
The JRing System for
Computer-Assisted Musicological Analysis

Andreas Kornstädt
Arbeitsbereich Softwaretechnik (SWT), Fachbereich Informatik, Universität Hamburg

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
++49 40 69424-200

kornstae@informatik.uni-hamburg.de

ABSTRACT
Among other factors, high complexity and mandatory expert
computer knowledge make many music IR and music analysis
systems unsuitable for the majority of largely computer-illiterate
musicologists. The JRing system offers highly flexible yet intui-
tively usable search and comparison operations.  to aid musicolo-
gists during score analysis. This paper discusses the requirement
analysis that led to JRing’s inception, its IR tools and graphical
user interface plus the kind of musical material it works on and
the Humdrum-based technical realization of IR operations.

1 USER NEEDS
JRing was conceived as set of tools to assist musicologists during
that kind of score analysis which aims at:

• a score in which all musicologically relevant elements are
completely marked up

• a catalogue which contains all occurrences of all of these
elements in complete form plus an arbitrary set of annota-
tions

Depending on the type of work and / or analysis, the elements
could be themes, leitmotivs or sets. At the beginning of the JRing
development process, musicologists at the University of Hamburg
and Stanford University were asked to specify the kind of com-
puter assistance they would like to have during analysis. The five
results that directly or indirectly pertain to IR were:

(1) Print-like rendition of all musical materials (score, excerpts,
search results) as the basis for identifying and comparing
elements optically.

(2) Search capabilities for finding elements by arbitrary combi-
nations of musical features (pitch, harmony, and rhythm in
various forms).

(3) Tools that help to create catalogue entries, comprising (a)
making excepts and (b) filling in information about the ele-
ments that can be automatically derived from the excerpt
such as set class or position within the score.

(4) Catalogue management capabilities to sort and filter cata-
logue entries according to certain criteria.

(5) Customization of the structure of catalogue entries and con-
sequently the search and comparison operations based on
them.

Other – non IR-related – requirements included the ability to
switch back and forth between different kinds of analyses plus a
maximum degree of platform independence.

It becomes evident from the composition of the set of require-
ments what at least the musicologists that took part in the devel-
opment of JRing do aim for. It is not a “big automaton” that can
be fed with a score and some kind of theory description and that
churns out a results that has to be interpreted by the musicologist
[1, 7]. Instead, what is asked for is a set of tools that leaves the
analyst permanently in charge of analysis decisions and that
merely assist him in making choices faster and with less effort.
The basic ways of traditional, manual analyses should not be
changed.

2 SOLUTION COMPONENTS
A comprehensive solution that meets all the above-mentioned
requirements can hardly be furnished single-handedly. Although
there is no adequate reusable and platform independent graphical
user interface, many results in the area of data storage and re-
trieval can be incorporated and made accessible through a new
user interface.

2.1 Data
The foremost problem is a lack of data to be analyzed that is
available in an appropriate format. Although MIDI and score
notation data is widely available, these formats are ill-suited for
analysis and musical IR.

• MIDI data focuses on pitch while durations are often not
quantized. As MIDI is mainly intended for controlling elec-
tronic instruments, enharmonic spelling, articulation, orna-
mentation, and lyrics cannot be represented  among other
things. Although there are several extensions of the MIDI
file format that try to overcome some of these limitations,
none has captured a sizable market share and is thus a good
source for widely usable analytical data [9].

• Data from notation programs such as SCORE, Finale or NP-
DARMS tends to be layout-oriented and often subordinates
logical musical information (C##) to purely spatial descrip-
tions (“black circle between two horizontal lines”). The true
pitch can only be determined by scanning backwards for a
clef, key signatures, ottava marks, etc. Although, these for-
mats are mostly page-oriented so that musical features that
cross page boundaries are very difficult to recognize.
Therefore, analytic applications that work on this kind of
data often restrict themselves to dealing with works that fit
on a single page [8]. Also, they need to implement complex
algorithms to extract the logical musical information from
the spatial information.

In contrast to highly specialized MIDI and notation formats,
analytical formats like Humdrum [4] and MuseData [3] are better
suited for analytic applications. Both have been specifically de-
signed with music analysis and IR in mind. They do not exclu-
sively focus on one single aspect of the score (audible pitch or

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.



visual rendition) but offer flexible, extensible encoding schemes
that can be used to represent arbitrary musical abstractions in
different (parts of) files. Common abstractions besides pitch and
duration are melodic contour, rhythmic weight, scale degree, pitch
class, frequency, MIDI events or lyrics (full text, syllables and
phonetic equivalents). All in all, over predefined 40 Humdrum
formats exist. As Humdrum makes only minimal structural re-
quirements, new formats can be added to encode almost any kind
of new musical abstraction that musicologist can conceive.

The separation of different musical aspects within the data repre-
sentation forms the basis for that kind of search and comparison
features that users require according to the results of section 1.
Therefore, developers of music analysis and IR programs can
make use of these existing analytical formats instead of coming up
with completely new encoding schemes.

Because MuseData has been less widely publicized than Hum-
drum and does not split different musical aspects into different
files, Humdrum is becoming the main target format for conversion
programs. If copyright problems can be solved, the vast majority
of high quality scores can be converted into Humdrum using
FinalSCORE (by Leland Smith), scr2hmd [6] (by this author) and
muse2kern (by Bret Aarden and this author).

2.2 Information Retrieval
As on the data side, Humdrum offers an ideal platform for infor-
mation retrieval programs. It comes with over 40 specialized
UNIX-programs and tools, many of which can work with all file
formats. As all formats have the same structure, they can be ma-
nipulated and analyzed with a few common tools that – among
other things – can assemble individual specialized files into one
combined file or extract certain section either by data type (e.g.
pitch) or by position (e.g. measures 60 to 70). Analytic questions
that pertain to a certain representation can be answered by running
chains (“pipes” in UNIX-lingo) of small programs, each of which
performs a very limited task. Plugged together in a useful way,
these pipes can find answers to quite complex questions such as
“Do melodic passages in folk songs tend to exhibit an arch
shape?”. Because Humdrum (1) runs in the UNIX environment,
(2) stores its data in ASCII format, and (3) provides a wide range
of reference records for encoding non-musical information, the
standard UNIX tools for data management (find, grep, sort,
sed, etc.) can be used.

For example, in order to mark instances of a certain pattern in a
score by its semitone contour, the following UNIX pipe of com-
mands is necessary:

extract –i’**kern’ score.krn | semits -x |
xdelta –s = | patt –t MotivX –s = -f MotivX.dat |
extract –i’**patt’ | assemble score.krn

The complexity of the patterns to be matched depends on the
program used:

(1) When the patt command is used, search patterns are limited
to quite simple sequences of tokens. To search for a melodic
contour of “same, up 2, down 2”, that pattern looks like this:

0
+2
-2

(2) The pattern command allows for highly complex search
patterns. The following sequence of tokens matches one or
more G naturals followed optionally by a single G-sharp
followed by one or more records containing one or more

pitches from an A major triad the last of which must end a
phrase.

[Gg]+[^#-] +
[Gg]+#[^#-] ?
([Aa]+|([Cc]+#)|[Ee]+)[^#-] *
(}.*([Aa]+|([Cc]+#)|[Ee]+)[^#-]))|(
([Aa]+|([Cc]+#)|[Ee]+)[^#-].*})

(3) A different level of flexibility can be achieved by using the
simil command. It does not only match precise instances of
a given pattern but measures the editing distance between the
given pattern and the material in the score [5]. The result is a
list of numbers between 1 (perfect match) and 0 (no similar-
ity at all) that quantifies the degree of similarity for every po-
sition in the score.

Humdrum data and tools form the ideal technical infrastructure for
analytic and IR applications. They permit a wide range of analyti-
cal and IR operations while being open for custom-made exten-
sions. Especially, Humdrum is suitable to realize all those search
and comparison features described in the requirements section.
The basic modus operandi can be described as follows:

1. Any element (theme / leitmotiv / set) as well as the score is
converted into those specific Humdrum formats that can be
used for conducting searches and comparisons. E.g. semitone
intervals, pitch classes, durations and lyrics in syllables.

2. According to the specifications of the user, one or more of
these representations are separately processed with the ap-
propriate program (patt, pattern, simil). E.g. the
semitone representation is searched for the sequence “same,
up 2, down 2” while the duration representation is searched
for “Hap-py birth-day”

3. The results are merged to form the combined result. For
example, only those positions in the score are returned that
feature the semitone pattern AND the lyrics.

Despite its benefits, for the vast majority of musicologists,
Humdrum can only serve as technical infrastructure and not as IR
or analytic system itself because it does not provide a graphical
user interface that allows analysts to manipulate the score, its
elements and catalogues in a way that they are accustomed to.
Although there are sometimes GUIs that help constructing the
command pipes [2, 10], working with musical materials the tradi-
tional way is still not possible.

3 JRING
JRing aims at providing musicologists with an electronic equiva-
lent of their physical desktop complete with fully graphical scores,
thematic / leitmotivic / set notes and catalogues of these elements.
Scores, notes and catalogues can be perused in the same way as
their physical equivalents, i.e. always with a view of the print-like
view of the material. It also offers IR-related functionality that
goes beyond what can be done with physical scores and cata-
logues.

In order to better understand the way in which IR functionality is
embedded into JRing, its non-IR related features are described
first.

3.1 Non-IR-Related Features
JRing works on scores, notes and catalogues.



3.1.1 Scores
Scores are displayed in a high quality, print-like rendition. Voices
are basically arranged the same way as in the printed score but
vertical positions are fixed for every voice. Therefore, the topmost
row is always reserved for e.g. the piccolo while the lowest voice
always holds the display for e.g. the double base. Therefore, the
vertical size of the score is always the same even if some voices
are pausing. This grid-like organization of the score makes it easy
(1) to browse the score without the need to search for a specific
instrument and (2) to mark an occurrence of a specific element in
one piece even if it covers one or more system / page breaks in the
printed score.

The tool that works on scores is the score analyzer. It displays the
score in the above-mentioned way. It has several features:

• The position within the score can be changed by either mak-
ing use of the scroll bars or by jumping to any logical loca-
tion such as measure 23 of the 2nd scene of the 3rd act.

• Already marked up elements can be shown or hidden. The
ability to see intermediate results gives valuable information
on where to look for new elements. In combination with
zooming out to, say, a 10% magnification this feature to get
an overview over large-scale patterns of elements.

• The score can be searched for arbitrary combinations of
musical features (see section 3.2.2).

• Newly found elements can be graphically marked up with a
marker tool (see figure 2). Although marks can consist of a
single contiguous block, they can be made up of any number
of blocks. Marks form the basis for notes.

3.1.2 Notes
Notes describe one occurrence of a musically relevant element of
a work. They consist of a graphical rendition of the marked ele-
ment (see above) plus an arbitrary number of additional fields. As
notes used in manual analysis, they contain fields for non- or
meta-musical information such as the position within the score,
the formal relation of the element to other elements, the reason for

Figure 2. The marker tool.

Figure 1. The main components of the JRing system: desktop, score analyzer (partly covered), and catalogue browser.



the element’s occurrence or – for leitmotivic analysis – the name
of the leitmotiv. Note fields form the basis for comparisons with
other elements which are penned down on other notes.

Two tools directly work on notes:

• Note editors pop up after an element has been marked up
using the marker tool. Its graphical excerpt and its position
within the score are automatically filled in. Information that
depends on human judgement (formal relation, reason for
occurrence, etc.) needs to be filled in manually.

• Note viewers (see rightmost sub tool in catalogue browser in
figure 1) display notes.

A third kind of note-related tool are note selectors. They do not
work on individual notes but on catalogues.

3.1.3 Catalogues
Catalogues contain all the notes an analyst furnishes. As a musi-
cologist can find a huge number of elements in a sizable score,
tool support for managing a catalogue is need. This support is
provided by catalogue browsers.

Catalogue browsers consist of three sub tools: A catalogue lister, a
note selector and a note viewer. Basically, the user can select a
note in the note lister which is then shown by the note viewer. The
note selector can be used to make the lister show only a specific
subset of notes from the catalogue.

Note selectors (see central sub tool in catalogue browser in fig-
ure 1) are structurally similar to note viewers and note editors:
Like these, they list every field of the note and like note editors
every filed is editable. Different from these, the values entered
into the fields of a note selector do not describe a specific note but
a pattern that is matched against all notes contained in a cata-
logue. If for example “1” is entered into the field named “Act”,
only notes that pertain to elements from the first act are listed in
the note lister.

Although valuable, matching a single criterion does not meet the
user requirements stated in section 1 (cf.). Therefore, note selec-
tors offer two additional features for describing note selections
more precisely:

1. A combo box to select the matching condition. For textual
fields the options are “equals”, “contains”, “starts with” and
“ends with”. For numerical fields these are “equals”, “less
than”, “less than or equals”, etc.

2. A checkbox which users can employ to indicate whether a
field should be taken into account when finding matches or
not. In figure 1 this feature is used to show only those notes
in the lister that matches certain work names AND occur in
the first act.

3.2 IR-Related Features
The features described so far replicate the traditional way of
dealing with scores, notes and catalogues. Although they facilitate
the analytic process considerably by relieving musicologists of
strenuous tasks by means of automatically doing excerpts, filling
out large parts of notes, and dealing with catalogues but they do
not provide any IR capabilities.

JRing provides these capabilities not through completely new
tools but integrates them into the tools already described in sec-
tion 3.1.

3.2.1 Catalogue browser
In manual analysis, the musicologist just needs to write down the
excerpt and can then make any kind of comparison based solely
on that excerpt. Because he can make arbitrary abstractions of that
excerpt, he can simply choose to concentrate on certain abstract
features and then browse the other excerpts in the catalogue to
find exact, partial or fuzzy matches. As a computer IR system
cannot know in which respect two notes should be compared, this
choice of the analyst has to made explicit in a computer assisted
system. Therefore, in addition to the text fields discussed in sec-
tion 3.1.2, each note in JRing carries a list of musical abstractions
that are automatically derived from the excerpt. For example, the
pitch information of the marked up element can be used to derive
absolute pitch, pitch class, and any melodic contour in semitone
steps (see table 1).

Table 1. Some melodic abstractions of a Beethoven theme

pitch a1b1- d2 c2 b1- a1 g1 c1 f1 g1 a1 b1- a1 g1

pitch
class 9 A 2 0 A 9 7 0 5 7 9 A 9 7

semitone
interval *  +1 +4 -2 -2 -1 -2 -7 +5 +2 +2 +1 -1 -2

refined
contour * ^ / v v v v \ / ^ ^ ^ v v

gross
contour * / / \ \ \ \ \ / / / / \ \

In the note selector, these fields with musical abstractions can be
used in the same way as text fields in order to determine the notes
that are shown in the note lister: The checkbox next to them indi-
cates whether or not a certain field is to be included in the com-
parison, and the combo box can be used to determine the match-
ing condition (from a 100% perfect match down to 5% similarity).

To make filling in the fields of the note selector easier, the con-
tents of the note displayed in the note viewer can be copied into
the note selector and then modified.

3.2.2 Score Searcher
The score searcher is a sub tool of the score analyzer described in
section 3.1.1. It basically has the same layout as the note selector,
but has only fields for musical abstractions and no text fields
except for specifying a search range within the score. When the
user chooses to search the score for a certain combination of
features, the results are temporarily marked up in the score and a
result list browser pops up. Clicking on a result entry in the lister
takes the user to the score position of the match. He can decide to
discard the result list or can invoke the score marker to make
individual results the basis for new notes in the catalogue.

JRing’s tools are adequate to fulfill user requirements (1) to (4)
stated in section 1. The remaining fifth requirement - customiza-
tion of the structure of catalogue entries – is the topic of section
4.2.

4 TECHNICAL REALIZATION

4.1 IR-Related Features
As motivated in section 2, JRing uses Humdrum as its technical
infrastructure and does not implement music IR functionality
itself. While presenting Humdrum data in a way that is tailored to



the needs of the majority of musicologists, JRing can be seen as
an – albeit very extensive – GUI front-end for Humdrum. It
transforms user input into Humdrum commands and parses the
results in such a way that it can be displayed in a form that is
understandable for musicologists that are used to carrying out
analyses in a traditional form.

The core of the transformation process are the structurally identi-
cal files the contain the analytical score information and the
graphical layout information. Because they are synchronized, user
input that pertains to the graphic representation on the screen can
be mapped to a precise portion of analytical information and
search results can be mapped back to the graphical score rendition
(see figure 3). A search in the score is thus carried out the fol-
lowing way:

1. For every field that the user marked by ticking the checkbox
next to it, its contents are interpreted and converted into the
appropriate Humdrum representation.

2. If the user has not included one of the selected representa-
tions, the required abstraction file is generated with Hum-
drum. E.g. **semits for semitone intervals.

3. For every representation, a separate Humdrum pattern
matching tool is invoked. If perfect matches are desired,
patt is used, simil otherwise.

4. The individual results are merged. Only those hits become
part of the comprehensive result that occur in every individ-
ual result.

5. JRing compiles the result list from the comprehensive result.
By going from analytical spines to synchronized layout
spines, the its precise position within the graphically ren-
dered score can be determined.

Because melodic matching often requires finding roving or hidden
themes [9], JRing generates an extra file that contains the highest
consonant pitches of the whole score. This “melody” file is auto-
matically included into any melodic search.

The technical realization of note comparisons using the note
selector is similar to using the score searcher. The only difference
is that notes are matched against each other and that results are
listed in the note lister instead and not in a separate result lister.

4.2 Customization
Although the list of musical abstractions discussed so far does
cover some of the more frequently used features, it is not exhaus-
tive by far. Taking into account that Humdrum comes with over
40 data formats and that new formats can easily be added, no tool

that comes with a fixed and thus limited set of abstractions / note
elements can be very useful. If all possible abstractions are auto-
matically generated, notes become huge and unwieldy. On the
other hand, if the “right” abstractions are not offered, the tool is in
risk of becoming useless.

Similar cases can be made for the capability to display scores in
different formats (mensural, CMN, chromatic) or to work with
different Humdrum implementations or without any Humdrum-
subsystem.

To deal with the demand for flexibility, JRing can be customized
in three ways:

(1) The structure of notes. Depending on the type of analysis,
notes can be made up of different fields. In a leitmotivic
analysis, there might be several name fields for leitmotiv
names according to different sources, and musical abstrac-
tions from the melodic, harmonic and rhythmic domain. For
an analysis based on Forte’s set theory, the name of the ele-
ment can be automatically derived from the excerpt (by de-
termining the prime form and its set class) while there is no
need for melodic, harmonic and rhythmic abstractions.

(2) The type of score rendition. To represent a score on screen,
there needs to be a component that takes a graphical score
presentation and displays it. Depending on the type of score
notation (mensural, CMN, chromatic, or something com-
pletely new), different display components can be selected.

(3) Type of musical subsystem. As Humdrum consists of UNIX
commands, it requires a UNIX shell for operation. This
might not be available on non-UNIX systems because the
UNIX shell emulators available on these platforms cannot be
used free of charge. Therefore, the component that connects
to the musical subsystem can be totally absent in some cases
or a substitute might be available. If totally absent, JRing
functions normally except that searches and comparisons
based on musical features are disabled.

The source of JRing’s flexibility is the slide-in approach. Compo-
nents implementing (1) a single musical abstraction, (2) score
renderer, or (3) musical subsystem can be put into matching
“holes” of the JRing core system at startup time. In contrast to
plug-ins or other kinds of dynamic libraries, slid-ins have the
following advantages:

1. Slide-ins implement exactly one flexible feature of the sys-
tem whose functionality actually means something to its us-
ers.

2. Slide-ins only fit into the matching slide-in frame (“hole”) of
the core system, thus making misconfigurations impossible.

Horn (F)

dolcissimo

3
4

**kern **layout
*Icor *SCORE
*Itrd4c7 *
=1 =1
*clefG2 *
*M4/4 *
4G 1 14 13.3602 2 10 0 1|16 14 13.6785 17 1 1 0 0 0 0 0 13 13.2094 dolcissimo|5 14 14.4385 10.5 ...
4c 1 14 19.5083 5 10 0 1
4c 1 14 25.654 5 10 0 1|5 14 27.0518 8 10 32.0118 1.348 -1
4e 1 14 31.7996 7 10 0 1|14 14 37.9542 1
=2 =2
... ...



3. Individual slide-in frames have specific capacities. While the
slide-in frame for musical abstractions can hold any number
of slide-ins, the slide-in frame for musical subsystems can
have at most one slide-in (either Humdrum, a substitute or
nothing at all), and the slide-in frame for score renders must
have exactly one slide-in.

Because slide-ins are easy to visualize, a configuration desktop is
provided that can even be used by those musicologists that would
not normally be able to configure technical systems.

As does Humdrum, JRing just offers a core system that can be
easily extended in compliance with its interfaces. In the case of
Humdrum, these interfaces are the Humdrum file format structure
and the POSIX standard. In the case of JRing, these interfaces are
the three slide-in frames (for (1) new abstractions, (2) score ren-
derers, and (2) musical subsystems) plus the Java programming
language. As with Humdrum, users of JRing can profit from its
high reuse potential, i.e. when starting a new project, chances are
that the required slide-ins already have been written by some one
else. If not, just the missing slide-ins need to be implemented and
can later be passed on into the pool of available slide-ins so that
they can be used in future projects by others.

5 DISCUSSION
JRing meets all requirements listed in section 1 by providing a
graphical user interface that can easily be used by the vast major-
ity of musicologists. While this GUI is merely a Humdrum GUI
from a technical point of view, it adds the user-oriented features
of notes and catalogues that are not present in the Humdrum
world. The system allows for complex searches and comparisons
by combining arbitrary musical abstractions in precise or fuzzy
searches using combinations of Humdrum’s patt and simil
commands. Due to its compliance with the slide-in approach, it
can easily be extended in a  fashion similar to Humdrum.

The limitation of JRing stem from the way in which searches and
comparisons can be formulated. While Humdrum allows ex-
tremely complex pattern definitions (see section 2.2), JRing pares
down searches to fixed length patterns that can merely be com-
bined with Boolean conjunctions (ANDs). Although patterns can
be matched using similarity, not even Boolean subjunctions (ORs)
are possible.

Still, this limitation appears to be acceptable as most musicologi-
cal queries done by traditional musicologists do not require the
maximum degree of flexibility offered by Humdrum. To make this
limitation acceptable to more demanding musicologists, JRing
maintains all notes as separate Humdrum files (with text informa-
tion as reference records). These files can be used independently
from JRing in Humdrum pipes to make full use of Humdrum’s
powerful yet difficult pattern matching syntax.

6 REFERENCES
[1] Bo Alphonce, The Invariance Matrix,

Dissertation, New Haven, CT, Yale University,
1974.

[2] Peter Castine, Set Theory Objects: Abstractions
for Computer-Aided Analysis and Composition
of Serial and Atonal Music, Frankfurt: Peter
Lang, 1994.

[3] Walter Hewlett, „MuseData: Multipurpose Re-
presentation“, Eleanor Selfridge-Field (ed.),
Beyond MIDI: The Handbook of Musical Codes,
Cambridge, MA: The MIT Press, 1997, pp. 402-
447.

[4] David Huron, The Humdrum Toolkit Reference
Manual, Menlo Park, CA, CCARH, 1994.

[5] David Huron, Keith Orpen, „Measurement of
Similarity in Music: A Quantitative Approach for
Non-parametric Re presentations“, Computers in
Music Research, Vol. 4, 1992, pp. 1-44.

[6] Andreas Kornstädt, „SCORE-to-Humdrum: A Gra-
phical Environment for Musicological Analysis“,
Computing in Musicology, Vol. 10, 1996,
pp. 105-122.

[7] Guerino Mazzola, Thomas Noll, and Oliver
Zahorka, „The RUBATO Platform“, Computing
in Musicology, Vol. 10, 1996, pp. 143-149.

[8] Nigel Nettheim, „Melodic Pattern-Detection Using
MuSearch in Schubert’s Die schöne Müllerin“,
Computing in Musicology, Vol. 11, 1998,
pp. 159-168.

[9] Eleanor Selfridge-Field, „Introduction“, Beyond
MIDI: The Handbook of Musical Codes,
Cambridge, MA, The MIT Press, 1997, pp. 3-38

[10] Michael Taylor, Humdrum Graphical User
Interface, MA Thesis, Belfast, Queen’s
University, 1996.


