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ABSTRACT
Along with investigating similarity metrics between audio
material, the topic of robust matching of pairs of audio content
has gained wide interest recently. In particular, if this matching
process is carried out using a compact representation of the audio
content ("audio fingerprint"), it is possible to identify unknown
audio material by means of matching it to a database with the
fingerprints of registered works. This paper presents a system for
reliable, fast and robust identification of audio material which can
be run on the resources provided by today's standard computing
platforms. The system is based on a general pattern recognition
paradigm and exploits low level signal features standardized
within the MPEG-7 framework, thus enabling interoperability on
a world-wide scale.

Compared to similar systems, particular attention is given to
issues of robustness with respect to common signal distortions,
i.e. recognition performance for processed/modified audio signals.
The system's current performance figures are benchmarked for a
range of real-world signal distortions, including low bitrate
coding and transmission over an acoustic channel. A number of
interesting applications are discussed.

1. INTRODUCTION
 Stimulated by the ever-growing availability of musical material to
the user via new media and ways of distribution (e.g. the Internet,
efficient audio compression schemes) an increasing need to
identify and classify audio data has emerged. Given the enormous
amount of available audio material it has become more and more
difficult for the consumer to locate music that fits his or her
personal tastes.

Descriptive information about audio data which is delivered
together with the actual content would be one way to facilitate this
search immensely. This so-called metadata ("data about data")

could e.g. describe the performing artist, composer or title of the
song and album, producer, date of release, etc.. Examples of de-
facto and formal standards for metadata are the widely used ID3
tags attached to MP3 bitstreams [1] and the forthcoming MPEG-7
standard [2].

Another way of retrieving these information resides in the
characteristics of the medium on which the audio data is
comprised. This kind of services are provided by e.g. Gracenote,
formerly CDDB, [3] where the Table Of Content (TOC) of an
audio CD is compared against a vast database. Obviously, this
kind of mechanism fails when the CD is a self made compilation,
or when commercially not available.

A lot of different approaches have addressed the automatic
analysis of audio content, be it speech/music classification
[4, 5, 6], retrieval of similar sounds ("sounds like" data base
search) [7, 8, 9], or music genre classification [10].

The main topic of this paper, however, is to present a system
which performs an automated identification of audio signals rather
than assigning them to predefined categories. The essential
property of the introduced system lies in the fact that it does not
rely on the availability of metadata information that is attached to
the audio signal itself. It will, however, identify all incoming
audio signals by means of a database of works that are known to
the system. This functionality can be considered the algorithmic
equivalent of human recognition of a song from the memory of
the recognizing person.

This observation yields the key criteria for the performance
requirements of an audio identification system. It should be able
to identify the song as long as a human being is able to do so. To
come as close as possible to this aim, the system should be robust
against alteration commonly applied to musical material, like
filtering, dynamic range processing, audio coding, and so on.
Additionally, arbitrary excerpts of the music signal should be
sufficient for the recognition.
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The segment size needed for recognition by an ideal system
should not be longer than a few seconds, with other words as long
as it would take a human listener to identify a piece of music
correctly.

On top of that the system should be able to operate with large
databases of registered works while reliably discriminate between
the items, and computational complexity should stay within
acceptable limits ("System Scalability").

While the task of music recognition may appear easy to human
listeners, lately introduced technologies definitely fall short of
reaching these high goals, e.g. in terms of robustness of
recognition [11] or computational complexity [12].

The system presented in this paper has been designed to meet
many of the requirements mentioned above. The system's
complexity is low enough to allow operation on today's personal
computers and other cost-effective computing platforms and the
described algorithm is based on well-known feature
extraction/pattern recognition concepts [13]. It includes extraction
of a set of robust features with a psychoacoustic background. The
extraction process itself is based on so called Low Level
Descriptors that will be part of the upcoming MPEG-7 standard.

In the following chapters an overview of the presented system is
provided first. The architecture of the system as well as the basic
underlying concepts are explained. Subsequently, the system
requirements for robust recognition are discussed by identifying a
suite of typical alterations of the original audio material. The
influence of the audio feature selection on the recognition
performance is addressed thereafter based on test results using
different sets of test data. In the following two chapters potential
applications of the proposed system are identified and the
compliance to the upcoming MPEG-7 standard is accounted for.

Finally, a conclusion section will present promising future
improvements and directions for further enhancement of the
overall system performance.

2. SYSTEM OVERVIEW
The audio identification system presented here follows a general
pattern recognition paradigm as described in [13]. From the block
diagram shown in Figure 1, two distinct operating modes can be
identified, namely the training mode and the classification
(recognition) mode.  During training a condensed "fingerprint" of
each item from the training sample is created which is used in the
recognition phase to identify the item under test.  In a
preprocessing step a signal preprocessor converts the audio input
signal into a fixed target format with predefined settings. In the
present configuration, the signal is converted to a mono signal
using common downmix techniques and then, if necessary,
resampled to a sampling frequency of 44.1 kHz.

2.1 Feature Extraction
Feature extraction is a central processing step which has a high
influence on the overall system performance. The chosen feature
set should be robust under a wide class of distortions (see Section
3.2) and the computational burden should be low enough to allow
for real-time calculation. In the present configuration the audio
time signal is segmented by a windowing function and each
window is mapped to a spectral representation by means of a DFT
(Discrete Fourier Transform). A set of psychoacoustic features is
extracted from the spectrum of each analysis window to form a
feature vector. This vector is regarded as an elementary feature at
a discrete time instant t and undergoes further processing.

The elementary features are then normalized to have component-
wise unit variance. Note that no removal of the mean is necessary

Figure 1: System architecture overview



prior to normalization, as suggested in [14], since only the
difference between the feature vectors to be classified and the
reference vectors from the "fingerprint" are considered. Through
this normalization step, a balanced feature vector is generated
which can be filtered optionally.

Normalized features from subsequent time steps are then grouped
together to form a composite feature vector of higher dimension.
In addition, the feature statistics of the single vectors are
estimated.

2.2 Vector Quantization for Pattern
Recognition
The identification system uses a linear classifier which is based on
a compact representation of the training vectors, the above
mentioned fingerprint. The classification is performed using a
standard NN (Nearest Neighbor) rule. To obtain a compact class
representation a VQ (Vector Quantization) algorithm is applied
for training. This method approximates the training data for each
class with a so-called vector codebook by minimizing a RMSE
(Root Mean Square Error) criterion. The codebook consists of a
certain number of code vectors depending on the maximum
permitted RMSE. An upper limit of the number of code vectors
may be specified. The VQ clustering algorithm is an iterative
algorithm which approximates a set of vectors by a much lower
number of representative code vectors, forming a codebook. Such
a codebook is needed for each class (audio item). In Figure 2 an
example of the representation of a set of 2-D feature vectors by 6
code vectors is shown.

The code vectors are obtained using a simple k-means clustering
rule. The code vectors computed during training phase are stored
in a database together with other associated descriptive
information of the music items, such as title and composer of the
item.

In Figure 3 the approximation error of a feature vector set is
shown, depending on the number of code vectors used for the
codebook. The training set can be approximated ideally if the
number of code vectors reaches the number of training vectors.
For distorted versions of the training vectors, on the other hand,
the approximation error does not converge toward zero.

2.3 Classification
The music identification task here is an N-class classification
problem. For each of the music items in the database one class,
i.e. the associated codebook, is generated. To identify an unknown
music item which is included in the reference database, a
sequence of feature vectors is generated from the unknown item
and these features are compared to the codebooks stored in the
database.

In more detail, during the identification process each vector is
subsequently approximated by all stored codebooks using some
standard distance metric. For each of the classes the
approximation errors are accumulated and, as a result, the music
item is assigned to the class which yields the smallest
accumulated approximation error.

In a more recent version of the system, the statistics of the features
is used for the classification task instead of the features
themselves. The extracted features are collected over a certain
period of time and short-time statistics are calculated.
Furthermore, the temporal dependencies between the features are
taken into account. This results in both higher recognition
performance and lower processing time.

3. SYSTEM REQUIREMENTS
3.1 Robustness Requirements
For a human listener, just a few seconds, even in noisy
environments, may be sufficient to identify a song. In order to
design a prototype system which approximates this behavior,
special attention has to be paid to the alterations an audio signal
can be subjected to and to measure the impact of these
degradations on the recognition performance. It is therefore of
great importance for an audio identification system to handle "real
world" audio signals and distortions. Some of these types ofFigure 2. Example of 2-D feature set and it's

approximation using 6 code vectors.

Figure 3. RMS error as a function
of the number of code vectors.

.



distortions are discussed subsequently, forming the basis of the
development process of a robust identification system.

A basic type of signal "degradation" which exists in real world are
time shifted signals. If a feature turns out to be very sensitive
towards this kind of signal modification, it is likely that this
feature will also yield a poor recognition performance when faced
with "real world" signals.

Another essential aspect is the sensitivity of the identification
system against level changes. This is particularly important when
the level of the input signal is unknown, or even worse, may
slowly vary over time. Such situations arise when, for example, a
song is recorded via a microphone. When considering this kind of
distortion, the selected features should be invariant to scaling.
This is, for instance, the case for energy envelopes and loudness.
However, appropriate post processing of such features can avoid
this dependency. A simple example could be the calculation of the
difference of two consecutive feature vectors (these are the so-
called delta features). Other transforms may be applicable as well
to overcome this deficiency.

The following list enumerates a selection of signal distortions
which were used during the development process of the
identifications system to form a test suite of typical "reference
distortions", each representing a different aspect of robustness.

• Time shift: Tests the system’s robustness against arbitrary
time shifts of the input signal. This can be performed very
easily by accessing the original audio signal randomly. Care
should be taken that the entry points do not correspond to a
block boundary used during training.

• Cropping: It is desirable that an audio identification system
may be able to identify a small excerpt from a musical item
with sufficient accuracy. In this way, identification of an
entire song would be possible when only parts (such as the
introduction or chorus) are used for recognition. As a
consequence, the duration of a song to be entered in the base
class database cannot be used as a feature.

• Volume change: By scaling the input signal by a constant or
slightly time varying factor, the signal amplitude (volume)
may be varied within a reasonable range. In order to counter
level dependency, all features/post processing chosen for the
identification system were designed to be level independent.
Thus, no separate test results will be listed for this type of
robustness test.

• Perceptual audio coding: An ever-increasing amount of
audio is available in various compressed audio formats (e.g.
MP3). It is therefore important for an identification system to
maintain high recognition performance when faced with this
kind of signals. The bitrate should be selected within a
reasonable range, so that the degradation of subjective audio
quality is not excessive. A bitrate of 96kbps for an MPEG-
1/2 Layer-3 coded stereo signal is considered to be
appropriate for general testing.

• Equalization: Linear distortion may e.g. result from applying
equalization which is widely used  to adapt the frequency
characteristics to the users personal taste. For robustness
testing of the audio identification system, octave band
equalization has been used with adjacent band attenuations
set to -6dB and +6dB in an alternating fashion.

• Bandlimiting: Bandlimited signals occur when the signal was
represented at a low sample rate or, simply, if a low pass
filter has been applied. This can be regarded as a special case
of equalization.

• Dynamic range compression: Dynamic range compression is
frequently used in broadcast stations. In order to identify
audio signals from these stations, robustness against this
time-variant type of processing must be considered.

• Noise addition: White noise or pink noise with a reasonable
SNR (like e.g. 20-25 dB) was added to the item with a
constant level in order to simulate effects such as analog
background noise.

• Loudspeaker-microphone transmission (Ls-Mic): This kind
of distortion appears when a musical item is played back
over a loudspeaker and the emitted sound is recorded via a
microphone. The resulting analog signal is then digitized by
means of an A/D converter and presented to the input of the
system. Such a setup provides a realistic combination of both
severe linear and non-linear distortions and has been found
to be one of the most challenging types of distortions with
respect to automatic audio recognition. A system exhibiting
robustness with respect to such a scenario is perfectly
suitable for a wide range of applications. The test setup used
in the presented work consists of a pair of small multimedia
PC speakers and a standard PC microphone, which is
directed towards the speakers at a distance of around 10cm.

While this list is by far not exhaustive, it should be sufficient for a
general assessment of a system’s robustness qualities. In
particular, the robustness of each feature with respect to these
distortion types can be quantified effectively by such a test suite
and then taken into account for the final feature selection process.

3.2 Computational Requirements
When investigating the necessary computational resources of all
the software components involved in the identification process, it
becomes apparent that that there exists a clear asymmetry between
the feature extractor and the classifier in terms of processing
power and memory space (both RAM and disk space). More
precisely, the extraction process ("fingerprint generation") can be
performed several times faster than real-time, since it only
consists of a signal analysis followed by a feature calculation.
This processing step is independent from the used classification
scheme and from the database size, and thus only requires a small
amount of CPU processing power and RAM storage.

In contrast, the required resources for the classification task are
directly related to the underlying matching algorithm, the size of
the database (i.e. the number of trained reference items) and the
size and type of the fingerprint information.

While there is a trade-off between the degree of tolerable
distortions, the fingerprint size and the computational complexity
of the matching algorithm, it was the goal of the work described
in this paper to find efficient configurations which would allow
for both reliable recognition of real-world audio signals and real-
time operation on today’s standard PC computing platforms.



4. RECOGNITION PERFORMANCE
This section discusses the recognition performance achieved by
the prototype system depending on the choice of features. More
specifically, the performance of the system is investigated when
faced with distorted audio signals like the ones listed in the
previous section. Figures are provided for different configurations
of the system, including three features and different sizes of the
test database.

4.1 Features
A decisive factor in the performance of the identification system is
the selection of features. An extensive review of potentially
interesting features led to the selection of the following candidate
features which have been used for further experimentation.

• An important part in the perception of sound is represented
by the so-called Loudness. Loudness belongs to the category
of intensity sensations [15]. It seems intuitive that this basic
aspect of an audio signal could serve as a robust feature for
audio identification. Simple computational models of
loudness are known, including both the calculation of the
signal’s total loudness and partial loudness in different
frequency bands. This provides plenty of flexibility for
defining a loudness-based feature set. For the following
investigations a multi-band loudness feature was used.

• Besides the loudness sensation, another important
characteristics of the audio signal relates to the distinction
between more tone-like and more noise-like signal quality.
The so-called SFM (Spectral Flatness Measure) [16] is a
function which is related to the tonality aspect of the audio
signal and can therefore be used as a discriminating criterion
between different audio signals. Similar to loudness, the
SFM can be used to describe the signal in different frequency
bands. Such a multi-band version of the SFM features was
used for the following evaluations.

• Similar to SFM, a so-called SCF ("Spectral Crest Factor")
feature was investigated which is related to the tonality
aspect of the audio signal as well. Instead of calculating the
mean value for the numerator the maximum is computed, i.e.
the ratio between the maximum spectral power within a
frequency band and its mean power is determined. In the
same way as for SFM, a multi-band version is used.

The next sections present classification results based on different
setups. Each setup consists of a data base holding an increasing
number of music items.

For each setup, a few tables are provided which reflect the
recognition performance of the identification system. The
performance is characterized by a pair of numbers, where the first
stands for the percentage of items correctly identified (top 1),
while the second expresses the percentage for which the item was
placed within the first ten best matches (top 10).

4.2 1,000 Items Setup
An experimental setup of 1,000 musical items was chosen first,
each item stored in the compressed MPEG-1/2 Layer 3 format (at
a data rate of 192 kbit/s for a stereo signal). The items were
chosen from the combined genre rock/pop, to make a distinction
between the items more demanding than if material with a wider
diversity of characteristics would have been used. To achieve a
fast classification of the test items the processed length was set to

20 seconds while training was limited to 30 seconds, i.e. the data
had to be recognized based on an excerpt of the sequence only.
The feature extractor uses a block size of 1,024 samples. Both the
Loudness and the SFM feature were using 4 frequency bands.
After feature extraction, temporal grouping and subsequent
transformation techniques were applied prior further processing.
The generation of the base classes was conducted as described
above (VQ clustering algorithm). The setup described here
allowed a classification time of 1 second per item (measured on a
Pentium III 500 MHz class PC). A selection of the recognition
performance for this setup of the system is reported in Table 1.

Table 1. Recognition performance of Loudness and SFM
features (1,000 item setup, top 1/ top 10)

Feature Loudness SFM

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 15s 51.0% / 75.5% 92.3% / 99.6%

Equalization 99.6% / 100.0% 14.1% / 29.8%

Dynamic
Range

Compression
89.5% / 94.9% 99.0% / 99.3%

MPEG-1/2
Layer 3 @ 96

kbit/s
19.0% / 33.3% 90.0% / 98.6

Loudspeaker
/ Microphone

Chain
38.3% / 61.7% 27.2% / 59.7%

As can be seen from these figures, the Loudness feature provides
a rather low recognition performance for the case of cropping
effects (further restriction to 15s length) or MPEG-1/2 Layer-3
robustness. In contrast to this, SFM shows very good performance
concerning these robustness tests. Both features do not perform
very well in this configuration for the loudspeaker/microphone
chain experiment.

4.3 15,000 Items Setup
This setup represents one significant step on the way to a "real
world" scenario. A set of 15,000 items was chosen as a database
for the classification system, representing a clearly more
demanding task. Again the chosen test items belong mostly to the
rock/pop genre. To cope with the two main points of interest
(namely speed and discrimination) while handling this amount of
data, some improvements were made compared to the previous
setup. To realize an even faster classification speed with a larger
number of items, the statistical analysis of the features was
exploited and used for classification instead of the raw features
themselves. Furthermore, the number of frequency bands was
increased from 4 to 16 bands in order to achieve a more precise
description of the audio signal.

A further difference compared to the previous setup is the fact that
the features were implemented in accordance with the
time/frequency resolution as specified for the extraction of Low
Level Descriptors (LLDs) by the MPEG-7 audio standard [2] (i.e.
same window/DFT and shift length).

Tables 2 and 3 show the recognition performance achieved for
this experimental setup, now investigating the behavior of the
promising features which are related to the signal’s spectral



flatness properties (and thus "tone-likeness"). Table 2 reports the
classification results of a standard Vector Quantization approach,
whereas Table 3 shows the results for a more advanced matching
algorithm including aspects of temporal relationship between
subsequent feature vectors. As can be seen from the figures, both
features (SFM and SCF) perform extremely well even under
severe distortion conditions, such as the loudspeaker/microphone
chain. It can be observed that the SFM feature performs very good
while using a standard VQ classifier. This is further increased to
recognition rates above 97% with the more sophisticated
matching algorithm. In both cases, SCF shows an even better
recognition performance. Being at some kind of "saturation level"
further tests with an increased amount of items and additional
robustness requirements are mandatory for a better discrimination
of the two features. Classification time is 7.5 seconds for standard
and 2.5 seconds for advanced matching (per item).

Table 2. Recognition performance of SFM and SCF features
using standard matching (15,000 item setup)

Feature SFM SCF

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 100.0% / 100.0% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s
96.1% / 97.2% 99.4% / 99.6%

MPEG-1/2
Layer 3 @ 96

kbit/s &
Cropping

92.2% / 94.3% 98.8% / 99.3%

Table 3. Recognition performance of SFM and SCF features
using advanced matching (15,000 item setup)

Feature SFM SCF

No distortion 100.0% / 100.0% 100.0% / 100.0%

Cropping 100.0% / 100.0% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s
99.6% / 99.8% 100.0% / 100.0%

MPEG-1/2
Layer 3 @ 96

kbit/s &
Cropping

97.9% / 99.9% 99.7% / 100.0%

Loudspeaker
/ Microphone

Chain &
Cropping

98.0% / 99.0% 98.8% / 99.5%

5. APPLICATIONS
The identification of audio content based on matching to a
database of known works has many attractive applications, some
of which are presented in the following:

• Audio Fingerprinting: Matching of audio signals as
described in this paper is closely related to the much-
discussed topic of "Audio Fingerprinting". A compact

representation of the signal features for matching (e.g. the
VQ codebooks) resembles the condensed "essence" of the
audio item and is thus usable as a fingerprint of the
corresponding item.

• Identification of music and linking to metadata:
Automated identification of audio signals is a universal
mechanism for finding associated descriptive data (metadata)
for a given piece of audio content. This is especially useful
when the format the content has been delivered in is
irrelevant for the identification process and when
furthermore this format does not support the transport of
associated metadata or reference thereto. Under these
premises recognition of the song will also serve to provide
links to the corresponding metadata. Since the metadata is
not necessarily embedded in the audio content, access to a
remote database could carry updated information on the
artist, concerts, new releases and so on.

• Broadcast monitoring: A system for automatic audio
recognition can identify and protocol transmitted audio
program material on broadcasting stations. With a system
like the one introduced in this paper this can be achieved
without the need for special processing of the transmitted
audio material, as would otherwise be required when using
branding methods like watermarking. Applications that
require monitoring of radio programs would include
verification of scheduled transmission of advertisement
spots, securing the composer’s royalties for broadcast
material or statistical analysis of program material (charts
analysis).

• Music Sales: Automatic audio identification can also be
used to retrieve ordering and pricing information of the
identified material and additionally offer similar material.
The recording of sound/music and storage of the signature on
small handheld devices (such as Personal Digital Assistants)
will enable the customer to find the recorded music item in
the music store or by connecting to the Internet.

6. MPEG-7 AND ROBUST
IDENTIFICATION OF AUDIO
Due to the ever-increasing amount of multimedia material which
is available to users, efficient management of such material by
means of so-called content-related techniques is of growing
importance. This goal can be achieved by using pre-computed
descriptive data ("metadata") which is associated with the content.
One example of a number of upcoming metadata standards for
audiovisual data is the MPEG-7 [2] process which is planned to
be finalized in a first version in late 2001.

MPEG-7 defines a wide framework for the description of audio,
visual and generic properties of multimedia content, covering both
high level semantic concepts as well as low level features (the
latter can be extracted directly from the signal itself) [17].

The basic descriptive entities in MPEG-7 are called Descriptors
(D) and represent specific content properties or attributes by
means of a defined syntax and semantics. Description Schemes
(DS) are intended to combine components with view towards
application and may comprise both Descriptors and other
Description Schemes. Both Descriptors and Description Schemes



are syntactically defined by a so-called Description Definition
Language (DDL) which also provides the ability for future
extension/modification of existing elements. The MPEG-7 DDL is
based on XML Schema as the language of choice for the textual
representation of content description and for allowing
extensibility of description tools.

In the area of audio signal description, MPEG-7 provides a set of
Low Level Descriptors (LLDs) which are defined in terms of both
syntactic format and semantics of the extraction process. While
these descriptors can be considered to form a universal toolbox
for many future applications, a number of concrete functionalities
have already been envisaged during the development process of
the standard [2]. These include "Query by humming"-type search
for music, sound effects recognition, musical instrument timbre
description, annotation of spoken content and robust matching of
audio signals.

Specifically, the functionality of content-related identification of
audio signals is supported within MPEG-7 audio by means of the
AudioSpectrumFlatness low level descriptor which is
designed to support robust matching of a pair of audio signals,
namely the unknown signal and the known reference signal. The
AudioSpectrumFlatness descriptor specifies the flatness
property of the signal's power spectrum within a certain number of
frequency bands, i.e. the underlying feature of the recognition
system, as described previously. Using the Scalable Series
concept, this data can be delivered with varying temporal
granularity to achieve different tradeoffs between descriptive
accuracy and compactness.

This standardized descriptor design forms the basis for achieving
an open, interoperable platform for automatic audio identification:

• Identification relies on a published, open feature format
rather than proprietary solutions. This allows all potential
users to easily produce descriptive data for the audio works
of interest (e.g. descriptions of newly released songs).

• Due to the exact standardized specification of the descriptor,
interoperability is guaranteed on a worldwide basis, i.e. every
search engine relying on the MPEG-7 specification will be
able to use compliant descriptions, wherever they may have
been produced.

In this sense, MPEG-7 provides a point of interoperability for
these applications at the feature level. Since textual descriptions
based on an XML representation are not designed to provide
extremely compact representations, applications may choose to
transcode the MPEG-7 compliant description into a smaller,
compressed representation for storage in an internal database
("fingerprint", "signature"). Still, the "un-packed" representation
will remain to be available as a point of interoperability with other
schemes.

7. CONCLUSIONS AND OUTLOOK
This paper discussed methods for achieving automatic content-
based identification of audio material by means of robust
matching to a set of known reference items. Particular attention
was paid to aspects of robustness with respect to common types of
signal alterations, including both linear and non-linear distortions,
audio compression and cropping to a reasonably-sized excerpt.
The ability to handle these types of distortions is vital to the

usability of systems for content-based processing in many real-
world application scenarios.

Relying on a general feature extraction/pattern recognition
paradigm, a prototype system for automatic identification of audio
material was described in its architecture and background.
Clearly, the selection of appropriate robust features can be
considered crucial for achieving a good recognition performance
under a wide range of possible distortions.

Recognizing the importance of the application, the upcoming
MPEG-7 audio standard defines a descriptor designed to provide
the functionality of robust matching of pairs of audio signals
which relates to the "un-flatness" of the signal’s power spectrum
and thus the tone-like quality of the signal in a number of
frequency bands.

Using this (and related) features, the recognition performance of
the identification system was assessed in a number of
experiments. The system configuration used showed excellent
matching performance for a test set comprising 15,000 songs. A
correct identification rate of better than 98% was achieved even
for severe distortion types, including an acoustic transmission
over a loudspeaker/microphone chain. The system runs about 80
times real-time performance on a Pentium III 500MHz class PC.

Clearly, there is still a long way to go until such an automatic
system will be able to match the recognition performance of a
human listener. Nonetheless, the current level of performance
already opens the door for a number of very interesting
applications, including finding associated metadata for a given
piece of audio content, broadcast monitoring and music sales.
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