
Efficient Multidimensional Searching Routines for Music
Information Retrieval

Josh Reiss
Department of Electronic Engineering,

Queen Mary, University of London
Mile End Road, London E14NS

UK
+44 207-882-7986

josh.reiss@elec.qmw.ac.uk

Jean-Julien Aucouturier
Sony Computer Science Laboratory

6, rue Amyot,
Paris 75005,

France
+33 1-44-08-05-01

jjaucouturier@caramail.com

Mark Sandler
Department of Electronic Engineering,

Queen Mary, University of London
Mile End Road, London E14NS

UK
+44 207-882-7680

mark.sandler@elec.qmw.ac.uk

ABSTRACT

The problem of Music Information Retrieval can often be
formalized as “searching for multidimensional trajectories”. It is
well known that string-matching techniques provide robust and
effective theoretic solutions to this problem. However, for low
dimensional searches, especially queries concerning a single
vector as opposed to a series of vectors, there are a wide variety
of other methods available. In this work we examine and
benchmark those methods and attempt to determine if they may
be useful in the field of information retrieval. Notably, we
propose the use of KD-Trees for multidimensional near-
neighbor searching. We show that a KD-Tree is optimized for
multidimensional data, and is preferred over other methods that
have been suggested, such as the K-Tree, the box-assisted sort
and the multidimensional quick-sort.

1. MULTIDIMENSIONAL SEARCHING
IN MUSIC IR

The generic task in Music IR is to search for a query
pattern, either a few seconds of raw acoustic data, or some type
of symbolic file (such as MIDI), in a database of the same
format.

To perform this task, we have to encode the files in a
convenient way. If the files are raw acoustic data, we often
resort to a feature extraction (fig. 1). The files are cut into M
time frames and for each frame, we apply a signal-processing
transform that outputs a vector of n features (e.g.
psychoacoustics parameters such as pitch, loudness, brightness,
etc…). If the data is symbolic, we similarly encode each symbol
(e.g. each note, suppose there are M of them) with an n-
dimensional vector (e.g. pitch, duration). In both cases, the files
in the database are turned into a trajectory of M vectors of
dimension n.

Figure 1- Feature extraction

Within this framework, two search strategies can be considered:

- String-matching techniques try to align two vector sequences
of length Mm� , ((1), (2),... ())x x x m and ((1), (2),... ())y y y m
using a set of elementary operations (substitutions,
insertions…). They have received much coverage in the Music
IR community (see for example [1]) since they allow a context-
dependent measure of similarity and thus can account for many
of the high-level specificities of a musical query (i.e., replacing a
note by its octave shouldn’t be a mismatch). They are robust and
relatively fast.

- Another approach would be to “fold” the trajectories of m
vectors of dimension n into embedded vectors of higher
dimension N m n= ⋅ . For example, with m=3 and n=2:

() ()1 2 1 2 1 2(1), (2),.. () (1), (1), (2), (2), (3), (3)x x x m x x x x x x=

The search problem now consists of identifying the nearest
vector in a multidimensional data set (i.e., the database) to some
specified vector (i.e., the query). This approach may seem
awkward, because
- We lose structure in the data that could be used to help the
search routines (e.g., knowledge that 1(1)x and 1(2)x are

coordinates of the same “kind”).
- We increase the dimensionality of the search.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

However, there has been a considerable amount of work in
devising very efficient searching and sorting routines for such
multidimensional data. A complete review of the
multidimensional data structures that might be required is
described by Samet, et al. [2,3]. Non-hierarchical methods, such
as the use of grid files [4] and extendable hashing [5], have been
applied to multidimensional searching and analyzed extensively.
In many areas of research, the KD-Tree has become accepted as
one of the most efficient and versatile methods of searching.
This and other techniques have been studied in great detail
throughout the field of computational geometry [6,7].

Therefore, we feel that Music IR should capitalize on
these well-established techniques. It is our hope that we can
shed some light on the beneficial uses of KD-Trees in this field,
and how the multi-dimensional framework can be adapted to the
peculiarities of music data.

The paper is organized as follows. In the next four
sections, we review four multidimensional searching routines:
The KD-Tree, the K-Tree, the Multidimensional Quick-sort,
which is an original algorithm proposed by the authors, and the
Box-Assisted Method. Discussion of each of these methods
assumes that the data consists of M N-dimensional vectors,
regardless of what each dimension represents or how the vectors
were created or extracted. We then benchmark and compare
these routines, with an emphasis on the very efficient KD-Tree
algorithm. Finally, we examine some properties of these
algorithms as regards a multidimensional approach to Music IR.

2. THE KD-TREE

2.1 Description

The K-dimensional binary search tree (or KD-Tree) is a
highly adaptable, well-researched method for searching
multidimensional data. This tree was first introduced and
implemented in Bentley, et al. [8], studied extensively in [9] and
a highly efficient and versatile implementation was described in
[10]. It is this second implementation, and variations upon it,
that we will be dealing with here.

There are two types of nodes in a KD-Tree, the terminal
nodes and the internal nodes. The internal nodes have two
children, a left and a right son. These children represent a
partition along a given dimension of the N-dimensional
hyperplane. Records on one side of the partition are stored in the
left sub-tree, and on the other side are records stored in the right
sub-tree. The terminal nodes are buckets which contain up to a
set amount of points. A one- dimensional KD-Tree would in
effect be a simple quick-sort.

2.2 Method

The building of the KD-Tree works by first determining
which dimension of the data has the largest spread, i.e.
difference between the maximum and the minimum. The sorting
at the first node is then performed along that dimension. A
quickselect algorithm, which runs in order M time for M

vectors, finds the midpoint of this data. The data is then sorted
along a branch depending on whether it is larger or smaller than
the midpoint. This succeeds in dividing the data set into two
smaller data sets of equal size. The same procedure is used at
each node to determine the branching of the smaller data sets
residing at each node. When the number of data points
contained at a node is smaller than or equal to a specified size,
then that node becomes a bucket and the data contained within
is no longer sorted.

Consider the following data:

A (7,-3); B (4,2); C (-6,7); D (2,-1); E (8,0);
F (1,-8); G (5,-6); H (-8,9); I (9,8); J (-3,-4);

Fig. 2 depicts the partition in 2 dimensions for this data set. At
each node the cut dimension (X or Y) and the cut value (the
median of the corresponding data) are stored. The bucket size
has been chosen to be one.

Figure 2- The KD-Tree created using the sample data.

The corresponding partitioning of the plane is given in
Fig. 3. We note that this example comes from a larger data set
and thus does not appear properly balanced. This data set will be
used as an example in the discussion of other methods.

Figure 3- The sample data partitioned using the KD-Tree.

A nearest neighbor search may then be performed as a top-
down recursive traversal of a portion of the tree. At each node,
the query point is compared with the cut value along the
specified cut dimension. If along the cut dimension the query
point is less than the cut value, then the left branch is descended.
Otherwise, the right branch is descended. When a bucket is
reached, all points in the bucket are compared to see if any of
them is closer than the distance to the nearest neighbor found so
far. After the descent is completed, at any node encountered, if
the distance to the closest neighbor found is greater than the
distance to the cut value, then the other branch at that node
needs to be descended as well. Searching stops when no more
branches need to be descended.

Bentley recommends the use of parent nodes for each node
in a tree structure. A search may then be performed using a
bottom-up approach, starting with the bucket containing the
search point and searching through a small number of buckets
until the appropriate neighbors have been found. For nearest
neighbor searches this reduces computational time from O(log
M) to O(1). This however, does not immediately improve on
search time for finding near neighbors of points not in the
database. Timed trials indicated that the increased speed due to
bottom-up (as opposed to top-down) searches was negligible.
This is because most of the computational time is spent in
distance calculations, and the reduced number of comparisons is
negligible.

3. THE K-TREE

3.1 Description

K-trees are a generalization of the single-dimensional M-

ary search tree. As a data comparative search tree, a K-tree
stores data objects in both internal and leaf nodes. A hierarchical
recursive subdivision of the N-dimensional search space is
induced with the space partitions following the locality of the
data. Each node in a K-tree contains K=2N child pointers. The
root node of the tree represents the entire search space and each
child of the root represents a K-ant of the parent space.

One of the disadvantages of the K-tree is its storage space
requirements. In a standard implementation, as described here, a
tree of M N-dimensional vectors requires a minimum of

N(2 +N) M⋅ fields. Only M-1 of the 2N branches actually point
to a node. The rest point to NULL data. For large N, this waste
becomes prohibitive.

3.2 Method

Consider the case of two-dimensional data (N=2, K=4).

This K-tree is known as a quad-tree, and is a 4-ary tree with
each node possessing 4 child pointers. The search space is a
plane and the partitioning induced by the structure is a
hierarchical subdivision of the plane into disjoint quadrants. If
the data consists of the 10 vectors described in Section 2.2, then
the corresponding tree is depicted in Fig. 4 and the partitioning
of the plane in Fig. 5.

Figure 4- The KDTree created using the sample data.

Note that much of the tree is consumed by null pointers.

Figure 5- Sample data partitioned using the KTree method.

Searching the tree is a recursive two-step process. A cube

that corresponds to the bounding extent of the search sphere is
intersected with the tree at each node encountered. The bounds
of this cube are maintained in an N-dimensional range array.
This array is initialized based on the search vector. At each
node, the direction of search is determined based on this
intersection. A search on a child is discontinued if the region
represented by the child does not intersect the search cube. This
same general method may be applied to weighted, radial, and
nearest neighbor searches. For radial searches, the radius of the
search sphere is fixed. For nearest neighbor searches it is
doubled if the nearest neighbor has not been found, and for
weighted searches it is doubled if enough neighbors have not
been found.

4. MULTIDIMENSIONAL QUICKSORT

4.1 Description

For many analyses, one wishes to search only select
dimensions of the data. A problem frequently encountered is
that a different sort would need to be performed for each search
based on a different dimension or subset of all the dimensions.
We propose here a multidimensional generalization of the
quick-sort routine.

4.2 Method

A quick-sort is performed on each of the N dimensions.
The original array is not modified. Instead, two new arrays are
created for each quick-sort. The first is the quick-sort array, an
integer array where the value at position k in this array is the
position in the data array of the kth smallest value in this
dimension. The second array is the inverted quick-sort. It is an
integer array where the value at position k in the array is the
position in the quick-sort array of the value k. Keeping both
arrays allows one to identify both the location of a sorted value
in the original array, and the location of a value in the sorted
array. Thus, if (1)x has the second smallest value in the third

dimension, then it may be represented as 3 (2)x . The value
stored at the second index in the quick-sort array for the third
dimension will be 1, and the value stored at the first index in the
inverted quick-sort array for the third dimension will be 2. Note
that the additional memory overhead need not be large. For each
floating-point value in the original data, two additional integer
values are stored-, one from the quick-sort array and one from
the inverted quick-sort array.

We begin by looking at a simple case and showing how
the method can easily be generalized. We consider the case of
two-dimensional data, with coordinates x and y, where we make
no assumptions about delay coordinate embeddings or
uniformity of data.

Suppose we wish to find the nearest neighbor of the 2-
dimensional vector 1 2(,)x x x= . If this vector’s position on the

first axis quick-sort is i and its position on the second axis
quick-sort is j (i and j are found using the inverted quick-sorts),
then it may also be represented as

1 1 1 2 2 2
1 2 1 2() ((), ()) () ((), ())x x i x i x i x j x j x j= = = = .

Using the quick-sorts, we search outward from the search
vector, eliminating search directions as we go. Reasonable
candidates for nearest neighbor are the nearest neighbors on
either side on the first axis quick-sort, and the nearest neighbors
on either side on the second axis quick-sort. The vector

1 1 1
1 2(1) ((1), (1))x i x i x i− = − − corresponding to position i-1 on the

first axis quick-sort is the vector with the closest coordinate on
the first dimension such that 1

1 1(1)x i x− < . Similarly, the vector
1(1)x i + corresponding to i+1 on the first axis quick-sort is the

vector with the closest coordinate on the first dimension such
that 1

1 1(1)x i x+ < . And from the y-axis quick-sort, we have the

vectors 2 (1)x j − and 2 (1)x j + . These are the four vectors
adjacent to the search vector in the two quick-sorts. Each
vector's distance to the search vector is calculated and we store
the minimal distance and the corresponding minimal vector. If

1| (1) |x i x− − is greater than the minimal distance, then we know
that all vectors 1(1)x i − , 1(2)x i − ,... 1(1)x must also be further
away than the minimal vector. In that case, we will no longer
search in decreasing values on the first axis quick-sort. We
would also no longer search in decreasing values on the first
axis quick-sort if 1(1)x has been reached. Likewise, if

1| (1) |x i x+ − is greater than the minimal distance, then we know
that all vectors 1(1)x i + , 1(2)x i + ,... 1()x M must also be further
away than the minimal vector. If either that is the case or 1()x M
has been reached then we would no longer search in increasing

values on the x-axis quick-sort. The same rule applies to
2| (1) |x j x− − and 2| (1) |x j x+ − .

We then look at the four vectors,
1(2)x i − , 1(2)x i + , 2 (2)x j − and 2 (2)x j + . If any of these is closer

than the minimal vector, then we replace the minimal vector
with this one, and the minimal distance with this distance. If

1| (2) |x i x− − is greater than the minimal distance, then we no
longer need to continue searching in this direction. A similar
comparison is made for 1| (2) |x i x+ − , 2| (2) |x j x− − and

2| (2) |x j x+ − .
This procedure is repeated for 1(3)x i − , 1(3)x i + ,

2 (3)x j − and 2 (3)x j + , and so on, until all search directions have
been eliminated. We find the distance of the four points from
our point of interest and, if possible, replace the minimal
distance. We then proceed to the next four points and proceed
this way until all directions of search have been eliminated.

The minimal vector must be the nearest neighbor, since all
other neighbor distances have either been calculated and found
to be greater than the minimal distance, or have been shown that
they must be greater than the minimal distance.

Extension of this algorithm to higher dimensions is
straightforward. In N dimensions there are 2N possible
directions. Thus 2N immediate neighbors are checked. A
minimal distance is found, and then the next 2N neighbors are
checked. This is continued until it can be shown that none of the
2N directions can contain a nearer neighbor.

It is easy to construct data sets for which this is a very
inefficient search. For instance, if one is looking for the closest
point to (0,0) and one were to find a large quantity of points
residing outside the circle of radius 1 but inside the square of
side length 1 then all these points would need to be measured
before the closer point at (1,0) is considered. However, similar
situations can be constructed for most multidimensional sort and
search methods, and preventative measures can be taken.

5. THE BOX-ASSISTED METHOD

The box-assisted search method was described by
Schreiber, et al.[11] as a simple multidimensional search method
for nonlinear time series analysis. A grid is created and all the
vectors are sorted into boxes in the grid. Fig. 6 demonstrates a
two-dimensional grid that would be created for the sample data.
Searching then involves finding the box that a point is in, then
searching that box and all adjacent boxes. If the nearest
neighbor has not been found, then the search is expanded to the
next adjacent boxes. The search is continued until all required
neighbors have been found.

One of the difficulties with this method is the
determination of the appropriate box size. The sort is frequently
tailored to the type of search that is required, since a box size is
required and the preferred box size is dependent on the type of
search to be done. However, one usually has only limited a
priori knowledge of the searches that may be performed. Thus
the appropriate box size for one search may not be appropriate
for another. If the box size is too small, then many boxes are left
unfilled and many boxes will need to be searched. This results in
both excessive use of memory and excessive computation.

Figure 6- The sample data set as gridded into 16 boxes in two

dimensions, using the box-assisted method.

The choice of box dimensionality may also be
problematic. Schreiber, et al.[11] suggest 2 dimensional boxes.
However, this may lead to inefficient searches for high
dimensional data. Higher dimensional data may still be searched
although many more boxes are often needed in order to find a
nearest neighbor. On the other hand, using higher dimensional
boxes will exacerbate the memory inefficiency. In the
benchmarking section, we will consider both two and three-
dimensional boxes.

6. BENCHMARKING AND
COMPARISON OF METHODS

In this section we compare the suggested sorting and
searching methods, namely the box assisted method, the KD-
Tree, the K-tree, and the multidimensional quick-sort. All of
these methods are preferable to a brute force search (where no
sorting is done, and all data vectors are examined each time we
do the searching). However, computational speed is not the only
relevant factor. Complexity, memory use, and versatility of each
method will also be discussed. The versatility of the method
comes in two flavors- how well the method works on unusual
data and how adaptable the method is to unusual searches. The
multidimensional binary representation and the uniform K-Tree,
described in the previous two sections, are not compared with
the others because they are specialized sorts used only for
exceptional circumstances.

6.1 Benchmarking of the KDTree

One benefit of the KD-Tree is its rough independence of

search time on data set size. Figure 7 compares the average
search time to find a nearest neighbor with the data set size. For
large data set size, the search time has a roughly logarithmic
dependence on the number of data points. This is due to the time
it takes to determine the search point’s location in the tree. If the
search point were already in the tree, then the nearest neighbor
search time is reduced from O(log n) to O(1). This can be
accomplished with the implementation of Bentley's suggested

use of parent pointers for each node in the tree structure.[10]
This is true even for higher dimensional data, although the
convergence is much slower.

Figure 7- The dependence of average search time on data set

size.

In Figure 8, the KD-Tree is shown to have an exponential
dependence on the dimensionality of the data. This is an
important result, not mentioned in other work providing
diagnostic tests of the KD-Tree.[10, 12] It implies that KD-
Trees become inefficient for high dimensional data. It is not yet
known what search method is most preferable for neighbor
searching in a high dimension (greater than 8), although Liu, et.
al. have proposed a method similar to the multidimensional
quicksort for use in multimedia data retrieval.[13]

Figure 8- A log plot of search time vs dimension.

Figure 9 shows the relationship between the average search

time to find n neighbors of a data point and the value n. In this
plot, 10 data sets were generated with different seed values and
search times were computed for each data set. The figure shows
that the average search time is almost nearly linearly dependent
on the number of neighbors n. Thus a variety of searches
(weighted, radial, with or without exclusion) may be performed
with only a linear loss in speed.

The drawbacks of the KD-Tree, while few, are transparent.
First, if searching is to be done in many different dimensions,
either a highly inefficient search is used or additional search
trees must be built. Also the method is somewhat memory

intensive. In even the simplest KD-Tree, a number indicating the
cutting value is required at each node, as well as an ordered
array of data (similar to the quick-sort). If pointers to the parent
node or principal cuts are used then the tree must contain even
more information at each node. Although this increase may at
first seem unimportant, one should note that a music information
retrieval system may consist of a vast number of files, or
alternately, a vast number of samples within each file. Thus
memory may prove unmanageable for many workstation
computers.

Figure 9- A plot of the average search time to find n

neighbors of a data point, as a function of n.

We have implemented the KD-Tree as a multiplatform

dynamic linked library consisting of a set of fully functional
object oriented routines. The advantage of such an
implementation is that the existing code can be easily ported
into existing MIR systems. In short, the core code consists of
the following functions

Create(*phTree, nCoords, nDims, nBucketSize,*aPoints);
FindNearestNeighbor(Tree,*pSearchPoint, *pFoundPoint);
FindMultipleNeighbors(Tree, *pSearchPoint,
*pnNeighbors, *aPoints);
FindRadialNeighbors(Tree, *pSearchPoint, radius,
**paPoints, *pnNeighbors);
ReleaseRadialNeighborList(*aPoints);
Release(Tree);

6.2 Comparison of methods

The KD-Tree implementation was tested in timed trials
against the multidimensional quick-sort and the box-assisted
method. In Figure 10 through Figure 13, we depict the
dependence of search time on data set size for one through four
dimensional data, respectively.

Figure 10- Comparison of search times for different

methods using 1 dimensional random data.

Figure 11- Comparison of search times for different

methods using 2 dimensional random data.

In Figure 10, the multidimensional quick-sort reduces to a
one-dimensional sort and the box assisted method as described
by [11] is not feasible since it requires that the data be at least
two-dimensional. We note from the slopes of these plots that the
box-assisted method, the KDTree and the KTree all have an O(n
log n) dependence on data set size, whereas the quick-sort based
methods have approximately O(n1.5) dependence on data set size
for 2 dimensional data and O(n1.8) dependence on data set size
for 3 or 4 dimensional data. As expected, the brute force method
has O(n2) dependence.

Despite its theoretical O(n log n) performance, the KTree
still performs far worse than the box-assisted and KDTree
methods. This is because of a large constant factor worse
performance that is still significant for large data sets (64,000
points). This constant worse performance relates to the poor
balancing of the KTree. Whereas for the KDTree, the data may
be permuted so that cut values are always chosen at medians in
the data, the KTree does not offer this option because there is no
clear multidimensional median. In addition, many more
branches in the tree may need to be searched in the KTree
because at each cut, there are 2k instead of 2 branches.

Figure 12- Comparison of search times for different

methods using 3 dimensional random data.

Figure13- Comparison of search times for different

methods using 4 dimensional random data.

However, all of the above trials were performed using
uniform random noise. They say nothing of how these methods
perform with other types of data. In order to compare the sorting
and searching methods performance on other types of data, we
compared their times for nearest neighbor searches on a variety
of data sets. Table 1 depicts the estimated time in milliseconds
to find all nearest neighbors in different 10,000 point data sets
for each of the benchmarked search methods. The uniform noise
data was similar to that discussed in the previous section.

 Each Gaussian noise data set had a mean of 0 and standard
deviation of 1 in each dimension. The identical dimensions and
one valid dimension data sets were designed to test performance
under unusual circumstances.

 For the identical dimensions data, uniform random data
was used and each coordinate of a vector was set equal, e.g.,

1 2 3 1 1 1() ((), (), ()) ((), (), ())x i x i x i x i x i x i x i= =

For the data with only one valid dimension, uniform random
data was used in only the first dimension, e.g.,

1 2 3 1() ((), (), ()) ((),0,0)x i x i x i x i x i= =

In all cases the KD-Tree proved an effective method of sorting
and searching the data. Only for the last two data sets did the
multidimensional quick-sort method prove faster, and these data
sets were constructed so that they were, in effect, one-
dimensional. In addition, the box method proved particularly

ineffective for high dimensional Gaussian data where the
dimensionality guaranteed that an excessive number of boxes
needed to be searched, and for the Lorenz data, where the highly
non-uniform distribution ensured that many boxes went unfilled.
The K-tree also performed poorly for high dimensional data
(four and five dimensional), due to the exponential increase in
the number of searched boxes with respect to dimension.

A summary of the comparison of the four routines can be found
in Table 2. The “adaptive” and “flexible” criteria refer to the
next section.

Table 2- Comparison of some features of the four routines.
Rating from 1=best to 4=worst.

Algorithm Memory Build Search Adapt. Flexible
KDTree 2 3/4 1 yes yes
KTree 3 3/4 3 no no

Quick-sort 1 2 4 yes yes
BoxAssisted 4 1 2 no yes

7. INTERESTING PROPERTIES FOR
MUSIC IR

The multi-dimensional search approach to Music IR, and
the corresponding algorithms presented above have a number of
interesting properties and conceptual advantages.

7.1 Adaptive to the distribution

A truly multi-dimensional approach enables an adaptation to the
distribution of the data set. For example, the KD-Tree algorithm
focuses its discriminating power in a non-uniform way. The
search tree it creates represents a best fit to the density of the
data. This could be efficient for, say, search tasks in a database
where part of the features remain quasi constant, e.g. a database
of samples which are all pure tones of a given instrument, with
quasi constant pitch, and a varying brightness. It is interesting to
compare this adaptive behavior with a string-matching algorithm
that would have to compare sequences that all begin with
“aaa…”. The latter can’t adapt and systematically tests the first
three digits, which is an obvious waste of time.

7.2 Independent of the metric and of the
alphabet

All the methods presented here are blind to the metric that
is used. This is especially useful if the set of features is
composite, and requires a different metric for each coordinate,
e.g. pitches can be measured modulo 12. The routines are also
independent of the alphabet, and work for integers as well as for

Table 1- Nearest neighbor search times for data sets consisting of 10000 points. The brute force method, multidim. quick-sort, the
box assisted method in 2 and 3 dimensions, the KDTree and the KTree were compared. An X indicates that it wasn’t possible to use

this search method on this type of data. The fastest method is given in bold and the second fastest method is given in italics.

floating-points. This makes them very general, as they can deal
with a variety of queries on mixed low-level features and high-
level meta-data such as:

Nearest neighbor)"",3,2,1(BACHpitchpitchpitch

7.3 Flexibility

There are a variety of searches that are often performed on
multidimensional data.[14] Perhaps the most common type of
search, and one of the simplest, is the nearest neighbor search.
This search involves the identification of the nearest vector in
the data set to some specified vector, known as the search
vector. The search vector may or may not also be in the data set.
Expansions on this type of search include the radial search,
where one wishes to find all vectors within a given distance of
the search vector, and the weighted search, where one wishes to
find the nearest A vectors to the search vector, for some positive
integer A.

Each of these searches (weighted, radial and nearest
neighbor) may come with further restrictions. For instance,
points or collections of points may be excluded from the search.
Additional functionality may also be required. The returned data
may be ordered from closest to furthest from the search vector,
and the sorting and searching may be required to handle the
insertion and deletion of points. That is, if points are deleted
from or added to the data, these additional points should be
added or deleted to the sort so that they can be removed or
included in the search. Such a feature is essential if searching is
to performed with real-time analysis.

Most sorting and searching routine presented above are
able to perform all the common types of searches, and are
adaptable enough so that they may be made to perform any
search.

7.4 A note on dimensionality

One of the restrictions shared by the multidimensional
search routines presented on this paper is their dependence on
the dimensionality of the data-set (not its size). This is
detrimental to the sheer “folding” of the trajectory search as

presented in the introduction, especially when it involves long
m-sequences of high-n-dimension features (dimension N m n= ⋅
may be too high). However, as we mentioned in the course of
this paper, there are still a variety of searches that can fit into the
multidimensional framework. We notably wish to suggest:

- Searches for combinations of high-level metadata (m=1)
- It is possible to reduce N with classic dimensionality
reduction techniques, such as Principal Component Analysis or
Vector Quantization.
- It is possible to reduce M by computing only 1 vector of
features per audio piece. It is the approach taken in the Muscle
Fish™ technology [15], where the mean, variance and
correlation of the features are included in the feature vector.
- It is possible to reduce M by computing the features not
on a frame-to-frame basis, but only when a significant change
occurs (“event-based feature extraction”, see for example [16]).
- For finite alphabets, it is always possible to reduce the
dimension of a search by increasing the size of the alphabet. For
example, searching for a set of 9 notes out of a 12 semi-tone
alphabet can be reduced to a 3D search over an alphabet of

312 symbols.

8. CONCLUSION

We’ve presented and discussed four algorithms for a
multidimensional approach to Music IR. The KD search tree is a
highly adaptable, well-researched method for searching
multidimensional data. As such it is very fast, but also can be
memory intensive, and requires care in building the binary
search tree. The k tree is a similar method, less versatile, more
memory intensive, but easier to implement. The box-assisted
method on the other hand, is used in a form designed for
nonlinear time series analysis. It falls into many of the same
traps that the other methods do. Finally the multidimensional
quick-sort is an original method designed so that only one
search tree is used regardless of how many dimensions are used.

These routines share a number of conceptual advantages
over the approaches taken so far in the Music IR community,
which -we believe- can be useful for a variety of musical
searches. The aim of the paper is to be only a review, and the
starting point of a reflection about search algorithms for music.

Data set Dimension Brute Quicksort Box (2)
method

Box (3)
method

KDTree KTree

Uniform noise 3 32567 2128 344 210 129 845

Gaussian 2 16795 280 623 X 56 581

Gaussian 4 44388 8114 54626 195401 408 3047

Identical dimensions 3 33010 19 1080 5405 42 405

One valid dimension 3 30261 31 1201 7033 37 453

In particular, we still have to implement specific music retrieval
systems that use the results presented here.

9. REFERENCES

[1] K. Lemstrom, String Matching Techniques for Music
Retrieval. Report A-2000-4, University of Helsinki
Press.

[2] H. Samet, Applications of Spatial Data Structures:
Addison-Wesley, 1989.

[3] H. Samet, The design and analysis of spatial data
structures: Addison-Wesley, 1989.

[4] H. Hinterberger, K. C. Sevcik, and J. Nievergelt, ACM
Trans. On Database Systems, vol. 9, pp. 38, 1984.

[5] N. Pippenger, R. Fagin, J. Nievergelt, and H. R.
Strong, ACM Trans. On Database Systems, vol. 4, pp.
315, 1979.

[6] K. Mehlhorn, Data Structures and Algorithms 3:
Multidimensional Searching and Computational
Geometry: Springer-Verlag, 1984.

[7] F. P. Preparata and M. I. Shamos, Computational
geometry: An introduction. New York: Springer-
Verlag, 1985.

[8] J. H. Bentley, “Multidimensional Binary Search Trees
Used for Associative Searching,” Communications of
the ACM, vol. 18, pp. 509-517, 1975.

[9] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An
algorithm for finding best matches in logarithmic
expected time,” ACM Trans. Math. Software, vol. 3,
pp. 209, 1977.

[10] J. L. Bentley, “K-d trees for semidynamic point sets,”
in Sixth Annual ACM Symposium on Computational
Geometry, vol. 91. San Francisco, 1990.

[11] T. Schreiber, “Efficient neighbor searching in
nonlinear time series analysis,” Int. J. of Bifurcation
and Chaos, vol. 5, pp. 349-358, 1995.

[12] R. F. Sproull, “Refinement to nearest-neighbour
searching in k-d trees,” Algorithmica, vol. 6, p. 579-
589, 1991.

[13] C.-C. Liu, J.-L. Hsu, A. L. P. Chen, “Efficient Near
Neighbor Searching Using Multi-Indexes for Content-
Based Multimedia Data Retrieval,” Multimedia Tools
and Applications, Vol 13, No. 3, 2001, p.235-254.

[14] J. Orenstein, Information Processing Letters, vol. 14,
pp. 150, 1982.

[15] E. Wold, T. Blum et al., “Content Based
Classification, Search and Retrieval of Audio”, in
IEEE Multimedia, Vol.3, No. 3, Fall 1996, p.27-36.

[16] F. Kurth, M. Clausen, “Full Text Indexing of Very
Large Audio Databases”, in Proc. 110th AES
Convention, Amsterdam, May 2001.

