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ABSTRACT 
We have created a system that identifies musical keywords or 
themes. The system searches for all patterns composed of melodic 
(intervallic for our purposes) repetition in a piece. This process 
generally uncovers a large number of patterns, many of which are 
either uninteresting or only superficially important. Filters reduce 
the number or prevalence, or both, of such patterns. Patterns are 
then rated according to perceptually significant characteristics. 
The top-ranked patterns correspond to important thematic or 
motivic musical content, as has been verified by comparisons with 
published musical thematic catalogs. The system operates robustly 
across a broad range of styles, and relies on no meta-data on its 
input, allowing it to independently and efficiently catalog 
multimedia data. 

1. INTRODUCTION 
We are interested in extracting the major themes from a musical 
piece: recognizing patterns and motives in the music that a human 
listener would most likely retain. Thematic extraction, as we term 
it, has interested musician and AI researchers for years. Music 
librarians and music theorists create thematic indices (e.g., Köchel 
catalog [1]) to catalog the works of a composer or performer. 
Moreover, musicians often use thematic indices (e.g., Barlow's A 
Dictionary of Musical Themes [2]) when searching for pieces 
(e.g., a musician may remember the major theme, and then use the 
index to find the name or composer of that work). These indices 
are constructed from themes that are manually extracted by 
trained music theorists. Construction of these indices is time 
consuming and requires specialized expertise. Figure 1 shows a 
simple example. 
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Figure 1: Sample Thematic Extraction from opening of 
Dvorak's American Quartet 
Theme extraction using computers has proven very difficult. The 
best known methods require some ‘hand tweaking’ [3] to at least 

provide clues about what a theme may be, or generate thematic 
listings based solely on repetition and string length [4]. Yet, 
automatically extracting major themes is an extremely important 
problem to solve. In addition to aiding music librarians and 
archivists, exploiting musical themes is key to developing 
efficient music-retrieval systems. The reasons for this are twofold. 
First, it appears that themes are a highly attractive way to query a 
music-retrieval system. Second, because themes are much smaller 
and less redundant than full pieces, by searching a database of 
themes, we simultaneously get faster retrieval (by searching a 
smaller space) and get increased relevancy. Relevancy is increased 
as only crucial elements, variously named motives, themes, 
melodies or hooks, are searched, thus reducing the chance that 
less important, but commonly occurring, elements will fool the 
system. 
There are many aspects to music, such as melody, structure and 
harmony, each of which may affect what we perceive as major 
thematic material. Extracting themes is a difficult problem for 
many reasons. Among these are the following: 

• The major themes may occur anywhere in a piece. Thus, 
one cannot simply scan a specific section of piece (e.g., 
the beginning). 

• The major themes may be carried by any voice. For 
example, in Figure 2, the viola, the third lowest voice, 
carries the principal theme. Thus, one cannot simply 
“listen” to the upper voices. 

• There are highly redundant elements that may appear as 
themes, but should be filtered out. For example, scales 
are ubiquitous, but rarely constitute a theme. Thus, the 
relative frequency of a series of notes is not sufficient to 
make it a theme. 

In this paper, we introduce an algorithm, Melodic Motive 
Extractor (MME), that automatically extracts themes from a piece 
of music, where music is in a note representation. Pitch and 
duration information are given; metrical and key information is 
not required. 
MME exploits redundancy that is found in music: composers will 
repeat important thematic material. Thus, by breaking a piece into 
note sequences and seeing how often sequences repeat, we 
identify the themes. Breaking up involves examining all note 
sequence lengths of two to some constant. Moreover, because of 
the problems listed earlier, we must examine the entire piece and 
all voices. This leads to very large numbers of sequences (roughly 
7000 sequences on average, after filtering), thus we must use a 
very efficient algorithm to compare these sequences.  

Permission to make digital or hard copies of all or part of this 
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Figure 2: Opening Phrase of Dvorak's “American” Quartet  

Once repeating sequences have been identified, we must further 
characterize them with respect to various perceptually important 
features in order to evaluate if the sequence is a theme. Learning 
how best to weight these features for the thematic value function 
is an important part of our work. For example, we have found that 
the frequency of a pattern is a stronger indication of thematic 
importance than is the register in which the pattern occurs (a 
counterintuitive finding). We implement hill-climbing techniques 
to learn weights across features. The resulting evaluation function 
then rates the sequences. 
Across a corpus of 60 works, drawn from the Baroque, classical, 
romantic and contemporary periods, MME extracts sections 
identified by Barlow as “1st themes” over 98% of the time. 

1.1 Problem Formulation 
Input to MME is a set of note events making up a musical 
composition N = {n1,n2...n3}. A note event is a triple consisting of 
an onset time, an offset time and a pitch (in MIDI note numbers, 
where 60 = ‘Middle C’ and the resolution is the semi-tone): ni = 
<onset, offset, pitch>. We note that several other valid 
representations of a musical composition exist, taking into 
account amplitude, timbre, meter and expression markings among 
others [6]. We limit the domain because pitch is reliably and 
consistently stored in MIDI files--the most easily accessible 
electronic representation for music--and because we are interested 
primarily in voice contour as a measure of redundancy.  
The goal of MME is to identify patterns and rank them according 
to their perceptual importance as a theme. We readily 
acknowledge that there may, in some cases, be disagreement 
among listener about what constitutes a theme in a piece of music; 
however, , we note that t published thematic catalogs represent 
common convention. These catalogs thereby provide a concrete 
measure by which the system can be evaluated.. 

2. Algorithm 
In this section, we describe the operation of MME. This includes 
identifying patterns and computing pattern characteristics, such 
that “interesting” patterns can be identified. MME’s main 
processing steps are the following: 

1. Input  
2. Register 

3. Stream segregation 
4. Filter top voice 
5. Calculate event transitions 
6. Generate event keys 
7. Identify and filter patterns 
8. Frequency 
9. Compute other pattern features 
10. Rate patterns 
11. Return results 

2.1 Input 
MME generally takes as input MIDI files, which are translated 
into lists of note events in the described format. Information is 
also maintained about the channel and track of each event, which 
is used to separate events into streams. 

2.2 Register 
Register is an important indicator of perceptual prominence [10]: 
we listen for higher pitched material. For the purposes of MME, 
we define register in terms of the voicing, so that for a set of n 
concurrent note events, the event with the highest pitch is 
assigned a register of 1, and the event with the lowest pitch is 
assigned a register value of n. For consistency across a piece, we 
map register values to the range [0,1] for any set of concurrent 
events, such that 0 indicates the highest pitch, 1 the lowest. 
Given the input set of events N[]:
1. Sort(N, onset[N])
2. ActiveList NULL
3. index 0
4. while index < n
4. onset Onset[N[index]]
5. • remove all inactive events
6. Remove(ActiveList, Offset[N] • Onset)
7. • add all events with the same onset
8. while index < n – 1 and Onset[N[index]] = onset
9. Register[N[index]] 0
10. add N[index] to ActiveList
11. increment index
12. • update Register value of active events
13. Sort(ActiveList, Pitch[ActiveList])
14. n Size[ActiveList] – 1
15. for j 0 to n
16. register n - j / n
17. if register > Register[ActiveList[j]]
18. Register[ActiveList[j]] register

Algorithm 1: Calculating Register 
Table 1: Register values at each iteration of register algorithm 

Adding e0 e1 e2 e3 e4 e5 e6 e7 ActiveList 
e0 0        {e0} 

e1 1 0       {e0,  e1} 

e2 1 0 1/2       {e0, e1, e2} 

e3 1 0 1 0     {e2, e3} 

e4, e5 1 0 1 2/3 1/3 0   {e2, e3, e4, e5} 

e6, e7 1 0 1 2/3 1/3 0 1/2  1 {e4, e6, e7} 

We need to define the notion of concurrency more precisely. Two 
events with intervals I1 = [s1,e1] and I2 = [s2,e2] are considered 
concurrent if there exists an common interval Ic = [sc,ec] such that 
sc < ec and Ic ⊆  I1 ∧  Ic ⊆  I2. The simplest way of computing 
these values is to walk through the event set ordered on onset 
time, maintaining a list of (notes that are on) events, or events 
sharing a common interval (see Algorithm 1). 



Consider the example piece in Figure 3. The register value 
assigned to each event {e0…e7} at each iteration is shown in 
Table 1. 
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Figure 3: Register, Example Piece 

2.3 Stream Segregation and Filtering Top 
Voice 
Generally, the individual channels of a MIDI file correspond to 
the different instruments or voices of a piece. Figure 2 shows a 
relatively straightforward example of segmentation, from the 
opening of Dvorak's “American” Quartet, where four voices are 
present. In cases where several concurrent voices are present in 
one instrument, for example in piano music, we deal with only the 
top sounding voice. This is clearly a restriction, albeit a 
reasonable one, as certain events are disregarded. This restriction 
is necessary . Although existing analysis tools, such as MELISMA 
[7], perform stream segregation on abstracted music, i.e., note-
event representation, they have trouble with overlapping voices 
[8], as seen between the middle voices in Figure 2. 
Identifying the top sounding voice is not as straightforward as it 
may appear. Some MIDI scores contain overlapping consecutive 
events within a single voice. To avoid filtering out such notes, we 
employ an algorithm similar to the register algorithm (see 
Algorithm 1), wherein events are removed from the active list for 
their particular channel some ratio (0.5) of their duration from 
their onset, and as such avoid being falsely labeled as “lower-
sounding” notes. For instance, an event in the time interval [30, 
50] will be removed from the active list when the sweep reaches 
time 40. 
Additionally, when long pauses (greater than some time constant) 
are found in a stream, the stream is broken at that point. In this 
manner, we exclude sequences enclosing large stretches of silence 
from gaining arbitrary advantage from the duration feature. 
For the purposes of this paper, we will indicate events using the 
notation estream, index, such that e0,1 indicates the second note of the 
first stream. 

2.4 Calculating Transitions 
We are primarily concerned with melodic contour as an indicator 
of redundancy. For our purposes, contour is defined as the 
sequence of pitch intervals across a sequence of note events in a 
stream. For instance, the stream consisting of the following event 

sequence: es = {<0, 1, 60>, <1, 2, 62>, <2, 3, 64>, <3, 4, 62>, <4, 
5, 60>} has contour cs  = {+2, +2, -2, -2}. 
MME considers contour in terms of simple interval, which means 
that although the sign of an interval (+/-) is considered, octave is 
not. As such, an interval of +2 is equivalent to an interval of +14 
= (+2 + octave = +2 + 12). We normalize each interval 
corresponding to an event, i.e., the interval between that event and 
its successor, to the range [-12, 12]: 
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Another transition measure we employ is known as the Inter-
Onset Interval (IOI), used to describe the rhythmic content of a 
sequence, and the rhythmic consistency of a pattern. This measure 
ignores the rhythmic articulation of events, but maintains the 
basic rhythmic information. In the above example, the IOI values 
are simply {1, 1, 1, 1}: 

][][][ ,1,, isisis eOnseteOnseteIOI −= +
 

2.5 Calculating Keys 
To efficiently uncover patterns, or repeating sequences, we assign 
a key k to each event in the piece that uniquely identifies a 
sequence of m intervals, where m is the maximum pattern length 
under consideration. Length refers to the number of intervals in a 
pattern, one less than the number of events. The keys must exhibit 
the following property: 
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Since only 25 distinct simple intervals exist, we can refer to 
sequences of intervals in radix-26 notation, reserving a digit (0) 
for the ends of streams. An m-digit radix-26 number, where each 
digit corresponds to an interval in sequence, thus uniquely 
identifies that sequence of intervals, and our key values can then 
be calculated as follows, re-mapping intervals to the range [1, 25]: 
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The following derivations allow us to more efficiently calculate 
the value of ks,i: 

Equation 1 
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The second case of this last equation deals with the situation 
where no additional information is gained by increasing n, since 
there are no additional intervals to consider beyond the end of the 
stream. It is derived from the observation that when 

sci ≥ , 

0)1(, =isk , the end of stream zero padding. 

By removing the most significant digit of a key )(, nk is
, we get the 

key for the subsequent event )1(1, −+ nk is
: 



Equation 3 
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This in turn allows us to calculate the subsequent key value in 
constant time, using Equation 2. 
Using Equation 1 and Equation 2, we can calculate the key if the 
first event in a stream in linear time with respect to the maximum 
pattern length, or the stream length, whichever is smaller (this is 
essentially an application of Horner’s Rule [9]). Equation 3 
allows us to calculate the key of each subsequent event in constant 
time (as with the Rabin-Karp algorithm [9]). As such, the overall 
complexity for calculating keys is )(nΘ  with respect to the 
number of events. 
Consider the following simple example for m = 4, a single phrase 
from Mozart’s Symphony no. 40: c0 = {-1, 0, +1, -1, 0, +1, -1, 0 
+8}. 
First we calculate the key value for the first event (k0,0(4)), using 
Equation 1 and Equation 2 recursively: 
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Then we calculate the remaining key values: 

916426*)1()4()3( 3
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238277)1()3(*26)4( 4,01,01,0 =+= kkk  (Equation 2) 

Using the same procedure, we generate the remaining key values: 
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2.6 Identifying and Filtering Patterns 
We employ one final derivation on k for the pattern identification: 

Equation 4 
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Events are then sorted on key so that pattern occurrences are 
adjacent in the ordering. We make a pass through the list for 
pattern lengths from ]2[ Kmn = , resulting in a set of patterns, 
ordered from longest to shortest. This procedure is 
straightforward: during each pass through the list, we group 
together keys for which the value of )(nk - calculated using 
Equation 4 – is the same. Such groups are consecutive in the 
sorted list. Occurrences of a given pattern are then ordered 
according to their onset time, a property necessary for later 
operations. 
Continuing with the Mozart example, sorting the keys we get: 
{k0,9, k0,0, k0,3, k0,6, k0, 1, k0,4, k0,7, k0,2, k0,5, k0,8}. 
On our first pass through the list, for n = 4, we identify patterns 
{k0,0, k0,3} and {k0,1, k0,4}, since there keys are identical. During 
the second pass, for n = 3, we identify patterns {k0,0, k0,3}, {k0,1, 
k0,4} and {k0,2, k0,5}, noting that k0,2/264-3 = k0,5/264-3 (which by 
Equation 4 indicates that a pattern of length three exists.) 

Similarly, we identify the following patterns for n = 2: {k0,0, k0,3, 
k0,6}, {k0,1, k0,4} and {k0,2, k0,5}. The patterns are shown in Table 2. 

Table 2: Patterns in opening phrase of Mozart's 
 Symphony no. 40 

Pattern Occurrences at Characteristic interval 
sequence 

P0 e0, 0, e0, 3 {-1, 0, +1, -1} 

P1 e0, 1, e0, 4 {0, +1, -1, 0} 

P2 e0, 0, e0, 3 {-1, 0, +1} 

P3 e0, 1, e0, 4 {0, +1, -1} 

P4 e0, 2, e0, 5 {+1, -1, 0} 

P5 e0, 0, e0, 3, e0, 6 {-1, 0} 

P6 e0, 1, e0, 4 {0, +1} 

P7 e0, 2, e0, 5 {+1, -1} 

We associate a vector of parameter values 
>=< ni vvvV ,,, 21 K and a set of occurrences to each pattern. 

Length, 
lengthv , is one such parameter. The assumption was made 

that longer patterns are more significant, simply because they are 
less likely to occur by chance. 
As patterns are identified, they are filtered according to several 
criteria. Since zero padding is used at the ends of streams, it must 
be verified that a sequence does not overrun the end of a stream, 
which frequently happens since all streams end with the same 
zero-padding. Two other filtering criteria are considered as well: 
intervallic variety, and doublings. 

2.6.1 Intervallic Variety 
Early experiments with this system indicated that sequences of 
repetitive, simple pitch-interval patterns dominate given the 
parameters outlined thus far. For instance, in the Dvorak example 
(see Figure 2) the melody is contained in the second voice from 
the bottom, but highly consistent, redundant figurations exist in 
the upper two voices. Intervallic variety provides a means of 
distinguishing these two types of line, and tends to favor 
important thematic material since that material is often more 
varied in terms of contour. 
Given that intervallic variety is a useful indicator of how 
interesting a particular passage appears, we count the number of 
distinct intervals observed within a pattern, not including 0. We 
calculate two interval counts: one in which intervals of +n or -n 
are considered equivalent, the other taking into account interval 
direction. Considering the entire Mozart example, which is indeed 
a pattern within the context of the whole piece, there are three 
distinct directed intervals, -1, +1 and 8, and two distinct 
undirected intervals, 1 and 8. 
At this stage, we filter out all patterns whose characteristic 
interval sequence has below certain minimum values for these 
interval counts. In addition, interval counts are maintained for 
each pattern. 

2.6.2 Doublings 
Doublings are a special case in MME. A doubled passage occurs 
where two or more voices simultaneously play the same line. In 
such instances, only one of the simultaneous occurrences is 



retained for a particular pattern, the highest sounding to maintain 
the accuracy of the register measure.  
We must provide a definition of simultaneity to clearly describe 
this parameter. To provide for inexact performance, we allow for a 
looser definition: two occurrences oa and ob, with initial events 
es1,i1 and es2,i2 respectively, and length n, are considered 
simultaneous if and only if 

jisenjj +≤≤∀ 1,1:0,  overlaps es2,i2+j. 

Two events are in turn considered overlapping if they strictly 
intersect. It is easier to check for the non-intersecting relations -- 
using the conventions and notations of Beek [11] -- es1,i1 before 
(b) es2,i2 or the inverse (bi) (see Algorithm 2): 
We check each occurrence of a pattern against every other 
occurrence. Note that since occurrences are sorted on onset, we 
know that if oi and oj are not doublings, where j > i, oi cannot 
double ok for all k > j. This provides a way of curtailing searches 
for doublings in our algorithm, and provides significant 
performance gains (experimentally, a tenfold improvement). This 
is because partial doublings rarely occur, where only some subset 
of corresponding intervals is simultaneous. 
Given a pattern P with n occurrences in O[] and length l
1. for i 0 to n – 2
2. for j i + 1 to n – 1
3. if ~Remove[O[i]] and ~Remove[O[j]]
4. Simultaneous = true
5. for k 0 to l
6. if ~Intersects(eStream[O[i]],Index[O[i]], eStream[O[j]],Index[O[j]]) then
7. Simultaneous false
8. k l + 1
9. if Simultaneous then
10. if Pitch(eStream[O[i]],Index[O[i]]) > Pitch(eStream[O[j]],Index[O[j]])
11. Remove[j] true
12. Doubled[i] true
13. else
14. Remove[i] true
15. Doubled[j] true
16. else
17. j n
18. Remove(O, Remove[O])

Algorithm 2: Filter Doublings 
This doubling filtering occurs before other computations, and thus 
influences frequency. We, however, retain the doubling 
information (Lines 12 and 15, Algorithm 2), as it is a musical 
emphasis technique. 
If after filtering doublings less than two occurrences remain, the 
pattern is no longer considered a pattern, and removed from 
consideration. Doublings serve to reinforce a voice, and as such 
do not constitute repetition. 

2.7 Frequency 
Frequency of occurrence is one of the principal parameters 
considered by MME in establishing pattern importance. All other 
things being equal, higher occurrence frequency is considered an 
indicator of higher importance. Our definition of frequency is 
complicated by the inclusion of partial pattern occurrences. For a 
particular pattern, characterized by the interval sequence 

},...,,{ 110 −lengthvCCC , the frequency of occurrences is defined as 

follows: 
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An occurrence is considered non-redundant if it has not already 
been counted, or partially counted (i.e., it contains part of another 
sub-sequence that is longer or precedes it.) Consider the piece 
consisting of the following interval sequence, in the stream e0: 

}2,2,2,2,5,5,2,2,2,2,5,5,2,2,2,2{0 +−+−+−+−+−+−+−+−=c , and 
the pattern 2,-5}2,-2,{-2, ++ . Clearly, there are two complete 
occurrences at e0,0 and e0,6, but also a partial occurrence of length 
four at e0,12. The frequency is then 2.8 for this pattern. 
To efficiently calculate frequency, we first construct a set of 
pattern occurrence lattices, on the following binary occurrence 
relation p : 
Given occurrences o1 and o2 characterized by event sequences E1 
and E2, 2121 EEoo ⊂⇔p . In other words, each occurrence in the 
lattice covers all patterns occurrences containing a subsequence of 
that occurrence. 
As such, in establishing frequency, we need consider only those 
patterns covered by occurrences of P in the lattices. Two 
properties of our data facilitate this construction: 

1. The pattern identification procedure adds patterns in 
reverse order of pattern length. 

2. For any pattern occurrence of length n > 2, there are at 
most two occurrences of length n – 1, one sharing the 
same initial event, one sharing the same final event. If 
one of these two child occurrences does not exist, it is 
due to the filtering described above. Because of the 
nature of the filtering, no patterns of length less than n – 
1 will be covered by the occurrence in these instances, 
so we need only generate links to occurrences of length 
n – 1 in the lattices. The branching factor is thus limited 
to two. 

The lattice is described as follows: given a node representing an 
occurrence of a pattern o with length l, the left child is an 
occurrence of length l – 1 beginning at the same event. The right 
child is an occurrence of length l – 1 beginning at the following 
event. The left parent is an occurrence of length l + 1 beginning at 
the previous event, and the right parent is an occurrence of length 
l + 1 beginning at the same event. Consider the patterns the 
Mozart excerpt (see Table 2): P0's first occurrence, with length 4 
and at e0,0, directly covers two other occurrences of length 3: P2's 
first occurrence at e0,0 (left child) and P3's first occurrence at e0,1 
(right child). The full lattice is shown in Figure 4, where each 
occurrence in the lattice is labeled with its respective pattern. 
Lattices are constructed from the top down, since patterns are 
added in reverse order of length. Each note event in the piece 
contains a pointer to an occurrence, such that as occurrences are 
added, lattice links can be built in constant time (see Algorithm 
3). 
Consider the patterns identified in the Mozart example (Table 2), 
from which we build the lattice in Figure 1. When the first 
occurrence of pattern P4 is inserted, o_left = the first occurrence 
of P3, and o_right = null. Since P3 has the same length as P4, we 
check the right parent of the o_right, and update the link between 
those occurrences of P1 and P4. Other links are updated in a more 
straightforward manner. 



Given a series of n patterns P[]
1. for i 0 to n – 1
2. O Occurrences[P[i]]
3. for j 0 to Size[O]
4. • occurrence pointed to by the first event of O
5. o_right Occurrence[eStream[O[j]], eIndex[O[j]]]
6. • occurrence pointed to by the preceding event
7. if Index[O[j]] = 0
8. o_left null
9. else
10. o_left Occurrence[eStream[O[j]], eIndex[O[j]]-1]
11. • we consider three cases for the value of o_left
12. if o_left = null

• we learn nothing about the lattice
13. else if Length[o_left] > Length[O[j]]
14. Right_Child[o_left] O[j]
15. else
16. Right_Child[Right_Parent[o_left]] O[j]
17. • we consider two cases for the value of o_right
18. if o_right = null

• we learn nothing about the lattice
19. else
20. Right_Parent[O[j]] o_right • used in line 16
21. Left_Child[o_right] O[j]
22. Occurrence[eStream[O[j]], eIndex[O[j]]] O[j]

Algorithm 3: Lattice Construction 

Length = 4

Length = 3

Length = 2

e0,0 e0,1 e0,2 e0,3 e0,4 e0,5 e0,6

P0 P0P1 P1

P2 P3 P4 P2 P3 P4

P5 P6 P7 P5 P6 P7 P5

right parent

left child

left parent

right child
 

Figure 4: Lattice for the First Phrase of Mozart's Symphony 
no. 40 
From this lattice, we easily identify non-redundant partial 
occurrences of patterns. For each pattern, we perform a breadth-
first traversal from its occurrences in the lattice, marking patterns 
and events as they are counted so that none are included twice. 
Simultaneously, the number of doubled occurrences is counted. In 
this manner, we calculate the value of the vdoublings and vfrequency 
features for each pattern (see Algorithm 4). 

 
Take for instance pattern P2 in the Mozart example. By breadth-
first traversal, starting from either occurrence of P2, the following 
elements are added to Q: P2, P5 and P6. First, we add the two 
occurrences of P2, tagging events e0,0, e0,1, … , e0,5, and setting  
vfrequency  6. The first two occurrences of P5 contain tagged 
events, so we reject them, but the third occurrence at e0,6 is un-
tagged, so we tag e0,6, e0,7, e0,8 and set vfrequency  6 + 2. All 
occurrences of P6 are tagged, so the frequency of P2 is equal to 8 / 
3. 

Given a pattern P:
1. id unique identifier for pattern
2. Tag[P] id
3. push(Q, P)
4. while ~empty(Q)
5. • add chbildren to Queue (DFS)
6. pop(Q, p)
7. o_left Left_Child[Occurrences[p][0]]
8. o_right Right_Child[Occurrences[p][0]]
9. if o_left ~= null and Tag[Pattern][o_left] ~= id
10. Tag[Pattern[o_left]] id
11. push(Q, Pattern[o_left]])
12. if o_right ~= null and Tag[Pattern][o_right] ~= id
13. Tag[Pattern[o_right]] id
14. push(Q, Pattern[o_left]])
15. • count non-redundant occurrences of p
16. for i 0 to Size[Occurrences[p]] – 1
17. if events in Occurrences[p][i] have Tag ~= id 1

18. set Tag
id for all events in Occurrences[p][i]

19. vfrequency[P] vfrequency[P] + Length[Occurrences[p][i]]
20. vdoublings[P] vdoublings[P] + Length[Occurrences[p][i]]
21. vfrequency[P] vfrequency[P] / vlength[P]
22. vdoublings[P] vdoublings[P] / vlength[P]

Algorithm 4: Calculating Frequency 

2.8 Other Pattern Features 
Several pattern features have been described thus far: vinterval_count, 
vabsolute_interval_count, vlength, vfrequency and vdoublings. In addition, we 
consider pattern duration (vduration), rhythmic consistency (vrhythm), 
position in the piece (vposition), and register (calculated from event 
register, vregister). 

2.8.1 Duration 
The duration parameter is an indicator of the temporal interval 
over which occurrences of a pattern exist. For a given occurrence 
o, with initial event es1,i1 and final event es2,i2, the duration D(o) = 
Offset[es2,i2] – Onset[es1,i1]. For a pattern P, with occurrences o0,  
o1, ... , on-1, the distance parameter is calculated to be the average 
duration of all occurrences: 
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2.8.2 Rhythmic Consistency 
We calculate the rhythmic distance between a pair of occurrences 
as the angle difference between the vectors built from the IOI 
values of each occurrence. For occurrence o, with events E0, E1, 
… , Elength – 1,2 the IOI vector is 

>=< − ][],...,[],[)( 110 lengthEIOIEIOIEIOIoV . The rhythmic 

distance between a pair of occurrences oa and ob is then the angle 
distance between the vectors V(oa) and V(ob): 
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1 If the first and last events of Occurrences[p][i] are un-tagged, 

then we can assume the occurrence has not been counted even 
in part, since previously considered occurrences are necessarily 
of greater or equal length. As such, only the first and last events 
are examined here. 

2 We use the notation Ej to refer to an arbitrary event es,i. Note that 
Ej and Ej+1 refer to consecutive events es,i and es,i+1.  



Figure 5: Rhythmic Distance Measure 
A 3-dimensional example of the rhythmic distance calculation 
between two occurrences oa and ob is shown in 
Figure 5. 
We take the average of the distances between all occurrence (o0,  
o1, ... , on-1) pairs for a pattern P to calculate its rhythmic 
consistency: 
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This value is a measure of how similar different occurrences are 
with respect to rhythm. Notice that two occurrences with the same 
notated rhythm presented at different tempi have a distance of 0. 
Consider the case where oa has k times the tempo of ob. In this 
case, )()( ab okVoV = , and 

0))(),(())(),(( == aaba okVoVDoVoVD . 

Occurrences with similar rhythmic profiles have low distance, so 
this approach is robust with respect to performance and 
compositional variation. For instance, in the Well-Tempered 
Clavier Bach often repeats fugue subjects at half speed. The 
rhythm vectors for the main subject statement and the subsequent 
stretched statement will thus have the same angle, and a distance 
of zero. Similarly, if two presentations of a theme have slightly 
different rhythmic inflections, their IOI vectors will nonetheless 
be quite similar. 

2.8.3 Position 
Noting that significant themes are sometimes introduced near the 
start of a piece, we also characterize patterns according to the 
onset time of their first occurrence (o). Note that occurrences are 
sorted according to Onset as patterns are identified, so the first 
occurrence is also the earliest occurrence: 

][ ][],[ oIndexoStreamposition eOnsetv =  

2.8.4 Register 
Given the register values calculated for note events, the register 
value for a pattern P with occurrences o0,  o1, ... , on-1, is equal to 
the average register of all events contained in those occurrences: 
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2.9 Rating Patterns 
For each pattern P, we have calculated several feature values. We 
are interested in comparing the importance of these patterns, and a 
convenient means of doing this is to calculate percentile values 
for each parameter in each pattern, corresponding to the 
percentage of patterns over which a given pattern is considered 
stronger for a particular feature. These percentile values are stored 
in a feature vector: 
 >=< registercountintervalLength pppPF ,...,,][ _

 

We define stronger as either less than or greater than depending 
on the feature. Higher values are considered desirable for length, 
duration, interval counts, doublings and frequency; lower values 
are desirable for rhythmic consistency, pattern position and 
register. 
The rating of a pattern P, given some weighting of features W, is: 
 ][][ PFWPRating ⋅←  

2.10 Returning Results 
Patterns are then sorted according to their Rating field. This 
sorted list is scanned from the highest to the lowest rated pattern 
until some pre-specified number (k) of note events has been 
returned. Often, MME will rate a sub-sequence of an important 
theme highly, but not the actual theme, owing to the fact that parts 
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of a theme are more faithfully repeated than are others. As such, 
MME will return an occurrence of a pattern with an added margin 
on either end, corresponding to some ratio g of the occurrences 
duration, and some ratio of the number of note events h, 
whichever ratio yields the tightest bound. 
In order to return a high number of patterns within k events, we 
use a greedy algorithm to choose occurrences of patterns when 
they are added: whichever occurrence adds the least number of 
events is used. 
Output from MME is a MIDI file consisting of a single channel of 
monophonic (single voice) note events, corresponding to 
important thematic material in the input piece. 

3. Results 
A set of 60 pieces from the Baroque, Classical, Romantic, 
Impressionistic and 20th Century were used to train and test the 
software. Bach, Mozart, Beethoven, Brahms, Schubert, 
Mendelssohn, Dvorak, Smetana, Debussy, Bartok and Stravinsky 
are represented, in chamber, orchestral and solo piano works. 
A few details of MME’s configuration should be mentioned: the 
intervallic variety filter required a minimum of at least zero 
distinct intervals, and two distinct absolute intervals. Maximum 
pattern length is set to 12 transitions, and streams are broken with 
silences longer than one and a half seconds. For the sake of result 
output and training, there is a margin of 0.5 on both ends for both 
events and duration. Up to 240 note events are returned for each 
piece, as compared with an average of over 8500 notes per piece 
originally. We employ a hill-climbing algorithm to discover good 
values for W. 

3.1 Preliminary Results 
Given even feature weighting, the primary theme was returned in 
51 of the 60 pieces. Learning weights W across this entire set, and 
testing across the same set, the primary theme was returned on 60 
of the 60 pieces. These results are presented only to provide 
context for later results, and to provide some indication of the 
importance of learning appropriate weights. 

3.2 Training Trials 
We performed 30 trials, randomly selecting a 30-piece training set 
for each trial. During each trial, the hill-climbing algorithm was 
permitted 50 random restarts. These weights were then evaluated 
against the test set, consisting of the remaining 30 pieces. In two 
trials, MME identified 28 of the 30 primary themes, in seven trials 
29 out of 30, and in 21 trials 30 out of 30, or on average roughly 
29.6 out of 30, as compared with an expected average of 25.5 out 
of 30 using even weights (see Figure 6.) 
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Figure 6: Trial Results 

3.2.1 Weights 
Examining the weights learned during the trials, we get some idea 
of the relative importance of the different pattern features 
examined. The average and median weights across the 30 trials 
are listed in Table 3. 
Of particular interest is the negative weight for absolute interval 
count. Although our early experiments indicated that filtering 
patterns with low intervallic variety improves algorithm 
performance, it appears this parameter does not usefully 
distinguish the remaining patterns. The weight given to the 
register feature is perhaps most surprising., as we normally 
associate important melodies with the highest-sounding voice in a 
passage. Position is clearly the dominant feature, perhaps owing 
to our focus on primary themes, which tend to occur near the 
opening of pieces. 

Table 3: Feature Weights 

Feature Average 
Weight 

Median 
Weight 

absolute interval count -0.016249988 -0.021642894 

register 0.051727027 0.041694308 

doublings 0.085212347 0.055842776 

interval count 0.121993193 0.110731687 

frequency 0.119746216 0.125918866 

rhythmic consistency 0.176786867 0.181440092 

duration 0.233749767 0.237064805 

length 0.344768215 0.274449283 

position 0.819313306 0.872008477 

3.2.2 Errors 
Three pieces were responsible for all errors in MME’s output: the 
first movement of Mozart’s Symphony no. 40, the second 
movement of Brahms’ Cello Sonata in E minor, and Brahms’ 
Academic Festival Overture. In the first two cases, the proper 
theme was only partly returned in some trials, and in the last case, 
another theme sometimes dominated, albeit one that might be 
considered subjectively more prevalent than that listed first in 
Barlow. 
Examining the Mozart example (see Figure 7), the opening few 
notes exhibit a low absolute interval count (only minor seconds, 
+/- 1), which explains why MME returned only the subsequent 
portion of the theme in some trials. This piece was included in 20 
of the 30 test sets, and in three of those cases, the output was 
offset as described. In the remaining 17 cases, the proper theme 
was returned in full.  

Barlow, 1st theme
MME output includes

 
Figure 7: Mozart Symphony no. 40 1st Theme 

In the case of the cello sonata, MME again selected only a portion 
of the 1st theme, in four of the 14 trials in which it appeared in the 
test set.  This movement contains a great deal of repetition and 
variation, on the one hand offering a wealth of potentially 



important targets, and on the other, confusing the system due to 
its reliance on exact repetition. 
The Academic Festival Overture contains a large number of 
themes, and in every trial, MME returned a fair number of them. 
The first theme listed in Barlow, however, was returned only six 
of the 10 times the piece appeared in the test set. In all cases, 
MME returned another theme (see Figure 8). 
 

Barlow theme

MME theme  
Figure 8: Themes from Brahms' Academic Festival Orchestra 

 

3.2.3 Sample of Output 
MME’s output from Smetana’s The Moldau (a movement of My 
Country) is shown in Figure 10. The first section A contains the 
1st theme as indicated by Barlow. Section F contains a slight 
rhythmic variation on the same material, and section H presents 
the subsequent phrase. In addition, section B and D contain tonal 
variations of the same material (presented here in the major, 
whereas the main presentation is in the minor.) To many listeners, 
these sections sound similar. This highlights a potential weakness 
of the algorithm: although the correct material is returned, there is 
redundancy in the output. 

3.2.4 Popular Music 
MME has been tested on several pieces of popular music, though 
we present no formal results in the absence of an accepted 
benchmark for system performance in this genre. Across 20 songs, 
ranging from the Beatles to Nirvana, an untrained version of 
MME returned the chorus where applicable, and what we 
considered to be significant “hooks” in all cases. 
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Figure 9 

4. Summary 
Identifying the major themes in a sophisticated musical work is a 
difficult task. The results show that MME correctly identifies the 
major themes in 100% of the test cases (when learning is 
employed), and identifies 85% of the major when learning is not 
used. 

It is interesting to note that MME contains no deep musical 
knowledge, such as theory of melody, harmony, or rhythm. 
Rather, it works entirely from surface features, such as pitch 
contour, register, and relatively duration. We found, surprisingly, 
that register is not a good indicator of the thematic importance. 
MME is computationally efficient. The system’s overall 
complexity is dominated by the frequency calculation, which in 
the worst-case operates in )( 23nmΘ  time, where m is the 
maximum pattern length under consideration, and n is the number 
of note events in the input piece. In practice, however, we observe 
sub-linear performance (see Figure 9), and reasonable running 
times on even the largest input pieces.  
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Figure 10: Output from Smetana's Moldau 
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