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ABSTRACT 
This paper discussed some of the ongoing investigative work on 
integrating these two systems conducted as part of the NSF/JISC 
funded OMRAS (Online Music Retrieval and Searching) project 
into polyphonic searching of music. It describes a simple and 
efficient “piano-roll”  based algorithm for locating a polyphonic 
query within a large polyphonic text. It then describes ways in 
which this algorithm can be modified without affecting the 
performance to allow more freedom in the how a match is made, 
allowing queries which involve something akin to polyphonic 
regular expressions to be located in the text. 

1. INTRODUCTION 
The OMRAS (Online Music Retrieval And Searching) project is 
a three year collaborative project between Kings College London 
and the Center for Intelligent Information Retrieval, University of 
Massachusetts. Its primary aim is to look at various issues 
surrounding content based searching of polyphonic music; 
current research in content based music searching has primarily 
concentrated on monophonic music, that is to say music 
consisting of only a single melodic line and ignoring the 
complexities find in a more complex music texture for example 
as found in an say an orchestral symphony. 

Different computer representations of music roughly fall into two 
basic categories: those representing the audio of the music such 
as a typical wave or aiff fi le (or more topically MP3), and those 
representing the symbolic structure of the music as indicated in a 
typically written musical score. The audio fi le formats typically 
represent an actual performance of a piece, whilst the symbolic 
formats represent the composer’ s instructions and guidelines to 
the performer. In practice, as described in Byrd and Crawford 
(2001) [1], these are two extremes of a spectrum with various 
formats fall ing in between which contain elements of both such 
as MPEG7 and MIDI. MIDI, for example, was originally 
designed for representing music performances but is closer to a 
symbolic notation than an audio representation (and is used to 
indicate instructions for a performance rather than record a 
performance). (Byrd and Crawford actually talk of three distinct 
types – the two referred to above plus MIDI representing the 
middle ground) 

One aspect of OMRAS is to look at conversion of formats 
moving along this spectrum. Moving from symbolic notations to 
audio is fairly straightforward but this is to be expected since the 
role of the symbolic notation is to describe how to enact a 
performance of the music. Going from the audio to a symbolic 
description of how to perform that audio is far more difficult. A 
good comparison would be between a performance of a play, and 
the script and stage-directions for performing that play. 

A second aspect on OMRAS is to consider the searching of music 
by content. As indicated above we are concentrating on 
polyphonic music since this is currently neglected in the existing 
work. One of the groups in OMRAS has been looking at audio 
work, but this paper concentrates on searching symbolic formats 
which represent Common Music Notation (CMN) of the Western 
tradition of music. Most work on music searching has 
concentrated on searching within monophonic, single voice 
music, often applying techniques derived from the text-retrieval 
world (e.g. Downie (1999) [5]). There are been some approaches 
at polyphonic searching (e.g. Uitdenbogerd and Zobel (1998) [9], 
Holub, Il iopoulos, Melichar and Mochard (1999) [6] and 
Lemström and Perttu (2000) [7]). This paper will outline some of 
the algorithms we have developed for this purpose, which we 
believe are more versatile for regular expression style searching 
than previous work in this area. 

A key mission statement of the joint JISC/NSF International 
Digital Library Initiative, which is funding the OMRAS work is 
that the projects should make existing digital collections more 
accessible. We feel that the work of OMRAS makes digital 
collections of music more accessible by providing content based 
searching possible, in addition to standard metadata searched 
such as by composer or title. OMRAS is collaborating with the 
JISC funded JAFER project at Oxford University to provide 
integration with existing music library catalogues1. 

2. THE OMRAS TEST FRAMEWORK 
Within the OMRAS project we have written a test framework 
using the Java programming language for testing the performance 
of various search algorithms and techniques. The framework is 
command line driven (and not really designed for novice users). 
From the command line we can load a music file into the 
system), can load in different algorithms and can load in different 
user interface components for displaying and editing queries and 
results. The framework allows us to experiment with a number of 
different algorithms and a number of different representations of 
music. A screenshot of the command line framework in use is 
given in figure 1. 

The framework has been designed to take advantage of Java’s 
object-oriented nature: all the components such as file format 
modules, user interface widgets and search algorithms are 

                                                             
1 http://www.lib.ox.ac.uk/jafer and http://www.jafer.org 



 

Figure 1 

 
implemented as independent java objects, so that the entire 
framework is modular. These java objects can be manipulated in 
the framework using a scripting interface for java such as 
BeanShell2, but selected components can be used in other 
software. In particular, some engineering undergraduates have 
been working with OMRAS to build a GUI interface to the 
framework in addition to the current command line interface. 
Collaborating with the JISC funded JAFER Project at Oxford 
University3 we have reused the components to build a prototype 
demonstrating how our algorithms for content based searching 
can be integrated into existing bibliographic oriented music 
library catalogue systems (Dovey, M (2001) [4]). 

At the moment we only have modules for handling a small 
number of fi le formats (including MIDI) but are working on 
others most notably GUIDO and Kern4. The user interface 
components are based on piano roll type displays, but we are 
working on incorporating better CMN software for displaying 
scores into the framework in the near future. We also have 
objects for rendering scores into audio, using the Java Media 
Framework. 

                                                             
2 http://www.beanshell.org 
3 http://www.jafer.org and http://www.lib.ox.ac.uk/jafer 
4 A good reference of various music fi le formats can be found in 

Selfridge-Field (1997) [8]. 

3. BASE ALGORITHM FOR SEARCHING 
POLYPHONIC MUSIC 
3.1 “ Piano Roll”  Model of CMN 
Common Music Notation (CMN) is a very complex pictorial 
language for describing music with a number of cues as to how it 
should be performed. Its pictorial nature proved very difficult for 
in the history of the printing press; in many cases the most 
efficient means to produce a printed score was to create an 
engraving rather than attempt to produce a generic type-set for 
music. It is not surprising, therefore, that CMN produces 
complex problems for computer based representations. We are 
working with a very simple model for representing music, but 
one, which can provide a skeleton for re-introducing some of the 
complexities of CMN.  

The representational model of music we are currently using can 
be compared to that of a piano roll, where punched holes indicate 
whether a note should be playing. The horizontal position in the 
roll indicates the time of the note, whilst the vertical position 
indicates the pitch of the note. In our base model we only concern 
ourselves with the beginnings of notes (in MIDI terms with the 
Note On events). We consider a musical “event”  to be a list of 
notes which begin to play at the same time (in some ways this is 
similar to a chord but is more generalized). Whilst not an ideal 
terminology, we will use the term “event”  in this manner, for the 
purposes of this paper. We only introduce a new musical event 
where needed, i.e. because a new note has begun to play. In this 
model we can regard a piece of music to be a sequence of 
musical events. For example the extract in Figure 2, 



 

Figure 2 

 

could be represented as the following list of musical events: 

1. F, C 

2. G, D 

3. A, E 

4. C 

5. E 

6. E 

7. G, C 

This leads an obvious representation as a matrix of zeros and 
ones indicating whether a note begins to play at that time and 
pitch and this is used as an effective way to display queries and 
results. For example the more complex extract in Figure 3 

 

Figure 3 

 

can be represented in this piano roll format as in Figure 4 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  
 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 4 

 

In the OMRAS framework, we represent as an XML structure 
such as: 

<scor e> 
  <event > 
    <not e pi t ch=” 72” / > 
    <not e pi t ch=” 67” / > 
    <not e pi t ch=” 64” / > 

  </ event > 
    <not e pi t ch=” 60” / > 
  <event > 
  </ event > 
etc… 
 
By representing this structure as an XML Schema document we 
can generate the Java object model for this format from the XML 
Schema description. Representing CMN in this manner allows us 
to add additional music information. For example onset time (in 
mill iseconds as for MIDI, or metrical information such as bar 
number of beat within the bar) can be added as additional 
attributes for the event element; duration of notes, voicing, 
instrumentation etc. can be added as additional attributes to the 
note element. 

3.2 Searching in a “ piano roll”  model 
In the model, described above the typical search problem can be 
expressed as follows: given a query as a sequence of musical 
events and a text to perform the query on as a sequence of 
musical events, we are trying to find a sequence of musical 
events in the text such that each musical event in the query is a 
subset of the musical event in the text. This again is best 
i l lustrated by an example. Consider the musical extract in figure 
5. 

 

 

Figure 5 

 

 

As a piano roll, this would be represented as in Figure 6. 

 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         

Figure 6 

 

 

A potential match is il lustrated in Figure 7. As can be seen, there 
is some allowance in that intervening musical events are allowed 
between matched events in the text. The freedom of this can be 
limited to avoid too many spurious matches. 

 

  

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  



 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 7 

 

In musical terms, it is also necessary to allow transpositions of 
pitch. Figure 8 gives a second match at a different transposition. 

 

 79   •       
 77          
 76     •     
 74         • 
C5 72 •         
 71          
 69          
 67 •  •  •     
 65        •  
 64 •   •     • 
 62          
C4 60  •       • 
 59   •    •   
 57    •  •    
 55     •     

Figure 8 

 

There are other degrees of freedom that need to be allowed in 
searching, in order to accommodate inaccurate recall of the user, 
and also inaccuracies in the data, for example if the musical 
information has been created by automatic transcription of either 
audio data or via optical recognition of the printed score. A fuller 
description of these areas of fuzziness is given in Crawford and 
Dovey (1999) [2]. 

3.3 A “ piano roll”  based algorithm 
In Dovey (1999) [3], we presented a matrix-based algorithm for 
searching the music using the piano roll abstract model described 
above. That algorithm has underpinned much of our subsequent 
work, however there were some serious performance issues with 
the algorithm described there in pathological cases. The 
algorithm described here is a more refined version of that 
algorithm which performs in effectively linear time for a given 
text. 

Let the text be represented by the sequence <Tm> and the query 
by the sequence <Sn> and consider the case when we can allow k 
intervening musical events in the text between the matches for 
consecutive events in the query. 

In essence, we are performing a pass over the text for each 
musical event in the query. In the first case we are looking for 
the matches for the first event in the query to occur in the text. 
For all subsequent passes we are looking for an occurrence of the 
nth  term of the query occurring within k musical events of an 
occurrence of the n-1th term found in the previous pass. 

Mathematically speaking, we construct the matrix M, where 

M i j =  k+1 iff Sj ⊆ Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj ⊆ Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

A result can be found by traversing the last row of the matrix 
constructed for the value k+1, this indicates by it horizontal 
position the match in the text for the last event in the query, 
reading to the left from this position in the row above for the 
value k gives the match for the penultimate event in the query 
and so on. We then repeat the process for each pitch 
transposition of the query sequence (i.e. where the value pitch of 
note in the sequence <Sn> is transposed up or down by the same 
amount). We clearly need not consider any transposition such 
that the transposed sequence of <Sn> and the sequence <Tm> 
have not pitches in common. 

In the worse case this algorithm can never take more that m x n 
steps to locate each pitch transposition, and the number of 
transpositions will never exceed the range of pitches which occur 
in <Tm>. 

The following worked example would make this clearer. Let use 
consider the text in figure 4. Then our text is 

T0 = 72, 76, 64 

T1 = 60 

T2 = 79, 67, 59 

etc. 

Let us consider a simple query 

S0 = 67, 59 

S1 = 67, 55 

S2 = 59 

For this case we allow one intervening gap, i.e. k=1. 

We build the first row of the matrix by writing k+1 (i.e. 2) where 
S0 contains all the pitches in Ti, otherwise if the value of the 
preceding square is non-zero we write that value less one, 
otherwise zero. So the first l ine becomes 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

 

For the second line we perform a similar operation for S1, 
however we only write k+1 if all the pitches of S1 are in Ti and 
the value of the preceding square in the row above is non-zero. 
So we now have 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

S1 0 0 0 0 2 1 0 0 0 

 

 

We then repeat for S2 giving 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 

S0 0 0 2 1 0 0 0 0 0 

S1 0 0 0 0 2 1 0 0 0 

S2 0 0 0 0 0 0 2 1 0 

 

Note that although S2 occurs within T2 the preceding square 
above in the second row is zero, so we do not write k+1 (i.e. 2) 
here. The results can now be found in linear time by reading the 
matrix backwards looking for the occurrence of the value 2 i.e. 



here T2 T4 T6 is our match. We can then repeat for the other 15 
possible pitch transpositions of the query.  

There is an optimization to avoid unnecessary comparisons of 
musical events. For the row i of the matrix there exist a maximal 
s such that M i j = 0 for all j < s. Similarly there exists a minimal t 
such that M i j = 0 for all j > t. From this we can deduce that M i+1 j 
= 0 for all j < s and j > t+k, i.e. we can limit our attention when 
constructing the next row of the matrix to the subsequence Ts, 
Ts+1 … Tt+k of the text. Of course when t < s there can be no 
matches for the query in the text. This optimization can cut 
processing time dramatically. 

The above method forms the basis for more complex searching 
techniques where we have a query which in many ways 
resembles a regular expression for a musical phrase.  

4. EXTENSIONS OF BASE ALGORITHM 
TO HANDLE REGULAR EXPRESSION 
TYPE QUERIES 
4.1 Comparisons of Music Events 
In the algorithm described in section 3, we considered only one 
way in which a musical event in the query can match a musical 
event in the text, namely that of inclusion. i.e. we say that a 
musical event Sj matches Ti if all the notes in Sj are in Ti (i.e Sj ⊆ 
Ti  ). Dovey (1999) [3] considers four such comparison operators: 

• Sj ⊆ Ti – as described here.   

• Sj = Ti – for exact matching 

• Sj 
�

i  � Ø –  Sj here represents a disjunctive lists of 
notes we wish to match 

• Ti ⊆  Sj – for symmetry of the operators 

 

This is generalized in Crawford and Dovey (1999) [2], so that 
these become just four of the most typical comparison operators 
in a lattice of all possible comparison operators with equals 
being the Top of this lattice and always matches the Bottom. In 
general we have some relationship R which defines whether two 
events “match” or not. Other typical relationships may include: 

• Rh : Sj and Ti are harmonically similar. 

• Rr : For each note in Sj there is a note in Ti whose pitch 
is within a given range of the pitch of the note in Sj 

• Rr * : For all but x notes in Sj there is a note in Ti whose 
pitch is within a given range of the pitch of the note in 
Sj 

 

Our base algorithm described in section 3.3 can easily be 
extended to accommodate any such relationship R without any 
lose of performance. In this case given our relationship R we 
construct the matrix M where 

M i j =  k+1 iff Sj R Ti  and (M i-1 j ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj R Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

We can further generalize this. Given that we perform a pass 
over <Tm> for each Sj in <Sn>, we can use a different 
relationship for each pass again without any loss in performance. 
i.e. we now have a sequence <Rn> where Rj describes the 

comparison operation for locating matches of Sj in <Tm>. In this 
case we construct the matrix M where 

M i j =  k+1 iff Sj Rj Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj Rj Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

 

This allows use for each event in the query to specify how the 
match will be found in the text using a polyphonic comparison 
range from exact match to more fuzzy matching comparisons. 

4.2 Adding additional dimensions to notes 
So far we have considered a note only to have a single value 
indicating its pitch. Clearly the algorithm described in section 
3.3 and the enhancements described in section 4.1 would apply 
to any property. In the case of duration we would clearly be more 
interested in a comparison operator of the type Rr or Rr *. For 
instrumentation or voicing we would be more interested in strict 
equality. If we define each note to be an n-tuple of the properties 
we are interested in we can perform a match against all these 
properties by defining a suitable composite comparison operator 
R without affecting the efficiency of our algorithm. 

For example, in the case of three properties pitch, duration and 
instrument then R might behave as follows 

Sj R Ti if for almost all notes in Sj there is a note in Tj 
with a similar pitch, a similar duration and in the same 
voice (with some suitable parameters defining the 
ranges for similar and almost all). 

4.3 Varying gaps between event matches 
In section 4.1, we showed that we could have a different 
comparison operator for each term in the query. However, we 
stil l only have a single value of k, determining the allowed “gap”  
between matched events in the text, for the entire query. This 
also need not be the case. We can instead consider the sequence 
<kn> where kj indicates the number of allowed gaps that can 
occur in the text after a match of Sj before a match of Sj+1 occurs. 
kn clearly has no meaning but must be non-zero for the algorithm 
to work properly. Modifying the generic form of the algorithm 
from section 3.3 gives 

M i j =  kj+1 iff Sj ⊆ Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj ⊆ Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

When reading the matrix for results we now look for the value 
kj+1 to indicate matches where j is the current row of the matrix. 

Modifying the form of the algorithm given at the end of section 
4.1 gives 

M i j =  kj+1 iff Sj Rj Ti  and (M i-1 j-1 ≠ 0 or i = 0) 

 M i j-1-1 iff (not Sj Rj Ti ) and (M i j-1 ≠ 0) 

 0 otherwise 

So far we have considered the “gap”  to be measured in terms of 
the number of events that can occur. Clearly in a piece of music 
the time between two consecutive events can vary. We can 
incorporate this into the algorithm by allowing the “gap” to be 
specified in terms of the time between matched events rather 
than the number of intervening events. We define an monotonic 
increasing function O on <Tm> where 

O(Ti) is the time at which Ti occurs.  



The units could be mill iseconds as in MIDI or could be based on 
a musical metric such as number of quarter notes. 

In this case we set k to be the maximum allowed duration 
between matched events in the text. The base algorithm from 
section 3.3 now becomes 

M i j =  k iff Sj ⊆ Ti  and ((M i-1 j > 0 and M i-1 j < k) or i = 0)) 

 M i j-1- (O(Ti) – O(Ti-1)) 

    iff (not Sj ⊆ Ti ) and (M i j-1- (O(Ti) – O(Ti-1)) > 0) 

 0 otherwise 

Reading the results matrix now involves looking for the 
occurrences of the value of k. The modifications described in 
sections 4.1 and 4.2 can be applied to this form. 

4.4 Omission of events in the query 
The final modification to the base algorithm is to allow a match 
to be found even if some of the events in the query are not 
present in the matched subsequence of the text. Essentially when 
parsing the matrix we consider non-zero values in not only the 
line immediately above but also previous lines. To avoid 
excessive parsing of the matrix which would degrade the 
performance of the algorithm we can build a matrix of ordered 
pairs. For notational purposes, given an ordered pair p, we will 
denote the first value as p[0] and the second as p[1]. 

Working with the base algorithm from section 3.3 and allowing a 
sequences of up to l events from the query to be omitted from the 
match we build the matrix 

M i j =  (k+1, l) iff Sj ⊆ Ti  and (M i-1 j-1 ≠ (0, 0) or i = 0) 

 (M i j-1[0] - 1, M i j-1[1])  iff (not Sj ⊆ Ti ) and (M i j-1[0]≠ 
0) 

 (M i-1 j[0], M i-1 j[1] - 1)  iff (not Sj ⊆ Ti ) and (M i-1 j[1]≠ 
0) 

 (0, 0) otherwise 

Parsing the matrix for matches is a matter of looking for the 
value k+1 as the first member of any ordered pairs. Limiting the 
number of sequences omitted can be performed when parsing the 
matrix for results. Again the modifications described in sections 
4.1, 4.2 and 4.3 can also be applied in conjunction with this 
modification. 

4.5 An XML query structure 
Combined these modifications allow us to search a musical text 
given a polyphonic query and a number of degrees of freedom. 
Considering just note pitches and durations, we can use the 
following XML structures such as the following to write a query 
allowing some of these degrees of freedom 

<quer y omi ssi ons=” 0” > 
  <event  
    f ol l owi ng- gap=2 
    f ol l owi ng- gap. uni t s=” event s ”  
    cont ent - omi ssi ons . max=” 0”  
    cont ent - omi ssi ons . mi n=” 0” > 
     <not e 
       pi t ch. mi n=” 60”  
       pi t ch. max=” 65”  
       dur at i on. mi n=” 1”  
       dur at i on. max=” 1” / > 
  </ event > 
etc… 
 

Here the omissions attribute of the query element tells us that 
we do not allow any events of the query to be omitted in the 
match. The following-gap attribute of the event element tells us 
the “gap” that can occur after this event in the text before the 
next event must occur; the following-gap.units whether this is 
measure in events or durations. The content-omissions.min and 
content-omissions.max tell us how many notes can be omitted 
from the match in order for it sti l l to be classified as a match. 
The pitch.min, pitch.max, duration.min and duration.max 
attributes of the note element define ranges for a note in the text 
to match.  

Whilst the algorithms described here can efficiently cope with 
this sort of query, there are other queries which can be handled 
which cannot be articulated in this XML structure. 

5. FURTHER WORK 
At present the algorithms described here merely locate matches 
given a number of degrees of freedom. There is no attempt to 
rank these matches. The calculation of a rank could be made as 
the matrix is parsed for matches and some pre-parsing could also 
be performed as the matrix is built. Crawford and Dovey (1999) 
[2] outline a number of similarity measures which could be used 
in creating a ranking algorithm such as completeness, 
compactness, musical salience, harmonic progression, rhythmic 
similarity, metrical congruity. This ranking process is essential 
before we can fully evaluate the effectiveness of this type of 
approach to music information retrieval. 

Given the amount of freedom these algorithms allow in the 
specification of a query there is a need for query languages and 
GUI query interfaces to allow users to easily express such 
queries. Some work has already been undertaken in this area. 
The XML structure above is very much a working structure and 
not intended for general use. 
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