plot of various response
time with respective to request indices can be shown in the
following figure:
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Obviously our adaptive strategy can effectively balance the loads

such that the response time of each dave server approaches the

same. Since the slave servers are not dedicated to MIRACLE only,

we can see some sudden increases in the slowest response time.

The following plot shows the curves of various response time
(after 100 requests, and taking the average of the last 10 requests)
with respect to number of dave servers:
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From the above plot, we can observe that the average response
time levels off when the number of dave servers is 10 or more.
We can conclude that for a MIR system with 10,000 songs, 10
clustered PCs are qualified for the requests of “match anywhere”.

To test drive MIRACLE, please follow the link of “Online demo
of Super Mbox” at the author’ s homepage at:

http://www.cs.nthu.edu.tw/~jang
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ABSTRACT

An effective music information retrieval (MIR) system should
provide fast queries to music databases taking into account
musical features relevant to the task, such as transposition
tnvariance, polyphony of music and the fact that there might
be some ‘extra intervening musical elements’ (such as grace
notes) within the database occurrence of the query pattern.
The importance of efficiency is due to the need to find mu-
sical documents in possibly enormous databases. In this pa-
per, we introduce an approach using three different match-
ing layers each of which is possible to find transposition in-
variant occurrences of given musical query patterns in poly-
phonic music databases. The advantage of the layers is in
sorting them in an order of decreasing efficiency as regards
to the speed, but in an increasing order of carefulness put in
the searching process. Thus, a repeatedly occurring musical
pattern used as a query pattern should be found very effi-
ciently, while searching for a query pattern corresponding
to a rare database occurrence with arbitrarily many extra
intervening elements is allowed to take more time.

Key words: music retrieval, multi-layer approach, poly-
phonic databases.

1. INTRODUCTION

The rapid growth of Internet-based services, multimedia
technology, and development of new standards, such as
MPEG-7, have made content-based retrieval and analysis
of multimedia information an increasingly important field
of research. Traditionally, the research has focused on the
indexing and retrieval of texts and images. Nevertheless,
music is at least as important a part of our culture and,
consequently, as important a constituent of the multimedia
domain, which can be seen in the current effort being put
into developing theories and practical methods for its re-
trieval for use in, for example, Internet search and digital
libraries. Content-based retrieval of music requires specific
techniques that have not been employed for other media.
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In this paper, we suggest a multi-layer approach for mu-
sic information retrieval (MIR) in large-scale databases.
Our approach contains three different matching layers, each
of which is capable of finding transposition invariant oc-
currences of a given query pattern within a polyphonic
database. The matching layers are executed in order of
decreasing efficiency. The same ordering, however, puts
the layers in order of increasing number of possibilities in-
spected. Having executed one layer, the algorithm of that
layer outputs the occurrences it has found (if any), after
which it is down to the user whether the next matching
layer is to be executed.

A specific property of two of the layers (the first and the
third) is that in a constituent of a musical pattern there
may appear any finite number of other events between any
two events included in the query pattern. Thus, an occur-
rence could be found even if the database version had, for
example, some kind of musical decoration (such as different
ornamentations or grace notes) that is absent in the query
pattern. Next we briefly describe the three layers one by
one.

2. DESCRIPTION OF THE LAYERS

The First Layer

The first matching layer is based on indexing. A particularly
time-efficient indexing technique, based on suffiz structures,
for the matching can be performed in linear time with re-
spect to the length of the query pattern. There are several
ways to implement a suffix structure. An attractive choice is
the so-called suffiz tree because its space complexity is linear
in the size of the database. Moreover, it can be constructed
in linear time [7]. However, a suffix tree storing all the MIDI
files available on the Internet would require an impossible
amount of main memory [4]. Because of this problem, some
MIR researchers have started to consider the possibility of
finding musically meaningful patterns in the musical docu-
ments residing in the database. One of the first ideas was
to extract only the melodies, or only the melodies of the
choruses of the musical documents, these being the parts of
musical documents most frequently used in content based
queries [1].

Another current idea for indexing music [3] is to use a multi-
ple viewpoint system [2]. The idea is to put in the structure
such subsequences from any of the considered viewpoints



whose frequency, in practice, exceeds significantly the ex-
pected frequency. Both of the methods above, as well as all
the others previously suggested for MIR indexing, have been
alike in that they have been based on sequences of musical
events, and the sequences to be considered have been fixed
beforehand.

Our current pattern induction algorithm, SIATEC (Struc-
ture Induction Algorithm with Translational Equivalence
Classes) [6], can be used to find the frequently occurring
musical patterns. STATEC works in two phases. The first
phase, STA, computes every maximal repeated pattern in
the given music database. The second phase takes the out-
put of STA as input and then computes all the occurrences
of each of the maximal repeated patterns computed by SIA.
The patterns to be inserted in the indexing structure are
selected out of these occurrences of maximal repeated pat-
terns, and can be seen as the Longest Common Transposi-
tion Invariant Subsequences (or LCTS) [4] of subsequences
appearing in the database. Thus, we are able to find in this
most efficient first phase patterns that are musically mean-
ingful (since they are those that recur in the database) even
if they are decorated unexpectedly. We cannot afford, how-
ever, to index all such recurring patterns of a large-scale
database, because of the huge amount of main memory re-
quired for the indexing structure. Therefore, the following
matching layers would be needed in many situations.

The Second Layer

If the pattern being sought cannot be found in the index, the
second layer of our approach can be invoked. This layer ap-
plies the fast bit parallel MoONOPoOLY filtering algorithm [5].
With most patterns (any pattern whose length is shorter
than the size of one computer word), the main phase scans
through the database in linear time (with respect to the
length of the database). The main phase reports possible
locations for occurrences, which are to be checked with an-
other, somewhat slower algorithm.

The advantage of this layer is that it does not need an ex-
cessively large main memory to be able to search the occur-
rences of the pattern anywhere in the database. Further-
more, even though it is not as efficient as the previous layer,
it is still very fast compared to the conventional dynamic
programming algorithm computing edit distance, frequently
applied to MIR (see e.g. [4] for a summary of some current
methods). The found occurrences, however, for this layer
are always sequential. Therefore we have one further layer.

The Third Layer

The final third layer applies the SIA(M)ESE matching al-
gorithm based on the SIA algorithm [6]. This layer is the
slowest of the three, but it allows a broader definition of
what counts as a possible match than the two previous lay-
ers. More precisely, it does the same kind of LCTS matching
as the first layer, but because it does not need the indexing
structure, it is not restricted to matching against frequently
occurring patterns only. Moreover, SIA(M)ESE is capable
of multi-resolution searching, i.e., the matching can be done
on any desired level of detail (cf. e.g., Schenkerian analyses).
This is obtained by definition without any extra cost on the
performance; the resolution of the search is defined by the
details of the user-given query pattern.
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3. CONCLUDING REMARKS

In this paper, we have introduced a three-layer approach to
MIR, which is capable of finding transposition invariant oc-
currences of a given query pattern within large-scale poly-
phonic music databases. The occurrences of the pattern
can be found even if the database version has, for exam-
ple, different musical decorations than the query pattern.
The contribution of our approach is in having three distinct
searching algorithms each of which are efficient and effec-
tive already in themselves, but that work particularly well
together when sorted in an order of decreasing performance
and in an increasing order of thoroghness and detail in the
searching process. In this way, a repeatedly occurring pat-
tern can be found very efficiently, whereas finding another
query pattern corresponding to a rare database occurrence
with possibly many intervening elements takes more time,
but is still possible.

Denoting the number of musical events in the query pat-
tern and music database by m and n, respectively, and the
number of chords in the database and the maximum size
of a chord by @ and ¢, the running times of the differ-
ent phases of our multi-layer algorithm are as follows. Be-
fore any query execution, a preprocessing phase is required;
the indexing structure for the first layer is constructed in
O(n?logn) time, and the structures required for the second
layer are built in O(ng) time. The three matching layers are
executable in O(m), O(w) (O(ng(g + m)) for the checking
phase), and O(mnlog(mn)) times, respectively, the second
requiring the restriction that the length of the query pattern
is no more than the size of the computer word in bits.
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ABSTRACT

This paper presents a new toolkit for the creation of customized
structured document recognition applications by expert users. This
open-source system, called Gamera, allows a user, with particular
knowledge of the documents to be recognized, to combine image
processing and recognition tools in an easy to use, interactive,
graphical scripting environment. Additionaly, the system can be
extended through a C++ modul e system.

1. INTRODUCTION

This paper® presents a new toolkit for the creation of domain-
specific structured document recognition applications by expert
users. This system, called Gamera, allows a knowledgeable user
to combine image processing and recognition tools in an easy to
use, interactive, graphical scripting environment. The applications
created by the user are suitable for use in alarge-scale digitization
project; they can be run in a batch processing mode and easily
integrated into a digitization framework. Additionally, a module
(plug-in) system allows experienced programmers to extend the
system. This paper will give an overview of Gamera, describe the
user environment, and briefly discuss the plug-in system.

2. MOTIVATION AND GOALS

Gamerais being created as part of the Lester S. Levy Sheet Music
Project (Phase Two) (Choudhury et a. 2001). The Levy collection
represents one of the largest collections of sheet music available
online. The goal of the Levy Project is to create an efficient
workflow management system to reduce the cost and complexity
of converting large, existing collections to digital form. From the
beginning of the project, optica music recognition (OMR)
software was a key component of the workflow system. The
creation of a flexible OMR tool is necessary because of the
historical nature of the Levy collection; existing OMR systems are
not designed to handle the wide range of music notation found in
the collection or dea with the potentially degraded documents.
OMR done is not sufficient for the complete recognition of the
scores in the Levy collection as they are not comprised only of
musical symbols. Text is aso present as lyrics, score markings,
and metadata. It was hoped, however, that an existing optical
character recognition (OCR) system would be able to process

! Permission to make digital or hard copies of dl or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page.
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such text. Early trids of existing systems reveaed there are many
problems with the current generation of OCR software within this
context.

To address the need for OCR in the Levy project the Gamera
system was created. Gamera is an extension of the existing OMR
system to a general symbol recognition system. By creating a
general symbol recognition system it is possible to use the same
technology that allows the OMR system to perform well on the
musical portions of the Levy collection to recognize the text. In
addition to serving the needs of the Levy project, we hope that the
system may be used in the future for the recognition of historical
documents and any other structured documents that current
recognition systems do not adequately address.

In addition to generalizing the system, a graphical programming
environment has been added to ease the adaptation of the system
by users with expert knowledge of the documents to be
recognized. This environment provides an easy-to-learn scripting
language coupled with a graphical user interface. The goa is to
dlow the user to experiment easily with algorithms and
recognition strategies during the creation of custom scripts for the
recognition process. This will alow users to leverage their
knowledge of the documents to customize the recognition process.
It is hoped that users without extensive computer experience can
effectively use this environment with a small amount of training.
The scripting environment does contain, however, a complete,
modern programming language that will allow advanced users
considerable flexibility and power.

3. ARCHITECTURE OVERVIEW

Gamera is primarily a toolkit for the creation of applications by
knowledgeable users. It is composed of modules (plug-ins),
written in a combination of C++ and Python, that are combined in
a very high-level scripting environment to form an application.
The overal design isinspired by systems like MathWorks Matlab,
CVIP tools (Umbaugh 1998), or spreadsheet macros. In Gamera,
modules perform one of five document recognition tasks:

Pre-processing

Document segmentation and analysis

Symbol segmentation and classification

Syntactical or semantic anaysis

Output

Each of these tasks can be arbitrarily complex, involve multiple
strategies or modules, or be removed entirely depending on the
specific recognition problem. Additionally, keeping with the
toolbox philosophy of Gamera, the user of the system has access
to a range of tools that fall within the general category of these

agrpwNE



tasks. The actual steps that make up the recognition process are
completely controlled by the user.

In addition to flexibility Gamera also has severa other goals that
are important to the Levy project and to large-scale digitization
projectsin general. These are:

1. A batch processing mode to alow many documentsto
be recognized without user intervention.

2. Open-source so that the software can be customized to
interact well with the other parts of the digitization
framework.

3. Thesystem designed to run on avariety of operating
systems including Unix, Microsoft Windows, and Apple
MacOS.

4. Recognition confidence output so that collection
managers can easily target documents that need
correction or different recognition strategies.

The first three goas have been achieved while the last goa is
currently being developed.

4. USER ENVIRONMENT

The goal of the user environment is to leverage the knowledge
and skills of the user about the documents being recognized. This
is accomplished by creating a dynamic scripting environment and
graphical user interface where users can experiment with various
Gamera modules.

4.1 Scripting Environment

Gamera includes a complete scripting environment that a user can
use to create custom recognition systems quickly and easily. The
scripting environment tries to be easy to use, flexible, and
extensible.

4.1.1 Ease of Use

Perhaps the most important aspect of the Gamera scripting
environment is ease of use by users with limited computer
programming experience. As previoudly stated, the targeted user
is a person with expert knowledge of the documents to be
recognized that may or may not have computer programming
experience. In order to meet this goal Python was chosen as the
foundation and extensions were written that are as easy to use as
possible.

In order to transform Python from a general purpose scripting
language to scripting environment tailored to the needs of Gamera
users, a set of extensions was written in a combination of Python
and C++.

4.1.2 Flexibility

Flexibility is the second most important goal for the scripting
environment. Again, this aspect of the scripting environment is
facilitated by the choice of Python. Because Python is a general-
purpose programming language, a large portion of the system can
be implemented directly in standard Python. In general, only those
algorithms that need direct access to image pixels are written in
C++. This allows users to customize existing modules written in
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Python, combine the low-level building blocks into new modules,
or write modules from scratch.

4.1.3 Extensibility

Despite the flexibility of the scripting environment, not all
algorithms can be suitably implemented in Python. For this
reason, a C++ module system for use by experienced
programmers has been developed. Some of the features of this
system are:

1. Automatic binding of C++ code to Python.

2. Runtime addition of C++ modules as methods to Python
classes.

3. Abstraction of the data storage format of image data
using C++ templates to allow convenient accessto
compressed images.

4. Flexible programming interface allows the easy
conversion of existing C and C++ code that uses a
variety access methods to image data.

4.2 Graphical Interface

In addition to the scripting environment Gamera includes a
graphical user interface that alows the interactive display and
manipulation of images using the scripting environment. This can
be as simple as displaying the results of a pre-processing
algorithm or as complex as complete interface for training. Again,
like the scripting environment, the graphical interface is created
with standard tools entirely in Python allowing users to extend
and modify the system.

5. CONCLUSION

A graphical programming environment for the creation of
document recognition applications was described. This system,
caled Gamera, is designed to be used by people with expert
knowledge of the documents to be processed. These users are not
required to have extensive computer experience; the system can
be effectively used with a small amount of training. Users with
considerable programming experience can aso create custom
modules in Python or C++ to extend the system. The applications
created by this system are suitable for large-scale digitization
projects because they can be run in batch mode and integrated into
the digitization framework.
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ABSTRACT will refer to any of these simply as “humming”), and the system

In this paper we explore a technique for content-based music finds matching entries in a music database. An entry matches if it
retrieval using a continuous pitch contour derived from a contains a close match to the hummed query. Since songs are
recording of the audio query instead of a quantization of the query 9enerally considered to be equivalent when performed at a speed
into discrete notes. Our system determines the pitch for each unit©" in @ different key, the system should be invariant with respect
of time in the query and then uses a time-warping algorithm to t© transposition and tempo.

match this string of pitches against songs in a database of MIDI

files. This technique, while much slower at matching, is usually 2. IXIE-.I;HOfDOLOSY based the pitch contour is ver
far more accurate than techniques based on discrete notes. It . ur 1dea for searching based on the p Y
would be an ideal technique to use to provide the final ranking of straightforward. First use a pitch transcription system to compute

candidate results produced by a faster but lest robust matchingthe. cor_mnuous pitch . contour O.f f[he hummed query. _(We
algorithm distinguish between pitch transcription systems, which simply

attempt to determine the pitch being hummed at each point in
time, and full melody transcription systems, which attempt to
1. INTRODUCTION extract a discrete series of notes, each with its own pitch, onset
Today, a musician who wishes to locate a particular song by time, and duration.) Overlay the pitch contour on top of every
melody can use a number of different search programs that allow possible place in the song, for every possible pitch offset, and for
one to input a few notes from the song (in any key), or even just a range of reasonable time scaling factors. For each position,
the melodic contour [1-6]. Realistically, most people are not offset, and time scale, approximate the integral of the difference
musically literate and are not capable of transcribing a melody between the instantaneous pitch at each point in time and the pitch
they are hearing in their heads into normal music notation. Even of the song at that point, giving a simple distance measure
identifying whether the next note in a sequence goes up, down, orbetween the two. The song that contains the minimum distance
stays the same, is beyond the capabilities of many potential usersmeasure is the one that best matches the query. Because hummed
That is the motivation behind creating an interface where the user queries are not likely to have a perfectly consistent tempo, we use
only needs to hum the melody he or she would like to search for. a dynamic time warping algorithm to allow for small rhythmic
It is not sufficient to rely on a melody transcription algorithm  differences.
to convert a digital recording of the hummed query into a This method is very computationally intensive, and even with
sequence of notes to search for in a song. Common problemsheavy optimization it is not likely to be fast enough to be a
include regions where the pitch tracker cannot lock onto any complete melody-matching solution. However, note that pitch and
frequency, octave errors, and segmentation errors (two rhythm are taken into account without relying on pitch
consecutive notes mistranscribed as a long note or vice versa).  quantization, beat induction, or note segmentation. We believe
Instead we propose searching for a melody based on the besthis contributes to the improved accuracy of this meet
estimate of the continuous pitch contour derived directly from the Here are the details of our implementation. We segment the
audio recording. Speech recognition researchers have discoveredyuery and candidate melody into frames of 100 ms. (100 ms was
time and time again that in the many steps necessary to go from achosen as a compromise between efficiency and accuracy.) Then
recording of speaking to the textual transcription, making hard we run the pitch transcription algorithm on each frame of the
decisions at any step can be disastrous. Guided by this experienceaudio recording of the humming. The pitch transcription
we try to eliminate the transcription steps that quantize pitches algorithm that we use is based on teehanced autocorrelation
and segment them into discrete notes, as this process is certain t@lgorithm described by Tolonen and Karjalainen [7]. We
introduce errors. investigated many other pitch transcription programs, including
This work is guided by the model of query-by-humming spectral-based approaches, other autocorrelation methods, and
systems. In such a system, the user hums, sings, or whistles (wecommercial products, but found that choosing the peak of the
enhanced autocorrelation signal worked as well if not better than
. o . . anything else when the goal was simply to come up with one
Permission to make digital or hard copies of all or part of this  t5rget pitch for each frame. We represented pitches as MIDI note
work for personal or classroom use is granted without fee nympers, allowing fractions, so for example 60.13 stands for a
provided that copies are not made or distributed for profit or pitch 13 cents above middle C. Other details, such as pitch ranges

commercial advantage and that copies bear this notice and thesg, different singers and silence thresholds, can be obtained
full citation on the first page.
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directly from our source code, which is freely available on the approach of this form is likely to outperform our frame-based
Internet [8]. method unless there is a major breakthrough in melody
The songs in our database are all MIDI files, so they also transcription software.
require some preprocessing before we perform our melody-
matching algorithm. To compute a string of 100 ms pitch frames 4. CONCLUSIONS AND FUTURE WORK
from a MIDI file, we consider each MIDI channel separately, and Our frame-based approach shows a lot of promise. It works
find the note that is most contained in each time frame. If multiple better than any note-based approach we were able to implement,
notes are found, we choose the one with the highest pitch. Also, and more importantly, there are compelling reasons why one
because note releases seem to be much less important perceptuslould expect this approach to be more accurate.
cues than note onsets, and because note releases are performed In spite of these advantages, our approach is not perfect. One
inconsistently, we extend all notes to the beginning of the next potential problem is that singers may change pitch in the middle
note, thereby eliminating rests in the melody. This mirrors the of a query, and our approach does not currently deal with this as
technique of defining a note’s duration as the inter-onset time well as an interval-based algorithm. Perhaps the biggest criticism
used in almost all note-based melody matching algorithms. of our work is that it is clearly a brute-force approach and it is
Because the tempo of the query may not have exactly matched thevery slow. Rather than move from dynamic programming toward
tempo stored in the MIDI file, we repeat this process with sub-linear retrieval algorithms suitable for large databases, we are
different time scaling factors from 0.5 to 2.0, allowing for an advocating strings that are much longer than the number of notes.
opportunity to match a hummed melody from half the speed up to Our searches run orders of magnitude slower than typical note-

twice the speed. based searches, and as a result, this algorithm could not be used
At this point we have a string af pitches for the query, so by itself to drive a content-based music retrieval system.
for every possible sequence of abo2m frames from every Still, our approach could also be used behind the scenes to

channel of our MIDI file, we match the query against the database improve faster algorithms: when our frame-based algorithm fails,
clip using a dynamic programming-based time-warping algorithm, it is often because the query itself was not particuladgd; Thus
exactly the same as would be found in a limited-vocabulary a researcher could use our more robust algorithm to distinguish

speech recognition system. To limit the @umt of rhythmic between cases where the query was simply no good and cases
variation between the query and the song from the database, wewhere a prototype algorithm failed for a different reason.
use abeam widthof n/10, ensuring that only paths that do not In the future we would like to improve the speed by using

stray too far from the straight diagonal are allowed. Finally, we two or more levels of refinement. We would begin with a fast but
run this time warping algorithm 24 times, once for each possible imprecise algorithm to narrow the search to a small subset of the

quartertone offset. database, then use successively more precise but more expensive
algorithms to arrive at the final result. In addition, we would like
3. EXPERIMENTAL RESULTS to experiment with searching audio data instead of MIDI.

In order to compare our approach against other techniques The authors would like to thank Kjell Lemstrom for
for melody retrieval, we collected a database of MIDI files in answering questions about SEMEX and providing some valuable
different genres and recordings of various people humming insight. This material is based upon work supported by NSF
melodies from these MIDI files. We used the algorithm discussed Award #0085945, an IBM Faculty Partnership Award, and an
in the previous section to compare the query to each song in our NSF Graduate Research Fellowship.
database and arrive at a distance between the query and each song.
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ABSTRACT

Online Digital Music Libraries are becoming increasing com-
mon and more sophisticated; however, availability of infor-
mation on how users access and navigate these resources
is limited. This type of information is crucial for improv-
ing user interface design and for providing users with better
supported services.

Here we present an analysis of the logs for our digital music
library, Meldex, for a 1 year period to discover patterns of
usage.

1. INTRODUCTION

Our Melody Index [1] is part of the New Zealand Digital
Library project (nzdl.org). Users can access songs in two
ways: they can see the results of a query, or they can browse
the song titles alphabetically. Queries can either be melodic
or textual. Melodic queries are submitted by either upload-
ing (posting) a short recording of sung or played notes, or
by providing a Uniform Resource Locator (URL) to such
a recording. Our demonstration page provides some sam-
ple recordings. Textual queries are matched against song
metadata, such as title or author, and lyrics.

Songs are returned in a variety of different audio formats,
such as WAV, MIDI, and Audio Interchange File Format
(AIFF). Some collections can also have results returned as
an image of the original sheet music. For example, our “Fake
Book” collection is built from the results of running optical
music recognition over sheet music. Copyright considera-
tions restrict which collections return full-length audio files
and images.

Our oldest collection is known as the “Folksong” collection.
Based on the Essen and Digital Tradition databases, it con-
sists of 9,354 folk songs which are divided into geographical
regions (Chinese, German, Irish and North American). The
“Fakebook” collection (mentioned above) consists of 1,235
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songs. The “Midi” collection is built from 9,763 MIDI files
sourced from the Web, and supports textual and melodic
querying. The “MidiMax” collection indexes 17,799 MIDI
songs and is more sophisticated, also allowing the indexing
and retrieval of motifs. It has been available since Octo-
ber 2000, while the other collections have been online since
November 1999.

2. A SELECTION OF STATISTICS

In reviewing prior work for usage analysis, the Variations
music library [2] at Indiana University is notable for provid-
ing daily statistics online. Given the context of the Varia-
tions project, these focus on aggregate performance-oriented
statistics such as number of songs retrieved, and maximum,
minimum and average retrieval times.

Here we present an analysis of the usage logs of our digital
library service for the 12 month period 1 April, 2000 to 31
March, 2001. Most of the results given here that are not for
the whole library are for the Folksong collection, as this data
set reflects patterns observed across the other collections.

Figure 1 shows the number of daily hits received (the line
represents a rolling 7-day average). There is not a noticeable
trend here, although there is a drop-off over the Christmas
and New Year holidays. There are also several brief periods
of server outages.
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Figure 1: Daily accesses for the folksong collection

Table 1 shows the distribution of visitors to the folksong
collection. This is based on all the web pages generated by



Table 1: Top 10 visitor domains for ‘folksong’

Domain Accesses  Yage of total
.net 3,827 29.67
.com 2,128 16.50
Europe 2,102 16.30
unknown 2,090 16.20
.edu 1,001 7.76
Sth. Pacific 661 5.12
Asia 435 3.37
Nth. America 235 1.82
Australia 188 1.46
Sth. America 73 0.57
Totals: 12740 98.77

Table 2: Results pages generated — All collections

Page type Number
Own audio file with text query 104
Own audio file only 588
Demo audio file with text query 105
Demo audio file only 89
Text query only 1539
Browse titles 1070
Total: 3495

the music library and includes help and query pages, for ex-
ample, in addition to requests for songs from the collection.

Around 2000 of the hits for the folksong collection are from
one site, which appears to have been crawling part of our
library website. This accounts for slightly over half of the
visits from the .net top-level domain, and also accounts for
the two spikes observed in Figure 1. That particular internet
address has been filtered from the remaining statistics given
here. In addition, the addresses used by Meldex’s princi-
pal researchers over this period have been filtered out of all
statistics in this report.

Assuming that any accesses from the same IP address with
less than five minutes of separation are part of the same
“visit”, the average amount of time spent per visit over all
Meldex collections was slightly over 2 minutes, and consisted
of an average of 3.4 page views. Visits came from just over
1,900 different internet addresses.

Table 2 shows how users get to song listings. Just under
70% of song listings are generated as a result of a query, ei-
ther audio or textual (or possibly both), with the remainder
generated as alphabetical listings of titles.

Table 3: Users’ preferred Audio file format

Audio Format %age
MIDI 8.5 (834)
WAV 23.8 (410)
Real Audio 17.2 (295)
AIFF 04.0 (69)
Soundblaster VOC  02.6 (45)
Sun u-law 02.3 (39)
Sun AU 01.6 (28)

Total 100 (1720)

Three of the available file formats account for nearly 90% of
users’ preference settings, with the MIDI format accounting
for nearly half. These settings are listed in Table 3.

Table 4: Folksong Hit Parade - Top 10
Accesses Name

80 “Auld Lang Syne” [from demo page]
72 “Aéire cinn bé rdin”

62 “The Ash Grove” [from demo page]
52 “Abdul Abulbul Ameer”

49 “Ai erwa”

36 “Three Blind Mice” [from demo page]
30 “A New England Ballad”

25 “Abilene”

25 “A-Beggin’ I Will Go”

22 “Adam and Eve”

Table 4 gives the titles of the 10 most frequently requested
songs for the folksong collection. Of the 9,354 songs indexed
in this collection, 2,395 (25.6%) have been accessed at least
once, and about 1,700 have been accessed exactly once, sug-
gesting that these downloads are the results of users’ indi-
vidual queries.

3. SUMMARY

Around thirty percent of song lists generated are alphabet-
ical title listings, and most accesses from these lists are for
songs that start with the letter ‘A’. We conjecture this is
because new users to the library have a strong desire to
discover what sort of music is contained in the collection,
and accessing songs by titles is the easiest route currently
available in the interface.

A result that took us initially by surprise is that forty-four
percent of all listings are the result of a text query alone.
While it is possible that a wide range of Web users are con-
ditioned to typing queries into a text box, it should not be
overlooked that the overhead of entering a music query in
our current interface might be too high for many users. Also,
analysis of our own group members has shown that for large
MIDI collections, a browsing habit that had formed was to
enter a text query on some vague topic (for example, “fire”)
and see which tunes popped up.

Our Meldex service is available at www.nzdl.org/musiclib.
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ABSTRACT

We present a hybrid method in which we classify music
from a raw audio signal according to their spectral features,
while maintaining the ability to assess similarities between
any two pieces in the set of analyzed works. First we
segment the audio file into discrete windows and create a
vector of triplets respectively describing the spectral
centroid, the short-time energy function, and the short-time
average zero-crossing rates of each window. In the training
phase these vectors are averaged and charted in three-
dimensional space using k-means clustering. In the test
phase each vector of the analyzed piece is considered in
terms of its proximity to the graphed vectors in the training
set using k-Nearest Neighbor method. For the second phase
we apply Foote's (1999) similarity matrix to retrieve the
similar content of the music structures between two
members in the database.

1. ANALYSIS METHODS

1.1 Spectral Centroid
The spectral centroid is commonly associated with the
measure of the brightness of a sound. The individual

centroid of a spectral frame is defined as (here, F [k] is the
amplitude corresponding to bin k in DFT spectrum..)

N
S KF [k]
Centroid = 45

Z FIk]

Spectral

Figure 1 presents the weighted average spectral centroids of
the two analyzed sound examples. The lower (magenta)
band is an excerpt of the Kremlin Symphony's recording of
Mozart's Symphony 25 (K. 183) and the upper (cyan) band
is a rock style arrangement of the same musical segment.
The high frequency components in the pervasively
percussive rock version accounts for its higher placement
on the graph.

1.2 Short-Time Energy Function
The short-time energy function of an audio signal is

defined as: (where x(m) is the discrete time audio signal, n is time index
of the short-time energy, and w(m) is a rectangular window.)

1 0<x<N-1,

[x(mwn-m]"  ww=g

En =+

~ otherwise.
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Figure 1.

It provides a convenient representation of amplitude
variation over time. Patterns of change over time suggest
the rhythmic and periodic nature of the analyzed sound.
Figure 2 is the short-time energy change of the same
excerpts. The highly fluctuating rock version (cyan)
resulting from the persistent drum beats compared to the
more subdued but highly contrasting symphonic version
suggests one possible determinant for genre classification.

Short-time

Energy

Time (samples)
Figure 2.

1.3 Short-Time Average Zero-Crossing Rate

In the context of discrete-time signals, a zero crossing is
said to occur if successive samples have different signs.
The short-time averaged zero-crossing rate (ZCR) is
defined as

Zn =%z sgn [x(m)] = sgn [x(m -1)] [w(n =m),

1, x(n)=0,

where sgn [x(n)]:{_1 x(n)<0

Figure 3 is the ZCR over time of the same two sound
examples, as before, the classical version is magenta and
the rock version is cyan. Compared to that of speech
signals, the ZCR curve of music has much lower variance
and average amplitude and when averaged, shows
significantly more stability over time. ZCR curves of music
generally have an irregular small range of amplitudes.
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1.4 Foote’s Similarity Method

Foote (1999) represents acoustic similarity between any
two instants of an audio recording in a 2D representation,
Figure 4 shows the ‘similarity matrix’ analyzed for the two
music samples. The parameterization was done with a Mel-
frequency cepstral coefficient function with frame size 30.
Both samples are about 16 seconds long and sampled at
11025hz, 16 bits. The analysis visualizes the tripartite
segmentation of the phrase in the 16 second excerpt
(seconds 1-5, 5-12, and 12-16) in both the classical version
(fig 4.1) and the classical version (fig 4.2). Despite the
stylistic disparity between the two examples the musical
similarity in terms of pitch and rhythmic structure is well
represented.

Figure 4.1. orchestral version.

TEUT

Figure 4.2. rock version
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Figure 5. Novelty scores of
orchestral (left) and rock (right) version

Figure 5 presents the novelty scores over time(second) of
the two examples. In each figure the outputs with kernel
sizes, from top down, 10, 20, 60 and 96. The graph of
kernel size 96 displays three high peaks corresponding to
the tripartite musical structure. The smaller the kernel size
the greater the detail represented. This facilitates detection
of discrete musical events. We are currently considering
heuristics to find optimal kernel sizes to track appropriate
novelty information.

2.CONCLUSION

In this paper we explored a computational model that
combines classification and comparison of raw audio
signals to explore the perceived similarity between musical
recordings. Foote's (1999) similarity matrix retrieved the
similar content of the music structures between two music
samples even though their spectral components are
different. Future research will focus on quantitative
measurement of the degree of musical similarity between
two works, as well as genre classification by statistical
clustering.

3. ACKNOWLEDGMENTS
Our thanks to Professor Julius O. Smith, Jonathan Foote
and Malcolm Slaney for their insights and assistance.

4. REFERENCES
Foote, J. (1999) “Visualizing Music and Audio using Self-
Similarity.” In Proceedings of ACM on Multimedia.

Scheirer, E. and Malcolm Slaney. (1997) “Construction and
Evaluation of A Robust Multifeature Speech/Music
Discriminator.” In Proceedings of IEEE ICASSP.



Musical Information Retrieval for Delta and Neumatic
Systems

D. Politis, P. Linardis

Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki 540 06
GREECE

+ 30 31 998406

{dpolitis, linardis}@csd.auth.gr
http://www.csd.auth.gr

ABSTRACT

In this paper an alternate to Western Music musical system is
presented. This system has flourished for more than 15 centuries
in the areas of Byzantine Empire and it implements Neumatic and
Delta Interfaces in order to represent musical structures.
Recently, a remarkable revival and propagation of this system has
been recorded worldwide. The motivation for this paper has been
given from a joint effort of the Department of Informatics at the
Aristotle University and the Department of Music Science and Art
at the University of Macedonia to register the musical content not
only of contemporary manuscripts but also to record and correlate
morphologically the evolutionary stages from the neumatic origin
to the final Delta Analytical method.

KEYWORDS

Alternate Musical Interfaces, Neumatic and Delta Systems,
Byzantine Music, Morphology, Information Retrieval.

1. INTRODUCTION: DELTA AND
NEUMATIC MUSIC NOTATIONS

The world of music is not uniform nor unified; it consists of
various segmented systems diversified on matters of scales,
rhythms and transitional phenomena [1]. The Common Music
Notation (CMN) scheme along with the MIDI specification are
Western Music oriented. As a result, they are not able to clearly
depict alternate musical forms and traditions. The methodology
described in this paper implements an indexing scheme based on
signatures characterizing the content they point to. Also, emphasis
is given on content extraction mechanisms concerning the
morphology of the melodies. The musical database selected for
the application of this method is a Delta musical notation system

H. Kotopoulos, A. Alygizakis
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Figure 1. Byzantine Music Manuscipts. Detail of the so-called
'Chartres fragment' with musical notation, beginning of a
sticheron in Mode 8, Monumenta Musicae Byzantinae,
University of Copenhagen, Denmark.

known as Byzantine Music (Figure 1).

The problem with Delta symbols is that the same sequence of
symbols may yield a different melodic content, depending on the
scales of the Mode in which a melody is deployed [2] (Figure 2).

2. PROBLEM FORMULATION

The major issues in MIR for Byzantine music melodies are: (a)
how to locate specific sequences of symbols (b) how to associate
morphological metadata with the content.

Although the answer to this question may sound obvious, that by
forming any melodically meaningful text databases [3] we can use
IR systems available for Free Text Retrieval, things are not that
simple. IR systems appropriate for this purpose are the Inverted
File and the Signature File indexing schemes, both used
extensively for indexing Free Text Databases.

The Signature File indexing schemes have a simple structure and
require significantly less storage overhead. In Figure 3 is
presented the structure of a signature indexing scheme, as
modified here to handle a Musical Database. The Audio Data File
is a collection of original melodic data blocks. These blocks may
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Figure 2. Variations of a motive in Modes 1 and 2 with D* serving as a melodic basis.
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contain both semantic data and comments appended in the form of
text [4].

Signature File Melodies
[ooriior [t (LA comment
oo Fpr |
0010101 ... fEH : [
1110100 ... i :

signature pointer audio data

Figure 3. A Signature File scheme for digitally transcribed
manuscripts.

In the Signature File are stored the signature records of the audio
blocks and to each record is attached a pointer to the
corresponding audio block. The Signature File and the Audio
Data File may be kept and processed separately. The Signature
File, which is of much smaller size, may be copied and distributed
to many processors so that either many workers can take
advantage of it or a form of parallel processing may be applied. In
our case the signatures of a Delta musical file are attached to it as
an appendix.

For a given query the Signature File is searched for signature
records conforming to this query, then the pointers attached to
these records are used to locate in the Audio Data File the
corresponding audio block. It should be pointed out that queries
scan for motives rather then isolated Delta notes which are
meaningless by themselves (see again Figure 2).

In order to build a Database, an extension of the signature file
method described in Figure 3 has been adopted which was
originally presented for free text bases, the so-called S-Index
scheme [5].

S-Index is a hybrid indexing scheme that combines many of the
merits of Inverted File and Signature File schemes. Its
performance is tunable between two extreme ends. At one end S-
Index turns into a Signature File and at the other end it becomes
an Inverted File. One advantage of the adopted indexing method
is that frequently queried terms or certain user selected terms may
be indexed via an Inverted File method, for speed, whereas the
bulk of the terms may be indexed in the form of a tree of signature
segments, which requires a lower storage overhead and also is
more suitable for multiple term queries.

Since most RDBMS do not support direct use of binary variables
or Boolean operators on binary variables, a table was created
simulating the behavior of the proposed index. This architecture
yields a binary tree of signature segments. Each node of this tree
has the following structure:

SINDEXnn (block_no INTEGER,
aa INTEGER,
node_no INTEGER,
sig CHAR(k))

The value of parameter & depends on layers of the S-Index
structure. For instance, for SINDEX4 it is k=2*=16. Every table
SINDEXnn (0 <=nn <= 14) records: (a) pointers to the audio file
packages (b) pointers to the nodes of the internal tree structure
and (c) the binary signature itself.

Apart from this RDBMS-centric methodology, the authors of this
paper are seeking a method to encode digitally Byzantine
melodies in a MIDI-like specification and to add to these files as
accompanying metadata the signatures of each melody.

3. RESULTS

Following the analysis methodology described in the previous
section, we have used Full Text Retrieval systems (BRS SIRSI
and SQL Server 2000) along with custom made programs that
calculate the probability of appearance for sequence 7 - 10 of
symbols.

Some results are presented in Table 1. For the sake of simplicity,
conditional probabilities for 3 symbol sequences are presented.
For these sequences digital signatures are built which accompany
the digitally encoded manuscript.

Table 1. 3™ order stochastic sequences for the 3 more frequently
appearing Delta symbols. P(So) is the probability for S; as an

initial symbol.

Symbol S P(S) P(So) P(S1*S2%S3)
S1. > 0,354 0 P(S1*S1%83) 0,019
5. — 0,149 0.05 | P(S2*S1*S1)0,0154
g3 — 0,146 0.55 P(S3*S1*S1) 0,018

Some results excluded from the statistical analysis tables:
(a) motives are on average 9 Delta symbols long.
(b) Non-terminating motive endings are declared by increased
durations by one time unit for 95% of examined cases.
(c) If intermediate (i.e. non terminating) segmentation takes
place, motive length drops to 8 Delta symbols.
(d) The terminating endings of a thesis are less than ten.
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ABSTRACT

We introduce a statistical model of music that allows for the
retrieval of music based upon an audio input. This model uses
frequency counts of state transitions to index pieces of music.
Several methods of comparing these index values to choose an
appropriate match are examined. We describe how this model can
serve as the basis for a query-by-humming system. The model is
also shown to be robust to several kinds of errors.

1. INTRODUCTION AND RELATED
WORK

Recently, researchers have developed systems that can retrieve a
piece of music from a musical database using an aural query (e.g.,
a sung or hummed query). Of course, a query sounds very
different from a full audio recording, which typically contains
much more information. Moreover, the generally accepted
wisdom is that users remember the major themes from pieces, and
use these themes as their queries [1]. Thus, most music-retrieval
systems cast the retrieval problem as matching an abstracted
representation of each piece in their database, typically the major
theme(s), against the query.

Some researchers approach the retrieval problem using
string-matching techniques [2] [3] [4] [5] [6]. In these approaches,
the theme and query are treated as a melodic contour and a string
is derived from the alphabet S, U, D, (same, up, and down) for the
interval change between notes. Some researchers, however, have
used different mechanisms. In other related work, Brunelli and
Messelodi examined different metrics of comparison when
examining images [7]. Alamkan et al, used Markov models of
music to generate new pieces in the style of those composed used
to train the models [8].

Our work is inspired by Alamkan’s work; we induce
Markov models of themes in our database (all pieces are in
MIDI). Similarly, we induce a Markov model for a query. We
then use several statistic metrics to compare models to find the
theme that most closely matches the query. In this paper, we
overview our approach and provide summary experimental
results.

2. THE MODEL

Music unfolds over time. Thus, we can model a piece of music as
a series of states from an alphabet 2. One statistic that we can
calculate about these states is the frequency that state

o€ X transitions to another state § € X, without considering
history [8]. Moreover, we have a function t(a,)=p, where p is the

Permission to make digital or hard copies of all or part of this
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provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.
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probability of transitioning from the state o to state .

We use a state descriptor called the “concurrency.” [8]
This descriptor records all the notes that are sounding at any
particular time, as well as the duration during which they are
sounding. If we assume monophonic input and wrapping all notes
into one pitch, this class yields 12 possible states for notes; based
on our observations, we found that our duration space tends to be
around a dozen different possible lengths. Thus, [X[=12*12 or
|Z|=144. In addition, we can totally order state space based on
pitch classes and duration.

3. CORRELATION METRICS

We posit that the statistical model presented here captures some
important elements of the style of a piece. Therefore, we should
be able to compare t’s created from different musical pieces to
determine style similarity. This gives the basis for a retrieval
mechanism: we take a t derived from a query and compare it to
7’s induced from the database to determine their similarity. We
assume that T ’s based on similar musical pieces will have higher
correlations than those from disparate works. Here, we examine
two measures for calculating similarity:

e Correlation Coefficient — This is the standard Pearson’s
correlation coefficient [10]. This technique indicates how well
an entry in one matrix predicts the value of an entry in the other
matrix.

e Count Correlation - We can observe the frequency of
arriving in a state rather than examining the frequency of
transitions. This is called a count array. We can then apply a
correlation technique to the array. This procedure is not a true
correlation measure, but can best be described as a weighted
correlation, where the weights are the frequencies of state
visitations. This measure makes a zero-order Markov
assumption (our use of Pearson’s makes a first-order
assumption). In other words, the probability of transitioning to
any state is the probability of being in that state. This technique
is modified from a method originally developed by Alamkan
[9].

e Modified Scoring Metric - We found through
experimentation that both correlation measures work equally
well. Moreover, it appears that the instances where they do not
work are mainly disjoint. Thus, we combined measures to create
a new measure, which takes the average of the scores from the
correlation measures. We found that this combined measure has
better results than either method alone.

We note that these techniques can be computed quickly, and thus
searching is quite fast. The comparison between pieces is
independent of the size of piece, and is dependent on the size of
the state space. Of course, fast on-line computation is not without
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cost: storing a piece in our highly abstract format requires
substantial computation time compared with search.

4. EXPERIMENTAL SETUP

To test our measures, we created a database of 188 MIDI pieces,
about half consists of Western classical pieces; the other half
consists of everything from modern popular tunes to Broadway
show tunes to traditional folk songs.

We ran these pieces through a thematic extractor called
MME [12]. MME extracts up to ten of the most prominent themes
from a piece of music. These themes were used as the target for
the queries. We then converted all of these pieces into the
transition table (1) representation.

Our search engine takes a query in MIDI format and
induces a transition table (1) representation for it. The engine then
compares this transition table to all transition tables (themes) in
the database. It then returns correlation measures for all pieces,
sorted by most to least highly correlated.

We modified the themes to simulate the errors that a
user might introduce when querying the system [5]. The three
types of errors we examined were:

e Duration-Change Error - The user may not sing a note’s
correct duration. This was simulated by changing the delta time
of an event in the MIDI file. Changes were made in increments
of standard note lengths, from a 32™ note to a whole note.

e Pitch-Change Error — The user may sing the wrong note.
These errors were simulated by varying the pitch of a note up
and down as much as 20 MIDI numbers.

e Note-Drop Error - The user may forget notes. This was
simulated by removing notes from the query. A 10% note-drop
error rate indicated that 10% of the notes were removed from
the query.

S. RESULTS AND DISCUSSION

For each run, one class of errors was varied, while the rest were
held constant. The error rate was varied from 0% to 100% at 10%
increments. 100 themes were randomly chosen from our database
and manipulated each time. The themes were not changed during
the experiment. The net result was 28 runs of 100 themes each
time. A query for each test was created from one of the 100
themes. A correct match means that the top result is from the
same piece from which the query was derived.

The results indicate that the system is robust to two
types of errors, duration change and note drop. The system does
not perform, however, well on pitch-change errors. We believe
this is due to a combination of factors. First, if the themes
extracted from the original piece are not very long or do not have
a sufficient repetitive structure, it is difficult for the system to find
statistical regularity. Second, the system tries to identify similar
states between the query and the database. If a change in the
theme alters the state table in such a way that it is disjoint from
the original state, then the measures will not work

The duration-error results are a little surprising in that
the system performs well when the duration error is at 100%. The
result, however, make sense. The input that we are basing our
database upon is highly quantized. This means that many times
even when we change the duration by several MIDI ticks, it still is
close to the original duration.

The least surprising result is from the note-drop error
injection. Here, the quality of results decreases gradually as the
error percentage increases. The fact that the system performs as
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well as it does at 50% error is promising. After 50% error rate, the
accuracy of the system quickly decays.
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1. INTRODUCTION

While it is dear that user modeling could be valuable in many
music retrieval contexts [1], the focus in this paper is on content-
based music retrieval as in the WYHIWYG (What You Hum Is
What You Get) paradigm [5], aso referred to as Query-by-
Humming. Desirable data to include in such a user mode
include:

¢ Musica preferences, expressed by the user by answering the
system’ s questions (examples can be found in [1]).

¢ History-oriented information computed by the system, eg. the
music genre most often retrieved by the user recently (or up to
now).

Such data can indeed be utilized by a CBMR system to bias its
search results, hopefully making the latter more accurate. Based
on user data the system builds expectations which are used to
filter candidate results. For instance, if a song belonging to the
user's most usudly retrieved music genre matches the user’s
query, it would be advantaged by the system over a matching
song of a genre the user never retrieved before. Similarly for
songs belonging or not to a genre declared by the user as being
among his/her favorite. A number of methods have been
proposed for collecting, representing and updating these more
traditional kinds of user data. These are out of the scope of this
paper.

In this paper the focus will be on presenting concepts and tech-
niques for modeling a user’ s sense of musical similarity, which
| see as absolutely central. However the similarity model which
will be proposed throughout the rest of this paper is seen as part
of a larger user model including the more ‘traditional’ data types
mentioned above. Whatever the user modeling paradigms used, |
suggest that user models in CBMR should be adaptive. This
means that the model is continuoudy enhanced throughout the
successive interactions with the user. While it can be desirable to
initialize user X’s model by asking X a series of questions, the
adaptive paradigm dlows to instead initiaize the model of every
new user to a default and then automaticaly, incrementally
personalize it based on the user’s feedback.

In the next section | explain why modeling of a user’'s sense of
musical similarity is seen as centra in a CMBR system.

2. RATIONALE

The rational e behind this work lies in the following points:

¢ A. Mogt — if not all — content-based retrieval systems for
music use similarity searching.

¢ B. Similarity search is based on an explicit, or sometimes im-
plicit, formal model of musical similarity as it is perceived
by human listeners. In this paper, to avoid any confusion be-
tween ‘musical similarity modd’ and ‘ user model’ the former
will be designated by the more restrictive term ‘melodic simi-
larity function’. Such a mathematical function is designed to
automatically compute the similarity between two melodic
pieces or passages, often entailing a whole algorithm such asa
dynamic programming one. Many different such functions
have been proposed. Each is underlied by a seguence
comparison scheme that is either exact or approximate (strict
vs. error-tolerant matching), binary or gradual (boolean vs.
gradua similarity function), etc. — see e.g. [4] for areview

¢ C. Human judgments of musical similarity are multidimen-
sional. This means that the perceived degree of similarity of,
say, two passages not only derives from the absol ute pitch and
duration of the notes heard but generaly from a far larger set
of musical characterigtics of the two passages.

¢ D. The relative importance of descriptions in the overall simi-
larity judgment can be different from one description to an-
other. As a well-known example, it has been established that
two isochronous passages having exactly the same underlying
interval sequence are often judged more similar than two iso-
chronous passages having mostly the same absolute pitches
sequence but with several mismatches.

¢ E. Last but not least, the relative importance of one given
description can vary from one individual to another. For
instance, for certain human subjects rhythmic aspects con-
tribute more strongly to similarity than pitch aspects, and vice-
versa.

For al these reasons | suggest it is desirable that CBMR systems
should use not only general user models, but also models of
users sense of musical similarity. Since there is no way to
(entirely) predict the parameter values of such a similarity model
beforehand — i.e. based on genera user characteristics of the
user — the model should be adaptive. In other words, the system
adjusts the similarity model based on user feedback received
during successive interactions with the user (search sessions).

There is a trade-off between search speed and search qudlity.
Very fast search techniques have been developed for CBMR (e.g.
[2]), which is convenient for alowing the user to carry out for
instance a broad 'initial screening' of a music content database.
However these techniques easily lack recall (or even precision)
because their time efficiency relies on the simplicity of musical
similarity models and, correlatively, on the strictness of match
criteria. Similarly to standard text-based search engines, it is
seen as important that CBMR systems should aso offer
‘advanced’ or ‘speciaized’ search modes based, among others,
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on richer musica similarity models and more flexible match
criteria. The ideas and techniques presented in this paper should
prove even more useful for these slower search paradigms.

3. USER MODELING PARADIGM

The proposed user modeling paradigm is intrinsically linked to
the CBMR framework in general, and to that of melodic
similarity assessment schemes it uses. These frameworks are
presented in the first three subsections.

3.1 CBMR Framework

The CBMR paradigm in which we place, viz. that of the
Melodiscov system [5] will now be briefly described.
Schematically, pattern-matching techniques are used to match the
user’s query againg the target collection of music pieces (see
Figure 1). The underlying similarity function (see 3.2) being
gradual, search results are returned under the form of a ranked
list of matches, by decreasing order of match quality. In the
typica querying mode, the user can hum, sing (with lyrics),
whistle or play an acoustic instrument, in which case
Melodiscov's transcription module transforms the audio query
into a MIDI-like music structure called raw symbolic query.
(Here the adjective ‘symbolic’ is used to distinguish between
direct content, viz. digital audio signal, and abstract content such
as MIDI or score representations).

Digital
audio query Results
(hummed, —>| Transcription l—vl Search l——' (ranked list
sung, b of matches)
whistled, T
played..) 7 ¢
e Collection of symbolic .
Symbolic query ...+ . . ... Setof digital
(MIDI, tex) musical material ) o ot

(melody database)

Figure 1. CBMR paradigm (Melodiscov system)

Although some of the concepts and techniques proposed in this
paper would apply to other kinds of CBMR schemes, it is as-
sumed here that the target content database is a collection of mu-
sical works such as MIDI songs, caled meodic database. In that
phrase as well as in the rest of the paper, ‘melodic’ is used to
digtinguish from other kind of musical content, e.g. harmonic
(chord) sequences. However ‘melodic’ does not imply
monophonic material or mere pitch sequences with no rhythmic
information.

3.2 Meody Representation

In Melodiscov music is represented using multiple characteristics
(called descriptions henceforth). These are derived from the im-
mense body of work that has been carried out in the areas of mu-
sic psychology, music perception and cognition, and music theory
a large. The various descriptions for melodic materia are
categorized according to their horizontal span (examples given
below do not necessarily fit all melody retrieval contexts — afar
more complete list can be found in [3]):

¢ Individual descriptions correspond to individual notes (or
rests, or chords). Examples: ‘absolute pitch’, ‘forward interval
direction’, ‘backward chromatic interval’, ‘ backward duration
ratio’, ‘forward metric variation’ ...

¢ Local descriptions correspond to groups of notes (or
rests/chords). Examples: ‘ascending pitch contour’, ‘gap-fill’,
‘ phrase-based grouping' ...

¢ Global descriptions correspond to a whole melody (viz. one
song in the searched database or the

hummed/sung/whistled/... query). Examples:  ‘pitch
histogram’, ‘average note duration’ ‘time signature’, ‘overall
tondlity’.

The raw symbolic query output by the query transcription module
is, roughly spesking, a MIDI melody. Similarly, currently in
Melodiscov the melody database is initially made of standard
MIDI files. This initia, MIDI-type, representation comprises
only three descriptions: the individual descriptions absolute pitch
(or Midipitch 0-127), relative duration (in number of beats) and
absolute amplitude (0-127). An algorithmic step is required to
compute the final representation from the initial one. An
automated representation enrichment phase is inserted in the
CBMR algorithmic scheme. In an incremental process, descrip-
tions are derived one after the other from basic descriptions
and/or already derived descriptions, in a specific order (see [3]
for more details).

3.3 Méodic Similarity Assessment

3.3.1 Overview

The melodic similarity function used in Melodiscov is based on
the Multidimensional Valued Edit Model or MVEM (see eg.
[4]). MVEM has been designed to accommodate the multiplicity
of musical descriptions, each possibly with a different horizontal
span. MVEM generadlizes the basic sring edit distance
framework and alows to carry out soft matching, i.e. allows a
level of discrepancy between the query and a candidate passage
in atarget music work. Such error tolerance is fundamenta in
CBMR systems because errors in CBMR result from many
possible causes:

¢ Users' inaccurate remembering of the searched mel ody

¢ Monophonic rendering, by users, of inherently polyphonic queries
(think for instance of a theme with some bi-phonic passages)

¢ Transcription process, either because the query is physically
too inaccurate (wrong pitches and/or rhythm) or because of
technical shortcomings in the transcription algorithm.

3.3.2 MVEM in greater detail

MVEM will now be described in more technical terms, using as
an example the similarity computation between the two passages
shown in Figure 2. These two passages illustrate typical orna-
mentation cases that can be encountered in CBMR.

Passage 1 Passage 2

W’..:J' R . |.|=| T @

Figure 2. Two melodic passages (Joseph Haydn, Concerto for
Trumpet in Eb major)

To compare two passages, the optimal correspondence scheme
between their respective elements is determined. A ‘correspon-
dence scheme’, called alignment, is a series of pairings, with
each pairing meaning that two groups of notes and/or rests are
put in correspondence (see Figure 3 and Figure 4). For instance,
the second pairing in Figure 3 puts in correspondence notes 2
and 3 of passage 1 with notes 2, 3, 4 and 5 of passage 2. Thisis
depicted in gray on the figure as two ellipses connected by an ori-
ented link. | have introduced the notion of pairing to define
alignments as it provides a richer and more flexible formalism
than the traditional ‘edit operations’ formalism. Each group in a
pairing may contain only one note or even zero note (see below).
The succession of pairings forming an alignment between the
two passages is interpreted as a transformation of passage 1 into
passage 2. For instance, in Figure 4 it is considered that the final
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Eb (quarter note) in passage 1 is replaced by the final Eb (half
note) of passage 2. Similarly, in passage 2 the second Eb is said
to be inserted.

For any pairing the number of notes in each group determine the
pairing type. Let the signature of a pairing be the integer pair
(#G1,#G2) where #G1 (resp. #G2) is the number of notes and/or
rests in the pairing's first group (resp. second group). In the
above example, the pairing's signature is (2,4).

¢ Pairings with a signature of that form, i.e. (r, s) wherer > 1
and s> 1 are called generalized replacements.

¢ Pairings with signature (1,1), such as the first pairing in

Figure 3, are called [individual] replacements.

(0,9) pairings, where s > 1, are called generalized insertions.

(r,0) pairings, wherer > 1, are called generalized deletions.

(0,2) pairings are caled [individual] insertions.

(1,0) pairings are called [individua] deletions.

As can be seen, such important musical notions as ornamentation

or variation can be neatly dedt with in this framework. One

other powerful feature of MEVM is that it can licit (or explain)
the similarity between two passages P and P, but thisis out of

the scope of this paper.
i
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Figure 3. One possible alignment between the two passages,
using 2 individual replacements and 2 gener alized
replacements
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Figure 4. Another possible alignment between the two pas-
sages, using 6 individual replacements and 4 insertions

3.4 Valuation

In a valued edit model, a similarity contribution function (in
short ‘contribution function’) is associated to each pairing type.
Every pairing p in an alignment gets a numerical evaluation
contrib(p) reflecting its individua contribution to the overal
similarity. The contribution may be positive or negative. The
various descriptions in the representation are simultaneously
taken into account in contribution functions using a weighted
linear combination paradigm, as shown in Equation 1. contrib(p)
is the sum, over al descriptions belonging to the music
representation R, of terms wp xcontribo(p), where:

¢ Wb is the weight attributed to description D, areal number in
[0;1]. A weight has value zero iff the associated description is
not taken into account in the model, at least at that particular
moment.

¢ contribp(p) is the contribution of p seen only from the point of
view of description D. Suppose for example that p is the re-
placement of the final Eb (quarter note) in passage 1 by the fi-
nal Eb (half note) of passage 2 in Figure 4. Consider the basic
descriptions D1: ‘degree of note in overall tonality’ and D2:
‘relative duration of note in beas. We can expect

contribpi(p) to have a strong positive val ue because the degree
is the same for both notes. Conversely, contribpz(p) can be
expected to have a (moderately) negative vaue because the
duration of the ‘replacing’ note is double that of the ‘origina’
note.

The value of an alignment is the sum of al of its constitutive
pairings contributions (Equation 2). Finally, the similarity be-
tween passage 1 and passage 2 is defined as being the greatest
value of all possible alignments between the two passages.
There are severa techniques, based on dynamic programming,
for computing that greatest value as well as, if needed, the corre-
sponding alignment(s). In the case of CBMR, the matching qual-
ity (or “matching score’, etc.) between a query and a music work
is the greatest value of dl possible alignments between the query
and a passage of the work. The search results are made of the list
of works, ordered by decreasing matching quality, whose match-
ing quality is above a predefined threshold.

Z_Acontrib( p)

contrib(p) = ngD x contriby, (p) Valug(A) =
2

Equation 1 Equation 2

3.5 Model Repreﬁentat.ion and Adaptation

3.5.1 Description weight vector

A user's sense of melodic similarity is modeled using a scalar
vector which we call description weight vector (DWV). The
DWV contains the weight wp of each description D in the music
representation, each weight being able to vary throughout user
interaction — primarily search sessions. This user model under-
lies amelodic similarity function that emulates as closely as pos-
sible the user’s sense of melodic similarity.

The numeric vector format of the user model allows it to be
shared by different applications or agents. In fact, amusical simi-
larity function is inherently modular, other musical software such
as navigationa interfaces, pattern extraction programs and so on
can directly reuse it for the omnipresent purposes of melodic
comparison. Also, aDWV can directly be merged with a sharable
user model such as the one suggested in [1].

3.5.2 Initialization and interaction

The first time a user uses Melodiscov, the DWV isinitialized by
setting all of its components (description weights) to a default
value of 0.5.

Every time the user is presented with a ranked list of search re-
sults, he gives feedback to the system in two possible fashions:

¢ In the simplest interaction mode, single match feedback, s'he
just tells the system which of the found matchesis correct, i.e.
corresponds to the music work actually looked for. In case that
music piece does not appear in the system'’s list of matches,
the user may request that lower quality matches, if any, should
be displayed. These are matches whose similarity scores are
below a given constant threshold specific to the CBMR
system.

¢ In a more complex one, ranked match feedback, ghe gives
her/his own ranking of some or all of the matches. Think for
instance of a content database containing severa variations of
atarget song; these variations could be designated by the user
to the system as ‘ reasonabl e secondary matches'.

3.5.3 Modd update

Unless the user has confirmed the system’s best match (single
match feedback) or best matches (multiple match feedback), the
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user’s DWV is updated in the following manner. (For the sake of
simplicity it will be assumed that single match feedback mode
has been used; feedback in the other mode is dealt with
similarly).

The system’ s ranked list {My,..., Mm} of matchesis separated in
three groups (in decreasing order of match quality as computed
by the system) :

¢ the group FP={FPy, ..., FP} of all the ‘false positive' matches
(i.e. al matches reported by the system with a better matching
score than the correct match. In other words, if the user selects
Mi thelist’ s then FP={ M1..Mi.1})

¢ the correct match C

¢ thegroup Sof all subsequent matches proposed by the system

For each, the contribution of each description to the matching
score is computed. The weights of some, if not all, weightsin the
user's DWV are then adjusted in such a way that, after adjust-
ment, the new ranking gets closer to what it should be, i.e. C
should be ranked first. The actual update algorithm in detail is
not important here, what is key is the underlying idea. The latter
will be presented through two characteristic cases:

¢ For each description D such that the term vcp is greater than
its vertically homologous terms in FPy, ... FP (viz. Vepyp, ...
VertD ), Wh isincreased in the following manner :

W, = (L+ k),

Intuitively, thisis based on the observation that, if aterm vc,pi
contributes more to the similarity in the correct match than in
the false positive matches, it should be reinforced via an in-
crease of its weight.

¢ Conversely, for each description D such that the term vep is
lesser than its corresponding terms Vepip, ... VFpiD:
Wh is decreased in the following manner :
W, =W, /(1+k)

This is based on the observation that, if aterm vcp contributes
more to the dissimilarity in the fase positive matches than in the
correct match, it should be attenuated viaa decrease in its weight.

The positive real number k is called update rate. Of course, k
values close to 0 induce weak updates while higher values induce
more drastic updates. In order to force model convergence (stabi-
lization), k can also be made a decreasing function of time, tend-
ing to zero. This is similar to the temperature function used in
simulated annealing algorithms.

What has just been presented is the normal, ‘ongoing’ interaction
scenario: model update occurs based on feedback the user gives
throughout successive search sessions. In addition, the user can,
initialy but also at any time, enter system learning sessions that
are directed toward fast user model learning. In these sessions,
instead of carrying out CBMR searches the user makes direct
similarity judgments about melodic material presented by the
system. In the simplest setting, the user is presented with
melodic passages A, B and B’ and must tell the system which of
the pairs A-B and A-B’ is more similar. Of course, every (A,B,C)
triplets is chosen (by the system’s designer) so as to emphasize
the contrast between two particular descriptions. The results of
the successive similarity rankings made by the user during such a
learning session are finally aggregated, resulting in an
appropriate update in the user’s DWV.
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As can be observed, the current weight update scheme uses a
fixed strategy similar to error gradient feedback in neural net-
works. It should be remarked that other strategies such as evolu-
tionary algorithms could be other appropriate candidates.

4. RELATED AND FUTURE WORK

The techniques propased in this paper are currently being imple-
mented within the Melodiscov system. Meodiscov uses a core
set of object-oriented classes and methods allowing to represent
music with multiple, individually weighted descriptions. Using
that same representation platform, the influence of description
weight adjustment has been experimented in the context of
automated musical pattern extraction [3], a problem area directly
connected to that of CBMR. Additionally, the outcome of the
work presented in [6] may be very useful.

The current priority is on completing implementation and experi-
menting with the system. One future work direction concerns
model initidization. Currently the initial user model is a default
that is the same for every user. | wish to investigate whether
more appropriate initial models could be generated for every user
based on the characteristics recorded in a standard, ‘ general’ user
model. For instance, suppose that user X’s general model says
that X has received significant musical education. Stronger
weights would then be given to the more abstract descriptionsin
user X'sinitia model (e.g. harmony-oriented ones) than if X was
known to have received no musical education. While this simple
example relies on common sense, more probabilistically accurate
initialization strategies for user models could be designed based
on statistical analysis of evolved and stabilized user models of
perceived musical similarity. Another future work direction is
investigating aggregation/fusion strategies for synergetically
mixing the DWV-based model with more ‘traditional’ user
models such as the ones mentioned in the first section of this

paper.
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1. INTRODUCTION

Content-based music information retrieval provides ways for
people to locate and retrieve music based on its musica
characteristics, rather than on more familiar metadata such as
composer and title. The potential utility of such systems is
attested to by music librarians, who report that library patrons
often hum or whistle a phrase of music and ask them to identify
the corresponding musica work [5, 7].

Content-based MIR systems operate by taking a musical query
(i.e, a string of notes) from the user and searching the music
database for a pattern closely matching the query. The search
may be carried out by exhaustively matching the database [5] or
by matching an index of n-grams created by passing a diding
window of length n over the database [2].

While these exhaustive search methods are adequate for
relatively small music databases they do not scale well to large
collections such as thousands of symphonies and other major
works.

Fortunately, for large classical works, such as sonatas and
symphonies, it is possible to avoid exhaustive search by using an
index of themes. A theme, in dassical music, isamelody that the
composer uses as a starting point for development. A piece of
music may have several themes; each of them will repeat and
may be dightly changed (a “variation”) by the composer on
repetition. Using such an index greatly condenses the search on a
database of classica major works. Furthermore, themes are the
musical phrases likely to be remembered by listeners, so atheme
index helps focus the search on the parts of the database most
likely to match a query.

One well known theme index is that produced by Harold Barlow
and Sam Morgenstern [1]. This is a print book containing
approximately 10,000 themes from the classica music genre.
Each theme is identified by composer, title of work and section
of appearance (movement for symphony, act for ballet, overture
for opera, and so forth). In addition to its print edition, this theme
index can also be searched online [3].

Unfortunately, it is a monumental task to manually compile such
a theme index. Because themes are, by definition, recurring
patterns in a piece of music, it should be possible to automate the
discovery of musical themes in order to create a theme index
over agiven database.

Our godl is to perform this automation — to analyze a piece of
music and automatically determine its themes. Some work has

Permission to make digital or hard copies of al or part of this
work for personal or classroom use is granted without fee
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been done on finding themes in music. Mongeau and Sankoff, for
example, suggested the use of dynamic programming for finding
recurring sections in a piece of music [6]. Their method,
however, was somewhat cumbersome, relying on a closeness
threshold to determine the beginnings and ends of recurring
musical patterns.

2. DISCOVERING THEMESIN MUSIC
Because a theme, by definition, is a melody that the composer
uses as a starting point for variation, most researchers have
assumed that a theme discovery system must use approximate
string matching [6].

Our approach takes the view that a theme dictionary may be
constructed using an exact match of the musical sequence against
itself. Our hypothesisisthat asignificant part of athemeislikely
to repesat at least once, and that smaller chunks of a theme are
likely to repeat multiple times. The basic idea is similar to that
followed by Liu, et a. [4], but, where they build theme
candidates by joining small repeating patterns into larger ones,
we start with the longest repeating patterns and look for
continuations and substrings.

Theme discovery is essentialy a search for self-similarity in a
piece of music. For that reason, we begin by creating a self-
similarity matrix. For amusical piece of n notes, thisisannxn
matrix representing where each interval exactly matches another
interval in the piece — a repeated interval isrepresented by alin
the matrix. We use intervals in order to make our anaysis
independent of key. This does not make the analysis independent
of mode — our algorithm is not likely to find repetitions of a
major-key theme in minor mode, for example, or vice versa. If,
however, a variation repeats multiple times, our algorithm will
discover those patterns.

From the sdf-similarity matrix, we build a lattice showing al
repeating patterns longer than a predetermined length and their
relationships. At this point we are anayzing al repeating
patterns of four or more notes. This lattice is further processed
and used to determine which patterns to keep as candidate
themes.

3. CASE STUDY

As asimple test of our algorithm, we used it to identify repeating
patterns in Bach's Fugue No. 7, from the Well Tempered
Clavier. We used only the top (soprano) part of the fugue — this
is to find out whether our algorithm can find the theme without
seeing its reiterations when the second and third voices enter.
When processing the entire piece, we simply concatenate all
parts to form one long sequence — this enables the algorithm to
capture themes from repetitions in different voices, but does not
attempt to discover themes split among more than one voice —the

31



algorithm is not expected to find a theme, for example, that starts
in the first violin and migratesinto the cello.

Figure 1 shows part of the lattice built from the top part of Fugue
No. 7. As stated above, we ignore repeating patterns of fewer
than 4 intervals.

Az 20

E Z 10

[ iz Z5

il 17 25

E iz ZE &4 7L

F Zl &

G 6 4z

H 28 26

I 44 43 B3

T 78 8l
H a5

Figure 1. Partial lattice for fugueno. 7.

The lattice clearly shows a pattern of 18 notes, labeled A, near
the beginning of the piece, starting with the second interval. This
is not surprising, given the structure of a fugue, with the
introductory statement of the subject. Pattern B is a substring of
A, while pattern C overlaps A. Patterns D, E and F are substrings
of C. Thisisonly part of the lattice; pattern A repeats at position
311, B repeats at 93 and 311, C repeats at 103, and so forth. The
lattice shows one repeat of pattern E at 64; E also repeats at 109
and 133. Pattern | overlaps itself, starting at position 44 and
ending — and starting again — at position 49. A tota of 20
repeating patterns were found.

We envision the theme index being searched by approximate
search on user queries. For that reason, it is unecessary to keep
patterns that are substrings of other patterns. Furthermore, we
extend candidate themes by combining overlapping patterns.
Figure 2 shows the lattice after discarding substrings and short
patterns that occur only twice. Overlapping patterns A and C
have been combined into one longer pattern. In fact, AC is the
theme of the fugue — minus the first interval — as listed by
Barlow and Morgenstern [1].

3]

Z 25
) 4z
...50 102
...233 243

E=R NN

Figure 2. Lattice for fugue no. 7 after pruning.

Pattern G appears twice in the fugue, it is long, and it has a
substring that repeats, so it isincluded in thefina list of patterns
to be added to the theme dictionary.

Pattern L is mostly a substring of AC, and could be diminated.
However, it adds two (tied) notes to the beginning of AC and, at
this point, is left in the list because of that extension. It is, in
fact, atheme variation.

Pattern Q remainsin the list because of its length. It appears only
twice and has no repeating substrings. Inspection of Q shows that
it is another variation on part of the theme, and it leads into a
repetition of pattern C. Q is very similar to pattern B (the
intervals up to the rest in AC), but introduces an E-natural in
place of the expected E-flat.

Given the fact that a theme index is expected to be searched
using approximate matching, it is likely that patterns L and Q
should not be included — the first part of pattern AC is close
enough to both of them to allow user queries to retrieve this
particular fugue.

Figure 3 shows musical notation, extracted from the score, for
patterns AC, G, L and Q..

(d) Pattern Q

Figure 3. Candidate themes from Fugue No. 7.

4. CONCLUSION

This paper describes a method for automatically discovering
themes in music. A program based on this algorithm can generate
atheme index from a music database.

At this point, we have tested the algorithm using simple musical
structures — namely, fugues. This provides a suitable beginning
test because we can easily analyze whether the program is acting
appropriately. In devel oping the algorithm, we have not made use
of any musical knowledge regarding the structure of fugues, but
have let the agorithm discover what it regards as themes. Our
immediate goal now is to test the agorithm over a much wider
range of music. A longer term goal is to produce a music analysis
system based on the agorithm and to incorporate more
sophisticated approximate matching to complement the base
algorithm.
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ABSTRACT

This poster considers the use of different levels of melodic
resolution in acoustically driven music retrieval systems from the
viewpoint of search-key lengths. A query-by-humming
application was constructed to evaluate the dependencies
between the mel odic resol ution, database size and the search-key
length in order to consider the optimal level of melodic
resolution in music retrieval applications.

1. INTRODUCTION

Acoustically driven retrieval systems (often referred to as query-
by-humming applications[1]-[3]) are a recent approach for
efficient and flexible music retrieval. These acoustically driven
music retrieval systems use a hummed, whistled or played
sample of a melody as a search-key to search matching database
entries from a music database. Current efforts in standardization
such as MPEG-7 [4] are a dlear indication of the research and
commercia interest on the topic.

In the general case, when the user generates the input to a
melody retrieval process by humming, whistling or playing an
instrument, the input is noisy. Noise, meaning errors in the input
melody in relation to the database entries, affects the accuracy of
the process. To overcome this some approximation can be
introduced to the retrieval process.

It is customary to use two methods to introduce approximation to
query-by-humming applications. First, approximate string
matching algorithms are used. Second, different levels of melodic
resolution are used. By lowering the resolution, i.e. using fewer
intervals to represent melody-lines, the system can eiminate
some of the interval errorsincluded in the input signals. But it is
a trade-off; the lower the resolution is the lower is the disparity
between the database entries. In this poster the emphasis is on
the use of different levels of melodic resolution.

2. SYSTEM ARCHITECTURE

A melody retrieval application was constructed for the purpose of
evaluating the concept of query-by-humming in genera and to
test the effects of using different levels of melodic resolution in
the retrieval process. In the following the two main functional
blocks of the system are presented.

2.1 Acoustical front-end
The acougtical front-end transcribes the input melody into an
inner representation (IRP)[5]. The transcribed melody is used as
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a search-key by the database engine.

The input signal is segmented into notes with amplitude-based
segmentation. A normalized signal level is compared to two
constant thresholds. A higher threshold is used for detecting note
onsets and alower one for detecting note offsets.

The fundamental freguencies of the frames within segmented
notes are determined with an autocorrel ation-based pitch tracker
[6]. On a note level the pitch is estimated as the median of the
pitch values of the frames within a note. The presented retrieval
system does not use rhythmic information and therefore note
duration is not detected.

The acoustical front-end is designed to accept input generated by
humming, whistling and playing an acoustic instrument. The
system also has an option to take typed search-keys as inputs.
The user can type the names of the notes of the melody in
question and that pattern is then used as a search-key.

2.2 Database engine

The core of the database engine has been implemented at the
Department of Computer Science at the University of Helsinki.
(See [7] for details.) A fast bit-parallel dynamic programming
algorithm by Myers is used for approximate string matching [8].
Transcription invariance is assured by the use of intervals in the
matching process.

3. MELODIC RESOLUTION

Melodic resolution refers to the accuracy of the representation of
the melody-lines. Essentidly different levels of melodic
resolution are achieved by using different number of intervals to
represent the melody.

The use of lower melodic resolution is motivated by the
approximation that it offers for the user input. When using |ower
resolution the intervals in the input melody do not have to be as
accurate as with higher resolution. On the other hand the use of
lower resolution forces the user to use longer search-keys for
successful retrieval.

In the developed system five different levels of melodic
resolution can be used in the matching process. The highest
resolution presents the melody with semitone accuracy using 25
intervals (12 up and down and the prime). The lowest resolution
is the so-called sign-based contour representation that represents
the melody with only three intervals (see for example [9]).

3.1 Required Length of the Search-key

From the users point of view the search-key length is a relevant
parameter when considering the experienced quality of a
retrieval system.



For the purpose of studying the effect of using different melodic
resol utions the system was tested with correct typed inputs. That
is, for every search-key used, there was an exact match in the
database. The melody lines of 13 different tunes were used as
search-keys. Typed input was used in this test so that the
accuracy of the audio analysis would not have an effect on the
test results.

The tests showed that on average, in order to find a unique
match, the sign-based contour representation (3 intervals)
requires about 1.7 times longer search-keys than the semitone
resol ution.

In Figure 1 the relationship between the database size and the
required search-key length is presented. Figure 1 shows the
average required search-key lengths for four different databases
with five different levels of melodic resol ution.
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Figure 1. The average search-key lengths required for
successful unique retrieval using different levels of melodic
resolution in test MIDI databases of 0.6, 1.2, 2.5 and 3.6
million notes with correct search-keys.

The search-key length becomes even more relevant when the
errors in the input signals are considered. This was studied with
another test. In this test the same search-keys were used asin the
previous test but one error was included in each of the keys by
removing one random note from the pattern.
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Figure 2. The average search-key lengths required for
successful unique retrieval in a test MIDI database of 3.6
million notes. Lower values for correct search-keys and
higher values for search-keys with one error (one random
note missing).

In Figure 2 the required search-key lengths for successful unique
retrieval in atest database are presented for five different levels
of melodic resolution. The search-key lengths are calculated for
an optimal case where the search-key is exactly like the
corresponding melody-line in the database and for a more
realistic case where there is one error in the search-key.
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4. CONCLUSIONS

The tests reported above imply that for large databases
acoustically driven melody retrieval is not, in the genera case,
accurate enough. This is mainly due to the errors included in the
search-keys generated by the users. Thisis not to say that query-
by-humming type applications are not practical and user-friendly
but it implies that the effective size of alarge database has to be
relatively small if query-by-humming type algorithms are
applied.

The tests give an indication of the optimal level of melodic
resolution from the point of view of search-key lengths. 9-, 7-,
and 5-interval representations are relatively equal from this
viewpoint, whereas the 3-interval representation requires
significantly longer search keys than the other representations.

The concept of query-by-humming is in many ways a user
friendly and efficient method for melody retrieval but the tests
indicate that, from the database size point-of-view, it has some,
relatively low upper limits beyond which the retrieval process
becomes too inaccurate and impractical. When these upper limits
are exceeded some other means for classifying the database
entries has to be considered. One straightforward method of
reducing the effective database size is the use of key words to
identify relevant parts of the database in which the actual melody
based retrieval process is executed.
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ABSTRACT

We present a system for content-based retrieval of perceptually
similar sound events in audio documents (‘sound spotting’, using
a query by example. The system consists of three discrete stages: a
front-end for feature extraction, a self-organizing map, and a
pattern matching unit. Our paper introduces the approach,
describes the separate modules and discusses some preliminary
results and future research.

1. PROBLEM

The possibility of storing large quantities of sound or video data
on digital media has resulted in a growing demand for content-
based retrieval techniques to search multimedia data for particular
events without using annotations or other meta-data. This paper
presents an approach to a task that can be described as sound
spotting: the detection of perceptually similar sounds in a given
document, using a query by example, i.e. selecting a particular
sound event and searching for ‘similar’ occurrences. The
proposed system could be applied to content-based retrieval of
sound events from broadcasting archives or to aid transcription
and analysis of non-notated music.

A particular problem is posed by the definition of perceptual
similarity: sound perception comprises so many different aspects
that it is very hard to define a general perceptual distance measure
for a pair of sounds. Even if the variability is restricted to timbre
alone, it is still uncertain how to construct a timbre space with
respect to any underlying acoustical features. Within the scope of
our system we decided to focus on the spectral evolution of
sounds by calculating a time-frequency distribution and splitting
the signal into a series of short-time frames. Similarity can then be
assessed by comparing sequences of frames.

2. APPROACH

Our concept builds on various connectionist approaches to
modelling the perception of timbre that have been investigated
over the last ten years [1, 2, 3]. These systems typically consist of
some kind of auditory model to preprocess the sounds, and a self-
organizing map to classify the resulting feature vectors. The
reported experiments involved the classificaton of a small number
of test sounds equalized in pitch, duration and loudness. To
extend these models towards evolutions of timbre, pitch and
loudness we have pursued a dynamic, frame-based approach
involving three stages.

First the raw audio data is preprocessed by an auditory model
performing a feature extraction. The signal is divided into short-
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time frames and represented by a series of feature vectors. In the
current system we use a parametric representation adopted from
automatic speech recognition, mel-frequency cepstral coefficients
(MFCC).

Second a self-organizing map (SOM) is employed to perform a
vector quantization while mapping the feature vectors onto a two-
dimensional array of units. The SOM assigns a best-matching unit
to each input vector, so that a sound signal corresponds to a
sequence of best-matching units.

Finally a pattern matching algorithm is applied to search the entire
source for sequences ‘similar’ to a selected pattern. Currently we
refer to the SOM units simply by discrete symbols (disregarding
the associated weight vectors and topological relations) and
perform an approximate matching on the resulting sequences.

3. SYSTEM COMPONENTS

3.1 Feature Extraction

Besides their application in speech recognition mel-frequency
cepstral coefficients have been successfully utilized for timbre
analysis [4] and music modeling [5]. MFCC calculation involves
the following steps: the signal is divided into short frames (10-20
ms), a discrete Fourier transform is taken of each frame and its
amplitude spectrum converted to a logarithmic scale to
approximately model perceived loudness. The spectrum is
smoothed by combining Fourier bins into outputs of a 40 channel
mel-spaced filterbank (mel being a psychological measure of pitch
magnitude). Finally a discrete cosine transform is applied to
extract principal components and reduce the data to typically 13
components per frame.

3.2 Self-Organizing Map

Self-organizing maps constitute a particular class of artificial
neural networks, which is inspired by brain maps such as the
tonotopic map in the auditory cortex [6]. A self-organizing map
can be imagined as a lattice of neurons, each of which possesses a
multidimensional weight vector. Feature vectors are mapped onto
the lattice by assigning a best-matching unit to each vector.

Self-organization of the map takes place during a training phase,
where the entire data is repeatedly presented to the network. The
SOM ‘learns’ the topology of the input data and forms a set of
ordered discrete reference vectors, which can be regarded as a
reduced representation of the original data.

To enable an efficient pattern matching process in the third stage
of the system we represent the best-matching units by their index
number only and disregard their mutual relations. A sound sample
then corresponds to a string of symbols, which can be further
processed by means of string searching algorithms.
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Figure 1. Graphical user interface of the prototype implementation.

3.3 Pattern Matching

We use a k-difference inexact matching algorithm to retrieve
approximate matches of a selected pattern from the entire text [7].
The algorithm retrieves matches differing by an edit distance of at
most k, where edit distance denotes the minimum number of
operations needed to transform one string into another, permitting
insertion, deletion and substitution of symbols. & can be specified
with respect to the pattern length (e.g. 40%).

4. DISCUSSION

Initial experiments conducted with a MATLAB prototype
implementation (see Figure 1) have demonstrated varying degrees
of success in retrieving perceptually similar sounds. Encourageing
results have been obtained for instance with drum loops, where
similar sounds could easily be detected. Difficulties arise when an
event has to be detected in a mixture of different sounds. The
reduction of the multidimensional feature vectors to index
numbers and the use of a simple string matching algorithm clearly
entails a significant loss of potentially important information,
which could be avoided by a more sophicated distance measure in
conjunction with a suitable pattern matching algorithm. These
issues will be addressed in future research.
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Abstract

Wepresent an efficient algorithmto retrievesimilar music
pieces from an audio database. The algorithmtriesto cap-
ture the intuitive notion of similarity perceived by human:
two pieces are similar if they are fully or partially based
on the same score, even if they are performed by different
people or at different speed.

Each audio file is preprocessed to identify local peaks
in signal power. A spectral vector is extracted near each
peak, and a list of such spectral vectors forms our interme-
diate representation of a music piece. A database of such
inter mediate representations is constructed, and two pieces
are matched against each other based on a specially-defined
distancefunction. Matching resultsare thenfiltered accord-
ing to some linearity criteria to select the best result to a
user query.

1 Introduction

With the explosive amount of music data available on
the internet in recent years, there has been much interest
in developing new ways to search and retrieve such data
effectively. Most on-line music databases today, such as
Napster and mp3.com, rely on file names or text labels to
do searching and indexing, using traditiona text searching
techniques. Although this approach has proven to be useful
and widely accepted, it would be nice to have more sophis-
ticated search capabilities, namely, searching by content.
Potential applications include “intelligent” music retrieval
systems, music identification, plagiarism detection, etc.

Most content-based music retrieval systems operate on
score-based databases such as MIDI, with input methods
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ranging from note sequences to melody contours to user-
hummed tunes[2, 5, 6]. Relatively few systems are for raw
audio databases. Our work focuses on raw audio databases;
both the underlying database and the user query are given
in .wav audio format. We develop algorithmsto search for
musi ¢ piecessimilar to theuser query. Similarity isbased on
the intuitive notion of similarity perceived by humans: two
pieces are similar if they are fully or partially based on the
same score, even if they are performed by different people
or at different tempo.

See our full paper [12] for a detailed review of other
related work [1, 3,4, 7, 8, 9, 10, 11, 14].

2 TheAlgorithm

The algorithm consists of three components, which are
discussed below.

1. Intermediate Data Generation.

For each music piece, we generate itsspectrogram, and
plot itsinstantaneous power asafunction of time. Next,
we identify peaksin this power plot, where peak isde-
fined as alocal maximum val ue within a neighborhood
of afixed size. Intuitively, these peaks roughly cor-
respond to distinctive notes or rhythmic patterns, with
someinaccuracy that will becompensatedin later steps.
We extract the frequency components near each peak,
taking 180 samples of frequency components between
200Hz and 2000Hz. Thisgivesusn spectral vectors of
180 dimensions each, where n is the number of peaks
obtained. After normalization, these n vectors form
our intermediate representation of the corresponding
music piece.

2. Matching.

In this step, two music pieces are compared against
each other by matching spectral vectors in the inter-
mediate data. We associate a “distance” score to each
matching by computing the sum of root-mean-squared
errors between matching vectors plus a penalty term
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for non-matching items. A dynamic programming ap-
proach isused to find the best matching that minimizes
thisdistance. Furthermore, a “linearity filtering” step
istaken to ensure that matching vectors reflect alinear
scaling based on a consistent tempo change.

3. Query Processing.

All music files are preprocessed into the intermedi-
ate representation of spectral vectors discussed ear-
lier. Given aquery sound clip (also converted into the
intermediate representation), the database is matched
against the query using our minimum-distance match-
ing and linearity filtering algorithms. The pieces that
end up with the highest number of matching pointsare
selected as answers to the user query.

See [12] for details and analysis of the algorithm.

3 Experiments and Future Work

We identify five different types of “similar” music pairs,
with increasing levels of difficulty:

e Typel: Identicd digital copy

e Typell: Same anaog source, different digital copies,
possibly with noise

e Typelll: Sameinstrumental performance, different vo-
cal components

o TypelV: Same score, different performances (possibly
at different tempo)

o TypeV: Same underlying melody, different otherwise,
with possibletransposition

Sound samples of each type can be found a htt p:
/I ww\ db. st anf ord. edu/ “yangc/ nusicir/ .

Tests are conducted on a dataset of 120 music pieces,
each of size IMB. For each query, items from the database
are ranked according to the number of final matching points
withthequery music, and thetop 2 matchesarereturned. For
each of thefirst 4 similarity types, retrieval accuracy isabove
90%. Type-V isthe most difficult, and better agorithms
need to be devel oped to handleit.

We are experimenting with indexing schemes [13] in
order to get faster retrieval response. We are aso planning
to augment the algorithmto handletranspositions, i.e., pitch
shifts.
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ABSTRACT

In a way, this talk is addressed to anybody that is involved with
developing systems to aid human in intellectual pursuits. That |
have been using computers to notate, edit, store, and perform
music since the 1960s is amost irrelevant to my being here,
except that it makes me especially sympathetic to the needs of
other musicians.

1. INTRODUCTION

There is a sad truth | wish to bring forcibly to our attention, and
surprisingly, it is one that we all know, though you may have put
in the back of your mind -- for if you thought about it often, it
would either make you mad or drive you mad. And that truth is
that our computers and our software are too hard to use. This
would not be a primary concern of mine if the difficulty was a
necessary consequence of computer technology and the tasks we
are trying to accomplish, but most of the difficulties are
unnecessary. They can be fixed. Computer software is not beyond
our control; unlike the weather, we can do something about it.

The obvious question is this. Considering that computers were
made to help humans with tasks once thought to require intellect
for their successful accomplishment, why were they so difficult to
use? And why hasn't the problem been rectified?

2. DISCUSSION

A good deal of the reason has to do with history. In the computer
industry the term "legacy" is often applied to things developed
long ago and still in use. We have a great deal of this in music.
Some of the notations of music, the layout of the keyboard, the
use of key signatures, our rich variety of clefs, that we have
transposing instruments in the orchestra, and a myriad of other
details of musical life and nomenclature could be streamlined to
great advantage. Yet we are tied into our history, we are trained
from youth in our arcane skills. Because it is training, secured by
repetition upon repetition, it is difficult to dislodge them. If | may
be permitted a personal note, | presently watch my son becoming
professionally competent on the French horn. We are both
horrified that hornists are expected to be able to play in a
profusion of transpositions, a legacy from the days that horn
players slipped in a crook to change key. Why do most modern
editions and orchestral copyists preserve the old notation, now a
relic useful only for tripping over? Because that was the way it
used to be done.

Permission to make digital or hard copies of al or part of this
work for persona or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.
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A second reason is fashion. Does anybody find a splash screen on
a computer program useful? Why do we waste pixels on making
window boarders shaded, as if they had thickness (did anybody
not see them when they were flat-looking?). Where legacy
represents ideas that once made sense carried into a world where
they no longer do, fashion is intended to be primarily decorative
when introduced, and then persists mindlessly. Fashion and
legacy are an especialy dangerous couple, the Bonnie and Clyde
of usability. An example is the present desktop metaphor for a
computer operating system. The concept is a harmful legacy, the
presentation a miserable fashion. There is not room in this abstract
to detail the reasons.

A third reason is ignorance. Most developers of software are
simply not aware of the strides that have been made in
understanding how humans interact with their electronic servants.
It is chalenge enough to have competence in, say, music,
acoustics, and computer science without also having to become a
student of cognetics. Cognetics is the application of cognitive
psychology to the menta side of human-machine interaction
(much as ergonomics is applied physiology, essential in designing
the physical side of human-machine interaction). However, there
is little excuse for not finding a colleague, expert in the field, who
can help out.

There are superb reasons for paying attention to interface design.
If done incorrectly a facility can be made difficult and time-
consuming to use. For example, most music-entry systems (in
fact, al that | have seen) are unnecessarily complex and slow.
They are created on the basis of legacy, fashion, and
incompetence. Published methods for predicting keystroke counts
and time to complete tasks have been long available [1], popular
yet reliable treatments of the foibles of poor design have
appeared, e.g. [2], and a deeper understanding of the ways we
work with interfaces (or instruments) based on recent results in
cognition research has developed in the past few years, along with
quantitative measures of efficiency [3].

If you are going to create software or hardware that interacts with
humans then even a small spark of consideration and humanity
would seem to demand that you acquaint yourself with the basics
of what is known. Otherwise you will, through ignorance, saddle
your users with unnecessarily high error rates and extra work
(leading to lowered productivity, higher risk of repetitive stress
injuries, and the pressures of frustration).



3. CONCLUSION

If you use software or hardware, then you should know that what
you are saddled with is not decreed from on high. You will learn
that there is no real excuse to not doing a lot better, and you can
work more effectively with vendors and programmers. In either
case, allow me to point you to the two brief books [2] and [3] on
my list of references. Whether designer, programmer, or user, you
will find yourself better able to deal with technology after a brief
immersion in this most practical corner of evidence-based
psychology.
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GUIDO/MIR — an Experimental
Musical Information Retrieval System
basedon GUIDO Music Notation

Holger H. Hoos* t and Kai RenZ and Mark o Gorg'

Abstract

Musical databasesre growing in number

size, and compleity, and they are becom-
ing increasinglyrelevant for a broadrange
of academicaswell ascommercialapplica-
tions. Thefeaturesand performanceof mu-

sical databasesystemscritically dependon

two factors:The natureandrepresentationf

the information storedin the databaseand
the searchand retrieval mechanismsvail-

ableto the user In this paper we presentan
experimentaldatabaseand retrieval system
for score-l@el musicalinformationbasedn

GUIDO Music Notation as the underlying
music representation.We motivate and de-
scribethedatabaseéesignaswell astheflex-

ible and efficient query and retrieval mech-
anism,a query-by-eampletechniquebased
on probabilistic matching over a clustered
dataset.This approacthasnumerousadwan-
tages,and basedon experiencewith a first,

experimentalimplementationwe believe it

providesa solid foundationfor powerful, ef-

ficient,andusabledatabasandretrieval sys-
temsfor structurednusicalinformation.

1 Intr oduction

Multimedia databaseplay an important role, espe-
cially in the contet of online systemsavailableon the
World Wide Weh As thesedatabasegrow in number
size, and compleity, it becomesncreasinglyimpor-

tantto provideflexible andefficientsearchtandretrieval

techniquesWhendealingwith musicaldata,two main
difficulties are encountered:Firstly, the multidimen-
sional,often comple structureof the datamakesboth
the formulationof queriesandthe matchingof stored

*Correspondingauthor University of British Columbia,
Departmenbf ComputerScience2366Main Mall, Vancou-
ver, BC, V6T 1Z4,Canadahoos@s. ubc. ca

fTechnischeUniversitat Darmstadt, Fachbereichinfor-
matik, Wilhelminenstr 7, D-64283 Darmstadt, Germary,
renz@ti.informatik.tu-darnstadt. de

datawith a given query difficult. Secondly thereis

oftena considerabl@mountof uncertaintyor in accu-
ragy in the queryand/orthe data,stemmingfrom limi-

tationsof the methodausedfor obtainingqueriessuch
as“Query-By-Humming”[12], or for acquiringmusi-
cal data,suchasautomategerformanceranscription,
aswell asfrom simplehumarerrorwhenenteringdata.

While thereis a strongandincreasinginterestin da-
tabaseandretrieval systemdor soundandsound-leel

descriptionsof music,mary applicationcontexts (par

ticularly in musicalanalysis,composition,andperfor

mance)oenefitfrom or requirehigherlevel, structured
musicrepresentationsConsequentlythereis a grow-

ing body of researchon musical databasesind mu-

sic information retrieval basedon structured,score-
level music representationgsee,e.g.,[3; 21; 8]). In

this work, we focus on content-base@nusicinforma-
tion retrieval from a databaseof score-l&el musical
databasedn the query-by-e&ampleapproaci?2]. The
main contributionsof our work, canbe summarise@s
follows:

1. We useGUIDO Music Notation[16] asthe mu-
sicrepresentationnderlyingthe databasaswell
asfor formulatingqueries. Comparedo the use
of MIDI and various other music representation
formats, this approachhasa numberof concep-
tual and practicaladvantagesvhich will be dis-
cussedn detailin thefollowing sectionsWe find
thatGUIDO is particularly suitablefor formulat-
ing queriesin a query-by-eampleapproachand
we outline how a small and naturalextensionof
GUIDO allows the explicit and localisedrepre-
sentationof uncertaintyassociatedvith a given
guery

2. We introducea novel musicretrieval mechanism
basedn probabilisticmodelsanda hierarchically
clusteredmusical database. Using probabilistic
modelsfor musicalinformationretrieval hasthe
advantageof offeringnatural elegant,andflexible
ways of scoringexact and approximatematches
betweerpiecesn thedatabasanda givenquery
While in thiswork, weintroduceandillustratethis
generalconceptusing rathersimple probabilistic
models the approacttanbe easilygeneralisedo
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morecomplex probabilisticmodels.

. We presenfanexperimentablatabasendretrieval
systemwhich implementsthe designand tech-
niguesproposedn this paper This prototypical
systemwhichis availableonthe WWW, supports
various combinationsof melodic and rhythmic
querytypesfor retrieving informationfrom adata-
baseof piecesof varyingcomplexity. The system
isimplementedn Perl[1] andhighly portablethe
underlying, object-orientedand modular design
facilitatesthe implementatiorof differentsearch
andretrieval techniquesand the investigationof
their behaviour.

In the following, we presentand discussour overall
approachn moredetail. We startwith abrief introduc-
tion of GUIDO Music Notationanddiscussits usein
the context of musicaldatabasendretrieval systems.
In Section3, we outlineour experimentamusicaldata-
basedesignandimplementation.Section4 is the core
of our work; it motivatesand describesour approach
to musicinformationretrieval. Relatedapproacheare
briefly discussedn Section5, and Section6 presents
someconclusionsaandoutlinesa numberof directions
for futureresearch.

2 Why GUIDO?

GUIDO Music Notation' is a general purposefor-
mal languagefor representingscorelevel musicin a
platform independentplain-text and human-readable
way [16]. The GUIDO designconcentrate®n gen-
eral musicalconceptqas opposedo only notational,
i.e., graphicalfeatures).lts key featureis representa-
tional adequacy, meaninghatsimplemusicalconcepts
shouldbe representedh a simpleway andonly com-
plex notions should require complex representations.
Figure 1 containsthree simple examplesof GUIDO
Music Notation andthe matchingconventionalmusic
notation.

The GUIDO designis organisedin threelayers: Ba-
sic, Advanced andExtendedsUIDO Music Notation.
Basic GUIDO introduceghe basicGUIDO syntactical
structuresandcoversbasicmusicalnotions;Advanced
GUIDO extendsthis layer to supportexact scorefor-
mattingandmore sophisticatednusicalconceptsand
Extended GUIDO introducesfeatureswhich are be-
yondcorventionalmusicnotation.GUIDO Music No-
tation is designedas a flexible and easily extensible
openstandard.Thus,it canbe easilyadaptecandcus-
tomisedto cover specialiseanusicalconceptaismight
berequiredin the context of researclprojectsin com-
putationalmusicology GUIDO hasnot beendevel-
opedwith a particularapplicationin mind but to pro-
vide an adequataepresentatioriormalism for score-
level music over a broadrangeof applications. The

1GUIDO Music Notationis namedafter Guidod'Arezzo
(ca.992-1050) arenavnedmusictheoristof histime andim-
portantcontrikutor to today’s cornventionalmusicalnotation.

intendedapplicationareasinclude notation software,
compositionabndanalyticalsystemsandtools, musi-
cal databasegyerformancesystemsand musicon the
WWW. Currently agrowing numberof applicationds
usingGUIDO astheir musicrepresentatioformat.

GUIDO vs.MIDI

Currently virtually every (content-basedylIR system
works on MIDI files. The two main reasondor that
are:

e theenormousamountof musicavailableasMIDI
filesonthe WWW

¢ thelack of acommonlyusedandacceptedepre-
sentatiorformatfor structuredmusic

Although StandardMIDI File (SMF) format is the
mostcommonlyusedmusicinterchangdormat,it does
not adequately supportactiities otherthanplayback.
MIDI wasnever intendedto be the notation(and mu-
sic) interchangdormatthatit hashecomeoday

Thereare several reasonswhy MIDI is not very well
suited for MIR. A MIDI file containsa low level-
descriptionof musicwhich describesonly the timing
and intensity of notes. Since structuralinformation
suchaschords slursor tiescannotbe storedin a Stan-
dard MIDI file?, a high- or multilevel descriptionis
not possible.Someof the basiclimitations of a MIDI
file arethelack of differentiationbetweenenharmonic
equivalents(e.g.. C-sharpandD-flat), andlack of pre-
cisionin the durationsbetweenevents(which are ex-
pressedn MIDI-ticks).

Our MIR systemhasbeenimplementedisingGUIDO

as its underlyingmusic representatiodanguage. To

still be ableto usethe hugebody of MIDI files on the

WWW, our group has developedcorvertersbetween
GUIDO andMIDI 3,

GUIDO vs. XML

XML isasimplifiedsubsebf SGML,ageneramarkup
languagethat hasbeenofficially registeredasa stan-
dard (1SO8879). Becauseof its increasingpopularity,
therehave beenquite anumberof attemptdo useit for
storingmusicaldata[14; 6] andaswell asfor MusicIn-
formationRetrieval [26]. XML hasobviousandunde-
niable strengthsas a generalrepresentatiotanguage:
it is platformindependenttext-basedhuman-readable
andextensible. Additionally, by using XML to repre-
sentmusic, one gainsthe advantageof using a stan-
dardisednetalanguagéor which a growing numberof
tools arebecomingavailable. To our knowledgenone
of the approache$o musicrepresentatiomsing XML
publishedso far hasyet gainedwide acceptanceOne

2Usingnon-standartechniquesit is possibleto storead-
ditional informationin MIDI files; however, thesemecha-
nismsarenot partof the standard

3GMN2MIDI andMIDI2GMN are available at our web
sitehtt p: // ww. sal i eri . or g/ gui do
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Figurel: Simpleexamplesof GUIDO Music Notation;morecomple< examplescanbefoundin [17,18].

of the reasondor this seemsto lie in the compleity
of musical structure;just using a “new” format does
not automaticallyleadto a simpleandeasyto usedata
structure.

To allow theuseof XML-tools whereneededye have
developed GUIDO/XML, a XML compliant format
that completelyencapsulate§SUIDO within a XML
structure. Using GUIDO/XML is simple: we pro-
vide tools that corvert GUIDO Music Notation files
into GUIDO/XML files andvice versa.Usingthis ap-
proachwe cancontinueto useGUIDO MusicNotation
andits associatedools (SALIERI, NoteAbility, Note-
Sener, ParserKit,etc.) but arealsofreeto useary cur-
rentor emeging XML tool.

Oneadwantageof XML is its ability to storeso called
metadata. A pieceof music can be associatedvith
a composera title, a publisher a publishingdateand
even version information. One can easily add new
metadatafields encodingadditionalmusicalinforma-
tion (like for example performance-relatedatafor a
piece). Using GUIDO/XML in conjunctionwith a set
of metadatainformationcanleadto completeXML-

compatibledescriptionf structurednusic.

Using GUIDO Music Notation for Musical
Databasesand MIR

As we have shavn, GUIDO Music Notationoffersan
intuitive yet completeapproacHor representingnusi-
cal data. Using GUIDO in musicaldatabases there-
fore a straightforward task: becauset is a plain-text
format,no additionaltoolsarenecessaryo createma-
nipulateor to storeGMN files. It is alsopossibleto use
standardtext-compressiortools to minimise storage
space(the sizeof compresse®GMN files comparego
thesizeof MIDI files). By usingexisting toolslike the
GUIDO NoteSereir[25], one can createcorventional

musicnotationfrom GUIDO descriptiongjuickly.

Becauseof its representationallyadequatedesign,
GMN is also very well suitedfor MIR: Queriescan

be written as (enhancedfGUIDO strings. Userswith

a backgroundin GUIDO can specify even comple

queriesin aneasyway. By usingadditionaltoolslike

avirtual piano-keyboard,evennovice usersareableto

build queriesquickly. In Section4 it will be shown,

how using GUIDO asthe underlyingmusicrepresen-
tation languagesimplifies the task of building query-
enginesandwe alsodemonstratehow a slight exten-

sionto GUIDO leadsto an intuitive approachto ap-

proximatematching.

Otherrepresentatiorfiormats (like XML) do not pro-
vide this feature:a new querylanguagehasto be cre-
atedin orderto accesshestoredinformation. As there
is no standardor musicalqueries(like SQL is for re-
lational databasesystems) whole rangeof different
musicalquerylanguagesvill beproposedn thefuture.

3 The Experimental GUIDO Database

As wasshawn in the previous section,GUIDO Music
Notationis well suitedasa generalmusicrepresenta-
tion language.Our prototypicalMIR systemis build
on the basisof anexperimentalGUIDO Databaséhat
will bedescribedn this section.

The GUIDO Databasecontainsmusicalpiecesstored
asGMN files alongwith someadditionalinformation
which is usedfor efficient retrieval (this will be dis-
cussedn moredetail in the next section). Insteadof
building our musicaldatabas&asecdon a corventional
databasesystem,we decidedto implementit in Perl
[1], usingthe regularfile systemfor information stor
age.This designoffersanumbersof advantages:

e ThePerllanguagéhasgoodsupportfor manipula-

43



OO
content l—'— Musical
Objects.
¥ ject

&

Figure2: Overview of theobject-orientediesignof our
experimentaldatabaseand information retrieval sys-
tem.

ting textual data(suchasGUIDO or HTML data)
andis well suitedfor rapid prototyping.

e Using PERL allows for very easyintegrationin
onlinesystems.

e Disk storageis cheap,and textual data can be
compressedfficiently usinggenerafile compres-
sion techniques;furthermore,modernoperating
systemsallow time-eficient file accessthrough
caching.

e It is easyandreasonablefficient to build index
structureon afile system.

¢ Maintenanceandupdatingof the databaseés rel-
atively easy sincefunctionality of the operating
systemandunderlyingfile systemcanbeused.

Onedrawbackof this approacthis thefactthatstandard
databaséunctionality, suchasconcurrentvrite access,
the implementationof accesscontrol, andtransaction
control would have to be implementedseparatelyand
are currently not supported. However, it should be
notedthatin thecontext of musicinformationretrieval,
write operationg(i.e., modificationsof or additionsto
the databasegrerelatively rare comparedo readac-
cesqsuchasretrieval) andusuallyrestrictedo selected
users.Interestingly the sameholdsfor mary largeand
heavily usedonline biomedicalandliteraturedatabase
systems. Our model is basedon an off-line update
mechanismwherepiecesareaddedto the databaséy
taking the databaseff-line andgenerating updating
theindex structurewhile no otheraccesss permitted.

Our implementatiorfollows an objectorienteddesign
which is graphicallysummarisedn Figure2. Details
of theimplementatiorcanbe seenfrom the sourceof
our Perl modules,which are publicly available from
http://ww. salieri.org/guido/mr.

Currently our databasesystem containsabout 150
files, most of which have beencorvertedto GUIDO
from other formatslike abc and MIDI. Becausethe
corversionfrom MIDI to GUIDO is a complex task
that sometimesneedsmanual interaction, extending
this corpusis time-consuming. However, we expect
that basedon recentimprovementsof our conversion
tools,we will beableto extendour databaséo amuch
larger body of files. Our experimentalsystemis not
optimisedfor speed.andwe are quite certainthat we
will needto increasats efficiency whenoperatingona
muchlargerdatabase.

4 The Experimental MIR Engine

Our musicinformationretrieval approachis basedon

the “Query by Example” (QBE) paradigm[2]. QBE

hasthe advantagethatqueriescanbe formulatedin an

easyand intuitive way. In mary searchandretrieval

situations,usersappearto prefer the QBE approach
over the useof querylanguageswhich supportmore
comple querieslike booleanexpressionswildcards,
or regularexpressions.

Query Types

Many musicinformationretrieval systemsare primar
ily basedon melodic, i.e., pitch-relatedinformatiorf.
Types of melodic information that can be used for
queriesareabsolutepitches pitch-classedntervals,in-
tenal classeqe.g.,large/smallintervals) and melodic
trends(e.g., up/davn/equal). Alternately or addition-
ally, rhythmic information can be usedas a basisfor
retrieval. Again, varioustypesof rhythmic informa-
tion canbe distinguished:absolutedurations,relative
durations(or durationratios), or trends(e.g., shorter
longer, equal).

Our prototypicalMIR Enginesupportqueriesthatar
bitrarily combineoneout of five typesof melodicin-
formationwith oneoutof threetypesof rhythmicinfor-
mation. The melodicqueryfeaturesarethe following:
absolutepitch (suchascl, d#2, etc.), intervals (such
asminor third, major sixth, etc.), interval types(such
assecondfourth, etc.), interval classegequal,small,
medium, large), melodictrend (upwards,dovnwards,
static). Thethreecurrentlysupportedhythmicfeatures
areabsolutedurations(suchas1/4, 1/8., etc.), relative
durations(suchas 1:2, 4:3, etc.), andrhythmic trends
(shorter longer, equal). All thesefeaturesare deter
mined for individual notesor pairs of notes,respec-
tively, suchthata queryeffectively specifiessequences
of thesefeatures.

Sincewe are following a QBE approach thesevari-
ous query types (and their combinations)correspond
merelyto differentinterpretation®f the samemusical
query For instance,the GMN fragment[gl/4 el/4
e1/4] canbe usedasa purely melodicquery, usingab-

4see[21] for anoverview of MIR systemsandtheir pitch
representations
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solutepitch. In this case,only the melodic sequence
[g1 el el] would be matched regardlessof rhythm.
The samefragment,usedasa purely rhythmicalquery
would alsomatch[el/4 el/4 el/4], andeven[./4 /4
_/4]. For informationretrieval basedon the QBE ap-
proach this paradigmof “query = data+ featureselec-
tion” is very natural;this appliesparticularlyto multi-
dimensionalcomplex datasuchasmusicalor graphi-
cal objects.

We canalsodistinguishexactretrieval, wherethe task
is to find exact occurrence®f the information speci-
fied in thequery or approximatgor errortolerant)re-

trieval, wherea certainamountof deviation between
the queryinformation and the datato be retrieved is

permitted. Here, we first considerexactretrieval, and
laterdiscusdriefly anextensionof ourapproacho ap-

proximateretrieval.

Probabilistic Models

Themusicinformationretrieval approachakenhereis

basedon the generalideaof characterisingand sum-
marisingmusicalstructureusing probabilisticmodels.
Searchindor afragmentwith a specificmusicalstruc-
ture (specifiedin a query)canthenbe doneby proba-
bilistic matchingusingthesemodels.Here,we propose
arathersimpleapproachwhich is basedon first-order
Markov chainsfor modeling the melodic and rhyth-

mic contoursof a monophonicpiece of music [15;

9]. Currently we focus on horizontal queriesonly,

i.e.querieswvhich only involve monophonianusic,and
treatpieceswith multiple voices(or chords)ascollec-

tionsof monophonimieces.

Intuitively, a (discretetime) first-order Markov chain
is a probabilisticmodel for a processwhich at each
time is in a state,and at eachtime step probabilisti-
cally changesnto a successostate(which canbethe
sameasthe currentstate)with a probability that only
depend®nthepresenstate.Hencefirst-orderMarkov
chainsare characterisetby the transitionprobabilities
tqp for enteringstateb asthe next state,whenthe cur
rentstateis a.®> Thetransitionprobabilitiescharacteris-
ing afirst-orderMarkov chaincanbewrittenin form of
asquarematrix T = (t,5) whoserows andcolumin-
dicescorrespondo the statesof thechain. It shouldbe
notedthatfirst-orderMarkov chainswith afinite setof
statescorrespondo non-deterministidinite statema-
chines(FSMs),andcanalsobe seenasa specialcase
of Hidden Markov Models (HMMs) whereemissions
for all statesaredeterministid24].

In the applicationconsideredhere, we conceptually
useonefirst-orderMarkov chainfor eachmelodicand
rhythmicquerytypeandeachgivenmonophonigiece.
The statef thesechainscorrespondo pitchesfor ab-

®In this work, we only usehomogenousvarkov chains,
i.e. chains, for which the transition probabilities do not
changeover time. In Section6 we briefly discusshowv and
why amoregeneralapproachequialentto usinginhomoge-
neouschainsmight beadvantageous.

solute pitch queries,to intervals for interval queries,
to relative durationsfor relatve rhythmic queries,
etc. The correspondingtransition probabilities are
determinedrom frequeng countsover neighbouring
pitches,intervals, note durations,etc. which are nor-

malisedto obtainproperprobabilities.

Figure 3 shows the transitionprobability matricesfor
the Markov chainscharacterisinghe sequencesf ab-
solutepitchesanddurationsfor the“H anscherKlein”®
examplefrom the secondrow of Figure 1 aswell as
thecorrespondingepresentationasnon-deterministic
finite statemachinesghe latter representatiois often
moreintuitive andconcise.

Thetransitionprobabilitiesof thesefirst-orderMarkov

chains summarisestatistical propertiesof the pieces
in the musical database. When trying to find exact
matchesbetweena given query and piecesin the da-

tabasewe canmale useof thefollowing simpleobser

vation: If for agivenpiecep, atransitionthatis present
in thequery(e.g.,anupwardfifth followedby adown-

wardthird) hasprobabilityzero,thereis noexactmatch
of the queryin p. Unfortunately the corverseis not

true: Therearecasesvherethereis no exactmatchof

thegivenqueryin p, yetfor ary neighbouringeatures
in the query, the correspondingransitionprobabilities
in p aregreaterthanzero.

Generally the key ideaof informationretrieval based
on probabilisticmodelsis thefollowing: Givenapiece
p anda probabilisticmodel M (p) for this piece, this
model canbe usedto generatepiecesp’ with proper
tiessimilar to p. Here,thesepropertiesarethe transi-
tion probabilitiesof the first-orderMarkov chainswe
usefor characterisingsequencesf features. To as-
sessthe potentialof a matchgiven a query sequence
q = q1,q2,---, g, (Wherethe g; areindividual features
suchaspitches)anda candidatepiecep from the da-
tabasewe determinethe probability P(¢|M (p)) that
the probabilisticmodelof p, denotedM (p), generates
thefeaturesequenceorrespondindo the givenquery
g. For our simpleprobabilisticmodel, M (p) is charac-
terisedby a matrix of transitionprobabilitiest,;, and
the probability of generatinghe querysequencgiven
that model is given by the productof the transition
probabilitiest,; which correspondo all neighbouring
featuresn thequerysequence:

P(q|M(p)) = H{tab|a = ¢i,b = qit1,1 <i < n}

Intuitively, this probability scorewill be higher for
pieceswhich contain mary exact matchesthan for
pieceswhich containfew exact matches,and as ex-
plainedabove, it will be zerofor pieceswhich do not
containary exactmatchesatall. Sincethe probabilis-
tic modelwe useis very simplisticandis certainlyfar
from capturingall relevant (statistical)featuresof the
piecesin the databasewe cannotexpectthis intuition
to befully met. However, our practicalexperiencewith

S“HanscherKlein” is a popuparGermarchildrenssong
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Figure3: TransitionprobabilitymatricesandFinite StateMachinesfor absolutepitch andabsoluterhythm

the experimentalsystemdescribedchereindicatesthat
evenwhenusingthissimplisticprobabilisticmodel,the
correlationbetweerprobability scoresandpiecescon-
tainingexactmatchess suficientto beusedasabasis
for amusicinformationretrieval mechanism.

Obviously, the transition probability matricescorre-
spondingto relatedfeatures suchas absolutepitches
and intervals, are not independent,and in fact two

matrices(one for absolutepitches, one for absolute
durations)are sufficient as a basisfor handling arny

type of query However, in practice,thereis a trade-
off betweenthe amountof pre-computedstatistical
data(transitionprobabilities) andthetime requiredfor

matchinga given query againsta probabilisticmodel
thatmight notbeexplicitly available.

Note: The techniquespresentecheredo not directly
supportthe efficient searchof matcheswithin a given
piece (which might have beenselectedbasedon a
high probability scorefor a given query). To effi-

ciently searchmatcheswithin a piece, corventional
techniquessuchassuffiix trees(see.e.g.,[20]) canbe
used. Alternatively, piecescan be segmented(manu-
ally, or automaticallyusingary suitableseggmentation
algorithm;see.e.g.,[22]), andprobabilisticmodelling
andmatchingcanbe appliedto the segmentsindividu-

ally.

Hierar chical Clustering

The probabilisticmatchingtechniquedescribeefore
can help to reducesearcheffort by eliminating some
of the piecesthat do not match a given query and
moreimportantly by identifying promisingcandidate
piecesbasedon their transition probability matrices
only. However, a naive searchfor good candidates
basedon probability scoreswould still requireto eval-
uatethe queryagainstthe probabilisticmodelsfor all
piecesin the database.For very large databasesor
whenshortresponsdimesarerequired,this might be
too time-consuming.

Oneway of addressindhis problemis to organisethe
databasén form of atree,whereeachleaf corresponds
to oneelement(i.e., piece)of themusicaldatabasefFor
a givenquery we could now startat the root andfol-
low thepathdeadingto theleaveswhich containpieces
whichmatchthequery Thiswould allow usto retrieve

matchesdn time proportionalto the heightof the tree,

i.e.,logarithmicin the numberof leavesfor abalanced
tree. In orderto do this, we needa mechanisnthat at

eachnodeof the treeallows usto identify the subtree
thatis mostlikely to containa match.

As afirst approximatiorto sucha mechanismye use
combinedprobabilistic modelswhich summarisethe
propertiesof all sequenceén a given subtree. Note
that our first-orderMarkov chainmodelcanbe easily
generalisedo setsof piecesinsteadof single pieces:
Given two piecesp;, p2, we combinethe two tran-
sition probability matricesT'(p,), T (p2) derivedfrom

theirrespectieinterval sequencemto onejoint matrix
T ({p1,p=2}) by computinga weightedsum suchthat
the resultingtransition probabilitiesare equivalentto

thosethatwould have beenobtainedby deriving atran-
sition probability matrix from theconcatenatiom; - p,

of thetwo sequences:

t(p1 - P2)ab
|P1t(P1)ab + [P2|t(P2)ab
Ip1] + [p2]

This methodgeneraliseso the caseof combiningthe
models of more than two sequencesn a straight-
forwardway. Matchingfor thesecombinedprobabilis-
tic modelsworks exactly asfor singlepieces,andthe
probability scoresthus obtainedcan be usedto guide
the searchfor matchesn atreestructuredndex of the
databasekigure4 shovs how thetreestructureof tran-
sition matricesis build; the searchfor a patternbegins
attheroot matrix andthencontinuesat the descendant
matricesaslong asthesematchthetransitionprobabil-
ities of thequery

Obviously, the topology of the tree aswell asthe de-
cision how piecesand setsof piecesare groupedto-
gethercan have a large impact on the efficiengy of
the proposedsearchmechanism One potentiallyvery
fruitful approackor deriving treestructureds the use
of hierarchicalclusteringtechniqued10]. However,
it is presentlynot clearwhethersimilar piecesshould
be clusteredtogetheror whether clustering dissimi-
lar piecestogetherwould be more beneficial;the for-
mer approachmight make it easierto identify larger
setsof promisingcandidatesor matchesearly in the

t({p1,p2})ar =
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Figure4: Treestructuredndex of the database

search,while the latter shouldfacilitate selectingthe
mostprobablematchfrom a setof pieces.

The issuesarising in this context are rathercomplex
and requirethoroughempirical analyseswe plan to
further investigateand discusstheseelsavhere. For
our presentprototype,we usea simpleandratherar
bitrary hierarchicalclusteringresultingin a balanced
treewhereeachnodehasup to 32 children! Further
more,to speedup the searchwithin this tree,for each
nodewe storethreebit matricesvhoseentriesindicate
whetherthe transition probabilitiesin the probabilis-
tic model for the cluster correspondingo that node
exceedsthresholdsof 0, 0.15, and 0.3, respectiely.
Thosethresholdmatricesareusedfor rapidly selecting
the mostpromisingsubclusteiat eachinternalnodeof
the clustertreethatis visited during the search. (For
detailsof this mechanismsee[13].)

Onceagain,it shouldbe notedthatthemechanism#n-
troducedheresene a double purpose: They canpo-
tentially prunelarge partsof the searchfor which ex-
act matchescannotbe encounteredbasedon the oc-
currenceof transition probabilitieswith value zero),
andthey also heuristicallyguide the searchsuchthat
promising candidatepiecesare identified early in the
search.

Approximate Matching and Err or-tolerant
Search

Often, queriesare inaccurateor may contain errors,
and relevant matchescannotexpectedto be perfect
matchesIn othercasesa userqueryinga musicalda-
tabasesystemmightbeinterestedn “almostmatches”,
which might indicate interestingmusical similarities.
One way of addressinghis situationis to use exact

"The number32 is chosenin orderto allow bit-parallel
operationgo beusedon this data,seealso[21].

matchingn combinatiorwith “fuzzy” querieghatsup-
portfeaturessuchasmelodicor rhythmictrendsor in-
terval classes.But this is not always the mostappro-
priateapproachandmary musicapproximateetrieval
mechanisménsteador additionallysupporttrue error
tolerantsearch,which allows (penalised)mismatches
when matchingqueriesagainstpiecesfrom the given
musicaldatabasé

Our retrieval mechanismbasedon probabilisticmod-
els, although primarily developedfor exact match-
ing, quite naturally extendsto a certaintype of error
tolerantsearch.To thatend, both the searchfor good
candidatesequencesaswell asthe searchwithin the
sequencegeedto be modified. While we cannotdis-
cussthe technicaldetailsof theseextensionshere,we
will outlinethegeneraldeasandprovideadetailedde-
scriptionelsavhere.

To localise candidatesequencesn an errortolerant
way, we could modify the probabilisticmodelsasso-
ciatedwith the individual piecesin the databaseavith
prior information by factoring pseudo-obsentions
into all transition probabilities (this is a standard
method in machinelearning, which is applied fre-
guently when probabilistically modelling sequence
data,see.e.qg.,[4]). Intuitively, thiswould reflecta cer
tain degreeof uncertaintyaboutthe piecesin the da-
tabase. The hierarchicalclusteringof the probabilis-
tic modelsand the searchprocessbasedon scoring
the query sequencausing theseprobabilistic models
remainsunchangedput the whole processnow sup-
portsimperfectmatcheswhich arestill penalisedbut
nolongerruledout.

The sameeffect canachieredby factoringtheprior in-
formationinto the query;this correspondso allowing
for errorsor inaccuraciesn the query Themechanism
is exactly the same,only now the prior is associated
with the queryandgetsdynamicallyfactoredinto the
probabilistic scoring processratherthan folded stati-
cally into thetransitionmatricesstoredin thedatabase.
Underthis view, it is possibleto allow the uncertainty
associatedvith particularaspectsof the query to be
explicitly specified.For example,a usermight be ab-
solutely certainaboutthe first andthe secondpitch of
a melodic fragmentusedas a query but lesscertain
aboutthethird pitch, andvery uncertainabouta fourth
one? We devisedan extensionof GUIDO Music No-
tationthatallows to expresssuchlocal uncertaintiesn
a simpleandintuitive way by usinga the symbols*?”
and“!”. An instanceof the examplegivenabove could
thusbe specifiedas[gl! el! el? f1??]. We arecur-
rentlyworking on extendingthis concepto all melodic
andrhythmicfeaturessupportedy our MIR Engine.

8See[21] for an overview of MIR systemand their ap-
proximatematchingtypes.

®Note that this information neednot necessarilybe ex-
plicitly enteredby theuser— it couldtheoreticallybeadded
automaticallybasedon a learnedmodel of typical errors
madeby (particular)users,e.g.,in the contet of a Query-
by-Hummingapproach.
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The secondstageof errortolerantretrieval, locating
approximatematcheswithin candidatepieces,canbe
handledin mary different ways, including standard
methodshasedon edit-distancegaswell astechniques
closelyrelatedto theonewe discussedor finding can-
didatepiecesin an errortolerantway. The latter ap-
proachappearso beconceptuallynoreelegant;we are
currently developing a unified approximateretrieval
mechanisnbasedn thisidea,whichwill bediscussed
in detailelsavhere.(Thecurrentimplementatiorof our
experimentalRetrieval Enginecontainsa moread hoc
methodfor errortolerantsearch,which we intend to
replacewith thetheoreticallymoresolid approactout-
linedabove.)

5 RelatedWork

Over the lastfew years,a substantiabmountof work
on musicdatabasandretrieval systemsasbeenpub-
lished. While we cannotnearly cover all relevant ap-
proacheswe will outline and discusssimilaritiesand
differencesdhetweerthe key ideasof our approactand
somerecentandearlierwork in thefield.

Lemstdm and Laine recogniseckarly that musicrep-
resentationsvhich aremoreexpressvethanMIDI pro-

vide a betterbasisfor certainretrieval tasks(see[20];

this paperalsocontainsa nice overview of earlierwork

in music information retrieval). Recently a number
of musical databasend retrieval systemshave been
developedin which music representationsther (and
more expressve) than MIDI are used(see,e.g.,[5]);

however, we believe that our useof GUIDO goesone
stepfurtherthanmostof thesein usinga uniform for-

malismfor representingiecesin the databasendfor

formulatingquerieswhich is powerful enoughto cap-
ture basicallyarny aspecbf a musicalscore.Although
our presensystemonly supportsjueriesbasedon pri-

mary melodicand rhythmic featureswe feel that the
ability to extendthis in a naturalway to othermusical
conceptssuchaskey, metre,or barlineinformation,is

animportantadvantageof our approach.

Recently a numberof XML-basedmusicrepresenta-
tionshave beenproposedsee.e.qg.,[14; 26; 6]. While
theseoffer some advantagesby allowing the use of
standardXML toolsandcertainlyhave the potentialto
represenarbitraryaspect®f score-l@el music,we are
notawareof ary existingmusicaldatabasandretrieval
systembasednanXML-representationAs discussed
in Section2 of this paper XML-basedrepresentations
sharemary desirablefeatureswith GUIDO. Aside
from tool support,we cannotseeary featureswhich
would make XML intrinsically suitablefor content-
basedmusicinformationretrieval. While XML-based
representationsre typically much too verboseand
syntacticallycomplex to be useddirectly for musical
queries,mary aspectsof our work (particularly our
retrieval technique)are independenfrom the use of
GUIDO as the underlying music representationand
canbeeasilyappliedto a broadrangeof otherformats.

Sonodaet al. have beendeveloping a WWW-based
systemfor retrieving musical information from an

online musical databasebased on the “Query-by-

Humming” approach19; 28]. Their systemis based
on MIDI asthe underlyingmusic representationand
their indexing and retrieval method, which usesdy-

namic programmingfor matching, hasrecently been
optimised for efficient retrieval from large musical
database$29]. Similar to their approachwe follow

the “Query-by-Exampleparadigm(usingGUIDO in-

steadof MIDI) andacknavledgethatmatchingagainst
large databasesysingdynamicprogrammingor simi-

lar techniquescanbe prohibitively inefficient, partic-
ularly in the contect of anon-line system. Our prob-
abilistic matchingtechniquds fundamentallydifferent
from their“Short DynamicProgramming”.Theirtech-
niguerequiresverylargeindecegcomparedo thesize
of thedatabase)yhile our probabilisticmodelsarerel-

atively compact. Their retrieval techniqueis a rather
efficientstand-alonenethodfor finding matchesn the
given databasé® In contrast,we mainly focuson a
techniquefor identifying promising candidatepieces
in the databasewhich canbe combinedwith various
methodsfor identifying matcheswithin a given piece
(e.g.,dynamicprogramming).Anotherdifferencebe-
tweentheir approachandoursis the factthatthey fo-

cus on melodic information alone, while we support
guerieghatcancombinevariousmelodicandrhythmic
features. Evidencefor the importanceof supporting
suchcombinedqueriess givenin [8], who usea fixed
time-grid for rhythmical structure(in contrastto our
more flexible rhythmical query types)and a retrieval

methodbasedn invertedfile indexing.

An interestingapproacho musicinformationretrieval
whichhasrecentlygainedsomepopularityis theuseof
text-retrieval methodson suitably encodednusicrep-
resentationg23]. Although our systemusesa text-
basedmusicrepresentatiompur approactto musicin-
formationretrieval is radically different, and actually
morerelatedto techniquedor biomolecularsequence
analysisand genomicinformation retrieval (see,e.g.,
[11;4]). It is our belief that musicalinformationis
in mary waysinherentlydifferentfrom text, andthat
specificpropertiesof musicaldatashouldbe exploited
for musicinformationretrieval. To thatend,sequence
retrieval methodsdevelopedfor text datacan poten-
tially provide a valuable starting point (as has been
the casefor biomolecularsequencanalysis),but ul-
timatelywill have to becomplemente@ndaugmented
by techniquespecificallydevelopedfor musicaldata.
The probabilisticmatchingapproachwe proposepro-
videsabasisfor suchtechniquesandtheoveralldesign
of our systenfacilitatessuchextensions Furthermore,
text-basedmethodscan be usedin the contet of our
approacHor locatingmatcheswithin candidatepieces
identifiedby our probabilisticmatchingtechnique.

105incethe only evaluationof theirapproachwe areaware
of is basedon a databasef mainly randompieces,we feel
thattheaccurayg of themethodin practiceis hardto assess.
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Generally our probabilistic modelling approachis

basedon characterisationsf the underlyingmusical
datawhich canbepotentiallyusefulfor purpose®ther
thaninformationretrieval, suchasanalysisor compo-
sition (see,e.g., [9]).1* In this sense,our approach
is related to work by Thom and Dannenbey [31;

30], who useprobabilisticmodelsand machinelearn-
ing techniquedor characterisingnelodies.

Finally, let us point out a generalproblemwith almost
ary work on content-basecthusicinformationretrieval
we are aware of (including our own work presented
here): the lack of a corpusof musicfor testingthe ef-
ficiengy andaccuray of musicretrieval systems.Part
of the reasonfor this is the lack of a commonlyused
andwidely supportedmusicinterchanggormat. We
believe that GUIDO Music Notationhasthe potential
to remedythis situation,andwe arecurrentlyworking
on translatingvarious collectionsof musicalmaterial
into GUIDO, in orderto integratetheseinto our exper
imentalmusicaldatabase.

6 Conclusionsand Future Work

In this paperwe have presentedhe conceptof a da-
tabasesystemfor structured,score-le@el musicalin-
formation and introduceda query-by-examplemech-
anismfor retrieving informationbasedon a variety of
melodicandrhythmic searchcriteria. The underlying
musicretrieval methodusesprobabilisticmodelsanda
hierarchicalclusteringof the databasdor pruningand
heuristicallyguiding the search.We alsopresentedn
extensionof GUIDO Music Notation,the musicrepre-
sentationlanguagewe usefor the piecesin the data-
baseaswell asfor querieswhich allows expressindo-
caliseduncertaintyin musicalqueries;andwe briefly
describedanextensionof our retrieval mechanisnthat
usessuchextendedqueriedfor approximateprobabilis-
tic matching.

A first prototypeof the databasesystemandretrieval
enginehasbeenimplementedand testedon a set of
about150relatively simplemusicalpiecesin GUIDO
Notation Format. This experimentalsystemhasbeen
equippedwith a WWW interface and is available
onlineatht t p: // ww. sal i eri.org/guido/mir/ .
Our experiencewith this small prototypesuggestshat
the approachpresentedherecanprovide a solid foun-
dationfor largerandmorecomplex databasandinfor-
mationretrieval systemdor structuredmusicaldata.

Conceptuallyaswell aswith respecto theimplemen-
tation, this work is still in arelatively early stage,and
mary aspectf it will befurtherexploredandrefined
in the future. On the practicalside,an obvious exten-
sion of our work is to testour systemandmethodson
larger musicaldatabasesTo thatend, we have begun
to includea broadrangeof structurednusicaldata,in-
cludingthe “EssenFolksongCollection” [27] into our

1The simple probabilisticmodelsusedhere, as well as
morecomplex models canbeusedor generatingtatistically
similar fragmentsof music.

datasetFinally, we hopeto getaccesso thedatacom-
ing out of Fujinagaet als “Optical Music Recogni-
tion System”[7], wherealargecollectionof American
sheemmusicis automaticallyconvertedinto GUIDO de-
scriptions.With thisadditionaldata we hopeto beable
to conductsometestswith thousandso ten-thousands
of piecesin GUIDO Music Notationin the nearfu-
ture. We alsointendto improvetheintegrationwith the
experimentadatabase/MIRystemwith otherGUIDO
toolsandapplicationsjn particularwith the latestver
sion of the GUIDO NoteSerer [25] (for visualising
the musicaldata),converters(in particularGUIDO-to-
MIDI for playback),andanalysistools which arecur-
rently underdevelopment.

Anotherdirectionwe would like to explorein the near
future is to supportquerieswhich allow the use of
GUIDO tagsin additionto melodic and rhythmic in-
formation. Clearly, theinformationrepresentetly tags
in the GUIDO datacomprisingthe elementsf the da-
tabasecanbe musicallyvery meaningful,andin mary
contexts we considetlit desirableo includesuchinfor-
mationin musicalqueries. This could be very useful,
e.g., in orderto supportthe specificationof tonality,
metre,or instrumentinformationin a query;similarly,
constrainton the metric positionwithin barscould be
expressedn queriesby includingbarlines,andinclud-
ing expressive markingsor dynamicinformationcould
help to make approximatequeriesmore specific. The
probabilisticmatchingmechanisnpresentedherecan
be extendedin variouswaysto accommodatgueries
including tag information, and determininga theoret-
ically elegantand practically effective solutionto this
problemis a challengingproblemfor futureresearch.

Evenwhenjust consideringhe melodicandrhythmic
querytypessupportedn our presentsystem,it might
be interestingto investigatemore powerful probabilis-
tic modelsasa basisfor the characterisatioof themu-
sical datawhich is at the core of our retrieval mecha-
nism. Obviously, higherorder Markov modelscould
be usedto capturemoreof thelocal structure andad-
ditional statisticalinformationwhich betterresembles
aspectof the global structureof larger piecescould
be usedin additionto simple Markov chains. Fur
thermorejargerpiecescanbe moreappropriatelyhan-
dledby sggmentingtheminto smallerfragmentgusing
standardsegmentationapproaches)for which proba-
bilistic modelsarethenconstructedndividually. This
way, local structurecan be capturedmore adequately
andprobabilisticmatchingbasednthefragmentmod-
elswill bemoreaccurate.

Finally, we areinterestedn extendingourapproactbe-
yondpurelyhorizontalquerieshy allowing polyphonic
featuresto be includedin queries. We seetwo fun-
damentabpproache$or suchan extension: Allowing
chordsand possibly tags referring to harmoniccon-
text to beincludedin monophoniaqueries,or support-
ing full polyphonicqueriesthat specify simultaneous
monophonicvoices. We believe that our generalap-
proachshouldin principle be applicableto eithertype
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of polyphonicquery, but clearly;, substantiafurtherin-

vestigationwill be requiredto devise andimplement
thecorrespondingetrieval algorithms.Overall, we are
corvinced that the work presentecherewill provide
a good basisfor theseand other generalisedetrieval

tasks.
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Abstract:

Music title identification is a key ingredient of content-
based electronic music distribution. Because of the lack
of standards in music identification — or the lack of
enforcement of existing standards — there is a huge
amount of unidentified music files in the world. We
propose here an identification mechanism that exploits
the information possibly contained in the file name itself.
We study large corpora of files whose names are decided
by humans without particular constraints other than
readability, and draw various hypotheses concerning the
natural syntaxes that emerge from these corpora. A
central hypothesis is the local syntactic consistency,
which claims that file name syntaxes, whatever they are,
are locally consistent within clusters of related music
files. These heuristics allow to parse successfully file
names without knowing their syntax a priori, using
statistical measures on clusters of files, rather than on
parsing files on a strict individual basis. Based on these
validated hypothesis we propose a heuristics-based
parsing system and illustrate it in the context of an
Electronic Music Distribution project.

1 Introduction

The recent progress of digital audio technologies and the
availability of easy and cheap Internet access have led to
the proliferation of music files on the planet.

Efficient digital audio compression format such as mp3
have made possible the distribution of music on a large
scale, using all sorts of broadcasting techniques and
supports, such as peer-to-peer communication systems.
This proliferation of music data around the globe is not
incidental, and may be seen asa sign of the huge pressure
for Electronic Music Distribution (EMD) from the
community of music listeners.

EMD, however, is more than just representing music as
audio files. Confronted to large databases, users can only
access what they know, and content-based management
techniques are acknowledged to be a necessary ingredient
to fulfil the target of true, personalized music distribution.

Damien Laigre
Sony CSL-Paris
6, rue Amyot
75005 PARIS
France

dlaigre@cd.sony.fr

Content-based music access requires, between other
things, the ability of extracting features from the signal,
of gathering descriptions of various source of textual
information, of modelling user profiles and matching
these profiles to music descriptors, etc. (see Pachet,
2001a for a survey). Among these requirements, one key
issue is music identification: how to identify in a non-
ambiguous way music files. This identification is crucial
to alow the management of metadata, copyrights,
profiles, recommendation systems, etc. Without a solid
identification mechanism, EMD may well turn into a
gigantic and serendipitous adventure for users, content
providers and distributors.

Various standardization efforts have been conducted to
define universal codes for music titles. The most famous
is probably the ISRC (International Standard Recording
Code), developed by 1SO (ISO 3901) to identify sound
and audio-visual recordings. ISRC is a unique identifier
of each recording that makes up an album. Unfortunately
it is not followed by all music production companies, and
hardly used in unofficial music sources such as peer-to-
peer communication systems.

Anocther problem is that, even when a code could be used,
it is not: for instance, digital music encoded in the audio
CD format usually does not contain information on the
music identification. Strangely enough, it is not possible
to get the track listing information from a CD. Externa
databases of track listings for commercial CDs have been
developed, such as CDDB. CDDB works by associating
track-listing information to audio signatures of CDs. To
allow scaling up, CDDB is a collective effort: the
database is made up by the users themsdves. While this
collaborative aspect does allow scaling up (there are more
than 4 millions CDs registered on CDDB), there is an
obvious drawback to this enterprise: the track listing
information is not guaranteed, which leads to many
errors, duplications and to the difficulty of identifying
correctly music titles.

There are other sectors of the music production chain that
are concerned with music title identification, such as
radios (which display their track listing on Internet for
instance) or copyright associations (which have to keep
track of broadcasted titles to compute the payment of
royalties). In each case, ad hoc and proprietary schemes
have been devised, but there is no convergence of music
identification methods.

There are several approaches to the identification of
audio music sources. The most straightforward one
consists in analysing the signal, typically a portion of the
whole music title, to extract an audio signature. This
signature is then matched against a database of pre-
recorded music signals. This task is, for instance,
addressed by technologies such as Broadcast Data
Systems (US) or MediaControl (Germany), and is used
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by copyrights management companies to infer radio play
lists. The techniques used to perform the identification
range from usua pattern matching to more elaborate
satistical methods based on characterization of the
evolution of spectral behaviours. In all cases, the
identification requires a database of al music files
created beforehand. Such a global database is far from
realistic in the near future sot the approach can work only
within limited contexts.

Ancother approach consists in exploiting externa
information about the music source. For instance, the
Emarker system (Emarker, 2001), exploits the
geographical and temporal location of a radio listener
requesting a song, and then queries a large database
containing all radio stations programs by time and
location. The approach is of course much lighter than the
signal based approach since no signal processing is
required, and can scale-up to recognize virtualy any
number of titles. It works of course only for titles played
on official radio stations.

In this paper we describe another approach, more suited
to personal music file management systems, for which no
radio track listing is available for identification, and
which does not require the management of a global,
universal database of music titles. This approach is based
on the analysis of actual music file names.

More precisely, we consider the context of popular music
titles, and therefore seek to identify two main information
for amusic source: the artist (or performer) identification,
and the actual name of the music title. We consider music
file names coming from natural sources, such as persona
hard disk drives (usually filled with audio files coming
from peer-to-peer communication systems), track listing
databases (such as CDDB), or radio track listings. In all
these cases, the file names are input by users who do not
follow any constraint, other than human readability.

We consider here information contained in music file
names, and not identification from the signal, or from
other external sources of information (such as ID tagsin
mp3 files, see Hacker, 2000). These other methods are
orthogonal to the method proposed here. In an ideal case,
music identification could exploit al these methods
collaboratively.

We will first introduce the context of our study, and the
corpora analysed (Section 2.1). We then propose several
assumptions for guiding the analysis process, the main
assumption being alocal consistency assumption (Section
2.2). We perform a statistical analysis of these corporato
validate the assumptions and draw corresponding
heuristics. Finally, we describe FNI, a system that
implements our heuristics, and illustrate how it performs
in the context of a real world Electronic Music
Distribution system developed at Sony CSL, within the
European CUIDADO IST-funded project.

2 Popular Music file names

Music file names may contain various types of
information about a music title. In our context we focus
on popular music, for which two information are of
interest: the artist or interpreter identifier, and the actual
title name. In some cases, file names can also contain
other information such as the album or track number. In

the case of Classical music, the notion of artist is more
complex, and identification may contain both composer
and performer identifier. Additionally, variousidentifiers
may also be present, such as the version (instrumental,
remix, etc). Several datistical approaches have been
proposed to parse text automatically into coherent
segments, corresponding for instance to different topics
in news transcripts (see e.g Beeferman et a., 1999). In
our case, the textual data considered is much shorter and
the domain (music works) is narrower, so we show that it
is possible to derive heuristics to implement an efficient
parsing system without a learning component, at least as
afirst approximation.

2.1 Corpora studied

Music files names are typically found in the following
locations. 1) personal storage systems such as hard disks,
2) radio program track listings and 3) repositories of
musical metadata. For the purpose of our study, we
identified three such databases: a subset of 22, 302 album
track listings from the CDDB database containing track
listings for about 4 millions CD albums, 2) a 1-year
listing of a radio station broadcasting music in a large
variety of styles (Fip/RadioFrance) and 3) a set of file
listings (about 3000 files) of persona hard-disks of
intensive users of peer-to-peer music communication
systems.

These three cases share a common characteristic: the file
names they contain have been specified by individuals on
whom no particular syntactic constraint was enforced,
other than human readability, i.e. the fact that these
names should be understood easily by other individuals
of the same community. The individuals name their files
as they wish, and these personal conventions are smply
spread through the community without modification. In
CDDB, the principle of the database is collaboration:
albums track-listings are given by the users themselves.
Although the editorsfor entering track-listing information
may in some case force some structure (e.g. differentiate
title and artists), there is no unique syntax valid for al
track listings, as illustrated below. In the case of radio
stations broadcasting their programs, there may more be
cohesion since these programs are entered by a smaller
number of individuals, but, similarly, the syntax will not
be constant, and will differ from aradio station to another
one. However, the case of radios is simplified by the fact
that the syntax of file names is usually constant for a
given radio.

To illustrate our study, we give below some typica
examples of file names coming from the sources at hand.

The Rolling Stones - Angie
The Beatles - Oh! Darling
Eagles - Hotel California

Sinon & Garfunkel - The Sound OF Silence

Kansas - Dust In The W nd

Anerica - The Last Unicorn

Creedence Clearwater Revival - | Put A Spell On
You

The Beatles - Let It Be

The Treneloes - Silence |s Col den

Hollies - He Ain't Heavy He's My Brother

Zz Top - Blue Jeans Bl ues

Simon & Garfunken - El Condor Pasa (It | Coul d)
Bee Cees - Massachusetts
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Orega - The Grl Wth The Pearl’'s Hair -

Featuring Gabor Presser, Ann

Figure 1. File names found on the CDDB database, for an
album entitled “ Golden Rock Ballads V.1"

d: \ np3\ CSL2- 1\ Various - Animals - The house of
the rising sun.np3

d:\ np3\ CSL2- 1\ Various - The
groovy kind of |ove. 3

d:\ np3\ CSL2- 1\ Various - Hollies - The Air That |
Br eat he. mp3

d: \ np3\ CSL2- 1\ Various - The Beatles - Ain't she
sweet . np3

d: \ np3\ CSL2- 1\ Vari ous - Bee Cees -

Massachusetts. nmp3

d: \ np3\ CSL2- 1\ Vari ous - The Mwody Blues - Nights
in white satin.np3

d:\ np3\ CSL2-1\ Sinon and Garfunkel - El
Pasa (If | Coul d).np3

d: \ np3\ CSL2- 1\ Si non and Garfunkel — The Sound of
Si | ence. mp3

d: \ np3\ CSL2- 1\ Bee
Fever. np3

d: \ np3\ CSL2- 1\ Beasti e Boys - Song for Junior.nm3
d: \ np3\ CSL2- 1\ Beach Boys - Good Vi brations. np3

M ndbenders - A

Condor

CGees - Sat ur day Ni ght

d: \ np3\ CSL2- 1\ 01 - The Beat | es - Doct or
Robert. np3
d:\np3\ CSL2-1\05 - The Beatles - Sgt Pepper’'s

Lonely Hearts. 3

d:\ np3\ CSL2-9\ Various - Rock F.MOiginal Rock
N°5 - Crack The World Ltd - Fine Young Cannibal s
- She Drives Me Crazy. np3

d:\ np3\ CSL2-9\ Various - Rock F.MOiginal Rock
N°5 - Crack The World Ltd - The Beach Boys - |
Get Around. np3

d: \ mp3\ Jazz\ STAN_GETZ\ MENI NA_MOCA. np3

d: \ mp3\ Jazz\ STAN_GETZ\ SAMBA_DE_UMA_NOTA_SO. np3

Figure 2. File namesfound on a personal hard disk.

17: 54 OH DARLI NG, THE BEATLES
ABBEY ROAD (1969 EM)
17:57 | BELONG TO YOU, LENNY KRAVI TZ
5 (1998 VIRG N)
18: 01 FATI GUE D ETRE FATI GUE, LES RITA M TSOUKO
COOL FRENESI E (2000 DELABEL)
18:09 I T AIN T NECESSARI LY SO, M LES DAVI S
BESS (1958 CBS)
18: 14 ENTRE VOUS NOUVI AUX MARI ES, ALLA FRANCESCA
BEAUTE PARFAI TE / ALLA FRANCESCA (1997
OPUS 111)
18:16 FOR EM LY WHENEVER | MAY FIND HER, S| MON
AND GARFUNKEL
COLLECTED WORKS (1966 CBS)

Figure 3. A typical radio program on Fip/Radio France.
9:28 Bach: Concerto #4 in A, BW 1055 (denn

Goul d, piano, Colunbia SO Gol schmann) CBS 38524
9: 50 Bach/ Manze: Toccata & fugue in d, BW 565

(Andrew Manze, solo violin) Harnonia Mindi
907250. 51
10: 04 Jaronmir Weinberger: Polka & fugue from

Schwanda the Bagpiper (Philadelphia O O mandy)
Sony 63053

10: 21 Shostakovich: Piano concerto #2 in F,
Op. 101 (M khail Rudy, St. Petersburg PQ Jansons)
EM d assics 56591

10: 49 Dvor ak: Bagatelles,
London 430 077

11:14 Falla: El sonbrero de tres picos (Three-
Cornered Hat), part 1 (Jennifer Larnore, Chicago
SO Bar enboi n) Tel dec 0630-17145

Op. 47 (Takacs Qt.)

Figure 4. Ancther typical radio
WFCR/Western New England.

program  on

2.2 Clusters

An important remark to be made is that the music files
considered are usually organized in different levels. In
CDDB, there is only one level which is the album, itself
containing tracks. On personal hard disks, there may be
any number of levels, represented by the directory
structure of file systems. For the sake of generality, we
consider that the database of file names is structured by
clusters — possibly — recursively. Clusters may contain
either other clusters of file names.

As we can see, thereis no universally valid syntax, either
at the lexeme level (morphology of informative el ements)
or themusic file level (actual syntax). However, thesefile
names are not totally random, and some regularities can
be identified, in particular at the cluster level. In the next
section, we examine more closely the regularities found
in these various sources, from which we will draw a set
of heuristics for an automatic file name recogniser.

2.3 An Empirical Analysis

A manual analysis of a subset of our databases was
performed, to identify the most salient characteristics of
file names. Thismanual analysis of some examplesyields
anumber of regularities:

1) Regularities at the file name level. There is a small
number of delimiters that are used for separating
artist and title information. Based on these
ddimiters, there are some syntaxes with a higher
degree of probability than others. For instance
“artist —title “ such as“The Beatles - Oh! Darling”,
“title—artit” such as“Oh Darling, The Beatles’, or
“constant term — artist —title” such as“Various- The
Beatles - Ain't she sweet”, etc.

2) Regularities at the word level. Artist names are
usually found under a restricted number of syntactic
forms, such as. “Paul McCartney”, “McCartney,
Paul”, “Mc Cartney”, or “The Besatles’, “Bedtles,
the’, “Beatles’.

3) Most importantly, regularities at the cluster level. It
appears that syntaxes, as cumbersome as they may
sometimes be, are not distributed uniformly: within a
cluster, it is often the case than al titles follow the
same syntax, or, at least, a small number of syntaxes.
Thisremark is at the core of our proposal, as we will
see below.

Based on these remarks, we propose the following four
hypotheses relative to music file name analysis:

Delimiter Hypothesis:

This hypothesis states that the artist and title name
information areindeed separated by ddimiters, which are
special characters within a given, small set of characters.
As a special case, we consider that a file name using no
separatorsis atitle name without reference to its artist.

Congtant Term Hypothesis:

Several syntaxes may contain constant terms, which are
not directly relevant. A constant term can be for instance
the album name, a date, or key words such as “Various
Artists’ (see Figure 2). The notion of constant term here
isaugmented by integrating possibly varying numerals, to
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handle cases such astrack numbers (“Track 1,” Track 2",
etc. seeFigure 2).

Word Morphology Hypothesis:

Artist names and title names have statistically different
morphologies. For instance, the number of words for
artist names is less important than the number of words
used for title names. Additionally, artist names often
make use of a limited number of specific heuristics
related to first name (McCartney, Paul” is the same than
“Paul McCartney” or “McCartney, P.”). These heuristics
may be used to determine whether a piece of information
denotes an artist or atitle name.

Local Syntactic Consistency Hypothesis

This hypothesis asserts that syntaxes of file names are
consistent within a given cluster (what we call a syntax
will be defined more precisely below). In redlity, the
hypothesis is weakened by the fact that this consistency
may not actually occur entirely within a cluster. For
instance, Figure 2 shows a directory listing containing
four main syntaxes (for a total 13 titles, which isindeed
an extreme case). We weaken this hypothesis by
considering sub-clusters sharing the same syntax, and
showing that only a small number of sub-clusters is
needed —in general —to perform the analysis correctly.

In the next Section, we show the results of an automatic
analysis performed on our databases to assess the validity
or our hypothesis.

3 Statistical File Name

Corpora

Analysis of

3.1 Déimiter Hypothesis

We cal here a delimiter a character used to separate
different type of information in a given segment. The
hypothesis states that there are indeed ddimiters: these
specia characters are - most often - used as separators,
rather than significant charactersfor artistsor title names.
The most encountered delimiters in the corpora are the
following: -, /", ¢, "), ‘[, ', {5 '}, 5, 7

To validate the Delimiter Hypothesis, we have to show
that the file names use delimiters to separate artist and
title information. To do this systematically would require
athorough check of over 300.000 titles, which istoo hard
a task to be done manually. Instead, we show here that
delimiters are used in a consistent manner within each
cluster. Although this check does not guarantee that
delimiters are indeed used to separate, e.g. artist and title
information, it does a give strong indication that thereisa
consistent use of these characters as syntactical elements
rather than significant characters.

More precisely we call “common delimiter” a character
deimiter found in all the segments of a given cluster.
This delimiter indicates in most of the case a separation
between different information types. As the following
table shows, many (64.4%) though not al clusters have
one common delimiter. Some clusters have no delimiters
(7.2%), which corresponds to cases where the file name
only contains thetitle information (the artist nameisthen
most often contained in the album name for CDDB, or in

the super directory for personal files). In the remaining
cases, several ddimiters are found in given clusters. We
then look for the minimum number of ddimiters that
“cover” the whole cluster. What the table shows is that
there is, in most of the cases, a small number of such
covering delimiters, which is once again a strong
indication that these delimiters are used for syntactical
purposes.

Nb clusters: Per centage:
no delimiter: 1615 7.2 %
1 common delimiter : 14354 64.4 %
2 delimiters cover the 4763 21.3 %
cluster :

3 delimiters cover the 1338 6.0 %
cluster :

4 delimiters cover the 215 1.0 %
cluster :

5 delimiters cover the 17 0.1 %
cluster :

Total : 22302 100.0 %

Figure 5 Analysis of delimitersin our CDDB play lists.

3.2 Word Morphology Hypothesis

The word morphology hypothesis asserts that artist
names are shorter on average than title names. Although
this hypothesisis certainly not alwaystrue (e.g. the group
named “Everything but the girl” has recorded a song
named “Angel”), it istrue in average, and in particular
within clusters.

An analysis of about 17,000 titles 