
Thematic Extractor
Colin Meek

University of Michigan
1101 Beal Avenue

Ann Arbor MI 48104
1-734-763-1561

meek@umich.edu

William P. Birmingham
University of Michigan

1101 Beal Avenue
Ann Arbor MI 48104

1-734-936-1590

wpb@umich.edu

ABSTRACT
We have created a system that identifies musical keywords or
themes. The system searches for all patterns composed of melodic
(intervallic for our purposes) repetition in a piece. This process
generally uncovers a large number of patterns, many of which are
either uninteresting or only superficially important. Filters reduce
the number or prevalence, or both, of such patterns. Patterns are
then rated according to perceptually significant characteristics.
The top-ranked patterns correspond to important thematic or
motivic musical content, as has been verified by comparisons with
published musical thematic catalogs. The system operates robustly
across a broad range of styles, and relies on no meta-data on its
input, allowing it to independently and efficiently catalog
multimedia data.

1. INTRODUCTION
We are interested in extracting the major themes from a musical
piece: recognizing patterns and motives in the music that a human
listener would most likely retain. Thematic extraction, as we term
it, has interested musician and AI researchers for years. Music
librarians and music theorists create thematic indices (e.g., Köchel
catalog [1]) to catalog the works of a composer or performer.
Moreover, musicians often use thematic indices (e.g., Barlow's A
Dictionary of Musical Themes [2]) when searching for pieces
(e.g., a musician may remember the major theme, and then use the
index to find the name or composer of that work). These indices
are constructed from themes that are manually extracted by
trained music theorists. Construction of these indices is time
consuming and requires specialized expertise. Figure 1 shows a
simple example.

Background Material

1st Theme from Barlow

Figure 1: Sample Thematic Extraction from opening of
Dvorak's American Quartet
Theme extraction using computers has proven very difficult. The
best known methods require some ‘hand tweaking’ [3] to at least

provide clues about what a theme may be, or generate thematic
listings based solely on repetition and string length [4]. Yet,
automatically extracting major themes is an extremely important
problem to solve. In addition to aiding music librarians and
archivists, exploiting musical themes is key to developing
efficient music-retrieval systems. The reasons for this are twofold.
First, it appears that themes are a highly attractive way to query a
music-retrieval system. Second, because themes are much smaller
and less redundant than full pieces, by searching a database of
themes, we simultaneously get faster retrieval (by searching a
smaller space) and get increased relevancy. Relevancy is increased
as only crucial elements, variously named motives, themes,
melodies or hooks, are searched, thus reducing the chance that
less important, but commonly occurring, elements will fool the
system.
There are many aspects to music, such as melody, structure and
harmony, each of which may affect what we perceive as major
thematic material. Extracting themes is a difficult problem for
many reasons. Among these are the following:

• The major themes may occur anywhere in a piece. Thus,
one cannot simply scan a specific section of piece (e.g.,
the beginning).

• The major themes may be carried by any voice. For
example, in Figure 2, the viola, the third lowest voice,
carries the principal theme. Thus, one cannot simply
“listen” to the upper voices.

• There are highly redundant elements that may appear as
themes, but should be filtered out. For example, scales
are ubiquitous, but rarely constitute a theme. Thus, the
relative frequency of a series of notes is not sufficient to
make it a theme.

In this paper, we introduce an algorithm, Melodic Motive
Extractor (MME), that automatically extracts themes from a piece
of music, where music is in a note representation. Pitch and
duration information are given; metrical and key information is
not required.
MME exploits redundancy that is found in music: composers will
repeat important thematic material. Thus, by breaking a piece into
note sequences and seeing how often sequences repeat, we
identify the themes. Breaking up involves examining all note
sequence lengths of two to some constant. Moreover, because of
the problems listed earlier, we must examine the entire piece and
all voices. This leads to very large numbers of sequences (roughly
7000 sequences on average, after filtering), thus we must use a
very efficient algorithm to compare these sequences.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

Time

Pi
tc

h

Figure 2: Opening Phrase of Dvorak's “American” Quartet

Once repeating sequences have been identified, we must further
characterize them with respect to various perceptually important
features in order to evaluate if the sequence is a theme. Learning
how best to weight these features for the thematic value function
is an important part of our work. For example, we have found that
the frequency of a pattern is a stronger indication of thematic
importance than is the register in which the pattern occurs (a
counterintuitive finding). We implement hill-climbing techniques
to learn weights across features. The resulting evaluation function
then rates the sequences.
Across a corpus of 60 works, drawn from the Baroque, classical,
romantic and contemporary periods, MME extracts sections
identified by Barlow as “1st themes” over 98% of the time.

1.1 Problem Formulation
Input to MME is a set of note events making up a musical
composition N = {n1,n2...n3}. A note event is a triple consisting of
an onset time, an offset time and a pitch (in MIDI note numbers,
where 60 = ‘Middle C’ and the resolution is the semi-tone): ni =
<onset, offset, pitch>. We note that several other valid
representations of a musical composition exist, taking into
account amplitude, timbre, meter and expression markings among
others [6]. We limit the domain because pitch is reliably and
consistently stored in MIDI files--the most easily accessible
electronic representation for music--and because we are interested
primarily in voice contour as a measure of redundancy.
The goal of MME is to identify patterns and rank them according
to their perceptual importance as a theme. We readily
acknowledge that there may, in some cases, be disagreement
among listener about what constitutes a theme in a piece of music;
however, , we note that t published thematic catalogs represent
common convention. These catalogs thereby provide a concrete
measure by which the system can be evaluated..

2. Algorithm
In this section, we describe the operation of MME. This includes
identifying patterns and computing pattern characteristics, such
that “interesting” patterns can be identified. MME’s main
processing steps are the following:

1. Input
2. Register

3. Stream segregation
4. Filter top voice
5. Calculate event transitions
6. Generate event keys
7. Identify and filter patterns
8. Frequency
9. Compute other pattern features
10. Rate patterns
11. Return results

2.1 Input
MME generally takes as input MIDI files, which are translated
into lists of note events in the described format. Information is
also maintained about the channel and track of each event, which
is used to separate events into streams.

2.2 Register
Register is an important indicator of perceptual prominence [10]:
we listen for higher pitched material. For the purposes of MME,
we define register in terms of the voicing, so that for a set of n
concurrent note events, the event with the highest pitch is
assigned a register of 1, and the event with the lowest pitch is
assigned a register value of n. For consistency across a piece, we
map register values to the range [0,1] for any set of concurrent
events, such that 0 indicates the highest pitch, 1 the lowest.
Given the input set of events N[]:
1. Sort(N, onset[N])
2. ActiveList NULL
3. index 0
4. while index < n
4. onset Onset[N[index]]
5. • remove all inactive events
6. Remove(ActiveList, Offset[N] • Onset)
7. • add all events with the same onset
8. while index < n – 1 and Onset[N[index]] = onset
9. Register[N[index]] 0
10. add N[index] to ActiveList
11. increment index
12. • update Register value of active events
13. Sort(ActiveList, Pitch[ActiveList])
14. n Size[ActiveList] – 1
15. for j 0 to n
16. register n - j / n
17. if register > Register[ActiveList[j]]
18. Register[ActiveList[j]] register

Algorithm 1: Calculating Register
Table 1: Register values at each iteration of register algorithm

Adding e0 e1 e2 e3 e4 e5 e6 e7 ActiveList
e0 0 {e0}

e1 1 0 {e0, e1}

e2 1 0 1/2 {e0, e1, e2}

e3 1 0 1 0 {e2, e3}

e4, e5 1 0 1 2/3 1/3 0 {e2, e3, e4, e5}

e6, e7 1 0 1 2/3 1/3 0 1/2 1 {e4, e6, e7}

We need to define the notion of concurrency more precisely. Two
events with intervals I1 = [s1,e1] and I2 = [s2,e2] are considered
concurrent if there exists an common interval Ic = [sc,ec] such that
sc < ec and Ic ⊆ I1 ∧ Ic ⊆ I2. The simplest way of computing
these values is to walk through the event set ordered on onset
time, maintaining a list of (notes that are on) events, or events
sharing a common interval (see Algorithm 1).

Consider the example piece in Figure 3. The register value
assigned to each event {e0…e7} at each iteration is shown in
Table 1.

Time

Pi
tc

h

e0

e1

e2

e3

e4

e5

e6

e7

Figure 3: Register, Example Piece

2.3 Stream Segregation and Filtering Top
Voice
Generally, the individual channels of a MIDI file correspond to
the different instruments or voices of a piece. Figure 2 shows a
relatively straightforward example of segmentation, from the
opening of Dvorak's “American” Quartet, where four voices are
present. In cases where several concurrent voices are present in
one instrument, for example in piano music, we deal with only the
top sounding voice. This is clearly a restriction, albeit a
reasonable one, as certain events are disregarded. This restriction
is necessary . Although existing analysis tools, such as MELISMA
[7], perform stream segregation on abstracted music, i.e., note-
event representation, they have trouble with overlapping voices
[8], as seen between the middle voices in Figure 2.
Identifying the top sounding voice is not as straightforward as it
may appear. Some MIDI scores contain overlapping consecutive
events within a single voice. To avoid filtering out such notes, we
employ an algorithm similar to the register algorithm (see
Algorithm 1), wherein events are removed from the active list for
their particular channel some ratio (0.5) of their duration from
their onset, and as such avoid being falsely labeled as “lower-
sounding” notes. For instance, an event in the time interval [30,
50] will be removed from the active list when the sweep reaches
time 40.
Additionally, when long pauses (greater than some time constant)
are found in a stream, the stream is broken at that point. In this
manner, we exclude sequences enclosing large stretches of silence
from gaining arbitrary advantage from the duration feature.
For the purposes of this paper, we will indicate events using the
notation estream, index, such that e0,1 indicates the second note of the
first stream.

2.4 Calculating Transitions
We are primarily concerned with melodic contour as an indicator
of redundancy. For our purposes, contour is defined as the
sequence of pitch intervals across a sequence of note events in a
stream. For instance, the stream consisting of the following event

sequence: es = {<0, 1, 60>, <1, 2, 62>, <2, 3, 64>, <3, 4, 62>, <4,
5, 60>} has contour cs = {+2, +2, -2, -2}.
MME considers contour in terms of simple interval, which means
that although the sign of an interval (+/-) is considered, octave is
not. As such, an interval of +2 is equivalent to an interval of +14
= (+2 + octave = +2 + 12). We normalize each interval
corresponding to an event, i.e., the interval between that event and
its successor, to the range [-12, 12]:








−<−−

+≤≤−
=

−= +

o.w._mod
12_ if_mod

 12_12 if,_

][][_

,12

,,,12

,,

,

,1,,

is

isis

isis

is

isisis

intervalreal
intervalrealintervalreal

intervalrealintervalreal
c

ePitchePitchintervalreal

Another transition measure we employ is known as the Inter-
Onset Interval (IOI), used to describe the rhythmic content of a
sequence, and the rhythmic consistency of a pattern. This measure
ignores the rhythmic articulation of events, but maintains the
basic rhythmic information. In the above example, the IOI values
are simply {1, 1, 1, 1}:

][][][,1,, isisis eOnseteOnseteIOI −= +

2.5 Calculating Keys
To efficiently uncover patterns, or repeating sequences, we assign
a key k to each event in the piece that uniquely identifies a
sequence of m intervals, where m is the maximum pattern length
under consideration. Length refers to the number of intervals in a
pattern, one less than the number of events. The keys must exhibit
the following property:

},,,{},,,{)()(12,112,22,211,111,11,12,21,1 −++−++ =↔= misisismisisisisis ccccccmkmk KK

Since only 25 distinct simple intervals exist, we can refer to
sequences of intervals in radix-26 notation, reserving a digit (0)
for the ends of streams. An m-digit radix-26 number, where each
digit corresponds to an interval in sequence, thus uniquely
identifies that sequence of intervals, and our key values can then
be calculated as follows, re-mapping intervals to the range [1, 25]:

∑
−

=

−−
+ +=

1

0

1
,, 26*)13()(

m

j

jm
jisis cmk

The following derivations allow us to more efficiently calculate
the value of ks,i:

Equation 1

13)1(,, += isis ck

Equation 2





−
−≤+−

= +−
−+

..26*)(
 if)1()1(*26

)(
,

1,,
, woick

icnknk
nk icn

sis

snipip
is s

The second case of this last equation deals with the situation
where no additional information is gained by increasing n, since
there are no additional intervals to consider beyond the end of the
stream. It is derived from the observation that when

sci ≥ ,

0)1(, =isk , the end of stream zero padding.

By removing the most significant digit of a key)(, nk is
, we get the

key for the subsequent event)1(1, −+ nk is
:

Equation 3
1

,,1, 26*)1()()1(−
+ −=− n

isisis knknk

This in turn allows us to calculate the subsequent key value in
constant time, using Equation 2.
Using Equation 1 and Equation 2, we can calculate the key if the
first event in a stream in linear time with respect to the maximum
pattern length, or the stream length, whichever is smaller (this is
essentially an application of Horner’s Rule [9]). Equation 3
allows us to calculate the key of each subsequent event in constant
time (as with the Rabin-Karp algorithm [9]). As such, the overall
complexity for calculating keys is)(nΘ with respect to the
number of events.
Consider the following simple example for m = 4, a single phrase
from Mozart’s Symphony no. 40: c0 = {-1, 0, +1, -1, 0, +1, -1, 0
+8}.
First we calculate the key value for the first event (k0,0(4)), using
Equation 1 and Equation 2 recursively:

220076
12)14)1312*26(*26(*26

12)14))1()1(*26(*26(*26
12))1()2(*26(*26

)1()3(*26)4(

1,00,0

2,00,0

3,00,00,0

=
+++=

+++=
++=

+=

kk
kk

kkk

Then we calculate the remaining key values:

916426*)1()4()3(3
0,00,01,0 =−= kkk (Equation 3)

238277)1()3(*26)4(4,01,01,0 =+= kkk (Equation 2)

Using the same procedure, we generate the remaining key values:

0)4(369096)4(242684)4(220246)4(
254535)4(238277)4(220076)4(254528)4(

9,08,07,06,0

5,04,03,02,0

====
====

kkkk
kkkk

2.6 Identifying and Filtering Patterns
We employ one final derivation on k for the pattern identification:

Equation 4









=≤<∀ −nm

is
is

mk
nkmnn

26
)(

)(:0, ,
,

Events are then sorted on key so that pattern occurrences are
adjacent in the ordering. We make a pass through the list for
pattern lengths from]2[Kmn = , resulting in a set of patterns,
ordered from longest to shortest. This procedure is
straightforward: during each pass through the list, we group
together keys for which the value of)(nk - calculated using
Equation 4 – is the same. Such groups are consecutive in the
sorted list. Occurrences of a given pattern are then ordered
according to their onset time, a property necessary for later
operations.
Continuing with the Mozart example, sorting the keys we get:
{k0,9, k0,0, k0,3, k0,6, k0, 1, k0,4, k0,7, k0,2, k0,5, k0,8}.
On our first pass through the list, for n = 4, we identify patterns
{k0,0, k0,3} and {k0,1, k0,4}, since there keys are identical. During
the second pass, for n = 3, we identify patterns {k0,0, k0,3}, {k0,1,
k0,4} and {k0,2, k0,5}, noting that k0,2/264-3 = k0,5/264-3 (which by
Equation 4 indicates that a pattern of length three exists.)

Similarly, we identify the following patterns for n = 2: {k0,0, k0,3,
k0,6}, {k0,1, k0,4} and {k0,2, k0,5}. The patterns are shown in Table 2.

Table 2: Patterns in opening phrase of Mozart's
 Symphony no. 40

Pattern Occurrences at Characteristic interval
sequence

P0 e0, 0, e0, 3 {-1, 0, +1, -1}

P1 e0, 1, e0, 4 {0, +1, -1, 0}

P2 e0, 0, e0, 3 {-1, 0, +1}

P3 e0, 1, e0, 4 {0, +1, -1}

P4 e0, 2, e0, 5 {+1, -1, 0}

P5 e0, 0, e0, 3, e0, 6 {-1, 0}

P6 e0, 1, e0, 4 {0, +1}

P7 e0, 2, e0, 5 {+1, -1}

We associate a vector of parameter values
>=< ni vvvV ,,, 21 K and a set of occurrences to each pattern.

Length,
lengthv , is one such parameter. The assumption was made

that longer patterns are more significant, simply because they are
less likely to occur by chance.
As patterns are identified, they are filtered according to several
criteria. Since zero padding is used at the ends of streams, it must
be verified that a sequence does not overrun the end of a stream,
which frequently happens since all streams end with the same
zero-padding. Two other filtering criteria are considered as well:
intervallic variety, and doublings.

2.6.1 Intervallic Variety
Early experiments with this system indicated that sequences of
repetitive, simple pitch-interval patterns dominate given the
parameters outlined thus far. For instance, in the Dvorak example
(see Figure 2) the melody is contained in the second voice from
the bottom, but highly consistent, redundant figurations exist in
the upper two voices. Intervallic variety provides a means of
distinguishing these two types of line, and tends to favor
important thematic material since that material is often more
varied in terms of contour.
Given that intervallic variety is a useful indicator of how
interesting a particular passage appears, we count the number of
distinct intervals observed within a pattern, not including 0. We
calculate two interval counts: one in which intervals of +n or -n
are considered equivalent, the other taking into account interval
direction. Considering the entire Mozart example, which is indeed
a pattern within the context of the whole piece, there are three
distinct directed intervals, -1, +1 and 8, and two distinct
undirected intervals, 1 and 8.
At this stage, we filter out all patterns whose characteristic
interval sequence has below certain minimum values for these
interval counts. In addition, interval counts are maintained for
each pattern.

2.6.2 Doublings
Doublings are a special case in MME. A doubled passage occurs
where two or more voices simultaneously play the same line. In
such instances, only one of the simultaneous occurrences is

retained for a particular pattern, the highest sounding to maintain
the accuracy of the register measure.
We must provide a definition of simultaneity to clearly describe
this parameter. To provide for inexact performance, we allow for a
looser definition: two occurrences oa and ob, with initial events
es1,i1 and es2,i2 respectively, and length n, are considered
simultaneous if and only if

jisenjj +≤≤∀ 1,1:0, overlaps es2,i2+j.

Two events are in turn considered overlapping if they strictly
intersect. It is easier to check for the non-intersecting relations --
using the conventions and notations of Beek [11] -- es1,i1 before
(b) es2,i2 or the inverse (bi) (see Algorithm 2):
We check each occurrence of a pattern against every other
occurrence. Note that since occurrences are sorted on onset, we
know that if oi and oj are not doublings, where j > i, oi cannot
double ok for all k > j. This provides a way of curtailing searches
for doublings in our algorithm, and provides significant
performance gains (experimentally, a tenfold improvement). This
is because partial doublings rarely occur, where only some subset
of corresponding intervals is simultaneous.
Given a pattern P with n occurrences in O[] and length l
1. for i 0 to n – 2
2. for j i + 1 to n – 1
3. if ~Remove[O[i]] and ~Remove[O[j]]
4. Simultaneous = true
5. for k 0 to l
6. if ~Intersects(eStream[O[i]],Index[O[i]], eStream[O[j]],Index[O[j]]) then
7. Simultaneous false
8. k l + 1
9. if Simultaneous then
10. if Pitch(eStream[O[i]],Index[O[i]]) > Pitch(eStream[O[j]],Index[O[j]])
11. Remove[j] true
12. Doubled[i] true
13. else
14. Remove[i] true
15. Doubled[j] true
16. else
17. j n
18. Remove(O, Remove[O])

Algorithm 2: Filter Doublings
This doubling filtering occurs before other computations, and thus
influences frequency. We, however, retain the doubling
information (Lines 12 and 15, Algorithm 2), as it is a musical
emphasis technique.
If after filtering doublings less than two occurrences remain, the
pattern is no longer considered a pattern, and removed from
consideration. Doublings serve to reinforce a voice, and as such
do not constitute repetition.

2.7 Frequency
Frequency of occurrence is one of the principal parameters
considered by MME in establishing pattern importance. All other
things being equal, higher occurrence frequency is considered an
indicator of higher importance. Our definition of frequency is
complicated by the inclusion of partial pattern occurrences. For a
particular pattern, characterized by the interval sequence

},...,,{ 110 −lengthvCCC , the frequency of occurrences is defined as

follows:

length

vl

v

j ljjj

v

lCCC
length

length

∑ ∑
=

−

= −++

2 1

0 11 *},,,{of soccurrence
 filtered-un andredundant -non

K

An occurrence is considered non-redundant if it has not already
been counted, or partially counted (i.e., it contains part of another
sub-sequence that is longer or precedes it.) Consider the piece
consisting of the following interval sequence, in the stream e0:

}2,2,2,2,5,5,2,2,2,2,5,5,2,2,2,2{0 +−+−+−+−+−+−+−+−=c , and
the pattern 2,-5}2,-2,{-2, ++ . Clearly, there are two complete
occurrences at e0,0 and e0,6, but also a partial occurrence of length
four at e0,12. The frequency is then 2.8 for this pattern.
To efficiently calculate frequency, we first construct a set of
pattern occurrence lattices, on the following binary occurrence
relation p :
Given occurrences o1 and o2 characterized by event sequences E1
and E2, 2121 EEoo ⊂⇔p . In other words, each occurrence in the
lattice covers all patterns occurrences containing a subsequence of
that occurrence.
As such, in establishing frequency, we need consider only those
patterns covered by occurrences of P in the lattices. Two
properties of our data facilitate this construction:

1. The pattern identification procedure adds patterns in
reverse order of pattern length.

2. For any pattern occurrence of length n > 2, there are at
most two occurrences of length n – 1, one sharing the
same initial event, one sharing the same final event. If
one of these two child occurrences does not exist, it is
due to the filtering described above. Because of the
nature of the filtering, no patterns of length less than n –
1 will be covered by the occurrence in these instances,
so we need only generate links to occurrences of length
n – 1 in the lattices. The branching factor is thus limited
to two.

The lattice is described as follows: given a node representing an
occurrence of a pattern o with length l, the left child is an
occurrence of length l – 1 beginning at the same event. The right
child is an occurrence of length l – 1 beginning at the following
event. The left parent is an occurrence of length l + 1 beginning at
the previous event, and the right parent is an occurrence of length
l + 1 beginning at the same event. Consider the patterns the
Mozart excerpt (see Table 2): P0's first occurrence, with length 4
and at e0,0, directly covers two other occurrences of length 3: P2's
first occurrence at e0,0 (left child) and P3's first occurrence at e0,1
(right child). The full lattice is shown in Figure 4, where each
occurrence in the lattice is labeled with its respective pattern.
Lattices are constructed from the top down, since patterns are
added in reverse order of length. Each note event in the piece
contains a pointer to an occurrence, such that as occurrences are
added, lattice links can be built in constant time (see Algorithm
3).
Consider the patterns identified in the Mozart example (Table 2),
from which we build the lattice in Figure 1. When the first
occurrence of pattern P4 is inserted, o_left = the first occurrence
of P3, and o_right = null. Since P3 has the same length as P4, we
check the right parent of the o_right, and update the link between
those occurrences of P1 and P4. Other links are updated in a more
straightforward manner.

Given a series of n patterns P[]
1. for i 0 to n – 1
2. O Occurrences[P[i]]
3. for j 0 to Size[O]
4. • occurrence pointed to by the first event of O
5. o_right Occurrence[eStream[O[j]], eIndex[O[j]]]
6. • occurrence pointed to by the preceding event
7. if Index[O[j]] = 0
8. o_left null
9. else
10. o_left Occurrence[eStream[O[j]], eIndex[O[j]]-1]
11. • we consider three cases for the value of o_left
12. if o_left = null

• we learn nothing about the lattice
13. else if Length[o_left] > Length[O[j]]
14. Right_Child[o_left] O[j]
15. else
16. Right_Child[Right_Parent[o_left]] O[j]
17. • we consider two cases for the value of o_right
18. if o_right = null

• we learn nothing about the lattice
19. else
20. Right_Parent[O[j]] o_right • used in line 16
21. Left_Child[o_right] O[j]
22. Occurrence[eStream[O[j]], eIndex[O[j]]] O[j]

Algorithm 3: Lattice Construction

Length = 4

Length = 3

Length = 2

e0,0 e0,1 e0,2 e0,3 e0,4 e0,5 e0,6

P0 P0P1 P1

P2 P3 P4 P2 P3 P4

P5 P6 P7 P5 P6 P7 P5

right parent

left child

left parent

right child

Figure 4: Lattice for the First Phrase of Mozart's Symphony
no. 40
From this lattice, we easily identify non-redundant partial
occurrences of patterns. For each pattern, we perform a breadth-
first traversal from its occurrences in the lattice, marking patterns
and events as they are counted so that none are included twice.
Simultaneously, the number of doubled occurrences is counted. In
this manner, we calculate the value of the vdoublings and vfrequency
features for each pattern (see Algorithm 4).

Take for instance pattern P2 in the Mozart example. By breadth-
first traversal, starting from either occurrence of P2, the following
elements are added to Q: P2, P5 and P6. First, we add the two
occurrences of P2, tagging events e0,0, e0,1, … , e0,5, and setting
vfrequency 6. The first two occurrences of P5 contain tagged
events, so we reject them, but the third occurrence at e0,6 is un-
tagged, so we tag e0,6, e0,7, e0,8 and set vfrequency 6 + 2. All
occurrences of P6 are tagged, so the frequency of P2 is equal to 8 /
3.

Given a pattern P:
1. id unique identifier for pattern
2. Tag[P] id
3. push(Q, P)
4. while ~empty(Q)
5. • add chbildren to Queue (DFS)
6. pop(Q, p)
7. o_left Left_Child[Occurrences[p][0]]
8. o_right Right_Child[Occurrences[p][0]]
9. if o_left ~= null and Tag[Pattern][o_left] ~= id
10. Tag[Pattern[o_left]] id
11. push(Q, Pattern[o_left]])
12. if o_right ~= null and Tag[Pattern][o_right] ~= id
13. Tag[Pattern[o_right]] id
14. push(Q, Pattern[o_left]])
15. • count non-redundant occurrences of p
16. for i 0 to Size[Occurrences[p]] – 1
17. if events in Occurrences[p][i] have Tag ~= id 1

18. set Tag
id for all events in Occurrences[p][i]

19. vfrequency[P] vfrequency[P] + Length[Occurrences[p][i]]
20. vdoublings[P] vdoublings[P] + Length[Occurrences[p][i]]
21. vfrequency[P] vfrequency[P] / vlength[P]
22. vdoublings[P] vdoublings[P] / vlength[P]

Algorithm 4: Calculating Frequency

2.8 Other Pattern Features
Several pattern features have been described thus far: vinterval_count,
vabsolute_interval_count, vlength, vfrequency and vdoublings. In addition, we
consider pattern duration (vduration), rhythmic consistency (vrhythm),
position in the piece (vposition), and register (calculated from event
register, vregister).

2.8.1 Duration
The duration parameter is an indicator of the temporal interval
over which occurrences of a pattern exist. For a given occurrence
o, with initial event es1,i1 and final event es2,i2, the duration D(o) =
Offset[es2,i2] – Onset[es1,i1]. For a pattern P, with occurrences o0,
o1, ... , on-1, the distance parameter is calculated to be the average
duration of all occurrences:

n

oD
v

n

i
i

duration

∑
−

==

1

0

)(

2.8.2 Rhythmic Consistency
We calculate the rhythmic distance between a pair of occurrences
as the angle difference between the vectors built from the IOI
values of each occurrence. For occurrence o, with events E0, E1,
… , Elength – 1,2 the IOI vector is

>=< −][],...,[],[)(110 lengthEIOIEIOIEIOIoV . The rhythmic

distance between a pair of occurrences oa and ob is then the angle
distance between the vectors V(oa) and V(ob):










 ⋅= −

)()(
)()(cos),(1

ba

ba
ba oVoV

oVoVooD

1 If the first and last events of Occurrences[p][i] are un-tagged,

then we can assume the occurrence has not been counted even
in part, since previously considered occurrences are necessarily
of greater or equal length. As such, only the first and last events
are examined here.

2 We use the notation Ej to refer to an arbitrary event es,i. Note that
Ej and Ej+1 refer to consecutive events es,i and es,i+1.

Figure 5: Rhythmic Distance Measure
A 3-dimensional example of the rhythmic distance calculation
between two occurrences oa and ob is shown in
Figure 5.
We take the average of the distances between all occurrence (o0,
o1, ... , on-1) pairs for a pattern P to calculate its rhythmic
consistency:

2
)1(

2

0

1

1
))(),((

−

−

=

−

+=
∑ ∑

= nn

n

i

n

ij
ji

rhythm

oVoVD
v

This value is a measure of how similar different occurrences are
with respect to rhythm. Notice that two occurrences with the same
notated rhythm presented at different tempi have a distance of 0.
Consider the case where oa has k times the tempo of ob. In this
case,)()(ab okVoV = , and

0))(),(())(),((== aaba okVoVDoVoVD .

Occurrences with similar rhythmic profiles have low distance, so
this approach is robust with respect to performance and
compositional variation. For instance, in the Well-Tempered
Clavier Bach often repeats fugue subjects at half speed. The
rhythm vectors for the main subject statement and the subsequent
stretched statement will thus have the same angle, and a distance
of zero. Similarly, if two presentations of a theme have slightly
different rhythmic inflections, their IOI vectors will nonetheless
be quite similar.

2.8.3 Position
Noting that significant themes are sometimes introduced near the
start of a piece, we also characterize patterns according to the
onset time of their first occurrence (o). Note that occurrences are
sorted according to Onset as patterns are identified, so the first
occurrence is also the earliest occurrence:

][][],[oIndexoStreamposition eOnsetv =

2.8.4 Register
Given the register values calculated for note events, the register
value for a pattern P with occurrences o0, o1, ... , on-1, is equal to
the average register of all events contained in those occurrences:

)1(*

][][],[

1

0 0

+
=

+

−

= =
∑∑

length

joIndexoPhrase

n

i

v

j
register vn

eRegister
v

ii

length

2.9 Rating Patterns
For each pattern P, we have calculated several feature values. We
are interested in comparing the importance of these patterns, and a
convenient means of doing this is to calculate percentile values
for each parameter in each pattern, corresponding to the
percentage of patterns over which a given pattern is considered
stronger for a particular feature. These percentile values are stored
in a feature vector:
 >=< registercountintervalLength pppPF ,...,,][_

We define stronger as either less than or greater than depending
on the feature. Higher values are considered desirable for length,
duration, interval counts, doublings and frequency; lower values
are desirable for rhythmic consistency, pattern position and
register.
The rating of a pattern P, given some weighting of features W, is:
][][PFWPRating ⋅←

2.10 Returning Results
Patterns are then sorted according to their Rating field. This
sorted list is scanned from the highest to the lowest rated pattern
until some pre-specified number (k) of note events has been
returned. Often, MME will rate a sub-sequence of an important
theme highly, but not the actual theme, owing to the fact that parts

IOI: 11 5 12

IOI: 12 4 12

oa

ob

0
2

4
6

8
10

12

0

1

2

3

4

5
0

2

4

6

8

10

12

V(oa) V(ob)

40

)()(
)()(cos),(1

π≅










 ⋅= −

ba

ba
ba oVoV

oVoVooD

D(oa ,oa)

θ

>=< 12,5,11)(aoV

>=< 12,4,12)(boV

of a theme are more faithfully repeated than are others. As such,
MME will return an occurrence of a pattern with an added margin
on either end, corresponding to some ratio g of the occurrences
duration, and some ratio of the number of note events h,
whichever ratio yields the tightest bound.
In order to return a high number of patterns within k events, we
use a greedy algorithm to choose occurrences of patterns when
they are added: whichever occurrence adds the least number of
events is used.
Output from MME is a MIDI file consisting of a single channel of
monophonic (single voice) note events, corresponding to
important thematic material in the input piece.

3. Results
A set of 60 pieces from the Baroque, Classical, Romantic,
Impressionistic and 20th Century were used to train and test the
software. Bach, Mozart, Beethoven, Brahms, Schubert,
Mendelssohn, Dvorak, Smetana, Debussy, Bartok and Stravinsky
are represented, in chamber, orchestral and solo piano works.
A few details of MME’s configuration should be mentioned: the
intervallic variety filter required a minimum of at least zero
distinct intervals, and two distinct absolute intervals. Maximum
pattern length is set to 12 transitions, and streams are broken with
silences longer than one and a half seconds. For the sake of result
output and training, there is a margin of 0.5 on both ends for both
events and duration. Up to 240 note events are returned for each
piece, as compared with an average of over 8500 notes per piece
originally. We employ a hill-climbing algorithm to discover good
values for W.

3.1 Preliminary Results
Given even feature weighting, the primary theme was returned in
51 of the 60 pieces. Learning weights W across this entire set, and
testing across the same set, the primary theme was returned on 60
of the 60 pieces. These results are presented only to provide
context for later results, and to provide some indication of the
importance of learning appropriate weights.

3.2 Training Trials
We performed 30 trials, randomly selecting a 30-piece training set
for each trial. During each trial, the hill-climbing algorithm was
permitted 50 random restarts. These weights were then evaluated
against the test set, consisting of the remaining 30 pieces. In two
trials, MME identified 28 of the 30 primary themes, in seven trials
29 out of 30, and in 21 trials 30 out of 30, or on average roughly
29.6 out of 30, as compared with an expected average of 25.5 out
of 30 using even weights (see Figure 6.)

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Trial Number

N
um

be
r o

f P
rim

ar
y

Th
em

es
 R

et
ur

ne
d

C
or

re
ct

ly
 o

ut
 o

f 3
0

Figure 6: Trial Results

3.2.1 Weights
Examining the weights learned during the trials, we get some idea
of the relative importance of the different pattern features
examined. The average and median weights across the 30 trials
are listed in Table 3.
Of particular interest is the negative weight for absolute interval
count. Although our early experiments indicated that filtering
patterns with low intervallic variety improves algorithm
performance, it appears this parameter does not usefully
distinguish the remaining patterns. The weight given to the
register feature is perhaps most surprising., as we normally
associate important melodies with the highest-sounding voice in a
passage. Position is clearly the dominant feature, perhaps owing
to our focus on primary themes, which tend to occur near the
opening of pieces.

Table 3: Feature Weights

Feature Average
Weight

Median
Weight

absolute interval count -0.016249988 -0.021642894

register 0.051727027 0.041694308

doublings 0.085212347 0.055842776

interval count 0.121993193 0.110731687

frequency 0.119746216 0.125918866

rhythmic consistency 0.176786867 0.181440092

duration 0.233749767 0.237064805

length 0.344768215 0.274449283

position 0.819313306 0.872008477

3.2.2 Errors
Three pieces were responsible for all errors in MME’s output: the
first movement of Mozart’s Symphony no. 40, the second
movement of Brahms’ Cello Sonata in E minor, and Brahms’
Academic Festival Overture. In the first two cases, the proper
theme was only partly returned in some trials, and in the last case,
another theme sometimes dominated, albeit one that might be
considered subjectively more prevalent than that listed first in
Barlow.
Examining the Mozart example (see Figure 7), the opening few
notes exhibit a low absolute interval count (only minor seconds,
+/- 1), which explains why MME returned only the subsequent
portion of the theme in some trials. This piece was included in 20
of the 30 test sets, and in three of those cases, the output was
offset as described. In the remaining 17 cases, the proper theme
was returned in full.

Barlow, 1st theme
MME output includes

Figure 7: Mozart Symphony no. 40 1st Theme

In the case of the cello sonata, MME again selected only a portion
of the 1st theme, in four of the 14 trials in which it appeared in the
test set. This movement contains a great deal of repetition and
variation, on the one hand offering a wealth of potentially

important targets, and on the other, confusing the system due to
its reliance on exact repetition.
The Academic Festival Overture contains a large number of
themes, and in every trial, MME returned a fair number of them.
The first theme listed in Barlow, however, was returned only six
of the 10 times the piece appeared in the test set. In all cases,
MME returned another theme (see Figure 8).

Barlow theme

MME theme
Figure 8: Themes from Brahms' Academic Festival Orchestra

3.2.3 Sample of Output
MME’s output from Smetana’s The Moldau (a movement of My
Country) is shown in Figure 10. The first section A contains the
1st theme as indicated by Barlow. Section F contains a slight
rhythmic variation on the same material, and section H presents
the subsequent phrase. In addition, section B and D contain tonal
variations of the same material (presented here in the major,
whereas the main presentation is in the minor.) To many listeners,
these sections sound similar. This highlights a potential weakness
of the algorithm: although the correct material is returned, there is
redundancy in the output.

3.2.4 Popular Music
MME has been tested on several pieces of popular music, though
we present no formal results in the absence of an accepted
benchmark for system performance in this genre. Across 20 songs,
ranging from the Beatles to Nirvana, an untrained version of
MME returned the chorus where applicable, and what we
considered to be significant “hooks” in all cases.

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000

Number of Note Events in Input

Ti
m

e
(m

se
c)

Figure 9

4. Summary
Identifying the major themes in a sophisticated musical work is a
difficult task. The results show that MME correctly identifies the
major themes in 100% of the test cases (when learning is
employed), and identifies 85% of the major when learning is not
used.

It is interesting to note that MME contains no deep musical
knowledge, such as theory of melody, harmony, or rhythm.
Rather, it works entirely from surface features, such as pitch
contour, register, and relatively duration. We found, surprisingly,
that register is not a good indicator of the thematic importance.
MME is computationally efficient. The system’s overall
complexity is dominated by the frequency calculation, which in
the worst-case operates in)(23nmΘ time, where m is the
maximum pattern length under consideration, and n is the number
of note events in the input piece. In practice, however, we observe
sub-linear performance (see Figure 9), and reasonable running
times on even the largest input pieces.

5. Acknowledgements
We gratefully acknowledge the support of the National Science
Foundation under grant IIS-0085945, and The University of
Michigan College of Engineering seed grant to the MusEn
project. The opinions in this paper are solely those of the authors
and do not necessarily reflect the opinions of the funding
agencies.
We also thank member of the MusEn research group for their
comments. This group includes Greg Wakefield, Roger
Dannenberg, Mary Simoni, Mark Bartsch and Bryan Pardo.

� � �� ��
� �� � �� � �� �� �� �

��
�� � �� �� � �� � �� � ��

� �
��
� �� �� �� � �� �� � �� �� �� � �� �� � �� � �� �� �� � ��

� �
� � � � � � �� ��� � � � � � � � �� � � � ��

� �� �� �� � �� �� �� �� �� � ��

� � �� � �� � �� �� �� ��
������������ ������������ ������������

� � � � � � 	 � � � �
 � � � � � � � �
 � � � � �� � �� �
 � � � � � � � � � � � 	 �
� � ��

� �
��

� �� � ��
� �� �� �� �� �� � �� �� � �� � �� � �� �� �� � � ��

� �� ��

� �
�� � � � �� �� � � �

�� � � �� �� � � �

� � � � �� �� � � �

�� �� � �� 	 ��

� � � �� � �� � �� � �� �� � �� �� � �� �� � �� �� � �� �� � ��

A

B

C D

E

F

G H

Figure 10: Output from Smetana's Moldau

6. References
[1] Ludwig Ritter von Köchel. Chronologisch-thematisches

Verzeichnis sämtilicher Tonwerke Wolfgang Amadé
Mozarts; nebst Angabe der verlorengegangenen, ange
l’angene, von fremder Hand bearbelteten, zwelfelhaften
und unterschobe-nen Kompositionen. Wiesbaden,
Breitkopf & Härtel, 6th edition, 1964.

[2] H. Barlow. A dictionary of Musical Themes. Crown
Publish-ers, New York, 1975.

[3] David Cope. Experiments in Musical Intelligence. A-R
Editions, 1996.

[4] Alexandra and Uitdenbogerd. Manipulation of music for
melody matching. ACM Multimedia, Electronic
Proceedings, 1998.

[5] Y.-H. Tseng. Content-based retrieval for music
collections. SIGIR, 1999.

[6] M. Simoni, C. Rozell, C. Meek, and G. Wakefield. A
theoretical framework for electro-acoustic music.
ICMC, 2000.

[7] David Temperley. Modeling meter and harmony: A
preference-rule approach. Computer Music Journal, 23.

[8] David Temperley. A model for contrapontal analysis.
unpublished.

[9] R. L. Rivest T. H. Cormen, C. E. Leiserson.
Introduction to Algorithms. The MIT Press, Cambridge,
Mass., 1999.

[10] A.S. Bregman. Auditory Scene Analysis: The Perceptual
Organization of Sound. MIT Press.

[11] Peter van Beek. The design and experimental analysis of
algorithms for temporal reasoning. Journal of Artificial
Intelligence Research, 1996.

[12] Joseph G. D’Ambrosio, William O, Birmingham.
Preference-Directed Design. AI EDAM, 1994. R. L.
Rivest T. H. Cormen, C. E. Leiserson. Introduction to
Algorithms. The MIT Press, Cambridge, Mass., 1999.

	INTRODUCTION
	Problem Formulation

	Algorithm
	Input
	Register
	Stream Segregation and Filtering Top Voice
	Calculating Transitions
	Calculating Keys
	Identifying and Filtering Patterns
	Intervallic Variety
	Doublings

	Frequency
	Other Pattern Features
	Duration
	Rhythmic Consistency
	Position
	Register

	Rating Patterns
	Returning Results

	Results
	Preliminary Results
	Training Trials
	Weights
	Errors
	Sample of Output
	Popular Music

	Summary
	Acknowledgements
	References

