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ABSTRACT 
The focus of this paper is on the design and use of a music score 
representation. The structure of the representation is discussed 
and illustrated with sample algorithms, including some from 
music information retrieval. The score representation was 
designed for the development of general algorithms and 
applications. The common container-iterator paradigm is used, in 
which the score is modelled as a container of objects, such as 
clefs, key signatures, time signatures, notes, rests and barlines. 
Access to objects within the score is achieved through iterators. 
These iterators provide the developer with a mechanism for 
accessing the information content of the score. The iterators are 
designed to achieve a high level of data hiding, so that the user is 
shielded from the substantial underlying complexity of score 
representation, while at the same time, having access to the 
score’s full information content. 

1. INTRODUCTION 
The focus of this paper is on representing music scores. The 

music score is the primary document for practically all music of 
the past. It holds a primary place in literacy, in education, in 
composition and performance and in music theory.  

In the computer era, two main sources for digital versions of 
scores arise. The first of these is from digitising initiatives, such as 
those at Center for Computer Assisted Research in the Humanities 
at Stanford University. The second comes as a by-product of 
music publishing.  These activities have resulted in the production 
quantities of machine-readable scores.  Unfortunately, not all of 
these efforts are readily usable in IR research. Lack of agreed 
open standards and lack of openness on the part of notation 
software developers form some of the main barriers to more 
general use. 

In practice MIDI has become the representation used in 
much of music information retrieval research.  The MIDI standard 
was invented to capture the gestures of a keyboard player.  Its 
ability to provide the pitch and duration content of music has 
resulted in its acceptability for music research.  However basic 
MIDI representation is radically different from score 
representation. Rests, slurs, barlines, staccatos, trills, ornaments,  
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triplets and chromaticisms, are examples of concepts that are not 
explicit in MIDI.  

An alternate prospect to using MIDI is that of having an 
availability of music scores, encoded to professional editorial 
standards, together with appropriate tools.  One consequence of 

 this approach is that the music IR researcher may work with 
the full information content of a score, rather than a simplified 
view of pitch and duration. Additionally this approach will serve 
to facilitate cooperation between the music IR researcher and 
music theorists, who deal primarily with the score. 

2. CONTAINER-ITERATOR 
Some endeavours in Computer Science have been concerned with 
discovering useful ways for organising collections of data. One of 
the most basic ways of organising data is to conceive of a complex 
object as a collection of objects that are included in a container. 
Objects within the container are accessed by means of iterators. 
Iterators are often characterised as ‘safe’ pointers – that is that 
they can point to objects within a container, and can be safely 
manipulated, or moved about so as to make all of the internal 
objects accessible.  The success of this approach has led to the 
development of many libraries, the most widely used one being 
the C++ Standard Template Library that was developed at 
Hewlett-Packard Labs by Alexander Stepanov and Meng 
Lee[1][2] and was adapted as part of ANS and ISO standards in 
the 90’s.  The containers in the STL allow the user to structure the 
data as vectors, lists, deques, sets, maps, stack and queues. Most 
of these data structures are one-dimensional. Their associated 
iterators are built so that all objects in the more general containers 
may be accessed in a left-to-right fashion, and possibly in a 
reverse order. Additionally some iterator/container combinations 
allow random access to the contained objects. 

It is appropriate to consider how the music score may be modelled 
as a container.  Items in a score may be represented as objects 
within the container. Objects are used to represent notes, barlines, 
key and time signature. Iterators allow the software developer 
access to the information content of a score. 

A strict adherence to the S.T.L. model has proved inappropriate 
for score representation and manipulation. In S.T.L., one of the 
main functions of iterators is to allow access to container 
members. In C.P.N.View, the iterator is used to carry out the 
substantial scoping resolution. Automatic scorping resolution is 
essential in order to achieve an appropriate level of abstraction or 
complexity hiding. Iterators must be able to randomly access 
objects (e.g. the uppermost object half ways through bar no 22 in 
the second violin line). Iterators may be required to move 



vertically, to access harmony or horizontally to follow a melody. 
The iterator must, at the same time keep track of scoping 
information about aspects of the current context such as clef, key 
signature, time signature, metronome settings, tempo indications, 
accidental alterations and location within a bar.  This is necessary 
in order to free the user from the considerable scoping 
complexities, that would otherwise tend to get in the way of the 
development. 

3. COMMON PRACTICE NOTATION 
VIEW 
C.P.N.View[3][4] is a score representation written in C++, that 
was developed in the mid-1990s.  It implements a representation 
of scores as containers and provides iterators for use with 
algorithms.  A score object is created either algorithmically or by 
using one of the components for converting from various file-
based representations (ALMA, *kern, NIFF, EsAC). 

Creating a score object: 

Score s(filename); 

One or more score iterators may be created in order to gain access 
to the internal objects in the score as 

ScoreIterator si(s); 

For the initial examples we will assume that the score is 
monophonic. 

A number of functions exist to move the score iterator about the 
score.  Random access is achieved using the locate member 
function. This  moves the iterator to an arbitrary place in the score  

si.locate(NOTE, 23); 

will move the iterator si to the 23rd note of the score. This function 
returns a TRUE/FALSE value to signal the success or otherwise 
of the operation. For example if we call this function on a score 
that has only 22 notes, we get a FALSE result. Almost all of the 
functions in C.P.N.View return a TRUE/FALSE result, where 
appropriate. 

si.locate(BAR, 20); 

moves the iterator si to the start of the 20th bar of the score, if it 
exists. 

Relative movement of the iterator is achieved by the step member 
function.  This function may take a parameter, indicating the kind 
of object that it is required to move to. The following code 
fragment may be used to traverse all of the notes of the score 
contained in filename. 

Score s(filename); 
ScoreIterator si(s); 
while (si.step(NOTE)) 
{ 
 doSomething(si); 
} 
 

Iterators in C.P.N.View are used to directly extract information 

about the objects in the score. C.P.N.View iterators carry out 
domain level processing. Much of this processing is involved with 
resolving contextual information. For example, where a score 
iterator points to a note, the member function pitch12() returns 
the chromatic note number (effectively the MIDI note number).  
C.P.N.View performs the following operations automatically. (1) 
key signature in use; (2) checks if any accidental alterations are 
present since the start of the bar in which the note in question 
resides, and (3) calculates relevant adjustments to the final pitch 
of the current note.  Using all of this information the correct 
pitch12 value is returned. 

The following fragment illustrates how the constructs discussed so 
far can be used to identify and print out the highest and lowest 
note of a piece and to calculate the pitch range of the piece. 

 

Score s(filename); 
ScoreIterator si(s); 
si.step(NOTE); 
ScoreIterator highest = si, lowest = si; 
while (si.step(NOTE)) 
{ 
if ( si.getPitch12() < lowest.getPitch12()) lowest = si; 
if (si.getPitch12() > highest.getPitch12()) highest = si; 
} 
std::cout << “\nHighest note is “ << highest; 
std::cout << “\nLowest note is “ << lowest; 
std::cout << “\nRange is “ << highest.getPitch12() – lowest.getPitch12() 
<< “ semitones.\n”; 

 

Similarly, a program to locate the longest and shortest note in a 
piece, excluding grace notes, 

Score s(filename); 
ScoreIterator si(s); 
si.step(NOTE); 
ScoreIterator longest = si, shortest = si; 
while (si.step(NOTE)) 
{ 
    if (!si.hasAttribute(GRACE_NOTE)) 
   { 

if ( si.getRDuration() < shortest.getRDuration()) shortest = si; 
if (si..getRDuration( ) > highest.getRDuration()) longest = si; 

    } 
} 
std::cout << “\nLongest note is “ << longest; 
std::cout << “\nShortest note is “ << shortest; 
 

A question arises of what happens if we run these programs on a 
polyphonic score? The answer is that these will work and produce 
meaningful results. 

To explain what happens it is necessary to consider two cases. 
The first one is where a score consist of a single stave, but has 
simultaneous notes.  Some examples of this will be found in string 
music in which multiple stopping occurs. More complicated 
examples happen in scores where two lines occupy the same 
stave.   

An iterator in C.P.N.View has an internal mode setting of MONO 
or POLY.  In MONO mode the iterator traverses the uppermost 
notes on each stave only, and skips others.  In POLY mode the 
iterator traverses all of the notes, moving vertically, from top to 

 



bottom, where possible, and moving to the next highest rightmost 
object otherwise.  

Functions exist for setting and querying the scanning mode of an 
iterator. 

si.putScanMode(MONO); 

si.putScanMode(POLY); 

getScanMode(); 

Figures 1 and 2 show iterators in MONO and POLY mode 
operating on a single stave piece. 

 

Figure.1 Single stave traversal in MONO mode 

 

Figure 2 Single stave traversal in POLY mode 

 

By default, the iterators created above will have MONO scan 
modes if the score contained in filename has one stave. 

On the other hand, if the score is a multistave score, the scan 
mode will default to POLY, and the iterator will scan all of the 
objects in the score. To understand how the iterators scan across 
multiple staves, it is necessary to regard the score as being divided 
vertically into windows.  Each window has an associated width, 
corresponding to a time span. The left and right borders of each 
window correspond to onsets or offsets of notes or rests. A 
window may not contain internal onsets or offsets. 

Successive calls to the step() function moves the iterator 
vertically, wherever possible, from the uppermost object on the 
top stave in a window to objects on the lowermost stave in the 
same window.  Where the score iterator points to the lowermost 
allowable object, a call made to step() moves the iterator to the 
uppermost object in the next adjacent window to the right. Figure 
3 shows an such an iterator. Figure 4 demonstrates the concept of 
dividing the score into vertical windows. 

 

Figure 3 Multi-stave traversal in POLY mode 

 

 

Figure 4 Multi-stave score divided into vertical windows 

The program fragments above will work correctly with a 
polyphonic score and will search through all of the notes present.  
The occurrence of different clefs, changes in key and accidental 
changes in the score are all dealt automatically. 

In cases where we want to scan individual staves of a polyphonic 
score, the constructor for the ScoreIterator takes an additional 
parameter corresponding to the stave number.  The uppermost 
stave is numbered 0. An iterator created in this way will have a 
default scanning mode of MONO.  To access objects on the last 
stave of a polyphonic score that has 10 staves, the following 
iterator could be used. 

ScoreIterator si(s, 9); 

In the previous examples, we have seen use of the member 
functions locate, step, getPitch12, getRDuration, getScanMode 
and putScanMode.  A design strategy arises in creating such 
information retrieving functions. One could aim to design a 
minimal set of functions to retrieve the basic information content 
from the score. Such a minimal set will compromise convenience. 
The opposite approach of providing functions to retrieve every 
conceivable form will make things more difficult for the user, who 
will have a larger set to sift through and remember. The current 
set of 131 functions and operators might appear to lean towards 
the second approach. However many of these operators and 
functions cluster into families and thereby reduce the cognitive 
load in familiarization.  Also many of these group into meaningful 
pairs. For example most member functions that start with ‘get’ 
have a counterpart that starts with ‘put’.  Additionally some of 
these are more frequently used than others.  For example the step 
and locate functions are the main navigation mechanisms. There 
is very little additional to learn. The getPitch12, getRDuration 
deliver information similar to that available in a basic MIDI file. 
A short review of some of the main functions is given below. 

The getTag member function give the type of object that is 
current. 

If the current object is a note or rest, duration values may be 
retrieved 

getHead() returns the head value, 

getDots() returns the dot count, 

getRDuration() retrieves the rational time value of the note or 
rest, including the resolution of groupette scoping.  



Pitch information can be retrieved in many forms, including  

getAlpha() returns the alphabetic note name, 

getOctave() returns the octave number, 

getAccid() returns details of any accidental placed directly on the 
note, 

getPitch12() returns the MIDI pitch number of the note, with all 
necessary scoping resolved, 

Many function return scoping information. These include the self 
obvious getKeySig(), getTimeSig(), getClef(), getBarNo(). 

getBarDist() returns the distance of the current position from the 
start of the bar. 

A facility exists for annotating any score object, and for querying 
these annotations. 

4. IR EXAMPLES 
The following illustrates the use of C.P.N.View in an IR context. 
It contains a complete implementation of the dynamic 
programming algorithm as documented in Sequence-Based 
Melodic Comparison: A Dynamic-Programming Approach[5]. 
The two encoded score fragments used in the algorithm have been 
encoded in two files that appear in lines 1 and 2.  These are 
“Innsbruck ich muss dich lassen” and “Nun ruhen alle Waelder”. 

This algorithm is based on the concept of a minimal edit cost of 
transforming a source melody into a target melody, using 
operations of insert, delete and replace. The cost matrix d, 
represents the minimal cost of transforming the notes of the 
source tune, represented in rows, into notes of the target tune 
represented across the columns. The recurrence equations for 
generating the matrix are 
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=

−−−−
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Where   

  ),( φiaw , is the cost of inserting note ai, 

  ),( jbw φ ,  is the cost of deleting bj,,  

both of these have value 4 in this example.   

  ),( ji baw , is the cost of substituting ai with bj,  

This cost is calculated by taking the absolute value of the 
difference in MIDI note number, then adding half the absolute 
value of the difference in duration measured in 16th note units. 

 
 
 
 

 
Score s1("C:\\Mdb\\Others\\inns.alm");   // 1 
Score s2("C:\\Mdb\\Others\\nur.alm");   // 2 
ScoreIterator si1(s1);     // 3 
ScoreIterator si2(s2);     // 4 
ScoreIterator siAr1[100] = {ScoreIterator()}, 
     siAr2[100]= {ScoreIterator()};   // 5 
int length1 = 0;     // 6 
while ( si1.step(NOTE)) siAr1[++length1] = si1;  // 7 
int length2 = 0;     // 8 
while ( si2.step(NOTE)) siAr2[++length2] = si2;  // 9 
double diffMatrix[100][100];    // 10 
int i, j;      // 11 
diffMatrix[0][0] = 0.0;    
       
  
for ( i = 1; i <= length1; i++)    //12  

diffMatrix[i][0] = diffMatrix[i-1][0] + 4.0;  //13 
for ( j = 1; j <= length2; j++)     //14 

diffMatrix[0][j] = diffMatrix[0][j-1] + 4.0;  // 15 
 

for ( i = 1; i <= length1; i++)    // 16 
{ 
  for ( j = 1; j <= length2; j++)    // 17 
  { 
    diffMatrix[i][j] =     // 18 
      min3(   
        diffMatrix[i-1][j] + 4.0,    // 19 
        diffMatrix[i][j-1] + 4.0,    // 20 
        diffMatrix[i-1][j-1] +    // 21 
          fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12()) + 
          0.5*16*fabs(siAr1[i].getRDuration()- siAr2[j].getRDuration())); 
  } 
} 
 

Lines 1 to 9 two arrays siAr1 and siAr2 are created, and contain 
iterators that point to each note of the score 

Lines 12 to 15 correspond to equations a1, a2 and a3. 

Lines 16 to 21 implement a4. 

The function min3 is not documented here. 

 

     Table 1.  The difference matrix diffMatrix.   

   A  F G A B C B A 

   0   4   8 12 16 20 24 28 32 

F   4   6   6 10 14 18 22 26 30 

F   8   8   6   8 12 16 20 24 28 

G 12 10 10   6 10 14 18 22 26 

A 16 14 14 10   9 13 17 19 22 

C 20 18 18 14 13 14 15 19 22 

B 24 22 22 18 17 16 18 15 19 

A 28 26 26 22 21 20 21 19 15 



Each cell in the matrix represents the difference at a particular 
point between the two fragments of “Innsbruck ich muss dich 
lassen” and “Nun ruhen alle Waelder”. The total distance between 
the two melodies is represented by the value in the bottom right 
corner, 15. The combination of edit operators that yield this result 
may also be determined by tracing the best path from the bottom, 
rightmost cell to the top left corner. 

In this example, it will appear that little is to be gained from  
using the score representation instead of MIDI.  However it is 
worth emphasising that the with score representation this 
algorithm may be refined since all of the information content of 
the score is available. Some examples of using score information, 
instead of MIDI may be gleaned from the following possibilities.  
Stressed notes may be distinguished by their position in the bar, 
using information for getBarDist and getTimeSig functions.  
Using these, one could allow greater weights for inserting and 
deleting stressed notes. Pitch information can be dealt with at a 
finer level by distinguishing between enharmonic versions of the 
same note. Hence a C sharp may be treated differently than a D 
flat. A policy on handling rests will be necessary, if this algorithm 
is to have general applicability.  The algorithm is not explicit on 
how grace notes are handled.  Are they to be treated as part of the 
pitch contour? Perhaps a researcher may wish to treat them as 
providing extra emphasis on the following note. 

A final example will illustrate a partial implementation of this 
same basic algorithm, as it was designed by Mongeau and 
Sankoff[6].  They used a more sophisticated model for the 
calculation of replacement costs than in the previous example.  
The previous example was encoded above as part of line 21, by 
calculating the absolute value of the two MIDI note number. 

fabs(siAr1[i].getPitch12() - siAr2[j].getPitch12()) 

Mongeau and Sankoff used the pitch differences between pairs of 
notes to calculate difference weights, based on consonances of 
their intervals. This involves a simple table look-up for diatonic 
notes.  However for comparing pairs of notes in cases where one 
or other note involved is chromatic, an alternate table is used, as is 
reflected in the following algorithm. The array deg holds the 
difference weights for the diatonic table and ton holds the 
corresponding weights for chromatic intervals. 

The algorithm checks if the notes involved are diatonic, and 
applies the appropriate transformation.  The function pitchD is a 
simplified version of the production algorithm, that is applicable 
to music is in a major key only. 

The function noteInKey was developed specifically for this 
application. Its coding is given below. 

int ScoreIterator::noteInKey() 

{ 
 int key = currentKs; 
 int actual12 = getPitch12(); 
 int actual7 = getPitch7(); 
 int nrOctaves7 = actual7/7; 
 int octaveDisp12 = nrOctaves7*12; 
 int scaleStep7 = actual7%7; 
 int diatonicSteps[] = {0,2,4,5,7,9,11}; 
 int unalteredPitch12 = octaveDisp12 + diatonicSteps[scaleStep7] +  
                                                              getKeySigAdjust(); 
 if ( unalteredPitch12 == actual12 ) return TRUE; 
 return FALSE; 
} 

double pitchD(ScoreIterator &si1, int major1, ScoreIterator & si2) 
{ 
  double pitchDist = 0; 
  if ( inKey(si1, major1 )) 
  { 
   double deg[] = {0.0, 0.9, 0.2, 0.5, 0.1, 0.35, 0.8}; 
   double ton[] = {0.6, 2.6, 2.3, 1.0, 1.0, 1.6, 1.8, 0.8,  
                              1.3, 1.3, 2.2, 2.5};   
   if ( si1.noteInKey() && si2.noteInKey() ) 
   { 
    int diatonicSteps = fabs(si1.getPitch7() –  
                                          si2.getPitch7()); 
     diatonicSteps = diatonicSteps % 7; 
     pitchDist = deg[diatonicSteps]; 
    } 
    else 
    { 
     int chromaticSteps = fabs(si1.getPitch12() –  
                                             si2.getPitch12()); 
     chromaticSteps = chromaticSteps % 12; 
     pitchDist = ton[chromaticSteps]; 
   } 
  } 
  return pitchDist; 
} 

5. CONCLUSION 
Processing of music scores gives the prospect for accessing ever 
increasing corpora that have been created to high editorial 
standards. The Container/Iterator model gives an appropriate tool 
for algorithmic construction.  Experience with C.P.N.View raises 
some interesting issues. An illustration of one such, that has been 
mentioned earlier in this paper is on devising an optimal set of 
operations to include in C.P.N.View.  A minimal set, makes it 
easier for anyone to learn to use C.P.N.View.  A more extensive 
set of operations, make it easier to write algorithms.  A case in 
point is the noteInKey function above. This was not developed 
initially as part of C.P.N.View, but instead formed part of the 
implementation of the Mongeau and Sankoff algorithm. It was 
added to C.P.N.View, on the basis that it provided potential for 
reuse in other algorithms.  
C.P.N.View provides a sufficiently abstract model of a score that 
it is potentially useable with a wide range of score representations, 
including some representations from notation packages.  Currently 
C.P.N.View can accept input from score codings in ALMA, 
NIFF, *kern and EsAC.  Some incomplete work has been done 
with SCORE and Enigma files. 
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