Melody Spotting Using Hidden Markov Models

Adriane Swalm Durey
Center for Signal and Image Processing
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-8361

gte401k@ece.gatech.edu

ABSTRACT

As we acquire more digitized copies of musical record-
ings, it becomes increasingly necessary to have the
assistance of a computer in sorting through the in-
formation that it stores. In this paper, we propose
a new system for melody-based retrieval of a song
from a musical database which adapts wordspot-
ting techniques from automatic speech recognition
to create a melody spotting system in the musical
domain. This system is tested using a variety of fea-
ture sets derived from raw audio data. It results
in a successful proof of the melody spotting con-
cept which offers great potential for development
into a musical database capable of being queried by
melody.

1. INTRODUCTION

As the digital age progresses, we have at our disposal an in-
creasing amount of digitized information ranging from plain
text to audio, video, and multimedia content. In order for a
person to sift through this vast quantity of information, it is
necessary to enlist the aid of the computer which stores it.
For text, rapid matching methods have become the famil-
iar search engines of the World Wide Web. Work on video
(image) recognition and audio (speech) recognition has a
long history. Only recently have we recognized the need to
develop recognition systems for other types of audio, partic-
ularly music.

The problem we will address in this paper is that of musi-
cal database query by melody. In such a system, the user
provides the query melody (by humming, whistling, key-
board, etc.) and the musical database system returns the
most likely matches to it. Thus, we are interested in rec-
ognizing the melodic content of a piece of music, that part
which is most recognizable to the casual listener, and, there-
fore, most easy for him to recall.

Mark A. Clements
Center for Signal and Image Processing
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332
404-894-4584

clements@ece.gatech.edu

There is a growing body of research addressing the problem
of music information retrieval (MIR) on the melody level. In
the following section, we will address some of the methods
used to approach this process in previous research. Then
in Section 1.2, we will explore one of the new directions
in which this research directs us, adapting the use of hid-
den Markov models from speech recognition to their use for
melody recognition. In Section 2 we will look at the details
of the system we propose. Section 3 will discuss the results
of preliminary testing of this system. Future directions for
research and conclusions will be presented in the final sec-
tion.

1.1 Melody-Level MIR Reseach

The seminal works in melodic MIR, those by Ghias, et al. [§]
and McNab, et al. [11], form the basis for much of the
melody-level MIR research which followed them. Following
their format, which is generalized in Figure 1, a database of
musical recordings is developed by hand in MIDI (or some
similar discrete format) and stored in monophonic tracks.
These tracks are then further abstracted into melodic and/or
rhythmic contours whose content varies from general (up,
down, or the same) to exact (plus or minus a specific num-
ber of semi-tones.) When the user queries the system, he
sings or hums the desired melody. The system then extracts
the pitches (and rhythm) in that query and encodes them
as the database has been encoded. The database contents
and the query are then compared, generally using some vari-
ation of dynamic programming (DP), especially that devel-
oped by Mongeau and Sankoff [12]. This process produces
a ranked list of the songs in the database which are most
likely to contain the melody. While this does not apply to
all melodic MIR systems which have been proposed, many
of them adopt at least some portion of this framework.

There are a number of problems identifiable in this general
structure. The first of these is the use of highly structured
audio formats, such as MIDI, to represent the database con-
tents. An accurate automatic process for generating MIDI
from polyphonic raw audio has yet to be developed; this
means that MIDI encoding must often be done by hand
and ignores a vast wealth of data already digitized in less
structured formats (like MPEG Layer 3). This format also
requires that the contents of the database be firmly (even if
erroneously) defined before processing begins. Likewise, if
the database utilizes only melodies in processing, they too
must be pre-extracted by an expert for greatest accuracy

Database of User's
Musical Sung
Recordings Query
Tran:ca;(;ti on DSPTools
eg., FFT
of Melody 9
Database of MIDI
MIDI Query
Melodies Melody

Contour
Generator

Contour
Generator

Pitch and/or
Rhythm
Contours

Pitch and/or
Rhythm
Contours

Pattern
Recognition
e.g., Dynamic
Programming
Ranked List
of Matching
Songs

Figure 1: Generalized architecture used for melody-
based music information retrieval

(though reasonably good melody-from-MIDI extractors are
being developed [17]) and a hard decision made about their
content. Polyphonic audio is often not addressed in melody
level MIR systems, though sometimes it is represented as
several monophonic melodies each representing one voice of
the larger polyphonic piece. The encoding of melodies in
pitch and rhythm contours is a good way to resolve errors
in the database and made by the user. However, we must
be careful not to discard too much query information when
we can have a reasonable level of confidence in it.

Though other methods applied to melodic MIR have in-
cluded techniques such as distance measure/template match-
ing [7], n-gram matching [16], tree indexing [3], and text
retrieval [4] [6], the primary methodology of most melodic
MIR systems is as described above. Such exclusive use of
dynamic programming for melodic MIR, ignores other com-
parison techniques which have been successfully applied to
other forms of audio signal understanding, particularly those
tools used for speech recognition. In the next section, we
will explore the new research directions suggested by the
problems described above and a particular tool used for au-
tomatic speech recognition, the hidden Markov model as it
is applied to keyword spotting.

1.2 Hidden Mark ov Model Reseach

The analysis of previous work on melody-based MIR sug-
gests a number of potential next steps. The goal of the av-
erage user of a MIR system such as we propose is to locate
a recording of a piece of music which is much more easily
found in an unstructured format (for example, on a CD or
in the ubiquitous mp3 format.) Thus, we would like our sys-

tem to operate on raw audio formats, such as wav, aiff, and
mp3. To avoid the additional problem of making a hard de-
cision about content when generating a structured encoding
from raw audio, we would prefer a system that maintains
a number of guesses about the content of a recording and
qualifies each guess with a likelihood of correctness. This
is analogous to the treatment of data in speech recognition
databases.

Breaking away from discretized data formats also suggests
breaking away to explore new forms of data comparators.
Many of the ideas experimented with thus far in MIR re-
search share a common background with speech recognition
processing. Tools such as the fast Fourier transform [13] and
dynamic programming (DP) [11] have been used for melodic
matching with varying levels of success. Other tools such as
mel-frequency cepstral coefficients (MFCCs) [7] and hidden
Markov models (HMMSs) [21] have been used for high-level
content matching, classifying audio by type, but are less
frequently applied to melody recognition.

There are few references in the literature to the use of HMMs
for analysis of musical audio. Logan and Chu [10] used
HMMs to analyze the structure of rock and pop songs which
had been represented as MFCCs. This structural analysis
was then used as a basis for extracting “key phrases” (those
of interest structurally, e.g., a chorus) from the audio. This
system could be used to supply musical thumbnails of larger
recordings to a database access system, but the authors did
not specifically address incorporation of their software into
such a database. Batlle and Cano [1] likewise used musical
audio converted to MFCCs and energy to train competi-
tive HMMs to perform a blind (unsupervised) segmentation
task.

HMDMs have not yet been applied specifically to melodic con-
tent recognition. The application of HMMs closest to MIR
appears in Raphael [15] where HMMs are used as a precursor
to automatic accompaniment by performing segmentation of
raw audio when the score is known. HMMs are constructed
based on the pitches and duration noted in a score using fea-
tures based on amplitude, activity, and frequency content of
the signal. After training, these HMMs are used to align
audio data with the score that represents it. The problem
which we will address allows data to be less well defined in
advance and applies a less constrained approach to analysis
of the contents of a recording.

HMDMs and related techniques have also been applied to the
pitch extraction task. Goto [9] used estimation maximiza-
tion (EM) techniques common to the training of continuous
distribution HMMs to evaluate the contributions of various
tone models to polyphonic audio sampled from a CD. He
then used these weights to make a determination of which
frequencies were the most probable melody and bass lines
with 88% accuracy and 80% accuracy respectively. Such a
system could eventually provide a valuable front end to a
musical database system.

Many of the tasks performed in speech processing have di-
rect analogues in music processing. Automatic speech recog-
nition (ASR) can be likened to transcription from raw audio
to common music notation. Keyword wordspotting (WS)

can be likened to spotting a query melody occurring in raw
audio. The successful use of HMMs in automatic speech
recognition and wordspotting applications suggests that, like
DP, such tools might make a successful transition to melody
recognition. These correlations drive the system developed
in this paper.

In speech processing, wordspotting is the task of searching
for keywords occurring somewhere in a larger body of less
constrained audio data (noises, non-keywords, etc.) [18] In
music, we would like to search for specific melodies occur-
ring somewhere in a larger body (the database) of less con-
strained audio data (other music, harmony, noises, speech,
etc.) Some of the most successful methods for wordspot-
ting have involved HMMs: one set trained to recognize a
key word or words and one set trained to account for the
“garbage” making up the rest of the audio. We propose to
define a set of HMMs to recognize a query melody and a set
of HMMs trained to account for the auditory “garbage” not
associated with that query. Thus, we hope to perform the
musical equivalent of wordspotting. The next section will
develop the specific configurations of HMMs used in our im-
plementation of melody spotting.

2. EXPERIMENTAL SET-UP

The following two sections will describe the composition of
the melody spotting system we test in this paper. First,
the methods of data collection used in our experiments are
described. We elaborate on the construction of our HMM
melody spotting system in Section 2.2.

2.1 Databaseand Training Data

The data for this series of experiments consists of a collec-
tion of simple monophonic melodies. This allows us to begin
with a relatively easy task, since the melody is the only mu-
sical data in each recording. The melodies were transposed
such that no accidentals occurred in play to ensure adequate
coverage of each note. All the notes fell into the range from
C4 to Gs. Each melody was played ten times on a keyboard
by an amateur musician. The melodies were played each
time in the same key and register (the same exact notes)
but using five different instrumental voices (two recordings
per voice.) The different recordings were produced for each
melody to allow for natural variations in play. The changes
in instruments and duration add some difficulty to the task;
no two renditions of a melody are exactly alike. As the
acoustic data was collected, so was the corresponding MIDI
data. The use of each type of data will be illustrated in the
next section. The selection of tunes recorded is given in Ta-
ble 1 and the instrument voices in Table 2. (A transcription
of the songs as recorded is provided in Appendix A.)

The data were collected from a Yamaha W7 keyboard at a
sampling rate of 22050 Hertz using mono audio input and
saved in wav format. This introduced additional complexity
to the task due to the varying levels of noise (sometimes
negligible, sometimes nearly overpowering) in the data set
generated by the recording process. This resulted in approx-
imately half an hour of recorded data requiring about 100
Mbytes of computer storage.

Table 1: List of Songs Used in Testing
| | Song Title |
Auld Lang Syne
Barbara Allen
Frere Jacques
Happy Birthday to You
I’'m a Little Teapot
Mary Had a Little Lamb
Scarborough Fair
This Old Man
Three Blind Mice
Twinkle, Twinkle, Little Star

O 0| | O U x| W[DN

—
o

Table 2: List of Instrument Voices Used in Testing
Instrument Name

Clarinet
Flute
Piano
Soprano Saxophone
Violin

2.2 HMM Melody Recognition System

The construction of our melody spotting system is very sim-
ilar to that of a wordspotting system for speech recognition.
We will describe the system from the lowest levels, where
the collected data intersect it, to the highest, where we see
the melody spotting results, that is, the occurrences in the
database of the desired query.

A hidden Markov model (HMM) describes a doubly stochas-
tic process in which only the current state affects the choice
of the next state. [14] HMMs model two levels of activ-
ity, a visible layer represented by the observation data it
produces, and an underlying hidden layer representing the
states through which the model passes. The transitions be-
tween states and the observations are governed by prob-
abilities learned from the training data using a collection
of well-known techniques. Our implementation is based on
the HMM Tool Kit (HTK). [20] This system was selected
because it has been used successfully in automatic speech
recognition research (as in Woodland, et al. [19],) but allows
the user enough design freedom to adapt it to a musical task
such as our own.

The HMM is the basic building block for our melody spotter.
A simple, left-to-right, five state HMM is trained to repre-
sent each note for which data is available (C4—Gs), plus a
rest (silence/noise). Such an HMM is shown in Figure 2.
The first and final states are non-emitting, serving only to
designate the beginning and end of the HMM. Probabilities
a;j govern the transitions from state ¢ to state j. Probabil-
ity distributions b;(O;) represent the probability of seeing
a given observation O at time ¢ while in state . The a;;
and b;(0O;) are the parameters that we must train using the
available data. In our implementation, the probability den-
sity functions b;(0;) for each state are modeled as Gaussian
distributions with a non-uniform diagonal variance.

ad4
)
b2(+) b3(+) b4(+)

Figure 2: Hidden Markov model representing a ba-
sic musical unit: a note (for example, C4) or rest

The raw audio data described in the previous section are
stored for database purposes, but are also processed for use
in training and evaluating the HMMs. For comparison pur-
poses, we extract two different sets of features. These fea-
tures were chosen as simple starting points and will be tested
against a selection of other representations in later versions
of this system. In both cases, each raw audio file is normal-
ized. The first features are produced using a fast Fourier
transform (FFT) with a Hamming window length of 2048
and a skip of 1024 (each window covers approximately 100
msec = .1 sec). The full results of the FFT are then trimmed
(band-limited) to use only those bins corresponding to a rea-
sonable range of frequencies for music and for the task at
hand (from C4 to Cs, or approximately 261-1044 Hz.) For
the second set of features, a single pitch estimate is selected
using an autocorrelation method. [5] The result in both cases
is a series of observation vectors ready to be processed by
the HMMs, one of length 75, the other of length one. The
corresponding MIDI data is aligned with the recording by
matching the onset of the first note in the wav recording
with the first note in the MIDI file. It is then transformed
into a label file in the style used by HTK, which will play
a role in training and testing of the HMM melody spotting
system. Figure 3 outlines this process. In order to save pro-
cessing time, this preprocessing can be performed once, and
the resulting data stored for later use.

Raw Raw Raw
Audio Audio Audio MIDI
Files Files Files
Fast Fourier Auto- MIDI/Audio
Transform Correlation Alignment
Windowed Windowed Aligned
Spectra AC MIDI
Frequency Peak MIDI to Label
PassBand Picker Convertor
FFT Pitch HTK
Observation Observation Label
Vectors (Scalar) Files

Figure 3: Data processing from raw audio to HMM
observation vectors and from MIDI to HTK label
data

With the HMM prototype and the preprocessed data, train-
ing can now proceed. In this preliminary system, because
of the small size of the melodic database, both training and
testing utilized all of the available data. We hope that fu-

ture work will show that it is possible to adequately model
the contents of the database without requiring the system to
be trained using all of the music contained by the database.
First, the label data is used to segment the input data by
note as shown in Figure 4. Each segment of data is used
to initialize the HMM representing that note using Viterbi
alignment. The same feature segments are then used to re-
fine each HMM using Baum-Welch reestimation. Finally,
concatenations of the note level HMMs appropriate to each
training melody are created and embedded Baum-Welch
reestimation is performed on each one using the complete
sequence of feature vectors for that recording. [20] (Such a
concatenation is illustrated at the top of Figure 5.) Once
this training is complete, the system is ready to accept a
query.

O O O3 O4 Os O¢ Or Og -+ Or

| oa | |oa|na| |ne| | ae [ea|ra| = |

Figure 4: A series of feature vectors, O;, extracted
from raw audio and segmented using the MIDI la-
bel data. This is the first eight notes of the song
Scarborough Fair.

When a sequence of notes defining a query is provided by the
user, we are ready to create the remainder of our recognition
system. For this beginning system, the query is simply an
exact sequence of notes entered as text by the user, e.g, “Dy,
Dy, ..., E4.” First, copies of the note-level HMMs making
up the query are concatenated together to form an HMM
representing the query as a whole. (See Figure 5.) Because
of the current selection of models and features, this will seek
an exact match to the pitches in the query. Then, all of the
available notes and a rest/noise HMM are placed in parallel
with the desired melody to act as fillers or garbage collec-
tors. [18] To prevent the fillers from overwhelming the more
complex (and therefore less probable) melody HMM, entry
into those states is penalized, especially for those notes oc-
curring in the melody. Looping from the final to initial states
allows the HMM system, now a musical language model, to
process a much larger piece of data, a complete song stored
in the database.

The features representing each song in the database are then
run through the constructed HMM using Viterbi scoring; the
song is sectioned and each section is labelled as to its proba-
bility of belonging to the melody or to one of the fillers. The
locations labelled as the melody are then sorted according
to their probability of occurrence, producing a ranked list of
most likely occurrences of the melody in the database songs.
In testing, these results can be compared to the MIDI refer-
ence data to determine their accuracy. (Once initialization
is complete, the MIDI data is not used except for judging
the accuracy of the results returned by the HMM system

Musical
. Unit |
*HMM

[

s VIR Y
SHCORCOIEMRCD

Figure 5: Construction of a musical language model
representing a melodic query from the musical unit
HMDMs shown in Figure 2. The musical unit HMMs
are used both to model the query melody and the
filler composing the rest of a database entry.

in testing.) If it is an actual query, the results can be pre-
sented to the user for audition. The sectioning and scoring
also allows us to audition the piece where the melody likely
occurs, rather than from the beginning.

It is important to note that the MIDI data is not a require-
ment for this system, but rather a convenience. Initialization
could be accomplished without the exact MIDI data using
only a note list (no onset and offset data) in a bootstrap
method. [20] It should also be possible to initialize the sys-
tem with a subset of MIDI-labelled recordings sufficient to
train the musical models in the system. The eventual goal
would be to add to the database other musical pieces for
which such label data is unavailable. Further testing would
be needed to determine the efficacy of these plans compared
to our current training process.

3. EXPERIMENT AL RESULTS

Melody recognizers based on both sets of observation vectors
were trained using the techniques described in the previous
section. These systems were then evaluated by searching
for a selection of melodies of various lengths, from three to
ten notes each. As mentioned previously, the queries are
posed as a string of textual note names, e.g. “Ga, F4, Eq,
D4, C4.” For these initial tests of the system, no errors were
introduced into the queries. The test queries were selected
based on their frequency of occurrence in the database songs
so that several copies would exist to be searched for by the
system. The selected query melodies and the songs in which
they occur are given in Table 3. For some lengths, multiple
queries were used to allow the search to operate over several
different songs. Though this is an admittedly small selection
of queries from a small collection of melodies, further testing
on an expanded database is currently underway.

Once each query is selected, a detection network similar to
that in Figure 5 is constructed to represent it. Initial penal-

Table 3: List of Query Melodies and Their Locations

Query | Note String Found
in Songs
3a. | E4 Dy Cy4 2,5,7,9
3b. | E5 D5 Cs 3, 8,10
4. F4 E4 D4 04 2a 5a 7, 9
5. | G4 F4 E4 Dy Cy 2,7,9
6. | Ds C5 Cs B4 By Ay 10
7a. | Cs Cs B4 Ay By C5 Gu 9
7b. | G4 D5 D5 Es E5 D5 Cs 10
8a. | C5 C5 B4 Ay B4 C5 G4 Gy 9
8b. | C4 Dy Ey Fy G4 Cs Ay Cs 5
8c. E5 E5 D5 C5 C5 B4 B4 A4 10
9a. C5 Cs B4 A4 B4 C5 G4 G4 G4 9
9b. | C4 Dy E4 Fy G4 Cs Ay Cs Gy 5
9c. | G4 G4 D5 D5 Es Es Dy Cs Cs 10
10a. | G4 C5s Cs B4 A1 B4 C5 G4 G4 G4 | 9
10b. | G4 G4 D5 Ds E5 Es D5 C5 Cs By | 10

ties for the melody and filler arcs are assigned as:

2/M, arc into melody block
P, = 1/M, arc into filler note not in melody
1/1000, arc into filler note in melody

where M is the number the filler blocks and melody blocks
in that network (for example, M = 14 for C4—G5 plus a rest
and a query melody block.) The selection of the penalties
for fillers occurring in the melody will be addressed again in
the following sections. Once this is done, each song in the
database is scored using the query network, resulting in a
segmentation of each song into melody and fillers, each with
a start and stop time and an associated probability score.
Now, the segments labelled as melodies can be ranked by
score and provided to a database user as results. Since the
data is preprocessed, the scoring requires less than real-time
to compute. Real-time here is defined by 100 songs times
an average of 20 seconds a song or =~ 2000 sec = 33.33 min.
On a 650 MHz Pentium IIT with 256 Kb of RAM, receiv-
ing results from the scoring algorithm requires only about a
minute, a speed up of approximately 3300%.

For testing, the results of the scoring are compared to a
label file which marks the query locations in the database
(the second use of the MIDI reference data.) This test en-
sures that those database elements labelled as containing
the query do so and in the locations given by the recog-
nizer. Two results are provided by this comparison. The
first is a numerical figure-of-merit (FOM) commonly used in
evaluating speech-based wordspotters. The FOM places an
upper-bound estimate on word spotting accuracy (the per-
centage of true hits) averaged over 1 to 10 false alarms per
hour. [20] (The FOM as defined by HTK is further described
in Appendix B.) In the case of a melody spotter, however, it
is possible for the false alarms to be interpreted differently.
They must be examined to determine if they sound similar
to the query—an inexact, but still valid, match.

The following two sections address the systems built using
each of the observation vectors defined in Section 2. Sec-

tion 3.3 describes a third system tested on a musically based
subset of the FFT data. Discussion of results common to all
of these systems is presented in Section 3.4. Problems and
future work suggested by this testing are addressed in the
final section of the paper.

3.1 Pitch-BasedRecognizer

Our first melody recognition system is constructed on a
length one observation vector, the fundamental frequency of
the audio signal as estimated using autocorrelation (AC). [5]
This estimator was selected because, of those tested, it pro-
vided the best pitch estimates using our data set. The pre-
processing time necessary to calculate these features for all
of the music in the database is approximately 40 minutes on
a 6560 MHz Pentium III when computed using Matlab.

For each query melody, we began testing the recognition
with a penalty of 1/1000 on fillers occurring in the melody,
then tested several lower penalties as well." Generally, new
penalties were tried as long as they continued to reduce
false alarms without causing any decrease in the number
of accurate hits. The penalties were never less than 1/25, a
limit slightly greater than the penalties (1/14) applied to the
other fillers. The hits, false alarms, actual occurrences, and
figures of merit achieved for each query and the penalties
applied to the fillers for that value are given in Table 4.

Table 4: Query Results Using Pitch-Based HMM
Recognizer

Query | # Hits # FAs # Actual FOM P,
3a. 70 2 70 95.63 1/500
3b. 19 69 50 0.00

4, 40 0 40 100.00 1/500

5. 30 10 30 78.80 1/500

6. 40 32 40 0.00 1/50

7a. 30 19 30 42.80 1/250
7b. 8 5 20 28.00

8a. 30 10 30 78.60 1/500
8b. 20 0 20 100.00
8c. 18 24 20 27.50

9a. 30 7 30 93.40 1/500
9b. 20 0 20 100.00
9c. 8 7 20 23.20

10a. 20 30 20 23.80 1/500
10Db. 8 8 20 20.80

Overall, the performance of the pitch-based recognizer was
poorer than that of the FFT-based recognizer, especially
for queries in the range of C5—Gs. It was observed that the
pitch estimator was less accurate for these frequencies than
for those in the lower register, so it was expected that the
recognizer trained using those pitch estimates would be as
well. It was also more difficult to reduce false alarms using
the penalties without lowering the hits as well. As might be
expected, the quality of the false alarms was not good in all

!Penalty will henceforth refer to the penalty on fillers oc-
curring within the query melody. For our purposes, a
lower penalty implies a fraction with a smaller denomina-
tor; hence, lowering a penalty increases the probability that
a filler will be found in the data set.

cases, especially when large numbers of them were returned
by the system.

3.2 FFT-BasedRecognizer

The second melody recognition system is based on the length
75, band-limited, fast Fourier transform (FFT) of the audio
data. The preprocessing time required to compute in Matlab
the FFTs of all the music in the data set is approximately
five minutes.

Again, each query melody was tested under a variety of
penalties ranging from 1/1000 to 1/25. The results of testing
this recognizer are summarized in Table 5. Generally, the
FFT-based recognizer was able to operate reasonably well
under the same penalty, 1/1000, locating all but one of the
actual occurrences, and, generally, only false alarms sound-
ing similar to the query. This recognizer did not seem to
share the upper register difficulties of the pitch-based mech-
anism, most probably because no hard decision about the
content of the data (i.e., the pitch of the melody) was re-
quired before processing the observations. In this system,
we allowed the HMM to learn statistical representations of
the content of the signal, rather than defining the melodic
content (the pitch) before applying statistical tools to it. In
most cases, it was possible to achieve as much reduction in
false alarms as desired without sacrificing successful hits.

Table 5: Query Results Using FFT-Based HMM
Recognizer

Query | # Hits # FAs # Actual FOM P,
3a. 70 1 70 100.00 1/1000
3b. 49 7 50 83.24

4. 40 3 40 96.10 1/1000
5. 30 0 30 100.00 1/50
6. 40 10 40 99.25 1/1000
7a. 30 0 30 100.00 1/1000
7b. 20 13 20 100.00
8a. 30 0 30 100.00 1/1000
8b. 20 0 20 100.00
8c. 20 20 20 100.00
9a. 30 0 30 100.00 1/1000
9b. 20 0 20 100.00
9c. 20 10 20 100.00
10a. 20 10 20 79.60 1/1000
10b. 20 12 20 100.00

3.3 Scale-BasedRecognizer

A third system based on a subset of the FFT observation
vector data was implemented and tested as well. First, those
FFT bins containing the fundamental frequencies and har-
monics of the notes in the range C4—Gs (of the equally tem-
pered scale) were identified. They were then used to select a
subset of 25 of the 75 bins composing the previously calcu-
lated FFT feature vector. The system was designed to offer
a compromise between forcing a hard pitch decision before
processing (as in the AC pitch feature) and extracting a fea-
ture set using no specifically musical knowledge (as in the
FFT feature vector). The preprocessing time for this fea-
ture set is negligible, since it simply masks the pre-computed
FFT data.

The query data are tested as before and the results are sum-
marized in Table 6. These results suggest that the scale-
based recognizer strikes a good balance between discarding
as much unnecessary information as possible while retaining
as much information as it can that is relevant to this musi-
cal task. It successfully finds all of the occurrences of each
query, generally without producing false alarms which sound
too dissimilar from the query. It seems to operate as well
as or better than the FFT-based recognizer while reducing
the size of the feature vectors by a factor of three (and thus
the storage requirements, the number of free parameters to
train, and the overall processing time.)

Table 6: Query Results Using Scale-Based HMM
Recognizer

Query | # Hits # FAs # Actual FOM P,
3a. 70 0 70 100.00 1/100
3b. 50 0 50 100.00

4. 40 0 40 100.00 1/25
5. 30 0 30 100.00 1/25
6. 40 10 40 100.00 1/100
7a. 30 3 30 82.00 1/100
7b. 20 11 20 100.00
8a. 30 0 30 100.00 1/100
8b. 20 0 20 100.00
8c. 20 11 20 100.00
9a. 30 0 30 100.00 1/100
9b. 20 0 20 100.00
9c. 20 10 20 100.00
10a. 20 10 20 76.90 1/100
10b. 20 10 20 100.00

3.4 CommonResults

There are several common threads running through the re-
sults presented above. The first of these is that, in general,
the greater the penalties, the more false alarms and hits al-
lowed by the system, and the lower the penalties, the more
false alarms are reduced (though sometimes at the expense
of the hits.) In the case of the shorter queries, it is more
reasonable to reduce the penalties because they tend to pro-
duce a large number of accurate hits. However, as queries
become longer, it becomes more desirable to allow more non-
exact (“inaccurate”) matches to be presented as results, so
increasing the penalties to allow more false alarms makes
sense. It is worth noting that under many different levels
of penalties, nearly all of the desired results were accurately
returned by the system. This implies that penalties could
be used to dynamically control the level of inexact responses
provided by the system.

In all test cases, there is also something the FOM does not
tell us: the quality of the segments it labels as false alarms.
In the case of wordspotting, distinguishing close but wildly
different words like “goat” from “goatee” makes sense, but
in music, such a close match often sounds similar enough to
count as a good match. One example of this phenomenon
from the test data is shown in Figure 6. Generally, those
inexact results found by the system resulted from consoli-
dation of repeated notes in the query into one longer note
in the response or from deletion of a note from the query.

Thus the FOM is both useful and deceptive, since many of
the false alarms would be worth presenting to a database
user as possible matches to a melodic query.

Gs G4 Ds Ds Es Es Ds Cs Cs Ba

Twin- kle, Twin- kle, lit- tle star. How I won-
versus
Gs Ds Es Ds Cs Bg
ing. All the bells are ring

Figure 6: A query melody from Twinkle, Twinkle,
Little Star and a shorter inexact, but similar sound-
ing, match from Frere Jacques

4. CONCLUSIONS AND FUTURE WORK

It is apparent from this work that the melody recognition
systems described here may stand only as a proof-of-concept.
While we feel it is a successful first foray, there is a great
deal of future work that should be done to improve them.
This work can be grouped into three areas: that relating
to the database and its contents, to the HMM recognizers,
and to testing the system. All of these suggestions share
the eventual aim of providing a raw audio-based musical
database which is friendly to novice and expert user alike.

There are a number of improvements that should be made to
the database and the data which it contains. We would like
to test this system on a collection of recordings from acoustic
instruments, rather than from synthesized ones, since the
goal of the system is to operate on such data. Likewise, we
would like to test the system with polyphonic data as well as
monophonic, thus representing the vast majority of recorded
music. We also want to increase the size of any database
on which we operate to be more realistic, preferably while
retaining an implementation that does not require hand-
marking the complete contents of the database. Finally, we
would like to improve the interfacing of the database for the
benefit of both the researcher and the eventual end-user.

There are many aspects of research on HMMs for automatic
speech recognition and wordspotting that we would like to
explore in conjunction with our melody recognition system.
It would be valuable to experiment with training that does
not require full labelling of the data for all database entries
and with training on only a subset of the data. We would like
to handle different abstractions of query and database data
(as other systems have done using melodic contours) based
on user confidence in their query. This will likely require us
to research a different selection of feature vectors than those
presented here. We will also want to examine how different
feature vectors affect the quality of our results; for example,
a better pitch extractor (as in Goto [9]) might allow us to
use smaller observation vectors without sacrificing accuracy
or a constant-@ transform [2] might allow us to use only that
frequency information pertaining to the musical scale. Such
changes might allow us to maintain or increase accuracy
while reducing the number of free parameters estimated by
the system and the overall processing time required. Feature
selection will also impact the types of input accepted by the
system; a different selection of features might make it easier
for the system to accept sung queries, for example.

Techniques like incorporating bi- and tri-grams, as is done
in large vocabulary continuous speech recognizers, might
also improve accuracy, as might exploring filler models other
than actual notes. We should also further explore penalty
selection, hopefully finding a consistent method by which to
apply them. We need to look at ways we can ensure that
the system accounts for allowable melodic differences (errors
users might make in a query) like insertions, substitutions,
deletions, etc. We must also explore ways to incorporate du-
ration information in the query (perhaps similarly to [15].)
Currently, this information is normalized out of the note
level HMMs during training. We need also to address ques-
tions of complexity and scalability, perhaps exploring the
common ground between our system and those developed
for large scale speech recognition tasks. Lastly, we need to
collect training data over a broader range of notes so that
note level HMMs can be trained for them as well; we could
also explore ways of filling in the notes for which adequate
data is missing, perhaps with parameter tying. Techniques
like parameter tying might also allow a valuable reduction
of the number of free parameters to be trained.

Finally, the system needs vastly expanded testing, since the
results of such testing would be invaluable in the develop-
ment of later generations of this melody recognition soft-
ware. It needs to be tested on a larger collection of exact
melodies, as well as on melodies which encompass query er-
rors commonly made by a user. We need to develop a way
to convert a user query in an audio format (sung, hummed,
whistled, etc.) into a form appropriate to querying the un-
derlying HMM system. (Currently, the most viable method
of doing so would be to perform pitch detection on the in-
put, then use the detected pitches in place of our textual
query string.) It would also be desirable to compare this
system to other comparable systems. However, there are no
truly comparable systems in the literature at this time (i.e.,
those which perform melody recognition on database entries
that have not been discretely encoded) nor does there ex-
ist a standard body of music on which to perform such a
comparison.

In this paper, we have presented a prototype system for spot-
ting a query melody in a larger body of raw musical audio
data by adapting HMM wordspotting techniques from the
speech recognition domain to the musical domain. While
the system as presented here represents a proof-of-concept
for this work, it offers great potential for future develop-
ment. It also offers by-products to other music related ap-
plications, such as transcription from raw audio to musi-
cal notation and automatic accompaniment. We plan to
continue developing this system into a more fully capable
melody-based musical database query system, following the
suggestions set forth above. To address this desire, the au-
thors are currently working on testing an expanded melody-
only and polyphonic database using a collection of feature
vectors and incorporating new elements, such as errors in
query formulation, into the testing.

Acknowledgments

The authors would like to acknowledge Lincoln Durey for his
helpful suggestions, Emperor Linux for generous computer
donations, the Interactive Media Technology Center for loan
of the Yamaha keyboard, and the Clare Booth Luce Fellow-

ship program for their financial support of this project.

5. REFERENCES

[1] E. Batlle and P. Cano. Automatic segmentation for
music classification using competitive hidden Markov
models. In Proc. of ISMIR, Plymouth, MA, Oct. 2000.
Available on the Internet: http://ciir.cs.umass.edu/
music2000/.

[2] J. C. Brown. Calculation of a constant @ spectral
transform. J. of the Acoustical Society of America,
89(1):425-434, Jan. 1991.

[3] J. C. C. Chen and A. L. P. Chen. Query by rhythm:
An approach for song retrieval in music databases. In
Proc. of 8th International Workshop on Research
Issues in Data Engineering, pages 139-146, Orlando,
FL, Feb. 1998.

[4] M. Clausen, R. Engelbrecht, D. Meyer, and
J. Schmitz. PROMS: A web-based tool for searching
in polyphonic music. In Proc. of ISMIR, Plymouth,
MA, Oct. 2000. Available on the Internet:
http://ciir.cs.umass.edu/music2000/.

[5] J. R. Deller, J. G. Proakis, and J. H. L. Hansen.
Discrete-Time Processing of Speech Signals. Prentice
Hall, Upper Saddle River, NJ, 1987.

[6] J. S. Downie. Music retrieval as text retrieval: Simple
yet effective. In Proc. of SIGIR, pages 297-298,
Berkeley, CA, Aug. 1999.

[7] J. Foote. An overview of audio information retrieval.
ACM Multimedia Systems J., 7(1):2-10, Jan. 1999.

[8] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith.
Query by humming: Musical information retrieval in
an audio database. In Proc. of ACM MM ’95, pages
231-236, San Francisco, CA, Nov. 1995.

[9] M. Goto. A predominant-F0 extimation method for
CD recordings: MAP estimation using EM algorithm
for adaptive tone models. In Proc. of ICASSP, Salt
Lake City, UT, May 2001. Electronic Proc.

[10] B. Logan and S. Chu. Music summarization using key
phrases. In Proc. of ICASSP, volume 2, pages
749-752, Istanbul, Turkey, June 2000.

[11] R. J. McNab, L. A. Smith, D. Bainbridge, and I. H.
Witten. The New Zealand Digital Library MELody
inDEX. D-Lib Magazine, May 1997. Available on the
Internet: http://www.dlib.org/dlib/may97/meldex/
05witten.html.

[12] M. Mongeau and D. Sankoff. Comparison of musical
sequences. Computers and the Humanities,
24(3):161-175, June 1990.

[13] S. Pfeiffer, S. Fischer, and W. Effelsberg. Automatic
audio content analysis. In Proc. of ACM MM ’96,
pages 21-30, Boston, MA, Nov. 1996.

[14] L. R. Rabiner and B. J. Juang. An introduction to
hidden Markov models. IEEE Audio, Speech, and
Signal Processing Magazine, pages 4-16, Jan. 1986.

[15] C. Raphael. Automatic segmentation of acoustic
musical signals using hidden Markov models. IEEE
Trans. on PAMI, 21(4):360-370, April 1999.

[16] A. Uitdenbogerd and J. Zobel. Melodic matching
techniques for large music databases. In Proc. of ACM
MM 99, pages 57—66, Orlando, FL, Oct.—Nov. 1999.

[17] A. L. Uitdenbogerd and J. Zobel. Manipulation of
music for melody matching. In Proc. of ACM MM ’98,
pages 235-240, Bristol, UK, Sept. 1998.

[18] J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. R.
Goldman. Automatic recognition of keywords in
unconstrained speech using hidden Markov models.
IEEE Trans. on ASSP, 38(11):1870-1878, Nov. 1990.

[19] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J.
Young. Large vocabulary continuous speech
recognition using HTK. In Proc. of ICASSP, volume 2,
pages 11-125-128, Adelaide, Australia, April 1994.

[20] S. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. The HTK Book (for
HTK Version 3.0). The Microsoft Corporation, 2000.
Available on the internet: http://htk.eng.cam.ac.uk/.

[21] T. Zhang and C.-C. Jay Kuo. Hierarchical system for
content-based audio classification and retrieval. In
Proc. of the SPIE Conference on Multimedia Storage
and Archiving Systems III, pages 398-409, Boston,
MA, Nov. 1998.

APPENDIX
A. SONGTRANSCRIPTIONS

Note name transcriptions are provided here for each of the
pieces of music used in testing our melody spotting system.
Durations are excluded for space considerations and because
the current implementation effectively normalizes them out
of consideration. Examples of each piece may be heard at:
http://www.ece.gatech.edu/"gte401k/melodyspotting/
Though all pitches are played as notated, not all durations
are played equally due to the natural variation that was
desired in the training data.

Auld Lang Syne
Cs1F4 Es Fs Ay G4 Fys G4 Ay G4 F4 Fg Ay Cs Ds
D5 Cs Ay Ay F41 G4 F4 G4 A4y G4 F4 Dy Dy Cy Fy

Barbara Allen
C1E4 Fys G4 Fy E4 Dy Cy Dy E4 G4 Cs Cs Ba Gy
CsCs Ay G4 F4, Ay G4 E4 Dy Cy Dy Eg Fy Gy Fy E4 Dy

Frere Jacques

Gy A4 B4 G4 Gy A4 B4 G4 By Cs Ds By Cs Ds
D5 E5 D5 C5 B4 G4 D5 E5 D5 Cs B4 G4

G4 Dy G4 G4 Dy Gy

Happy Birthday
G4 G141 A1 G4 C5 B4 G4 G4 A1 G4 D5 Cs
G4 G4 G5 E5 Cs B4 Ay F5 F5 E5 Cs Ds Cs

I’'m aLittle Teapot

Cs Dy E4 Fy G4 C5 Ay Cs Ga
F4 F4 G4 E4 E4 D4 D4 E4 04
Cs Dy Es Fy G4 C5 Ay C5 Gy
Cs; C4 Dy Eg Fy E4 Dy Cy

Mary Had a Little Lamb
Bs A4 G4 A4 B4 B4 Bs Ay Ay Ay B4 D5 Ds
B4 A4 G4 A4 B4 B4 B4 B4 A4 A4 B4 A4 G4

Scarborough Fair

DysDys Ay Ay Ay E4 Fy E4 Dy
A4 Cs D5 Cs Ay By Gy Ay

Ds Ds D5 Cs Ay Ay G4 Fy By Cy
Ds Ay G4 F4 E4 Dy C4 Dy

This Old Man

Ds B4 D5 Ds By Ds E5 Ds Cs By Ay By Cs
By Cs D5 G4 G4 G4 G4 G4 A4 B4 Cs Dy
Ds Ay Ay C5 Bs Ay Gy

ThreeBlind Mice

E4 Dy C4 E4 Dy Cs G4 Fy Fy Eq G4 Fu Fy Ey

G4 C5 C5 Ba Ay By Cs G4 Gy

G4 C5 C5 Cs B4 Ay By C5 G4 Gy

G4 G4 C5 Cs B4 Ay B4 C5 G4 G4 G4 F4 E4 D4 Cy

Twinkle, Twinkle, Little Star

G4 G4 D5 D5 E5s E5 Ds Cs Cs B4 By Ay Ay Gy
D5 D5 Cs Cs B4 B4 A4 D5 D5 Cs5 Cs By By Ay
G4 G4 D5 D5 E5s Es D5 C5 Cs Bs By Ay Ay Gy

B. FIGURE-OF-MERIT

HTK [20] uses the National Institute of Standards and Tech-
nology (NIST) wordspotting Figure-of-Merit defined as “an
upper-bound estimate on word spotting accuracy averaged
over 1 to 10 false alarms per hour.” It is calculated using
the following equation:

1
FOM = —
O 10T (p1+p2+...+pNv +apnt1)

where a = 107 — N is a factor that interpolates to 10 false
alarms per hour and 7 is the total hours of duration of
the test data. To perform this calculation, first all of the
spotted words (melodies) are ranked in score order. Then,
the percentage of true hits p; found before the ¢’th false
alarm is calculated for ¢ = 1,..., N 4+ 1 where N is the first
integer greater than or equal to 107 — 0.5. In the case of
the experiments described here, T' = 0.5 hours of recorded
musical data, so:

1
FOM = g(pl + p2 + p3 +psa+ ps)

