
A technique for “ regular expression” style searching in
polyphonic music

Matthew J. Dovey
Visiting Research Fellow

Dept. of Computer Science
Kings College, London

+44 1865 278272

matthew.dovey@las.ox.ac.uk

ABSTRACT
This paper discussed some of the ongoing investigative work on
integrating these two systems conducted as part of the NSF/JISC
funded OMRAS (Online Music Retrieval and Searching) project
into polyphonic searching of music. It describes a simple and
efficient “piano-roll” based algorithm for locating a polyphonic
query within a large polyphonic text. It then describes ways in
which this algorithm can be modified without affecting the
performance to allow more freedom in the how a match is made,
allowing queries which involve something akin to polyphonic
regular expressions to be located in the text.

1. INTRODUCTION
The OMRAS (Online Music Retrieval And Searching) project is
a three year collaborative project between Kings College London
and the Center for Intelligent Information Retrieval, University of
Massachusetts. Its primary aim is to look at various issues
surrounding content based searching of polyphonic music;
current research in content based music searching has primarily
concentrated on monophonic music, that is to say music
consisting of only a single melodic line and ignoring the
complexities find in a more complex music texture for example
as found in an say an orchestral symphony.

Different computer representations of music roughly fall into two
basic categories: those representing the audio of the music such
as a typical wave or aiff fi le (or more topically MP3), and those
representing the symbolic structure of the music as indicated in a
typically written musical score. The audio fi le formats typically
represent an actual performance of a piece, whilst the symbolic
formats represent the composer’ s instructions and guidelines to
the performer. In practice, as described in Byrd and Crawford
(2001) [1], these are two extremes of a spectrum with various
formats fall ing in between which contain elements of both such
as MPEG7 and MIDI. MIDI, for example, was originally
designed for representing music performances but is closer to a
symbolic notation than an audio representation (and is used to
indicate instructions for a performance rather than record a
performance). (Byrd and Crawford actually talk of three distinct
types – the two referred to above plus MIDI representing the
middle ground)

One aspect of OMRAS is to look at conversion of formats
moving along this spectrum. Moving from symbolic notations to
audio is fairly straightforward but this is to be expected since the
role of the symbolic notation is to describe how to enact a
performance of the music. Going from the audio to a symbolic
description of how to perform that audio is far more difficult. A
good comparison would be between a performance of a play, and
the script and stage-directions for performing that play.

A second aspect on OMRAS is to consider the searching of music
by content. As indicated above we are concentrating on
polyphonic music since this is currently neglected in the existing
work. One of the groups in OMRAS has been looking at audio
work, but this paper concentrates on searching symbolic formats
which represent Common Music Notation (CMN) of the Western
tradition of music. Most work on music searching has
concentrated on searching within monophonic, single voice
music, often applying techniques derived from the text-retrieval
world (e.g. Downie (1999) [5]). There are been some approaches
at polyphonic searching (e.g. Uitdenbogerd and Zobel (1998) [9],
Holub, Il iopoulos, Melichar and Mochard (1999) [6] and
Lemström and Perttu (2000) [7]). This paper will outline some of
the algorithms we have developed for this purpose, which we
believe are more versatile for regular expression style searching
than previous work in this area.

A key mission statement of the joint JISC/NSF International
Digital Library Initiative, which is funding the OMRAS work is
that the projects should make existing digital collections more
accessible. We feel that the work of OMRAS makes digital
collections of music more accessible by providing content based
searching possible, in addition to standard metadata searched
such as by composer or title. OMRAS is collaborating with the
JISC funded JAFER project at Oxford University to provide
integration with existing music library catalogues1.

2. THE OMRAS TEST FRAMEWORK
Within the OMRAS project we have written a test framework
using the Java programming language for testing the performance
of various search algorithms and techniques. The framework is
command line driven (and not really designed for novice users).
From the command line we can load a music file into the
system), can load in different algorithms and can load in different
user interface components for displaying and editing queries and
results. The framework allows us to experiment with a number of
different algorithms and a number of different representations of
music. A screenshot of the command line framework in use is
given in figure 1.

The framework has been designed to take advantage of Java’s
object-oriented nature: all the components such as file format
modules, user interface widgets and search algorithms are

1 http://www.lib.ox.ac.uk/jafer and http://www.jafer.org

Figure 1

implemented as independent java objects, so that the entire
framework is modular. These java objects can be manipulated in
the framework using a scripting interface for java such as
BeanShell2, but selected components can be used in other
software. In particular, some engineering undergraduates have
been working with OMRAS to build a GUI interface to the
framework in addition to the current command line interface.
Collaborating with the JISC funded JAFER Project at Oxford
University3 we have reused the components to build a prototype
demonstrating how our algorithms for content based searching
can be integrated into existing bibliographic oriented music
library catalogue systems (Dovey, M (2001) [4]).

At the moment we only have modules for handling a small
number of fi le formats (including MIDI) but are working on
others most notably GUIDO and Kern4. The user interface
components are based on piano roll type displays, but we are
working on incorporating better CMN software for displaying
scores into the framework in the near future. We also have
objects for rendering scores into audio, using the Java Media
Framework.

2 http://www.beanshell.org
3 http://www.jafer.org and http://www.lib.ox.ac.uk/jafer
4 A good reference of various music fi le formats can be found in

Selfridge-Field (1997) [8].

3. BASE ALGORITHM FOR SEARCHING
POLYPHONIC MUSIC
3.1 “ Piano Roll” Model of CMN
Common Music Notation (CMN) is a very complex pictorial
language for describing music with a number of cues as to how it
should be performed. Its pictorial nature proved very difficult for
in the history of the printing press; in many cases the most
efficient means to produce a printed score was to create an
engraving rather than attempt to produce a generic type-set for
music. It is not surprising, therefore, that CMN produces
complex problems for computer based representations. We are
working with a very simple model for representing music, but
one, which can provide a skeleton for re-introducing some of the
complexities of CMN.

The representational model of music we are currently using can
be compared to that of a piano roll, where punched holes indicate
whether a note should be playing. The horizontal position in the
roll indicates the time of the note, whilst the vertical position
indicates the pitch of the note. In our base model we only concern
ourselves with the beginnings of notes (in MIDI terms with the
Note On events). We consider a musical “event” to be a list of
notes which begin to play at the same time (in some ways this is
similar to a chord but is more generalized). Whilst not an ideal
terminology, we will use the term “event” in this manner, for the
purposes of this paper. We only introduce a new musical event
where needed, i.e. because a new note has begun to play. In this
model we can regard a piece of music to be a sequence of
musical events. For example the extract in Figure 2,

Figure 2

could be represented as the following list of musical events:

1. F, C

2. G, D

3. A, E

4. C

5. E

6. E

7. G, C

This leads an obvious representation as a matrix of zeros and
ones indicating whether a note begins to play at that time and
pitch and this is used as an effective way to display queries and
results. For example the more complex extract in Figure 3

Figure 3

can be represented in this piano roll format as in Figure 4

 79 •
 77
 76 •
 74 •
C5 72 •
 71
 69
 67 • • •
 65 •
 64 • • •
 62
C4 60 • •
 59 • •
 57 • •
 55 •

Figure 4

In the OMRAS framework, we represent as an XML structure
such as:

<scor e>
 <event >
 <not e pi t ch=” 72” / >
 <not e pi t ch=” 67” / >
 <not e pi t ch=” 64” / >

 </ event >
 <not e pi t ch=” 60” / >
 <event >
 </ event >
etc…

By representing this structure as an XML Schema document we
can generate the Java object model for this format from the XML
Schema description. Representing CMN in this manner allows us
to add additional music information. For example onset time (in
mill iseconds as for MIDI, or metrical information such as bar
number of beat within the bar) can be added as additional
attributes for the event element; duration of notes, voicing,
instrumentation etc. can be added as additional attributes to the
note element.

3.2 Searching in a “ piano roll” model
In the model, described above the typical search problem can be
expressed as follows: given a query as a sequence of musical
events and a text to perform the query on as a sequence of
musical events, we are trying to find a sequence of musical
events in the text such that each musical event in the query is a
subset of the musical event in the text. This again is best
i l lustrated by an example. Consider the musical extract in figure
5.

Figure 5

As a piano roll, this would be represented as in Figure 6.

 79 •
 77
 76 •
 74 •
C5 72 •

Figure 6

A potential match is il lustrated in Figure 7. As can be seen, there
is some allowance in that intervening musical events are allowed
between matched events in the text. The freedom of this can be
limited to avoid too many spurious matches.

 79 •
 77
 76 •
 74 •
C5 72 •
 71
 69
 67 • • •
 65 •

 64 • • •
 62
C4 60 • •
 59 • •
 57 • •
 55 •

Figure 7

In musical terms, it is also necessary to allow transpositions of
pitch. Figure 8 gives a second match at a different transposition.

 79 •
 77
 76 •
 74 •
C5 72 •
 71
 69
 67 • • •
 65 •
 64 • • •
 62
C4 60 • •
 59 • •
 57 • •
 55 •

Figure 8

There are other degrees of freedom that need to be allowed in
searching, in order to accommodate inaccurate recall of the user,
and also inaccuracies in the data, for example if the musical
information has been created by automatic transcription of either
audio data or via optical recognition of the printed score. A fuller
description of these areas of fuzziness is given in Crawford and
Dovey (1999) [2].

3.3 A “ piano roll” based algorithm
In Dovey (1999) [3], we presented a matrix-based algorithm for
searching the music using the piano roll abstract model described
above. That algorithm has underpinned much of our subsequent
work, however there were some serious performance issues with
the algorithm described there in pathological cases. The
algorithm described here is a more refined version of that
algorithm which performs in effectively linear time for a given
text.

Let the text be represented by the sequence <Tm> and the query
by the sequence <Sn> and consider the case when we can allow k
intervening musical events in the text between the matches for
consecutive events in the query.

In essence, we are performing a pass over the text for each
musical event in the query. In the first case we are looking for
the matches for the first event in the query to occur in the text.
For all subsequent passes we are looking for an occurrence of the
nth term of the query occurring within k musical events of an
occurrence of the n-1th term found in the previous pass.

Mathematically speaking, we construct the matrix M, where

M i j = k+1 iff Sj ⊆ Ti and (M i-1 j-1 ≠ 0 or i = 0)

 M i j-1-1 iff (not Sj ⊆ Ti) and (M i j-1 ≠ 0)

 0 otherwise

A result can be found by traversing the last row of the matrix
constructed for the value k+1, this indicates by it horizontal
position the match in the text for the last event in the query,
reading to the left from this position in the row above for the
value k gives the match for the penultimate event in the query
and so on. We then repeat the process for each pitch
transposition of the query sequence (i.e. where the value pitch of
note in the sequence <Sn> is transposed up or down by the same
amount). We clearly need not consider any transposition such
that the transposed sequence of <Sn> and the sequence <Tm>
have not pitches in common.

In the worse case this algorithm can never take more that m x n
steps to locate each pitch transposition, and the number of
transpositions will never exceed the range of pitches which occur
in <Tm>.

The following worked example would make this clearer. Let use
consider the text in figure 4. Then our text is

T0 = 72, 76, 64

T1 = 60

T2 = 79, 67, 59

etc.

Let us consider a simple query

S0 = 67, 59

S1 = 67, 55

S2 = 59

For this case we allow one intervening gap, i.e. k=1.

We build the first row of the matrix by writing k+1 (i.e. 2) where
S0 contains all the pitches in Ti, otherwise if the value of the
preceding square is non-zero we write that value less one,
otherwise zero. So the first l ine becomes

 T0 T1 T2 T3 T4 T5 T6 T7 T8

S0 0 0 2 1 0 0 0 0 0

For the second line we perform a similar operation for S1,
however we only write k+1 if all the pitches of S1 are in Ti and
the value of the preceding square in the row above is non-zero.
So we now have

 T0 T1 T2 T3 T4 T5 T6 T7 T8

S0 0 0 2 1 0 0 0 0 0

S1 0 0 0 0 2 1 0 0 0

We then repeat for S2 giving

 T0 T1 T2 T3 T4 T5 T6 T7 T8

S0 0 0 2 1 0 0 0 0 0

S1 0 0 0 0 2 1 0 0 0

S2 0 0 0 0 0 0 2 1 0

Note that although S2 occurs within T2 the preceding square
above in the second row is zero, so we do not write k+1 (i.e. 2)
here. The results can now be found in linear time by reading the
matrix backwards looking for the occurrence of the value 2 i.e.

here T2 T4 T6 is our match. We can then repeat for the other 15
possible pitch transpositions of the query.

There is an optimization to avoid unnecessary comparisons of
musical events. For the row i of the matrix there exist a maximal
s such that M i j = 0 for all j < s. Similarly there exists a minimal t
such that M i j = 0 for all j > t. From this we can deduce that M i+1 j
= 0 for all j < s and j > t+k, i.e. we can limit our attention when
constructing the next row of the matrix to the subsequence Ts,
Ts+1 … Tt+k of the text. Of course when t < s there can be no
matches for the query in the text. This optimization can cut
processing time dramatically.

The above method forms the basis for more complex searching
techniques where we have a query which in many ways
resembles a regular expression for a musical phrase.

4. EXTENSIONS OF BASE ALGORITHM
TO HANDLE REGULAR EXPRESSION
TYPE QUERIES
4.1 Comparisons of Music Events
In the algorithm described in section 3, we considered only one
way in which a musical event in the query can match a musical
event in the text, namely that of inclusion. i.e. we say that a
musical event Sj matches Ti if all the notes in Sj are in Ti (i.e Sj ⊆
Ti). Dovey (1999) [3] considers four such comparison operators:

• Sj ⊆ Ti – as described here.

• Sj = Ti – for exact matching

• Sj
�

i � Ø – Sj here represents a disjunctive lists of
notes we wish to match

• Ti ⊆ Sj – for symmetry of the operators

This is generalized in Crawford and Dovey (1999) [2], so that
these become just four of the most typical comparison operators
in a lattice of all possible comparison operators with equals
being the Top of this lattice and always matches the Bottom. In
general we have some relationship R which defines whether two
events “match” or not. Other typical relationships may include:

• Rh : Sj and Ti are harmonically similar.

• Rr : For each note in Sj there is a note in Ti whose pitch
is within a given range of the pitch of the note in Sj

• Rr * : For all but x notes in Sj there is a note in Ti whose
pitch is within a given range of the pitch of the note in
Sj

Our base algorithm described in section 3.3 can easily be
extended to accommodate any such relationship R without any
lose of performance. In this case given our relationship R we
construct the matrix M where

M i j = k+1 iff Sj R Ti and (M i-1 j ≠ 0 or i = 0)

 M i j-1-1 iff (not Sj R Ti) and (M i j-1 ≠ 0)

 0 otherwise

We can further generalize this. Given that we perform a pass
over <Tm> for each Sj in <Sn>, we can use a different
relationship for each pass again without any loss in performance.
i.e. we now have a sequence <Rn> where Rj describes the

comparison operation for locating matches of Sj in <Tm>. In this
case we construct the matrix M where

M i j = k+1 iff Sj Rj Ti and (M i-1 j-1 ≠ 0 or i = 0)

 M i j-1-1 iff (not Sj Rj Ti) and (M i j-1 ≠ 0)

 0 otherwise

This allows use for each event in the query to specify how the
match will be found in the text using a polyphonic comparison
range from exact match to more fuzzy matching comparisons.

4.2 Adding additional dimensions to notes
So far we have considered a note only to have a single value
indicating its pitch. Clearly the algorithm described in section
3.3 and the enhancements described in section 4.1 would apply
to any property. In the case of duration we would clearly be more
interested in a comparison operator of the type Rr or Rr *. For
instrumentation or voicing we would be more interested in strict
equality. If we define each note to be an n-tuple of the properties
we are interested in we can perform a match against all these
properties by defining a suitable composite comparison operator
R without affecting the efficiency of our algorithm.

For example, in the case of three properties pitch, duration and
instrument then R might behave as follows

Sj R Ti if for almost all notes in Sj there is a note in Tj
with a similar pitch, a similar duration and in the same
voice (with some suitable parameters defining the
ranges for similar and almost all).

4.3 Varying gaps between event matches
In section 4.1, we showed that we could have a different
comparison operator for each term in the query. However, we
stil l only have a single value of k, determining the allowed “gap”
between matched events in the text, for the entire query. This
also need not be the case. We can instead consider the sequence
<kn> where kj indicates the number of allowed gaps that can
occur in the text after a match of Sj before a match of Sj+1 occurs.
kn clearly has no meaning but must be non-zero for the algorithm
to work properly. Modifying the generic form of the algorithm
from section 3.3 gives

M i j = kj+1 iff Sj ⊆ Ti and (M i-1 j-1 ≠ 0 or i = 0)

 M i j-1-1 iff (not Sj ⊆ Ti) and (M i j-1 ≠ 0)

 0 otherwise

When reading the matrix for results we now look for the value
kj+1 to indicate matches where j is the current row of the matrix.

Modifying the form of the algorithm given at the end of section
4.1 gives

M i j = kj+1 iff Sj Rj Ti and (M i-1 j-1 ≠ 0 or i = 0)

 M i j-1-1 iff (not Sj Rj Ti) and (M i j-1 ≠ 0)

 0 otherwise

So far we have considered the “gap” to be measured in terms of
the number of events that can occur. Clearly in a piece of music
the time between two consecutive events can vary. We can
incorporate this into the algorithm by allowing the “gap” to be
specified in terms of the time between matched events rather
than the number of intervening events. We define an monotonic
increasing function O on <Tm> where

O(Ti) is the time at which Ti occurs.

The units could be mill iseconds as in MIDI or could be based on
a musical metric such as number of quarter notes.

In this case we set k to be the maximum allowed duration
between matched events in the text. The base algorithm from
section 3.3 now becomes

M i j = k iff Sj ⊆ Ti and ((M i-1 j > 0 and M i-1 j < k) or i = 0))

 M i j-1- (O(Ti) – O(Ti-1))

 iff (not Sj ⊆ Ti) and (M i j-1- (O(Ti) – O(Ti-1)) > 0)

 0 otherwise

Reading the results matrix now involves looking for the
occurrences of the value of k. The modifications described in
sections 4.1 and 4.2 can be applied to this form.

4.4 Omission of events in the query
The final modification to the base algorithm is to allow a match
to be found even if some of the events in the query are not
present in the matched subsequence of the text. Essentially when
parsing the matrix we consider non-zero values in not only the
line immediately above but also previous lines. To avoid
excessive parsing of the matrix which would degrade the
performance of the algorithm we can build a matrix of ordered
pairs. For notational purposes, given an ordered pair p, we will
denote the first value as p[0] and the second as p[1].

Working with the base algorithm from section 3.3 and allowing a
sequences of up to l events from the query to be omitted from the
match we build the matrix

M i j = (k+1, l) iff Sj ⊆ Ti and (M i-1 j-1 ≠ (0, 0) or i = 0)

 (M i j-1[0] - 1, M i j-1[1]) iff (not Sj ⊆ Ti) and (M i j-1[0]≠
0)

 (M i-1 j[0], M i-1 j[1] - 1) iff (not Sj ⊆ Ti) and (M i-1 j[1]≠
0)

 (0, 0) otherwise

Parsing the matrix for matches is a matter of looking for the
value k+1 as the first member of any ordered pairs. Limiting the
number of sequences omitted can be performed when parsing the
matrix for results. Again the modifications described in sections
4.1, 4.2 and 4.3 can also be applied in conjunction with this
modification.

4.5 An XML query structure
Combined these modifications allow us to search a musical text
given a polyphonic query and a number of degrees of freedom.
Considering just note pitches and durations, we can use the
following XML structures such as the following to write a query
allowing some of these degrees of freedom

<quer y omi ssi ons=” 0” >
 <event
 f ol l owi ng- gap=2
 f ol l owi ng- gap. uni t s=” event s ”
 cont ent - omi ssi ons . max=” 0”
 cont ent - omi ssi ons . mi n=” 0” >
 <not e
 pi t ch. mi n=” 60”
 pi t ch. max=” 65”
 dur at i on. mi n=” 1”
 dur at i on. max=” 1” / >
 </ event >
etc…

Here the omissions attribute of the query element tells us that
we do not allow any events of the query to be omitted in the
match. The following-gap attribute of the event element tells us
the “gap” that can occur after this event in the text before the
next event must occur; the following-gap.units whether this is
measure in events or durations. The content-omissions.min and
content-omissions.max tell us how many notes can be omitted
from the match in order for it sti l l to be classified as a match.
The pitch.min, pitch.max, duration.min and duration.max
attributes of the note element define ranges for a note in the text
to match.

Whilst the algorithms described here can efficiently cope with
this sort of query, there are other queries which can be handled
which cannot be articulated in this XML structure.

5. FURTHER WORK
At present the algorithms described here merely locate matches
given a number of degrees of freedom. There is no attempt to
rank these matches. The calculation of a rank could be made as
the matrix is parsed for matches and some pre-parsing could also
be performed as the matrix is built. Crawford and Dovey (1999)
[2] outline a number of similarity measures which could be used
in creating a ranking algorithm such as completeness,
compactness, musical salience, harmonic progression, rhythmic
similarity, metrical congruity. This ranking process is essential
before we can fully evaluate the effectiveness of this type of
approach to music information retrieval.

Given the amount of freedom these algorithms allow in the
specification of a query there is a need for query languages and
GUI query interfaces to allow users to easily express such
queries. Some work has already been undertaken in this area.
The XML structure above is very much a working structure and
not intended for general use.

6. ACKNOWLEDGEMENTS
I would like to thank Tim Crawford of Kings College London
and Don Byrd of the University of Massachusetts at Amherst for
their assistance in working on this topic and their patience in the
amount of time it has taken to put together a description of these
algorithms. I would also like to acknowledge the NSF/JISC IDLI
and JISC DNER programmes which are funding the OMRAS and
JAFER projects upon which this work is based.

7. REFERENCES
[1] Byrd, D. and Crawford, T. (2001) Problems of Music

Information Retrieval in the Real World. To appear in
Information Processing and Management.

[2] Crawford, T and Dovey, M. "Heuristic Models of
Relevance Ranking in Musical Searching",
Proceedings of the Fourth Diderot Mathematical
Forum., Vienna, 1999.

[3] Dovey, M, ‘An algorithm for locating polyphonic
phrases within a polyphonic piece’ , Proceedings of the
AISB’99 Symposium on Musical Creativity,
Edinburgh, April, 1999. Pages 48-53.

[4] Dovey, M, ‘Adding content-based searching to a
traditional music library catalogue server’ , Proceedings
of the Joint Conference on Digital Libraries,
Roanoake, VA, 2001.

[5] Downie, J. S., ‘Music retrieval as text retrieval: simple
yet effective’ , Proceedings of the 22nd International
Conference on Research and Development of
Information Retrieval, Berkeley, CA, 1999. Pages
297-298.

[6] Holub, J., Iliopoulos, C. S., Melichar, B. and
Mouchard, L. ‘Distributed String matching using finite
automata’ , Proceedings of the 10th Australiasian
Workshop on Combinatorial Algorithms’ , Perth, 1999.
Pages 114-128.

[7] Lemström, K. and Perttu, S., ‘SEMEX – an efficient
music retrieval protoype’ , First International
Symposium on Music Information Retrieval,
University of Massachusetts, Plymouth 2000.

[8] Selfridge-Field, E. (editor), Beyond MIDI, CCARH
1997. ISBN 0262193949.

[9] Uidebogerg, A. L. and Zobel, J. ‘Manipulation of music
for melody matching’ , ACM Multimedia 98
Proceedings, Bristol 1998. Pages 235-240.

