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ABSTRACT

Musicd genres are cdegoricd descriptions that are used to
describe music. They are commonly used to structure the
increasing amounts of music available in digital form on the
Web and are important for music information retrieval.
Genre cdegorizdion for audio has traditionaly been
performed manually. A particular musicd genre is
charaderized by datisticd properties related to the
instrumentation, rhythmic structure ad form of its
members. In this work, algorithms for the aitomatic genre
cdegorizaion of audio signals are described. More
spedficdly, we propose aset of feaures for representing
texture and instrumentation. In addition a novel set of
feaures for representing rhythmic structure and strength is
proposed. The performance of those fedure sets has been
evaluated by training statisticd pattern reaognition
classfiers using red world audio colledions. Based on the
automatic hierarchicd genre dasdficaion two graphicd
user interfaces for browsing and interading with large
audio coll edions have been devel oped.

1. INTRODUCTION

Musicd genres are cdegoricd descriptions that are used to
charaderize music in music stores, radio stations and nov on the
Internet. Although the division d music into genres is Ssmewhat
subjedive and arbitrary there ae perceptua criteria related to the
texture, instrumentation and rhythmic structure of music that can
be used to charaderize aparticular genre. Humans are remarkably
good at genre dasdficdion as investigated in [1] where it is
shown that humans can acairately predict a musicd genre based
on 250milli secnds of audio. This finding suggests that humans
can judge genre using only the musicd surface withou
constructing any higher level theoretic descriptions as has been
argued in [2]. Up to now genre dasdficaion for digitaly
avalable music has been performed manualy. Therefore
techniques for automatic genre dasdficaion would be avaluable
addition to the development of audio information retrieval
systems for music.
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In this work, algorithms for automatic genre dasdficdion are
explored. A set of feaures for representing the music surface ad
rhythmic structure of audio signals is proposed. The performance
of this fedure set is evaluated by training statisticd pattern
recognition clasdfiers using audio colledions colleded from
compad disks, radio and the web. Audio signals can be
automaticdly classfied using a hierarchy of genres that can be
represented as atreewith 15nodes. Based onthis automatic genre
clasdficaion and the etraded fedures two graphicd user
interfaces for browsing and interading with large digital music
colledions have been developed. The fedure etradion and
graphicd update of the user interfaces is performed in red time
and hes been used to clasdfy liveradio signals.

2. RELATED WORK

An ealy overview of audio information retrieval (AIR) (including
speet and symbolic music information retrieval) is given in [3].
Statisticd pattern recognition besed onthe extradion o spedral
feaures has been used to classfy Music vs Speed [4], Isolated
sounds [5, 6] and Instruments [7]. Fedures related to timbre
recognition have been explored in [8,9]. Extradion o
psychoamustic feaures related to music surface ad their use for
similarity judgements and high level semantic descriptions (like
sow or loud is explored in [10]. Content-based similarity
retrieval from large olledions of music is described in [11].
Automatic bed tradking systems have been proposed in [12, 13]
and [14] describes a method for the aitomatic extradion d time
indexes of occurrence of different percusdve timbres from an
audio signal. Musicd genres can be quite subjedive making
automatic dassfication dfficult. The aeaion d a more objedive
genre hierarchy for music information retrieval is discused in
[15]. Althowgh the use of such a designed hierarchy would
improve dasdgfication results it is our belief that there is enough
statisticd information to adequately charaderize musicd genre.
Although manually annatated genre information hes been used to
evaluate mntent-based similarity retrieval algorithms to the best
of our knowledge, there is no prior published work in automatic
genre dasdficaion.



3. FEATURE EXTRACTION
3.1 Musical Surface Features

In this work the term “musicd surface” is used to denocte the
charaderistics of music related to texture, timbre ad
instrumentation. The statistics of the spedra distribution over
time can be used in order to represent the “musicd surface” for
pattern recognition pupases. The following 9-dimensiona feaure
vedor isused in ou system for this purpose: (mean-Centroid,
mean-Rolloff, mean-Flux, mean-ZeroCrossings, std-Centroid,
std-Roalloff, std-Flux, std-ZeroCrossings, LowEnegry).

The means and standard deviations of these feaures are cdculated
over a “texture” window of 1 seacnd consisting of 40 “analysis’
windows of 20 milli secnds (512 samples at 22050 sampling
rate). The fegure cdculation is based onthe Short Time Fourier
Transform (STFT). that can be dficiently cdculated using the
Fast Fourier Transform (FFT) algorithm [16].

The following fedures are cdculated for ead “analysis’ window:
(M[f] is the magnitude of the FFT at frequency bin f and N the
number of frequency bins):
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The Centroid isameasure of spedral brightness

« Centroid:

. Rolloff : isthevalue R such that :
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The roll off is ameasure of spedral shape.

F=|M[f]-M [f]| 3

*  Flux:

where M pdenot&s the FFT magnitude of the previous

frame in time. Both magnitude vedors are normalized in
energy. Flux is ameasure of spedral change.

e ZeroCrossings: the number of time domain zerocrossngs of
the signal. ZeroCrossngs are useful to deted the amourt of
noisein asignal.

* LowEnergy: The percentage of “analysis’ windows that
have energy lessthan the average energy of the “anaysis’
windows over the “texture” window.

3.2 Rhythm features

The cdculation o feaures for representing the rhythmic structure
of music is based on the Wavelet Transform (WT) which is a
technique for analyzing signals that was developed as an
aternative to the STFT. More spedficdly, unlike the STFT that
provides uniform time resolution for all frequencies the DWT
provides high time resolution for al frequencies, the DWT
provides high time resolution and low frequency resolution for
high frequencies and high time and low frequency resolution for
low frequencies.

The Discrete Wavelet Transform (DWT) is a speda case of the
WT that provides a mmpad representation d the signal in time
and frequency that can be mmputed efficiently. The DWT
analysis can be performed uwsing a fast, pyramidal algorithm
related to multirate filterbanks [17]. An introduction to wavelets
can befoundin [18].

For the purposes of this work, the DWT can be viewed as a
computationally  efficient way to cdculae a octave
decompasition d the signal in frequency. More spedficdly the
DWT can be viewed as a onstant Q (bandwidth / center
frequency) with octave spadng between the centers of thefilters.

In the pyramidal algorithm the signa is analyzed at different
frequency bands with dfferent resolutions by decomposing the
signa into a @arse gproximation and cetail information. The
coarse gproximation is then further decomposed using the same
wavelet step. The deomposition is acieved by successve
highpass and lowpass filtering of the time domain signa and is
defined by the foll owing equations:

yhigh[k] = z Xqnjg[2k -n] ()
Yl = 3 AIN2k-1] 9

where yhigh[k], Yol K] arethe output of the highpass(g) and

lowpass (h) filters, respedively after subsampling by two. The
DAUBA filters proposed by Daubechies [19] are used.

The rhythm feaure set is based on dteding the most salient
periodicities of the signal. Figure | shows the flow diagam of the
bea anadysis. The signa is first decomposed into a number of
octave frequency bands using the DWT. Following this
decomposition the time domain amplitude envelope of eat band
is extraded separately. This is achieved by applying full wave
redificaion, low passfiltering and dowvnsampling to ead band.
The enwvelopes of eat band are then summed together and an
autocorrelation function is computed. The peés of the
autocorrelation function correspondto the various periodiciti es of
the signal’s envelope. These stages are given by the equations:

1. Full Wave Rectification (FWR):

yln] = abs(x{n]) ()

2. Low Pass Filtering (LPF): (One Pole filter with an alpha
valueof 0.99) i.e

yinl = @-a)qn]-ayin] (™
3. Downsampling (1) by k (k=16 in ou implementation):

yin] = x{kn] ®

4. Normalization (NR) (mean removal):

yin] = x{n] - E[Xn]] ©
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Fig. | Beat analysisflow diagram

5. Autocorrelation
efficiency) :

yinl =%Zx[n1x[n+k] 10

(AR) (computed using the FFT for

The first five pe&ks of the autocorrelation function are deteded
and their correspondng periodicities in beas per minute (bpm)
are cdculated and added in a “bea” histogram. This processis
repeding by iterating over the signa and acaimulating the
periodicitiesin the histogram. A window size of 65536samples at
22050Hz sampling rate with a hop size of 4096 samples is used.
The prominent peks of the final histogram correspond to the
various periodicities of the audio signal and are used as the basis
for the rhythm feaure cdculation.

The following feaures based onthe “bea” histogram are used:
1. PeriodO: Periodicity in bpm of the first pesk Period0

2. Amplitude0: Relative amplitude (divided by sum of
amplitudes) of the first pe&k.

3. RatioPeriodl: Ratio of periodicity of second pek to the
periodicity of the first pesk

4.  Amplitudel: Relative anplitude of second peek.
5. RatioPeriod2, Amplitude2, RatioPeriod3, Amplitude3

These feaures represent the strength of bea (“bededness’) of the
signal and the relations between the prominent periodicities of the
signal. This fedure vedor caries more information than
traditional bea tradking systems [11, 12] where asingle measure
of the bea correspondng to the tempo and its grength are used.

Figure Il shows the “bea” histograms of two classcd music
pieces and two modern popmusic pieces. The fewer and stronger
pe&ks of the two pop music histograms indicae the strong
presence of a regular bea unlike the distributed weaker pedks of
clasdcd music.
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Fig. 1l Beat Histogramsfor Classical (Ieft) and Pop (right)

The 8-dimensional feaure vedor used to represent rhythmic
structure and strength is combined with the 9-dimensional musica
surfacefedure vedor to form a 17-dimensional fegure vedor that
is used for automatic genre dassficaion.

4, CLASSIFICATION

To evaluate the performance of the proposed feaure set, statistica
pattern reqognition classfiers were trained and evaluated using
data sets coll eded from radio, compad disks and the Web. Figure
Il shows the dasdficaion herarchy used for the experiments.
For ead nock in the treeof Figure Ill, a Gaussan classfier was
trained using a dataset of 50 samples (ead 30 seconds long).
Using the Gaussan classfier ead classis represented as a single
multidimensional Gaussan dstribution with parameters estimated
from the training dataset [20]. The full digita audio data
colledion consists of 15 genres * 50 files * 30 semnds = 22500
seqnds (i.e 6.25 hous of audio).

For the Musicd Genres (Clasdcd, Courtry.....) the cmbined
feaure set described in this paper was used. For the Classcd
Genres (Orchestra, Piano...) and for the Speeh Genres
(MaleVoice FemaeVoice...) mel-frequency cepstral coefficients
[21] (MFCC) were used. MFCC are perceptualy motivated
feaures commonly used in speed rewgnition reseach. In a
similar fashion to the Music Surface feaures, the means and
standard deviations of the first five MFCC over a larger texture
window (1 seacondlong) were cdculated. MFCCs can a'so be used
in place of the STFT-based music surface feaures with similar
classficaion results. The use of MFCC as feaures for classfying
music vs eet has been explored in [22].

The speed genres were alded to the genre dassficaion
hierarchy so that the system could be used to classfy live radio
signals in red time. “Sports annourting” refers to any type of
speet over noisy badkground
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Tablel. Classification accuracy percentageresults

MusicSpeech | Genres | Voices | Classical
Randaom 50 16 33 25
Gaussan 86 62 74 76

Table 1. summarizes the dasdficdion results as pecentages of
clasdficaion acarragy. In al cases the results are significantly
better than random clasdficaion. These dassficaion results are
cdculated using a 10fold evauation strategy where the
evaluation data set is randamly partitioned so that 10% is used for
testing and 90/ for training. The processis iterated with different
random partitions and the results are averaged (in the evaluation
of Table.1 ore hunded iterations where used).

Table 2. shows more detailed information abou the genre
classfier performance in the form of a @nfusion matrix. The
columns correspond to the adua genre and the rows to the
predicted genre. For example the cél of row 2, column 1 with
value 0.01 meansthat 1 percent of the Clasdcd music (column 1)
was wrongly classfied as Courtry music (row 2). The percentages
of corred classficaions lie in the diagona of the cnfusion
matriX. The best predicted genres are dasscd and hiphop while
the worst predicted are jazz ad rock. This is due to the fad that
the jazz ad rock are very broad categories and their boundxries
are more fuzzy than clasdcd or hiphop

Table 3. shows more detailed information abou the dasscd
music dassfier performancein the form of a onfusion matrix..

classic | country | Disco Hiphop | jazz Rock
classic | 86 2 0 4 18 1
country | 1 57 5 1 12 13
disco 0 6 55 4 0 5
Hiphop | O 15 28 90 4 18
Jazz 7 1 0 0 .37 12
Rock 6 19 11 0 27 48

Table2. Genreclassification confusion matrix

choral orchestral Piano string 4tet
choral 99 10 16 12
orchestral 0 53 2
piano 1 20 75
string 4tet 0 17 7 80

Table2. Classical music classification confusion matrix
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Fig. IV Relative feature set importance

Figure IV shows the relative importance of the “musicd surface”
and “rhythm” feaure sets for the aitomatic genre dasdfication.
As expeded bah feaure sets perform better than random and
their combination improves the dasdficaion acarracy. The genre
|abeling was based onthe atist or the cmpad disk that contained
the excerpt. In some caes this resulted in outliers that are one of
the sources of prediction error. For example the Rock colledion
contains Ngs by Sting that are more dose to Jazz than Rock
even for a human listener. Similarly the Jazz ©lledion contains
songs with string acaompaniment and no rhythm sedion that
soundlike Classcd music. It islikely that repladng these outliers
with more daraderistic pieces would improve the genre
clasgfication results.
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Fig. IV GenreGram

5. USER INTERFACES

Two new graphicd user interfaces for browsing and interading
with colledions of audio signals have been developed (Figure
IV,V) . They are based onthe etraded fedure vedors and the
automatic genre dasdficdion results.

e GenreGram is a dynamic red-time audio dsplay for
showing automatic genre dassfication results. Each genreis
represented as a g/linder that moves up and down in red
time based on a dassficaion confidence measure ranging
from 0.0 to 10. Each cylinder is texture-mapped with a
representative image of ead caegory. In addition to being a
nice demonstration o automatic red time aidio
classficaion, the GenreGram gives valuable feedbad bath
to the user and the dgorithm designer. Different
classficaion dedsions and their relative strengths are
combined visualy, reveding correlations and classficaion
patterns. Since the boundaries between musicd genres are
fuzzy, a display like this is more informative than a single
classficaion dedsion. For example, most of the time arap
song will trigger Male Voice, Sports Announcing and
HipHop. Thisexad caseis shownin Figure IV.

»  GenreSpaceis atod for visualizing large sound colledions
for browsing. Each audio file is represented a single point in
a 3D space Principa Comporent Analysis (PCA) [23] is
used to reduce the dimensiondlity of the feaure vedor
representing the file to the 3-dimensional fedure vedor
correspondng to the point coordinates. Coloring of the
points is based on the aitomatic genre dassficaion. The
user can zoom, rotate and scde the spaceto interad with the
data. The GenreSpace aso represents the relative similarity
within genres by the distance between pdnts. A principal
curve [24] can be used to move sequentially through the
points in a way that preserves the locd clustering
information.

Fig. V GenreSpace

6. FUTURE WORK

An olvious diredion for future reseach is to expand the genre
hierarchy both in width and depth. The mbination o
segmentation [25] with automatic genre dassficaion could
provide away to browse audio to locae regions of interest.
Anocther interesting diredion is the mmbination o the graphicad
user interfaces described with automatic similarity retrieva that
takes into acourt the automatic genre dassficaion. In its current
form the bea analysis algorithm can na be performed in red time
as it neds to colled information from the whole signal. A red
time version d bea analysis is planned for the future. It is our
belief that more rhythmic information can be extraded from audio
signals and we plan to investigate the aility of the bea analysis
to deted rhythmic structure in synthetic stimuli.

7. SUMMARY

A fedure set for representing music surface ad rhythm
information was proposed and wsed to buld automatic genre
clasgficaion agorithms. The performance of the proposed data
set was evaluated by training statisticd pattern recognition
clasdfiers on red-world data sets. Two new graphicd user
interfaces based on the extraded fedure set and the aitomatic
genre dasdficaion were developed.

The software used for this paper is available & part of MARSYAS
[26] a software framework for rapid development of computer
audition applicaion written in C++ and JAVA. It is available &
freesoftware under the Gnu Public License (GPL) at:

http://www.cs.princeton.edu/~gtzan/mar syas.html
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