
PREGROUP GRAMMARS FOR CHORDS

LIRMM/CNRS
161, rue ADA

34000 Montpellier
France

terrat@lirmm.fr

Richard G. TERRAT

&
IRCAM

1,Place Igor Stravinsky
75004 Paris

France
terrat@ircam.fr

ABSTRACT

Pregroups had been conceived as an algebraic tool to
recognize grammatically well-formed sentences in
natural languages [3].

Here we wish to use pregroups to recognize
well-formed chords of pitches, for a given definition of
those chords. We show how a judicious choice of basic
and simple types allows a context-free grammatical
description.

Then we use the robustness property to extend
the set of well-formed chords in a simple way.

Finally we argue in favor of an utilization of
pregroups grammars for the recognition and
classification of chord sequences.

1. INTRODUCTION

Following the seminal work of Noam CHOMSKY [5]
attempting to provide a formal description of the
syntax of natural languages, many researchers have
provided various such formalisms in the musical field.

Formal descriptions are proved to be useful
tools either for a better comprehension of musical
structures (with recognition grammars), or with the aim
of automatic composition or improvisations (with
generative grammars).

Nevertheless either these grammars are easy to
implement (e.g. context-free) but insufficient to
account for complex musical structures, or heavily
dependent of the context and thus difficult to describe
and process.

Thanks to recent works we can hope to get out
of this dilemma. For recognition grammars, pregroup
grammars play an important role in that work.

In this paper we will first summarize in §2 the
main definitions and properties of pregroups, then §3
will present the concept of type, §4 the one of typing
used for the syntactic units of the language while §5
specifies the method of recognition ; §6 will show how

pregroups can be used for simple examples of chord
grammars and §7 concludes with current prospects.

2. PREGROUPS

2.1 . Definition

A pregroup is a partially ordered monoid in which each
element a has both a left adjoint al and a right adjoint
ar satisfying :

Contraction
al . a → 1 (1)
a . ar → 1

Expansion
(Generally not needed for syntax verification)

1 → a . al (2)
1 → ar . a

where “→” denotes the partial order relation, “.” the
multiplication and “1” the unit of the monoid.
(The multiplication sign will be omitted in the sequel).

2.2 . Properties

a 1 = a = 1 a (3)
1 is the unit of the monoid

(a b) c = a (b c) (4)
multiplication is associative

a → b and c → d implies a c → b d (5)
order is compatible with multiplication

a b → 1 → b a implies a = bl and b = ar (6)
adjoints are unique

(a b)l = bl al (a b)r = br ar (7)
adjunction is quasi-distributive

a → b implies bl → al and br → ar (8)
adjunction reverses the order

alr = a = arl (9)
no mixed adjoints

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page.

© 2004 Universitat Pompeu Fabra.

Properties (3) to (5) are part of the definition
of a monoid ; properties (6) to (9) can be derived from
definitions and their proofs can be found in [3].

3. TYPES

3.1 . Basic types

As linguists, we will work with the free pregroup
generated by a partially ordered set of so called basic
types which are elements of an enumerable set.
Bold face symbols : a, b, c, … will range over basic
types.

The order between basic types is declared as
such, and is stored in a table.

B = { a, b, c, ….}

3.2 . Simple types

Simple types are formed from basic types and their
adjoints. Thus they form an infinite enumerable set :

∑ = { … al l,al,a,ar,arr , … bl l,bl,b,br,brr , … }

Simple types inherit the order from the basic
types as follows :

if a→b then bl→al, br→ar, al l→bl l, arr→brr,

Hence to check whether a → b , it is
sufficient to check whether a and b have the same
exponent, i.e. a = as , b = bs where a and b are basic
types and s consists of a finite number n of repetitions
of the same suffix, either l or r.

If a and b have the same exponent, then a →
b if either n is even and a→ b, or n is odd and b → a.
Otherwise, neither a reduces to b nor b to a.

Contractions of simple types can be
understood as rules such as :

al l al → 1 , al a → 1 , a ar → 1 , ar arr →
1

3.3 . Types

Strings of simple types will be called compounded
types or more simply : types.

The order → can be read as "reduces to".

4. TYPING

4.1 . Assignment

As a first step, the language to be analyzed has to be
described in some grammatical terms. The smallest
syntactic units (words) are supposed to be in a
dictionary.

The next step is to define the set of basic
types and its ordering. Then, to every word, one, or
more generally several types have to be assigned.

The typing assignment must be done in such a
way that the sequence of words constitutes a well-
formed construct if and only if the corresponding string
of its types reduces to the basic type corresponding to
the construct. If more than one type is assigned to a
word, it is sufficient that one of these types yields a
string reducing to the final type.

Every typing respecting this condition is said
to be correct, i.e. it allows to recognize only well-
formed constructs and complete, i.e. it recognizes all
well-formed constructs.

4.2 . Extension and robustness

An important property of typing is the possibility to
extend the constructs in a monotonic way, i.e. without
changing the properties of the previous string : this is
called the robustness.

These extensions can be done in two ways :

4.2.1. Assigning new types

If a new type y is assigned to a word w , without
changing the previous assigned types, and x is one of
the previous assigned types such that y → x then every
string of words recognized as well-formed using the
type assignment x for w is also well-formed using y.

4.2.2. Extension by new basic types

Let B be a given set of basic types. It is possible to
extend this set by declaring new basic types and their
order relations, obtaining thus a larger set of basic types
B' ⊃ B. Then the free pregroup P' generated by B'
includes the free pregroup P generated by B.

If a and b belong to P and a → b can be
derived in P, it can also be derived in P'.

4.3 . Conservativity

If a → b can be derived in some pregroup P' and both
a and b belong to a smaller pregroup P ⊂ P', then the
whole reduction can be done in P.

The proof of this non trivial property can be
found in [3].

5. LANGUAGE ANALYSIS

5.1 . Step by step

The robustness and conservativity properties allow to
proceed step by step to analyze a language. One can
take a subset of the language and show its correctness
and completeness. Then one can extend the fragments
either by assigning new types to words or by adding
new basic types and verifying that the typing involving
the new types is also correct and complete for the new
construct.

5.2 . Type checking algorithms

A type checking algorithm is an algorithm deciding
whether a → b for arbitrary types a and b. In fact, it is
sufficient to prove that bl a → 1 since the following
property :

a → b if and only if bl a → 1 (10)

It has been shown that such an algorithm
exists and that its complexity is at most O(n3)

6. A SIMPLE CHORD GRAMMAR

6.1 . Rules for "non dissonant" chords

Let us call "non dissonant" a chord which has no
harmonics in "critical bands" [4]. A non dissonant
chord may be "non consonant" since to be consonant
the pitches of the chord must have several common
harmonics or at least have close harmonics that
produces only vibratos. Thus a chord may be neither
dissonant nor consonant. So are most chords in the
equal temperament.

Many harmony handbooks give rules for
generation or recognition of these chords [2]. These
rules are always expressed in a natural language.

On the other hand, classical grammars [1] are
used for chord sequences descriptions [6] especially in
Jazz music. Unfortunately these grammars are context
sensitive and some of these rules must be completed
by natural language sentences.

More recently, categorical grammars have been
used to cope with these difficulties [7] [8].

6.2 . A first simple approach

6.2.1. Definition

Let us call chord a non dissonant chord. Let us give
the following simple definition :

a chord is a sequence of at least 3 pitches
such that the distance between two successive pitches
of the chord is at least 3 semi-tones.

This is a simple way to prevent close
harmonics from appearing in critical bands.

This musical definition can be turned into an
arithmetic one :

0 is assigned to the first pitch of the chord
called the root

the other pitches of the chord are made of an
increasing sequence of at least 2 integers ≥3 such as
the difference between 2 consecutive elements of the
sequence is ≥ 3.

Each of these integers represents the chromatic
distance of a pitch to the root.

Let us now define a grammar where words are
the pitches and correct sentences are the chords.

6.2.2. Basic types

We define the following set of basic types
Ch for the chord
P (i) for the last pitch
P (i,j) for the other pitches

i is related to the chromatic distance of a pitch to its
root ; j is related to the rank of a pitch

and the following order :
P (i,j) → P (k,j) iff k > i (11)
P (i,j) → P (i) (12)

6.2.3. Typing

Each pitch of the chord is represented by an integer
measuring its chromatic distance to the root : for
example a m7b9 chord is represented by the following
sequence : 3 7 10 13

To each of these integers, say n, we assign one of the 3
following types :

P (n-3)r Ch n ≥ 6
for the pitch in the last position

P (n,1) n ≥ 3
for the pitch in the first position

P (n-3,k)r P(n,k+1) n ≥ 3(k+1)
for the pitches in an intermediate

position k

For the above example, the typing is :
3 P (3,1)
7 P (4,1)r P(7,2)
10 P (7,2)r P (10,3)
13 P (10)r Ch

leading to the following type of the whole sequence :
P (3,1) P (4,1)r P (7,2) P (7,2)r P (10,3) P (10)r Ch

As P (3,1) → P (4,1) according to (11)
and P(10,3) → P (10) according to (12)

the previous type reduces to Ch proving the correctness
of the chord

Let us now take an other example, such as a m6 chord,
represented by the following sequence : 3 7 9
and its type : P (3,1) P (4,1)r P (7,2) P (6)r Ch
that reduces to : P (7,2) P(6)r Ch
which is irreducible.
Such a chord is, according to our definition, incorrect.

6.3 . An extension

The above definition for a chord appears to be too
restrictive. According to the property of robustness, we
can extend the assignment of types without changing
the previous language.

For example, if we accept chords with a
minimum chromatic distance of 2 semi-tones between
its pitches, the following assignments have to be added
:

P (n-2)r Ch n ≥ 4
for the pitch in the last position

P (n,1) n ≥ 2

for the pitch in the first position
P (n-2,k)r P(n,k+1) n ≥ 2(k+1)

for the pitches in an intermediate
position k

So, the above example of a m6 chord : 3 7 9
can be assigned to the following type :

P (3,1) P (5,1)r P (7,2) P (7)r Ch
that reduces to Ch and becomes correct

6.4 . Chord specifications

In the previous simple examples, one single basic type
Ch has been assigned to a valid chord. It is possible to
refine the definitions in order to specify more precisely
the kinds of chords.

For example, if we want to distinguish major
and minor chords, different specific assignments of the
first pitch, i.e. the third degree, must be done. They
will be associated to 2 different assignments of the
chord, namely the major and minor ones.

New basic types:

m for minor
M for major
Chm for a minor chord
ChM for a major chord

New typing :

m P(3,1) for the first pitch iff its value is 3
M P(4,1) for the first pitch iff its value is 4
P (n-2)r mr Chm n ≥ 4
P (n-2)r Mr ChM n ≥ 4

for the pitch in the last position

A simple minor chord will be represented by the
sequence : 3 7
and its type by : m P(3,1) P(5)r mr Chm
that reduces to : Chm

In the same way, we can specify 7th chords,
and so on. This may lead to 4 classic chord types as :
ChM, Chm, Ch7, Chm7.

6.5 . Chord sequences

Furthermore, we can add the relative root of the chord
in its definition in order to specify its degree relative to
a given tone. Thus we can distinguish, for instance, a
Vm7 from a IIm7 in a chord sequence. Each of these
chords will thus be assigned to a proper single type or
a sequence of such types.

At this point, the analysis of a chord sequence
becomes possible. A new grammar at a higher level
will now consider chords as clauses and chord
sequences as sentences [8]. This is a classical way of
analyzing a complex language level by level.

To each basic type(s) representing a specific
chord we will now assign new types.

7. CONCLUSION

We have shown that pregroup grammars can be used to
describe the context-sensitive syntax of chords. Further
works involving sequences of chords are under
investigation. For example, the six rules of Steedman
[6] concerning various chord sequences of blues are
described by a context-sensitive generative grammar
containing some assertions expressed in a natural
language. Steedman himself is now using combinatory
categorical recognition grammars [7] to cope with
context sensitivity. In that direction pregroup
grammars may be possible for context-free formal
recognition (rather that generation).

Furthermore, as pregroup grammars are able to
recognize specific sentence constructions in natural
languages, they may also be able to recognize specific
chord sequences allowing their classification in some
particular context ; for example in jazz music : blues,
rag, anatole (chord sequence of "I got rhythm" – G.
Gershwin -) etc .. Such classifications would be a
useful help for indexing pieces in large databases,
especially on the WWW, either by extracting chord
files from "real books" or possibly with the help of
software extracting chord sequences from scores or even
audio files [5]

8. REFERENCES

[1] CHOMSKY Noam (1979) – Structures
syntaxiques – Editions du Seuil

[2] EBERHARD Daniel Mark (2001) - D a s
Wichtigste in der Musik steht nicht in den
Noten – Skript zum (Jazz-) Improvisations
Workshop

[3] LAMBEK Joachim (2000) - An algebraic
approach to English sentence - unpublished
lecture notes, McGill University, QC, Canada

[4] PIERCE John (1984) – Le son musical – Ed.
Pour la Science

[5] SHEH Alexander, ELLIS Daniel P. W. (2003)
– Chord Segmentation and Recognition using
EM-Trained Hidden Markov Models – ISMIR
2003

[6] STEEDMAN Mark (1984) – A Generative
Grammar for Jazz Chord Sequences – Music
Perception 2, 52-77 1984

[7] STEEDMAN Mark (2003) – Formal
Grammars for Computational Music
Analysis : The Blues and the Abstract Truth –
INFORMS Atlanta October 2003

[8] TERRAT Richard (2004) – A Pregroup
grammar for chord Sequences – SMC 04 –
Paris October 2004

