Automated Rhythm Transcription

Christopher Raphael*
Department of Mathematics and Statistics
University of Massachusetts, Amherst
raphael®@math.umass.edu

May 21, 2001

Abstract

We present a technique that, given a sequence of mu-
sical note onset times, performs simultaneous iden-
tification of the notated rhythm and the variable
tempo associated with the times. Our formulation
is probabilistic: We develop a stochastic model for
the interconnected evolution of a rhythm process,
a tempo process, and an observable process. This
model allows the globally optimal identification of
the most likely rhythm and tempo sequence, given
the observed onset times. We demonstrate applica-
tions to a sequence of times derived from a sampled
audio file and to MIDI data.

1 Introduction

A central challenge of music IR is the generation of
music databases in formats suitable for automated
search and analysis [1], [2], [3], [4], [5], [6]. While a
certain amount of information can always be com-
piled by hand, the thought of “typing in,” for exam-
ple, the complete works of Mozart seems daunting,
to say the least. Given the enormity of such tasks
we expect that automatic music transcription will
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play an important role in the construction of music
databases.

We address here a component of this automatic
transcription task: Given a sequence of times, we
wish to identify the corresponding musical rhythm.
We refer to this problem as “Rhythmic Parsing.”
The sequences of times that form the input to our
system could come from a MIDI file or be estimated
from (sampled) audio data. On output, the rhythmic
parse assigns a score position, a (measure number,
measure position) pair, to each time.

A trained musician’s rhythmic understanding re-
sults from simultaneous identification of rhythm,
tempo, pitch, voicing, instrumentation, dynamics,
and other aspects of music. The advantage of posing
the music recognition problem as one of simultane-
ous estimation is that each aspect of the music can
inform the recognition of any other. For instance,
the estimation of rhythm is greatly enhanced by dy-
namic information since, for example, strong beats
are often points of dynamic emphasis. While we ac-
knowledge that in restricting our attention to timing
information we exclude many useful clues, we feel
that the basic approach we present is extendible to
more complex inputs.

We are aware of several applications of rhythmic
parsing. Virtually every commercial score-writing
program now offers the option of creating scores
by directly entering MIDI data from a keyboard.
Such programs must infer the rhythmic content from
the time-tagged data and, hence, must address the
rhythmic parsing problem. When the input data
is played with anything less than mechanical preci-
sion, the transcription degrades rapidly, due to the
difficulty in computing the correct rhythmic parse.
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Figure 1: Top: Real time (seconds) vs. Musical
time (measures) for a musical excerpt. Bottom:
The actual inter onset intervals (seconds) of notes
grouped by the musical duration (measures).

Rhythmic parsing also has applications in musicol-
ogy where it could be used to separate the inherently
intertwined quantities of notated rhythm and expres-
sive timing [7], [8], [9]. Either the rhythmic data
or the timing information could be the focal point
of further study. Finally, the musical world eagerly
awaits the compilation of music databases contain-
ing virtually every style and genre of (public domain)
music. The construction of such databases will likely
involve several transcription efforts including optical
music recognition, musical audio signal recognition,
and MIDI transcription. Rhythmic parsing is an es-
sential ingredient to the latter two efforts.

Consider the data in the top panel of Figure 1
containing estimated note times from an excerpt of
Schumann’s 2nd Romance for oboe and piano (oboe
part only). The actual audio file can be heard at
http://fafner.math.umass.edu/rhythmic_parsing.  In
this figure we have plotted the score position of each

note, in measures, versus the actual onset time, in
seconds. The points trace out a curve in which the
player’s tempo can be seen as the slope of the curve.
The example illustrates a very common situation in
music: The tempo is not a single fixed number, but
rather a time-varying quantity. Clearly such time-
varying tempi confound the parsing problem leading
to a “chicken and egg” problem: To estimate the
rhythm, one needs to know the tempo process and
vice-versa.

Most commercially available programs accom-
plish the rhythmic parsing task by quantizing the
observed note lengths, or more precisely inter-onset
intervals (IOIs), to their closest note values (eighth
note, quarter note, etc.), given a known tempo, or
quantizing the observed note onset times to the clos-
est points in a rigid grid [10]. While such quan-
tization schemes can work reasonably well when
the music is played with robotic precision (often a
metronome is used), they perform poorly when faced
with the more expressive and less accurate playing
typically encountered. Consider the bottom panel of
Figure 1 in which we have plotted the written note
lengths in measures versus the actual note lengths
(IOIs) in seconds from our musical excerpt. The
large degree of overlap between the empirical distri-
butions of each note length class demonstrates the
futility of assigning note lengths through note-by-
note quantization in this example.

We are aware of several research efforts in this
direction. Some of this research addresses the prob-
lem of beat induction, or tempo tracking in which one
tries to estimate a sequence of times corresponding
to evenly spaced musical intervals (e.g. beats) for
a given sequence of observed note onset times [11],
[12]. The main issue here is trying to follow the
tempo rather than transcribing the rhythm. An-
other direction addresses the problem of rhythmic
transcription by assigning simple integer ratios to
observed note lengths without any corresponding es-
timation of tempo [13], [14], [15]. The latter two of
these approaches assume that beat induction has al-
ready been performed, whereas the former assumes
that tempo variations are not significant enough to
obscure the ratios of neighboring note lengths.

In many kinds of music we believe it will be ex-
ceedingly difficult to independently estimate tempo
and rhythm, as in the cited research, since the ob-



served data is formed from a complex interplay be-
tween the two, as illustrated by the example of Fig-
ure 1. Thus, in this work we address the problem
of simultaneous estimation of tempo and rhythm; in
the following we refer to such a simultaneous esti-
mate as a rhythmic parse. From a problem domain
point of view, our focus on simultaneous estimation
is the most significant contrast between our work
and other efforts.

2 The Model

We construct a generative model that describes the
simultaneous evolution of three processes: a rhythm
process, a tempo process, and an observable process.
The rhythm process takes on values in a finite set of
possible measure positions whereas the tempo pro-
cess is continuous-valued. In our model, these two
interconnected processes are not directly observable.
What we observe is the sequence of inter-onset in-
tervals (IOIs) which depend on both unobservable
quantities.

To be more specific, suppose we are given a se-
quence of times og,01,...,0nN, in seconds, at which
note onsets occur. These times could be estimated
from audio data, as in the example in Figure 1, or
could be times associated with MIDI “note-ons.”
Suppose we also have a finite set, S, composed of
the possible measure positions a note can occupy.
For instance, if the music is in 6/8 time and we be-
lieve that no subdivision occurs beyond the eighth

note, then
§={g o)

More complicated subdivision rules could lead to
sets, S, which are not evenly spaced multiples of
some common denominator, as shown in the exper-
iments of Section 4. We assume only that the pos-
sible onset positions of S are rational numbers in
[0,1), decided upon in advance. Our goal, in part, is
to associate each note onset o, with a score position
— a pair consisting of a measure number and an el-
ement of §. For the sake of simplicity, assume that
no two of the {o0,} can be associated with the exact
same score position as would be the case for data
from a single monophonic instrument. We will drop
this assumption in the second example we treat.

We model this situation as follows. Let
S0, 51, --., SN be the discrete measure position pro-
cess, S, € S,n = 0,...,N. In interpreting these
positions we assume that each consecutive pair of
positions corresponds to a note length of at most
one measure. For instance, in the 6/8 example given
above S, = 0/6,S,+1 = 1/6 would mean the nth
note begins at the start of the measure and lasts for
one eighth note, while S, = 1/6,S5,.1 = 0/6 would
mean the nth note begins at the second eighth note
of the measure and lasts until the “downbeat” of the
next measure. We can then use [(s, s'),

I(s,8') = {

to unambiguously represent the length, in measures,
of the transition from s to s’. Note that we can re-
cover the actual score positions from the measure po-
sition process. That is, if Sg = s9, 51 = s1,...,58 =
sn then score position, in measures, of the nth note
is my, = so + U(s0,51) +-..,1(Spn—1,8,). Extending
this model to allow for notes longer than a mea-
sure complicates our notation slightly, but requires
no change of our basic approach. We model the S
process as a time-homogeneous Markov chain with
initial distribution p(sg) and transition probability
matrix

ifs'>s
1+ s —s otherwise

s'—s

(1)

R(snfl, sn) = p(3n|3nfl)

With a suitable choice of the matrix R, the Markov
model captures important information for rhythmic
parsing. For instance, R could be chosen to express
the notion that, in 4/4 time, the last sixteenth note
of the measure will very likely be followed by the
downbeat of the next measure: R(15/16,0/16) ~ 1.
In practice, R should be learned from actual rhythm
data. When R accurately reflects the nature of the
data being parsed, it serves the role of a musical
expert that guides the recognition toward musically
plausible interpretations.

The tempo is the most important link between
the printed note lengths, I(Sy, Sn+1), and the ob-
served note lengths, 0,11 —0y,. Let 11,15, ..., Ty be
the continuously-valued tempo process, measured in
seconds per measure, which we model as follows. We
let the initial tempo be modeled by

Ty ~ N(V, ¢2)
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Figure 2: The DAG describing the dependency

structure of the variables of our model. Circles rep-
resent discrete variables while squares represent con-
tinuous variables.

where N (v, $?) represents the normal distribution
with mean v and variance ¢2. With appropriate
choice of v and ¢? we express both what we “expect”
the starting tempo to be (v) and how confident we
are in this expectation (1/¢?). Having established
the initial tempo, the tempo evolves according to
Th=Ty 1+ 677,

for n = 2,3,...,N where 6, ~ N(0,7%(Sn_1,Sn)).
When 72 takes on relatively small values, this “ran-
dom walk” model captures the property that the
tempo tends to vary smoothly. Note that our model
assumes that the variance of T}, — T;,_1 depends on
the transition S, 1,S,. In particular, longer notes
will be associated with greater variability of tempo
change.

Finally we assume that the observed note lengths
Yn = Op —0n_1 forn =1,2,..., N are approximated
by the product of the length of the note, I(S,_1, 5n),
(measures) and local tempo, T,, (secs. per measure).
Specifically

Yn = l(Sn—la Sn)Tn + €n

where

€n ™~ N(Oa p2(Sn*1, Sn)) (2)

Our model indicates that the observation variance
depends on the note transition. In particular, longer
notes should be associated with greater variance.
These modeling assumptions lead to a graphical
model whose directed acyclic graph is given in Fig-
ure 2. In the figure each of the variables Sy, ..., SN,
Ti,...,T,, and Yi,...,Yy is associated with a node

in the graph. The connectivity of the graph de-
scribes the dependency structure of the variables
and can be interpreted as follows. The conditional
distribution of a variable given all ancestors (‘“up-
stream” variables in the graph) depends only on the
immediate parents of the variable. Thus the model
is a particular example of a Bayesian network [16],
[17], [18], [19]. Exploiting the connectivity struc-
ture of the graph is the key to successful comput-
ing in such models. Our particular model is com-
posed of both discrete and Gaussian variables with
the property that, for every configuration of discrete
variables, the continuous variables have multivari-
ate Gaussian distribution. Thus, the Sy,...,SnN,
Ti,...,Tn, Y1,...,YnN collectively have a conditional
Gaussian (CG) distribution [20], [21], [22], [23].

3 Finding the Optimal Rhythmic
Parse

Recall that by “rhythmic parse” we mean a simulta-
neous estimate of the unobserved rhythm and tempo
variables Sg,...,Sny and Ti,...,Tn given observed
IOI data Y7 = y1,...,Yn = yn.
probabilistic formulation of the interaction between
rhythm, tempo and observables, it seems natural to
seek the most likely configuration of rhythm and
tempo variables given the observed data, i.e. the
mazimum a posteriori (MAP) estimate. Thus, us-
ing the notation a] = (a;,...,a;) where a is any
vector, we let f(s{Y,tl¥,y}¥) be the joint probability
density of the rhythm, tempo and observable vari-
ables. This joint density can be computed directly
from the modeling assumptions of Section 2 as

In view of our

N

p(s0) [ p(snlsn—1)

HCAARTA I

n=1
N
p(tl) H p(tn|3n71a Sn, tnfl)

X
n=2
N
X H P(Yn|sn—1, Sns tn)
n=1

where p(sg) is the initial distribution for the rhythm
process, p(sn|sn-1) = R(Sn—1,8,) is probability of
moving from measure position s,_1 to s, p(t1) is the
univariate normal density for the initial distribution



of the tempo process, p(tn|Sn—1, Sn,tn—1) is the con-
ditional distribution of ¢, given t, 1 whose parame-
ters depend on s,_1, Sp, and p(Yn|Sn—1, Sn, tn) is the
the conditional distribution of y,, given t,, whose pa-
rameters also depend s, 1, S,. The rhythmic parse
we seek is then defined by

80 7t1 = arg max f(SO 7t1 » Y1 )
s0 ,t1

where the observed 101 sequence, y{v , is fixed in the
above maximization.

This maximization problem is ideally suited to
dynamic programming due to the linear nature of
the graph of Figure 2 describing the joint distribu-
tion of the model variables. Let f,(sg,t},yT) be the
joint probability density of the variables Sg, 17, Y{"
(i.e. up to observation n) for n = 1,2,...,N. If
we define Hy(sp,t,) to be the density of the opti-
mal configuration of unobservable variables ending
in sp,t,:

def
Hy(sn,tn) = max 1fn(33a Y1)

55
then Hy(sy,t,) can be computed through the recur-
sion
Hi(s1,81) = maxp(so)p(silso)p(t)p(y1]so, s1,t1)
Hn(snatn) = s n}atx lHn l(sn 1,tn— 1)
p(3n|3n71)
p(tn|tn71a3nfla3n)
p(yn|3n—1a3natn)
for n = 2,...,N. Having computed H, for n =

., N we see that

max Hy(sy,tn) = max f(so ,tl Y1 )
SNHEN ErARZA

is the most likely value we seek.

When all variables involved are discrete, it is a
simple matter to perform this dynamic programming
recursion and to traceback the optimal value value to
recover the globally optimal sequence .§6V ,f]lv . How-
ever, the situation is complicated in our case due
to the fact that the tempo variables are continu-

ous. We have developed methodology specifically
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Figure 3: The number of errors produced by our
system at different perplexities and with different
numbers of errors already corrected.

to handle this important case, however a presenta-
tion of this methodology takes us too far afield. A
general description of a strategy for computing the
global MAP estimate of unobserved variables, given
observed variables, in conditional Gaussian distribu-
tions (such as our rhythmic parsing example), can
be found in [24].

4 Experiments

We performed several experiments using two dif-
ferent data sets. The first data set is a
performance of the first section of Schumann’s
2nd Romance for Oboe and Piano (oboe part
only), an excerpt of which is depicted in Figure
1. The original data, which can be heard at
http://fafner.math.umass.edu/rhythmic_parsing, is a
sampled audio signal, hence inappropriate for our
experiments. Instead, we extracted a sequence of
129 note onset times from the data using the HMM
methodology described in [25]. These data are also
available at the above web page. In the perfor-
mance of this excerpt, the tempo changes quite
freely, thereby necessitating simultaneous estimation
of rhythm and tempo.

Since the musical score for this excerpt was avail-
able, we extracted the complete set of possible mea-
sure positions,

8{011135151537}
1’874’378712°32’278°4’8



(The position 15/32 corresponds to a grace note
which we have modeled as a 32nd note coming before
the 3rd beat in 4/4 time). The most crucial param-
eters in our model are those that compose the tran-
sition probability matrix R. The two most extreme
choices for R are the uniform transition probability
matrix

R™(s4,5) = 1/|8|

and the matrix ideally suited to our particular recog-
nition experiment

; : Sp = 8i, Spt1 = 85}
Rldeal iy 8;) = |{7’L n iy On+l j
(5i> 55) {n : Sp = s}

Ri9eal j5 unrealistically favorable to our experiments

since this choice of R is optimal for recognition
purposes and incorporates information normally un-
available; R"™f is unrealistically pessimistic in em-
ploying no prior information whatsoever. The actual
transition probability matrices used in our experi-
ments were convex combinations of these two ex-
tremes

R= aRideal + (1 _ a)Runif

for various constants 0 < a < 1. A more in-
tuitive description of the effect of a particular «
value is the perplexity of the matrix it produces:
Perp(R) = 2H(B) where H(R) is the log, entropy
of the corresponding Markov chain. Roughly speak-
ing, if a transition probability matrix has perplexity
M, the corresponding Markov chain has the same
amount of “indeterminacy” as one that chooses ran-
domly from M equally likely possible successors for
each state. The extreme transition probability ma-
trices have

Perp(Rideal) —
Perp ( Runif )

1.92
11 = |S]

In all experiments we chose our initial distribution,
p(80), to be uniform, thereby assuming that all start-
ing measure positions are equally likely. The remain-
ing constants, v, ¢%, 72, p? were chosen to be values
that seemed “reasonable.”

The rhythmic parsing problem we pose here is
based solely on timing information. Even with the
aid of pitch and interpretive nuance, trained musi-
cians occasionally have difficulty parsing rhythms.
For this reason, it is not terribly surprising that our

parses contained errors. However, a virtue of our
approach is that the parses can be incrementally im-
proved by allowing the user to correct individual er-
rors. These corrections are treated as constrained
variables in subsequent passes through the recog-
nition algorithm. Due to the global nature of our
recognition strategy, correcting a single error often
fixes others parse errors automatically. Such a tech-
nique may well be useful in a more sophisticated
music recognition system in which it is unrealistic
to hope to achieve the necessary degree of accuracy
without the aid of a human guide. In Figure 3 we
show the number of errors produced under various
experimental conditions. The four traces in the plot
correspond to perplexities 2,4,6,8, while each in-
dividual trace gives the number of errors produced
by the recognition after correcting 0, ..., 7 errors. In
each pass the first error found from the previous pass
was corrected. In each case we were able to achieve a
perfect parse after correcting 7 or fewer errors. Fig-
ure 3 also demonstrates that recognition accuracy
improves with decreasing perplexity, thus showing
that significant benefit results from using a transi-
tion probability matrix well-suited to the actual test
data.

In our next, and considerably more ambitious,
example we parsed a MIDI performance of the
Chopin Mazurka Op. 6, no. 3. for solo piano. Un-
like the monophonic instrument of the previous ex-
ample, the piano can play several notes at a single
score position. This situation can be handled with
a very simple modification of the approach we have
described above. Recall from Section 2 that (s, s')
describes the note length associated with the transi-
tion from state s to state s’. We modify the defini-
tion of Eqn. 1 to be

I(s,8') = {

where we have simply replaced the > in Eqn. 1 by
>. The effect is that a “self-transition” (from state
s to state s) is interpreted having 0 length, i.e. cor-
responding to two notes having the same score posi-
tion.

s'—s ifs'>s
1+ s —s otherwise

For this example, in 3/4 time, we took the pos-
sible measure positions from the actual score, giving
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Figure 4: Results of rhythmic parses of Chopin
Mazurka Op. 6, No. 3.
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Again, several of the measure positions correspond
to grace notes. Rather than fixing the parameters
of our model by hand, we instead estimated them
from actual data. The transition probability ma-
trix, R, was estimated from scores of several dif-
ferent Chopin Mazurka extracted from MIDI files.
The result was a transition probability matrix having
Perp(R) = 2.02, thereby providing a model that has
enormously improved predictive power over the uni-
form transition model having perplexity Perp(R)
|S| = 15. We also learned the variances of our model,
72(Sn_1,8n) and p?(S,_1,S,) by applying the EM
algorithm to a MIDI Mazurka using a known score.

012112311215 1137
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We then iterated the procedure of parsing
the data and then fixing the error beginning
the longest run of consecutive errors. The re-
sults of our experiments with this data set are
shown in Figure 4. The example contained
1334 notes. The MIDI file can be heard at
http://fafner.math.umass.edu/rhythmic_parsing.

5 Discussion

We have presented a method for simultaneous esti-
mation of rhythm and tempo, given a sequence of
note onset times. Our method assumes that the col-
lection of possible measure positions is given in ad-
vance. We believe this assumption is a relatively sim-
ple way of limiting the complexity of the recognized
rhythm produced by the algorithm. When arbitrary
rhythmic complexity is allowed without penalty, one
can always find a rhythm with an arbitrarily accu-
rate match to the observed time sequence. Thus,
we expect that any approach to rhythm recognition
will need some form of information that limits or
penalizes this complexity. Other than this assump-
tion, all parameters of our model can, and should,
be learned from actual data, as in our second ex-
ample. Such estimation requires a set of training
data that “matches” the test data to be recognized
in terms of rhythmic content and rhythmic interpre-
tation. For example, we would not expect success-
ful results if we trained our model on Igor Stravin-
sky’s Le Sacre du Printemps and recognized on Hank
Williams’ Your Cheatin’ Heart. In our experiments
with the Chopin Mazurka in Section 4, we used dif-
ferent Chopin Mazurkas for training; however, it is
likely that a less precise match between training and
test would still prove workable.

We believe that the basic ideas we have pre-
sented can be extended significantly beyond what
we have described. We are currently experimenting
with a model that represents simultaneous evolution
of rhythm and pitch. Since these quantities are inti-
mately intertwined, one would expect better recog-
nition of rhythm when pitch is given, as in MIDI
data. For instance, consider the commonly encoun-
tered situation in which downbeats are often marked
by low notes as in the Chopin example.

The experiments presented here deal with esti-
mating the composite thythm obtained by superim-
posing the various parts on one another. A disad-
vantage of this approach is that composite rhythms
can be quite complicated even when the individual
voices have simple repetitive rhythmic structure. For
instance, consider a case in which one voice uses
triple subdivisions while another use duple subdi-
visions. A more sophisticated project we are explor-
ing is the simultaneous estimation of rhythm, tempo



and voicing. Our hope is that rhythmic structure
becomes simpler and easier to recognize when one
models and recognizes rhythm as the superposition
of several rhythmic sources. Rhythm and voicing
collective constitute the “lion’s share” of what one
needs for for automatic transcription of MIDI data.

While the Schumann example was much simpler
than the Chopin example, it illustrates another di-
rection we will pursue. Rhythmic parsing can play
an important roll in interpreting the results of a
preliminary analysis of audio data that converts a
sampled acoustic signal into a “piano roll” type of
representation. As discussed, we favor simultaneous
estimation over “staged” estimation whenever pos-
sible, but we feel that an effort to simultaneously
recover all parameters of interest from an acoustic
signal is extremely ambitious, to say the least. We
feel that the two problems of “signal-to-piano-roll”
and rhythmic parsing together constitute a reason-
able partition of the problem into manageable pieces.
We intend to consider the transcription of audio data
for considerably more complex data than those dis-
cussed here.
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