
SCORE PROCESSING FOR MIR
Donncha S. Ó Maidín

Centre for Computational Musicology and Computer
Music

Department of Computer Science and Information
Systems

University of Limerick
353(0)61202705

donncha.omaidin@ul.ie

Margaret Cahill
Centre for Computational Musicology and Computer

Music
Department of Computer Science and Information

Systems
University of Limerick

353(0)61202759

margaret.cahill@ul.ie

ABSTRACT
The focus of this paper is on the design and use of a music score
representation. The structure of the representation is discussed
and illustrated with sample algorithms, including some from
music information retrieval. The score representation was
designed for the development of general algorithms and
applications. The common container-iterator paradigm is used, in
which the score is modelled as a container of objects, such as
clefs, key signatures, time signatures, notes, rests and barlines.
Access to objects within the score is achieved through iterators.
These iterators provide the developer with a mechanism for
accessing the information content of the score. The iterators are
designed to achieve a high level of data hiding, so that the user is
shielded from the substantial underlying complexity of score
representation, while at the same time, having access to the
score’s full information content.

1. INTRODUCTION
The focus of this paper is on representing music scores. The

music score is the primary document for practically all music of
the past. It holds a primary place in literacy, in education, in
composition and performance and in music theory.

In the computer era, two main sources for digital versions of
scores arise. The first of these is from digitising initiatives, such as
those at Center for Computer Assisted Research in the Humanities
at Stanford University. The second comes as a by-product of
music publishing. These activities have resulted in the production
quantities of machine-readable scores. Unfortunately, not all of
these efforts are readily usable in IR research. Lack of agreed
open standards and lack of openness on the part of notation
software developers form some of the main barriers to more
general use.

In practice MIDI has become the representation used in
much of music information retrieval research. The MIDI standard
was invented to capture the gestures of a keyboard player. Its
ability to provide the pitch and duration content of music has
resulted in its acceptability for music research. However basic
MIDI representation is radically different from score
representation. Rests, slurs, barlines, staccatos, trills, ornaments,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page.

triplets and chromaticisms, are examples of concepts that are not
explicit in MIDI.

An alternate prospect to using MIDI is that of having an
availability of music scores, encoded to professional editorial
standards, together with appropriate tools. One consequence of

 this approach is that the music IR researcher may work with
the full information content of a score, rather than a simplified
view of pitch and duration. Additionally this approach will serve
to facilitate cooperation between the music IR researcher and
music theorists, who deal primarily with the score.

2. CONTAINER-ITERATOR
Some endeavours in Computer Science have been concerned with
discovering useful ways for organising collections of data. One of
the most basic ways of organising data is to conceive of a complex
object as a collection of objects that are included in a container.
Objects within the container are accessed by means of iterators.
Iterators are often characterised as ‘safe’ pointers – that is that
they can point to objects within a container, and can be safely
manipulated, or moved about so as to make all of the internal
objects accessible. The success of this approach has led to the
development of many libraries, the most widely used one being
the C++ Standard Template Library that was developed at
Hewlett-Packard Labs by Alexander Stepanov and Meng
Lee[1][2] and was adapted as part of ANS and ISO standards in
the 90’s. The containers in the STL allow the user to structure the
data as vectors, lists, deques, sets, maps, stack and queues. Most
of these data structures are one-dimensional. Their associated
iterators are built so that all objects in the more general containers
may be accessed in a left-to-right fashion, and possibly in a
reverse order. Additionally some iterator/container combinations
allow random access to the contained objects.

It is appropriate to consider how the music score may be modelled
as a container. Items in a score may be represented as objects
within the container. Objects are used to represent notes, barlines,
key and time signature. Iterators allow the software developer
access to the information content of a score.

A strict adherence to the S.T.L. model has proved inappropriate
for score representation and manipulation. In S.T.L., one of the
main functions of iterators is to allow access to container
members. In C.P.N.View, the iterator is used to carry out the
substantial scoping resolution. Automatic scorping resolution is
essential in order to achieve an appropriate level of abstraction or
complexity hiding. Iterators must be able to randomly access
objects (e.g. the uppermost object half ways through bar no 22 in
the second violin line). Iterators may be required to move

vertically, to access harmony or horizontally to follow a melody.
The iterator must, at the same time keep track of scoping
information about aspects of the current context such as clef, key
signature, time signature, metronome settings, tempo indications,
accidental alterations and location within a bar. This is necessary
in order to free the user from the considerable scoping
complexities, that would otherwise tend to get in the way of the
development.

3. COMMON PRACTICE NOTATION
VIEW
C.P.N.View[3][4] is a score representation written in C++, that
was developed in the mid-1990s. It implements a representation
of scores as containers and provides iterators for use with
algorithms. A score object is created either algorithmically or by
using one of the components for converting from various file-
based representations (ALMA, *kern, NIFF, EsAC).

Creating a score object:

Score s(filename);

One or more score iterators may be created in order to gain access
to the internal objects in the score as

ScoreIterator si(s);

For the initial examples we will assume that the score is
monophonic.

A number of functions exist to move the score iterator about the
score. Random access is achieved using the locate member
function. This moves the iterator to an arbitrary place in the score

si.locate(NOTE, 23);

will move the iterator si to the 23rd note of the score. This function
returns a TRUE/FALSE value to signal the success or otherwise
of the operation. For example if we call this function on a score
that has only 22 notes, we get a FALSE result. Almost all of the
functions in C.P.N.View return a TRUE/FALSE result, where
appropriate.

si.locate(BAR, 20);

moves the iterator si to the start of the 20th bar of the score, if it
exists.

Relative movement of the iterator is achieved by the step member
function. This function may take a parameter, indicating the kind
of object that it is required to move to. The following code
fragment may be used to traverse all of the notes of the score
contained in filename.

Score s(filename);
ScoreIterator si(s);
while (si.step(NOTE))
{
 doSomething(si);
}

Iterators in C.P.N.View are used to directly extract information

about the objects in the score. C.P.N.View iterators carry out
domain level processing. Much of this processing is involved with
resolving contextual information. For example, where a score
iterator points to a note, the member function pitch12() returns
the chromatic note number (effectively the MIDI note number).
C.P.N.View performs the following operations automatically. (1)
key signature in use; (2) checks if any accidental alterations are
present since the start of the bar in which the note in question
resides, and (3) calculates relevant adjustments to the final pitch
of the current note. Using all of this information the correct
pitch12 value is returned.

The following fragment illustrates how the constructs discussed so
far can be used to identify and print out the highest and lowest
note of a piece and to calculate the pitch range of the piece.

Score s(filename);
ScoreIterator si(s);
si.step(NOTE);
ScoreIterator highest = si, lowest = si;
while (si.step(NOTE))
{
if (si.getPitch12() < lowest.getPitch12()) lowest = si;
if (si.getPitch12() > highest.getPitch12()) highest = si;
}
std::cout << “\nHighest note is “ << highest;
std::cout << “\nLowest note is “ << lowest;
std::cout << “\nRange is “ << highest.getPitch12() – lowest.getPitch12()
<< “ semitones.\n”;

Similarly, a program to locate the longest and shortest note in a
piece, excluding grace notes,

Score s(filename);
ScoreIterator si(s);
si.step(NOTE);
ScoreIterator longest = si, shortest = si;
while (si.step(NOTE))
{
 if (!si.hasAttribute(GRACE_NOTE))
 {

if (si.getRDuration() < shortest.getRDuration()) shortest = si;
if (si..getRDuration() > highest.getRDuration()) longest = si;

 }
}
std::cout << “\nLongest note is “ << longest;
std::cout << “\nShortest note is “ << shortest;

A question arises of what happens if we run these programs on a
polyphonic score? The answer is that these will work and produce
meaningful results.

To explain what happens it is necessary to consider two cases.
The first one is where a score consist of a single stave, but has
simultaneous notes. Some examples of this will be found in string
music in which multiple stopping occurs. More complicated
examples happen in scores where two lines occupy the same
stave.

An iterator in C.P.N.View has an internal mode setting of MONO
or POLY. In MONO mode the iterator traverses the uppermost
notes on each stave only, and skips others. In POLY mode the
iterator traverses all of the notes, moving vertically, from top to

bottom, where possible, and moving to the next highest rightmost
object otherwise.

Functions exist for setting and querying the scanning mode of an
iterator.

si.putScanMode(MONO);

si.putScanMode(POLY);

getScanMode();

Figures 1 and 2 show iterators in MONO and POLY mode
operating on a single stave piece.

Figure.1 Single stave traversal in MONO mode

Figure 2 Single stave traversal in POLY mode

By default, the iterators created above will have MONO scan
modes if the score contained in filename has one stave.

On the other hand, if the score is a multistave score, the scan
mode will default to POLY, and the iterator will scan all of the
objects in the score. To understand how the iterators scan across
multiple staves, it is necessary to regard the score as being divided
vertically into windows. Each window has an associated width,
corresponding to a time span. The left and right borders of each
window correspond to onsets or offsets of notes or rests. A
window may not contain internal onsets or offsets.

Successive calls to the step() function moves the iterator
vertically, wherever possible, from the uppermost object on the
top stave in a window to objects on the lowermost stave in the
same window. Where the score iterator points to the lowermost
allowable object, a call made to step() moves the iterator to the
uppermost object in the next adjacent window to the right. Figure
3 shows an such an iterator. Figure 4 demonstrates the concept of
dividing the score into vertical windows.

Figure 3 Multi-stave traversal in POLY mode

Figure 4 Multi-stave score divided into vertical windows

The program fragments above will work correctly with a
polyphonic score and will search through all of the notes present.
The occurrence of different clefs, changes in key and accidental
changes in the score are all dealt automatically.

In cases where we want to scan individual staves of a polyphonic
score, the constructor for the ScoreIterator takes an additional
parameter corresponding to the stave number. The uppermost
stave is numbered 0. An iterator created in this way will have a
default scanning mode of MONO. To access objects on the last
stave of a polyphonic score that has 10 staves, the following
iterator could be used.

ScoreIterator si(s, 9);

In the previous examples, we have seen use of the member
functions locate, step, getPitch12, getRDuration, getScanMode
and putScanMode. A design strategy arises in creating such
information retrieving functions. One could aim to design a
minimal set of functions to retrieve the basic information content
from the score. Such a minimal set will compromise convenience.
The opposite approach of providing functions to retrieve every
conceivable form will make things more difficult for the user, who
will have a larger set to sift through and remember. The current
set of 131 functions and operators might appear to lean towards
the second approach. However many of these operators and
functions cluster into families and thereby reduce the cognitive
load in familiarization. Also many of these group into meaningful
pairs. For example most member functions that start with ‘get’
have a counterpart that starts with ‘put’. Additionally some of
these are more frequently used than others. For example the step
and locate functions are the main navigation mechanisms. There
is very little additional to learn. The getPitch12, getRDuration
deliver information similar to that available in a basic MIDI file.
A short review of some of the main functions is given below.

The getTag member function give the type of object that is
current.

If the current object is a note or rest, duration values may be
retrieved

getHead() returns the head value,

getDots() returns the dot count,

getRDuration() retrieves the rational time value of the note or
rest, including the resolution of groupette scoping.

Pitch information can be retrieved in many forms, including

getAlpha() returns the alphabetic note name,

getOctave() returns the octave number,

getAccid() returns details of any accidental placed directly on the
note,

getPitch12() returns the MIDI pitch number of the note, with all
necessary scoping resolved,

Many function return scoping information. These include the self
obvious getKeySig(), getTimeSig(), getClef(), getBarNo().

getBarDist() returns the distance of the current position from the
start of the bar.

A facility exists for annotating any score object, and for querying
these annotations.

4. IR EXAMPLES
The following illustrates the use of C.P.N.View in an IR context.
It contains a complete implementation of the dynamic
programming algorithm as documented in Sequence-Based
Melodic Comparison: A Dynamic-Programming Approach[5].
The two encoded score fragments used in the algorithm have been
encoded in two files that appear in lines 1 and 2. These are
“Innsbruck ich muss dich lassen” and “Nun ruhen alle Waelder”.

This algorithm is based on the concept of a minimal edit cost of
transforming a source melody into a target melody, using
operations of insert, delete and replace. The cost matrix d,
represents the minimal cost of transforming the notes of the
source tune, represented in rows, into notes of the target tune
represented across the columns. The recurrence equations for
generating the matrix are

000 =d a1

1),,(0,10 ≥+= − iawdd iii φ a2

1),,(1,00 ≥+= − jbwdd jjj φ a3

)},(),,(),,(min{ 1,1,1,1 jjijijiiji

ji

bwdbawdawd

d

φφ +++

=

−−−−

 a4
Where

),(φiaw , is the cost of inserting note ai,

),(jbw φ , is the cost of deleting bj,,

both of these have value 4 in this example.

),(ji baw , is the cost of substituting ai with bj,

This cost is calculated by taking the absolute value of the
difference in MIDI note number, then adding half the absolute
value of the difference in duration measured in 16th note units.

Score s1("C:\\Mdb\\Others\\inns.alm"); // 1
Score s2("C:\\Mdb\\Others\\nur.alm"); // 2
ScoreIterator si1(s1); // 3
ScoreIterator si2(s2); // 4
ScoreIterator siAr1[100] = {ScoreIterator()},
 siAr2[100]= {ScoreIterator()}; // 5
int length1 = 0; // 6
while (si1.step(NOTE)) siAr1[++length1] = si1; // 7
int length2 = 0; // 8
while (si2.step(NOTE)) siAr2[++length2] = si2; // 9
double diffMatrix[100][100]; // 10
int i, j; // 11
diffMatrix[0][0] = 0.0;

for (i = 1; i <= length1; i++) //12

diffMatrix[i][0] = diffMatrix[i-1][0] + 4.0; //13
for (j = 1; j <= length2; j++) //14

diffMatrix[0][j] = diffMatrix[0][j-1] + 4.0; // 15

for (i = 1; i <= length1; i++) // 16
{
 for (j = 1; j <= length2; j++) // 17
 {
 diffMatrix[i][j] = // 18
 min3(
 diffMatrix[i-1][j] + 4.0, // 19
 diffMatrix[i][j-1] + 4.0, // 20
 diffMatrix[i-1][j-1] + // 21
 fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12()) +
 0.5*16*fabs(siAr1[i].getRDuration()- siAr2[j].getRDuration()));
 }
}

Lines 1 to 9 two arrays siAr1 and siAr2 are created, and contain
iterators that point to each note of the score

Lines 12 to 15 correspond to equations a1, a2 and a3.

Lines 16 to 21 implement a4.

The function min3 is not documented here.

 Table 1. The difference matrix diffMatrix.

 A F G A B C B A

 0 4 8 12 16 20 24 28 32

F 4 6 6 10 14 18 22 26 30

F 8 8 6 8 12 16 20 24 28

G 12 10 10 6 10 14 18 22 26

A 16 14 14 10 9 13 17 19 22

C 20 18 18 14 13 14 15 19 22

B 24 22 22 18 17 16 18 15 19

A 28 26 26 22 21 20 21 19 15

Each cell in the matrix represents the difference at a particular
point between the two fragments of “Innsbruck ich muss dich
lassen” and “Nun ruhen alle Waelder”. The total distance between
the two melodies is represented by the value in the bottom right
corner, 15. The combination of edit operators that yield this result
may also be determined by tracing the best path from the bottom,
rightmost cell to the top left corner.

In this example, it will appear that little is to be gained from
using the score representation instead of MIDI. However it is
worth emphasising that the with score representation this
algorithm may be refined since all of the information content of
the score is available. Some examples of using score information,
instead of MIDI may be gleaned from the following possibilities.
Stressed notes may be distinguished by their position in the bar,
using information for getBarDist and getTimeSig functions.
Using these, one could allow greater weights for inserting and
deleting stressed notes. Pitch information can be dealt with at a
finer level by distinguishing between enharmonic versions of the
same note. Hence a C sharp may be treated differently than a D
flat. A policy on handling rests will be necessary, if this algorithm
is to have general applicability. The algorithm is not explicit on
how grace notes are handled. Are they to be treated as part of the
pitch contour? Perhaps a researcher may wish to treat them as
providing extra emphasis on the following note.

A final example will illustrate a partial implementation of this
same basic algorithm, as it was designed by Mongeau and
Sankoff[6]. They used a more sophisticated model for the
calculation of replacement costs than in the previous example.
The previous example was encoded above as part of line 21, by
calculating the absolute value of the two MIDI note number.

fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12())

Mongeau and Sankoff used the pitch differences between pairs of
notes to calculate difference weights, based on consonances of
their intervals. This involves a simple table look-up for diatonic
notes. However for comparing pairs of notes in cases where one
or other note involved is chromatic, an alternate table is used, as is
reflected in the following algorithm. The array deg holds the
difference weights for the diatonic table and ton holds the
corresponding weights for chromatic intervals.

The algorithm checks if the notes involved are diatonic, and
applies the appropriate transformation. The function pitchD is a
simplified version of the production algorithm, that is applicable
to music is in a major key only.

The function noteInKey was developed specifically for this
application. Its coding is given below.

int ScoreIterator::noteInKey()

{
 int key = currentKs;
 int actual12 = getPitch12();
 int actual7 = getPitch7();
 int nrOctaves7 = actual7/7;
 int octaveDisp12 = nrOctaves7*12;
 int scaleStep7 = actual7%7;
 int diatonicSteps[] = {0,2,4,5,7,9,11};
 int unalteredPitch12 = octaveDisp12 + diatonicSteps[scaleStep7] +
 getKeySigAdjust();
 if (unalteredPitch12 == actual12) return TRUE;
 return FALSE;
}

double pitchD(ScoreIterator &si1, int major1, ScoreIterator & si2)
{
 double pitchDist = 0;
 if (inKey(si1, major1))
 {
 double deg[] = {0.0, 0.9, 0.2, 0.5, 0.1, 0.35, 0.8};
 double ton[] = {0.6, 2.6, 2.3, 1.0, 1.0, 1.6, 1.8, 0.8,
 1.3, 1.3, 2.2, 2.5};
 if (si1.noteInKey() && si2.noteInKey())
 {
 int diatonicSteps = fabs(si1.getPitch7() –
 si2.getPitch7());
 diatonicSteps = diatonicSteps % 7;
 pitchDist = deg[diatonicSteps];
 }
 else
 {
 int chromaticSteps = fabs(si1.getPitch12() –
 si2.getPitch12());
 chromaticSteps = chromaticSteps % 12;
 pitchDist = ton[chromaticSteps];
 }
 }
 return pitchDist;
}

5. CONCLUSION
Processing of music scores gives the prospect for accessing ever
increasing corpora that have been created to high editorial
standards. The Container/Iterator model gives an appropriate tool
for algorithmic construction. Experience with C.P.N.View raises
some interesting issues. An illustration of one such, that has been
mentioned earlier in this paper is on devising an optimal set of
operations to include in C.P.N.View. A minimal set, makes it
easier for anyone to learn to use C.P.N.View. A more extensive
set of operations, make it easier to write algorithms. A case in
point is the noteInKey function above. This was not developed
initially as part of C.P.N.View, but instead formed part of the
implementation of the Mongeau and Sankoff algorithm. It was
added to C.P.N.View, on the basis that it provided potential for
reuse in other algorithms.
C.P.N.View provides a sufficiently abstract model of a score that
it is potentially useable with a wide range of score representations,
including some representations from notation packages. Currently
C.P.N.View can accept input from score codings in ALMA,
NIFF, *kern and EsAC. Some incomplete work has been done
with SCORE and Enigma files.

6. REFERENCES
[1] Stepanov, A.A., and Lee, M. The Standard Template

Library, Technical Report HPL-95911, Hewlett-Packard
Laboratories, Palo Alto VA, February 1995.

[2] Plauger, P.J., Stepanov, A.A., Lee, M., and Musser, D.R.
The C++ Stamdard Template Library, Prentice-Hall, NJ,
2001.

[3] Ó Maidín, D. Common Practice Notation View: a Score
Representation for the Construction of Algorithms,
Proceeding of the 1999 ICMC (Beijing,1999), ICMA, San
Francisco, 248-251.

[4] Ó Maidín, D. “Common Practice Notation View User’
Manual” Technical Report UL-CSIS-98-02, University of
Limerick, 1998.

[5] Smith, L., McNab, R., Witten, I. , Sequence-Based Melodic
Comparison: A Dynamic-Programming Approach, in
Melodic Similarity, Concepts, Procedures and

Applications,Computing in Musicology 11. Hewlett W.,
Selfridge-Field, E. (eds). MIT Press 1998, 101-117.

[6] Mongeau, M.,Sankoff,D., Comparison of Musical
Sequences, Computers and the Humanities 24,Kluwer
Academic Publishers 1990, 161-175.

