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ABSTRACT 
MUSART is a research project developing and studying new 
techniques for music information retrieval. The MUSART 
architecture uses a variety of representations to support multiple 
search modes. Progress is reported on the use of Markov 
modeling, melodic contour, and phonetic streams for music 
retrieval. To enable large-scale databases and more advanced 
searches, musical abstraction is studied. The MME subsystem 
performs theme extraction, and two other analysis systems are 
described that discover structure in audio representations of 
music. Theme extraction and structure analysis promise to 
improve search quality and support better browsing and “audio 
thumbnailing.” Integration of these components within a single 
architecture will enable scientific comparison of different 
techniques and, ultimately, their use in combination for improved 
performance and functionality. 

1. INTRODUCTION 
We are integrating components for music search and retrieval into 
a comprehensive architecture called MUSART, an acronym for 
MUSic Analysis and Retrieval Technology. Like several other 
music-retrieval systems, MUSART takes as input an aural query, 
which is typically a theme, hook, or riff, of the piece for which the 
user is searching. Unlike other systems, however, MUSART 
automatically builds a thematic index of the pieces in its database. 
Since users generally remember the theme of a piece of music, 
and the theme can occur anywhere in a piece, indexing by theme 
can greatly improve both the precision and recall of the retrieval 
system. 

Moreover, MUSART uses a variety of representations to support 
multiple search modes. These representations run from a Markov 
model, to phonetic streams, to strings. This allows us, for 
example, to easily compute approximate matches and to search 
based on stylistic similarity or the lyrics in a popular song. Our 
representation can capture harmony and rhythm, should the user 
decide to query based on harmonic progression or rhythmic 
pattern, or both, in addition to or in place of melody. 

The current version of the system contains hundreds of pieces 
from different Western genres (all are tonal pieces). From these 
pieces, we have automatically induced about 2000 themes. 
MUSART is able to effectively retrieve pieces from either the 
theme or full piece databases. The system is relatively robust 
against queries that contain some classes of errors (e.g., rhythmic 
changes). We measure performance by rank (the target piece is in 
the top ten pieces retrieved), yielding measures from 100%1 for 
queries without errors and degrading from there based on the type 
of error in the query. 

In this paper, we describe the MUSART system architecture2. The 
discussion concentrates mostly on searching themes, as we believe 
this will be the primary method most users will employ. We will 
mention, however, extensions to full pieces and other music-
analysis strategies. We begin by placing our work in the context 
of current systems. 

2. RELATED RESEARCH 
There are varieties of approaches described in the database and 
information-retrieval (IR) literature on retrieval of music. Some of 
these approaches, such as Variations [1], are primarily based on 
retrieving either musical scores or sound recordings using 
traditional categorization schemes, where the musical items are 
treated in much the same way as text-based media.  

A number of other systems [2-8] have focused on sound and 
MIDI [9] input. These systems generally take as input a melody 
that is “hummed” or played on some type of musical input device, 
such as a MIDI keyboard. The hummed melodies are converted to 
text strings, usually with a representation of intervallic distance or 
simply relative pitch contour [10]. For the melody “Happy 
Birthday,” a user may hum the pitches “G G A G C B,” which 
may then be more simply categorized as ascending (U), 
descending (D), or the same (S) to yield the pitch contour “S U D 
U D.” A commonly used variation to the SUD approach is to 
divide jumps into large (U or D) and small (u or d), where large 
is, for example, a jump greater than a minor 3rd. This SUuDd 
alphabet provides more information than a string composed from 
the SUD alphabet, but does not substantially change the retrieval 
process. 

                                                                 
1 That is, in 100% of the cases the target was in the top-ten rank. 
2 See musen.engin.umich.edu for more information on the 

MUSART project and related projects. 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the 
full citation on the first page. 



  

While hummed input is a natural approach, there are some 
problems with using it as the sole input. Pitch contour and related 
representations (such using actual or modified pitch normalized to 
some key) are not necessarily unique: the hummed input is 
sometimes fraught with a number of distortions inherent in the 
way that humans remember and produce (sing) melodies [6]. Such 
distortions include raising or lowering the pitch of various notes, 
“going flat” over time, losing the beat, or humming “off key.” To 
account for these distortions, researchers treat the string as 
imprecise. In other words, regions of uncertainty are added. The 
retrieval process on imprecise strings employs a string-matching 
[11], N-gram [12], or other algorithm where the input string is 
matched against abstractions stored in the database.  

While this approach has clearly led to some impressive results, we 
argue that the “string approach” is fundamentally limited for the 
following reasons: 

•  The assumption that a melodic fragment exists and forms a 
suitable search key is not always true for some types of music 
such as rap, electronic dance music, and even some modern 
orchestral music. Users may want to search for non-melodic 
attributes. 

•  Given a large, but not unrealistic, corpus of music, pitch 
contour or intervallic representations will not uniquely 
identify pieces. In other words, there will be a great many 
pieces with similar string representations; this problem is 
exacerbated if the strings are modeled as imprecise. 

•  In some genres, harmony, homophony or polyphony may be 
predominant musical features. Representing any of these as 
simple strings is fraught with significant problems. For 
example, would a two-voice piece be represented as two 
“concurrent” strings? 

We are not arguing against melodic search per se; we only want to 
recognize that current practice must be augmented with new 
techniques to achieve better performance and richer functionality. 
For example, current research suggests using genre to narrow 
searches, but in many cases users may want to search for 
orchestration, themes, or rhythms that span many genres. Using 
genre to narrow searches is similar to MARC-record searching in 
that pre-established categories are selected using traditional 
database and query techniques. We look to implement more 
general and more powerful searching techniques. 

Several researchers have described systems based on various non-
string methods to represent and classify music [8, 13, 14]. These 
projects have not yet demonstrated how to integrate general query 
mechanisms and methods for returning results. Nor do these 
systems integrate abstraction with a search mechanism. 

Retrieval by melody depends on the “hook” of a piece of music. 
The hook is usually what a person uses as a query when humming. 
The problem is that although the hook may be contained in the 
opening melodic line of a song, often it is not. For example, it is 
common in popular songs for a familiar chorus (such as “Take me 
out to the ballgame…” by Jack Norworth & Albert Von Tilzer) to 
follow an unfamiliar verse (such as “Nelly Kelly loved baseball 
games…,” the actual opening line from the 1927 version of “Take 
Me Out to the Ballgame”). In classical music, the main theme (or 
melody) may not be stated for several measures following the start 
of the piece, or it may be disguised in a variation, and the 
variation may be better known than the main theme.  

Thus, there is a significant problem in determining what part of a 
melody, or even which melody, should be indexed. Some 
abstraction of a piece is clearly needed, as many pieces of music 
are too long to be reasonably searched. Faced with these 
problems, music librarians have developed thematic indexes 
which highlight significant themese in staff notation, thus 
preserving major musical features (harmony, rhythm, etc.) [13]. 
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Figure 1. MUSART Architecture. 

 



  

We know of no other researchers who are addressing the problem 
of abstraction using automated mechanisms. 

3. MUSART ARCHITECTURE 
This section illustrates the conceptual organization of our system 
(see Figure 1). The corpus is preprocessed using a collection of 
tools to build abstract representations of the music (i.e., our data). 
The extracted information is then translated to multiple 
representations. Queries are also translated, and a search engine is 
selected to search the database. The important idea of this 
framework is that various modules and representations can work 
together in parallel or in sequence to achieve more refined 
searches than any single search technique can offer. We can also 
compare different techniques on the same set of data. 

With this architecture, the user interface can offer a rich set of 
options to the user. Because music is abstracted in various ways, 
users can explore musical spaces along many dimensions. In 
addition, abstract representations lend themselves to music 
generation and synthesis. We have just begun to explore this 
possibility, but this promises to be a powerful tool for users to 
refine queries and to explore different musical dimensions. 

So far, we have implemented several new techniques for 
searching, and we have investigated several techniques for 
musical abstraction. These are described in the following sections. 
We are in the process of integrating these subsystems to form a 
more integrated whole. 

4. MARKOV REPRESENTATION AND 
THE CONCURRENCY 
One way we model music is as a stochastic process, where we cast 
a musical performance as a Markov model. Recently, we have 
experimented with Markov models where we use simple state 
features of pitch (or concurrent set of pitches) and duration [14]. 
The transition table is the likelihood of going from one state to 

another, where the priors are determined by counting transitions 
occurring in some set of music (e.g., the piano concerti of 
Mozart). 

We define the states of the Markov model as concurrencies. A 
concurrency consists of all the notes that are sounding at the same 
time. These notes need not all have the same duration, onset, or 
offset. Hence, a different concurrency exists at each point a new 
note begins or terminates in a piece. For the purposes of 
simplification, the notes in a concurrency are modeled by pitch 
class, thereby ignoring octave information. By representing 
concurrencies in this manner, we are able to store and use them as 
12-tuple bit vectors. It is easy to extend the concurrency to 
include octave information, simply by increasing the size of the 
bit vector. For example, a two-octave range is represented by a 
24-tuple and corresponding bit vector. 

The concurrency can represent up to twelve simultaneous pitches 
(every pitch class); elements of the harmony or polyphony are 
naturally represented. Moreover, this represent is well suited for 
automated harmonic analysis [15].  

We use Figure 2 and Table 1 as examples of a set of concurrencies 
and the corresponding state and transition tables for the Markov 
model representing the piece. Figure 2 shows the piano-roll 
notation for Wilson’s Wilde, an anonymous 16th-century work. 
Table 1 shows the corresponding concurrencies (given in the table 
as Markov states) based solely on this excerpt. 
Although relatively simple, the Markov representation has several 
interesting properties that allow us to use it as one of the primary 
representations in our system. First, our results from inducing 
Markov models from the pieces in our corpus indicate that 
composers occupy (mostly) unique regions in the state space 
implied by the Markov model. Secondly, we found that the 
transition matrices are relatively sparse (more so for some works 
than others). Thirdly, we can impose an order on the states 
implied by the Markov model.  

The ordering is formed as follows: we quantize note duration to 
some minimum (e.g., 16th-note) and use a pitch-class vector 
where, for example, <100000000000> represents the pitch class C 
as the single pitch sounding, <110000000000> represents the 
pitch classes C and C#/D-flat sounding concurrently, and so forth. 
A state is represented by a duple (duration, pitch vector). We can 
simply order the state space as follows: (16th-note, 
<100000000000>), (8th-note, <100000000000>), … (whole note, 

 
Figure 2: Piano roll for Wilson’s Wilde, mm. 1 – 4. 

State # Notes in State
1 E
2 A
3 E, A
4 C#, A
5 A, B
6 C#, A
7 D
8 C#, D
9 E, G#, B
10 REST  

Table 1: Concurrencies for Wilson’s Wilde, mm. 1-4. 



  

<111111111111>), where durations are ordering by increasing 
powers of 2 of a 16th-note, and the maximum duration is a whole 
note.3 

Because of these three properties, we can assess similarity among 
pieces of music, or even composers using a variety of techniques. 
Initial results indicate a strong correspondence between similarity 
as computed by the MUSART system and educated musical 
opinion. Consider that once the query is converted to a Markov 
chain, it can be easily correlated with pieces in the database (See 
Section 6.) While at worst case this is a linear-time operation, the 
correlation operation is fast and, with clever indexing, we can 
significantly reduce this time. Finally, the induction of the 
Markov model and correlation computation can be done off line. 

5. Thematic Abstraction 
We are interested in extracting the major themes from a musical 
piece: recognizing patterns and motives in the music that a human 
listener would most likely retain. Extracting themes is an 
important problem to solve. In addition to aiding music librarians 
and archivists, exploiting musical themes is key to developing 
efficient music retrieval systems. The reasons for this are twofold. 
First, it appears that themes are a highly attractive way to query a 
music-retrieval system. Second, because themes are much smaller 
and less redundant than the full piece, by searching a database of 
themes rather than full pieces, we simultaneously get faster 
retrieval (by searching a smaller space) and get increased 
relevancy. Relevancy is increased as only crucial elements, 
variously named motives, themes, melodies or hooks are searched, 
thereby reducing the chance that less important, but frequently 
occurring, elements are assigned undue relevancy. 
Our theme abstraction subsystem, MME [16], exploits 
redundancy that is found in music. Thus, by breaking up a piece 
into note sequences and seeing how often these sequences repeat, 
we identify the themes. Breaking up a piece involves examining 
all note sequence lengths of one to some constant. Moreover, 
because of the problems listed earlier, we must examine the entire 
piece and all voices. This leads to very large numbers of 
sequences, thus we must use a very efficient algorithm to compare 
these sequences. 

Once repeating sequences have been identified, we must further 
characterize them with respect to various perceptually important 
features in order to evaluate their thematic value. It has been 
noted, for instance, that the frequency of a pattern is a stronger 
indication of thematic importance than pattern register. We 
implement hill-climbing techniques to learn weights across 
features, i.e., MME learns relative to a training set the relative 
importance of the features it uses. The resulting evaluation 
function is then used to rate the sequence patterns we uncover in a 
piece. A greedy algorithm is used to identify a subset of the piece, 
consisting of some pre-determined number of note events, 
containing top-ranked patterns. 

Our formal evaluation of MME on over 30 training trials, with 30-
piece training and test sets randomly selected across 60 pieces for 
each trial, MME returns Barlow's A Dictionary of Musical Themes 
[17] “1st theme” in 98.7% of cases (see Figure 4). Figure 3 shows 

                                                                 
3 We can choose any range of durations, and any method to order 

the durations. 

sample output from MME, two slightly different versions of the 
passage Barlow identifies as the “1st theme”. 

 
 

Figure 3: Sample MME output, Smetana's Moldau. 
Because of the large number of patterns that MME may find in a 
complex piece of music, it must be computationally efficient. The 
system’s overall complexity is )( 23nmΘ  time, where m is the 
maximum pattern length under consideration, and n is the number 
of note events in the input piece. In practice, however, we observe 
sub-linear performance, and reasonable running times on even the 
largest input pieces.  
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Figure 4: MME test results. 

6. Retrieval Methods 
The pieces in the MusArts’ database are converted by MME into a 
set of themes, where up to a certain number of themes are 
identified for each piece. These themes are then converted to the 
Markov models described in Section 4. Thus, the “Markov 
Distance” retrieval engine takes a query, converts it to a Markov 
model, and then computes a variety of correlations measures 
between the query model and all “theme” models [18]. 

Currently, we use two correlation methods to examine how the 
query relates to a theme. Both are based on a standard correlation 
coefficient. One technique, however, uses the first-order Markov 
model, while the other simply uses the frequency count of each 
state observed, which is a zero-order Markov model. Once a 
comparison has been made to each database entry the results are 
sorted and presented as a score out of 1000 to the user. 

The results so far are promising. We have taken some of the 
themes extracted automatically and manipulated them to simulate 
typical errors we expect to see in queries. The three classes of 
errors that we are investigating are duration change, note drop, 
and pitch change. In our experiments, we set an error rate for each 
type of error that indicates what percentage of the MIDI events we 
will manipulate when comparing the query to the database entries. 



  

We define a successful trial as one in which the piece that was 
being sought is presented as one of the top ten themes returned (a 
rank measure). The system is very robust to duration-change 
errors, having as high as a 95% success rate even when the error 
rate is 100%. When it comes to note-drop errors, the system 
performs at a 75% success rate with error-rates approaching 50%. 
However the system is not robust to pitch-change errors. It 
appears that a pitch-change error rate of 10% the system does not 
return the sought piece in the top rank. We are investigating 
several solutions to this problem.  

We have recently implemented a Viterbi algorithm for retrieval. 
With this algorithm, we can find which Markov model is most 
likely to cover the input query. Rather than calculate correlation 
measures, this approach calculates true posterior probabilities 
(given the input query as evidence). To account for errors, we 
insert “error states” in the Markov model for each theme. The 
distributions for these error states are currently based on our 
intuition; however, we are conducting an extensive set of 
experiments to get better error models.  

Our initial results with the Viterbi approach are encouraging. 
Using the same experimental setup as we used for the correlation 
experiments, we have recorded better results for all error classes. 
In particular, the Viterbi approach appears to be more robust to 
pitch-change errors. 

The description of both the correlation and Viterbi approaches 
given in this paper has relied on searching a database of 
monophonic themes (which do include rhythmic features). Given 
that both approaches are based on concurrencies, it is very simple 
to apply both approaches to homophonic or polyphonic music. In 
fact, we are experimenting with searching for harmonic 
progressions using the Viterbi approach.  

7. FRAME REPRESENTATION AND 
MELODIC CONTOUR 
We are exploring another representation and search strategy to 
address some of the problems of conventional “event-based” 
searching, where events are typically musical notes and searching 
is performed on the basis of note sequences. Event-based searches 
suffer from at least two problems. First, it is difficult for music 
transcription systems to segment audio correctly into discrete 
notes. This is a problematic even when skilled musicians sing 
queries. Secondly, efficient string-matching algorithms, when 
given enough leeway to ignore music transcription and 
performance errors, can often time-align two perceptually 
dissimilar melodic strings, leading to false positives. 

An alternative is to ignore the concept of note and perform a 
direct comparison of musical contours, representing melody as a 
function of pitch versus time. This function is discretized by 
segmenting the melody into time frames. Thus, we call this a 
“frame-based” approach. Figure 5 illustrates a pitch contour from 
an audio query and the resulting query string. In this approach, 
there is no need to quantize pitch, nor is there a problem if pitch 
varies during a “note” because notes are not represented 
explicitly. Furthermore, this approach can be extended to 
incorporate transcription uncertainty by representing pitch as a 
probability distribution. 
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Query string: 47.1, 47.4, 47.8, 47.8, 47.8, 49.4, 49.2, 49.6, 

49.2, 48.4, 47.4, 47.7, 47.7, 47.7, 51.5, 52.6, … 
Figure 5. An audio query is segmented into frames 

representing a melodic contour. Each frame corresponds 
to the pitch of a 100 ms timeslice. 

To deal with pitch transposition, we transpose queries by many 
different pitch offsets; to deal with tempo variation, we “stretch” 
the target melodies in the database by different scale factors. In 
addition, we use a constrained form of time warping to align 
queries with the database entries. Constraints prohibit large 
deviations that would distort the overall contour shape. 

This approach is obviously very slow and impractical for 
searching a large database. However, we believe it would be 
foolish to limit our research to the existing body of fast search 
algorithms. Instead, we hope to characterize some limitations of 
fast search algorithms and then try to overcome them. For 
example, a slow precise search might be used to refine the results 
of a fast, imprecise search. To evaluate the frame-based approach, 
we are replicating various event-based search engines from the 
literature so that we can compare different approaches using 
identical queries and databases. Preliminary results show that the 
frame-based approach is giving substantially better precision. For 
example, the frame-based approach ranked the correct match as 
the closest match in 13 out of 20 queries on a collection of 77 big 
band arrangements, and it ranked the correct match in the top 3 on 
16 out of 20 queries. In contrast, an event-based search found the 
correct match in 5 out of 20 queries, with only 6 out of 20 queries 
ranked in the top 3 results [19]. 

8. PHONETIC-STREAM ANALYSIS 
In addition to pitch and rhythm, singing as a natural form of query 
possesses time-varying acoustic-phonetic information, e.g., one 
sings the words of a song according to the pitch and duration of 
each note. While all three streams may provide useful information 
for searching the musical database, only the pitch stream has been 
studied in any detail, and almost no work has been done on the 
acoustic-phonetic stream. In the ideal case of errorless queries, the 
acoustic-phonetic stream is likely to be highly redundant with the 
rhythm and pitch streams, and, therefore, is expected to provide 
little additional information. In the practical case, where the 
rhythm and pitch streams may contain a significant number of 



  

errors, the acoustic-phonetic stream may be the only reliable 
source of information. 

In its most general form, extracting the stream of phonetic 
information from the query is a problem in speaker-independent 
continuous speech recognition, for which a sizable body of 
research literature exists, all of which suggests that we should 
expect little success in the case of sung passages without 
substantial effort. Besides independence across speakers, the 
problem of speech recognition for singing is further exacerbated 
by the fact that non-vocalic segments of the stream are generally 
poorly represented, e.g., one cannot “sing” the fricative /f/. 
Furthermore, singing extends the pitch range upwards from the 
normal range of speaking to fundamental frequencies that 
generally cause problems for many standard recognition systems. 

Our work [20] focuses on a reduced version of phonetic-stream 
analysis. Rather than attempting to transcribe the word that is 
sung into standard phonetic units, we have studied coarser 
quantizations of the phonetic stream, which trade robustness to 
production variations within and across singer against the 
information-bearing capacity of the stream. The algorithm we 
have developed extracts a symbol stream consisting of the 
Cartesian product of a “phonetic” alphabet of four vowel types 
(front, neutral, back, non-vocalic) and a duration alphabet of long 
and short.  

Among the several approaches we have studied for segmenting 
the phonetic stream into the 8-element symbol stream, the most 
promising appears to be based on a self-referential model, as 
opposed to an absolute-referential one. In an absolute-referential 
model, queries are segmented based on templates constructed for 
the four vowel types over the entire population of singers. A self-
referential model segments each query individually and then maps 
these segments to the most likely “universal” alphabet of front, 
neutral, back, and non-vocalic. Of the two approaches, the self-
referential model appears in our preliminary studies to be more 
robust to such sources of variation in production as gender, 
training, song, and register. 

The self-referential model utilizes nearest-mean reclassification 
(NMRA) to segment the query into four categories based on 
properties of the query’s short-time Fourier transform. NMRA is 
performed on the entire set of short-time Fourier transforms to 
assign one of four raw categories to each time slice. Aggregation 
is performed across time slices to yield short and long 
classification of each vowel type. Finally, the raw categories are 
mapped into front, neutral, back, and non-vocalic labels based on 
features of the spectral distributions within and across the raw 
categories. The string for each query is then compared with the 
database to find the best matches. 

Results from pilot studies suggest that the approach outlined 
above may be useful in music retrieval. A database of sung 
queries was  constructed by having subjects sing one verse from 
seven familiar songs: “Happy Birthday”, “Yankee Doodle”, 
“America the Beautiful”, the Beatles’ “Yesterday”, “Row, Row, 
Row Your Boat”, “Somewhere Over the Rainbow”, and “My 
Bonnie Lies Over the Ocean”. Ten subjects were recruited from 
among staff, faculty, and graduate students at the Advanced 
Technologies Laboratory at the University of Michigan. Each 
subject sang four instances of each song. They were allowed to 

pace themselves and to choose whatever pitch range and tempo 
they felt most comfortable for each of the songs. Informal 
classification of the quality of singing ranged from very poor to 
excellent across the ten subjects.  

Error! Reference source not found. shows the percent correct in 
the nearest neighbor matches as a function of query song. For 
each query, the nearest neighbor is found as the vowel stream that 
requires the fewest number of (weighted) edits to be transformed 
into the desired query. If that selected vowel stream is generated 
from the same song as the query, then the selection is deemed 
correct. There are a total of 40 queries for each song, for a total of 
279 possible neighbors from which to select, as we do not count 
the query itself as a possible neighbor.  Therefore, a 14% chance 
exists of a correct answer occurring at random. 
Across all songs, the nearest neighbor selection is correctly 
chosen from the same song 60% of the time, and varies by song 
between 42% (for “Yankee Doodle”) and 80% (for “America the 
Beautiful”).  We interpret these results as supporting the general 
hypothesis that some representation of vowel stream is useful for 
music information retrieval. 
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Figure 6. Fraction of correct nearest-neighbor choices as a 
function of the query song. A correct choice means that the 

nearest neighbor to the vowel stream is a vowel stream from 
the same song. There are 40 queries for each song. 

9. STRUCTURAL ANALYSIS AND 
ABSTRACTION 
In parallel with our work on melodic search, we are investigating 
methods by which we can deduce musical structure and genre. 
Information about structure has many uses. Since repetition is 
common in music, identifying repetition can aid in music 
processing and transcription as well as eliminate unnecessary 
searching. Listeners often remember the most-often repeated parts 
of a song, so search engines can give extra weight to these, and 
audio browsers can begin playback at these memorable moments. 
While a great deal of work has focused on the analysis of 
symbolic representations of music, we also wish to consider 
applications to databases of audio waveforms. Both of the 
approaches described below represent early efforts to derive 
structure from music audio. 



  

9.1 Chroma-Based Search for Structure 
One approach in this direction is our “audio thumbnailing” 
algorithm [21]. Prior work in this area includes Logan and Chu, 
[22] who developed algorithms for finding key phrases in 
selections of popular music. Their work focused on the use of 
Hidden Markov Models and clustering techniques for mel-
frequency cepstral coefficient (MFCC) representations of the 
acoustic waveform. Their system was subjectively evaluated on a 
relatively small selection of Beatles songs. In another work, Foote 
[23, 24] talks about audio “gisting” as an application of his 
proposed measure of audio novelty. This audio novelty score is 
based on a similarity matrix, which compares frames of audio 
based on features extracted from the audio. Foote leaves details 
such as the similarity metric and feature class as design decisions; 
however, he does recommends the use of MFCCs as a feature 
class for computing audio novelty. 

Our approach to “audio thumbnailing” draws upon two key 
concepts: the chromagram and recurrent state. The chromagram is 
an abstraction of the time-varying spectrum of the audio signal 

which is based on the perceptual organization of pitch [25]. For 
each time frame, the chromagram maps the linear-frequency 
spectrum onto pitch-chroma spectrum, which ranges in semitones 
over the octave [26]. Among the mathematical properties of the 
chromagram is that it discounts octave relationships among the 
components of the frequency spectrum, which are highly 
redundant in harmonic sources, and places greater emphasis on 
pitch-class relationships, which bear information about harmony.  

Recurrent state abstracts the concept of structural organization in 
a piece of music. The refrain in a song, for example, is 
distinguished from the rest of the piece only by virtue of the fact 
that it, alone, recurs throughout the piece. Thus, in searching for a 
refrain, or other such structures that repeat often in a piece of 
music, relatively little can be assumed about the structure save 
some basic unit of time, which establishes the scale of the 
structure.  

Our system performs audio thumbnailing by examining the audio 
signal for recurrent states over time scales from 5 to 60 seconds in 
duration. To reduce redundancies in the representation of 
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Figure 5. High correlation of chroma at a given lag indicates similarity. Therefore, vertical line 
segments represent repetition of musical material. 

 



  

harmonic sources, each time-slice of the chromagram is quantized 
into twelve equal semitone bins. The 12-dimensional feature 
vectors are correlated across time and the correlation values are 
aggregated over windows of time to identify recurrent structures 
at a particular time scale. 

Foote’s similarity matrix is a convenient way to represent the 
feature-correlation space. Windowing, in this case, transforms the 
similarity matrix into a time-lag surface Figure 7 presents a time-
lag surface for Jimmy Buffet’s Margaritaville. A thumbnail for 
the piece of music is selected by locating the maximum element of 
the time-lag matrix subject to two constraints. To prevent the 
selection of quick repetitions and fading repeats, we require that 
the location have a lag greater than one-tenth the length of the 
song and occur less than three-fourths of the way into the song. 
The thumbnail is then defined by the time position of this 
maximum, which corresponds to the time that the first of the pair 
of sections begins, and the length of the window used for 
aggregating the data. 

Our primary quantitative studies of the thumbnailing algorithm 
have been applied to a database of 93 selections of popular music, 
with styles including rock, folk, dance, country-western, and 
others [21]. Each song was hand-scored to identify the refrain or 
chorus segments of the song. The thumbnailing algorithm was 
then used to identify highly similar segments of music. Our 
general observations include the following. With respect to frame-
level recall and precision rates, the thumbnail algorithm performs 
as high as 0.9, for proper choice of window. When it fails, it is 
often the case that the chorus or refrain is repeated, but there is 
some change, either in instrumentation or in the musical structure 
of the repeat. These cases violate our initial assumption of high 
correlation between instances of the chorus and indicate that this 
assumption would need to be relaxed under such circumstances. It 
is also interesting to note that thumbnailing based on the 
chromagram reduction of the audio stream clearly outperforms a 
comparable system based on MFCC’s. We interpret this outcome 
to reflect the fact that MFCC’s provide a low-order representation 
of the wideband spectrum, whereas the chromagram provides a 
low-order representation of the “wideband” harmonic content of 
the signal, by folding harmonically redundant regions of the 
spectrum into each other. 

9.2 Melodic Pattern Analysis 
Another effort in the direction of structural analysis also starts 
with audio but uses conventional autocorrelation-based pitch 
estimation to extract melodic contour. The top of Figure 8 shows 
audio taken directly from a commercial recording of a ballad, 
“Naima,” by John Coltrane and performed by his jazz quartet  
[27]. Below the audio is a piano-roll display of a pitch 
transcription, accomplished using a straightforward 
autocorrelation algorithm for pitch estimation. At the bottom of 
the figure is the analysis, discussed below. 

Taking inspiration from the frame-based melodic contour 
comparison described in Section 7 and the chroma-based 
correlation analysis of Section 9.1, the analysis procedure 
computes the length of similar melodic contours starting at all 
pairs of locations i and j, which index note position. The matrix 
M(i, j) is defined as the duration of similar contours starting at 
locations i and j. (M(i, j) is mostly zero.) For example, there is a 
repeated 4-bar phrase at the beginning of the piece, starting at the 

first and seventh notes. Note that where M(i, j) is non-zero, there 
will tend to be a slightly shorter duration at M(i+1, j+1). For 
example, there are similar phrases starting at notes 2 and 8. These 
“implied” entries are “removed” by setting them to zero. 

After eliminating these implied entries, clusters of similar melodic 
contours are formed. For example, similar lengths at i,j, j,k, and 
k,i imply that three similar contours are located at i, j, and k. In the 
saxophone solo, there is a third repetition of the opening four bars 
near end of the excerpt shown in Figure 8.  

After simplifying the matrix M and forming clusters from the 
remaining melodic fragments, a greedy algorithm attempts to 
“explain” all notes of the transcription in terms of these clusters. 
The shaded bars at the bottom of Figure 8 locate similar 
fragments. It can be seen from this that the melody consists of a 
repeated phrase followed by a shorter repeated phrase and a third 
phrase. This is followed by a return to the opening phrase. These 
phrases return after a piano solo (not shown). 

 
Figure 8. Audio from jazz quartet (top), automatic 

transcription (middle), and analysis (bottom). Similar 
shading indicates similar melodic fragments. 

This work is at an early stage. It has produced an excellent 
analysis of a performance of “Naima.” This example was chosen 
because of the clear, simple lines and structure and the dominance 
of the saxophone in the jazz quartet recording (and also because it 
is a wonderful ballad). Work is underway to adapt these methods 
to more challenging examples. 

9.3 Genre Classification 
Although we have argued that not all searches should be 
conducted within a given genre, there are certainly many cases 
where users can narrow their search by specifying music 
categories. We have investigated the use of machine learning 
techniques to perform music classification. We trained a neural 
network classifier on audio power spectra measured within 
windows of several seconds of duration of different genres. To 
classify a piece, we divide the piece into many window-sized 
chunks and run the classifier on each chunk. The overall class is 
the one reported for the greatest number of chunks. This approach 
correctly classified all 80 pieces in a database of digital audio as 
rock, jazz, country, or classical. Much finer classification is 
desirable, and we hope to incorporate new methods into our 
architecture as they become available. 

10. SUMMARY 
We have presented an architecture for music retrieval. The 
MUSART architecture is motivated by the need to explore and 



  

ultimately rely on multiple mechanisms for representation, 
abstraction and search. We have made progress toward more 
robust and flexible music databases. Our work on Markov models 
provides a new an approach to musical abstraction and retrieval. 
Our frame-based melodic search and phonetic-stream search deal 
specifically with problems of audio-based queries. Additional 
work addresses the problems of audio analysis, the identification 
of musical structure, and music classification. 

In the future, we will refine all of these techniques and integrate 
them into the architecture we have presented. We also need to 
explore many user interface issues. The benefits will include the 
ability to combine multiple search strategies and a more formal 
approach to the evaluation and comparison of music retrieval 
techniques. 
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