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ABSTRACT 
 
The problem of Music Information Retrieval can often be 
formalized as “searching for multidimensional trajectories”. It is 
well known that string-matching techniques provide robust and 
effective theoretic solutions to this problem. However, for low 
dimensional searches, especially queries concerning a single 
vector as opposed to a series of vectors, there are a wide variety 
of other methods available. In this work we examine and 
benchmark those methods and attempt to determine if they may 
be useful in the field of information retrieval. Notably, we 
propose the use of KD-Trees for multidimensional near-
neighbor searching. We show that a KD-Tree is optimized for 
multidimensional data, and is preferred over other methods that 
have been suggested, such as the K-Tree, the box-assisted sort 
and the multidimensional quick-sort.  

  

1. MULTIDIMENSIONAL SEARCHING 
IN MUSIC IR 
 

The generic task in Music IR is to search for a query 
pattern, either a few seconds of raw acoustic data, or some type 
of symbolic file (such as MIDI), in a database of the same 
format.  

To perform this task, we have to encode the files in a 
convenient way. If the files are raw acoustic data, we often 
resort to a feature extraction (fig. 1). The files are cut into M 
time frames and for each frame, we apply a signal-processing 
transform that outputs a vector of n features (e.g. 
psychoacoustics parameters such as pitch, loudness, brightness, 
etc…). If the data is symbolic, we similarly encode each symbol 
(e.g. each note, suppose there are M of them) with an n-
dimensional vector (e.g. pitch, duration). In both cases, the files 
in the database are turned into a trajectory of M vectors of 
dimension n.  

 

 
Figure 1- Feature extraction 

 
 

Within this framework, two search strategies can be considered: 
  
- String-matching techniques try to align two vector sequences 
of length Mm� , ( (1), (2),... ( ))x x x m  and ( (1), (2),... ( ))y y y m  
using a set of elementary operations (substitutions, 
insertions…). They have received much coverage in the Music 
IR community (see for example [1]) since they allow a context-
dependent measure of similarity and thus can account for many 
of the high-level specificities of a musical query (i.e., replacing a 
note by its octave shouldn’t be a mismatch). They are robust and 
relatively fast.  
 
- Another approach would be to “fold” the trajectories of m 
vectors of dimension n into embedded vectors of higher 
dimension N m n= ⋅ . For example, with m=3 and n=2: 

( ) ( )1 2 1 2 1 2(1), (2),.. ( ) (1), (1), (2), (2), (3), (3)x x x m x x x x x x=  

The search problem now consists of identifying the nearest 
vector in a multidimensional data set (i.e., the database) to some 
specified vector (i.e., the query). This approach may seem 
awkward, because 
- We lose structure in the data that could be used to help the 
search routines (e.g., knowledge that 1(1)x  and 1(2)x  are 

coordinates of the same “kind”). 
- We increase the dimensionality of the search. 
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However, there has been a considerable amount of work in 
devising very efficient searching and sorting routines for such 
multidimensional data. A complete review of the 
multidimensional data structures that might be required is 
described by Samet, et al. [2,3]. Non-hierarchical methods, such 
as the use of grid files [4] and extendable hashing [5], have been 
applied to multidimensional searching and analyzed extensively. 
In many areas of research, the KD-Tree has become accepted as 
one of the most efficient and versatile methods of searching. 
This and other techniques have been studied in great detail 
throughout the field of computational geometry [6,7]. 
 

Therefore, we feel that Music IR should capitalize on 
these well-established techniques. It is our hope that we can 
shed some light on the beneficial uses of KD-Trees in this field, 
and how the multi-dimensional framework can be adapted to the 
peculiarities of music data.  
 

The paper is organized as follows. In the next four 
sections, we review four multidimensional searching routines: 
The KD-Tree, the K-Tree, the Multidimensional Quick-sort, 
which is an original algorithm proposed by the authors, and the 
Box-Assisted Method. Discussion of each of these methods 
assumes that the data consists of M N-dimensional vectors, 
regardless of what each dimension represents or how the vectors 
were created or extracted. We then benchmark and compare 
these routines, with an emphasis on the very efficient KD-Tree 
algorithm. Finally, we examine some properties of these 
algorithms as regards a multidimensional approach to Music IR. 

 

2. THE KD-TREE 
 

2.1 Description 
 

The K-dimensional binary search tree (or KD-Tree) is a 
highly adaptable, well-researched method for searching 
multidimensional data. This tree was first introduced and 
implemented in Bentley, et al. [8], studied extensively in [9] and 
a highly efficient and versatile implementation was described in 
[10]. It is this second implementation, and variations upon it, 
that we will be dealing with here. 

There are two types of nodes in a KD-Tree, the terminal 
nodes and the internal nodes. The internal nodes have two 
children, a left and a right son. These children represent a  
partition along a given dimension of the  N-dimensional 
hyperplane. Records on one side of the partition are stored in the 
left sub-tree, and on the other side are records stored in the right 
sub-tree. The terminal nodes are buckets which contain up to a 
set amount of points. A one- dimensional KD-Tree would in 
effect be a simple quick-sort.  

 

2.2 Method 
 

The building of the KD-Tree works by first determining 
which dimension of the data has the largest spread, i.e. 
difference between the maximum and the minimum. The sorting 
at the first node is then performed along that dimension. A 
quickselect algorithm, which runs in order M time for M 

vectors, finds the midpoint of this data. The data is then sorted 
along a branch depending on whether it is larger or smaller than 
the midpoint. This succeeds in dividing the data set into two 
smaller data sets of equal size. The same procedure is used at 
each node to determine the branching of the smaller data sets 
residing at each node.  When the number of data points 
contained at a node is smaller than or equal to a specified size, 
then that node becomes a bucket and the data contained within 
is no longer sorted. 

 
Consider the following data:  
 

A (7,-3); B (4,2); C (-6,7); D (2,-1); E (8,0); 
F (1,-8); G (5,-6); H (-8,9); I (9,8); J (-3,-4); 

  
Fig. 2 depicts the partition in 2 dimensions for this data set. At 
each node the cut dimension (X or Y) and the cut value (the 
median of the corresponding data) are stored. The bucket size 
has been chosen to be one. 
 

 
 

Figure 2- The KD-Tree created using the sample data. 
 

The corresponding partitioning of the plane is given in 
Fig. 3. We note that this example comes from a larger data set 
and thus does not appear properly balanced. This data set will be 
used as an example in the discussion of other methods. 

 
Figure 3- The sample data partitioned using the KD-Tree. 



A nearest neighbor search may then be performed as a top-
down recursive traversal of a portion of the tree. At each node, 
the query point is compared with the cut value along the 
specified cut dimension. If along the cut dimension the query 
point is less than the cut value, then the left branch is descended. 
Otherwise, the right branch is descended. When a bucket is 
reached, all points in the bucket are compared to see if any of 
them is closer than the distance to the nearest neighbor found so 
far. After the descent is completed, at any node encountered, if 
the distance to the closest neighbor found is greater than the 
distance to the cut value, then the other branch at that node 
needs to be descended as well. Searching stops when no more 
branches need to be descended. 

Bentley recommends the use of parent nodes for each node 
in a tree structure. A search may then be performed using a 
bottom-up approach, starting with the bucket containing the 
search point and searching through a small number of buckets 
until the appropriate neighbors have been found. For nearest 
neighbor searches this reduces computational time from O(log 
M) to O(1). This however, does not immediately improve on 
search time for finding near neighbors of points not in the 
database. Timed trials indicated that the increased speed due to 
bottom-up (as opposed to top-down) searches was negligible. 
This is because most of the computational time is spent in 
distance calculations, and the reduced number of comparisons is 
negligible.  

 

3. THE K-TREE 
 

3.1 Description 
 
K-trees are a generalization of the single-dimensional M-

ary search tree. As a data comparative search tree, a K-tree 
stores data objects in both internal and leaf nodes. A hierarchical 
recursive subdivision of the N-dimensional search space is 
induced with the space partitions following the locality of the 
data. Each node in a K-tree contains K=2N child pointers. The 
root node of the tree represents the entire search space and each 
child of the root represents a K-ant of the parent space.  

One of the disadvantages of the K-tree is its storage space 
requirements. In a standard implementation, as described here, a 
tree of M N-dimensional vectors requires a minimum of 

N(2 +N) M⋅  fields. Only M-1 of the 2N branches actually point 
to a node. The rest point to NULL data. For large N, this waste 
becomes prohibitive. 

 

3.2 Method 
 
Consider the case of two-dimensional data (N=2, K=4). 

This K-tree is known as a quad-tree, and is a 4-ary tree with 
each node possessing 4 child pointers. The search space is a 
plane and the partitioning induced by the structure is a 
hierarchical subdivision of the plane into disjoint quadrants. If 
the data consists of the 10 vectors described in Section 2.2, then 
the corresponding tree is depicted in Fig. 4 and the partitioning 
of the plane in Fig. 5.  

 
Figure 4- The KDTree created using the sample data. 

 
Note that much of the tree is consumed by null pointers. 
 

 
Figure 5- Sample data partitioned using the KTree method. 

 
Searching the tree is a recursive two-step process. A cube 

that corresponds to the bounding extent of the search sphere is 
intersected with the tree at each node encountered. The bounds 
of this cube are maintained in an N-dimensional range array. 
This array is initialized based on the search vector. At each 
node, the direction of search is determined based on this 
intersection. A search on a child is discontinued if the region 
represented by the child does not intersect the search cube. This 
same general method may be applied to weighted, radial, and 
nearest neighbor searches. For radial searches, the radius of the 
search sphere is fixed. For nearest neighbor searches it is 
doubled if the nearest neighbor has not been found, and for 
weighted searches it is doubled if enough neighbors have not 
been found. 

4. MULTIDIMENSIONAL QUICKSORT 
 

4.1 Description 
 

For many analyses, one wishes to search only select 
dimensions of the data. A problem frequently encountered is 
that a different sort would need to be performed for each search 
based on a different dimension or subset of all the dimensions. 
We propose here a multidimensional generalization of the 
quick-sort routine. 
 



4.2 Method   
 

A quick-sort is performed on each of the N dimensions. 
The original array is not modified. Instead, two new arrays are 
created for each quick-sort. The first is the quick-sort array, an 
integer array where the value at position k in this array is the 
position in the data array of the kth smallest value in this 
dimension. The second array is the inverted quick-sort. It is an 
integer array where the value at position k in the array is the 
position in the quick-sort array of the value k.  Keeping both 
arrays allows one to identify both the location of a sorted value 
in the original array, and the location of a value in the sorted 
array. Thus, if (1)x  has the second smallest value in the third 

dimension, then it may be represented as 3 (2)x . The value 
stored at the second index in the quick-sort array for the third 
dimension will be 1, and the value stored at the first index in the 
inverted quick-sort array for the third dimension will be 2. Note 
that the additional memory overhead need not be large. For each 
floating-point value in the original data, two additional integer 
values are stored-, one from the quick-sort array and one from 
the inverted quick-sort array. 

We begin by looking at a simple case and showing how 
the method can easily be generalized. We consider the case of 
two-dimensional data, with coordinates x and y, where we make 
no assumptions about delay coordinate embeddings or 
uniformity of data.  

Suppose we wish to find the nearest neighbor of the 2-
dimensional vector 1 2( , )x x x= . If this vector’s position on the 

first axis quick-sort is i and its position on the second axis 
quick-sort is j (i and j are found using the inverted quick-sorts), 
then it may also be represented as  

1 1 1 2 2 2
1 2 1 2( ) ( ( ), ( )) ( ) ( ( ), ( ))x x i x i x i x j x j x j= = = = .  

Using the quick-sorts, we search outward from the search 
vector, eliminating search directions as we go. Reasonable 
candidates for nearest neighbor are the nearest neighbors on 
either side on the first axis quick-sort, and the nearest neighbors 
on either side on the second axis quick-sort. The vector 

1 1 1
1 2( 1) ( ( 1), ( 1))x i x i x i− = − −  corresponding to position i-1 on the 

first axis quick-sort is the vector with the closest coordinate on 
the first dimension such that 1

1 1( 1)x i x− < . Similarly, the vector 
1( 1)x i +  corresponding to  i+1 on the first axis quick-sort is the 

vector with the closest coordinate on the first dimension such 
that 1

1 1( 1)x i x+ < . And from the y-axis quick-sort, we have the 

vectors 2 ( 1)x j −  and 2 ( 1)x j + .  These are the four vectors 
adjacent to the search vector in the two quick-sorts. Each 
vector's distance to the search vector is calculated and we store 
the minimal distance and the corresponding minimal vector. If 

1| ( 1) |x i x− −  is greater than the minimal distance, then we know 
that all vectors 1( 1)x i − , 1( 2)x i − ,... 1(1)x  must also be further 
away than the minimal vector. In that case, we will no longer 
search in decreasing values on the first axis quick-sort. We 
would also no longer search in decreasing values on the first 
axis quick-sort if 1(1)x  has been reached. Likewise, if 

1| ( 1) |x i x+ −  is greater than the minimal distance, then we know 
that all vectors 1( 1)x i + , 1( 2)x i + ,... 1( )x M  must also be further 
away than the minimal vector. If either that is the case or 1( )x M  
has been reached then we would no longer search in increasing 

values on the x-axis quick-sort.  The same rule applies to 
2| ( 1) |x j x− −  and 2| ( 1) |x j x+ − . 

We then look at the four vectors, 
1( 2)x i − , 1( 2)x i + , 2 ( 2)x j − and 2 ( 2)x j + . If any of these is closer 

than the minimal vector, then we replace the minimal vector 
with this one, and the minimal distance with this distance. If 

1| ( 2) |x i x− −  is greater than the minimal distance, then we no 
longer need to continue searching in this direction.  A similar 
comparison is made for 1| ( 2) |x i x+ − , 2| ( 2) |x j x− −  and 

2| ( 2) |x j x+ − . 
This procedure is repeated for 1( 3)x i − , 1( 3)x i + , 

2 ( 3)x j −  and 2 ( 3)x j + , and so on, until all search directions have 
been eliminated.  We find the distance of the four points from 
our point of interest and, if possible, replace the minimal 
distance. We then proceed to the next four points and proceed 
this way until all directions of search have been eliminated. 

The minimal vector must be the nearest neighbor, since all 
other neighbor distances have either been calculated and found 
to be greater than the minimal distance, or have been shown that 
they must be greater than the minimal distance. 

Extension of this algorithm to higher dimensions is 
straightforward. In N dimensions there are 2N possible 
directions. Thus 2N immediate neighbors are checked. A 
minimal distance is found, and then the next 2N neighbors are 
checked. This is continued until it can be shown that none of the 
2N directions can contain a nearer neighbor. 

It is easy to construct data sets for which this is a very 
inefficient search. For instance, if one is looking for the closest 
point to (0,0) and one were to find a large quantity of points 
residing outside the circle of radius 1 but inside the square of 
side length 1 then all these points would need to be measured 
before the closer point at (1,0) is considered. However, similar 
situations can be constructed for most multidimensional sort and 
search methods, and preventative measures can be taken. 

 

5. THE BOX-ASSISTED METHOD 
 

The box-assisted search method was described by 
Schreiber, et al.[11] as a simple multidimensional search method 
for nonlinear time series analysis. A grid is created and all the 
vectors are sorted into boxes in the grid. Fig. 6 demonstrates a 
two-dimensional grid that would be created for the sample data. 
Searching then involves finding the box that a point is in, then 
searching that box and all adjacent boxes. If the nearest 
neighbor has not been found, then the search is expanded to the 
next adjacent boxes. The search is continued until all required 
neighbors have been found. 

One of the difficulties with this method is the 
determination of the appropriate box size. The sort is frequently 
tailored to the type of search that is required, since a box size is 
required and the preferred box size is dependent on the type of 
search to be done. However, one usually has only limited a 
priori knowledge of the searches that may be performed. Thus 
the appropriate box size for one search may not be appropriate 
for another. If the box size is too small, then many boxes are left 
unfilled and many boxes will need to be searched. This results in 
both excessive use of memory and excessive computation. 

 



 
Figure 6- The sample data set as gridded into 16 boxes in two 

dimensions, using the box-assisted method. 
 

The choice of box dimensionality may also be 
problematic. Schreiber, et al.[11] suggest 2 dimensional boxes. 
However, this may lead to inefficient searches for high 
dimensional data. Higher dimensional data may still be searched 
although many more boxes are often needed in order to find a 
nearest neighbor. On the other hand, using higher dimensional 
boxes will exacerbate the memory inefficiency. In the 
benchmarking section, we will consider both two and three-
dimensional boxes.  
 

6. BENCHMARKING AND 
COMPARISON OF METHODS 
 

In this section we compare the suggested sorting and 
searching methods, namely the box assisted method, the KD-
Tree, the K-tree, and the multidimensional quick-sort. All of 
these methods are preferable to a brute force search (where no 
sorting is done, and all data vectors are examined each time we 
do the searching). However, computational speed is not the only 
relevant factor. Complexity, memory use, and versatility of each 
method will also be discussed. The versatility of the method 
comes in two flavors- how well the method works on unusual 
data and how adaptable the method is to unusual searches. The 
multidimensional binary representation and the uniform K-Tree, 
described in the previous two sections, are not compared with 
the others because they are specialized sorts used only for 
exceptional circumstances. 
 

6.1 Benchmarking of the KDTree 
 
One benefit of the KD-Tree is its rough independence of 

search time on data set size. Figure 7 compares the average 
search time to find a nearest neighbor with the data set size. For 
large data set size, the search time has a roughly logarithmic 
dependence on the number of data points. This is due to the time 
it takes to determine the search point’s location in the tree. If the 
search point were already in the tree, then the nearest neighbor 
search time is reduced from O(log n) to O(1). This can be 
accomplished with the implementation of Bentley's suggested 

use of parent pointers for each node in the tree structure.[10] 
This is true even for higher dimensional data, although the 
convergence is much slower.  
 

 
Figure 7- The dependence of average search time on data set 

size. 
 

In Figure 8, the KD-Tree is shown to have an exponential 
dependence on the dimensionality of the data. This is an 
important result, not mentioned in other work providing 
diagnostic tests of the KD-Tree.[10, 12] It implies that KD-
Trees become inefficient for high dimensional data. It is not yet 
known what search method is most preferable for neighbor 
searching in a high dimension (greater than 8), although Liu, et. 
al. have proposed a method similar to the multidimensional 
quicksort for use in multimedia data retrieval.[13] 

 

 
Figure 8- A log plot of search time vs dimension. 

 
Figure 9 shows the relationship between the average search 

time to find n neighbors of a data point and the value n. In this 
plot, 10 data sets were generated with different seed values and 
search times were computed for each data set. The figure shows 
that the average search time is almost nearly linearly dependent 
on the number of neighbors n. Thus a variety of searches 
(weighted, radial, with or without exclusion) may be performed 
with only a linear loss in speed. 

The drawbacks of the KD-Tree, while few, are transparent. 
First, if searching is to be done in many different dimensions, 
either a highly inefficient search is used or additional search 
trees must be built. Also the method is somewhat memory 



intensive. In even the simplest KD-Tree, a number indicating the 
cutting value is required at each node, as well as an ordered 
array of data (similar to the quick-sort). If pointers to the parent 
node or principal cuts are used then the tree must contain even 
more information at each node. Although this increase may at 
first seem unimportant, one should note that a music information 
retrieval system may consist of a vast number of files, or 
alternately, a vast number of samples within each file. Thus 
memory may prove unmanageable for many workstation 
computers. 

 

 
Figure 9- A plot of the average search time to find n 

neighbors of a data point, as a function of n. 
 
We have implemented the KD-Tree as a multiplatform 

dynamic linked library consisting of a set of fully functional 
object oriented routines. The advantage of such an 
implementation is that the existing code can be easily ported 
into existing MIR systems.  In short, the core code consists of 
the following functions 

 
Create(*phTree, nCoords, nDims, nBucketSize,*aPoints); 
FindNearestNeighbor(Tree,*pSearchPoint, *pFoundPoint); 
FindMultipleNeighbors(Tree, *pSearchPoint, 
*pnNeighbors, *aPoints); 
FindRadialNeighbors(Tree, *pSearchPoint, radius, 
**paPoints, *pnNeighbors); 
ReleaseRadialNeighborList(*aPoints); 
Release(Tree); 
 

6.2 Comparison of methods 
 

The KD-Tree implementation was tested in timed trials 
against the multidimensional quick-sort and the box-assisted 
method. In Figure 10 through Figure 13, we depict the 
dependence of search time on data set size for one through four 
dimensional data, respectively.  

 

 
Figure 10- Comparison of search times for different 

methods using 1 dimensional random data. 
 
 

 
Figure 11- Comparison of search times for different 

methods using 2 dimensional random data. 
 

In Figure 10, the multidimensional quick-sort reduces to a 
one-dimensional sort and the box assisted method as described 
by [11] is not feasible since it requires that the data be at least 
two-dimensional. We note from the slopes of these plots that the 
box-assisted method, the KDTree and the KTree all have an O(n 
log n) dependence on data set size, whereas the quick-sort based 
methods have approximately O(n1.5) dependence on data set size 
for 2 dimensional data and O(n1.8) dependence on data set size 
for 3 or 4 dimensional data. As expected, the brute force method 
has O(n2) dependence.  

Despite its theoretical O(n log n) performance, the KTree 
still performs far worse than the box-assisted and KDTree 
methods. This is because of a large constant factor worse 
performance that is still significant for large data sets (64,000 
points). This constant worse performance relates to the poor 
balancing of the KTree. Whereas for the KDTree, the data may 
be permuted so that cut values are always chosen at medians in 
the data, the KTree does not offer this option because there is no 
clear multidimensional median. In addition, many more 
branches in the tree may need to be searched in the KTree 
because at each cut, there are 2k instead of 2 branches. 

 



 
Figure 12- Comparison of search times for different 

methods using 3 dimensional random data. 

 
Figure13- Comparison of search times for different 

methods using 4 dimensional random data. 
 

However, all of the above trials were performed using 
uniform random noise. They say nothing of how these methods 
perform with other types of data. In order to compare the sorting 
and searching methods performance on other types of data, we 
compared their times for nearest neighbor searches on a variety 
of data sets. Table 1 depicts the estimated time in milliseconds 
to find all nearest neighbors in different 10,000 point data sets 
for each of the benchmarked search methods. The uniform noise 
data was similar to that discussed in the previous section. 

 Each Gaussian noise data set had a mean of 0 and standard 
deviation of 1 in each dimension. The identical dimensions and 
one valid dimension data sets were designed to test performance 
under unusual circumstances. 

 For the identical dimensions data, uniform random data 
was used and each coordinate of a vector was set equal, e.g., 

1 2 3 1 1 1( ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))x i x i x i x i x i x i x i= =  

For the data with only one valid dimension, uniform random 
data was used in only the first dimension, e.g., 

1 2 3 1( ) ( ( ), ( ), ( )) ( ( ),0,0)x i x i x i x i x i= =  

In all cases the KD-Tree proved an effective method of sorting 
and searching the data. Only for the last two data sets did the 
multidimensional quick-sort method prove faster, and these data 
sets were constructed so that they were, in effect, one- 
dimensional. In addition, the box method proved particularly 

ineffective for high dimensional Gaussian data where the 
dimensionality guaranteed that an excessive number of boxes 
needed to be searched, and for the Lorenz data, where the highly 
non-uniform distribution ensured that many boxes went unfilled. 
The K-tree also performed poorly for high dimensional data 
(four and five dimensional), due to the exponential increase in 
the number of searched boxes with respect to dimension. 
 
A summary of the comparison of the four routines can be found 
in Table 2. The “adaptive” and “flexible” criteria refer to the 
next section.  
 
Table 2- Comparison of some features of the four routines. 
Rating from 1=best to 4=worst.  
 
Algorithm Memory Build Search Adapt. Flexible 
KDTree 2 3/4 1 yes yes 
KTree 3 3/4 3 no no 

Quick-sort 1 2 4 yes yes 
BoxAssisted 4 1 2 no yes 
 

7. INTERESTING PROPERTIES FOR 
MUSIC IR 
 

The multi-dimensional search approach to Music IR, and 
the corresponding algorithms presented above have a number of 
interesting properties and conceptual advantages. 

 

7.1 Adaptive to the distribution 
 

A truly multi-dimensional approach enables an adaptation to the 
distribution of the data set. For example, the KD-Tree algorithm  
focuses its discriminating power in a non-uniform way. The 
search tree it creates represents a best fit to the density of the 
data. This could be efficient for, say, search tasks in a database 
where part of the features remain quasi constant, e.g. a database 
of samples which are all pure tones of a given instrument, with 
quasi constant pitch, and a varying brightness. It is interesting to 
compare this adaptive behavior with a string-matching algorithm 
that would have to compare sequences that all begin with 
“aaa…”. The latter can’t adapt and systematically tests the first 
three digits, which is an obvious waste of time. 

 
 

7.2 Independent of the metric and of the 
alphabet 
 

All the methods presented here are blind to the metric that 
is used. This is especially useful if the set of features is 
composite, and requires a different metric for each coordinate, 
e.g. pitches can be measured modulo 12. The routines are also 
independent of the alphabet, and work for integers as well as for  

 
 
 



Table 1- Nearest neighbor search times for data sets consisting of 10000 points. The brute force method, multidim. quick-sort, the 
box assisted method in 2 and 3 dimensions, the KDTree and the KTree were compared. An X indicates that it wasn’t possible to use 

this search method on this type of data. The fastest method is given in bold and the second fastest method is given in italics. 
 

 

 

 

 

 

 

 
 
floating-points. This makes them very general, as they can deal 
with a variety of queries on mixed low-level features and high-
level meta-data such as: 

Nearest neighbor )"",3,2,1( BACHpitchpitchpitch  

 

7.3 Flexibility 
 

There are a variety of searches that are often performed on 
multidimensional data.[14] Perhaps the most common type of 
search, and one of the simplest, is the nearest neighbor search. 
This search involves the identification of the nearest vector in 
the data set to some specified vector, known as the search 
vector. The search vector may or may not also be in the data set. 
Expansions on this type of search include the radial search, 
where one wishes to find all vectors within a given distance of 
the search vector, and the weighted search, where one wishes to 
find the nearest A vectors to the search vector, for some positive 
integer A. 

Each of these searches (weighted, radial and nearest 
neighbor) may come with further restrictions. For instance, 
points or collections of points may be excluded from the search. 
Additional functionality may also be required. The returned data 
may be ordered from closest to furthest from the search vector, 
and the sorting and searching may be required to handle the 
insertion and deletion of points. That is, if points are deleted 
from or added to the data, these additional points should be 
added or deleted to the sort so that they can be removed or 
included in the search. Such a feature is essential if searching is 
to performed with real-time analysis. 

Most sorting and searching routine presented above are 
able to perform all the common types of searches, and are 
adaptable enough so that they may be made to perform any 
search.  

 
7.4 A note on dimensionality 
 

One of the restrictions shared by the multidimensional 
search routines presented on this paper is their dependence on 
the dimensionality of the data-set (not its size). This is 
detrimental  to the  sheer  “folding”  of  the  trajectory  search  as  

 

 
 

 
presented in the introduction, especially when it involves long 
m-sequences of high-n-dimension features (dimension N m n= ⋅  
may be too high). However, as we mentioned in the course of 
this paper, there are still a variety of searches that can fit into the 
multidimensional framework.  We notably wish to suggest: 
 
- Searches for combinations of high-level metadata (m=1) 
- It is possible to reduce N with classic dimensionality 
reduction techniques, such as Principal Component Analysis or 
Vector Quantization. 
- It is possible to reduce M by computing only 1 vector of 
features per audio piece. It is the approach taken in the Muscle 
Fish™ technology [15], where the mean, variance and 
correlation of the features are included in the feature vector. 
- It is possible to reduce M by computing the features not 
on a frame-to-frame basis, but only when a significant change 
occurs (“event-based feature extraction”, see for example [16]). 
- For finite alphabets, it is always possible to reduce the 
dimension of a search by increasing the size of the alphabet. For 
example, searching for a set of 9 notes out of a 12 semi-tone 
alphabet can be reduced to a 3D search over an alphabet of 

312 symbols.  
 

8. CONCLUSION 
 

We’ve presented and discussed four algorithms for a 
multidimensional approach to Music IR. The KD search tree is a 
highly adaptable, well-researched method for searching 
multidimensional data. As such it is very fast, but also can be 
memory intensive, and requires care in building the binary 
search tree. The k tree is a similar method, less versatile, more 
memory intensive, but easier to implement. The box-assisted 
method on the other hand, is used in a form designed for 
nonlinear time series analysis. It falls into many of the same 
traps that the other methods do. Finally the multidimensional 
quick-sort is an original method designed so that only one 
search tree is used regardless of how many dimensions are used.  

These routines share a number of conceptual advantages 
over the approaches taken so far in the Music IR community, 
which -we believe- can be useful for a variety of musical 
searches. The aim of the paper is to be only a review, and the 
starting point of a reflection about search algorithms for music. 

Data set Dimension Brute Quicksort Box (2) 
method 

Box (3) 
method 

KDTree KTree 

Uniform noise 3 32567 2128 344 210 129 845 

Gaussian 2 16795 280 623 X 56 581 

Gaussian 4 44388 8114 54626 195401 408 3047 

Identical dimensions 3 33010 19  1080  5405 42 405 

One valid dimension 3 30261 31  1201  7033 37 453 



In particular, we still have to implement specific music retrieval 
systems that use the results presented here. 
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